ELISA

Intended Use:
The Quantitative Determination of Luteinizing Hormone Concentration in Human Serum by a Microplate Immunoenzymometric assay.

Summary And Explanation Of The Test:
Luteinizing hormone (LH) is a glycoprotein consisting of two subunits with a molecular mass of 30,000 daltons. The α-subunit is similar to other pituitary hormones (follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH) and chorionic gonadotropin (CG)) while the β-subunit is unique. It contains the biological activity to the molecule. The α-subunit consists of 89 amino acid residues while the β-subunit contains 129 amino acids. The carbohydrate content is between 1.5% and 3.0%

In this method, LH calibrator, patient specimen or control is first added to a streptavidin coated well. Biotinylated monoclonal antibodies and enzyme labeled antibodies (directed against distinct and different epitopes of LH) are added and the reactants mixed. Reaction between the various LH antibodies and native LH forms a sandwich complex that binds with the streptavidin coated to the well.

After the completion of the required incubation period, the enzyme-luteinizing hormone antibody bound conjugate is separated from the unbound enzyme-luteinizing hormone conjugate by decantation or aspiration. The activity of the enzyme present on the surface of the well is quantitated by reaction with a suitably stable substrate to produce color.

The employment of several serum references of known luteinizing hormone levels permits construction of a dose response curve of activity and concentration. From comparison to the dose response curve, an unknown specimen’s activity can be correlated with luteinizing hormone concentration.

Principle:
Immunoenzymometric assay:
The essential reagents required for an immunoenzymometric assay include high affinity and specificity antibodies (enzyme and immobilized), with different and distinct epitope recognition. In excess, and native antigen. In this procedure, the immobilization takes place during the assay at the surface of a microwell plate through the interaction of streptavidin coated on the well and exogenously added biotinylated monoclonal anti-LH antibody. Upon mixing monovalent biotinylated antibody, the enzyme labeled antibody and a serum containing the native antigen, the reaction results involving the native antigen and the antibodies, without competition or steric hindrance, to form a soluble sandwich complex. The interaction is illustrated by the following equation:

\[
\text{Antigen} + \text{Antibody} + \text{Support} \rightarrow \text{Antibody - Antigen Complex}
\]

Simultaneously, the complex is deposited to the well through the high affinity reaction of streptavidin and biotinylated antibody. This interaction is illustrated below:

\[
\text{LH} + \text{Antibody} + \text{Support} \rightarrow \text{Antibody-LH Complex}
\]

After equilibrium is attained, the antibody-bound fraction is separated from unbound antigen by decantation or aspiration. The enzyme activity in the antibody-bound fraction is directly proportional to the native antigen concentration, by utilizing several different serum references of known antigen values, a dose response curve can be generated from which the antigen concentration of an unknown can be ascertainment.

Reagents:
Materials Provided: Store at 2-8°C

<table>
<thead>
<tr>
<th>(LH) Kit Contents</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH Calibrator, for LH Antigen 6 levels as mentioned on the label</td>
<td>6x1.0ml</td>
</tr>
<tr>
<td>LH Enzyme Reagent</td>
<td>1x13ml</td>
</tr>
<tr>
<td>Streptavidin coated Microplate</td>
<td>96 Wells</td>
</tr>
<tr>
<td>Wash Solution Concentrate</td>
<td>1x20ml</td>
</tr>
<tr>
<td>Substrate A</td>
<td>1x7ml</td>
</tr>
<tr>
<td>Substrate B</td>
<td>1x7ml</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>1x8ml</td>
</tr>
</tbody>
</table>

Product Insert

1. Test Procedure:
Before proceeding with the assay, bring all reagents, serum references and controls to room temperature (20-27°C).
1. Format the micro plate wells for each serum reference control and patient specimen to be assayed in duplicate.
2. Replace any unused microtiter strips back into the aluminum bag, seal and store at 2-8°C.
3. Pipette 0.050 ml (50μl) of the appropriate serum reference, control or specimen into the assigned well.
4. Add 0.100 ml (100μl) of LH-Enzyme Reagent to all wells.
5. Swirl the microplate gently for 20-30 seconds to mix and cover.
6. Incubate 60 minutes at room temperature.
7. Discard the contents of the microplate by decantation or aspiration, if decanting, blot the plate dry with absorbent paper.
8. Add 300μl of wash buffer (see Reagent Preparation Section) decant (tap and blot) or aspirate. Repeat two (2) additional times for a total of three (3) washes.
9. Centrifuge the wash and repeat wash two (2) additional times.
10. Add 0.100 ml (100μl) of Working substrate solution to all wells.

Precautions:
For clinical diagnostic use

1. Not for Internal or External Use in Humans or Animals
2. All products that contain human serum have been found to be nonreactive for Hepatitis B Surface Antigen, HIV 1&2 and HCV Antibodies. Since no known test can offer complete assurance that infectious agents are absent in all human serum products should be handled as potentially hazardous and capable of transmitting disease. Good laboratory procedures for handling blood products can be found in the Clinical Disease Control / National Institute of Health, “Biosafety in Microbiological and Biomedical Laboratories.” 2nd Edition, 1988.

Specimen Collection And Preparation:
The specimens shall be blood, serum in type and the usual precautions in the collection of venipuncture samples should be observed. For accurate comparison to established normal values, a fasting morning serum sample should be obtained. The blood should be collected in a plain red top venipuncture tube without additives or anti-coagulants. Allow the blood to clot.

Centrifuge the specimen to separate the serum from the cells. Samples may be refrigerated at 4°C for a maximum period of five (5) days. If the specimen(s) cannot be assayed within the time the sample(s) may be stored at temperatures of 20°C for up to 30 days. Avoid repetitive freezing and thawing. When assayed in duplicate, 0.100ml of the specimen is required.

Reagent Preparation:
Wash Buffer
 Dilute contents of Wash Concentrate to 1000ml with distilled or deionized water in a suitable storage container. Store at room temperature 20-27°C for up to 60 days.

Working substrate Solution:
Prepare 1+1 mixture of Substrate A and Substrate B. Use immediately after preparation. Prepare enough quantities for the assay run.

Note:
1. Do not use reagents beyond the kit expiration date.
2. Opened reagents are stable for sixty (60) days when stored at 2-8°C.
3. Above reagents are for a single 96-well micro plate.
4. The calibrators, human serum based, were calibrated using a reference preparation, which was assayed against the WHO IRP [68/40].

Note:
Required But Not Provided:
1. Pipette capable of delivering 50μl volumes with a precision of better than 1.5%.
2. Dispenser(s) for repetitive deliveries of 0.100ml and 0.300ml volumes with a precision of better than 1.5%.
3. Microplate washer or a squeeze bottle (optional).
4. Microplate Reader with 450nm and 620nm wavelength absorbance capability.
5. Test tube(s) for mixing substrates A&B.
6. Absorbent Paper for blotting the microplate wells.
7. Plastic wrap or microplate cover for incubation steps.
8. Vacuum aspirator (optional) for wash steps.
10. Quality control materials.

Quality Control:
Each laboratory should assay controls at levels in the vicinity of the manufacturer’s reference curve. The specimen should be assayed in duplicate. If deviation from established performance can indicate unnoticed change in experimental conditions or degradation of kit reagents, fresh reagents should be used to determine the reason for the variations.

Table:
<table>
<thead>
<tr>
<th>Reagents</th>
<th>Materials Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LH) Kit Contents</td>
<td>Store at 2-8°C</td>
</tr>
<tr>
<td>LH Calibrator, for LH Antigen 6 levels as mentioned on the label</td>
<td>6x1.0ml</td>
</tr>
<tr>
<td>LH Enzyme Reagent</td>
<td>1x13ml</td>
</tr>
<tr>
<td>Streptavidin coated Microplate</td>
<td>96 Wells</td>
</tr>
<tr>
<td>Wash Solution Concentrate</td>
<td>1x20ml</td>
</tr>
<tr>
<td>Substrate A</td>
<td>1x7ml</td>
</tr>
<tr>
<td>Substrate B</td>
<td>1x7ml</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>1x8ml</td>
</tr>
</tbody>
</table>

Note:
- Do not use reagents beyond the kit expiration date.
- Opened reagents are stable for sixty (60) days when stored at 2-8°C.
- The calibrators, human serum based, were calibrated using a reference preparation, which was assayed against the WHO IRP [68/40].

Recommended Equipment:
1. Microplate Reader with a precision of better than 1.5%.
2. Dispenser(s) for repetitive deliveries of 0.100ml and 0.300ml volumes with a precision of better than 1.5%.
3. Microplate washer or a squeeze bottle (optional).
4. Microplate Reader with 450nm and 620nm wavelength absorbance capability.
5. Test tube(s) for mixing substrates A&B.
6. Absorbent Paper for blotting the microplate wells.
7. Plastic wrap or microplate cover for incubation steps.
8. Vacuum aspirator (optional) for wash steps.
10. Quality control materials.

Manufacturer’s IN- VITRO DIAGNOSTICS USE ONLY

Precautions:
- Do not use reagents beyond the kit expiration date.
- Opened reagents are stable for sixty (60) days when stored at 2-8°C.
- The calibrators, human serum based, were calibrated using a reference preparation, which was assayed against the WHO IRP [68/40].

Note:
Required But Not Provided:
1. Pipette capable of delivering 50μl volumes with a precision of better than 1.5%.
2. Dispenser(s) for repetitive deliveries of 0.100ml and 0.300ml volumes with a precision of better than 1.5%.
3. Microplate washer or a squeeze bottle (optional).
4. Microplate Reader with 450nm and 620nm wavelength absorbance capability.
5. Test tube(s) for mixing substrates A&B.
6. Absorbent Paper for blotting the microplate wells.
7. Plastic wrap or microplate cover for incubation steps.
8. Vacuum aspirator (optional) for wash steps.
10. Quality control materials.

Manufacturer’s IN- VITRO DIAGNOSTICS USE ONLY

Precautions:
- Do not use reagents beyond the kit expiration date.
- Opened reagents are stable for sixty (60) days when stored at 2-8°C.
- The calibrators, human serum based, were calibrated using a reference preparation, which was assayed against the WHO IRP [68/40].

Note:
Required But Not Provided:
1. Pipette capable of delivering 50μl volumes with a precision of better than 1.5%.
2. Dispenser(s) for repetitive deliveries of 0.100ml and 0.300ml volumes with a precision of better than 1.5%.
3. Microplate washer or a squeeze bottle (optional).
4. Microplate Reader with 450nm and 620nm wavelength absorbance capability.
5. Test tube(s) for mixing substrates A&B.
6. Absorbent Paper for blotting the microplate wells.
7. Plastic wrap or microplate cover for incubation steps.
8. Vacuum aspirator (optional) for wash steps.
10. Quality control materials.
Results:
A dose response curve is used to ascertain the concentration of follicle stimulating hormone in unknown specimens.

1. Record the absorbance obtained from the printout of the microplate reader as outlined in Example 1.
2. Plot the absorbance for each duplicate serum reference versus the corresponding LH concentration in mIU/ml on linear graph paper (do not overplot the duplicates of the serum references before plotting).
3. Draw the best-fit curve through the plotted points.

To determine the concentration of LH for an unknown, locate the average absorbance of the duplicates for each unknown on the vertical axis of the graph, find the intersecting point on the curve, and read the concentration of LH (mIU/ml) from the horizontal axis of the graph (the point of the curve that is intersecting the point on the curve, and read the concentration in mIU/ml from the horizontal axis of the graph). In the following example, the average absorbance (0.179) intersects the dose response curve at 14 mIU/ml LH concentration (See Figure 1).

Note: Computer data reduction software designed for EMA (ELISA) assays may be used to assist in the calculation of the data.

1. The absorbance (OD) of the calibrator F should be >1.3.
2. Four out of six quality control pools should be within the established ranges.

Limitations Of Procedure:
A. Quality Assurance
1. It is important that the time of reaction in each well is held constant for reproducible results.
2. Pipetting of samples should not extend beyond ten (10) minutes to avoid LH drift.
3. If more than one [1] plate is used, it is recommended to repeat the dose response curve.
4. Addition of the substrate and the stopping solution initiates a kinetic reaction, which is terminated by the addition of the stop solution.

Therefore, the addition of the substrate and the stopping solution should be added in the same sequence to eliminate any time-deviation during reaction.
5. Plate readers measure vertically. Do not touch the bottom of the wells.
6. Failure to remove adhering solution adequately in the aspiration or decantation wash step(s) may result in poor replication and spurious results.
7. Use components from the same lot. No intermixing of reagents from different batches.

B. Interpretation

1. If computer controlled data reduction is used to interpret the results of the test, it is imperative that the predicted values for the calibrators fall within 11% of the assigned concentrations.
2. LH is suppressed by estrogen but in woman taking oral contraceptives the level may be low or normal. Excessive dieting and weight loss may lead to low gonadotropin concentrations.
3. Luteinizing hormone is dependent upon diverse factors other than pituitary homeostasis. Thus, the determination of LH is not sufficient to assist clinical status.

Expected Ranges Of Values:
A study of an apparent normal adult population was undertaken to determine expected values for the Fortress LH ELISA Microplate Test System. The expected values are presented in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Values for the LH ELISA Test System (in mIU/ml IRP 68/80)</td>
</tr>
<tr>
<td>Women</td>
</tr>
<tr>
<td>Follicular phase</td>
</tr>
<tr>
<td>Midcycle</td>
</tr>
<tr>
<td>Luteal phase</td>
</tr>
<tr>
<td>Postmenopausal</td>
</tr>
<tr>
<td>Men</td>
</tr>
</tbody>
</table>

It is important to keep in mind that establishment of a range of values which can be expected to be found by a given method for a population of “normal” persons is dependent upon a multiplicity of factors: the specificity of the method, the method of standardizing the precision and the method of the hands of the analyst. For these reasons each laboratory should depend upon the range of expected values established by the Manufacturer only until an in-house range can be determined by the analysts using the method with a population indigenous to the area in which the laboratory is located.

Performance Characteristics:
A. Precision

The within and between assay precision of the Fortress LH ELISA Microplate Test System were determined by analyses on three different levels of control sera. The number, mean value, standard deviation (σ) and coefficient of variation for each of these control sera are presented in Table 3 and Table 4.

B. Accuracy

This Fortress LH ELISA Microplate Test System was compared with a reference radioimmunoassay. Biological specimens from normal, and pregnant populations were assayed. The total number of such specimens was 110. The least square regression equation and the correlation coefficient were computed for the LH ELISA in comparison with the reference method. The data obtained is displayed in Table 4.

C. Sensitivity

The Fortress LH ELISA Microplate Test System has a sensitivity of 0.04 mIU. This is equivalent to 0.1 sample containing 0.8 mIU/ml LH concentration.

D. Specificity

The cross-reactivity of the Fortress LH ELISA Microplate Test System to selected substances was evaluated by adding the interfering substance to a serum matrix at various concentrations. The cross-reactivity was calculated by deriving a ratio between dose of interfering substance to dose of Luteinizing Hormone needed to produce the same absorbance.

Instruments and Application:
Fortress Diagnostics’ immunoassay products are designed to work in both manual and automated lab environments and are compatible with any open-ended instrumentation, including chemistry analyzers, microplate washers and microplate readers. These may or may not be an application developed for your particular instrument please contact info@fortressdiagnostics.com.