

Automated Verification of Abstract Data Types

 التحقق الآلي من أنواع البيانات المجردة

A dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

In

(Computer Science)

BY

NAHID AHMED ALI AHMED

Supervisor

Professor: Ali Mili

JUNE 2017

Sudan University of Science and Technology

College of Graduate Studies

DECLARATION

Some of the material in this dissertation have been previously published in journal and

conference papers; the details are given below:

1. Nahid Ahmed Ali, Verifying Abstract Data Types: A Hybrid Approach; 1st

International Conference On Computing, Electrical And Electronic Engineering

(ICCEEE 2013), Page(s): 634 – 639, 2013.

2. Nahid A. Ali, التحقق من انواع البيانات المجردة: مدخل هجين, International Arab Conference

on Information Technology (ACIT’ 2015), 2015.

3. Nahid A. Ali, Amal A. Mirghani and Abdelrasoul Y. Ibrahim, Alneelain: A Formal

Specification Language, 2017 International Conference on Communication, Control,

Computing, and Electronics Engineering (ICCCCEE), Page(s): 1 – 9, 2017.

4. Nahid A. Ali, A Survey of Verification Tools Based on Hoare Logic, International

Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, 2017.

5. Nahid A. Ali, Verifying ADT Implementations against Axiomatic Specifications,

International Journal of Mathematics and Statistics Invention (IJMSI), Vol.5, No.3,

2017.

I declare that no part of this material has previously been submitted to a degree or any

other qualification at Sudan University of Science & Technology or other institutions. I

further declare that this thesis is my original work, except for clearly indicated sections

where appropriate attributions and citations are given to work by other authors.

Nahid Ahmed Ali Ahmed

Signature: Nahid Date: 15/06/17

DECLARATION

I, the signing here-under, declare that I’m the sole author of the

(M.Sc./Ph.D.) thesis

entitled:...

..

..., which is an original

intellectual work. Willingly, I assign the copy-right of this work to the

College of Graduate Studies (CGS), Sudan University of Science and

Technology (SUST). Accordingly, SUST has all the rights to publish this

work for scientific purposes.

Candidate’s name:

Candidate’s signature:

Date

Sudan University of Science and Technology

College of Graduate Studies

I

DEDICATION

To the soul of my Father:

The first to teach me, who would be delighted if he saw me in what I am in now

To my beloved Mother:

For her prayers for me and for her constant, unconditional love and support.

To my Brothers and my lovely Sister

To the people who add meaning to my life

To everyone who has supported me during this research

II

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful.

First and foremost, I thank Almighty God for everything in my life and for giving me the

courage and the determination, as well as guidance in conducting this research, despite

all the difficulties.

I am grateful to my supervisor, Professor Ali Mili, for his invaluable support, guidance,

and advice throughout my PhD. His incredible attention to detail, technical

understanding, and unending enthusiasm have been of great benefit to me – and this

dissertation– several times over. Our research discussions were always very lively and

enjoyable.

I owe thanks to the General Directorate for External Relations and Training - Ministry of

Higher Education and Scientific Research for their financial support throughout my

doctoral study.

Dr. Abuobeidah Hamouda deserves special thanks for carefully reading through early

drafts of this dissertation.

I also express my gratitude to Mr. Mojtaba for his technical support and programming in

this research.

I thank my family for their unwavering love, encouragement, and support throughout

these four years as a student. I am really incredibly lucky to have you all.

Warm thanks go to my dearest brother, Nadir and his lovely family; I will never be able

to repay him for his absolute backing and support, meeting my needs before I knew I

needed them. He has a special place in my heart.

I wish to mention all my other brothers and my sister, who have all had a great influence

in keeping me motivated throughout this PhD journey. When things made no sense, they

made the PhD life looks all the brighter and gave me the extra push when I needed one.

I am particularly grateful to my fiancé Hassan and his family who have kept exemplary

patience while I completed my thesis. I am indeed blessed to have them in my life.

Lastly, I offer my regards and blessing to all those who supported me in any respect

during the completion of this work as well as expressing my apologies that I could not

mention them personally one by one.

III

ABSTRACT

Despite the fact that modern computer systems are composed of complex hardware and

software components, verifying the correctness of the software part is often a greater

problem than that of the hardware. It is known that manual inspection of complex

software is error-prone and expensive, therefore tool support is required.

According to practical experience, using Hoare logic for proving the correctness of

computer programs is tedious, error-prone, obscure and entirely unreliable process. This

is because correctness-based principles are generally not well understood. No doubt that

this critical state of affairs has numerous reasons. However, there is one reason or issue

that has greatly led to this problem that is the verification tools used in applying Hoare

logic. These tools, in many cases, consist of a pen and papers, making it a tedious task to

verify a whole program using a pen and a sheet of paper. A direct way to solve this

problem is to use automated formal verification software to facilitate checking the

correctness of Hoare programs. The aim of this research is to build an automated system

called Alneelain Verification System that maps axioms of Abstract Data Types (ADT’s)

specification into verification conditions (in the form of a Hoare formula) and attempts

to prove them in Hoare’s logic. Before mapping axioms into Hoare formulas, one needs

to check that the specification is syntactically correct. In order to do this a specification

language called Alneelain is developed based on axiomatic specification. The evaluation

results show that the developed verification system provides a high degree of proof

automation combined with the ability to provide feedback on failed proof attempts and

thus removes the difficulty associated with the process of applying Hoare logic

manually.

IV

 مستخلص البحث

بالرغم من حقيقة أن نظم الحاسوب الحديثة تتكون من عتاد وبرمجيات معقدة ألا أن التحقق من جزء

اليدوي للبرمجيات البرمجيات يكون غالباً مشكلة اكبر من تلك التي تخص جزء العتاد. ومن المعلوم أن التحليل

المعقدة مكلف وليس خاليا من الأخطاء. لذا فإن دعم الأدوات يكون مطلوباً. بناءاً على التجارب العملية، فإن

استخدام منطق هوار لإثبات صحة برامج الحاسوب يعتبر عملية مضجرة وقابلة للخطأ وقاتمة وغير موثوق بها

للبرمجيات عموماً ليست مفهومة بصورة جيدة. من دون شك فإن هذه بالمرة. وذلك لأن مباديء التحليل المنطقي

الحالة الحرجة لها العديد من الأسباب ولكن هنالك سبب واحد أدى إلى هذة المشكلة وهو أدوات التحقق التي

 تستخدم في تطبيق منطق هوار. هذه الأدوات في حالات عديدة تتكون من قلم و اوراق مما يجعل مهمة التحقق من

برنامج كامل باستخدام القلم والورق مملة. الطريقة المباشرة لحل هذه المشكلة هي أستخدام برمجيات التحقق الممنهج

الآلية للمساعدة في التحقق من صحة برامج هوار. هدف هذه الدراسة هو بناء نظام آلي سمى نظام النيلين للتحقق

الى شروط التحقق)في شكل صيغة هوار(ومن ثم المجردةأنواع البيانات يحول البديهيات الخاصة بمواصفات

يحاول إثباتها في منطق هوار. قبل وضع البديهيات في صيغة هوار، يحتاج الفرد إلى التأكد من أن المواصفات

صحيحة من ناحية التركيب. ومن أجل فعل ذلك فإن لغة مواصفات سميت النيلين تم تطويرها بالإعتماد على

بديهية. أظهرت نتائج التقييم أن نظام التحقق المطور يزودنا بدرجة عالية من آلية الأثبات مقترنة مع المواصفات ال

قدرته على توفير تغذية راجعة في حالة محاولات الأثبات الفاشلة وهكذا يزيل الصعوبة المرتبطة بعملية تطبيق

 منطق هوار يدوياً.

V

TABLE OF CONTENTS

Dedication ... I

Acknowledgement .. II

Abstract .. III

البحث مستخلص ... IV

Table of Contents .. V

List of Tables ... XI

List of Figures .. XII

List of Abbreviations .. XIV

CHAPTER ONE INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statements and Its Significance ... 2

1.3 Research Questions .. 3

1.4 Research Hypothesis .. 3

1.5 Research Philosophy .. 3

1.6 Research Objectives ... 4

1.7 Research Scope .. 5

1.8 Organization of the Dissertation .. 5

CHAPTER TWO SOFTWARE ENGINEERING AND SOFTWARE QUALITIES

.. 6

VI

2.1 Introduction .. 6

2.2 The History of Software Engineering Discipline... 7

2.3 Software Quality .. 11

2.3.1 Software Errors, Faults and Failures .. 11

2.3.2 Classification of the Causes of Software Errors .. 12

2.3.3 Software Quality Definition ... 14

2.3.4 Software Quality Attributes ... 16

2.3.4.1 Functional Attributes ... 16

2.3.4.2 Operational Attributes .. 19

2.3.4.3 Usability Attributes .. 21

2.3.4.4 Business Attributes .. 22

2.3.4.5 Structural Attributes ... 23

2.3.5 The Software Quality Challenges .. 24

2.3.6 Quality Assurance .. 27

2.3.6.1 A Classification Scheme .. 27

2.3.6.2 Defect Prevention... 28

CHAPTER THREE SOFTWARE SPECIFICATION AND VALIDATION 33

3.1 Software Specifications ... 33

3.2 A Discipline of Specification ... 34

3.2.1 Specification: The Process and the Product ... 34

VII

3.2.2 The Specification Product: Its Three Forms .. 35

3.2.3 Properties of Specifications ... 35

3.2.4 Data Types ... 36

3.3 Formal Specification .. 37

3.3.1 Classification of Formal Specification Methods.. 39

3.3.1.1 Property-Oriented Specification Methods ... 40

3.3.1.2 Model-Based Specification Techniques .. 41

3.4 The Specification of Data Types.. 41

3.4.1 A Relational Model .. 42

3.4.2 Axiomatic Representation .. 44

3.4.2.1 Specification of a Stack ... 44

3.4.2.2 Specification of a Queue .. 46

3.5 Specification Validation... 48

3.5.1 ADT’s Specification Validation .. 50

CHAPTER FOUR PROGRAM CORRECTNESS AND VERIFICATION 54

4.1 Introduction .. 54

4.2 Correctness of Programs .. 56

4.3 Software Verification ... 58

4.3.1 Hoare Logic ... 59

4.3.1.1 Hoare Triple ... 59

VIII

4.3.1.2 An Inference System .. 59

4.3.1.3 Illustrative Examples ... 63

4.3.2 Formal Software Verification Techniques ... 67

4.3.2.1 Static Analysis ... 68

4.3.2.2 Theorem Proving ... 72

CHAPTER FIVE AUTOMATED VERIFICATION WITH HAHA 74

5.1 Introduction .. 74

5.2 Tools for Formal Program Verification ... 75

5.2.1 The Key-Hoare Tool .. 75

5.2.1.1 Using KeY-Hoare Tool .. 76

5.2.2 Hoare Advanced Homework Assistant (HAHA) Tool 80

5.2.2.1 Using HAHA Tool ... 82

5.3 Evaluation .. 85

CHAPTER SIX ALNEELAIN SPECIFICATION LANGUAGE AND COMPILER

.. 88

6.1 Introduction .. 88

6.2 Alneelain Specification Language and Compiler .. 89

6.2.1 Grammars and BNF for Alneelain Specification Language 91

6.2.2 Lexical Analysis... 96

6.2.3 Syntax Analysis ... 97

IX

6.2.3.1 Recursive Descent .. 98

6.3 The User Interface of Alneelain Specification Language 100

CHAPTER SEVEN VERIFYING ADT IMPLEMENTATIONS AGAINST

AXIOMATIC SPECIFICATIONS .. 104

7.1 Introduction .. 104

7.2 Defining ADT’s Specification ... 105

7.3 Implementation of Abstract Data Types .. 105

7.4 Mapping Axioms to Hoare Formulas .. 107

7.5 Verifying ADT Implementations Against Axioms 108

7.6 Submitting to HAHA Through the API ... 112

CHAPTER EIGHT IMPLEMENTATION AND DEPLOYMENT 121

8.1 Introduction .. 121

8.2 The Framework of the Verification Model .. 122

8.3 Software Deployment .. 125

8.3.1 QT Software ... 126

8.3.2 Microsoft Visual Studio ... 127

8.3.3 Spy++ ... 127

8.4 User Interface of Alneelain Verification System 128

CHAPTER NINE AUTOMATED VERIFICATION AND VALIDATION 131

9.1 Introduction .. 131

X

9.2 Examples of Correct Implementations that Succeed 133

9.3 The Assessment of Alneelain Verification System 136

CHAPTER TEN THE INTEGRATION ... 141

10.1 Introduction .. 141

10.2 Goal Oriented Testing .. 142

10.3 The User Interface of the Integrated Tool .. 147

10.4 The Assessment of Alneelain Verification and Testing System 149

CHAPTER ELEVEN CONCLUSION AND FUTURE WORK 152

11.1 Conclusion ... 152

11.2 Future Work ... 153

References .. 154

Appendix -A... 162

Appendix -B ... 166

Appendix -C ... 180

Appendix -D... 200

Appendix -E ... 210

XI

LIST OF TABLES

Table No. Page No.

Table 2.1: Factors Affecting Defect Detection in Software Products vs. Other Industrial

Products.. 26

Table 3.1: Two-Team, Two-Phase Approach .. 49

Table 6.1: Tokens, Lexemes, and Patterns for Alneelain Specifcation Language 97

Table 9.1: Modifications on Array-Based Stack Implementation and their Effects on

Verification System ... 136

Table 9.2: Modifications on Array-Based Queue Implementation and their Effects on

Verification System ... 137

Table 9.3: Modifications on Scalar-Based Implementation and their Effects on

Verification System ... 137

Table 9.4: Modifications on Axioms of Stack Data Type and their Effects on

Verification System ... 138

Table 9.5: Modifications on Axioms of Queue Data Type and their Effects on

Verification System ... 139

Table 10.1: Modifications on Array-Based Stack Implementation and their Effects on

Verification and Testing System .. 150

Table 10.2: Modifications on Scalar-Based Stack Implementation and their Effects on

Verification and Testing System .. 150

XII

LIST OF FIGURES

Figure No. Page No.

Figure 4.1: The Interpretation of Conditional Rule ... 61

Figure 4.2: The Interpretation of Alternation Rule .. 62

Figure 4.3: The Interpretation of Iteration Rule... 63

Figure 5.1: Screen Shot of KeY- Hoare System .. 77

Figure 5.2: KeY-Hoare Input File for the Gauss Example .. 79

Figure 5.3: Screen Shot of HAHA System .. 81

Figure 5.4: HAHA Input File for the Gauss Example ... 83

Figure 6.1: The Flowchart for Steps of Designing Alneelain Specification Language ... 90

Figure 6.2: The BNF for Alneelain Specification Language ... 94

Figure 6.3: The Stack Specification in Alneelain Specification Language 95

Figure 6.4: Recursive Descent Parser for Grammar in Figure 6.2. 100

Figure 6.5: The User Interface of Alneelain Specification Language 101

Figure 7.1: The Implementation of Stack Data Type .. 107

Figure 8.1: The Verification Model ... 122

Figure 8.2: The Framework for the Verification Model .. 123

Figure 8.3: Proof Support Algorithm ... 125

Figure 8.4: The User Interface of Alneelain Verification System 130

Figure 9.1: Integer-Based Implementation of Stack Data Type 132

Figure 9.2: An Example for a Correct Array-Based Implementation for Stack 133

Figure 9.3: The Verification Report for Stack Implementation 134

Figure 9.4: An Example for a Correct Array-Based Implementation for Queue........... 135

Figure 9.5: An Example for a Correct Scalar-Based Implementation for Stack 135

XIII

Figure 10.1: The Test Driver ... 145

Figure 10.2: The Source Code of Pushpoprule() Function .. 146

Figure 10.3: The Testing Parameters Window .. 148

Figure 10.4: The Test Results of the Stack Data Type Implementation 149

XIV

LIST OF ABBREVIATIONS

GSEP Good Software Engineering Practices

MTTF Mean Time To Failure

MTBF Mean Time Between Failures

MFC Mean Failure Cost

MTTD Mean Time to Detection

MTTE Mean Time To Exploitation

QA Quality Assurance

ADT’s Abstract Data Types

TAM Trace Assertion Method

GCD Greatest Common Divisor

BMC Bounded Model Checking

HAHA Hoare Advanced Homework Assistant

BNF Backus-Naur Form

GUIs Graphical User Interfaces

1

CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

At the present time, the software is involved in almost all aspects of life, and

largely and increasingly contributes to the world economy. Together with the rising

demand for software to serve a wide range of needs, the world is also experiencing

growing expectations in terms of product quality. The quality and the correctness of

software are often the greatest concern in electronic systems.

Though modern computer systems consist of complex hardware and software

components, ensuring the correctness of the software part is often a greater problem

than that of the underlying hardware. As software, products take on increasingly

critical functions in our global world, the verification of their correctness and their

reliability grows increasingly critical. However, as they grow increasingly large and

complex, the verification of their correctness is also growing increasingly difficult.

This leaves a massive technological gap, which current software research seeks to fill.

Despite several decades of research, the verification of industrial-size software

products to adequate levels of precision and thoroughness remains an unfulfilled

challenge. Methods developed in research laboratories do not scale up to industrial

size problems, and techniques used in industrial practice fall short of the standards

expected from the software industry.

We argue in favor of an eclectic approach that uses a variety of methods such as static

analysis, dynamic testing, reliability estimation, fault tolerance, etc. [1] , where each

method provides a good return on investment with some aspects of verification at the

possible expense of other aspects. By virtue of the Law of Diminishing Returns, the

application of such an approach enables us to maximize the impact of our verification

effort. Specifically, we use one of the most common approaches to program

verification, namely program verification using Hoare Logic [2], which is based on an

axiomatic approach involving assertions for the verification to verify the correctness

of Abstract Data Types (ADTs) implementations with respect to ADT’s specifications

2

written in a trace-like notation [3]. This research is a part of a team effort that involves

specification generation and validation, program verification, and testing.

1.2 PROBLEM STATEMENTS AND ITS SIGNIFICANCE

Computer systems correctness is vital in the contemporary information society.

Despite the fact that modern computer systems are composed of complex hardware

and software components, verifying the correctness of the software part is often a

greater problem than that of the underlying hardware. It is known that manual

inspection of complex software is error-prone and expensive, therefore tool support is

required. There are many tools that attempt to discover design errors using test vectors

by examining certain executions of a software system. Formal verification tools, on

the other hand, are used to check the behavior of a software design for all input

vectors. A large number of formal tools for checking functional design errors in

hardware are available and widely used. In contrast, markets of tools that check

software quality are still in a beginning stage.

According to practical experience, using static analysis methods for proving the

correctness of computer programs is tedious, unreliable, obscure and entirely

impractical process. This is because Hoare logic principles are generally not well

understood. In addition, the whole concept is believed by a number of scholars as only

a strange part of computer science history despite its fundamental role in the

constantly developing field of program verification. No doubt that this critical state of

affairs has numerous reasons. However, there is one reason or issue that has greatly

led to this problem that is the verification tools used in applying Hoare logic. These

tools, in many cases, consist of a pen and paper, making it a tedious task to verify a

whole program using a pen and a sheet of paper. It is more difficult than checking the

correctness of the very same program in a less formal way. Even worse, both

approaches are considered to have similar chances of making a mistake. Performing

the whole logical inference on paper, without using the computer (save, perhaps, in

the matter of typesetting) supports the view that static analysis is an impractical

verification tool. A direct way to solve this problem is to use automated formal

verification software to facilitate checking the correctness of Hoare programs.

3

1.3 RESEARCH QUESTIONS

The main question that will be addressed in this research is how to build an

automated tool that attempts to verify the correctness of Abstract Data Type

implementation against the axioms of specification.

There are additional sub-questions as follows:

1. What is an appropriate methodology to write the ADT’s specification?

2. What is the suitable technique for verifying ADT’s implementation?

3. How does the proposed approach compare with current approaches based on

Z, B, Alloy, etc.…?

1.4 RESEARCH HYPOTHESIS

Precise abstract software specification is achievable by using formal

specification languages. However, nontrivial specifications are extremely difficult to

read and write. An axiomatic specification proposed by [4] is used as a specification

language to write the abstract data type specification in this research. Even though this

specification model was developed independently, it bears much resemblance to the

trace specifications [3]. It introduces the data type by means of behavioral formal

specifications, that describe the functional attributes of the data type, but give no

insight into how the data type may be implemented; specifications are represented by

axioms and rules, where the axioms reflect the behavior of the data type for simple

data values and rules define their behavior inductively for more complex data values.

To verify that the ADT’s implementation satisfies the axioms of the specification, the

Hoare logic is used. Hoare Logic is a compositional proof technique for proving that

the implementation meeting the specifications— whereby "compositional" we mean

that proving the correctness of a complex program can be decomposed into proofs of

the correctness of its components. It lies at the core of a huge variety of tools that are

now being used to verify real software systems.

1.5 RESEARCH PHILOSOPHY

Various approaches have been proposed in the literature for the specification of

abstract data types. The axiomatic specification is considered to be an important

4

specification methodology because it satisfies the simplicity, formality, and

abstraction criteria. It is easy to become familiar with the inductive arguments that are

needed to build axiomatic specifications. Also using the axiomatic notation makes the

specification validation easier and effective.

The Hoare Logic, which is an axiomatic approach to proving program correctness, has

great consequence in the methods for verifying programs. Hoare logic introduced the

strength of formal logic in computer programming, not only as a tool to reason about

program properties but also to derive programs from their specifications. It is precise;

clearly delineates the “what” with the “how” basis for most other verification methods

and including semiformal specification notations. What makes Hoare logic difficult to

apply on a large scale, and in particular, what makes it difficult to automate is the need

to invent invariant assertions for iterative constructs in programs. However, our

approach obviates this obstacle because the axioms represent simple basic behavior of

the ADT, they do not involve complex calculations in the source code; at most, they

may involve some loops to initialize a data structure. Such code either uses loops for

simple tasks, for which invariant assertions are simple to find, or does not invoke

loops at all.

1.6 RESEARCH OBJECTIVES

The main objective of this research is to build an automated tool that takes the

verification conditions (in the form of a Hoare formula) associated to each axioms of

ADT’s specification and attempts to prove them in Hoare’s logic, using a verification

tool such as Hoare Advanced Homework Assistant (HAHA). Specific objectives are

listed as follows:

1. To investigate variants of techniques those have been applied to formal

software specification and verification.

2. To specify ADT’s in a behavioral style using an axiomatic specification.

3. To verify ADT’s implementation against axiomatic specification using Hoare

Logic.

4. To evaluate the performance of our tool against the performance of others

whenever applicable.

5

1.7 RESEARCH SCOPE

This research is concerned with verifying ADT’s implementation against

axiomatic specification, for that we concerned only by the axioms of the specification

and exclude the rules. The tool verify any software product whose specification can

be written using the trace notation and the axiomatic representation. This includes

most (if not all) ADT's as well as any product whose specification can be written in

our specification model. The tool is highly automated and do not require substantial

manual effort or user interaction.

1.8 ORGANIZATION OF THE DISSERTATION

 This dissertation consists of eleven chapters. The first one presents the

introduction, problem statements and its significance, research questions, research

hypothesis, research philosophy, research objectives and research scope.

Chapter 2: reviews the literature on software engineering and software qualities.

Chapter 3: covers software specification and validation

Chapter 4: dives into program correctness and verification

Chapter 5: is devoted to automated verification with HAHA tool.

Chapter 6: presents the design of a new specification language called Alneelain

specification language.

Chapter 7: is devoted to verification of ADT implementations against axiomatic

specifications.

Chapter 8: presents how we implement and deploy Alneelain verification system.

Chapter 9: introduces automated verification using Alneelain verification system and

the assessment of the system

Chapter 10: explains the integration of Alneelain verification system with a testing

system.

Finally, chapter eleven represents the overall conclusions in this dissertation and

research with it is orientation for future work.

6

CHAPTER TWO

SOFTWARE ENGINEERING AND SOFTWARE QUALITIES

2.1 INTRODUCTION

Intuitively, when one thinks about software, one imagines an accumulation of

programming language instructions and statements or development tool instructions

that together make up or constitute a program or software package. This program or

software package is usually termed the “code”. IEEE defines software as [5]:

 “Software is computer programs, procedures, and possibly associated documentation

and data pertaining to the operation of a computer system”.

The IEEE definition of software enumerates four components of the software:

Computer programs (the code), Procedures, Documentation and Data necessary for

operating the software system. All these components are required for assuring the

quality of the software development process and for future maintenance services [6].

At the present time, the software is involved in almost all aspects of life, and largely

and increasingly contributes to the world economy. This growing share of the software

began with a slow pace together with the invention of computing in the twentieth

century, and was further accelerated by the appearance World Wide Web at the end of

the twentieth and the beginning of the twenty first century. This phenomenon has

created a rising demand for software products and services, and the software industry

faced a huge market pressure to supply demanded products and services [7].

A large number of science and engineering fields including Bioinformatics, medical

informatics, weather forecasting, modeling and simulation, etc. greatly rely on

software to the extent that they are looked at as pure applications of software

engineering. Also, it is widely observed that curricula in computer science are

gradually heading towards increasing software engineering contents replacing

traditional theoretical material that are considered to be irrelevant to the current job

market. The rising share of software made several engineering colleges start awarding

software engineering degrees in computer science departments or starting complete

software engineering departments alongside traditional computer science departments

[7].

7

Software engineering deals with all aspects of software production starting from the

initial stages of system specification through to maintaining the system after its

application and utility. It's defined by IEEE [5] as:

“Software engineering is the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software; that is, the

application of engineering to software”.

Actually, software engineering was first intended to attain these purposes: improving

the quality of software, accomplishing projects exceeding time and budget under

control, and ensuring that software is built systematically, rigorously, measurably, on

time, on budget, and within specification [8]. Engineering already addresses all these

issues, hence the same principles used in engineering can be applied to software.

Together with the rising demand for software to serve a wide range of needs, the

world is also experiencing growing expectations in terms of product quality. As

software takes on ever extremely critical functions in life-critical and mission-critical

applications, and in applications that perform massive financial tasks, it is very

important to make sure that software products perform their functions with a high

level of reliability. This requires the deployment of different kinds of techniques,

including: process controls which ensure that software products are developed and

evolved according to certified, mature processes; and product controls which ensure

that software products meet quality standards commensurate with their application

domain requirements. This is usually accomplished by combining techniques such as

static analysis, dynamic testing, reliability estimation, fault tolerance, etc. [7].

In short, it is acceptable to state that software industry is under massive pressure to

provide both quantity and quality, which is both difficult and expensive.

2.2 THE HISTORY OF SOFTWARE ENGINEERING DISCIPLINE

Apparently, software engineering is similar to an engineering discipline like

chemical engineering, mechanical engineering, civil engineering, electrical

engineering, etc. However, software engineering differs from other engineering

disciplines in many ways [7].

Not like civil engineering and mechanical engineering, which date back to antiquity or

chemical engineering and electrical engineering, which date back to the eighteenth

8

century, software engineering emerged in the second half of the twentieth century. It is

a relatively a younger discipline. According to Mili and Tchier [7] the brief history of

the software engineering discipline can be divided into five decades or eras:

1. The Sixties: The Era of Pioneers. During this decade or era, practitioners and

researchers came face to face for the first time with the complexities, paradoxes,

and anomalies of software engineering. Software projects conducted during this

era were attempts in the unknown that have high levels of risk, unpredictable

outcomes, and massive cost and schedule overruns. Limited number of

programming languages were used during this era, namely: assembler,

FORTRAN, COBOL and (in academia) Algol.

2. The Seventies: Structured Software Engineering. This decade or era was

dominated by the general belief that software engineering problems were of a

technical nature, and that all software engineering problems would be resolved if

scholars devised techniques for software specification, design and verification.

Given that structure was the scholars’ main intellectual tool for dealing with

complexity, this era has witnessed the development of various structured

techniques such as structured programming, structured design, structured analysis,

structured specifications, etc. Programming languages utilized during this decade

were dominant C and (in academia) Pascal.

3. The Eighties: Knowledge-Based Software Engineering. During this decade or

era, it was generally realized that software engineering problems were of a

managerial and organizational nature rather than a technical nature. This

realization came together with the emergence of the Fifth Generation Computing

Initiative. The initiative started in Japan and then spread to the US, Europe,

Canada and the rest of the world and it focused on thinking machines designed

with extensive use of artificial intelligence techniques. This general approach

permeated the discipline of software engineering with the emergence of

knowledge-based software engineering techniques. The programming languages

that were predominantly used during this era were: Prolog, Scheme/Lisp and Ada.

4. The Nineties: Reuse-Based Software Engineering. Because the fifth generation

computing initiative failed to accomplish its objectives, and it started to fade

worldwide, software researchers and practitioners focused on reuse as a new

9

alternative technique for the discipline. It was known in software engineering

discipline, reuse was not an integral part of the routine engineering process. It was

thought that if only software engineers had large databases of reusable software

components readily available, the industry would achieve great gains in

productivity, quality, time to market, and reduced process risk. This evolution

came together with the emergence of object-oriented programming, which

supports a bottom design discipline that facilitates product reuse. The

programming languages that were predominantly used during this era were: C,

C++, Eiffel and Smalltalk.

5. The First Decade of the Millennium: Lightweight Software Engineering.

While software reuse was not practically a general paradigm in software

engineering, it was feasible in limited application domains, giving rise to product

line engineering. Other attributes of this era included Java programming with its

focus on web applications; agile programming, with its focus on rapid and flexible

response to change; component-based software engineering with its focus on

software architecture and software composition. The programming languages that

were predominantly used in this era were: Java, C++, and (in academia) Python.

Probably as a result of this short but eventful history, the discipline of software

engineering has a number of paradoxes and counterintuitive properties as explained in

[7], these are:

1. Large, Complex Products

Not only is it critical for software engineers to build software products that are of

high quality, it is also very difficult, due to their size and complexity.

2. Expensive Products

Not only are software products very large and complex, they are also very

expensive to produce.

3. Absence of Reuse Practice

In the absence of economies of scale, it is hoped that costs will be controlled by a

routine discipline of reuse; however, in the case of software, it turns out that reuse

is very difficult to achieve on a routine basis.

10

4. Fault Prone Designs

Since the design space of software products is broader than that of any other

engineering products, it is much more difficult to codify and standardize best

practices in software engineering than it is in any other engineering discipline.

5. A Labor Intensive Industry

In other engineering disciplines most of the cost (more than 99%, perhaps) comes

from manufacturing rather than from the design process. By contrast, when one

buys a software product, he/she pays essentially for the design effort, as there are

no manufacturing costs to speak of (loading compact disks or downloading

program files).

6. Absence of Automation

The labor-intensive nature of software engineering has a direct effect on the

possibility to automate software engineering processes. In all engineering

processes, it is possible to achieve savings in manufacturing by automating the

manufacturing process or at least streamlining it, as in assembly lines. This is

possible since manufacturing follows a simple, systematic process that requires

little or no creativity. By contrast, it is not possible to automate design. This is

because design requires intensive human input including creativity, artistic

appreciation, aesthetic sense, etc.

7. Limited Quality Control

The lack of automation, hence the absence of process control, makes the control of

product quality very difficult. Comparatively, in other engineering disciplines the

production process is usually a systematic, repeatable process and quality control

can analytically be performed by certifying the process, or empirically by

statistical observation. However, the production of software goes through a

creative labor intensive process, therefore both approaches are not feasible, since

such creative process is neither systematic nor repeatable. This changes the control

of product quality to product controls including static analysis, or dynamic

program testing.

8. Unbalanced Lifecycle Costs

In most other engineering disciplines, products are massively produced and are in

general is assumed to have an expected behavior. In software engineering, due to

arguments mentioned above, assumption of expected behavior is unfounded.

11

Therefore, the sole method to guarantee the quality of a software product is to

subject that product to extensive analysis. Practically, this is discovered to be an

expensive proposition and a source of another massive paradox in software

engineering economics. Also, in other engineering manufacturing, testing (and,

more generally, verification and quality assurance) constitutes a small percentage

of the production cost. By contrast, testing accounts for a large percentage of the

lifecycle cost of a software product.

9. Unbalanced Maintenance Costs

In software maintenance, it is common to distinguish several types of activities. In

terms of cost the two most important types of these activities are:

1. Corrective maintenance that aims at removing software faults.

2. Adaptive maintenance that aims at adapting the software product to

evolving requirements.

Empirically, studies show that adaptive maintenance represents the vast majority

of maintenance costs. In contrast, in other engineering disciplines, there is almost

no adaptive maintenance to be mentioned.

2.3 SOFTWARE QUALITY

When quality or high-quality is associated with a software system, it is an

indication that few or no software problems are expected to be discovered during its

operations. In addition, when problems occur, they are expected to have negative

minimal impact. Related issues are discussed in this section.

2.3.1 SOFTWARE ERRORS, FAULTS AND FAILURES

Key to the correctness aspect of software quality is the concept of defect,

failure, fault, and error. The term defect generally refers to some problem with the

software, either with its external behavior or with its internal characteristics. The IEEE

[5] defines the following terms related to defects:

1. Failure: The inability of a system or component to perform its required functions

within specified performance requirements.

2. Fault: An incorrect step, process, or data definition in a computer program.

3. Error: A human action that produces an incorrect result.

12

Therefore, the term failure refers to a behavioral deviation from the user requirement

or the product specification; fault refers to an underlying condition within a software

that causes certain failure(s) to occur; while error refers to a missing or incorrect

human action resulting in certain fault(s) being injected into a software.

Also, errors can be extended to include error sources, or the root causes for the

missing or incorrect actions, such as human misconceptions, misunderstandings, etc.

Failures, faults, and errors are collectively referred to as defects in literature [9].

Originally, software failures occur because of software errors made by programmers.

Such an error is different in nature. It can be a grammatical error in one or more of the

code lines, or a logical error in carrying out one or more of the client’s requirements.

However, not all software errors become software faults. In some cases and in either

general or specific applications, a software error may lead to improper functioning of

the software. In many other cases, erroneous code lines will affect the functionality of

parts of the software and not its whole functionality; in a part of these cases, such

errors will be corrected or masked by subsequent code lines [6].

Here, the concern is mainly with software failures that disrupt the use of that software.

The need is to examine the relationship between software faults and software failures.

As known, not necessarily that all software faults end with software failures. A

software fault becomes a software failure only when it is operated or activated by

users. In several cases, a software fault is never activated because users are not

interested to use that specific faulty application or because the combination of

conditions necessary to activate the fault never occurs. In many cases, only a portion

of the software faults, and in some cases only a small portion of them, will turn into

software failures in either the early or later stages of the software’s application. Other

software faults will remain hidden, invisible to the software users, yet capable of being

activated when the situation changes. Importantly, developers and users have different

views of the software product regarding its internal defects. While developers are

interested in software errors and faults, their elimination, and the ways to prevent their

generation, software users are worried about software failures [6].

2.3.2 CLASSIFICATION OF THE CAUSES OF SOFTWARE ERRORS

As software errors usually result in poor software quality, it therefore is

important to investigate the causes of these errors in order to prevent them. Such

13

errors are of different types including code errors, procedure errors, documentation

errors, or data errors. It should be emphasized that the causes of all these errors are

human. They are made by systems analysts, programmers, software testers,

documentation experts, managers and sometimes clients and their representatives. In

rare cases, software errors may be due to the development environment (interpreters,

wizards, automatic software generators, etc.). Therefore, it is reasonable to claim that

in almost all cases human error causes the failure of the development environment

tool. According to Galin [6], causes of software errors can be further classified

according to the stages of the software development process in which they occur, as

follows:

1. Faulty Definition of Requirements

The faulty definition of requirements is one of the main causes of software errors.

It is an error made by clients.

2. Client–Developer Communication Failures

Misunderstandings resulting from improper client–developer communication are

the main causes for the errors that prevail in the early stages of the software

development process.

3. Deliberate Deviations From Software Requirements

In numerous cases, developers deliberately deviate from the documented

requirements. Such deliberate deviations often cause software errors, which are

mainly byproducts of the changes.

4. Logical Design Errors

When formulating software requirements, professionals who design the system –

systems architects, software engineers, analysts, etc. – cause logical design errors

to enter the system.

5. Coding Errors

Programmers make coding errors due to a number of reasons including;

misunderstanding the design documentation, linguistic errors in the programming

languages, errors in the application of CASE and other development tools, errors

in data selection, and so forth.

6. Non-Compliance with Documentation and Coding Instructions

It is well-known that almost every development unit keeps its own documentation

and coding standards in order to define the content, order and format of the

14

documents, and the code created by team members. In addition, the unit develops

and publicizes its templates and coding instructions so that members of the

development team will be able to comply with these requirements. Non-

compliance with these standards set by the unit will cause software errors. The

reasons for such errors is that the quality risks of non-compliance result from the

special characteristics of the software development environment. Even if the

quality of the “non-complying” software is acceptable, the future handling of this

software (by the development and/or maintenance teams) is expected to increase

the rate of errors.

7. Shortcomings of the Testing Process

Shortcomings or weakness of the testing process increases the error rate by leaving

a greater number of errors undetected or uncorrected.

8. Procedure Errors

Procedures are intended to direct the user regarding the activities required at each

step of the process. They are particularly important in complex software systems

where processing is conducted in several steps, each of which may feed a variety

of types of data and allow for examination of the intermediate results. Failure to

properly follow the procedures results in errors, called procedure errors.

9. Documentation Errors

The documentation errors that affect the development and maintenance processes

are errors encountered in the design documents and in the documentation

integrated into the body of the software. They usually cause additional errors in

further stages of development and also during maintenance. In addition,

documentation errors found in the user manual affect mainly software users, and

may appear in the “help” displays incorporated in the software.

2.3.3 SOFTWARE QUALITY DEFINITION

The previous discussion on software components, errors and their causes, and

knowledge that errors harm the quality of the software, have set the scene to define

software quality. IEEE defined software quality as [5]:

1. “The degree to which a system, component, or process meets specified

requirements”.

15

2. “The degree to which a system, component, or process meets customer or user

needs or expectations”.

There are two alternative definitions of software quality, held by the founders of

modern quality assurance, Philip B. Crosby and Joseph M. Juran. Each definition

reflects a different conception of software quality:

1. “Quality means conformance to requirements” [10].

2. “Quality consists of those product features which meet the needs of customers

and thereby provide product satisfaction. Quality consists of freedom from

deficiencies” [11].

Crosby’s definition of software quality refers to the extent to which the written

software satisfies the specifications prepared by both the customer and the

professional team. His definition implies that errors included in the software

specification are not considered and assumed to have no effect on the software quality.

Such implied characteristic is considered as the approach’s deficiency [6]. Juran’s

definition aims at achieving customer satisfaction, and views the satisfaction of

customers’ real needs as the ultimate goal of software quality. The adoption of the

second definition requires the developer to exert significant professional efforts in

examining and correcting the customer’s requirements specifications. One main

deficiency of this definition is that customers are not professionally responsible for the

accuracy and completeness of the software specifications. Also, following this

conception, the customer is able to state his real needs. Such needs may not agree with

the project specifications on one or more issues, at a very late stage of the project,

even at the final stage [6]. Consequently, difficulties will occur during the

development process of the project, especially when trying to demonstrate how well

the program satisfies the user’s needs. However, aspects of software quality are

evidently included in the definition suggested by Pressman [12] who defined software

quality as:

“Conformance to explicitly stated functional and performance requirements, explicitly

documented development standards, and implicit characteristics that are expected of

all professionally developed software”.

16

It is clear that Pressman’s definition suggests three requirements for quality assurance

that are to be met by every developer [6]:

1. Specific functional requirements i.e. the outputs of the software system.

2. The software quality standards stated in the contract.

3. Good Software Engineering Practices (GSEP), reflecting state-of-the-art

professional practices, to be met by the developer even though not explicitly

mentioned in the contract.

Effectively, Pressman’s definition includes operative directions for testing the degree

to which the requirements are met.

2.3.4 SOFTWARE QUALITY ATTRIBUTES

The software product may feature several quality attributes. These attributes

are briefly reviewed here, focusing on those dealing with software testing. According

to Mili and Tchier [7] software quality attributes can be divided broadly into three

categories:

1. Attributes relevant to software users: These include functional attributes,

operational attributes, and usability attributes. They reflect the overall quality

of service delivered by the software product.

2. Attributes relevant to software operators: These include business attributes

that reflect the cost of developing, maintaining and evolving the software

product.

3. Attributes relevant to software engineers: These include structural attributes

that reflect the engineering qualities of the product. They have impact on

analyzing and working with the software product for the entire duration of its

lifecycle.

This classification is not perfectly orthogonal as many attributes may lie within more

than one category; however, it helps to define some structure in the set of attributes.

These families of attributes are discussed in turn, in this section.

2.3.4.1 FUNCTIONAL ATTRIBUTES

Functional attributes characterize the input/output behavior of software

products. Two broad categories of functional attributes are distinguished here: those

17

with a Boolean nature (a software product has them or does not have them) and those

that are of a statistical nature (a software product has them to a smaller or larger

extent). They depend on the existence of a specification, which describes a set of

situations the product is intended to face, along with a prescription of correct program

behaviors for each situation. The set of relevant situations is referred to as the domain

of the specification.

1. Boolean Attributes

There are two attributes of a Boolean nature in a software product:

1. Correctness, i.e. the software product behaves according to its specification for

all possible situations in the domain of the specification.

2. Robustness, i.e. the software product behaves according to its specification for

all possible situations in the domain of the specification, and behaves

reasonably for situations outside the domain of the specification. Obviously,

reasonable behavior is not a well-defined condition, hence robustness is only

partially defined; however, it generally refers to behavior that alerts the user to

the abnormality of the situation, and acts carefully and conservatively i.e.

avoiding irreversible operations, avoiding irretrievable losses of information,

etc.

From its definition, robustness logically implies correctness: whereas correctness

refers solely to the behavior of the software product within the domain of the

specification. Robustness attribute also refers to the behavior of the product

outside the domain of the specification. Conversely, one can argue that robustness

is not distinguishable from correctness, since it is merely correctness with respect

to a stronger specification (one that specifies the behavior of candidate programs

inside the original specification’s domain, as well as outside it); nevertheless, for a

given specification, robustness and correctness are distinct properties.

2. Statistical Attributes

Correctness and a fortiori robustness are notoriously difficult to establish for

software products of any realistic size. As a result, statistical attributes are

introduced. They measure (over a continuum) how close a software product is to

being correct or robust. There are two broad families of statistical attributes, based

on whether the obstacles to correctness and robustness are inadvertent (product

18

complexity, programmer incompetence, unexpected circumstance, etc.) or

voluntary (malicious attempts to cause product failure).

1. Dependability. i.e. the probability that the system behaves according to its

specifications for a period of operation time. Two attributes are recognized

within dependability: reliability and safety that differ by the stakes attached to

satisfying the specification.

(a) Reliability i.e. the probability that the software product operates for a given

amount of time without violating its specification.

(b) Safety i.e. the probability that the software product operates for a given

amount of time without causing a catastrophic failure.

Both reliability and safety mean that the product is able to operate according to its

specification. However, reliability means the product’s ability to operate according

to all the clauses of its specification, while safety is specifically concerned high-

stakes clauses. If a product violates these clauses, it will be subject to a

catastrophic loss, in terms of human lives, mission success, high financial stakes,

etc. An alternative term for “safe systems” is “fail-safe”, meaning that it may fail

to satisfy its specification, but at the same time satisfies the high-stakes

requirements of its specification. As a result, a system may be reliable but unsafe

(i.e. fails seldom, but causes catastrophic consequences whenever it fails); and a

system may be safe but unreliable (i.e. fails often, but causes low stakes losses,

never causes catastrophic losses).

A well-known and frequently used metric to quantify reliability is the “Mean Time

To Failure (MTTF)”, defined as the mean of the random variable that represents

the operation time until the next system failure; MTTF can also be used to

quantify safety, if Failure is just replaced by Catastrophic Failure. The Mean Time

Between Failures (MTBF) is an older metric, defined as the random variable that

represents the time between two successive failures. The Mean Failure Cost

(MFC) is a more recent metric, intended to measure the mean of the random

variable that measures the loss of a stakeholder resulting from possible system

failures.

2. Security. Whereas dependability refers to failures that result from poor system

design, security refers primarily to intended or deliberate actions by malicious

19

perpetrators. Although it could be argued that, these actions become possible

due to system vulnerabilities, which originally stem from poor system design.

Four attributes can be considered as aspects of security:

(a) Confidentiality. It is the system’s ability to prevent unauthorized access to

confidential data entrusted to its custody.

(b) Integrity. It is the system’s ability to prevent loss or damage to critical data

entrusted to its custody.

(c) Authentication. It is the system’s ability to properly identify each user that

gains access to its resources, and to grant users access privileges according

to their status.

(d) Availability. It is the system’s ability to continue delivering service to its

user community; it is normally expressed as a percentage. This attribute

usually causes denial of service attacks i.e. when the system is under

attack; its ability to deliver services to its legitimate users suffers.

There is no commonly accepted measure of system security. Since security

attacks result from system vulnerabilities, quantifying all dimensions of

security (including availability) is possible by using the Mean Time to

Detection (MTTD). MTTD is the mean of the random variable that measures

the time it takes perpetrators to uncover system vulnerabilities. Quantification

of security is also possible by Mean Time To Exploitation (MTTE) i.e. the

mean of the random variable that represents the time it takes perpetrators to

find a way to exploit system vulnerabilities.

2.3.4.2 OPERATIONAL ATTRIBUTES

Operational attributes are different from functional attributes, in the sense that

functional attributes characterize the functions/ services that a software product

delivers to its users, and operational attributes characterize the circumstances under

which these services are delivered. Five operational attributes are presented below:

1. Latency. Latency (or response time) is defined as the time (measured in seconds)

that elapses between the submission of a query to the system and the response to

the query; this attribute is relevant for interactive systems. Latency usually varies

from query to query, and its length is affected by the system workload at the time

20

the query is submitted. Therefore, it is usually expressed as an average over many

queries, for an average workload.

2. Throughput. Throughput is defined as the volume of processing that the system

can deliver per unit of operation time; this attribute is relevant for batch systems,

such as the program that a bank runs in the middle of the night to update all the

transactions of the day, and is usually measured in transactions per second.

Latency and throughput attributes are related. This is because both attributes

reflect the speed with which systems are capable to process transactions. The two

attributes are fairly orthogonal i.e. a system can have short (good) latency and

small (bad) throughput (if it spends much of its time switching between queries),

and long (bad) latency and large (good) throughput (if its scheduler favors keeping

the processor busy over the concern of fairness).

3. Efficiency. This operational attribute of a software product is usually defined as the

software ability to deliver its functions and services with minimum amount of

computing resources. Such resources include CPU cycles, memory space, disk

space, network bandwidth, etc. It is difficult to quantify efficiency for a given

software product in a way that prorates resource consumption to the services

provided by that product. But, it is easy to use efficiency for comparing numerous

software products for a given application.

4. Capacity. The capacity attribute is defined as the number of simultaneous users

that a system can sustain while preserving a degree of quality of service (in terms

of response time, timeliness, precision, size of data, etc.). This definition is unclear

in numerous ways. For instance, what does it means to be simultaneous? At what

level of granularity are we defining simultaneity? What degree of quality are we

considering? etc. However, capacity remains a useful metric.

5. Scalability. This attribute reflects the system ability to keep delivering adequate

service even when its workload exceeds original capacity. Scalability is sometimes

referred to as “graceful degradation”: it is expected that when workload increases

beyond the system original capacity, there will be some degradation of the service

quality; scalability consists in ensuring that this degradation remains graceful (i.e.

a progressive, continuous function of the workload).

21

2.3.4.3 USABILITY ATTRIBUTES

Usability attributes are different from functional attributes and operational

attributes in the sense that they reflect the extent to which a software product can

easily be used, and be customized to suit the needs and circumstances of the potential

end users. Five usability attributes are presented and discussed below:

1. Ease of Use. Ease of use is an important attribute especially in systems intended

for broad, diverse, heterogeneous and possibly unskilled user community.

Qualities that support ease of use include: simplicity of system interactions;

availability of help menus; use of simple vocabulary; tolerance to misuse; etc.

2. Ease of Learning. Ease of learning is an important attribute particularly in systems

that have homogeneous user community in terms of skill level and who will use

the software product for a long time period. Qualities that support ease of learning

include: intuitiveness of system interactions, consistency of interaction protocols,

uniformity of system outputs, etc.

3. Customizability. The customizability of a software product means its ability to be

tuned to specific functional requirements of the end user, by the end user. The

more control the end user has over the functionality of the software product, the

better the customizability.

4. Calibrability. The calibrability of a software product is its ability to be tuned to

specific operational requirements of the end user, by the end user. The more

control the end user has over the operational attributes of the software product, the

better the calibrability.

5. Interoperability. The interoperability attribute means the ability of a software to

operate in conjunction with other applications; generally, there is no quantitative

metric for this attribute. However, interoperability of a software can be

qualitatively assessed by the range of applications with which it can operate (for

example, the breadth of file formats it can analyze and process, or by the range of

file formats in which it can produce its output).

These three attributes of a software product (functional attributes, operational

attributes, and usability attributes) are of great interest to the end user.

In the rest of this section, other stakeholders of a software product are considered, and

attributes that are of interest to them will be reviewed.

22

2.3.4.4 BUSINESS ATTRIBUTES

Business attributes reflect the stakes of a software manager in the

development, operation and evolution of a software product. They are listed and

discussed below:

1. Development Cost. It is an important business attribute that is usually quantified in

person-months invested in the development of a software product, from its

requirements analysis to its acceptance testing.

2. Maintainability. The maintainability of a software product is defined as how much

effort is required for the maintenance of that product during the operation phase

(post-delivery). Maintainability can either be quantified in absolute terms (person-

months per year) or in relative terms (person-months par year per line of code). It

is noticed that most maintenance costs are allocated to adaptive maintenance. This

type of maintenance cost is usually driven by end user requirements rather than by

any intrinsic attribute of the software product. Therefore the measure of

maintainability to the volume of adaptive maintenance is normalized, or exclude

adaptive maintenance altogether from the person-month calculation of

maintenance effort.

3. Portability. The portability of a software product is defined as the average cost of

porting that product from one hardware/ software platform to another. Enhancing

portability is usually attained by reducing the platform-dependent functionality to

the minimum level and by confining it to a single component of the product (hence

confining changes to this component in the event of a migration of the product

from one platform to another). Portability is not a purely qualitative attribute since

it is possible to quantify it by the average cost (in person-months) of a migration

of a software from one platform to another.

4. Reusability. Unlike the above-mentioned three attributes that measure product

cost, reusability attribute reflects potential benefits of a software product. It is

defined as the software product ability to be reused, in whole or in part, in the

design and development of other software products within the product’s

application domain. Reusability comprises two orthogonal properties, namely:

(a) Usefulness, defined as the extent to which a software product (or a component)

is widely needed in the product’s application domain.

23

(b) Usability, defined as the ease with which it is possible to adapt a software

product (or a component) to the requirements of an application within the

domain.

It is important to note that usefulness is a property of the software product’s (or

component’s) specification while usability is a property of its design. Well-designed

components can be adapted to related requirements at low cost, by such devices as

genericity, parameterization, etc.

2.3.4.5 STRUCTURAL ATTRIBUTES

Structural attributes are of interest to these stakeholders: system custodians/

developers/ maintainers/ operators. Business attributes deal with the economic aspects

of system management, structural attributes deal with their technical aspects. In other

words, whereas business attributes are relevant to software managers, structural

attributes are of interest to engineers, designers and other technical personnel. Four

structural attributes are discussed below:

1. Design Integrity. It is easier to recognize the quality of a design than to define it,

or to quantify it. High quality design should comprise the following features:

orthogonality, economy of concept, the cohesiveness of the design rationale,

consistency of design rules, adherence to a simple design discipline, etc.

2. Modularity. Modularity comprises “information hiding” as an important single

design principle. This means that each component of the system hides a design

decision that other components need not know about (i.e. be influenced by).

Therefore, one important feature of a modular design is the separation between the

specification of a module and its implementation. It is possible to quantify

modularity by two attributes, these are:

(a) Cohesion. It is defined as the volume of information flow within a component,

and can be quantified using information theory.

(b) Coupling. It is defined as the bandwidth of information interchange that takes

place between components. It is possible to quantify coupling by the entropy

of the random variable that represents the flow of information interchange.

3. Testability. It is the extent to which a system or its components can be tested to an

arbitrary level of thoroughness. Two attributes are used to quantify testability:

24

(a) Controllability. The controllability of a component in a system is defined as

the bandwidth (breadth) of input values that can be submitted (as test data) to

the component by controlling system inputs. Controllability can be quantified

by the condition entropy of the system’s input given an input value of the

component.

(b) Observability. The observability of a component is defined as the extent to

which one can infer the output produced by the component by observing the

system output. Observability is usually quantified by the conditional entropy

of the component’s output, given the system’s output.

4. Adaptability. The adaptability of a system is defined as the ease with which it can

be modified to satisfy changing requirements. Adaptability is somewhat similar to

customizability. Both attributes deal with adjusting the software product to meet

different sets of requirements. However, they are actually different in two crucial

ways: while customizability is concerned with, changes made by the end user

(hence accessible to her/him, by design), adaptability is concerned with changes

made by the software engineer. Also, while customizability is concerned with

changes that are planned for within the design of the system, adaptability is

concerned with changes in the system requirements.

In many cases, structural attributes are found to support business attributes. An

example of this is that modularity supports maintainability. However, they are

considered as distinct attributes, in the sense that one is a business attribute while the

other is a structural/ technical attribute. In addition, no one-to-one correspondence

between them exists: modularity supports not only maintainability but also

development cost (which it reduces); also, maintainability is supported not only by

modularity but also by testability.

2.3.5 THE SOFTWARE QUALITY CHALLENGES

Actually, there are basic principal differences between software and other

industrial products, such as automobiles, washing machines or radios. These

differences are listed and discussed below [6]:

1. Product complexity. Product complexity is usually assessed by the number of

operational modes the product permits. Considering their different settings,

25

industrial products do not permit more than a few thousand operational modes. In

the case of software products, millions operational possibilities can be detected. It

is a great challenge to software industry to ensure that this higher number of

operational possibilities is correctly defined and developed.

2. Product visibility. Another evident distinguishing difference between the two

types of products is that while industrial products are visible, software products

are invisible. Visibility enables detecting defects in an industrial product during

the manufacturing process. It is obvious that missing a part in an industrial

product will be highly visible (for example a door missing from your new car). In

contrast, defects in software products (whether stored on diskettes or CDs) are

invisible, as is the fact that parts of a software package may be absent from the

beginning.

3. Product development and production process. The phases at which the possibility

of detecting defects in an industrial product are numerous, they include:

(a) Product development. In this phase defects may be detected by designers and

Quality Assurance (QA) staff who check and test the product prototype.

(b) Product production planning. The production process and tools are designed

and prepared during this phase. For example, a special production line may be

designed and built to manufacture some products. This phase provides

additional opportunities to inspect the product, which may reveal defects that

“escaped” the reviews and tests conducted during the development phase.

(c) Manufacturing. The application of QA procedures during this phase makes it

possible to detect defects of the products. Detected defects in the first period of

manufacturing can usually be corrected. This could be done by a change in the

product’s design or materials or by changing the production tools, in a way

that eliminates such defects in products manufactured in the future.

Comparatively, defects in software products cannot be detected during all three phases

of the production process (development, planning and manufacturing).The only phase

when defects in software products can be detected is the development phase. Below is

a review of what each phase contributes to the detection of defects in software

products:

(a) Product development. During this phase, development teams and software quality

assurance professionals direct their effort toward detecting inherent product

26

defects. At the end of this phase, they usually approve a product prototype that is

ready for reproduction.

(b) Product production planning. In software production, process there is no need for

planning phase. The manufacturing of software copies together with printing

user’s manual are conducted automatically. This applies to any software product,

regardless of the number of copies produced.

(c) Manufacturing. As stated above, the manufacturing of the software product is

restricted to copying the product and printing copies of the software manuals.

Consequently, detecting defects during this phase is quite limited.

The differences affecting the detection of defects in software products compared to

other industrial products are shown in Table 2.1 [6].

Table 2.1: Factors Affecting Defect Detection in Software Products vs. Other

Industrial Products

Characteristic Software Products Other Industrial Products

Complexity Usually, very complex product

allowing for a very large

number of operational options.

Degree of complexity much

lower, allowing a most a few

thousand operational options.

Visibility of product Invisible product, impossible to

detect defects or omissions by

sight(e.g. Of a diskette or CD

storing the software).

Visible product, allowing

effective detection of defects

by sight.

Nature of development

and production process

Opportunities to detect defects

arise in only one phase, namely

product development.

Opportunities to detect

defects arise in all phases of

development and production:

- Product development

- Product production

- Planning

- Manufacturing

The fundamental differences between the development and production processes in

software products and in industrial products result in creating different QA

methodology for software products. Special tools and methods are devised for the

software industry. Such tools and methods are well-documented in the professional

publications and stated in special standards devoted to QA. Two distinctive

characteristics of software products, complexity and invisibility, make the

27

development of QA methodology and its successful implementation a highly

professional challenge [6].

2.3.6 QUALITY ASSURANCE

With the correctness-centered quality definitions adopted in Section 2.3.3, the

crucial activities for QA are carried out to ensure that few or no defects remain in the

software system when it is delivered to its customers or released to the market.

Furthermore, QA activities also ensure that these remaining defects will cause

minimal disruptions or damages.

Many QA alternatives are available to deal with software defects. A thorough

examination of how various QA alternatives deal with software defects produces a

generic classification scheme that can be utilized to assist developers better select,

adapt and use different QA alternatives and related techniques for specific

applications. In the next section, a classification scheme initially proposed in Tian [13]

is described.

2.3.6.1 A CLASSIFICATION SCHEME

Different QA activities are viewed as attempting to prevent, eliminate, reduce, or

contain various specific problems relating to product defects. Such QA alternatives

can be classified into three generic categories, described below [9]:

1. Defect prevention through error blocking or error source removal: These

blocking or removal QA activities lead to the prevention of certain types of faults

from being injected into the software. It should be noted that errors are the missing

or incorrect human actions that lead to occurrence of faults into software systems.

These actions can directly be blocked or corrected, or the underlying causes for

them can be removed. Therefore, defect prevention can be carried out using two

generic ways:

a) Eliminating certain error sources, by eliminating the root causes for the errors,

for example by eliminating ambiguities or correcting human misconceptions,.

b) Fault prevention or blocking, this is done by directly correcting or blocking

these missing or incorrect human actions. Such techniques disconnect the

28

causal relation between error sources and faults by using certain tools and

technologies, by enforcement of certain process and product standards, etc.

2. Defect reduction through fault detection and removal: These QA techniques first

detect and then remove certain faults immediately after being injected into the

software systems. It should be noted that most traditional QA activities belong to

this category. For example,

a) Inspection directly detects and removes faults from the software code, design,

etc.

b) Testing removes faults based on related failure observations during program

execution.

Various other QA techniques are applied to reduce the number of faults in a

software system. Such techniques are based on either static analyses or

observations of dynamic executions.

3. Defect containment through failure prevention and containment: These

containment measures focus on software failures. They contain them to local areas

and prevent them to be global failures observable to end users. They also limit the

damage caused by software system failures. Therefore, defect containment are

usually carried out in two generic ways:

a) Some QA alternative techniques, such as the use of fault-tolerance techniques,

act to break the causal relation between faults and failures in order to prevent

them causing global failures, thus “tolerating” these local faults.

b) A technique that extends fault-tolerance is applying the containment measures

that act to avoid catastrophic consequences, such as death, personal injury, and

severe property or environmental damages, in case of failures.

For the purpose of this research, different defect prevention techniques, organized in

the above classification scheme will be surveyed next.

2.3.6.2 DEFECT PREVENTION

The QA alternatives commonly referred to as “defect prevention activities”

can be used for most software systems in two ways: for reducing the chance for defect

injections and for minimizing the subsequent cost to deal with these injected defects.

29

Most of the defect prevention activities assume that there are known error sources or

missing/incorrect actions that result in fault injections, as follows [9]:

1. In cases where human misconceptions are the error sources, education and training

should be used to remove these error sources.

2. In cases where imprecise designs and implementations deviate from product

specifications or design intentions are the sources of faults, formal methods should

be used to prevent such deviations.

3. In cases where non-conformance to selected processes or standards is the problem

source that leads to fault injections, then process conformance or standard

enforcement should be employed to prevent the injection of related faults.

4. In case certain tools or technologies are capable to reduce fault injections under

similar environments, they should be adopted.

Based on what stated above, root cause analyses should be carried out to establish

these preconditions, or root causes, for injected or potential faults. Knowing these

error sources, will enable the application of appropriate defect prevention activities in

order to prevent injection of similar faults in the future.

1. Education and Training

Education and training QA technique represents people-based solutions for

error source elimination. As observed by many software practitioners, human factor is

crucial factor in determining the quality and, most importantly, the success or failure

of most software projects. Therefore, education and training of software professionals

assist them in controlling, managing, and improving the way they work. Education

and training activities can further help them to ensure that they have no or few

misconceptions concerning the software product and its development. The elimination

of these human misconceptions will eventually lead to the prevention of injecting

various types of faults into software products. It should be stated that education and

training effort meant for error source elimination should focus on the following areas

[9]:

1. Product and domain specific knowledge. If the concerned people do not possess

adequate knowledge about the product type or application domain, wrong

solutions will likely be implemented.

30

2. Software development knowledge and expertise play a crucial role in the

development of high-quality software products.

3. Knowledge about development methodology, technology, and tools also plays an

important role in the development of high-quality software products.

4. Development process knowledge. If the project team does not have a good

understanding of the product development process, that development process will

not be implemented correctly.

2. Formal Methods

Formal development methods or formal methods in short represent another

way to eliminate certain error sources and also a way to verify the absence of related

faults. Such methods include formal specification and formal verification. The former

is concerned with producing a clear set of product specifications that deal with

customer requirements, as well as environmental constraints and design intentions,

thereby reducing the chances of accidental fault injections. The latter checks the

conformance of software design or code against these formal specifications in order to

ensure that the produced software is fault-free regarding its formal specifications.

Different techniques are available to specify and verify the correctness of software

systems, these are [9]:

1. The earliest and most effective formal method is termed “axiomatic approach” [2]

[14]. In this method, the meaning of a program element or the formal

interpretation of the effect of its execution is abstracted into an axiom. The method

uses more axioms and rules in order to connect different pieces together.

Preconditions is a term denoting a set of formal conditions describing the program

state before the execution of a program, while postconditions is a term used to

denote the set of formal conditions after program execution. This approach is used

to verify that a given program satisfies both its prescribed preconditions and

postconditions.

2. Other influential formal verification techniques include the predicate transformer

based on weakest precondition ideas [15] [16], and program calculus or functional

approach heavily based on mathematical functions and symbolic executions [17].

The basic ideas of these techniques are similar to that of the axiomatic approach,

however the proof procedures are somewhat different.

31

3. There also exist other limited-scope or semi-formal techniques. Such techniques

check certain properties instead of verifying the full correctness of programs. An

example of such methods are the model checking techniques which are gaining

presently popularity in the software engineering research community [18]. It is

noteworthy that semi-formal methods that are based on forms or tables [19]

instead of formal logic or mathematical functions are also applied and gained

importance.

So far, the biggest obstacle of using formal methods is the high cost associated with

the difficult task of performing these human-intensive activities correctly without

adequate automated support. This fact also explains, to a degree, the increasing

popularity of limited scope and semi-formal approaches.

3. Other Defect Prevention Techniques

Other defect prevention techniques including those based on technologies,

tools, processes, and standards, are briefly discussed below [9]:

1. Besides the formal methods surveyed above, appropriate use of other software

methodologies or technologies can also help reduce the chances of fault injections.

Problems of low quality “fat software” can be prevented by using disciplined

methodologies and by resorting to essentials for high-quality “lean software” [20].

In the same way, using information hiding principle [21] will reduce the

complexity of program interfaces and interactions among different components,

and eventually reduce the occurrence possibility of related problems.

2. Processes should be managed in better ways in order to eliminate many systematic

problems. For example to avoid inconsistencies or interface problems among

different software components, a process should be better defined and followed for

system configuration management. Better definition and conformance of a process

ensures the elimination of many error sources. Another methodology used for

reducing failure injection is the enforcement of selected standards for certain types

of products and development activities.

3. In some cases, specific software tools are used to reduce the chances of fault

injections. An example of this is that a syntax-directed editor that automatically

32

balances out each open parenthesis, “{”, with a close parenthesis, “}”, is

frequently used to reduce syntactical problems in programs written in the C

language.

It goes without saying that additional effort is required to direct the selection of

suitable processes, standards, tools, and technologies, or to modify existing ones to

suit specific application environments. Effective monitoring and enforcement systems

are also required to make sure that the adopted processes or standards are followed, or

that the appropriate technologies are used in a proper way, to reduce the possibility of

fault injections.

SUMMARY

This chapter introduces the discipline of software engineering with all its

specific characteristics and paradoxes, contrasts it with more traditional engineering

disciplines, and elucidates the role that software testing plays within this discipline. It

also defines software, software quality and software quality assurance and introduces

different software quality attributes. It distinguishes between software errors, software

faults and software failures and identifies the various causes of software errors. This

chapter also describes different QA alternatives and offers a comprehensive coverage

of defect prevention techniques for QA such as education and training, formal

specification and verification, and other defect prevention techniques including those

based on technologies, tools, processes, and standards.

33

CHAPTER THREE

SOFTWARE SPECIFICATION AND VALIDATION

3.1 SOFTWARE SPECIFICATIONS

In general, specification of a software product is defined as the description of

the functional requirements that the product is expected to satisfy. Particularly IEEE

standards define a specification as [5]:

 “A document that specifies, in a complete, precise, verifiable manner, the

requirements, design behavior, or other characteristics of a system or component, and,

often, the procedure for determining whether these provisions have been satisfied.”

Studying software specifications in the context of software verification and testing is

not a very common practice; however, this is done here for a variety of reasons [7]:

1. Testing in the Context of Verification and Validation. The best way to view testing

is as part of a broader policy of verification and validation. Moreover, studying

software specifications provides an opportunity to exercise the activities of

software verification and validation, and to identify the role that testing plays in

these important activities.

2. A Bridge between Testing and Verification. Both dynamic testing and static

verification, as commonly argued, are important complementary techniques to

ensure the correctness or reliability of software products. However, for

complementarity to be meaningful the results of these two techniques should be

expressed in the same broad framework, this is possible through specifications.

3. A Basis for Hybrid Verification. In the recurrent or repeated debate concerning the

comparative merits or virtues of “static analysis” and “dynamic testing”, people

often neglect an important detail: the observation that what makes a method

ineffective is not any intrinsic shortcoming, but rather the fact that it is used with

the wrong specification. Therefore, a cost effective approach to software quality

may be to use testing for some parts of the specification, and use static analysis for

other parts. However, this approach is applicable only when these two methods are

devised to deal with the same specification framework.

34

4. Specifications are the basis for test oracles. As known, designing a test oracle is

an important step in testing a software product; such a step consists mainly of

selecting a specification against which the program is tested, and in implementing

it. The importance of the step stems from the important role it plays in determining

the effectiveness of the test.

Taking the above-mentioned facts into consideration, the topic of software

specifications is discussed because it constitutes an important aspect of the study of

software testing. A wide range of specification languages are used in research circles.

However, some of them are relatively widely used in the industry.

3.2 A DISCIPLINE OF SPECIFICATION

The specification of a software product is generally defined as “a description

of the properties that the product must have to fulfill its purpose” [7]. A software

specification is usually derived by identifying all the concerned stakeholders of the

(existing or planned) software product, eliciting the requirements that these

stakeholders require the software product to fulfill, formulating and combining these

requirements, and compiling them into a cohesive document [7]. Specifications

typically relate to both functional and operational requirements. However, the focus is

mainly on the functional ones in this research, i.e. those specifications dealing with the

input/ output behavior of a software product.

3.2.1 SPECIFICATION: THE PROCESS AND THE PRODUCT

Literarily and scientifically (software engineering-related), the word

specification refers both to a process and a product [22]. When meaning a product, the

specification plays two essential roles: first, it acts as a contract that binds the user (it

defines his/her requirements) and the designer (it defines his/her obligations); second,

it acts as main working document for the designer [22]. When meaning a process, it

consists of two steps [22]: the specification generation step, when the specification is

progressively constructed from requirements data elicited from the user (group) by the

specifier group; the specification validation step, when the specification is matched

against redundant requirements data elicited from the user (group) by the verification

and validation group.

35

3.2.2 THE SPECIFICATION PRODUCT: ITS THREE FORMS

According to Boudriga [22] there are three forms of specifications, which will

be discussed below in turn:

1. Procedural specifications. These are specifications that describe a program that is

intended to assign correct outputs to legal inputs. Various calls of the program

with a specified input produce the same output. As examples, these include

programs like a sort package program, a square root program, and a tree traversal

program.

2. Data type specifications. These specifications describe the behaviour of a data

type, whose state can be modified or probed by means of predefined procedures

and functions. A call of a procedure or function produces a result that relies, by

definition, on previous calls of procedures. Typical examples of such systems

include abstract data types, databases etc.

3. Continuous process specifications. Such specifications characterize programs that

carry out a stimulus-response mechanism. The programs’ response to a particular

stimulus depends not only on the current stimulus, but also on the previous stimuli

submitted to the system. Such programs include operating systems, industrial

process monitoring systems, and embedded systems.

3.2.3 PROPERTIES OF SPECIFICATIONS

For a specification to carry out its function in a sufficient way, it should satisfy

numerous properties. In the past, many researchers have suggested a number of

required properties that specifications must have. Some like Hence; Parnas [23]

recommend these properties: completeness, minimality, formality and relevance.

Others like Liskov and Zilles [24] favor the following properties: formality,

constructability, comprehensibility, minimality, applicability and extensibility. Meyer

[25] recommends what he termed “the seven sins of the specifier”: noise, silence,

over-specification, contradiction, ambiguity, forward reference and wishful thinking.

Although they are apparently different (some are more colorful than others), they

widely agree regarding desirable properties in specifications. Here, the description of

Boudriga is used [22] who regard it very normal to distinguish between properties of

the product and properties of the process, as stated below:

36

1. Properties of the product. The properties of the specification as a product are the

ones that can be identified by examining the product itself, regardless of how it

relates to the user’s requirements. A specification of a product should satisfy two

conditions, namely:

1. Formality. The specification must be represented in such a way as to describe

precisely what functional behavior is required (written in a language whose

syntax and semantics are formally defined).

2. Abstraction. The specification must describe what requirements the software

product must satisfy, not how to satisfy them. In short, the specification is

expected to focus on WHAT and not HOW and containing no design or

structural details. HOW to satisfy requirements is the concern of the designer.

2. Properties of the process. These are concerned with the relationship between the

desire of the user and the specifications. Being a process, a specification should

satisfy two conditions [7]:

1. Completeness. The specification should be complete by capturing all the

relevant requirements of the product.

2. Minimality. The specification should be minimal by capturing nothing but the

relevant requirements of the product.

A specification that satisfies these two conditions (completeness and minimality) is

called valid. In Section 2.5, how to ensure the validity of specifications will be

discussed.

3.2.4 DATA TYPES

Regarding specifications, a data type is usually composed of a group of

operations performed on a set of objects, with the constraint that the behaviour of the

objects can only be observed during application of the operations [24]. One common

example of data type is the stack. The class of objects comprises all possible stacks

and the set of operations includes the traditional operations of push, pop, top, and

operation init that creates new stacks. Boudriga [22] named three different kinds of

operations. First, the primitive constructors are parameter-free operations that produce

a result in the class defined by the data type; an example of such is operation init. The

37

combinatorial constructors map objects of a class (and eventually some additional

parameters) into other objects; examples of such are operations push and pop of a

stack data type. The accessors report on the data type but do not affect its subsequent

behaviour; an example of such operation is the operation top of the stack data type. A

number of ADTs have shown their usefulness in many different applications, these

include: List, Queue, Stack, String, Tree, etc. Each of them can be defined in several

various non-equivalent ways. For example, a stack ADT may have a count operation

that shows how many items have been pushed and not yet popped. Such choice makes

a difference both for its clients and its implementation.

3.3 FORMAL SPECIFICATION

To achieve progress, ‘traditional’ engineering disciplines like electrical or civil

engineering, develop better mathematical techniques. The engineering industry also

recognized the need for mathematical analysis and incorporated mathematical analysis

into its processes [26].

Mathematical analysis became a regular part of the process of development and

validation of a product design. However, software engineering did not rely on

mathematical analysis. There was of course research conducted over the years to adopt

the use of mathematical techniques in the software process. However, these techniques

were discovered to be of a limited impact. Formal methods of software development

are not largely used in the industry of software development. One reason is that most

software development companies do not apply these methods in their software

development processes because they find them to be not cost-effective. ‘Formal

methods’, as a term, is used to mean activities that depend on mathematical

representations of software. These include activities that rely on formal specification

such as formal system specification, specification analysis and proof, transformational

development, and program verification [26].

A proposal developed by numerous software engineering researchers in 1980s claimed

that the application of the formal development methods was the best way to improve

software quality. They state that formal methods include rigor and detailed analysis

that would enable the development of programs with fewer errors and suitable for

users’ needs. They went on predicting that, by the 21st century, a large proportion of

38

software would be developed using formal methods. Evidently, their prediction has

not come true. Four major reasons made this prediction untrue [26]:

1. Successful software engineering. Alternative software engineering methods such

as structured methods, configuration management and information hiding were

used in software design and development processes resulting in better software

quality. This application of other methods proved that formal methods are not the

only way to improve software quality.

2. Market changes. During 1980s, software quality was looked at as the main

software engineering problem. However, by the end of that decade, the key issue

for several software development organizations is not quality but time-to-market.

Software development should be fast, since customers may in most cases accept

software with some faults if quick delivery is accomplished. However, techniques

for fast software development do not apply effectively with formal specifications.

Of course, software quality still matters but it must be combined with rapid

delivery to be more valuable.

3. Limited scope of formal methods. Formal methods do not contribute very much in

specifying user interfaces and user interaction. The user interface component

constitutes an important part of most systems; therefore, formal methods are only

used in the development of the other parts of the system.

4. Limited scalability of formal methods. Formal methods still do not scale up well.

Therefore, formal methods techniques have in most cases been applied to develop

relatively small, critical kernel systems. Systems with larger size, require much

time and effort to be developed using formal methods.

The above-mentioned factors indicate that most software development companies do

not intend to apply formal methods in the development process. Alternatively, formal

specification is a better method of detecting specification errors and presenting the

system specification in clear way. However, organizations that invested in applying

formal methods ended up with fewer errors in software they delivered and at the same

time without an increase in development costs. This shows that formal methods can be

cost-effective if application is limited to key parts of the system and if companies are

intending to make the high initial investment in this technology [26].

39

However, formal methods is still increasingly used in developing critical systems, in

which emergent system properties including safety, reliability and security are very

important. Failure in these systems results in high cost, which means that companies

are ready to bear the high introductory costs of formal methods to make sure that the

developed software is as dependable as possible. It is known that critical systems have

very high and increasing validation and failure costs. Such costs can be reduced by

formal methods [26].

3.3.1 CLASSIFICATION OF FORMAL SPECIFICATION METHODS

Formal specification methods use languages with mathematically defined syntax

and semantics, and offer methods to describe systems and their properties. The power

of formal methods lies on the level of formality and expressiveness provided by their

specification languages. Their strength also lie in the availability of tools that enable

them to develop the system in a way that strictly satisfies the set specifications of the

system. Thus, a formal method could be categorized depending upon its strength and

utilization, which in turn rely on the four pillars mathematical basis, type of systems,

level of formality, and tools support [27].

In a formal specification language, the mathematical basis is either one of these

concepts: algebra, logic, set theory, and relations or some combination of them. To get

the desired benefits of a formal method, its specification language should provide

formal extensional features. These features adequately address software engineering

concerns and allow specifications to be composable from simple structured units, to be

generic and parameterized, and to have well-described interfaces. Generally, systems

can be broadly classified into three categories (with or without time dimension):

sequential, concurrent, and distributed. In most cases, a specification language is

designed to satisfy the need of systems classified under one of these categories in this

broad classification. A reactive system may involve time constraints and exhibit

concurrency. A transaction system, such as database systems and web-based service-

oriented systems, is usually distributed and involves timing constraints. Systems such

as telephone switching systems, control systems, and transportation systems involve

both sequential and concurrent behaviour and could be governed by strict timing

constraints. Because of their complex behaviour, they require languages that support

40

constructs for specifying concurrent and time constrained interactions. It is common to

combine two or more specification languages to specify these systems [27].

A formal language is mathematically based. However, it may or may not include a

reasoning system to verify the system properties. But it is necessary to use a form of

logic when reasoning about system behaviour. The verification method provided by a

specification language should be closely tied to its mathematical basis.

There are a few exceptions, such as PVS (Prototype Verification System) [28], which

offer both development and verification support.

For integrating formal method with software development, it is necessary to utilize

tools support. Each specification must be correctly typed, checked for syntactic

correctness, and semantically analyzed. Then, a specification that is syntactically and

semantically error-free should also be subjected to refinement and verification. The

aim of many specification languages is to carry out formal verification. They do not

help with system development. However, many other specification languages provide

development tools, but do not provide verification tools. There exist few exceptions

which offer both development and verification support such as PVS [28].

Formal specification languages are broadly categorized as property-oriented, and

model-oriented [22], which includes the state-machine-oriented case. A property-

oriented approach constructs a theory and state everything that needs to be included in

the theory. A model-based approach uses mathematical objects to build the model, and

hence the properties of those objects can be freely used in the model.

3.3.1.1 PROPERTY-ORIENTED SPECIFICATION METHODS

Property-oriented category can be subdivided into two sub-groups namely;

axiomatic and algebraic.

1. First the axiomatic approach: here, the objects are constructed from types, and

operations on types are given as assertions in first-order predicate logic. This

means that the axiomatic formal specification defines the semantics of functions of

objects by describing the relations between different objects and functions as

axioms (predicate-logical formula). For instance, the language Anna [29] uses

assertions to annotate Ada programs. These assertions serve to verify the

correctness of Ada programs. TAM’97 (Trace Assertion Method) [30] is an

example of a formal method based on assertions for abstract specification of

41

module interfaces. Axiomatic approaches naturally lend to verification based on

theorem proving method.

2. Second the algebraic approach: here, theory of objects and processes are defined

as algebras. This method emphasizes the representation-free specification of

objects and a declarative style of specifying their properties. An object is usually

represented by a set of definitions, and an operation in an object is defined by a set

of equations. Language terms are terms used in the underlying algebra and are not

interpreted. Equations are changed into rewrite rules for generating new terms in

the specification. In order for a property to be verified, it should be stated as a

term. When a property is stated as a term in the algebra defined by the

specification, it holds for the specified system. This means that algebraic

specification methods provide both a language and a proof method. The best

known algebraic specification language is OBJ3 [31]. OBJ algebraic specification

languages family provides tool support for developing algebraic specifications and

verifying stated properties. Specifically, OBJ3 affords modularity, genericity

through parameterization, and extendibility through theory composition.

3.3.1.2 MODEL-BASED SPECIFICATION TECHNIQUES

It is known that every formal specification language constructs a model of the

specified system. The significance of model-based languages comes from the fact that

the model of the system is constructed in terms of mathematical objects such a sets,

sequences and relations. These mathematical objects provide an abstract description of

the state of the system, together with a number of operations over that state. In

addition, these objects, particularly natural numbers, sets and relations, are utilized to

construct a state model. An operation defined in a state is a function that modifies one

or more state variables. Operation definitions use the underlying mathematical theory.

The most widely known examples of model-oriented specification languages include

Z [32], the B Method [33], and VDM [34].

3.4 THE SPECIFICATION OF DATA TYPES

Mili and Tchier [7] proposed a generalized, relation-based, model for the

specification of software systems which comprises three types of specifications: the

42

procedural specifications (used for simple input output programs) as well as data type

specifications (used for programs whose response depend not only on their input, but

also on their internal state) and continuous process specifications. In this research,

Mili’s generalized model is used to the specification of data types.

3.4.1 A RELATIONAL MODEL

Recalling the discussion stated in Section 3.2, specifications should have two

key attributes: formality and abstraction. Formality can be achieved by using a

mathematical notation, which associates precise semantics to each statement. As for

abstraction, it can be achieved by ensuring that the specifications describe the

externally observable attributes of candidate software products, but do not specify,

dictate or otherwise favor any specific design or implementation.

The following description of a stack data type is considered (One can find a detailed

description of a stack and other Abstract Data Type such as Queue, Sequence, Set,

Multiset and List in APPENDIX-A and https://sites.google.com/site/nahidahmedali/):

A stack is a data type that is used to store items (through operation push ()) and to

remove them in reverse order (through operation pop()); operation top() returns the

most recently stored item that has not been removed, operation size() returns the

number of items stored and operation empty() tells whether the stack has any items

stored; operation init() reinitializes the stack to an initial situation. If someone wants

to stack, without saying anything about how to implement it. How would he or she do

it?

Most data structure courses implement stacks by exhibiting a data structure composed

of an array and an index into the array, and by explaining how push and pop

operations affect the data structure. However, such an approach does not comply with

the principle of abstraction since it specifies the stack by describing a possible

implementation thereof. An alternative approach is to specify the stack by means of an

abstract list, along with a list of operations, without specifying how the list is

implemented. However, this also does not comply with the principle of abstraction, as

it dictates a preferred implementation. In fact, a stack does not necessarily require a

list of elements, irrespective of how the list is represented.

Hence, in order not to violate the abstraction principle, a model proposed by Mili and

Tchier [7] is selected to be used to specify the stack. Such specification is done by

https://sites.google.com/site/nahidahmedali/

43

describing its externally observable behavior, without making any vague assumption

about its internal structure. To this effect, a stack is specified by means of three

parameters, as follows:

1. An input space, say X, which includes all the operations that may be invoked on

the stack. Hence,

X = {init, pop, top, size, empty} ∪ {push} × itemtype,

where itemtype is the data type of the items we envision to store in the stack. In set X,

inputs that affect the state of the stack (namely: OX= {init, push, pop}) and inputs that

merely report on it (namely: VX= {top, size, empty}) should be distinguished.

From the set of inputs X, we build the set of input histories, H, where an input history

is a sequence of inputs; this is needed because the behavior of the stack is not

determined solely by the current input but involves past inputs as well.

 A set of input histories, H = X*.

2. An output space, say Y, which includes all the values returned by all the inputs of

VX. In the case of the stack, the output space is:

Y = (itemtype ∪ {error}) ∪ integer ∪ Boolean,

Which correspond, respectively, to inputs top, size, and empty.

3. A relation from H to Y, which represents the pairs of the form (h, y), where h is an

input history and y is an output that the specifier considers correct for h. This

relation is denoted by stack, and the notation stack (h) is used to refer to the image

of h by stack (if that image is unique) or to the set of images of h by stack (if h has

more than one image). Below some pairs of the form (h, y) for relation stack:

1. stack(pop.init.top.pop.push(a).size.push(b).top.pop.push(c).top.pop.size.top)=a

2. stack(pop.push(a).pop.init.pop.push(a).size.top.pop.push(b).pop.top)=error.

3. stack(push(a).init.init.pop.push(b).top.size.push(c).push(d).top.pop.push(e).size)=3

4. stack(pop.init.pop.pop.push(a).empty.push(b).pop.top.push(c).push(d).empty)=

false.

Description of possible input histories and corresponding outputs can go on this

manner. How operations interact with each other is specified, but how each operation

behaves is not prescribed. This leaves maximum latitude to the designer, as mandated

by the principle of abstraction. It is clearly impractical to specify data types by listing

44

elements of their relations. In the next section, a closed form representation for such

relations is explored.

3.4.2 AXIOMATIC REPRESENTATION

Mili and Tchier [7] represent the relation of a specification by means of an

inductive notation. Induction on the structure of the input history is done. This

notation includes two parts, namely:

1. Axioms, which represent the behavior of the system for trivial input histories.

2. Rules, which represent the behaviour of the system for complex input histories as a

function of its behaviour for simpler input histories.

3.4.2.1 SPECIFICATION OF A STACK

As an illustration, the specification of the stack is represented by using axioms

and rules. Throughout this presentation, let a be an arbitrary element of itemtype, and

y an arbitrary element of Y; also, let h, h’, h’’ be arbitrary elements of H, and h+ an

arbitrary non-null element of H.

1. Axioms. Axioms are used to represent the output of input histories that end with

an operation in set VX (that reports on the state), namely in this case top, size and

empty. It is understood that input histories that end with an operation in set OX

(that affects the state) produce no meaningful output; hence, it is assumed that for

such input histories, the output is any element of Y.

 Top Axioms

o stack(init.top) = error.

Seeking the top of an empty stack returns an error.

o stack(init.h.push(a).top) = a.

Operation top returns the most recently stacked item.

 Size Axiom

o stack(init.size) = 0.

The size of an empty stack is zero.

 Empty Axioms

o stack(init.empty) = true.

A stack that doesn’t contains any element is empty.

45

o stack(init.push(a).empty) = false.

A stack that contains element a is not empty.

2. Rules. Whereas axioms characterize the behavior of the stack for simple input

sequences, rules establish relations between the behavior of the stack for complex

input histories and their behavior for simpler input histories.

 Init Rule

o stack(h.init.h’) = stack(init.h’).

Operation init reinitializes the stack; whether sequence h intervened prior

to init or did not, makes no difference for the future behavior (h’) of the

loop.

 Init Pop Rule

o stack(init.pop.h) = stack(init.h).

A pop operation on an empty stack has no effect: whether it occurred or

did not occur makes no difference for the future behavior (h) of the loop.

 Push Pop Rule

o stack(init.h.push(a).pop.h+) = stack(init.h.h+).

A pop operation cancels the most recent push: whether it occurred or did

not makes no difference to the future behavior of the stack, though not to

the present (if h ends with an operation in VX, we could not say that

stack(init.h)=stack(init.h.push(a).pop) as the left hand side returns a

specific value but the right hand side returns an arbitrary value).

 Size Rule

o stack(init.h.push(a).size) = 1+stack(init.h.size).

Each push operation necessarily increases the size of the stack by 1,

because the stack size is not bounded.

 Empty Rules

o stack(init.h.push(a).h’.empty) stack(init.h.h’.empty)

If, despite having operation push(a) in its history, the stack is empty, then a

fortiori it would empty without push(a).

o stack(init.h.empty) stack(init.h.pop.empty)

If the stack is empty, then a fortiori it would be empty if an extra pop

operation was performed in its past history.

 VX-Operation Rules

46

o stack(init.h.top.h+) = stack(init.h.h+).

o stack(init.h.size.h+) = stack(init.h.h+).

o stack(init.h.empty.h+) = stack(init.h.h+).

VX operations have no impact on the future behaviour of the stack, by

definition, since all they do is to enquire about its state.

A closed form specification of the stack has been written, in such a way that the

externally observable properties of the stack are described closely, without any

reference to how a stack ought to be implemented; a programmer who reviews this

specification has all the latitude he/ she needs to implement this stack as he/ she sees

fit.

3.4.2.2 SPECIFICATION OF A QUEUE

How to represent the specification of a queue is discussed, in the same way

that the specification of a stack is written above. The input space (from which we infer

the set of input histories) is represented in turn, then the output space, then the

relation, which is denoted by queue.

1. An Input Space. let X be defined as:

X = {init, dequeue, front, rear, size, empty} ∪ {enqueue}× itemtype.

This set is portioned into OX = {init, enqueue, dequeue} and VX = {front, rear, size,

empty}. let H be the set of sequences of elements of X.

2. An Output Space. let the output space be defined as:

Y = (itemtype ∪ {error}) ∪ integer ∪ Boolean.

1. Axioms. The following axioms are proposed:

 Front Axioms

o queue(init.front) = error.

Invoking front on an empty queue returns an error.

o queue(init.enqueue(a).enqueue(_)*.front) = a,

Where enqueue(_)* designates an arbitrary number (including zero) of

enqueue operations. Interpretation: Invoking front on a non empty queue

returns the first element enqueued.

 Rear Axioms

o queue(init.rear) = error.

47

Invoking rear on an empty queue returns an error.

o queue(init.enqueue(_)*.enqueue(a).rear) = a,

Invoking rear on a non empty queue returns the last element enqueued.

 Size Axiom

o queue(init.size) = 0.

The size of an empty queue is zero.

 Empty Axioms

o queue(init.empty) = true.

An initial queue is empty.

o queue(init.enqueue(a).empty) = false.

A queue in which an element has been enqueued is not empty.

2. Rules. The following rules are proposed.

 Init Rule

o queue(h.init.h’) = queue(init.h’).

The init operation reinitializes the queue, i.e. renders all past input history

irrelevant.

 Init Dequeue Rule

o queue(init.dequeue.h) = queue(init.h).

A dequeue operation executed on an empty queue has no effect.

 Enqueue Dequeue Rule

o queue(init.enqueue(a).enqueue(_)*.dequeue.h+)=

queue(init.enqueue(_)*.h+)

A dequeue operation cancels the first element enqueued, by virtue of the

FIFO policy of queues.

 Size Rule

o queue (init.h.enqueue(a). size) = 1+ queue(init.h.size).

An enqueue operation increases the size of the queue by 1.

 Empty Rules

o queue(init.h.enqueue(a).h’.empty) queue(init.h.h’.empty)

o queue(init.h.empty) queue(init.h.dequeue.empty)

Removing an enqueue or adding a dequeue to the input history of a queue

makes it more empty.

48

 VX-Operation Rules

o queue(init.h.front.h+) = queue(init.h.h+).

o queue(init.h.rear.h+) = queue(init.h.h+).

o queue (init.h.size.h+) = queue(init.h.h+).

o queue(init.h.empty.h+) = queue(init.h.h+).

VX operations leave no trace of their passage; once they are serviced and

another follows them, they are forgotten: whether they occurred or did not

occur has no impact on the future behavior of the queue.

Other ADT’s (namely: Sequence, Set, Multiset, List) specification is presented in

APPENDIX-B and https://sites.google.com/site/nahidahmedali/.

3.5 SPECIFICATION VALIDATION

The software engineering literature contains examples of software projects that

fail. The reason for such failures is not programmer’s inability of how to write code or

how to test it. The reason is that analysts and engineers fail to write valid

specifications that capture all the relevant requirements (for the sake of completeness)

and nothing but relevant requirements (for the sake of minimality) [7]. As a result, it is

crucial to validate specifications for both completeness and minimality, and to invest

the necessary resources to this effect before proceeding with subsequent phases of the

software lifecycle. In this section, the process of specification validation is briefly and

cursorily discussed. It is discussed in the narrow context of the relational

specifications that were introduced in the previous section. The modest goal is to give

the reader some sense of what it may mean to validate a specification.

In the previous section, the specifications on the basis of the proposed requirement are

written and the completeness and minimality of candidate specifications can be judged

by considering the same source, i.e. the proposed requirement. Tasking the same

person or group with generating the candidate specifications and judging their validity

(completeness and minimality) will lead to the result that the same biases that cause

the person or group to write invalid specifications may cause him/ her to overlook the

invalidity of their specification. The only way to make sure that a measure of

confidence is not bias in the validation of the specification is to employ separate

teams. One for the generation of the specifications and one for the validation of those

https://sites.google.com/site/nahidahmedali/

49

specifications. With this respect, Mili and Tchier [7] devise the following two-team,

two-phase approach as shown in Table 3.1.

Table 3.1: Two-Team, Two-Phase Approach

 Activity

Phase
Specification Generation Specification Validation

Specification

Generation

Generating the specification from

sources of requirements.

Generating validation data from the

same sources of requirements.

Specification

Validation

Updating the specification

according to feedback from the

validation team.

Testing the specification against the

validation data generated above.

These two phases are described below:

1. The Specification Generation Phase. In this phase, the specification team

generates the specification by referring to all the sources of requirements

(requirements documents). By referring to the same requirement documents or

sources, the validation team generates validation data that it intends to test the

specification against. Mili and Tchier [7] distinguished between two types of

validation data:

1. Completeness Properties. These are properties that the specification must

have, but the validation team suspects the specification team may fail to

record.

2. Minimality Properties. These are properties that the specification must not

have, but the validation team suspects the specification team may record them

inadvertently.

For the sake of redundancy, the specification team and the validation team must

work independently of each other.

2. The Specification Validation Phase. In the specification validation phase, the

validation team tests the specification against completeness and minimality data

generated in the previous phase, while the specification team updates the

specification, if it turns out that it was not complete or not minimal.

50

It remains to discuss: what form does the validation data take, and how does one test a

specification against the generated validation data. The answers to these questions are

given in the following section where abstract data type specification validation is

discussed.

3.5.1 ADT’S SPECIFICATION VALIDATION

In the previous section, specifications of a number of ADT’s have been

written, namely: a stack and a queue. How does one know that such specifications are

valid? Valid means that they capture all the properties one wants them to capture

(completeness) and nothing else (minimality). To bring a measure of confidence in the

validity of these specifications, a validation process is envisioned in which the focus

will solely be on completeness for the sake of simplicity. One imagines that while

these specifications are written, an independent verification and validation team is

generating formulas of the form stack(h) = y for different values of h and y, on the

grounds that whatever one writes in his/her specification should logically imply these

statements. Then the validation step consists of checking that the proposed formulas

can be inferred from the axioms and rules of the specification. If they do, then one can

conclude that such specification is complete with respect to the proposed formulas; if

not, then one needs to check with the verification and validation team to see whether

his/her specification is incomplete or perhaps the validation data is erroneous [7].

For the sake of illustration, one checks whether his/her specification is valid with

respect to the formulas written in Section 3.4.1 as sample input /output pairs of stack

specification (One can find other ADT’s validation data in APPENDIX-C and

https://sites.google.com/site/nahidahmedali/):

1. stack(pop.init.top.pop.push(a).size.push(b).top.pop.push(c).top.pop.size.top)=a

2. stack(pop.push(a).pop.init.pop.push(a).size.top.pop.push(b).pop.top)=error.

3. stack(push(a).init.init.pop.push(b).top.size.push(c).push(d).top.pop.push(e).size)=3

4. stack(pop.init.pop.pop.push(a).empty.push(b).pop.top.push(c).push(d).empty)=

false.

He/she finds:

1. stack(pop.init.top.pop.push(a).size.push(b).top.pop.push(c).top.pop.size.top)=a

= {by virtue of the init rule}

https://sites.google.com/site/nahidahmedali/

51

stack(init.top.pop.push(a).size.push(b).top.pop.push(c).top.pop.size.top)

= {by virtue of the VX-op rules}

stack(init.pop.push(a).push(b).pop.push(c).pop.top)

= {by virtue of the push-pop rule, applied twice}

stack(init.pop.push(a).top)

= {by virtue of the second top axiom, with h = < pop >}

a. QED

2. stack(pop.push(a).pop.init.pop.push(a).size.top.pop.push(b).pop.top)=error.

= {by virtue of the init rule}

stack(init.pop.push(a).size.top.pop.push(b).pop.top)

= {by virtue of the init-pop rule}

stack(init.push(a).size.top.pop.push(b).pop.top)

= {by virtue of the VX-op rules}

stack(init.push(a).pop.push(b).pop.top)

= {by virtue of the push-pop rule, applied twice}

stack(init.top)

= {by virtue of the first top axiom}

error. QED

3. stack(push(a).init.init.pop.push(b).top.size.push(c).push(d).top.pop.push(e).size)=3

= {by virtue of the init rule}

stack(init.pop.push(b).top.size.push(c).push(d).top.pop.push(e).size)

= {by virtue of the VX-op rules}

stack(init.pop.push(b).push(c).push(d).pop.push(e).size)

= {by virtue of the push-pop rule}

stack(init.pop.push(b).push(c).push(e).size)

= {by virtue of the init-pop rule}

stack(init.push(b).push(c).push(e).size)

= {by virtue of the size rule, with h = <push(b).push(c)>}

1 + stack(init.push(b).push(c).size)

= {by virtue of the size rule, with h = <push(b)>}

1 + 1 + stack(init.push(b).size)

= {by virtue of the size rule, with h = < >}

1 + 1 + 1 + stack(init.size)

52

= {by virtue of size axiom}

1 + 1 + 1 + 0

= {arithmetic}

3. QED

4. stack(pop.init.pop.pop.push(a).empty.push(b).pop.top.push(c).push(d).empty)=

false.

= {by virtue of the init rule}

stack(init.pop.pop.push(a).empty.push(b).pop.top.push(c).push(d).empty)

= {by virtue of the init-pop rule, applied twice}

stack(init.push(a).empty.push(b).pop.top.push(c).push(d).empty)

= {by virtue of the VX-op rules}

stack(init.push(a).push(b).pop.push(c).push(d).empty)

= {by virtue of the push-pop rule}

stack(init.push(a).push(c).push(d).empty)

=>{by virtue of the first empty rule, with h=<push(a)>, h’=< push(d)>}

stack(init.push(a).push(d).empty)

=>{by virtue of the empty rule, with h=<push(a)>, h’=< >}

stack(init.push(a).empty)

=>{by virtue of the second empty axiom}

false. QED

Because the specification given has survived four tests unscathed, we gain a bit more

confidence in its validity.

SUMMARY

This chapter introduces the concept of software specifications as both a

process and a product. It discusses the three forms of specification product and the

properties of the specifications. In addition, the chapter discusses the formal

specification and its role in improving software quality. It also, discusses the

classification of formal specification methods into: property-oriented specification

methods and model-based specification techniques. Finally, it describes the relational

specification and the axiomatic representation of the relational specification of

53

systems that maintain an internal state. It concludes with the generation and validation

of axiomatic specifications of abstract data types.

54

CHAPTER FOUR

PROGRAM CORRECTNESS AND VERIFICATION

4.1 INTRODUCTION

Today’s software systems have become essential parts of human everyday life.

They are currently utilized in almost all fields of human activities. More and more of

them are required, and their complexity increases continuously. Software critical

systems require error-free programming [35]. To obtain error-free programs, a new

way of writing programs and much better educated programmers are needed.

There exists a tradeoff between the desire to obtain a system as quickly as possible,

and to build a correct system. The experiences show that numerous finished software

products have errors during maintenance, and in developing a software product much

effort will be spent on testing and debugging [35]. Nevertheless, some errors are not

detectable by testing, and some of them will never be detected. Due to unreliable

software, many people died, and serious economic damages have been experienced

[35].

Program verification is a technique used to ensure or verify the correctness of

software products, it’s a static method that attempts to prove by logical reasoning that

the program is correct, assuming a given semantic definition of the source language. A

complementary technique is software testing, which is the activity where a software

product is executed on sample data and its behavior is judged with respect to the

specification that the program is intended to satisfy. These two approaches to achieve

program quality assurance are usually considered as alternatives, and offer contrasting

attributes [36]:

1. Whereas program verification is a static technique, which operates on the source

code, program testing is a dynamic technique that uses the executable code of the

program.

2. Whereas program verification requires the assumption that the compiler and the

run time environment of the program are compatible with the semantic definition

of the programming language; program testing requires the assumption that the

testing environment is a faithful imitation of the user-operating environment.

55

3. Whereas program verification can be used to prove the absence of faults (under

the assumptions cited above) but cannot necessarily be used to prove their

presence (if a proof fails, there is no easy way to tell whether it is because the

program is incorrect or because the proof was not well planned); program testing

can be used to find faults (if a test fails) but cannot be used to prove the absence of

faults (it is virtually impossible in general to test the program on all possible test

data)

4. Whereas program testing can be applied to programs of any size and complexity,

program verification can only be applied to very small programs, which use only

simple constructs.

5. Whereas program verification concludes with a logical claim about the correctness

of the program, program testing concludes either with a report of a failure or some

statistical claim about the reliability of the program.

In practice, program verification has been the subject of much research, but has made

little inroads into industrial practice; by contrast, program testing has been common

practice in the industry, but in circumstances where it is difficult to make any credible

claims of software quality. However, program correctness is an important concept in

program testing for several reasons, some of which are discussed below [7]:

1. The focus of software testing is to run the candidate program on selected input

data and check whether the program behaves correctly with respect to its

specification. The behavior of the program can be analyzed only if one knows

what a correct behavior is. Hence, the study of correctness is an integral part of

software testing.

2. The study of program correctness leads to analyzing candidate programs at

arbitrary levels of granularity. In particular, it leads to make assumptions on the

behavior of the program at specific stages in its execution, and to verify (or

disprove) these assumptions. The same assumptions can be checked at run-time

during testing, producing valuable information as one tries to diagnose the

program or establish its correctness. Hence, the skills that one develops as he/she

tries to prove program correctness enable him/her to be testers that are more

effective.

56

3. It is common for program testers and program provers to make polite statements

about testing and proving being complementary, then to assiduously ignore each

other (each other’s method). However, there is more to complementary than meets

the eye. Very often, an intrinsic attribute of a testing method or a proving method

does not make it ineffective, but rather the fact that the method is used against the

wrong type of specification. Hence, it is advantageous, given a

complex/compound specification, to decompose it into two broad components:

one that lends itself to testing and one that lends itself to proving; and apply each

method against the appropriate specification component. Hence, by doing this one

achieves great gains in efficiency, quality, and reliability.

4. It is best to view software testing, not as an isolated effort, but rather as an integral

part of a broad, multi-pronged policy of quality assurance, that deploys each

method where it is most effective, by virtue of the Law of Diminishing Returns.

The present chapter introduces the concepts of program correctness, program

verification, Hoare Logic, and formal verification techniques and gives some

examples of proving programs correctness.

4.2 CORRECTNESS OF PROGRAMS

A correct program is one that does exactly what its designers and users intend

it to do– doing more does not preclude correctness [37]. A formally correct program

is one whose correctness can be proved mathematically, at least to a point that

designers and users are convinced about its relative absence of errors [37]. For a

program to be formally correct, there must be a way to specify precisely

(mathematically) what the program is intended to do, for all possible values of its

input, these so-called specification languages are based on mathematical logic [37].

The proof of correctness is defined by IEEE as [5]:

1. “A formal technique used to prove mathematically that a computer program

satisfies its specified requirements.”

2. “A proof that results from applying the technique in (1).”

The concept of program correctness was introduced by Floyd [38]. In addition, a

method for proving program correctness was presented in the same paper. Before, the

57

correctness of individual algorithms was proved by Hoare [2], [39], Foley and Hoare

[40], London [41], [42], Naur [43].

The ideas of Floyd were developed by Hoare [2] who introduced an axiomatic method

for proving the partial correctness of a program (introduced in Section 4.3.1 of this

chapter.). Then Dijkstra [15] introduces the important concept of weakest

precondition. His work that formally deriving correct programs from specifications,

was continued by Gries [44] who states that it is more important to develop correct

programs than to prove later their correctness. A program and its proof should be

developed hand-in-hand with the former usually leading the way. This idea was

developed further by Dromey [45], and Morgan [46].

Some people [47] are against proving correctness. Others consider expensive, since

they think that the effort to build a program in such a way is considerably increased.

Certainly, proving correctness of a real large program is too complicated and, maybe,

error-prone, which defeats the purpose of the proof effort.. However, the correctness

of the important and critical procedures used in the system may be proved. In addition,

the client does not frequently change the specifications of these procedures, as some

researchers argue against proving correctness. Moreover, proving correctness has an

important impact on program verification. It is well known that proving correctness

and testing complete each other [35].

Formally proving the correctness of a small program, of course, does not address the

major problem facing software designers today. Modern software systems have

millions of lines of code, representing thousands of semantic states and state

transitions. This innate complexity requires that designers use robust tools for assuring

that the system behaves properly in each of its states [37].

In fact, a complete program correctness proof consists of two parts: a partial

correctness proof and a termination proof. A partial correctness proof shows that a

program is correct when indeed the program halts (or terminate). However, a partial

correctness proof does not establish that the program must halt. To prove a program

always halt, the proof is called “Termination Proof” [48]. IEEE defined partial

correctness and total correctness as [5]:

58

1. “Partial correctness. In proof of correctness, a designation indicating that a

program’s output assertions follow logically from its input assertions and

processing steps.”

2. “Total correctness. In proof of correctness, a designation indicating that a

program’s output assertions follow logically from its input assertions and

processing steps, and that, in addition, the program terminates under all specified

input conditions.”

4.3 SOFTWARE VERIFICATION

The semantics of programs are necessary to introduction for making explicit

exactly what programs do. The central issue is how to establish that a program does

the right things. The beginning will be with that the program is syntactically correct.

The detection of syntax errors (e.g. missing parentheses and the like) belongs to the

study of formal programming languages. It is important to detect semantic errors,

incorrect loop initialization etc. [49]. A common approach to the problem of program

correctness is the program verification. Program verification will be the subject

matter of the rest of this chapter. IEEE defines program verification as [5]:

1. “The process of evaluating a system or component to determine whether the

products of a given development phase satisfy the conditions imposed at the start

of that phase.”

2. “Formal proof of program correctness.”

This approach mathematically proves that a program satisfies its specifications. The

definition of these specifications must incorporate mathematical precision. In the case

where a formal definition of these specifications is available (for instance, as a

formula of predicate logic) the program verification may be performed formally, even

with the aid of a computer. A major difficulty when actually applying the techniques

of program verification to real-life programs is the combinatorial complexity of large

proofs. One way to overcome this difficulty is by proposing new program verification

system [49]. This research provides a systematic exposition of one of the most

common approaches to program verification, namely program verification using

Hoare Logic.

59

4.3.1 HOARE LOGIC

Hoare logic (also known as Floyd–Hoare logic or Hoare rules) is a formal

system with a set of logical rules for reasoning rigorously about the correctness of

computer programs. It was proposed in 1969 by the British computer scientist and

logician C. A. R. Hoare, and subsequently refined by Hoare and other researchers [2].

However, the original ideas were seeded by the work of Robert Floyd, who had

published a similar system [38] for flowcharts.

4.3.1.1 HOARE TRIPLE

The central feature of Hoare logic is the Hoare triple, which describes how the

execution of a piece of code changes the state of the computation. A Hoare triple is of

the form:

 {𝑝} 𝑆 {𝑞} (1)

Where 𝑆 is a programming language statement or command, 𝑝 and 𝑞 are assertions

(variables of) on the space of the program. Such Formulas are called Hoare formulas.

𝑝 denotes the precondition and 𝑞 denotes the postcondition: when the precondition is

met, the command establishes the postcondition. Assertions are formulas in predicate

logic.

Standard Hoare Logic proves only partial correctness, while termination needs to be

proved separately. Thus the intuitive reading of a Hoare triple is:

Whenever 𝑝 holds of the state before the execution of 𝑆, then 𝑞 will hold afterwards,

or 𝑆 does not terminate. Note that if 𝑆 does not terminate, then there is no "after", so 𝑞

can be any statement at all. Actually, one can choose 𝑞 to be false to express that 𝑆

does not terminate. Total correctness can be also proven with an extended version of

the while rule.

It is important to note that, Hoare logic provides axioms and inference rules for all the

constructs of a simple imperative programming language.

4.3.1.2 AN INFERENCE SYSTEM

An inference system is a system for inferring conclusions from hypotheses in a

systematic manner. Such a system can be defined by means of the following artifacts:

60

 A set F of (syntactically defined) formulas.

 A subset A of F, called the set of axioms, which includes formulas that one

assumes to be valid by hypothesis.

 A set of inference rules, denoted by R, where each rule consists of a set of

formulas called the premises of the rule, and a formula called the conclusion of the

rule. One interprets a rule to mean that whenever the premises of a rule are valid,

so is its conclusion. Usually, the rule is represented by listing its premises above a

line and its conclusion below the line.

An inference in an inference system is an ordered sequence of formulas, say

nvvv ,....., 21 . Each formula in the sequence, say iv , is either an axiom or the

conclusion of a rule whose premises appear prior to iv , i.e. amongst 121 ,....., ivvv . A

theorem of a deductive system is any formula that appears in an inference.

This section introduces an inference system that is used to establish the validity of

Hoare formulas by induction on the complexity of the program component of the

formulas [7]. To this effect, one presents in turn, the formulas, then the axioms, and

finally the rules.

 Formulas. Formulas of the inference system include all the formulas of logic, as

well as Hoare formulas.

 Axioms. Axioms of the inference system include all the tautologies of logic, as

well as the following formulas:

o {𝑓𝑎𝑙𝑠𝑒} 𝑆 {𝑞}, for any program 𝑆 and any postcondition 𝑞.

o {𝑝} 𝑆 {𝑡𝑟𝑢𝑒}, for any program 𝑆 and any precondition 𝑝.

 Rules. One presents below a rule for each statement of a simple C-like

programming language, in addition to a consequence rule that allows him/her to

generalize a pre/post specification.

1. Assignment Statement Rule: One considers an assignment statement that

affects a program variable (and implicitly preserving all other variables), and

interprets it as an assignment to the whole program state (changing the selected

variable and preserving the other variables), which is denoted by 𝑆 = 𝐸(𝑆),

where 𝑆 is the state of the program. One has the following rule,

61

 𝑝 ⇒ 𝑞(𝐸(𝑆))

{𝑝} 𝑆 = 𝐸(𝑆) {𝑞}
 (2)

Interpretation: If one wants 𝑞 to hold after execution of the assignment

statement, when 𝑆 is replaced by 𝐸(𝑆), then 𝑞(𝐸(𝑆)) must hold before

execution of the assignment; hence the precondition 𝑝 must imply 𝑞(𝐸(𝑆)).

2. Sequence Rule: Let 𝑆 be a sequence of two subprograms, say 𝑆1 and 𝑆2. One

has the following rule,

 ∃ 𝑖𝑛𝑡:
{𝑝} 𝑆1 {𝑖𝑛𝑡}

{𝑖𝑛𝑡} 𝑆2 {𝑞}

{𝑝} 𝑆1; 𝑆2 {𝑞}

(3)

Interpretation: If there exits an intermediate predicate 𝑖𝑛𝑡 that serves as a

postcondition to 𝑆1 and a precondition to 𝑆2 , then the conclusion is

established.

3. Conditional Rule: Let 𝑆 be a conditional statement, of the form: if (condition)

then statement. One has the following rule,

 {𝑝 ∧ 𝑡} 𝑆 {𝑞}

(𝑝 ∧ ¬𝑡) ⇒ 𝑞

{𝑝} 𝑖𝑓 (𝑡) 𝑡ℎ𝑒𝑛 𝑆 {𝑞}

(4)

The interpretation of conditional rule is shown in Figure 4.1.

Figure 4.1: The Interpretation of Conditional Rule

4. Alternation Rule: Let 𝑆 be an alternation statement, of the form: if (condition)

then statement else statement. One has the following rule,

F

S

p

T
t

q

62

 {𝑝 ∧ 𝑡} 𝑆1 {𝑞}

{𝑝 ∧ ¬𝑡} 𝑆2 {𝑞}

{𝑝} 𝑖𝑓 (𝑡) 𝑡ℎ𝑒𝑛 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 {𝑞}

(5)

The interpretation of alternation rule is shown in Figure 4.2.

Figure 4.2: The Interpretation of Alternation Rule

5. Iteration Rule: Let 𝑆 be an iterative statement, of the form: while (condition)

statement. One has the following rule,

 ∃ 𝑖𝑛𝑣:
𝑝 ⇒ 𝑖𝑛𝑣

{𝑖𝑛𝑣 ∧ 𝑡} 𝑆 {𝑖𝑛𝑣}
𝑖𝑛𝑣 ∧ ¬𝑡 ⇒ 𝑞

{𝑝} 𝑤ℎ𝑖𝑙𝑒 (𝑡) 𝑆 {𝑞}

(6)

Interpretation: The first and second premises establish an inductive proof to the

effect that predicate 𝑖𝑛𝑣 holds after any number of iterations. The third

premise provides that upon termination of the loop, the combination of

predicate 𝑖𝑛𝑣 and the negation of the loop condition must logically imply the

postcondition. Predicate 𝑖𝑛𝑣 is called an invariant assertion. It must be chosen

in order to be sufficiently weak to satisfy the first premise, yet sufficient strong

to satisfy the third premise (and the second). See Figure 4.3 below, which

highlight the points at which each of the relevant assertions is supposed to

hold. Note that 𝑖𝑛𝑣 is placed upstream of the loop condition; hence the loop

T

S2

p

F
t

q

S1

63

condition is never part of 𝑖𝑛𝑣 (since upstream of the loop condition one does

not know whether 𝑡 is true or not).

Figure 4.3: The Interpretation of Iteration Rule

6. Consequence Rule: Given a Hoare formula, one can always strengthen the

precondition and/or weaken the postcondition. One has the following rule:

 𝑝 ⇒ 𝑝′

𝑞′ ⇒ 𝑞

{𝑝′} 𝑆 {𝑞′}

{𝑝} 𝑆 {𝑞}

(7)

Interpretation: this rule stems readily from the definition of these formulas.

Using the proposed axioms and rules, one can generate theorems of the

form {𝒑} 𝑺 {𝒒}. The following section presents illustrative examples of the inference

system.

4.3.1.3 ILLUSTRATIVE EXAMPLES

We consider the following program on space 𝑆 defined by variables 𝑥, 𝑦 and 𝑧

of type real, and we form a tripled by embedding it between a precondition and a

postcondition:

 Program: 𝑧 = 0; 𝑤ℎ𝑖𝑙𝑒 (𝑦 ≠ 0) { 𝑦 = 𝑦 − 1; 𝑧 = 𝑧 + 𝑥; }.

 Precondition: 𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0, for some constants 𝑥0 and 𝑦0.

F

S

p

T
t

q

inv

64

 Postcondition: 𝑧 = 𝑥0 × 𝑦0.

The following formula is formed, and we attempt to prove that this formula is a

theorem of the proposed inference system:

𝑣: {𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0} 𝑧 = 0; 𝑤ℎ𝑖𝑙𝑒 (𝑦 ≠ 0){ 𝑦 = 𝑦 − 1; 𝑧 = 𝑧 + 𝑥; }{ 𝑧 = 𝑥0 × 𝑦0}

The sequence rule is applied to 𝑣 , using the intermediate assertion 𝑖𝑛𝑡 ≡ (𝑥 = 𝑥0 ∧

𝑦 = 𝑦0 ∧ 𝑧 = 0). This yields the following two formulas:

𝑣0: {𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0} 𝑧 = 0 {(𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0 ∧ 𝑧 = 0)}

𝑣1: {(𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0 ∧ 𝑧 = 0)} 𝑤ℎ𝑖𝑙𝑒 (𝑦 ≠ 0) {𝑦 = 𝑦 − 1; 𝑧 = 𝑧 + 𝑥; } {𝑧 = 𝑥0 × 𝑦0}

The assignment rule is applied to 𝑣0, which yields:

𝑣00: 𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0 ⇒ (𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0 ∧ 0 = 0)

It is found that 𝑣00 is a tautology, hence, it is an axiom of the inference system. The

focus will be on 𝑣1, to which the iteration rule is applied, with the invariant

assertion 𝑖𝑛𝑣 ≡ (𝑧 + 𝑥 × 𝑦 = 𝑥0 × 𝑦0). This yields three formulas:

𝑣10: (𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0 ∧ 𝑧 = 0) ⇒ (𝑧 + 𝑥 × 𝑦 = 𝑥0 × 𝑦0)

𝑣11: {𝑦 ≠ 0 ∧ (𝑧 + 𝑥 × 𝑦 = 𝑥0 × 𝑦0)} 𝑦 = 𝑦 − 1; 𝑧 = 𝑧 + 𝑥 {(𝑧 + 𝑥 × 𝑦 = 𝑥0 × 𝑦0)}

𝑣12: 𝑦 = 0 ∧ (𝑧 + 𝑥 × 𝑦 = 𝑥0 × 𝑦0) ⇒ (𝑧 = 𝑥0 × 𝑦0)

It is found that 𝑣10 and 𝑣12 are both tautologies; hence, they are axioms of the

inference system. Now consider 𝑣11, to which the sequence rule is applied, with the

intermediate assertion 𝑖𝑛𝑡 ≡ (𝑧 + 𝑥 × (𝑦 + 1) = 𝑥0 × 𝑦0)). This yields two formulas:

𝑣110: {𝑦 ≠ 0 ∧ (𝑧 + 𝑥 × 𝑦 = 𝑥0 × 𝑦0)} 𝑦 = 𝑦 − 1 {(𝑧 + 𝑥 × (𝑦 + 1) = 𝑥0 × 𝑦0)}

𝑣111: {(𝑧 + 𝑥 × (𝑦 + 1) = 𝑥0 × 𝑦0)} 𝑧 = 𝑧 + 𝑥 {(𝑧 + 𝑥 × 𝑦 = 𝑥0 × 𝑦0)}

The assignment rule is applied to 𝑣110 and 𝑣111, this produces:

𝑣1100: 𝑦 ≠ 0 ∧ (𝑧 + 𝑥 × 𝑦 = 𝑥0 × 𝑦0) ⇒ (𝑧 + 𝑥 × ((𝑦 − 1) + 1) = 𝑥0 × 𝑦0)

65

𝑣1110: (𝑧 + 𝑥 × (𝑦 + 1) = 𝑥0 × 𝑦0) ⇒ ((𝑧 + 𝑥) + 𝑥 × 𝑦 = 𝑥0 × 𝑦0

It is found that 𝑣1100 and 𝑣1110 are both tautologies; hence, they are axioms of the

inference system. This concludes the proof to the effect that 𝑣 is a theorem, since the

sequence

𝑣1110, 𝑣1100, 𝑣111, 𝑣110, 𝑣12, 𝑣11, 𝑣10, 𝑣00, 𝑣1, 𝑣0, 𝑣

is an inference, as the reader may check: each formula in this sequence is either an

axiom, or the conclusion of a rule whose premises are to the left of the formula. It is

concluded that the program

𝑧 = 0; 𝑤ℎ𝑖𝑙𝑒 (𝑦 ≠ 0) { 𝑦 = 𝑦 − 1; 𝑧 = 𝑧 + 𝑥; }

is partially correct with respect to the following specification:

𝑅 = {(𝑠, 𝑠′)| ∃ 𝑠0: 𝑥(𝑠) = 𝑥(𝑠0) ∧ 𝑦(𝑠) = 𝑦(𝑠0) ∧ 𝑧(𝑠′) = 𝑥(𝑠0) × 𝑦(𝑠0)}.

This formula can be simplified to be:

𝑅 = {(𝑠, 𝑠′)| 𝑧(𝑠′) = 𝑥(𝑠) × 𝑦(𝑠)}.

It may be more illustrative to view this inference as a tree structure, where leaves are

the axioms and internal nodes represent the rules that were invoked in the inference;

the root of the tree represents the theorem that is established in the inference.

66

As a second example, consider the following Greatest Common Divisor (GCD)

program on positive integer variables 𝑥 and 𝑦:

𝑤ℎ𝑖𝑙𝑒 (𝑥 ≠ 𝑦) { 𝑖𝑓(𝑥 > 𝑦) {𝑥 = 𝑥 − 𝑦; } 𝑒𝑙𝑠𝑒 {𝑦 = 𝑦 − 𝑥; }}

 and consider the following precondition/ postcondition pair:

 𝑝(𝑆) ≡ (𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0),

 𝑞(𝑆) ≡ (𝑥 = gcd(𝑥0, 𝑦0)).

The following formula is formed:

𝑣: {𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0}

𝑤ℎ𝑖𝑙𝑒 (𝑥 ≠ 𝑦) { 𝑖𝑓(𝑥 > 𝑦) {𝑥 = 𝑥 − 𝑦; } 𝑒𝑙𝑠𝑒 {𝑦 = 𝑦 − 𝑥; }}

 {𝑥 = gcd (𝑥0, 𝑦0)}

The iteration rule is applied to 𝑣 with the following invariant assertion: 𝑖𝑛𝑣 ≡

(gcd(𝑥, 𝑦) = gcd(𝑥0, 𝑦0)). This produces:

𝑣0: (𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0) ⇒ (gcd(𝑥, 𝑦) = gcd (𝑥0, 𝑦0))

𝑣1: {(gcd(𝑥, 𝑦) = gcd(𝑥0, 𝑦0)) ∧ (𝑥 ≠ 𝑦)}

 𝑖𝑓 (𝑥 > 𝑦){𝑥 = 𝑥 − 𝑦; } 𝑒𝑠𝑙𝑒 {𝑦 = 𝑦 − 𝑥; }

{(gcd(𝑥, 𝑦) = gcd (𝑥0, 𝑦0))}

𝑣2: (gcd(𝑥, 𝑦) = gcd(𝑥0, 𝑦0)) ∧ (𝑥 = 𝑦) ⇒ (𝑥 = gcd(𝑥0, 𝑦0))

It is found that 𝑣0 and 𝑣2 are tautologies, hence axioms of the inference system. The

focus will be on 𝑣1, to which the alternation rule is applied, which yields:

𝑣10: {(gcd(𝑥, 𝑦) = gcd(𝑥0, 𝑦0)) ∧ (𝑥 ≠ 𝑦) ∧ (𝑥 > 𝑦)}

 𝑥 = 𝑥 − 𝑦

 {(gcd(𝑥, 𝑦) = gcd (𝑥0, 𝑦0))}

𝑣11: {(gcd(𝑥, 𝑦) = gcd(𝑥0, 𝑦0)) ∧ (𝑥 ≠ 𝑦) ∧ (𝑥 ≤ 𝑦)}

 𝑦 = 𝑦 − 𝑥

{(gcd(𝑥, 𝑦) = gcd (𝑥0, 𝑦0))}

Then the assignment statement rule is applied to 𝑣10 and 𝑣11 , which yields:

𝑣100: (gcd(𝑥, 𝑦) = gcd(𝑥0, 𝑦0)) ∧ (𝑥 ≠ 𝑦) ∧ (𝑥 > 𝑦) ⇒ (gcd(𝑥 − 𝑦, 𝑦) = gcd (𝑥0, 𝑦0))

𝑣110: (gcd(𝑥, 𝑦) = gcd(𝑥0, 𝑦0)) ∧ (𝑥 ≠ 𝑦) ∧ (𝑥 ≤ 𝑦) ⇒ (gcd(𝑥, 𝑦 − 𝑥) = gcd (𝑥0, 𝑦0))

67

It is found that both of these formulas are tautologies, hence axioms of the inference

system. This concludes the proof that 𝑣 is a theorem, since the sequence

𝑣110, 𝑣100, 𝑣11, 𝑣10, 𝑣2, 𝑣1, 𝑣0, 𝑣

is an inference, as the reader may check: each formula in this sequence is either an

axiom, or the conclusion of a rule whose premises are to the left of the formula. It is

concluded that the program

𝑤ℎ𝑖𝑙𝑒 (𝑥 ≠ 𝑦) { 𝑖𝑓(𝑥 > 𝑦) {𝑥 = 𝑥 − 𝑦; } 𝑒𝑙𝑠𝑒 {𝑦 = 𝑦 − 𝑥; }}

is partially correct with respect to the following specification:

𝑅 = {(𝑠, 𝑠′)| ∃ 𝑠0: 𝑥(𝑠) = 𝑥(𝑠0) ∧ 𝑦(𝑠) = 𝑦(𝑠0) ∧ 𝑥(𝑠′) = gcd (𝑥(𝑠0), 𝑦(𝑠0))}

This formula can be simplified to be:

𝑅 = {(𝑠, 𝑠′)| 𝑥(𝑠′) = gcd (𝑥(𝑠), 𝑦(𝑠))}.

4.3.2 FORMAL SOFTWARE VERIFICATION TECHNIQUES

Formal verification can be defined as a set of techniques used by developers to

design systems that have reliable operation [50]. It complements testing and should be

used in conjunction with it to increase reliability when developing a system. On the

other hand, formal verification is regarded to be a better tool than testing because it is

exhaustive and improves the knowledge of the system. However, an unfavorable

feature of formal verification is that it is difficult and time-consuming [50]. Formal

verification enhances the reliability of the developed system by making sure that it

satisfies the defined functional requirements, especially in the first stages of design.

Formal verification is based on formal methods, which are mathematically based

languages, techniques and tools for specifying and verifying systems [51]. There are

various tools that aid in the processes of specification and verification. They provide

notations and algorithms for system developers in order to formally specify and/or

verify a system.

Formal Verification relies on the construction of a mathematical model of the system

and on formally specifying the requirements to be checked against the system.

Verification tools, the tools that perform formal verification, take two inputs: model of

68

a system and its specification and check if the system satisfies the specification. Based

on how the modeling and the checking are carried out, the Formal Verification

techniques are sub-divided into Static Analysis and Theorem Proving [50].

4.3.2.1 STATIC ANALYSIS

Static analysis encompasses a set of related techniques to automatically compute

the information about the program behavior without executing it [52]. Most questions

about the behavior of a program cannot be decided or their answers cannot be

computed feasibly. Thus, the essence of static analysis is to efficiently compute

approximate but sound guarantees: guarantees that are not misleading [52]. There are

three static analysis techniques:

1. Abstract Static Analysis

Is techniques used in software development tools, for example in a pointer

analysis in modern compilers. The formal basis for such techniques is the Abstract

Interpretation, introduced by Cousot and Cousot [53].

"Abstract Interpretation is a theory of approximation of mathematical structures, in

particular those involved in the semantic models of computer systems" [53].

"An abstract domain is an approximate representation of sets of concrete values" [52].

The function that is used to map concrete values to abstract ones is called an

abstraction function. An abstract interpretation interprets the meaning of a program on

an abstract domain to find an approximate solution [52].

An abstract interpretation can be derived from a concrete interpretation by defining

counterparts of concrete operations, such as addition or union, in the abstract domain

[52]. If specified mathematical constraints between the abstract and concrete domains

are met, fixed points computed in an abstract domain are guaranteed to be sound

approximations of concrete fixed points [54]. Abstract interpretation can be used for

the systematic construction of methods and effective algorithms to approximate non-

decidable or very complex problems in computer science. In particular, static analysis

by abstract interpretation, which automatically infers dynamic properties of computer

systems, has been recently very successful to automatically verify complex properties

of real-time and safety-critical embedded systems [53].

69

Over the years, many and different abstract domains have been designed, specifically

for computing invariants about numeric variables. The class of computable invariants,

and hence of the provable properties, differs with the expressive power of a domain

[52]. A static analyzer is thus parameterized by a Numerical Abstract Domain, i.e. a

set of computer-representable numerical properties together with algorithms to

compute the semantics of program instructions [50]. There are quite a few numerical

abstract domains. Popular examples include the interval domain [53] that discovers

variable bounds, and the polyhedron domain [55] for affine inequalities. Each domain

achieves some cost versus precision balance. In particular, non-relational domains—

e.g., the interval domain—are much faster but also much less precise than relational

domains—able to discover variable relationships [50].

Shape analysis is a static code analysis technique that discovers and verifies properties

of linked, dynamically allocated data structures in computer programs [50]. It is

typically used at compile time to detect software bugs or to verify high-level

correctness properties of programs. In Java programs, for instance, it can be used to

ensure that a sort method correctly sort a list. For C programs, it is used to look for

places where a block of memory is not properly freed [50]. Although shape analyses

are very powerful, they usually take a long time to run. This is why they did not gain a

widespread acceptance in places other than universities and research labs (where they

are used but only experimentally) [50].

A first well-known static analysis tool for detecting simple errors in C programs is

LINT. It was released in 1979 by Bell Labs. Numerous recent tools emulate and

extend LINT in features including the kind of errors detected, warnings provided and

user experience [52]. A notable example of such modern tools is FINDBUGS for Java.

Grammatech Inc. produces CODESONAR tool, which uses inter- procedural analyses

for checking template errors in C/C++ code. Kloc Work has K7 tool, which has

similar features and supports Java. Coverity produces two analyzers: PREVENT has

capabilities similar to those of CODESONAR, but also supports Microsoft COM and

Win32 APIs and concurrency implemented using PThreads, Win32 or WindRiver

VxWorks [52]. EXTEND is a tool for enforcing coding standards. The Astr´ee static

analyzer [56] is abstract domains implemented for finding buffer overflows and

undefined results in numerical operations. Astr´ee is used to verify the Airbus flight

control software. Polyspace Technologies markets C and Ada static analyzers.

70

The experience of utilizing static analyzers can be compared with that of utilizing a

compiler. The majority of analyzers are used to analyze large software systems with

minimal user interaction. These tools are extremely robust i.e. they are suitable for

large and varied inputs, and are efficient. In contrast, the properties required to be

proved are often simple and are usually hard coded into the tools [52]. Unlike in

model checking, generating counter examples is difficult or even impossible, due to

the precision loss in join and widening operations [57].

2. Model Checking

Model checking is a technique that relies on building a finite model of a

system and checking that a desired property holds in that model [50]. Generally, the

check is carried out as an exhaustive state space search that is guaranteed to terminate

because the model is finite. In model checking it is technically difficult to devise

algorithms and data structures that enable handling large search spaces. Model

checkers, tools for performing model checking, have two types of input: a finite state

model of the system and a property specified formally [50]. A model checker

functions to check if the system meets the property and gives either “yes” or “no”

answer. If the answer is “no” (the system does not satisfy the property), model

checkers will output a counter example (a system run that violates the property). Then

this counter example can be analyzed to discover bugs in the system design [50].

There are many model checker we describe here the most popular ones. Holzmann’s

were pioneers in developing an explicit-state software model checking [58] [59]. Their

SPIN project was used at the beginning for verification of temporal logic properties of

communication protocols specified in the PROMELA language. Some software model

checkers, such as the first version of the Java Pathfinder (JPF), translate Java code to

PROMELA and use the SPIN for model checking [60]. Besides SPIN and JPF, there

are two prominent representatives of the class of explicit-state software model

checkers: CMC [61] and Microsoft Research’s ZING [62]. The VERISOFT software

verification tool attempts to avoid the state explosion by discarding the states it visits

[63]. Because states are not stored, they should be repeatedly visited and explored.

This method is incomplete for transition systems that contain cycles. In addition, it is

stateless and the depth of its search has to be limited to avoid non-termination [52].

71

Compared to theorem proving, model checking is completely automatic and fast and

often produces an answer in a matter of minutes. Model checking can also be used to

check partial specifications, and thereby provide useful information about a system’s

correctness even if that system has not been completely specified. In conclusion,

model checking produces counter examples, which usually represent subtle errors in

design, and thus can be used to aid in debugging. The main drawback of model

checking is the state explosion problem [50].

3. Bounded Model Checking

One of the most commonly applied formal verification techniques in the

semiconductor industry is the Bounded Model Checking (BMC). The technique

succeeded because of the impressive capacity of propositional SAT solvers. BMC was

devised in 1999 by Biere et al. [64] as a technique intended to complement BDD-

based unbounded model checking. It is termed bounded because it explores only the

reachable states within a bounded number of steps. In BMC, the design under

verification is unwound k times and conjoined with a property to form a propositional

formula, which is passed to a SAT solver [50]. The formula is satisfied if and only if

there is a trace of length k that disproves the property. The technique doesn't give a

conclusion if the formula is unsatisfied, as there may be counterexamples longer than

k steps. Despite these drawbacks, the technique is successful, as it is able to identify

unnoticeable bugs. A satisfying assignment to the propositional formula relates to a

passage from the initial state to a state where the property is being violated. BMC is

considered to be the best technique of finding shallow bugs, and it provides a full

counterexample trace when finding a bug. It also supports the widest range of program

constructions. This support includes dynamically allocated data structures. This is why

BMC does not require built-in knowledge about the data structures that are maintained

by the program. However, the completeness is only obtainable in cases of very

shallow programs or programs that do not have deep loops [50].

There are several BMC implementations for software verification. The first

implementation, in the field of a depth-bounded symbolic search in software, is

carried out by Currie et al. [65]. One of the earliest implementations of BMC for C

programs is CBMC [66], [67], made at CMU; it emulates a wide range of

architectures as an environment for the design under test. The main application of

72

CBMC is checking the consistency of system-level circuit models given in C or

SystemC with an implementation given in Verilog. There is another version of CBMC

developed by IBM for concurrent programs [68]. NEC Research developed the F-

SOFT as the only tool that implements an unwinding of the entire transition system

[69]. Its features include a SAT solver customized for BMC decision problems.

SATURN is a specialized implementation of BMC, customized to the properties it

checks and designed to implement loop unwinding [70]. The EXE tool is also devised

to bug-hunting [71] where it combines explicit execution and path-wise symbolic

simulation to detect bugs in system-level software such as file system code.

4.3.2.2 THEOREM PROVING

Theorem proving is a technique by which both the system and its desired

properties are expressed as formulas in some mathematical logic [51]. This logic is

given by a formal system, which defines a set of axioms and a set of inference rules.

Theorem proving is the process of reaching a proof of a property from the axioms of

the system. Steps in the proof refer to the axioms and rules, and possibly derived

definitions and intermediate lemmas. Although proofs can be constructed by hand,

however the focus will only be on machine-assisted theorem proving.

Today, theorem provers are increasingly being used in the mechanical verification of

safety critical properties of both hardware and software designs. Theorem provers can

be roughly categorized into a range from highly automated, general-purpose programs

to interactive systems with special-purpose capabilities.

Unlike model checking, theorem proving is able to deal directly with infinite state

spaces. It depends on techniques such as structural induction to prove over infinite

domains. By definition, interactive theorem provers require interaction with a human;

therefore, the theorem proving process is slow and often error-prone. However, and as

an advantage, in the process of finding the proof the human user often gains

invaluable insight into the system or the property being proved [50].

SUMMARY

The most important lesson one learns from this chapter is that: “the software testing

can show the presence of errors, but not their absence” (as E. W. Dijkstra said) and

that proving proves the absence of faults, but not their presence (since when a proof

73

fails we cannot tell whether it is because the program is faulty or because the proof is

poorly planned). In addition, in order to study program testing one should understand

the meaning of program correctness. Program correctness means a program behaves

according to the specification for all circumstances planned for in the specification.

The chapter also describes the concept of proving correctness and differentiates

between the total correctness and partial correctness. It goes on presenting one of the

program verification methods used to proof correctness known as “Hoare Logic”.

Furthermore, it explains how to use the inference system of Hoare Logic to prove that

a program is partially correct with respect to a specification that takes the form of a

precondition/postcondition. It also gives some examples of proving programs

correctness using Hoare Logic. Finally, the chapter introduces the concept of formal

verification techniques and gives some examples of different verification tools.

74

CHAPTER FIVE

AUTOMATED VERIFICATION WITH HAHA

5.1 INTRODUCTION

Computer systems correctness is vital in the contemporary information society.

Despite the fact that modern computer systems are composed of complex hardware

and software components, verifying the correctness of the software part is often a

greater problem than that of the underlying hardware [52]. It is known that manual

inspection of complex software is error-prone and expensive, therefore tool support is

required. There are many tools that attempt to discover design errors using test vectors

by examining certain executions of a software system. Formal verification tools, on

the other hand, are used to check the behavior of a software design for all input

vectors. A large number of formal tools for checking functional design errors in

hardware are available and widely used. In contrast, markets of tools that check

software quality are still in a beginning stage. Software quality is currently being

subjected to broad research [52] .

According to practical experience, using static analysis methods for proving the

correctness of computer programs is tedious, unreliable, obscure and entirely

impractical process. This is because Hoare logic principles are generally not well-

understood. In addition the whole concept is believed by a number of scholars as only

a strange part of computer science history despite its fundamental role in the

constantly developing field of program verification [52].

No doubt that this critical state of affairs has numerous reasons. However, there is one

reason or issue that has greatly led to this problem: verification tools used in applying

Hoare logic. These tools, in many cases, consist of a pen and paper, making it a

tedious task to verify a whole program using a pen and a sheet of paper. It is more

difficult than checking the correctness of the very same program in a less formal way.

Even worse, both approaches are considered to have similar chances of making a

mistake. Performing the whole logical inference on paper, without using the computer

(save, perhaps, in the matter of typesetting) supports the view that static analysis is an

impractical verification tool. A direct way to solve this problem is to use automated

formal verification software to facilitate checking the correctness of Hoare programs.

75

This chapter surveys tools that perform automatic software verification to detect

programming errors or prove their absence [72]. The two tools considered are tools

that based on Hoare logic namely, the KeY-Hoare and HAHA. A short tutorial on

these tools is provided, highlighting their differences when applied to practical

problems. In addition, we evaluate the two tools in order to select one of them for the

verification purpose to reaches the objectives of this research.

5.2 TOOLS FOR FORMAL PROGRAM VERIFICATION

Formal program verification tools are generally classified into three categories:

interactive or semi-automatic proof construction environments like Isabelle [73] or the

Prototype Verification System [74], tools for model checking (using abstract

interpretation and similar techniques) like the Symbolic Model Verifier [75], and

systems based on the Hoare calculus or related approaches (weakest precondition,

dynamic logic) like the Frege Program Prover [76], Perfect Developer [77], the KeY-

Hoare [78] or HAHA [79].

Since we concentrate on structured program development using invariants, pre- and

post-conditions, we selected the latter two systems for survey. Beneath, we give

detailed descriptions of the selected two tools.

5.2.1 THE KEY-HOARE TOOL

KeY-Hoare [78] is built on top of the software verification tool KeY (which is one of

the most powerful verification systems for Java developed jointly by groups at

Universit¨ at Karlsruhe (Germany), Universit¨ at Koblenz-Landau (Germany), and

Chalmers University of Technology (Sweden). It is distributed under the Gnu General

Public License and features a Hoare calculus with state updates. The KeY-Hoare tool

is available free of charge and can easily be installed. It is a verification system that

utilizes a variant of Hoare logic with explicit state updates, which enable users to

reason about a program correctness by means of symbolic forward execution.

Differently, the assignment rule in more traditional Hoare logics requires less natural

and harder to learn backwards reasoning. No explicit weakening rule is required and

first-order reasoning is automated. The system is suitable for teaching program

verification, because students can concentrate on reasoning about programs, after their

76

natural control flow and proofs are checked by the computer [78]. At the present time,

the GUI of the KeY-Hoare tool contains several elements inherited from the full Java

version. These elements are not useful in more specialized contexts, which should be

firstly cleaned up and simplified. The current version of KeY-Hoare does not support

arrays since Java arrays are too complicated [78]. It provides many features including

partial correctness proofs, total and execution time correctness proofs and integer and

Boolean typed arrays. It is worthy to note that the logic behind the tool is not pure

Hoare logic, but Hoare logic with updates. Therefore, one difficulty, in the adoption of

the tool, is that it is necessary to extend the Hoare logic formula to include the

updates. Another difficulty with adoption of KeY-Hoare tool is that it exposes users to

the KeY prove where numerous logic rules are applied at each step of verification.

Users must be instructed to decide which of these logic rules should be applied and

which of them is to be avoided in typical cases [79].

5.2.1.1 USING KEY-HOARE TOOL

KeY-Hoare is available from a website indicated in [80]. Besides compilation

from the source code, providers offer a pre-compiled byte-code version and

installation via Java Web start technology. Detailed installation instructions are also

supplied by the website.

Input files for KeY-Hoare must have either .key or .proof as file extension.

Conventionally, .key files contain only the problem specification, i.e., the program

together with its specification. In contrast, .proof files include proofs (or proof

attempts) and are created when saving a proof.

An example that illustrates the format is shown in Figure 5.1. An input file consists of

three sections, these are:

1) A section starting with keyword \functions declares all required rigid function

symbols used.

2) A section starting with keyword \programVariables declares all program variables

used in the program. Local variables declarations within the program are not

allowed. However, multiple declarations are permitted.

77

3) A section starting with keyword \hoare contains the Hoare triple with updates to be

proven valid, i.e., it contains the program and its specification. The initial update

usually contains an assignment of fixed but arbitrary logical values to the input

variables of the program. As illustrated in Figure 5.1, we do not provide the update

rule because we need the program to be similar to original Hoare logic.

Figure 5.1: Screen Shot of KeY- Hoare System

After starting KeY-Hoare, the prove window becomes visible (the screenshot is

displayed in Figure 5.1). The prove window consists of a menu- and toolbar, a status

line and a central part split into a left and a right pane. The upper left pane displays a

list of all loaded problems. The lower left pane offers different tabs for proof

navigation or strategy settings. The right pane displays the currently selected sub-goal

or an inner proof node. Before we explain the various sub-panes in more detail, our

first task is to load a problem file. We can do this either by selecting Load in the File

menu or by clicking on the icon that browse and load problem or proof files in the

toolbar.

After loading the file, the right pane of the prove window displays the Hoare triple as

specified in the input file. The proof tab in the left pane should display the proof tree

78

consisting of a single node. The first time during a KeY-Hoare session, when a

problem file is loaded, the system loads a number of libraries. This loading takes a few

seconds.

The upper part of the left pane displays all loaded problems while the lower part

provides some useful tabs, these are:

 The Proof tab that shows the constructed proof tree. A left click on a node updates

the right pane with the node’s content (a Hoare triple with updates). Using a right

click offers a number of actions like pruning, searching, etc.

 The Goals tab that lists all open goals, i.e., the leaves of the proof tree that remain

to be built.

 The Proof Search Strategy tab that allows tuning automated proof search. The

strategy for KeY-Hoare only allows adjusting the maximal number of rule

applications before an interactive step is required, and (de-)activation of the auto-

resume mode.

Excluding the above tabs, all other tabs are of no importance for KeY-Hoare.

Therefore, they will be removed in future versions (as stated by the developer of KeY-

Hoare).

The right pane displays the content of a proof node in two different modes. This

depends on whether the node is (a) an inner node or a leave justified by an axiom or

(b) it represents an open proof goal.

(a) The mode of “Inner Node View” is used for inner nodes of the proof tree. It

highlights the formula which had been in focus at time of rule application as

well as possible necessary side formulas. The applied rule is listed on the

bottom of the view.

(b) The mode of “Goal View” is used when an open goal is selected. This view

shows the Hoare triple to be proven and allows users to apply rules. Moving

the mouse cursor over the expressions within the node highlights the smallest

enclosing term or formula at the current position. A left click creates a popup

window showing all applicable rules for the currently highlighted formula or

term.

We illustrate how the system is used by proving correctness of a small program given

in a number n returns the sum of all subsequent numbers from 1 to n inclusively. The

code will look like the following as shown in Figure 5.2:

79

\functions {

}

\programVariables {

 int x;

 int y;

 int n;

}

\hoare{

{n >= 1}

\[{

 y = 0;

 x = 1;

 while (x <= n)

 {

 y = y + x;

 x = x + 1;

 }

}\]

{

 y= n * (n+1) / 2

}

}

Figure 5.2: KeY-Hoare Input File for the Gauss Example

All variables are integers. Provided that the starting value of n is nonnegative, the

program always terminates with the value of y consistent with gauss formula (y= n *

(n+1) / 2). A suitable precondition is n >= 1. The post-condition can be stated simply

as y= n * (n+1)/2. The initial Hoare triple with updates reads as follows:

{n >= 1} [] y = 0; x = 1; while (x <= n) {y = y + x; x = x + 1;} { y= n * (n+1) / 2}

A file with an initial Hoare triple as proof obligation should be first loaded to the

KeY-Hoare system. Then users can select a rule offered in a popup-menu after

moving the mouse pointer over a Hoare triple and clicking. There is exactly one

applicable rule for each program construct and the system offers typically this rule:

users experience statement-wise symbolic execution of the target program. The only

non-trivial interaction is to supply an invariant in a dialogue box that opens when the

loop rule is applied. The invariant y = x* (x-1) / 2 & x<= n+1 & n >= 1 is sufficient.

Whenever reaching first-order verification conditions, the system offers a rule Update

Simplification that applies the update rules automatically. At this point, users can opt

to push the green Go button. Then the built-in first-order theorem prover tries to

80

establish validity automatically. If no proof is found, typically, the invariant or the

specification (or the code!) is too weak or simply wrong. Inspecting the open goals

usually gives users a good hint. The system allows users to follow symbolic execution

of the program and to concentrate on getting invariants and specification right. First-

order reasoning is thus left to the system. It is possible for users to inspect and undo

previous proof steps as well as to save and load proofs.

Regarding the automation, up to this point the required interactive steps consisted of

manual application of program rules and invocations of the strategies to simplify/

prove pure first-order problems. In order to avoid starting the strategies manually

users can activate the auto-resume mode. This invokes the strategies on all open goals

after each manual rule application and simplifies them as far as possible. In standard

mode, they will not apply program rules. While performing a proof it is possible to

save the current state at any time and to load it afterwards. For this users have to select

File -> Save in the file menu and enter a file name ending with .proof.

5.2.2 HOARE ADVANCED HOMEWORK ASSISTANT (HAHA) TOOL

HAHA is a programming language firmly fixed in the new program

development environment based on Eclipse [79]. Its purpose is to enable students

learn Hoare logic. A programmer can write simple programs and annotate them with

Hoare logic assertions. Then the environment verifies the assertions against the code

and discharges them with help of external theorem provers, both automated and

interactive. Users can write programs that manipulate integers and arrays. HAHA

supports proofs of both partial and total correctness. HAHA relies on a SMT solver to

prove the validity of generated formulae. Currently the only supported solver is

Microsoft Z3 [81].

In the user interface of HAHA, shown in Figure 5.3, the main pane of the window is

filled with the source code of the program that users work with. The interface shows

an editor for simple while programs. It has all features expected from a modern IDE

including syntax highlighting, automated completion proposals and error markers.

Once a user enters a program, it is processed by a verification condition generator that

implements the rules of Hoare logic. The resulting formulae are then passed to an

automated prover. If the solver is unable to specify the correctness of the program,

error markers are generated to direct users to the assertions, which could not be

81

proven. A very useful feature of HAHA is its ability to find counterexamples for

incorrect assertions. These are included in error descriptions displayed by the editor.

The input language of HAHA is that of while programs over integers and arrays. It's

designed so that its mechanisms and data types match those supported by state of the

art satisfiability solvers, e.g. Z3 [81] or CVC4 [82].

Figure 5.3: Screen Shot of HAHA System

A notable strength of HAHA is that the syntax of the programs is close to original

Hoare logic with possible extensions, but in a manner that is easily digestible by users

who are familiar with programming languages such as Pascal or Java. Added to that,

the process of verification gives the impression that it is carried out as part of program

development, in particular, the environment does not change to the one of interactive

prover in order to assist in discharging verification conditions. Instead, users give

assertions between instructions that are subsequently verified by an automatic theorem

82

prover [79]. Another strength of HAHA is that it is easily adaptable to any teaching

environments.

In contrast to the common trend to make only loop invariants obligatory, HAHA

compels students to fill in all intermediate assertions. This might seem surprising,

because the requirement to write many formulae increases the amount of work

necessary to create a verified program. However, in the case of a teaching aid, this

approach is more beneficial. First, this suggests students to match the assertions with

relevant Hoare logic rules. In this way, it reinforces the process of teaching the logic.

Second, it gives the students a tangible experience of how much information must be

maintained at each step of the program in order to execute it correctly— the process of

making the verification work also gives students a tangible experience, making them

see how it is easy to overlook transformation of some tiny detail in this information

packet [79].

5.2.2.1 USING HAHA TOOL

To run HAHA, launch the haha executable from the installation directory.

HAHA is typical file editor with standard and intuitive commands. It is important to

note that source files should have the extension .haha in order for the editor to

function properly. When the correct file extension was used, the code should be

highlighted. To start the verification process, a user right-clicks anywhere in the editor

and chooses “Generate VCs” from the displayed menu. This command can be also

accessed from the main menu and the toolbar. HAHA will then present a console with

computed verification conditions and messages logged during verification. If there

were any problems, error markers will be added to the editor.

Suppose that a user wants to write a function that given a number of n returns the sum

of all subsequent numbers from 1 to n inclusively. The code will look like the

following as shown in Figure 5.4 [79]:

function sum(n : Z) : Z

precondition natural: n >= 1

postcondition gauss: sum = n * (n+1) / 2

var x : Z

83

y : Z

begin

x := 1

{ n >= 1 /\ x = 1 }

y := 0

{ n >= 1 /\ x = 1 /\ y = 0 }

while x <= n do

invariant gauss: y = x * (x-1) / 2 /\ x<= n+1 /\ n >= 1

begin

y := y + x

{ y - x = x * (x-1) / 2 /\ x<= n /\ n >= 1 }

x := x + 1

end

{ y = n * (n+1) / 2 }

sum := y

end

Figure 5.4: HAHA Input File for the Gauss Example

The code should not be surprising, as users have all seen at least one implementation

of the sum in their lives, especially for those who are familiar with Pascal as much of

the syntax is based upon the language.

We start with a header of the function: function sum (n: Z): Z contains the keyword

function that tells the system to interpret the following expressions as a function. Then

the name of the function is given, in this case it is sum. The information about its

parameters is enclosed in the parentheses. In our case, users have one formal

parameter that is called n. Users declare the type of the parameter after the colon. It is

Z this time, i.e. the type of integer numbers, as users know them from mathematics

(these are not 32-bit integer numbers frequently met in programming languages). At

the end, the parenthesis with parameters is followed by the declaration of the result

type. In our case again this is Z. users can follow this function header by the definition

of the body.

All variables that are used in code must be declared beforehand. Therefore, the

declarations of the variables x and y are added between the function header and body.

The keyword var, as in Pascal, marks the beginning of variable declaration sequence.

84

Contrary to Pascal, the elements of the sequence are not separated with semicolons,

but with newlines. This holds for both variable declarations and instructions. The

variable assignment is made in Pascal style as in x: = 1. We also use the Pascal style to

define the return result of the function, i.e.: sum: = y. The while loop is defined by a

phrase of the form:

while x <= n do followed by an instruction the loop iterates over. In our case this is a

block instruction enclosed between begin and end, i.e.:

begin

y := y + x

x := x + 1

end

To express our intent with regard of the function, we can add pre-condition and post-

condition formulas. These are located between the function header and its body. In

this case the pre-condition, introduced with precondition keyword, says that the

function can be called when the parameter n is not less than 1. The post-condition,

introduced with postcondition keyword, says that the result is equal to the commonly

known Gauss formula i.e. closed formula for the sum of the integers from 1 to n.

These conditions can be named to make future reference easier:

precondition natural: n >= 1

postcondition gauss: sum = n * (n+1) / 2

In Hoare logic each instruction must be surrounded by two assertions. The first one

describes the condition of the program state expected before the instruction and the

second one describes the state resulting from the execution of the instruction. The

precondition-postcondition pair is the assertions for the whole function. The assertions

for other instructions are written in curly brackets located between instructions. To

save notational burden, we do not write the first and last assertions in function since

these are expressed with precondition and postcondition respectively. Therefore, the

initial assignments decorated with the assertions look as follows:

begin

x := 1

{ n >= 1 /\ x = 1 }

y := 0

{ n >= 1 /\ x = 1 /\ y = 0 }

85

while x <= n do

The loop invariant condition, i.e. the formula that at the entry point to the loop at each

its iteration, is marked with a special keyword invariant. So the while loop header

augmented with the invariant is as follows:

while x <= n do

invariant gauss: y = x * (x-1) / 2 /\ x<= n+1 /\ n >= 1

We can name this invariant formula to make future reference more accurate. Again,

the presence of the invariant formula gives us excuse not to mention assertions at the

beginning and at the end of loop body as they equal to the invariant.

5.3 EVALUATION

We evaluated the tools with respect to the following criteria [72]:

1. Ease of use: Users should not be forced to spend too much time on learning a new

language and on understanding its characteristics. Moreover, the system should be

able to discharge the proof obligations as automatically as possible.

2. Feedback on errors: Error messages and reports on proof failures should provide

readily understood feedback without deep knowledge of the tool specific

underpinning formalism. In this way, users keep the focus on the verification

problem itself.

3. Adequate documentation: There should be sufficient documentation that is easily

understood by users. The better the documentation the less help is needed on basic

language issues.

4. Ease of installation: The system should be easy to install on any of the platforms

users typically use, i.e., on Windows, Linux, and Mac OS. In addition to easy

installation, further software components from other sources should not be needed

in installation.

In the remaining section, we describe our experiences with each of the two tools [72]:

1. The KeY-Hoare Tool: The evaluation was performed with version 0.1.9 of KeY-

Hoare. Installation under Windows, Linux and MacOS is straightforward. The first

thing we note about KeY-Hoare is its simplicity: given a program, pre-condition

and post-condition, the system checks whether the program is correct with respect

to its specification. However, the proofs are not fully automatic, and human

86

intervention is needed, as users must select the appropriate rule at each statement.

Another reason for simplicity is that users who are acquainted with C++ will learn

KeY-Hoare in a short time; the web site of KeY-Hoare offers sufficient

documentation.

The work with KeY-Hoare exhibited some practical problems. KeY-Hoare

assumes that the program is syntactically correct and well typed or the program

will not be loaded to the system. Another problem is that the logic behind the

KeY-Hoare tool is not pure Hoare logic, but Hoare logic with updates. Therefore,

the first obstacle in the adoption of the tool was the need to add the updates

formula to the original Hoare triple.

2. The HAHA Tool: The evaluation was performed with version 0.5 of HAHA that

is tested with Z3 version 4.3.0. HAHA relies on a SMT solver to prove the validity

of generated formulae. Currently the only supported solver is Microsoft Z3.

Installation is available under many platforms such as Windows, Linux and

MacOS. Sufficient documentation is available in HAHA web site and a great

support is offered by the developer of HAHA when one requests help.

HAHA supports proofs of partial and total correctness both automated and

interactive. Users can write programs that manipulate integers and arrays. In

addition, HAHA allows users to define Boolean variables but the verification

condition generation is not supported yet for Boolean type. HAHA has the ability

to find counterexamples for incorrect assertions when the solver is unable to

ascertain the correctness of the program.

One of the strengths of HAHA is that the syntax of the programs is close to

original Hoare logic. However, HAHA forces users to fill in all intermediate

assertions between instructions. This step increases the amount of work necessary

to create a verified program, since the users need to write many formulae. Another

notable strength of HAHA is that the tool is easily digestible by users who are

familiar with programming languages such as Pascal or Java.

For Hoare-based verification purpose, HAHA is a better choice than KeY-Hoare tool

at present. It offers a high-level language that can be learned within a short time. In

addition, the high degree of proof automation combined with the ability to provide

feedback on failed proof attempts enable users to easily prove the correctness of

87

programs. Therefore, HAHA removes the difficulty associated with the process of

applying Hoare logic manually.

SUMMARY

This chapter surveys two main tools for automatic formal verification of

software based on Hoare logic. It’s focused on tools that provide some form of formal

guarantee, and thus, aid to improve software quality. A short tutorial on these tools is

provided, highlighting their differences when applied to practical problems. The

chapter also evaluate the tools, provides the main features of each tool, and shows that

HAHA is a better choice than KeY-Hoare tool because it offers a high-level language,

which can be learned within a short time. Also, the high degree of proof automation

together with the ability to provide feedback on failed proof attempts make users

comfortable when using it to prove the correctness of their programs. Therefore,

HAHA removes the difficulty associated with the process of applying Hoare logic

manually.

88

CHAPTER SIX

ALNEELAIN SPECIFICATION LANGUAGE AND COMPILER

6.1 INTRODUCTION

In computer science, specification language is defined as a formal language

used during systems analysis, requirements analysis and system design to describe a

system [83]. This description will be at much higher level than programming, which is

used to produce the executable code for a system [83]. It is important to note that

specification languages are not directly executable and that they are meant to describe

the “what”, not the “how”. If requirements are cluttered with unnecessary

implementation details, this will be considered as an error. Formal specification

language provides mathematical representation of the system and expresses the

specification in a language whose vocabulary syntax and semantic are properly

defined.

A formal specification language is usually composed of three primary components

[84]:

1. a syntax that defines the specific notation with which the specification is

presented,

2. a semantic domain that helps define a “universe of objects” that will be used

to describe the system, and

3. a set of relations that define the semantic rules that indicate how objects may

be manipulated properly and satisfy the specification.

Errors coming from numerous sources will crop up in specifications, just as they do in

programs. A great advantage of formal specification is that tools can be used to

discover and separate a large number of errors. Today, a variety of formal

specification languages is in use such as OCL [85], Z [86], LARCH [87], and VDM

[88]. Some of them are based either on algebraic specification or on model-based

specification.

In this chapter, the design of a new specification language will be discussed. It is

based on axiomatic specification proposed by Mili and Tchier [7] (discussed in detail

in Chapter 3). This specification language is called Alneelain specification language

[89]. Alneelain is considered as a mere extension of the axiomatic specification. The

89

reason that we need Alneelain is that the axiomatic notation by itself is difficult to

compile. So we add enough markers to make it easy to compile and easy to read. The

primary concern in designing the compiler of Alneelain specification language was

with syntax and semantics of the language (the frontend of the compiler). The

paramount goal of this chapter is to explain methods for furnishing a precise definition

of the syntax and semantics of a specification language.

6.2 ALNEELAIN SPECIFICATION LANGUAGE AND COMPILER

Writing a compiler is a non-trivial task. Therefore, it is a good idea to structure

the work. This will be typically done by breaking down the process into several

phases that have well-defined interfaces. Conceptually, these phases operate in

sequence but in practice, they are often interleaved. Each phase (obviously excluding

the first phase) takes the output of the previous phase as its input. Figure 6.1 shows the

flowchart of the idea to design Alneelain specification language. The first three steps

of the flowchart are discussed in details in Chapter 3; as a result, there is a list of

axioms and rules for many ADT’s. Here, the beginning will be by describing a meta-

language for syntax specification called Backus-Naur Form (BNF) [90]. Then BNF

will be used to define the syntax of Alneelain specification language. Finally, the

lexical analyzer and syntax checker for the language will be written.

90

Figure 6.1: The Flowchart for Steps of Designing Alneelain Specification Language

NO

Alneelain BNF

Writing the BNF for

Alneelain Specification

Language

ADT’s Specification

in Alneelain Syntax

Writing ADT’s Specification

according to the BNF

Writing Lexical Analyzer

List of Tokens

Writing Syntax Checker

End

Start

ADT’s Requirements

Description

Defining ADT’s

Requirements

Specifying ADT’s using

Axiomatic Specification

Validating ADT’s

Specification

Validation

Data

Axiomatic Specification

(Axioms and Rules)

ADT’s Log File

NO

Yes

Is Specification

Syntaxtilly Correct?

Yes

Is Specification

Valid?

91

6.2.1 GRAMMARS AND BNF FOR ALNEELAIN SPECIFICATION

LANGUAGE

Formal methods were found to be more successful with describing the syntax

of programming languages than with explaining their semantics [91]. Defining the

syntax of programming languages bears a close resemblance to formulating the

grammar of a natural language. Precisely, it is describing how symbols may be formed

into the valid phrases of the language [91]. The formal grammars proposed by Noam

Chomsky [92] for natural languages do apply to programming languages as well.

Definition: A grammar < S, N, P, S > consists of four parts:

1. A finite set S of terminal symbols, the alphabet of the language that are assembled

to make up the sentences in the language.

2. A finite set N of nonterminal symbols or syntactic categories, each of which

represents some collection of subphrases of the sentences.

3. A finite set P of productions or rules that describe how each non-terminal is

defined in terms of terminal symbols and nonterminals. The choice of non-

terminals determines the phrases of the language to which the meaning is ascribed.

4. A distinguished non-terminal S, the start symbol that specifies the principal

category being defined for example, sentence or program.

According to the traditional notation for programming language grammars,

nonterminals (that needs to be further expanded) are represented with the form

“<category-name>” and productions as follows:

<Alneelain>::= <header>; <body> endspecification

where “header” and “body” are nonterminal symbols and “endspecification” and “;”

are terminal (not enclosed in < > they represent themselves) symbols in the language.

The symbol “::=” is part of the language for describing grammars and can be read “is

defined to be” or “may be composed of ”. There are many other symbols used in BNF

to describe the language such as:

• The symbol ‘|’ means or; it separates alternatives.

• Surround one or more symbols by […] to make them optional.

• Use {…} to surround a sequence of symbols that need to be treated as a unit

(or group).

92

The grammar is described as “context-free” if only single non-terminals occur on the

left sides of the rules. These grammars correspond to the Backus-Naur Form or BNF

grammars. It is an important language for the researchers who used it first to describe

Algol60 [90]. It plays a major role in defining programming languages. The BNF is

defined as “a language for defining languages” i.e. it is a meta-language [91]. BNF

greatly simplifies semantic specifications by formalizing syntactic definitions. Figure

6.2 shows the BNF for Alneelain specification language.

<Alneelain>::= <header>; <body> endspecification

<header>::= specification <specname>

<specname>::= < identifier>

<identifier>::= <letter> | <letter> < identifier>

<letter>::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

 |A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

<body>::= [<constsection>;]

 [<typesection>;]

 <inputsection>;

 <outputsection>;

 <varsection>;

 <axiomsection>;

 <rulesection>;

<constsection>::= constant<constbody>

<constbody>::= <constantdeclaration>

| <constantdeclaration> , < constbody>

<constantdeclaration>::= <constname> = <constvalue>

<constname>::= < identifier>

<constvalue>::= <digit> | <digit> <constvalue>

<digit>::= 0|1|2|3|4|5|6|7|8|9

93

<typesection>::= type <typebody>

<typebody>::= <typedeclaration>

|<typedeclaration>, < typebody>

<typedeclaration>::= < typename> : <typedefinition>

< typename>::= < identifier>

<typedefinition>::= < identifier>

<inputsection>::= input <voppart> <ooppart> endinput

<voppart> ::= <vopdeclaration>

| <vopdeclaration> , <voppart>

<vopdeclaration>::=vop<methodname>[(<paramtype>[{,<paramtype>}])]:<returntype>

<ooppart> ::= oop <oopdeclarations>

<oopdeclarations> ::= <oopdeclaration>

| <oopdeclaration> , <oopdeclarations>

<oopdeclaration> ::= <methodname> [(<paramtype> [{,<paramtype>}])]

<methodname>::= <identifier>

<paramtype>::= <identifier>

<returntype>::= <identifier>

<outputsection> ::= output <outputlist> endoutput

<outputlist>::= <outputtype>

 | <outputtype> ^ <outputlist>

<outputtype>::= < identifier>

<varsection> ::= variable <vardeclarations>

<vardeclarations> ::= <vardeclaration>

|<vardeclaration> , <vardeclarations>

<vardeclaration> ::= <variablename> : <variabletype>

<variablename> ::= <identifier>

<variabletype>::= < identifier>

94

<axiomsection> ::= axioms <axiomlist> endaxioms

<axiomlist> ::= <axiom>

| <axiom> , <axiomlist>

<axiom> ::= axiom <axiomname> : <axiombodies>

<axiombodies> ::= <axiombody>

 |<axiombody> & <axiombodies>

<axiombody> ::= <specterm> = <literal>

<specterm> ::= <specname> (<history>)

<rulesection>::= rules <rulelist> endrules

<rulelist>::= <rule>

 |<rule>, <rulelist>

<rule> ::= rule < rulename > : <rulebodies>

<rulebodies> ::= <rulebody>

 | <rulebody> & <rulebodies>

<rulebody> ::= <spectrum> <operators> <spectrum>

<operators>::= => | =

Figure 6.2: The BNF for Alneelain Specification Language

BNF should be precise and expressive for the language. For that, a specification for

many ADT’s according to the BNF of Alneelain is written to make sure that the

designers’ BNF is precise in describing their language and is able to go through other

steps without errors. Figure 6.3 presents the stack ADT specification according to

Alneelain BNF. Other ADT’s specification is given in APPENDIX-D and

https://sites.google.com/site/nahidahmedali/.

specification Stack;

constant

 x = 5; // it defined here just to show how we can define constants

type

 itemtype : char;

https://sites.google.com/site/nahidahmedali/

95

input

vop top: itemtype ,

vop size: integer ,

vop empty: Boolean

oop init, pop, push(itemtype)

endinput;

output

itemtype ^ error ^ Boolean ^ integer

endoutput;

variable

a: itemtype ,

h: inputstar ,

hprime: inputstar ,

hplus: inputplus ;

axioms

 axiom topAxioms:

 Stack(init.top) = error &

Stack(init.h.push(a).top) = a ,

 axiom sizeAxiom:

 Stack(init.size) = 0,

 axiom emptyAxioms:

Stack(init.empty)=true &

Stack(init.push(a).empty)=false

endaxioms;

rules

 rule initRule:

Stack(h.init.hprime)=Stack(init.hprime) ,

 rule initpopRule:

Stack(init.pop.h) = Stack(init.h) ,

 rule pushpopRule:

Stack(init.h.push(a).pop.hplus) = Stack(init.h.hplus) ,

rule sizeRule:

Stack(init.h.push(a).size) =1+ Stack(init.h.size) ,

rule emptyRules:

 Stack(init.h.push(a).hprime.empty)=> Stack(init.h.hprime.empty)&

 Stack(init.h.empty) => Stack(init.h.pop.empty) ,

rule VopRules:

Stack(init.h.top.hplus)=Stack(init.h.hplus) &

Stack(init.h.size.hplus)=Stack(init.h.hplus) &

Stack(init.h.empty.hplus)=Stack(init.h.hplus)

endrules;

endspecification

Figure 6.3: The Stack Specification in Alneelain Specification Language

96

6.2.2 LEXICAL ANALYSIS

Generally, the word “lexical” means, “pertaining to words”. In programming

languages, words are looked at as objects including names, numbers, keywords etc.

Word-like entities like these are traditionally called tokens [93].

A lexical analyzer, also termed a lexer or scanner, will, as its input, take a string of

individual characters and divide it into tokens. In addition, it will filter out whatever

separates the tokens (the so-called white-space), i.e., lay-out characters (spaces,

newlines etc.) and comments [93].

The primary objective of lexical analysis is to make the subsequent syntax analysis

phase easier. Theoretically, the process carried out during lexical analysis can be made

an integral part of syntax analysis, and in simple systems, this is indeed often

practiced. However, there are reasons for keeping the two phases separate [93]:

 Efficiency: A lexer is able to do the simple parts of the work faster than the more

general parser can. Moreover, the size of a system split in two phases may be

smaller than a combined system. This seems paradoxical but, as it can be seen,

there is a non-linear factor involved. This factor makes a separated system smaller

than a combined system.

 Modularity: The syntactic description of the language need not be cluttered with

small lexical details such as white-space and comments.

 Tradition: Languages are often designed with separate lexical and syntactical

phases in mind. Therefore, the standard documents of such languages typically

separate lexical and syntactical elements.

Specifications for lexical analysis are conventionally written using regular expressions

i.e. an algebraic notation for describing sets of strings. The generated lexers are in a

class of extremely simple programs called finite automata [93]. Some terminology

pertaining to lexical analysis are these:

• A token: a string of input characters. It is taken as a unit and passed on to the

next phase of compilation.

• Lexemes: the specific character strings that make up a token. For example:

token: identifier, lexeme: pi, etc.

97

• Pattern: a rule that describes a set of strings associated to a token. It is

expressed as a regular expression and it describes how a particular token can

be formed. For example: identifier: ([a-z]|[A-Z]) ([a-z]|[A-Z])*.

Table 6.1 presents the different tokens for Alneelain specification language and their

lexemes and patterns.

Table 6.1: Tokens, Lexemes, and Patterns for Alneelain Specifcation Language

Token Lexeme Pattern

Keywords specification, endspecification,

type, constant, input, endinput,

vop, oop, output, endoutput,

variable, axioms, axiom,

endaxioms, rules, endrules, rule

All reserved word or terminals of

language.

Digits 0 – 9 Any numeric constants

Identifiers A - Z , a - z ([a-z]|[A-Z]) ([a-z]|[A-Z])*. Any

English latter (capital or small

letters) repeated one or more

times. These are words used to

construct names like constant

names , variables names, etc.

Operators = , => , + , - , > , < , >= , <= equalsign, impliessign, plussign,

minussign, greatersign, lesssign,

greaterequalsign, lessequalsign

Special

characters

{ , } , (,) , ; , : , ^ , & , , lbraces, rbraces, lparen, rparen,

semicolon, colon, unionsign,

Ampersand, comma.

Whitespace ‘ ‘ Any white space

Newline \n Any new line

Tab \t Any tab

6.2.3 SYNTAX ANALYSIS

The purpose of lexical analysis is to split the input into tokens while the

purpose of syntax analysis (or alternatively “parsing”) is to recombine these tokens.

The combination of tokens is not back into a list of characters, but into something, that

reflects the structure of the text [93]. This something is exactly the data structure and

it is called the “syntax tree” of the text. As the name indicates, this is a tree-like

structure. The leaves are the tokens found by the lexical analysis. If the leaves are read

from left to right, the sequence is the same as in the input text. Hence, in the syntax

98

tree, it is important how these leaves are combined to form the structure of the tree. It

is also important how the interior nodes of the tree are labelled. The syntax analysis

finds the structure of the input text. In addition, it must reject invalid texts by

reporting syntax errors [93].

Since syntax analysis is less local in nature than lexical analysis, more advanced

methods are required. We, however, use the same basic strategy: A notation

understandable by humans is transformed into a machine-like low-level notation

suitable for efficient execution. This transformation process is called “parser

generation” [93].

The notation used here for human manipulation is context-free grammars. It is a

recursive notation for describing sets of strings and imposing a structure on each such

string. This notation can - in some cases - be translated almost directly into recursive

programs (recursive descent).

6.2.3.1 RECURSIVE DESCENT

A recursive descent parser is a top-down parser, so called because it builds a

parse tree from the top (the start symbol) down, and from left to right, using an input

sentence as a target as it is scanned from left to right [93]. The actual tree is not

constructed but is implicit in a sequence of function calls. This parser uses a recursive

function corresponding to each grammar rule (that is, corresponding to each non-

terminal symbol in the language). For simplicity, one can just use the non-terminal as

the name of the function. The body of each recursive function mirrors the right side of

the corresponding rule. In order for this method to work, one must be able to decide

which function to call based on the next input symbol. Perhaps the hardest part of a

recursive descent parser is the scanning: repeatedly fetching the next token from the

scanner. It is tricky to decide when to scan, and the parser doesn't work at all if there is

an extra scan or a missing scan [93].

Recursive descent uses recursive functions to implement predictive parsing

[93]. The crucial idea is that each non-terminal in the grammar is implemented by a

function in the program. Each recursive function looks at the next input symbol to

choose one of the productions for the non-terminal. The right-hand side of the chosen

production is then used for parsing in the following way:

99

A terminal on the right-hand side is matched against the next input symbol. If they

match, one moves on to the following input symbol and the next symbol on the right

hand side, otherwise an error is reported.

A non-terminal on the right-hand side is handled by calling the corresponding function

and, after this call returns, continuing with the next symbol on the right-hand side.

When there are no more symbols on the right-hand side, the function returns. As an

example, Figure 6.4 shows pseudo-code for a recursive descent parser for the

grammar in Figure 6.2.

// The parse functions for handling <alneelain> ::=<header> ; <body> endspecification

FUNCTION alneelain()

{

SET diagnosis=true

FUNCTION header()

FUNCTION checktoken(semicolon)

FUNCTION body()

FUNCTION checktoken(endspecification);

IF (diagnosis= true)

PRINT “Syntactically Correct"

ELSE

PRINT “Syntactically Incorrect"

}

// The parse functions for handling <header>::= specification <specname>

FUNCTION header()

{

FUNCTION checktoken(specification);

FUNCTION gettoken();

}

// The parse functions for handling <body> ::=[< constsection>;] [<typesection>;]

// <inputsection>; <outputsection>; <varsection>; <axiomsection>; <rulesection>

FUNCTION body()

{

IF (token=constant)

{

100

FUNCTION constsection();

FUNCTION checktoken(semicolon);

}

IF (token=type)

{

FUNCTION typesection();

FUNCTION checktoken(semicolon);

}

FUNCTION inputsection();

FUNCTION checktoken(semicolon);

FUNCTION outputsection();

FUNCTION checktoken(semicolon);

FUNCTION varsection();

FUNCTION checktoken(semicolon);

FUNCTION axiomsection();

FUNCTION checktoken(semicolon);

FUNCTION rulesection();

FUNCTION checktoken(semicolon);

}

Figure 6.4: Recursive Descent Parser for Grammar in Figure 6.2.

The program in Figure 6.4 merely checks if the input is valid. It can easily be

extended to construct a syntax tree by allowing the parse functions return the sub-trees

for the parts of input that they parse. A complete code for syntax checker can be

accessed at https://sites.google.com/site/nahidahmedali/.

There are two output from the syntax analysis step: (1) a message that tells whether

the specification is correct or not and (2) a log file that contains all axioms and rules

for a given specification, if the specification is correct.

6.3 THE USER INTERFACE OF ALNEELAIN SPECIFICATION

LANGUAGE

To run Alneelain Specification Language, launch the executable file (.exe file)

from the installation directory at https://sites.google.com/site/nahidahmedali/. When

started, the application will appear as shown below in Figure 6.5:

https://sites.google.com/site/nahidahmedali/
https://sites.google.com/site/nahidahmedali/

101

Figure 6.5: The User Interface of Alneelain Specification Language

The Alneelain Specification Language allows you to create a file that contains a

specification of one abstract data type or any other specifications that can be written in

the syntax of Alneelain language. In addition, it allows one to check if the

specification is syntactically correct or not.

Alneelain Specification Language contains four main menus and one toolbar. The

toolbar provides instant access to the most important commands from the menu. The

four menus are:

1. File Menu:

Through the File menu, one can do the following:

New File: This item prompts you to create a file with an empty text editor. One can

write the specification in the syntax of Alneelain Specification Language using the

keyboard. The cursor will appear at current line in editor pane.

Open file: This item prompts you for the name and location of an existing Alneelain

Specification Language file, and opens it in the application.

102

Save file: This item allows you to save the file that is open in the current tab of the

editor window to its existing name. Note that the file should have the .nln extension.

Save file as: This item allows you to save the file that is open in the current tab of the

editor window, but under a different name. Note that the file should have the .nln

extension.

Exit: This item quits the application. It prompts you to save any unsaved files that are

open in the editor.

2. Edit Menu:

This feature allows a selection of text to be copied or cut. Paste command places the

text or object on the clipboard at the current cursor location in the currently active

view or editor. Undo command reverses your most recent editing action and redo

command re-applies the editing action that has most recently been reversed by the

undo action.

3. CheckSpec Menu:

This feature causes the opened file to be processed. Checks for syntax are made; this

can be used for quick check for simple errors. After performing a check, an alert box

will appear that shows if the specification is syntactically correct or not. Suggestion

and error messages may also appear.

4. Help Menu:

This menu provides help on using the Alneelain Specification Language application.

Specifically, the help menu includes user manual and the about command which

displays information about the application and installed features.

SUMMARY

In computer science, a formal specification language is defined as a

specification language used during systems analysis, requirements analysis and system

design to describe a system at much higher level than a programming. Formal

languages are used because they allows users write specifications that are

simultaneously precise, clear and concise. Numerous formal specification languages

are in use at the present. This chapter discusses the design of a new specification

language called Alneelain, which is based on axiomatic specification, and it goes

103

through the steps of designing Alneelain specification language. The design starts by a

list of axioms and rules for many ADT’s, then a meta-language for syntax

specification called BNF is described, which plays a major role in defining syntax of

programming languages. Then a specification for many ADT’s according to the BNF

of Alneelain is written to make confidence that the BNF is precise in describing the

language. After that, the lexical analyzer is written which -as its input- will take a

string of individual letters and divide this string into tokens. The chapter discusses the

syntax checker for the language. The notation used for writing syntax checker is

context-free grammar. It is a recursive notation that can be translated almost directly

into recursive programs. Finally, the chapter displays the user interface for Alneelain

specification language.

104

CHAPTER SEVEN

VERIFYING ADT IMPLEMENTATIONS AGAINST AXIOMATIC

SPECIFICATIONS

7.1 INTRODUCTION

As seen from the previous chapters, this research focuses on the verification of

ADT implementations against the axioms of the specification, using Hoare logic.

Therefore, the advocated approach is based on three premises, namely:

 The specification of Abstract Data Types are written in a behavioral style, using a

trace-like notation, which represents the behavior of an ADT by a relation from

sequences of inputs to outputs.

 The specifications are defined inductively by means of axioms and rules, where

the axioms represent the behavior of the ADT for elementary input sequences, and

the rule equate the behavior of the ADT for complex input sequences to its

behavior for simpler input sequences.

 Implementations are verified against axioms of the specifications using Hoare’s

logic; because axioms represent only part of the ADT behavior, verifying

implementations against axioms is not sufficient. Therefore, as complement to this

research, one can test implementations according to the cleanroom testing

discipline [94], using the rules of the specification as oracles.

What makes Hoare logic difficult to apply on a large scale, and in particular, what

makes it difficult to automate is the need to invent invariant assertions for iterative

constructs in programs. However, our approach obviates this obstacle because axioms

represent simple basic behavior of the ADT, they do not invoke complex calculations

in the source code; at most, they may invoke some loops to initialize a data structure.

Such code either uses loops for simple tasks, for which invariant assertions are simple

to find, or does not invoke loops at all [95].

The present chapter discusses the approach that is taken to verify the correctness of

ADT implementations against the axioms of specifications using Hoare logic and to

give some examples of how to verify ADT implementations using this approach. The

105

chapter concludes with examples for verifying ADT implementations automatically

using HAHA tool [79] .

7.2 DEFINING ADT’S SPECIFICATION

As discussed in Chapter 3, the specifications are defined inductively by means

of axioms and rules, where the axioms represent the behavior of the ADT for

elementary input sequences, and the rules equate the behavior of the ADT for complex

input sequences to its behavior for simpler input sequences. An example of axioms for

the stack data type include:

 Size Axiom

stack(init.size) = 0.

 Init Empty Axiom

stack(init.empty) = true.

 Push Empty Axiom

stack(init.push(a).empty) = false.

 Init Top Axiom

stack(init.top) = error.

 Push Top Axiom

stack(init.h.push(a).top) = a.

7.3 IMPLEMENTATION OF ABSTRACT DATA TYPES

The implementation of ADT means the provision of one procedure or function

for each abstract operation. According to the ADT's specifications, the ADT instances

are represented by some concrete data structure that is manipulated by those

procedures. Commonly there are numerous ways to implement the same ADT, using a

number of different concrete data structures. Therefore, for instance, one can

implement an abstract stack by a linked list or by an array. An ADT implementation is

often packaged as one or more modules. The interface of such module contains only

the signature (number and types of the parameters and results) of the operations. The

implementation of the module — namely, the bodies of the procedures and the

106

concrete data structure used — can then be hidden from most clients in order to

implement information hiding strategy. This information hiding strategy permits the

implementation of the module to be altered without disturbing the client programs.

For example, the assumption used is that the implementation of the stack ADT takes

the form of a class in an object-oriented language. In this class each input symbol (init,

push, pop, top, size, empty) represents a method of the class; whereas init, push and

pop are void methods, top returns a value of the data type of the stack, size returns an

integer and empty returns a Boolean. Figure 7.1 presents the user implementation of

stack data type, it presents both stack.h and stack.cpp files. (This source code is taken

from the Apache C++ Standard Library (STDCXX)).

//***

// Header file stack.h

//***

const int SIZE = 100;

// an approximation of infinity: unbounded stack

typedef int sitemtype;

typedef int indextype;

class stack

 { public:

 stack(); // default constructor

 void init(); // initializes or re-initializes the stack

 bool empty () const; // tells whether stack is empty

 void push (sitemtype sitem); // add sitem to the stack

 void pop (); // deletes top of the stack

 sitemtype top (); // returns top of the stack

 int size (); // returns size of the stack

 private: // array-based implementation.

 sitemtype sarray [SIZE];

 indextype sindex;

 };

// **

// Array-based C++ implementation for the stack ADT.

// file stack.cpp, refers to header file stack.h.

// **

#include "stack.h" // stack.h header file.

stack :: stack ()

107

{

 sindex=0;

}

bool stack :: empty () const

{

 return (sindex==0);

}

void stack :: init ()

{

 sindex = 0;

}

void stack :: push (sitemtype sitem)

{

 sindex=sindex+1;

 sarray[sindex]=sitem;

}

void stack :: pop ()

{

 if (sindex >0) // stack is not empty

 {

 return sarray[sindex-1];

 }

}

sitemtype stack :: top ()

{

 int error = -9999;

 if (sindex >0)

 {

 return sarray[sindex];

 }

 else

 {

 return error;

 }

}

int stack :: size ()

{

 return sindex ;

}

Figure 7.1: The Implementation of Stack Data Type

7.4 MAPPING AXIOMS TO HOARE FORMULAS

To each of the axioms presented in Section 7.2, a verification condition is

associated in the form of a Hoare formula that must then be proved. The verification

conditions generated for each of the axioms is shown below:

108

 Size Axiom

v: {true} init(); y=size() {y=0}

Where y is a variable of type integer.

 Init Empty Axiom

v: {true} init(); y=empty() {y=true}

Where y is a variable of type Boolean.

 Push Empty Axiom

v: {true} init(); push(a); y=empty() {y=false}

For an arbitrary item a, where y is a variable of type Boolean.

 Init Top Axiom

v: {true} init(); y=top() {y=error}

Where y is declared as a variable that can hold the data type of the items that we

put on the stack (called itemtype) or the error message.

 Push Top Axiom

v: {true} init(); h; push(a); y=top() {y=a}

For an arbitrary item a, where y is a variable of type itemtype and h is an arbitrary

sequence of operations.

7.5 VERIFYING ADT IMPLEMENTATIONS AGAINST AXIOMS

Abstract data type implementation is verified against axiomatic specification

using Hoare Logic. In order to prove that each verification condition in the form of a

Hoare formula associated to the axioms given above, each method call must be

replaced by its body (source code). So that each return statement is replaced by y =

the returned expression. Also, all the statements (in source code) are converted from

C++ to Pascal-like notation in order to be able to summit to HAHA tool because it is

based on Pascal. For example sindex= 0 is converted to sindex:=0 .This yield for

example:

1. Size Axiom:

v: {true}

sindex :=0;

109

y:= sindex;

{y=0}

In order to prove formula v, the sequence rule is applied and the following formulas

are generated using {sindex=0} as intermediate assertion:

v0: {true} sindex:=0 {sindex=0}

v1: {sindex=0} y:=sindex{y=0}

By applying the assignment statement rule to v0, v1, it is found that:

v00: true ⇒ 0=0,

v10: sindex=0 ⇒ sindex =0

v0, v1 are tautologies, hence axioms of Hoare logic. This concludes the proof, and

establishes the validity of v.

2. Init Empty Axiom:

v: {true}

sindex :=0;

y:=(sindex=0)

{y=true}

In order to prove formula v, the sequence rule is applied and the following formulas

are generated using {sindex=0} as intermediate assertion:

v0: {true} sindex: =0 {sindex=0}

v1: {sindex=0} y :=(sindex=0) {y=true}

By applying the assignment statement rule to v0, v, it is found that:

v00: true ⇒ 0=0,

v10: sindex=0 ⇒ (sindex=0) =true,

v0, v1 are tautologies, hence axioms of Hoare logic. This concludes the proof, and

establishes the validity of v.

3. Push Empty Axiom:

v: {true}

sindex :=0;

sindex:=sindex+1; sarray[sindex]=:sitem;

y:=(sindex=0)

{y=false}

In order to prove formula v, the sequence rule is applied three times, and the following

formulas are generated [96]:

110

v0: {true} sindex:=0 {sindex=0}

v1: {sindex=0} sindex:=sindex+1; {sindex=1}

v2: {sindex= 1} sarray[sindex]:=a; {sindex=1}

v3: {sindex=1} y:=(sindex=0) {y=false}

The assignment statement rule applied to v0, v1, v2, v3 yields, respectively:

v00: true ⇒ 0=0,

v10: sindex=0 ⇒ sindex+1=1,

v20: sindex=1 ⇒ sindex=1,

v30: sindex=1 ⇒ (sindex=0)=false,

All of which are tautologies, hence axioms of Hoare logic. This concludes the proof,

and establishes the validity of v.

4. Init Top Axiom:

v: {true}

sindex:=0;

if (sindex>0) {y := sarray[sindex];} else {y:= error;}

{y=error}

In order to prove formula v, the sequence rule is applied and the following formulas

are generated using {sindex=0} as intermediate assertion:

v0: {true} sindex:=0 {sindex=0}.

v1: {sindex=0} if (sindex>0) {y := sarray[sindex];} else {y:= error;}

{y=error }

By applying the assignment statement rule to v0, it is found that:

v00: true ⇒ 0=0

v0, is tautology, hence axioms of Hoare logic. v1 is considered, to which the

alternation rule is applied. It is found that:

v10: {sindex=0 ˄ sindex>0} y := sarray[sindex]; {y=error}

v11: {sindex=0 ˄ sindex≤0} y := error; {y=error}

The formula v10 is vacuously valid since the precondition is false. The assignment

statement rule is applied to v11:

v110: sindex=0 ⇒ error = error

This formula is a tautology, hence an axiom of Hoare’s inference system; this

concludes the proof.

111

5. Push Top Axiom:

v: {true}

sindex:=0;

h;

sindex:=sindex+1; sarray[sindex]:=a;

if (sindex>0) {y := sarray[sindex];} else {y:= error;}

{y=a}

Applying the sequence rule four times using intermediate assertion {sindex≥0} after

sequence h [96] yields the following formulas:

v0: {true} sindex:=0 {sindex≥0}.

v1: {sindex≥0} h {sindex≥0}.

v2: {sindex≥0} sindex := sindex+1 {sindex>0}

v3: {sindex>0} sarray[sindex]:=a {sindex>0 ˄ sarray[sindex]=a}

v4: {sindex>0 ˄ sarray[sindex]=a}

if (sindex>0) {y := sarray[sindex];} else {y:= error;}

 {y=a}

Application of the assignment rule to v0, v2, v3 yields, respectively:

v00: true ⇒ 0=0,

v20: sindex≥0 ⇒ sindex+1>0

v30: sindex>0 ⇒ sindex>0 ˄ a=a,

All of which are tautologies. v1, to which the consequence rule is applied, is

considered:

v10: {sindex≥0} h {sindex≥0}.

In order to establish the validity of this formula, where h is a sequence of operations, it

is sufficient (by virtue of induction) to prove it for each individual operation; it is

certainly valid for V-operations, since by definition they do not modify state variables

[96]. As for O-operations,

 Init: The formula {sindex≥0} init() {sindex≥0} is valid by virtue of the

consequence rule, since {true} init() {sindex=0} is valid.

 Push: The formula {sindex≥0} push(a) {sindex≥0} is valid since the push operation

increases the value of sindex.

112

 Pop: The formula {sindex≥0} pop() {sindex≥0} is valid since the pop operation

does not decreases the value of sindex unless sindex is positive, and then it is only

decreased by 1.

Now the focus is on formula v4, to which the alternation rule is applied. It is found

that,

v40: {sindex>0 ˄ sarray[sindex]=a ˄ sindex>0} y := sarray[sindex]; {y=a}

v41: {sindex>0 ˄ sarray[sindex]=a ˄ sindex≤0} y := sarray[sindex]; {y=a}

The formula v41 is vacuously valid since the precondition is false. The assignment

statement rule is applied to v40:

v400: sindex>0 ˄ sarray[sindex]=a ⇒ sarray[sindex]=a.

This formula is a tautology, hence an axiom of Hoare’s inference system; this

concludes the proof.

7.6 SUBMITTING TO HAHA THROUGH THE API

To verify the correctness of Hoare formulas automatically using HAHA tool,

these formulas must be put in syntax of HAHA, which is discussed in detail at

Chapter 5. Before start writing HAHA program, one thing to keep in mind is that the

source files should have the extension .haha or the editor might not function properly.

As examples:

1. Size Axiom: v: {true} init(); y=size() {y=0}

v: {true}

sindex :=0;

y:= sindex;

{y=0}

SizeAxiom.haha:

function S() : Z
 var
 sindex : Z
 y : Z
begin
 skip
 {true}
 sindex:=0
 {sindex = 0}
 y:=sindex

113

 { y = 0 }
 skip
end

In HAHA, a function must be declared to start the proving using keyword function

followed by the function name S(). The result type is declared after the colon. It is Z

this time, i.e. the type of integer numbers as known from mathematics. All variables

should be declared beforehand using var keyword in this example variables are sindex

and y and they are of type Z. Skip is necessary since HAHA does not allow assertions

right after begin statement. {true} is the initial assertion (or precondition). Then comes

the first statements (sindex: = 0). HAHA requires that all intermediate assertions are

present in this example is {sindex=0}. After the last statement, there should be the

final assertion (or postcondition) in this case is {y = 0}. Skip is necessary since HAHA

does not allow assertions right before end. Finally the HAHA program is finished with

keyword end. After this program is written one can check its correctness with Z3

checker. It is launched by choosing menu option VCGen → Generate Verification

Conditions. HAHA will then present a console with computed verification conditions

and messages logged during verification. Such as:

Total number of conditions: 3
Valid: 3
Invalid: 0
Unknown: 0
Errors: 0
Missing: 0

It is clear that the verification conditions are valid. If there were any problems, error

markers will be added to the editor.

2. Init Empty Axiom: v: {true} init(); y=empty() {y=true}

v: {true}

sindex :=0;

y:=(sindex=0)

{y=true}

In principle HAHA allows one to define Boolean variables as follow:

var

boolvar : BOOLEAN

114

and then use constants true, false and logical expressions to set the value. However,

the verification condition generation is not supported yet for this type due to the lack

of resources on HAHA side as stated by it is developer. For that, integer variables are

used instead and are checked for their particular values.

InitEmptyAxiom.haha:

function S() : Z
 var
 sindex : Z
 y : Z
begin
 skip
 {true}
 sindex:=0
 {sindex = 0}
 if (sindex=0) then
 y:=1
 else
 y:=0
 { y= 1 }
 skip
end

HAHA Result:

Total number of conditions: 4
Valid: 4
Invalid: 0
Unknown: 0
Errors: 0
Missing: 0

3. Push Empty Axiom: v: {true} init(); push(a); y=empty() {y=false}

v: {true}

sindex :=0;

sindex:=sindex+1; sarray[sindex]=:sitem;

y:=(sindex=0)

{y=false}

PushEmptyAxiom.haha:

function S() : Z
 var
 sindex : Z
 sarray: ARRAY[Z]
 y : Z
 a :Z

115

begin
 skip
 {true}
 sindex:=0
 {sindex = 0}
 sindex:=sindex+1
 {sindex = 1}
 sarray[sindex]:=a
 {sindex = 1}
 if (sindex=0) then
 y:=1
 else
 y:=0
 { y = 0 }
 skip
end

HAHA Result:

Total number of conditions: 6
Valid: 6
Invalid: 0
Unknown: 0
Errors: 0
Missing: 0

4. Init Top Axiom: v: {true} init(); y=top() {y=error}

v: {true}

sindex:=0;

if (sindex>0) {y := sarray[sindex];} else {y:= error;}

{y=error}

InitTopAxiom.haha:

function S() : Z
 var
 sindex : Z
 sarray: ARRAY[Z]
 y : Z
 error: Z
begin
 skip
 {true}
 sindex:=0
 {sindex = 0}
 if (sindex>0) then
 y := sarray[sindex]
 else
 y:= error

116

 { y = error }
 skip
end

HAHA Result:

Total number of conditions: 4
Valid: 4
Invalid: 0
Unknown: 0
Errors: 0
Missing: 0

5. Push Top Axiom: v: {true} init(); h; push(a); y=top() {y=a}

v: {true}

sindex:=0;

h;

sindex:=sindex+1; sarray[sindex]:=a;

if (sindex>0) {y := sarray[sindex];} else {y:= error;}

{y=a}

In order to establish the validity of this formula, where h is a sequence of operations, it

is sufficient (by virtue of induction) to prove it for each individual operation; it is

certainly valid for V-operations, since by definition they do not modify state variables

[96]. As for O-operations (init, push and pop) respectively:

1. Push Top Axiom(init): v: {true} init(); init(); push(a); y=top() {y=a}

v: {true}

sindex:=0;

sindex:=0;

sindex:=sindex+1; sarray[sindex]:=a;

if (sindex>0) {y := sarray[sindex];} else {y:= error;}

{y=a}

PushTopAxiom-init.haha

function S() : Z
 var
 sindex : Z
 sarray: ARRAY[Z]
 y : Z
 a : Z
 error: Z
 begin
 skip

117

 {true}
 sindex:=0
 {sindex = 0}
 sindex:=0
 {sindex = 0}
 sindex:=sindex+1
 {sindex = 1}
 sarray[sindex]:=a
 {sindex = 1 /\ sarray[sindex]=a }
 if (sindex>0) then
 y := sarray[sindex]
 else
 y:= error
 { y = a }
 skip
end

HAHA Result:

Total number of conditions: 7
Valid: 7
Invalid: 0
Unknown: 0
Errors: 0
Missing: 0

2. Push Top Axiom(push): v: {true} init(); push(); push(a); y=top() {y=a}

v: {true}

sindex:=0;

sindex:=sindex+1; sarray[sindex]:=a;

sindex:=sindex+1; sarray[sindex]:=a;

if (sindex>0) {y := sarray[sindex];} else {y:= error;}

{y=a}

PushTopAxiom-push.haha

function S() : Z
 var
 sindex : Z
 sarray: ARRAY[Z]
 y : Z
 a : Z
 error: Z
 begin
 skip

118

 {true}
 sindex:=0
 {sindex = 0}
 sindex:=sindex+1
 {sindex = 1}
 sarray[sindex]:=a
 {sindex = 1 /\ sarray[sindex]=a }
 sindex:=sindex+1
 {sindex = 2}
 sarray[sindex]:=a
 {sindex = 2 /\ sarray[sindex]=a }
 if (sindex>0) then
 y := sarray[sindex]
 else
 y:= error
 { y = a }
 skip
end

HAHA Result:

Total number of conditions: 8
Valid: 8
Invalid: 0
Unknown: 0
Errors: 0
Missing: 0

3. Push Top Axiom(pop): v: {true} init(); pop(); push(a); y=top() {y=a}

v: {true}

sindex:=0;

if (sindex>0) then y:= sarray[sindex-1]

sindex:=sindex+1; sarray[sindex]:=a;

if (sindex>0) {y := sarray[sindex];} else {y:= error;}

{y=a}

PushTopAxiom-pop.haha

function S() : Z
 var
 sindex : Z
 sarray: ARRAY[Z]
 y : Z
 a : Z
 error: Z
 begin

119

 skip
 {true}
 sindex:=0
 {sindex = 0}
 if (sindex>0) then
 y:= sarray[sindex-1]
 {sindex = 0 }
 sindex:=sindex+1
 {sindex = 1 }
 sarray[sindex]:=a
 {sindex = 1 /\ sarray[sindex]=a}
 if (sindex>0) then
 y := sarray[sindex]
 else
 y:= error
 { y = a }
 skip
end

HAHA Result:

Total number of conditions: 8
Valid: 8
Invalid: 0
Unknown: 0
Errors: 0
Missing: 0

Another example on verifying ADT’s implementation using Hoare Logic can be found

in APPENDIX-E. The example shows how to verify Queue Data Type starting from

axioms of Queue specification ending with automated verification using HAHA tool.

SUMMARY

This chapter presents the advocated approach for verifying ADT

implementations against the axioms of the specification, using Hoare logic. It

discusses three premises of the approach in detail. These premises are:

 Writing the specification of Abstract Data Types in a behavioral style using a

trace-like notation.

 Defining the specifications inductively by means of axioms and rules.

 Verifying implementations against axioms of the specifications using Hoare’s

logic.

120

As known, what makes Hoare logic difficult to apply on a large scale, and in

particular, what makes it difficult to automate is the need to invent invariant assertions

for iterative constructs in programs. The chapter discusses how the taken approach

obviates these obstacles associated with Hoare logic. It also gives some examples of

how to verify ADT implementations using this approach. Finally, it concludes with

examples for verifying ADT implementations automatically using HAHA tool.

121

CHAPTER EIGHT

IMPLEMENTATION AND DEPLOYMENT

8.1 INTRODUCTION

Since the beginning of software engineering, the world experienced a

diversified discussion on the related advantages of software testing against static

program analysis including effectiveness, scalability, ease of use, etc. The effective

position of each of these techniques is taken against some types of specifications and

less effective against other types. Also, very frequently one technique or another is

found difficult to be used. This difficult use is not resulted from any intrinsic

shortcoming of the technique, but it resulted from the fact that the technique is applied

against the wrong kind of specification [7].

Obviously, people do not always choose the specification against which they should

ensure product correctness. However, they can actually break down a complex

specification into smaller components and map each component to the most adaptable

technique. The specification of a state-based software product is considered in the

form of axioms and rules, and a candidate implementation is considered in the form of

a class (i.e. an encapsulated module that maintains an internal state and allows access

to a number of externally accessible methods). In order to verify the correctness of the

proposed implementation with respect to the specification (i.e. verify the

implementation against the axioms), one resolves to proceed as follows:

Each axiom of the specification can be mapped onto a Hoare formula. Such an axiom

has a True pre-condition and its post-condition is a statement about the behavior

specified by the axiom. In the notations introduced in Chapter 3, axioms have the

form: R(h) =y where h is an (elementary) input history that ends with a VX symbol

(the symbol represents a method that returns a value but does not change the state) and

y is the corresponding output. History h can then be written as h= h vop, where vop is

a VX symbol. The following axiom is considered in the specification of the stack

ADT: stack(init.push(a).top)=a, and g is let be a candidate implementation with a

method of the same name as each input symbol of the specification. Then to verify the

correctness of the implementation the following formula is generated:

v: {true} g.init(); g.push(a); y=g.top(); {y = a}

122

 ADT Implementation

ADT Specification

Verification Report ADT’s Verification

Model

where y is a variable of type itemtype and a is a constant of the same type. By

definition, the above formulas in fact deal with non-significant cases. Therefore, they

do not involve the issues that usually make correctness proofs complicated.

Particularly, they typically involve simple intermediate assertions and do not involve

complex invariant assertion generation.

The present chapter presents the proposed verification model for verifying the

correctness of ADT implementations against the axioms of specifications and shows

how this model is implemented and deployed [97].

8.2 THE FRAMEWORK OF THE VERIFICATION MODEL

The proposed verification model is shown in Figure 8.1, which is a black box

diagram that has two inputs (ADT specification and ADT implementation) and one

output (verification report) [97].

Figure 8.1: The Verification Model

Figure 8.2 shows the framework for the verification model in which a detailed

description of the verification model is presented. The steps of Alneelain compiler

design is discussed in detail in Chapter 6. Here the focus is on proof support tool,

which is separated into two steps:

1. Mapping axioms into Hoare formulas: Each axiom of the specification can be

mapped onto a Hoare formula , such as:

v: {true} init(); push(a); y=top(); {y = a}

2. Putting Hoare formulas in the syntax of HAHA tool: to verify the correctness

of Hoare formulas HAHA tool (discussed in detail at Chapter 5) is selected to

be used.

Figure 8.3 shows the proof support algorithm. The algorithm presents the steps that

are taken to implement the proof support tool:

123

Figure 8.2: The Framework for the Verification Model

specification Stack;

constant

 x = 5;

type

 itemtype : char;

input

 vop top: itemtype ,

 vop size: integer ,

 oop init, pop,

 push(char)

endinput;

Stack.nln

Lexical Analysis

Syntax Analysis

Alneelain Compiler

emptyAxiom:

Stack(init.empty)=true &

Stack(init.push(a).empty)=false

//

rule initRule:

Stack(h.init.hprime)=Stack(init.hprime),

Stack.log

Syntactically

Correct

void stack :: init ()

{

sindex =0;

 }

bool stack :: empty ()

{

 return (sindex==0);

 }

Stack.cpp

Map Axioms into Hoare Formulas

Put Hoare Formulas in HAHA Syntax

Proof Support Tool

Report
HAHA Tool

function a() : Z

 var

 sindex : Z

 y : Z

begin

 skip

 {true}

 sindex:=0

 {sindex = 0}

 if (sindex=0) then

 y := 1 else y:=0

{y=1}

skip

end

Last.haha

124

Step1: Open Stack.log file.

Step2: Search inside the Stack.log file for axioms.

Step3: Take one of the axioms.

Stack(init.empty) = true

Step4: Map the axiom to Hoare formula to generate the verification condition.

v: {true} init(); y=empty() {y=true}.

Step5: Open the implementation file (Stack.cpp).

void stack :: init ()

{

sindex =0;

}

bool stack :: empty ()

{

return (sindex==0);

}

Step6: Search inside the implementation file for all the functions included in the

axiom, such as init(); and empty(); .

Step7: Change each function name in verification condition by its body from the

implementation file.

v: {true}

sindex =0;

 y= (sindex==0);

{y=true}.

Step8: Put the verification condition in the syntax of HAHA tool.

function a() : Z

var

sindex : Z

y : Z

begin

skip

{true}

sindex:=0

{sindex = 0}

if (sindex=0) then

y := 1 else y:=0

{y=1}

skip

end

125

Step9: Save the produced file with .haha extension.

Step10: Pass the .haha file to the HAHA tool for proving it.

Step11: Run HAHA tool to verify the correctness of the verification condition.

Step12: Store the result.

Step13: Repeat step3 to step 12 until take all the axioms in Stack.log file.

Step14: Interpret the result.

Figure 8.3: Proof Support Algorithm

8.3 SOFTWARE DEPLOYMENT

In order to implement and deploy the proof support tool and connect it with

HAHA tool for verification purpose, three main software products are used. As result,

a system or application called Alneelain verification system is produced [97]. There

are many requirements to develop Alneelain verification system:

1. An Application software that can be run on various software and hardware

platforms.

2. An Attractive and pleasing Graphical User Interface (GUI).

3. A C++ compiler to be used for specification language compiler construction.

4. A tool that helps in searching the windows of HAHA tool in order to interface

with it for the purpose of verification.

5. A programming language that is used for writing the code that connect

Alneelain user interface with HAHA tool.

Those requirements can be achieved by using three products: Qt software can help

in developing a wonderful GUI and its support C++ compiler. In addition, it is

provided a cross-platform application framework. Spy++ is used for searching and

viewing the properties of selected HAHA windows. Visual Studio to help in

connecting user interface with HAHA tool. In the subsequent sections, we discuss

those software products in detail and present their features.

126

8.3.1 QT SOFTWARE

Qt is recognized as a cross-platform application framework. It is widely used for

developing application software that can be run on various software and hardware

platforms. The development of the application can be with little or no change in the

underlying codebase [98]. Despite this Qt is still being a useful application with the

capabilities and speed thereof.

Qt is primarily used for developing application software characterized with Graphical

User Interfaces (GUIs). However, applications without a GUI can also be developed.

These include command-line tools and consoles for servers. An example of a non-GUI

program developed using Qt is the Cutelyst web framework. GUI programs created

with Qt can have a native-looking interface, in which cases Qt is classified as a widget

toolkit [98].

Qt usually utilizes standard C++ with extensions including signals and slots that

simplify handling of events. This assists in the development of both GUIs and server

applications, which receive their own set of event information, and Qt should process

them accordingly. Qt supports many compilers, including the GCC C++ compiler and

the Visual Studio suite. Qt Quick, a version of Qt, includes a declarative scripting

language called QML that allows using JavaScript to provide the logic. Qt Quick

enables the possibility of rapid application development for mobile devices, although

logic can be written with native code as well to accomplish the best attainable

performance. Moreover, Qt can be utilized in numerous programming

languages via language bindings. It can also be run on the main desktop platforms and

on some mobile platforms. It has a wide global support. Non-GUI features of Qt

include SQL database access, XML parsing, JSON parsing, thread management and

network support. With Qt for Application Development, it is possible to [98]:

 Create wonderful and intuitive experiences for all of users.

 Code once and then deploy across all screens and platforms.

 Increase development productivity and speed up developer’s time to market.

 Simplify and future-proof developer’s technology strategy.

 Streamline developer’s workflow and reduce costs.

127

8.3.2 MICROSOFT VISUAL STUDIO

Microsoft Visual Studio is developed by Microsoft Company as an Integrated

Development Environment (IDE) [99]. MS Visual Studio is utilized to

develop computer programs for Microsoft Windows, in addition to web

applications and web services. It utilizes Microsoft software development platforms

such as Windows API, Windows Forms, Windows Presentation Foundation, Windows

Store and Microsoft Silverlight. It has the ability to produce both native

code and managed code. The program includes a code editor that

supports IntelliSense (the code completion component) as well as code refactoring.

The integrated debugger of MS Visual Studio works as both a source-level debugger

and a machine-level debugger. Its other built-in tools comprise several designers: a

designer for building GUI applications, web designer, class designer, and database

schema designer. It allows plug-ins that enhance the functionality at almost every

level. This includes adding support for source-control systems (like Subversion) and

adding new toolsets like editors and visual designers for domain-specific languages or

toolsets for other aspects of the software development lifecycle (like the Team

Foundation Server client: Team Explorer) [99]. Visual Studio supports

different programming languages. It allows the code editor and debugger to support

(to varying degrees) almost all programming languages, on condition that a language-

specific service exists. Its built-in languages include C, C++and C++/CLI (via Visual

C++), VB.NET (via Visual Basic .NET), C# (via Visual C#), and F# (as of Visual

Studio 2010). Support for other programming languages like Python, Ruby, Node.js,

and M among others is provided through language services that are separately

installed. It also supports XML/XSLT, HTML/XHTML, JavaScript and CSS. Java.

Java (and J#) were supported in the past [99].

8.3.3 SPY++

Spy++ is a Win32-based utility. It gives the user a graphical view of the

system’s processes, threads, windows, and window messages [100]. Spy++ has a

toolbar and hyperlinks to help users work faster. In addition, it provides

a Refresh command to update the active view including a Window Finder Tool to

make spying easier, and a Font dialog box to customize view windows. Moreover,

128

Spy++ saves and restores user preferences. Spy++ allows users to perform the

following tasks [100]:

 Displaying a graphical tree of relationships among system objects

including processes, threads, and windows.

 Searching for specified windows, threads, processes, or messages.

 Viewing the properties of selected windows, threads, processes, or messages.

 Selecting a window, thread, process, or message directly in the view.

 Using the Finder Tool to select a window by mouse pointer positioning.

8.4 USER INTERFACE OF ALNEELAIN VERIFICATION SYSTEM

Alneelain Verification System requires HAHA tool version 0.56, which can be

downloaded from http://haha.mimuw.edu.pl/. To run Alneelain Verification System,

launch the executable file (.exe file) from the installation directory at

https://sites.google.com/site/nahidahmedali/. When started, the application will appear

as shown below in Figure 8.4.

The most important parts of the application window are the specification pane,

the implementation pane and the result pane. The specification pane allows user to

write a specification in the syntax of Alneelain Specification Language and checks if

it’s syntactically correct or not. The implementation pane allows user to write the

implementation of an abstract data type. The result pane shows the result of verifying

the user implementation. Through the application, one can check if the

implementation is correct with respect to axioms of specification. Alneelain

verification system contains five main menus and one toolbar. The toolbar provides

instant access to the most important commands from the menu. The five menus are:

1. File Menu:

Through the File menu, the user can do the following:

New File: This item prompts the user to create a file with an empty text editor. In the

specification pane, the user can write the specification in the syntax of Alneelain

Specification Language using the keyboard. In implementation pane, the user can

write the implementation using the keyboard. The cursor will appear at current line in

editor pane.

http://haha.mimuw.edu.pl/
https://sites.google.com/site/nahidahmedali/

129

Open File: This item prompts the user for the name and location of an

existing specification or implementation file, and opens it in the application.

Save File: This item allows the user to save the file that is open in the current tab of

the editor window to its existing name. Note that the specification file should have the

.nln extension and the implementation file should have the .cpp extension.

Save File As: This item allows the user to save the file that is open in the current tab

of the editor window, but under a different name. Note that the specification file

should have the .nln extension and the implementation file should have the .cpp

extension.

Exit: This item quits the application. It prompts the user to save any unsaved files that

are open in the editor.

2. Edit Menu:

This feature allows a selection of text to be copied or cut. Paste command places the

text or object on the clipboard at the current cursor location in the currently active

view or editor. Undo command reverses the user’s most recent editing action and

Redo command re-applies the editing action that has most recently been reversed by

the undo action.

3. CheckSpec Menu:

This feature causes the open file in the specification pane to be processed. Checks for

syntactic is made, this can be used to check quickly for simple errors. After

performing a check, an alert box will appear that shows if the specification is

syntactically correct or not. Suggestions and errors messages may also appear.

4. Verify Menu:

This feature allows the user to verify the implementation of an abstract data type with

respect to axioms of specification and produce the verification report.

5. Help Menu:

This menu provides help on using the Alneelain Verification System. Specifically, the

help menu includes user manual and the about command which displays information

about the application and installed features.

130

Figure 8.4: The User Interface of Alneelain Verification System

SUMMARY

This chapter presents a proposed verification model for verifying the

correctness of ADT implementations against the axioms of specification. A detailed

framework for the proposed model is presented. The Algorithm for proof support tool,

which is used for mapping the axioms of specification into Hoare formulas and

putting these formulas in syntax of HAHA tool in order to verify their correctness, is

discussed. In addition, the chapter presents three different software that are used for

implementing and deploying the proposed model. Finally, the chapter concludes with

a discussion of the user interface of Alneelain Verification System, which is a system

used for writing an ADT specification and implementation and verify the correctness

of the implementation with respect to the specification.

131

CHAPTER NINE

AUTOMATED VERIFICATION AND VALIDATION

9.1 INTRODUCTION

The verification processes presented in Chapter 7 are based on the ADT

specification and hence can be developed and deployed on a candidate ADT without

having to look at the ADT implementation. The verification process can refer to two

distinct implementations [7]:

 A traditional implementation based on an array and an index.

 An implementation based on a single integer that store the elements of the

stack as successive digits in a numeric representation. The base of the numeric

representation is determined by the number of symbols that we wish to store in

the stack.

The motivation of having two implementations is to highlight that the verification

process does not depend on candidate implementations; the purpose of the second

implementation, as counterintuitive as it is, is to highlight the fact that the

specifications are behavioral [7]. That means they specify exclusively the externally

observable behavior of software systems and make no assumption/prescription on how

this behavior ought to be implemented. Also note that the used behavioral

specifications do not specify individually the behavior of each method; rather they

specify collectively the inter-relationships between these methods, leaving all the

necessary latitude to the designer to decide on the representation and the manipulation

of the state data. The header files of the two implementations are virtually identical,

except for different variable declarations (an array and an index in the first case, a

single integer, and a constant base for the second). The .cpp file for array-based

implementation for Stack Data Type is shown in Chapter 7 at Figure 7.1 and .cpp file

for the integer-based implementation is written as follows (See Figure 9.1):

132

// **

// Scalar based C++ implementation for the stack ADT.

// file stack.cpp, refers to header file stack.h.

// base is declared as a constant in the header file, =8.

// **

#include “stack.h”

#include <math.h>

stack :: stack ()

{

}

void stack :: init ()

{

 n=1;

}

bool stack :: empty () const

{

 return (n==1);

}

void stack :: push (itemtype sitem)

{

 n = n*base + sitem;

}

void stack :: pop ()

{

 if (n>1)

 { // stack is not empty

 n = n / base;

 }

}

itemtype stack :: top ()

{

 int error = -9999;

 if (n>1)

 {

 return n % base;

 }

 else

 {

 return error;

 }

}

int stack :: size ()

{

 return (int) (log(n)/log(base));

}

Figure 9.1: Integer-Based Implementation of Stack Data Type

133

9.2 EXAMPLES OF CORRECT IMPLEMENTATIONS THAT SUCCEED

The considered scenario where a candidate program g is verified against the

axioms of specification R, and it is found that the program behave correctly with

respect to all axioms (As presented in Chapter 7). Firstly, one needs to specify

precisely what is meant by behave correctly (in reference to a program under

verification). The adopted interpretation is that whenever the verification system is

executed on candidate program, it returns valid for the all generated verification

conditions and it does not return invalid or unknown verification conditions in the

verification report. As examples, Figure 9.2 shows a correct array-based

implementation that succeed for Stack data type and Figure 9.3 shows the verification

report for Stack implementation, which appear when one press the Details bottom in

the result pane. From the report, it is clear that all the verification conditions are

correct with respect to all axioms of the specification [97].

Figure 9.2: An Example for a Correct Array-Based Implementation for Stack

Considering the Verification Condition:- v:{true} init(); y=top();

{y= error}

Total number of conditions: 4

Valid: 4

Invalid: 0

Unknown: 0

Errors: 0

134

Missing: 0

Considering the Verification Condition:- v:{true} init(); init();

push(a);y=top();{y= a}

Total number of conditions: 7

Valid: 7

Invalid: 0

Unknown: 0

Errors: 0

Missing: 0

Considering the Verification Condition:- v:{true} init(); pop();

push(a);y=top();{y= a}

Total number of conditions: 8

Valid: 8

Invalid: 0

Unknown: 0

Errors: 0

Missing: 0

Considering the Verification Condition:- v:{true} init(); push();

push(a);y=top();{y= a}

Total number of conditions: 8

Valid: 8

Invalid: 0

Unknown: 0

Errors: 0

Missing: 0

Considering the Verification Condition:- v:{true} init(); y=size();

{y= 0}

Total number of conditions: 3

Valid: 3

Invalid: 0

Unknown: 0

Errors: 0

Missing: 0

Considering the Verification Condition:- v:{true} init(); y=empty();

{y=true}

Total number of conditions: 4

Valid: 4

Invalid: 0

Unknown: 0

Errors: 0

Missing: 0

Considering the Verification Condition:- v:{true} init(); push(a);

y=empty();{y=false}

Total number of conditions: 6

Valid: 6

Invalid: 0

Unknown: 0

Errors: 0

Missing: 0

Figure 9.3: The Verification Report for Stack Implementation

135

Figure 9.4 shows another example for a correct array-based implementation that

succeed for Queue data type and Figure 9.5 shows a correct scalar-based

implementation that succeed for Stack data type.

Figure 9.4: An Example for a Correct Array-Based Implementation for Queue

Figure 9.5: An Example for a Correct Scalar-Based Implementation for Stack

136

9.3 THE ASSESSMENT OF ALNEELAIN VERIFICATION SYSTEM

In order to assess the effectiveness of the developed verification system, we

have resolved to introduce faults into the array-based implementation, the scalar-based

implementation and the specification, and to observe how the verification system react

in terms of proving (or not proving) the correctness of the generated verification

conditions [97].

Considering the array-based implementation for Stack and Queue data types, in Table

9.1 and Table 9.2 below some modifications are presented, to which the code is made,

and how this affects the output of the verification system is documented.

Table 9.1: Modifications on Array-Based Stack Implementation and their Effects on

Verification System

 The Affected Axioms

Locus

Modification

Size axiom Init empty

axiom

Push empty

axiom

Init top

axiom

Push top

axiom

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

pop(); sindex > 0 →

sindex > 1

- - - - - - - - - - - - 8 7 1

push(); sindex++;

sarray[sindex]=

sitem; →

sarray[sindex]=

sitem;

sindex++;

- - - - - - 6 5 1 - - - 7 6 1

push(); sindex++;

sarray[sindex]=

sitem;

sindex++;

- - - - - - 7 6 1 - - - 8 7 1

137

Table 9.2: Modifications on Array-Based Queue Implementation and their Effects on

Verification System

 The Affected Axioms

Locus

Modification

Size Axiom Init Empty

Axiom

Enqueue

Empty Axiom

Init Front

Axiom

Enqueue

Front Axiom

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

init(); qindex =0

front1=-1

rear1=-1 →

qindex =1

front1=0

rear1=0

5 4 1 6 5 1 13 12 1 6 5 1 22 21 1

Enqueue(); if(fron1= -1)

→

if(front1=0)

- - - - - - 12 11 2 - - - 22 20 2

front(); if(fron1 >= 0)

→

if(fron1 >=-1)

- - - - - - - - - 6 5 1 22 21 1

For the scalar-based implementation, the founded results are shown in Table 9.3

below:

Table 9.3: Modifications on Scalar-Based Implementation and their Effects on

Verification System

 The Affected Axioms

Locus

Modification

Size axiom Init empty

axiom

Push empty

axiom

Init top

axiom

Push top

axiom

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

pop(); n>1 → n>=1 - - - - - - - - - - - - 9 9 0

init(); n=1 → n=0 3 2 1 4 3 1 7 7 0 4 4 0 8 8 0

push(); n=n*base+sitem

→ n= n + base *

sitem

- - - - - - 7 7 0 - - - 8 8 0

138

From the discussion above its clear, that presenting modifications to ADT’s

implementation affects the output of the verification system and make many

verification conditions to be invalid. To continue the assessment of the effectiveness

of the verification system, faults are introduced into the specification (Axioms of the

specification) of Stack and Queue data types. Table 9.4 and Table 9.5 present the

reaction of the verification system in terms of proving (or not proving) the correctness

of the generated verification conditions. It is important to note that, this is not the

natural way to proceed. Because normally you have more confidence in the

specification than in the implementation (program).

Table 9.4: Modifications on Axioms of Stack Data Type and their Effects on

Verification System

 The Affected Axioms

Locus

Modification

Size Axiom Init Empty

Axiom

Push Empty

Axiom

Init Top

Axiom

Push Top

Axiom
T

o
ta

l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

Size

Axiom

init.size= 0 →

init.size= 1

3 2 1 - - - - - - - - - - - -

Init

Empty

Axiom

init.empty=true

→

init.empty=false

- - - 4 3 1 - - - - - - - - -

Push

Empty

Axiom

init.push(a).

empty = false→

init.push(a).

empty = true

- - - - - - 6 5 1 - - - - - -

139

Table 9.5: Modifications on Axioms of Queue Data Type and their Effects on

Verification System

 The Affected Axioms

Locus

Modification

Size

Axiom

Init Empty

Axiom

Enqueue

Empty Axiom

Enqueue

Front Axiom

Enqueue

Rear Axiom

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

In
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

T
o

ta
l

co
n

d
itio

n
s

V
a

lid

in
v

a
lid

Size

Axiom

Queue(init.size) = 0→

Queue(init.size) = 1

5 4 1 - - - - - - - - - - - -

Init

Empty

Axiom

Queue(init.empty) =

true →

Queue(init.empty) =

false

- - - 6 5 1 - - - - - - - - -

Enqueue

Empty

Axiom

Queue(init.enqueue(a).

empty) = false→

Queue(init.enqueue(a).

empty) = true

- - - - - - 13 12 1 - - - - - -

Enqueue

Front

Axiom

Queue(init.enqueue(a).

enqueue(b).front) = a

→

Queue(init.enqueue(a).

enqueue(b).front) = b

- - - - - - - - - 22 21 1 - - -

Enqueue

Rear

Axiom

Queue(init.enqueue(b)

.enqueue(a).rear) = a

→

Queue(init.enqueue(b)

.enqueue(a).rear) = b

- - - - - - - - - - - - 22 21 1

SUMMARY

This chapter represents the assessment process of Alneelain Verification

System. In order to assess the effectiveness of the verification system, we have

resolved to introduce faults into the array-based implementation, the scalar-based

implementation and the specification, and to observe how the verification system react

in terms of proving (or not proving) the correctness of the generated verification

conditions. The motivation of having two implementations is to highlight that the

verification process does not depend on candidate implementations; the purpose of the

scalar-based implementation is to highlight the fact that the specifications are

behavioral, that is, they specify exclusively the externally observable behavior of

software systems, and make no assumption on how this behavior ought to be

140

implemented. The chapter also presents some examples of correct implementations

that succeed or that behave correctly for some ADT’s.

141

CHAPTER TEN

THE INTEGRATION

10.1 INTRODUCTION

Testing is the process of executing a software product on sample input data and

analyzing its output [7]. The focus of software testing is to run the candidate program

on selected input data and check whether the program behaves correctly with respect

to its specification.

It is customary to argue that dynamic testing and static verification are complementary

techniques to ensure the correctness or reliability of software products. But,

complementarity is meaningful only if the results of these two techniques can be

expressed in the same broad framework; specifications make this possible [7].

In the perennial debate about the comparative merits of static analysis and dynamic

testing, an important detail often gets overlooked: the observation that what makes a

method ineffective is not any intrinsic shortcoming of the method but rather the fact

that it is used against the wrong specification. A cost-effective approach to software

quality may be to use testing for some parts of the specification and use static analysis

for other parts. This approach is possible only when the two methods are designed to

deal with the same specification framework. Hence by doing this, we achieve great

gains in efficiency, quality, and reliability [7].

It is best to view software testing, not as an isolated effort, but rather as an integral

part of a broad, multi-pronged policy of quality assurance that deploys each method

where it is most effective by virtue of the Law of Diminishing Returns [7].

In this research, we argue in favor of a hybrid approach, whereby testing and proving

are used in concert, each being deployed where it works best. Specifically, we

envision employing our hybrid proving/ testing approach in the context of verifying

the implementation of abstract data types (or other systems that maintain an internal

state) that are specified using axiomatic specification (in form of axioms and rules).

Whereas verification techniques are used to verify the implementation against the

axioms (as discussed in the previous chapters), testing is used to check the

implementation against oracles defined by the rules [36]. The integrated verification

142

and testing tool can be used as an educational tool in an integrated programming

environment to teach students how to define and validate a formal specification, verify

and test them against the specifications.

10.2 GOAL ORIENTED TESTING

We argue that software testing should be conducted in a systematic manner, by

following a rigorous process that includes the following steps [7]:

1. Defining a precise goal for the test (unit testing, integration testing, acceptance

testing, certification testing, reliability testing, regression testing, etc.).

2. Defining precise hypotheses under which the test is conducted (what are we

assuming to be correct, what are we checking).

3. Defining an oracle that determines whether any given test was successful.

4. Defining a criterion for test data selection.

5. Defining a criterion for when we can consider that the goal of the testing

activity has been achieved.

6. Defining how the test results are to be analyzed.

7. Defining the claim that we can make about the software artifact once the test

has completed and its results have been analyzed.

So far, we have used Hoare logic to prove that our implementation is correct with

respect to the axioms of the specification (As presented in Chapter 7); proving that it

is also correct with respect to the rules is very difficult, hence we turn to testing. Rules

are typically used to build an inductive argument linking the behavior of the specified

product on simple input histories to its behavior on more complex input histories. The

vast majority of rules fall into two broad classes: a class that provides that two input

histories are equivalent and a class that provides an equation between the values of a

VX operation at the end of a complex input history as a function of the value of the

VX operation at the end of a simpler input history. Representative examples of these

categories of rules for the stack specification include the following:

stack(init.h.push(a).pop.h+) = stack(init.h.h+).

stack(init.h.push(a).size) = 1+stack(init.h.size).

143

This research focus on the first class, which provides that two input histories are

equivalent. We use rules of the specification as oracles against which we test the

implementation. Specifically, we develop test drivers for the ADT, involving

automatic generation of random test data according to selected usage patterns, and we

check at run-time that the properties of the rules are satisfied for an arbitrarily large set

of data configurations. A testing policy is based on three decisions: how to generate

test data; how to generate/ develop an oracle; and how to analyze test outcomes. We

review these questions in turn, below:

1. Test Data Generation. We feel that usage-pattern based random test data

generation offers the best tradeoff in terms of effort (test data is generated

automatically), thoroughness (we can run millions of tests in a single experiment),

and coverage (by generating test data according to the usage pattern, we detect the

most egregious faults first, hence we maximize the impact of testing) [7]. The

main goal of the test data generator is to generate input histories h and h+ at

random.

Note that because of the form of our specifications, test data takes the form of

input histories, where each history is a sequence of method calls.

2. Oracle Generation. We resolve to use rules as oracles; in other words, we check

through testing whether our implementation satisfies the rules of the axiomatic

specification. Many of these rules involve sequences of method calls (h, h’, h+,

etc.); these are generated randomly, as we discuss above. Also, many of the rules

express an equivalence between module states, which raises the question: what

does it mean for two states to be equivalent. We adopt the following answer: We

consider that two states s and s’ are equivalent (for the purposes of our test) if each

VX operation returns the same value in state s and in state s’. For example, we

want to check that VX operation of Stack (top, size, and empty) return the same

value:

init.h.push(a).pop.h+.top = init.h.h+.top

init.h.push(a).pop.h+.size = init.h.h+.size

init.h.push(a).pop.h+.empty = init.h.h+.empty

To check this, we first check the test driver. The test driver queries the user about

the number of random tests she/he wants to run, as well as the type of error report

she/he wants to get, and it produces a test report accordingly.

144

3. How to Analyze Test Data. For the purposes of this phase, we are only interested

to record the failure rate of the module when it is submitted to a large set of test

data. We are not removing any faults in this phase, only recording how often the

module execution satisfies the oracle, and how often it fails to. In a way, this phase

is not testing our ADT code as much as it is testing the test driver: it is really

ensuring that our test driver is reliable.

In light of these decisions, the outermost structure of our test driver look as shown in

Figure 10.1 below:

 #include <iostream>

#include “stack.cpp”

#include “rand.cpp”

using namespace std;

typedef int boolean;

typedef int itemtype;

const int testsize = 10000;

const int hlength = 9;

const int Xsize = 5;

const itemtype paramrange=7; // drawing parameter to push()

// random number generators

int randnat(int rangemax); int gt0randnat(int rangemax);

// rule testers

void initrule(); void initpoprule(); void pushpoprule();

void sizerule(); void emptyrulea(); void emptyruleb();

void vopruletop(); void voprulesize(); void vopruleempty();

// history generator

void historygenerator

(int hl, int hop[hlength], itemtype hparam[hlength]);

/* State Variables */

stack s; // test object

int nbf; // number of failures

int main ()

{

/* initialization */

145

nbf=0; // counting the number of failures

SetSeed (825); // random number generator

for (int i=0; i<testsize; i++)

{switch(i%9)

{case 0: initrule(); break;

case 1: initpoprule(); break;

case 2: pushpoprule(); break;

case 3: sizerule(); break;

case 4: emptyrulea(); break;

case 5: emptyruleb(); break;

case 6: vopruletop(); break;

case 7: voprulesize(); break;

case 8: vopruleempty(); break;}

}

cout << “failure rate: ” << nbf << “ out of ” << testsize

<< endl;

}

Figure 10.1: The Test Driver

This loop will cycle through the rules, testing them one by one successively. The

factor testsize determines the overall size of the test data; because test data is

generated automatically, this constant can be arbitrarily large, affording us an

arbitrarily thorough test. The variable nbf represents the number of failing tests, and is

incremented by the routines that are invoked in the switch statement, whenever a test

fails. For the sake of illustration, we consider the function pushpoprule(), which we

detail below as shown in Figure 10.2:

 void pushpoprule()

{

// stack(init.h.push(a).pop.h+) = stack(init.h.h+)

int hl, hop[hlength]; itemtype hparam[hlength];

// storing h

int hplusl, hplusop[hlength]; itemtype hplusparam

[hlength]; // storing h+

146

int storesize; // size in LHS

boolean storeempty; // empty in LHS

itemtype storetop; // top in LHS

boolean successfultest; // successful test

// drawing h and h+ at random, storing them in hop, hplusop

hl = randnat(hlength);

for (int k=0; k<hl-1; k++)

{hop[k]=gt0randnat(Xsize);

if (hop[k]==1) {hparam[k]=randnat(paramrange);}}

hplusl = gt0randnat(hlength);

for (int k=0; k<hplusl-1; k++)

{hplusop[k]=gt0randnat(Xsize);

if (hplusop[k]==1) {hplusparam[k]=randnat

(paramrange);}}

// left hand side of rule

s.sinit(); historygenerator(hl,hop,hparam);

itemtype a=randnat(paramrange); s.push(a); s.pop();

historygenerator(hplusl,hplusop,hplusparam);

// store resulting state

storesize = s.size(); storeempty=s.empty();

storetop=s.top();

// right hand side of rule

s.sinit(); historygenerator(hl,hop,hparam);

historygenerator(hplusl,hplusop,hplusparam);

// compare current state with stored state

successfultest =

(storesize==s.size()) && (storeempty==s.empty()) &&

(storetop==s.top());

if (! successfultest) {nbf++;}

}

Figure 10.2: The Source Code of Pushpoprule() Function

We have included comments in the code to explain it. Basically, this function

proceeds as follows: First, it generates histories h and h+; then it executes the

sequence init.h.push(a).pop.h+, for some arbitrary item a; then it takes a snapshot of

147

the current state by calling all the VX operations and storing the values they return.

Then it reinitializes the stack and calls the sequence init.h.h+; finally, it verifies that

the current state of the stack (as defined by the values returned by the VX operations)

is identical to the state of the stack at the sequence given in the left hand side (which

was previously stored). If the values are identical, then we declare a successful test; if

not, we increment nbf.

Once we generate a function for each of the six rules, we can run the test driver with

an arbitrary value of variable testsize (to make the test arbitrarily thorough), an

arbitrary value of variable hlength (to make h sequences arbitrarily large), and an

arbitrary value of variable paramrange (to let the items stored on the stack take their

values from a wide range).

Execution of the test driver on our stack with the following parameter values

 testsize = 10;

 hlength = 5;

yields the following outcome:

failure rate: 0 out of 60

which means that all 60 executions of the stack were consistent with the rules of the

stack specification. Of course, typically, when we are dealing with a large and

complex module, a more likely outcome is to observe a number of failures. Notice that

because test data generation and oracle design are both based on an analysis of the

specification, we have written the test driver without looking at the candidate

implementation; this means, in particular, that this test driver can be deployed on any

implementation of the stack that purports to satisfy the specification we are using.

10.3 THE USER INTERFACE OF THE INTEGRATED TOOL

To run Alneelain Verification and Testing System, launch the executable file (.exe

file) from the installation directory at https://sites.google.com/site/nahidahmedali/.

When started, the application will appear with its three main application windows that

are: the specification pane, the implementation pane and the result pane.

The specification pane allows user to write a specification in the syntax of Alneelain

Specification Language and checks if it’s syntactically correct or not.

The implementation pane allows user to write the implementation of an abstract data

type. The result pane shows the result of verifying and testing the user

https://sites.google.com/site/nahidahmedali/

148

implementation. Once the user clicks on test icon, the testing parameters window will

appear to allow user to determine the number of test runs and the max length for input

histories (h, hprime, hplus) then user click on ok bottom to proceed as shown in

Figure 10.3 below.

Figure 10.3: The Testing Parameters Window

After that, the test results will appear at result pane which shows the user if the test

finished with error or not. For example if the user executes the test driver on the stack

data type with the test size 10 and max length for input histories (h, hprime, hplus) 5,

the test result will be:

Failure Rate: 0 out of 60,

as shown in Figure 10.4 below which means that all 60 executions of the stack were

consistent with the rules of the stack specification.

149

Figure 10.4: The Test Results of the Stack Data Type Implementation

10.4 THE ASSESSMENT OF ALNEELAIN VERIFICATION AND TESTING

SYSTEM

In order to assess the effectiveness of the test drivers we have developed, we have

resolved to introduce faults into the array-based implementation and the scalar-based

implementation, and to observe how the test drivers react in terms of detecting (or not

detecting) failure.

Considering the array-based implementation, we present at Table 10.1 below some

modifications we have made to the code, and document how this affects the

performance of the test drivers and to observe how the test drivers react in terms of

detecting (or not detecting) failure.

150

Table 10.1: Modifications on Array-Based Stack Implementation and their Effects on

Verification and Testing System

Locus Modification Random test data generation

pop();
sindex > 0 → sindex > 1 Failure Rate 5 Out of 60

push();
sarray [sindex] = sitem ;

sindex - - ;

Failure Rate 23 Out of 60

push();
sindex ++ ;

sarray [sindex] = sitem ;

sindex ++ ;

Failure Rate 1 Out of 60

For the scalar-based implementation, we find the following results as shown in Table

10.2:

Table 10.2: Modifications on Scalar-Based Stack Implementation and their Effects on

Verification and Testing System

Locus Modification Random test data generation

pop(); n>1 → n>=1
Failure Rate 4 Out of 60

init(); n=1 → n=0
Failure Rate 21 Out of 60

push(); n=n*base+sitem →

n=n+base*sitem

Failure Rate 2 Out of 60

SUMMARY

Software testing is the process that focus on running the candidate program on

selected input data and check whether the program behaves correctly with respect to

its specification. The dynamic testing can be considered as complementary techniques

to static verification to ensure the correctness or reliability of software products. This

chapter discusses the integration of the verification system discussed in the previous

chapters with a testing system (this research is part of a broader project, which also

includes a testing component [36] and a validation component [101]. This system can

be used as an educational tool to teach students how to define and validate a formal

specification, verify and test them against the specifications. We envision employing

151

our hybrid proving/ testing approach in the context of verifying the implementation of

abstract data types that are specified using axiomatic specification. Whereas

verification techniques are used to verify the implementation against the axioms,

testing is used to check the implementation against oracles defined by the rules. The

chapter also discussed the testing policy that is used in this research which based on

three decisions: how to generate test data; how to generate/ develop an oracle; and

how to analyze test outcomes. In addition, the chapter represents the assessment

process of the verification and testing system. In order to assess the effectiveness of

the system, we have resolved to introduce faults into the array-based implementation

and the scalar-based implementation, and to observe how the system react in terms of

detecting (or not detecting) failure.

152

CHAPTER ELEVEN

CONCLUSION AND FUTURE WORK

11.1 CONCLUSION

This research focuses on program verification as a part of a team effort that

involves specification generation and validation, program verification, and testing.

The specification of a state-based software product in the form of axioms and rules is

considered in this research and a new specification language called Alneelain is

designed based on axiomatic specification.

In order to verifying ADT implementations against the axioms of the specification, the

present study considered a candidate implementation in the form of a class (an

encapsulated module that maintains an internal state and allows access to a number of

externally accessible methods) in an object-oriented language. Implementations are

verified against axioms of the specifications using Hoare’s logic; because axioms

represent only part of the ADT behavior, verifying implementations against axioms is

not sufficient. As a supplement, one can test implementations according to the

cleanroom testing discipline, using the rules of the specification as oracles.

As everyone knows, what makes Hoare logic difficult to apply on a large scale, and in

particular, what makes it difficult to automate is the need to invent invariant assertions

for iterative constructs in programs. However, our approach obviates this obstacle

because axioms represent simple basic behavior of the ADT, they do not invoke

complex calculations in the source code; at most, they may invoke some loops to

initialize a data structure. In this research, two main tools for automatic formal

verification of software based on Hoare logic are surveyed. The study focuses on tools

that provide some form of formal guarantee, and thus, aid to improve software quality.

A short tutorial on these tools is provided, highlighting their differences when applied

to practical problems. The evaluation result of tools shows that HAHA is a better

choice than KeY-Hoare tool because it offers a high-level language, which can be

learned within a short time. Also, the high degree of proof automation together with

the ability to provide feedback on failed proof attempts make users comfortable when

using it to prove the correctness of their programs. HAHA also removes the difficulty

associated with the process of applying Hoare logic manually. The study developed

153

and deployed a verification system called Alneelain Verification System, which uses

HAHA tool as support tool to automatically verify the correctness of ADT

implementations. Through the user interface of Alneelain Verification System, users

can specify the behavior of ADT’s and verify their implementations correctness with

respect to the specification. The system is evaluated with several ADT’s such as

Stack, Queue, Set, etc. The evaluation results show that the system provides a high

degree of proof automation combined with the ability to provide feedback on failed

proof attempts and thus removes the difficulty associated with the process of applying

Hoare logic manually.

11.2 FUTURE WORK

As future prospects, this work can be extended by integration with the

validation component. This component is used to validate the ADT’s specification

written in the syntax of Alneelain specification language. Another extension should be

the derivation of an integrated software engineering environment (include verification

component, testing component and validation component) that can be used in the

classroom for the purpose of supporting courses such as data structures courses.

154

REFERENCES

[1] Mili , Ali ; Tchier, Fairouz ;, Software Testing: Concepts and Operations,

Hoboken, New Jersey: John Wiley & Sons, 2015.

[2] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming,"

Communications of the ACM, vol. 12, no. 10, pp. 576 - 580, 1969.

[3] D. Hoffman and R. Snodgrass, "Trace Specifications: Methodology and

Models," IEEE Transactions on Software Engineering, vol. 14, no. 9, pp. 1243-

1252, 1988.

[4] F. Tchier and A. Mili, "On the Verification and Validation of Software Modules

: Applications in Teaching and Practice," Tech. Rep. of NJIT, 2013.

[5] IEEE, "IEEE Std 610.12-1990 IEEE Standard Glossary of Software Engineering

Terminology," IEEE Software Engineering Standards Collection ,The Institute

of Electrical and Electronics Engineers,New York, 1990.

[6] D. Galin, Software Quality Assurance: From Theory to Implementation,

Pearson education, 2004.

[7] A. Mili and F. Tchier, Software Testing: Concepts and Operations, Hoboken,

New Jersey: John Wiley & Sons, 2015.

[8] M. Tedre, The Science of Computing: Shaping a Discipline, CRC Press, 2014.

[9] J. Tian, Software Quality Engineering : Testing, Quality Assurance, and

Quantifiable Improvement, Hoboken New Jersey: John Wiley & Sons, 2005.

[10] P. B. Crosby, Quality is Free, New York: McGraw-Hill, 1979.

[11] J. M. Juran and A. B. Godfrey, Juran’s Quality Handbook, 5 ed., McGraw-Hill,

1998.

[12] R. S. Pressman, Software Engineering: A Practioner’s Approach, 5 ed., New

York: McGraw-Hill, 2001.

[13] J. Tian, "Quality Assurance Alternatives and Techniques : A Defect-Based

Survey and Analysis," Software Quality Professional, vol. 3, no. 3, pp. 6-18,

2001.

155

[14] M. V. Zelkowitz, "Role of Verification in the Software Specification Process,"

Advances in Computers, vol. 36, pp. 43-109, 1993.

[15] E. W. Dijkstra, "Guarded Commands, Nondeterminacy and Formal Derivation

of Programs," Communications of the ACM, vol. 18, no. 8, p. 453–457, 1975.

[16] D. Gries, The Science of Programming, New York Heidelberg Berlin : Springer-

Verlag, 1987.

[17] H. D. Mills, V. R. Basili, J. D. Gannon and R. D. Hamlet, Principles of

Computer Programming: A Mathematical Approach, Dubuque Iowa: Wm. C.

Brown Publisher, 1988.

[18] G. Carlo, J. Mehdi and M. Dino, Fundamentals of Software Engineering, 2 ed.,

Englewood Cliffs, NJ: Pearson Prentice Hall, 2003.

[19] D. L. Parna and J. Madeyb, "Functional Documents for Computer Systems,"

Science of Computer Programming, vol. 25, no. 1, pp. 41-61, 1995.

[20] N. Wirth, "A Plea for Lean Software," Computer, vol. 28, no. 2, pp. 64-68,

1995.

[21] D. L. Parnas, "On the Criteria to be used in Decomposing Systems into

Modules," Communications of the ACM, vol. 15, no. 12, pp. 1053 - 1058, 1972.

[22] N. Boudriga, A. Mili, R. Zalila and F. Mili, "A Relational Model for the

Specification of Data Types," Computer Languages, vol. 17, no. 2, pp. 101-131,

1992.

[23] D. L. Parnas, "A Technique for Software Module Specification with Examples,"

Communications of the ACM, vol. 15, no. 5, pp. 330-336, 1972.

[24] B. Liskov and S. Zilles, "An Introduction to Formal Specifications of Data

Abstractions," Current Trends in Programming Methodology, pp. 1-32, 1977.

[25] B. Meyer, "On Formalism in Specifications," IEEE Software, vol. 2, no. 1, pp.

6-26, 1985.

[26] I. Sommerville, Software Engineering, 8 ed., England: Pearson Education

Limited, 2007.

[27] V. S. Alagar and K. Periyasamy, Specification of Software Systems, 2 ed.,

London: Springer-Verlag, 2011.

156

[28] S. Owre, N. Shankar, J. M. Rushby and D. W. J. Stringer-Calvert, "PVS System

Guide," Computer Science Laboratory, SRI International, Version 2.3.

Technical Report , Menlo Park, CA, 1999.

[29] D. C. Luckham, F. W. von Henke, B. Krieg-Brueckner and O. Owe, "ANNA: A

Language for Annotating ADA Programs (Reference Manual)," vol. 260, no. 0,

1987.

[30] M. Iglewski, M. Kubica, J. Madey, J. Mincer-Daszkiewicz and K. Stencel,

"TAM’97: The Trace Assertion Method of Module Interface Specification

(Reference Manual)," 1997.

[31] J. Goguen, C. Kirchner, J. Meseguer, H. Kirchner, T. Winkler and A. Megrelis,

"An Introduction to OBJ 3," in 1st International Workshop on Conditional Term

Rewriting Systems, London, UK, 1988.

[32] M. J. Spivey, The Z Notation—A Reference Manual, 2 ed., UK: Prentice Hall

International, 1992.

[33] J.-R. Abrial, The B-Book—Assigning Programs to Meanings, New York:

Cambridge University Press, 1996.

[34] "VDM portal," 10 2015. [Online]. Available: http://overturetool.org/method/.

[35] M. Frentiu , "Correctness: A Very Important Quality Factor in Programming,"

Studia Universitas, Babes-Bolyai, Informatica, vol. L, no. 1, pp. 11-20, 2005.

[36] A. A. M. Yassin, "Testing Abstract Data Types: A Formal Goal Oriented

Approach," International Journal of Engineering Sciences Paradigms and

Researches (IJESPR), vol. 23, no. 01, pp. 18-22, 2015.

[37] A. B. Tucker, Programming Languages, Tata McGraw-Hill Education, 1986.

[38] R. W. Floyd, "Assigning Meanings to Programs," Mathematical Aspects of

Computer Science, vol. 19, no. 1, pp. 19-32, 1967.

[39] C. A. R. Hoare, "Proof of a Program: FIND," Communications of the ACM, vol.

14, no. 1, pp. 39-45, 1971.

[40] M. Foley and C. A. R. Hoare, "Proof of a Recursive Program: Quicksort," The

Computer Journal, vol. 14, no. 4, pp. 391- 395, 1971.

[41] R. L. London, "Proof of Algorithms: A New Kind of Certification,"

Communications of the ACM, vol. 13, no. 6, pp. 371-373, 1970.

157

[42] R. L. London, "Proving Programs Correctness: Some Techniques and

Examples," BIT, vol. 10, pp. 168-182, 1970.

[43] P. Naur, "Proof of Algorithms by General Snapshots," BIT Numerical

Mathematics, vol. 6, no. 4, pp. 310-316, 1966.

[44] D. Gries, The Science of Programming, New York Heidelberg Berlin: Springer-

Verlag, 1981.

[45] G. Dromey, Program Derivation: The Development of Programs from

Specifications, Addison Wesley, 1989.

[46] C. Morgan, Programming from Specifications, Prentice Hall International, 1990.

[47] D. Stevenson, "1001 Reasons for Not Proving Program Correct: A Survey," in

Computer Science Dept, Clemson University, steve@ wayne. cs. clemson. edu,

Citeseer, 1990.

[48] H. Leung, "Program Correctness," AMC, vol. 10, p. 12, 2010.

[49] J. Loeckx and K. Sieber, The Foundations of Program Verification, Springer

Fachmedien Wiesbaden, 1987.

[50] A. Campetelli, "Analysis Techniques: State of the Art in Industry and

Research," Tech. Rep., 2010.

[51] E. M. Clarke, J. M. Wing and e. al, "Formal Methods: State of the Art and

Future Directions," ACM Computing Surveys, vol. 28, no. 4, pp. 626 - 643,

1996.

[52] V. D. Silva, D. Kroening and G. Weissenbacher, "A Survey of Automated

Techniques for Formal Software Verification," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pp.

1165- 1178, 2008.

[53] P. Cousot and R. Cousot, "Abstract Interpretation: A Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints,"

Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pp. 238 - 252, 1977.

[54] P. Cousot and R. Cousot, "Systematic Design of Program Analysis

Frameworks," Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, pp. 269-282, 1979.

158

[55] P. Cousot and N. Halbwachs, "Automatic Discovery of Linear Restraints

Among Variables of a Program," Proceedings of the 5th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pp. 84-96,

1978.

[56] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.

Monniaux and X. Rival, "Design and Implementation of a Special-Purpose

Static Program Analyzer for Safety-Critical Real-Time Embedded Software," in

The Essence of Computation, Berlin Heidelberg, Springer, 2002, pp. 85-108.

[57] B. S. Gulavani and S. K. Rajamani, "Counterexample Driven Refinement for

Abstract Interpretation," in Tools and Algorithms for the Construction and

Analysis of Systems, Berlin Heidelberg, Springer, 2006, pp. 474-488.

[58] G. J. Holzmann, "The Model Checker SPIN," IEEE Transactions on Software

Engineering, vol. 23, no. 5, pp. 279-295, 1997.

[59] G. J. Holzmann, "Software Model Checking with SPIN," Advances in

Computers, vol. 65, pp. 77-108, 2005.

[60] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda, "Model Checking

Programs," Automated Software Engineering, vol. 10, no. 2, pp. 203- 232, 2003.

[61] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler and D. L. Dill, "CMC: A

Pragmatic Approach to Model Checking Real Code," ACM SIGOPS Operating

Systems Review, vol. 36, no. SI, pp. 75-88, 2002.

[62] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof and Y. Xie, "Zing: Exploiting

Program Structure for Model Checking Concurrent Software," in CONCUR

2004-Concurrency Theory, Berlin Heidelberg, Springer, 2004, pp. 1-15.

[63] P. Godefroid, "Model Checking for Programming Languages Using VeriSoft,"

in Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, Paris, ACM, 1997, pp. 174 - 186.

[64] A. Biere, A. Cimatti, E. Clarke and Y. Zhu, "Symbolic Model Checking without

BDDs," in Tools and Algorithms for the Construction and Analysis of Systems,

Berlin Heidelberg, Springer, 1999, pp. 193-207.

[65] D. W. Currie, A. J. Hu and S. Rajan, "Automatic Formal Verification of DSP

Software," in Proceedings of the 37th Annual Design Automation Conference,

159

ACM, 2000, pp. 130-135.

[66] E. Clarke, D. Kroening and K. Yorav, "Behavioral Consistency of C and

Verilog Programs using Bounded Model Checking," in Design Automation

Conference(DAC), IEEE, 2003, pp. 368 - 371.

[67] E. Clarke, D. Kroening and F. Lerda, "A Tool for Checking ANSI-C Programs,"

in Tools and Algorithms for the Construction and Analysis of Systems(TACAS),

Berlin Heidelberg, Springer, 2004, pp. 168 - 176.

[68] I. Rabinovitz and O. Grumberg, "Bounded Model Checking of Concurrent

Programs," in Computer Aided Verification, Berlin Heidelberg, Springer, 2005,

pp. 82 - 97.

[69] F. Ivancic, I. Shlyakhter, A. Gupta, M. K. Ganai, V. Kahlon, C. Wang and Z.

Yang, "Model Checking C Programs Using F-SOFT," in International

Conference on Computer Design (ICCD), IEEE, 2005, pp. 297 - 308.

[70] Y. Xie and A. Aiken, "Scalable Error Detection Using Boolean Satisfiability,"

Principles of Programming Languages (POPL), vol. 40, no. 1, pp. 351 - 363,

2005.

[71] J. Yang, C. Sar, P. Twohey, C. Cadar and D. Engler, "Automatically Generating

Malicious Disks Using Symbolic Execution," in IEEE Symposium on Security

and Privacy, IEEE, 2006, pp. 15 -.

[72] N. A. Ali, "A Survey of Verification Tools Based on Hoare Logic,"

International Journal of Software Engineering & Applications (IJSEA), vol. 8,

no. 2, 2017.

[73] T. Nipkow, L. C. Paulson and M. Wenzel, "Isabelle/HOL: A Proof Assistant for

Higher-Order Logic," Springer-Verlag, 2016.

[74] S. Owre, J. Rushby and N. Shankar, "PVS: A Prototype Verification System," in

11th International Conference on Automated Deduction (CADE), vol. 607,

Springer-Verlag, 1992, pp. 748-752.

[75] D. Wang, "Symbolic Model Verifier," 1998. [Online]. Available:

http://www.cs.cmu.edu/~modelcheck/smv.html.

[76] J. Winkler, "The Frege Program Prover FPP," in Internationales

Wissenschaftliches Kolloquium, vol. 42, 1997, pp. 116-121.

160

[77] D. Crocker, "Perfect Developer: A Tool for Object-Oriented Formal

Specification and Refinement," Tools Exhibition Notes at Formal Methods

Europe, 2003.

[78] R. H¨ahnle and R. Bubel, "A Hoare-Style Calculus with Explicit State Updates,"

Formal Methods in Computer Science Education(FORMED), pp. 49-60, 2008.

[79] T. Sznuk and A. Schubert, "Tool Support for Teaching Hoare Logic," in

Software Engineering and Formal Methods, Springer, 2014, pp. 332-346.

[80] W. Ahrendt, "Key- Hoare System," 2009. [Online]. Available: http://www.key-

project.org/download/hoare/.

[81] L. de Moura and N. Bjørner, "Z3: An efficient SMT solver," in Tools and

Algorithms for the Construction and Analysis of Systems, Springer, 2008, pp.

337-340.

[82] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi´c, T. King, A.

Reynolds and C. Tinelli, "CVC4," in Computer Aided Verification, Springer,

2011, pp. 171-177.

[83] T. Pandey and S. Srivastava, "Comparative Analysis of Formal Specification

Languages Z, VDM and B," International Journal of Current Engineering and

Technology, vol. 5, no. 3, pp. 2086-2091, 2015.

[84] R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner's

Approach, 8 Edition ed., New York: McGraw-Hill Education, 2015.

[85] O. M. G. (OMG), "Object Constraint Language," OMG Available Specification,

vol. Version 2.4, February 2014 (Last Edition).

[86] I. Toyn, "Information Technology- Z Formal Specification Notation -Syntax,

Type System and Semantics," International Standards Origination, 2002.

[87] J. V. Guttag and J. J. Horning, Larch: Languages and Tools for Formal

Specification, Springer-Verlag, 1993.

[88] C. B. Jones, Systematic Software Development using VDM, 2 ed., Prentice Hall

International, 1990.

[89] N. A. Ali, A. A. Mirghani and A. Y. Ibrahim, "Alneelain: A Formal

Specification Language," in 2017 International Conference on Communication,

Control, Computing and Electronics Engineering (ICCCCEE), Khartoum,

161

Sudan, 2017.

[90] P. Naur, J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,

H. Rutishauser, K. Samelson and B. Vauquois, "Revised Report on the

Algorithmic Language Algol 60," Communications of the ACM, vol. 6, no. 1,

pp. 1-17, 1963.

[91] K. Slonneger and B. L. Kurtz, Formal Syntax and Semantics of Programming

Languages, Addison-Wesley, 1995.

[92] N. Chomsky, "Three Models for the Description of Language," IRE

Transactions on Information Theory, vol. 2, no. 3, pp. 113-124, 1956.

[93] T. Æ. Mogensen, Introduction to Compiler Design, Springer-Verlag London

Limited, 2011.

[94] H. D. Mills, M. Dyer and R. C. Linger, "Cleanroom Software Engineering,"

IEEE Software, vol. 4, no. 5, pp. 19-25, 1987.

[95] N. A. Ali, "Verifying Abstract Data Types: A Hybrid Approach," in 2013

International Conference on Computing, Electrical and Electronic Engineering

(ICCEEE), Khartoum, Sudan, 2013.

[96] F. Tchier and A. Mili, "On the Verification and Validation of Software

Modules: Applications in Teaching and Practice," Tech. Rep. of NJIT, 2013.

[97] N. A. Ali, "Verifying ADT Implementations against Axiomatic Specifications,"

International Journal of Mathematics and Statistics Invention (IJMSI), vol. 5,

no. 3, 2017.

[98] J. Blanchette and M. Summerfield, C++ GUI Programming with Qt 4, Prentice

Hall, 2006.

[99] Microsoft, "Visual Studio," [Online]. Available: https://www.visualstudio.com/.

[100] Microsoft, "Introducing Spy++," [Online]. Available:

https://msdn.microsoft.com/en-us/library/dd460756.aspx.

[101] A. Y. Ibrahim, "Specifying Abstract Data Types:A Behavioral Model, an

Axiomatic Representation," in 1st International Conference on Computing,

Electrical and Electronic Engineering (ICCEEE 2013), Khartoum, Sudan, 2013.

162

APPENDIX -A

REQUIREMENTS DESCRIPTION FOR ABSTRACT DATA TYPES

Here we present a broad description of the requirements of a number of ADT’s namely: Stack,

Queue, Sequence, Set, Multiset and List.

1. Stack ADT:

A stack is an abstract data type that stores elements in a last in first out (LIFO) order.

Elements are added and removed to/from the top only.

O -operations: These are operations that alter the state of the ADT but produce no visible

output.

Init: this operation initializes or re-initializes the stack to empty, erasing all past history.

push (itemtype x): this operation pushes an element (provided as parameter) on top of the

stack.

pop: this operation removes the top (most recently pushed) element of the stack, if the stack is

not empty; else it leaves the stack unchanged.

V-operations: These are operations that return values but do not change the state.

itemtype: top(): returns the top of the stack (last element stored) if the stack is not empty;

else it returns an error message.

integer: size(): returns the number of elements of the stack.

boolean: empty(): returns true if and only if the stack is empty.

2. Queue ADT:

A queue is an abstract data type that stores elements in a first-in-first-out order. Elements are

added at one end and removed from the other.

O -operations: These are operations that alter the state of the ADT but produce no visible

output.

Init: this operation initializes or re-initializes the queue to empty, erasing all past history.

enqueue (itemtype x): this operation adds an element (provided as parameter) at the end of

queue.

dequeue: this operation removes the element at the front of the queue, if the queue is not

empty; else it leaves the queue unchanged.

V-operations: These are operations that return values but do not change the state.

integer: size(): returns the number of elements of the queue.

163

boolean: empty(): returns true if and only if the queue is empty.

itemtype: front(): returns the front of the queue (first element stored) if the queue is not

empty; else it returns an error message.

itemtype: rear(): returns the rear of the queue (last element stored) if the queue is not

empty; else it returns an error message.

3. Sequence ADT:

The sequence data type is one of the fundamental data types in computer science. It consists

of a homogeneous ordered collection of objects of any type.

O -operations: These are operations that alter the state of the ADT but produce no visible

output.

Init: this operation initializes or re-initializes the sequence to empty, erasing all past history.

puthead (itemtype x): this operation adds an element (provided as parameter) at the head of

the sequence.

putlast (itemtype x): this operation adds an element (provided as parameter) at the end of the

sequence.

deletehead: this operation removes the element at the head of the sequence, if the sequence is

not empty; else it leaves the sequence unchanged.

deletelast: this operation removes the last element of the sequence, if the sequence is not

empty; else it leaves the sequence unchanged.

 V-operations: These are operations that return values but do not change the state.

integer: length(): returns the number of elements of the sequence.

boolean: empty(): returns true if and only if the sequence is empty.

itemtype: head(): returns the element at the head of the sequence if the sequence is not

empty; else it returns an error message.

itemtype: last(): returns the last element in the sequence if the sequence is not empty; else it

returns an error message.

4. Set ADT:

A set is an unordered abstract data type that does not allow duplicate elements to be added.

O-operations: These are operations that alter the state of the ADT but produce no visible

output.

init: this operation initializes or re-initializes the set to empty.

insert (itemtype x): if x is not in the set, this operation adds it; else it leaves the set

unchanged.

remove (itemtype x): if x is not in the set, then this operation is null; else it removes the

element x from the set.

164

V-operations: These are operations that return values but do not change the state.

boolean: empty(): returns true if and only if the set is empty.

integer: size(): returns the number of elements in the set.

boolean: search(itemtype x): tells whether x is in the set.

itemtype: choose(): returns an arbitrary element of the set.

itemtype* list(): lists the elements of the set.

itemtype: smallest(): returns a smallest element if the set is not empty else return plus

infinity.

itemtype: largest(): returns a largest element if the set is not empty else return minus

infinity.

5. Multiset ADT:

In discrete mathematics, a multiset is a collection of objects where duplication is permitted.

We let multiset to be defined by the following operations:

O-operations: These are operations that alter the state of the ADT but produce no visible

output.

init: this operation initializes or re-initializes the multiset to empty.

insert (itemtype x): if x is not in the multiset, this operation adds it; if x is in the multiset, it

increments its multiplicity.

insert (itemtype x, integer n): inserts n copies of x, where n is non-negative.

remove (itemtype x): if x is not in the multiset, then this operation is null; if x does belong in

a single copy, it no longer exists in the set; if x belongs in multiple copies, its multiplicity is

reduced by 1.

remove (itemtype x, integer n): performs remove(x) n times.

removeall (itemtype x): if x does not belong to the multiset, then this operation is null; else

all instances of x are removed.

removeany(): removes an arbitrary element of the multiset, reducing its multiplicity by 1; if

the multiset is empty, this operation is null.

eraseany(): removes all the instances of an arbitrary element; if the multiset is empty, this

operation is null.

V-operations: These are operations that return values but do not change the state.

Boolean: empty(): returns true if and only if the multiset is empty.

integer: size(): returns the number of distinct elements.

integer: multisize(): returns the multisize of the multiset.

Boolean: search(itemtype x): tells whether x is in the multiset.

integer: multisearch(itemtype x): gives the multiplicity of x.

165

itemtype: choose(): returns an arbitrary element of the multiset.

itemtype* list(): lists the elements of the multiset.

itemtype* list(integer n): list the elements of the multiset with a multiplicity greater than or

equal to n.

itemtype: least(): returns an element with minimal multiplicity.

itemtype: most(): returns an element with maximal multiplicity.

itemtype: smallest(): returns a smallest element.

itemtype: largest(): returns a largest element.

6. List ADT:

A list ADT stores and retrieves elements in a linearly ordered structure. We let the list be

defined by the following operations.

O-operations: These are operations that alter the state of the ADT but produce no visible

output.

init: this operation initializes or re-initializes the list to empty.

insertlast (itemtype x): this operation inserts x at the end of the list.

insertfirst (itemtype x): this operation inserts x at the beginning of the list.

insertat (itemtype x, integer n): if the size of the list allows, this operation inserts x at

position n; else it does not change the list.

deletelast (): this operation deletes the element at the end of the list.

deletefirst (): this operation deletes the element at the beginning of the list.

deleteat (integer n): if the size of the list allows, this operation deletes the element at position

n; else it does not change the list.

V-operations: These are operations that return values but do not change the state.

boolean: empty(): returns true if and only if the list is empty.

integer: size(): returns the number of elements in the list.

boolean: search(itemtype x): tells whether x is in the list.

integer: multisearch(itemtype x): gives the multiplicity of x in the list.

itemtype: choose(): returns an arbitrary element of the list.

itemtype: first(): returns the first element in the list.

itemtype: last(): returns the last element in the list.

itemtype: smallest(): returns a smallest element.

itemtype: largest(): returns a largest element.

166

APPENDIX -B

THE SPECIFICATIONS OF ABSTRACT DATA TYPES

1. SPECIFICATION OF SEQUENCE

We discuss how to represent the specification of a sequence, in the same way that we

wrote the specification of stack and queue. We represent in turn, the input space (from which

we infer the set of input histories), then the output space, then the relation, which we denote

by sequence.

1. Input Space. We let X be defined as:

X = {init, deletehead, deletelast, head, last, length, empty} ∪ {puthead, putlast} ×

itemtype.

We partition this set into OX = {init, deletehead, deletelast, puthead, putlast} and VX = {head,

last, length, empty}. We let H be the set of sequences of elements of X.

2. Output Space. We let the output space be defined as:

Y = (itemtype ∪ {error}) ∪ integer ∪ Boolean.

1. Axioms. We propose the following axioms:

 Head Axioms

o sequence (init.head)= error

Invoking head on an empty sequence returns an error.

o sequence (init.h.putop(_)*.puthead(a).head)= a

Where putop(_)* is any puthead or putlast operation including zero(no operation).

Interpretation: Invoking head on a non empty sequence returns the element at the

beginning (head) of the sequence.

o sequence(init.h.puthead(a).putlast(_)*.head)=a

Where putlast(_)* is any putlast operation including zero. Interpretation: Invoking

head on a non empty sequence returns the element at the beginning (head) of the

sequence.

 Last Axioms

o sequence (init.last)= error

Invoking last on an empty sequence returns an error.

o sequence (init.h.putop(_)*.putlast(a).last) = a

167

Invoking last on a non empty sequence returns the element at the end of the

sequence.

o sequence(init.h.putlast(a).puthead(_)*.last) = a

Where puthead(_)* is any puthead operation including zero. Interpretation:

Invoking last on a non empty sequence returns the element at the end of the

sequence.

 Length Axiom

o sequence(init.length) = 0

The length of an empty sequence is zero.

 Empty Axioms

o sequence(init.empty)= true

An initial sequence is empty.

o sequence(init.putop(a).empty)= false

A sequence in which an element has been putted on it is not empty.

2. Rules. We propose the following rules.

 Init Rule

o sequence(h.init.h’) = sequence(init.h’)

The init operation reinitializes the sequence, i.e. renders all past input history

irrelevant.

 Init Delete Rules

o sequence(init.deletehead.h) = sequence(init.h)

A deletehead operation executed on an empty sequence has no effect.

o sequence(init.deletelast.h) = sequence(init.h)

A deletelast operation executed on an empty sequence has no effect.

 Puthead Delete Rules

o sequence(init.h.puthead(a).deletehead.h+) = sequence(init.h.h+)

A deletehead operation removes the first element putted in the sequence.

o sequence(init.puthead(a).deletelast.h+) = sequence(init.h+)

A deletelast operation removes the first element putted in the sequence if and only

if there are no other elements than it.

 Putlast Delete Rules

o sequence(init.h.putlast(a).deletelast.h+) = sequence(init.h.h+)

A deletelast operation removes the last element putted in the sequence.

o sequence(init.putlast(a).deletehead.h+) = sequence(init.h+)

A deletehead operation removes the last element putted in the sequence if and

only if there are no other elements than it.

168

 Length Rule

o sequence(init.h.putop(a).length) =1+ sequence(init.h.length)

Putop() increases the size of the sequence by 1.

 Empty Rules

o sequence(init.h.putop(a).h’.empty) sequence(init.h.h’.empty)

o sequence(init.h.empty) sequence(init.h.deletehead.empty)

o sequence(init.h.empty) sequence(init.h.deletelast.empty)

Removing any put operation or adding a delete operation to the input history of a

sequence makes it more empty.

 VX-Operation Rules

o sequence(init.h.head.h+) = sequence(init.h.h+)

o sequence(init.h.last.h+) = sequence(init.h.h+)

o sequence(init.h.length.h+) = sequence(init.h.h+)

o sequence(init.h.empty.h+) = sequence(init.h.h+)

VX operations leave no trace of their passage; once they are serviced and another

follows them, they are forgotten: whether they occurred or did not occur has no

impact on the future behavior of the sequence.

2. SPECIFICATION OF SET

We discuss how to represent the specification of a set, in the same way that we wrote

the specification of sequence above. We represent in turn, the input space (from which we

infer the set of input histories), then the output space, then the relation, which we denote by

set.

1. Input Space. We let X be defined as:

X = {init, search, choose, smallest, largest, list, size, empty} ∪ {insert, remove} ×

itemtype.

We partition this set into OX = {init, insert, remove} and VX = {choose, smallest, largest, list,

size, search, empty}. We let H be the set of sequences of elements of X.

2. Output Space. We let the output space be defined as:

Y = {error} ∪ itemtype ∪ + ∪ - ∪ itemtype* ∪ emptyset ∪ integer ∪ Boolean.

1. Axioms. We propose the following axioms:

 Size Axiom

o set(init.size)= 0

The size of an empty set is zero.

169

 Empty Axioms

o set(init.empty)= true

o set(init.insert(a).empty)= false

An initial set is empty. A set in which an element has been inserted is not empty.

 Search Axiom

o set(init.search(a)) = false

The search of a in an empty set returns false.

 Choose Axioms

o set(init.choose) = error

One cannot choose an element from an empty set.

o set(init.h.insert(a).choose)=a

If a is an element of the set, then it is a possible choose; we will add a

Commutativity rule later to make it possible to choose other elements than the

most recently inserted element.

 List Axiom

o set(init.list) = emptyset

Requesting a list of elements from an empty set returns empty.

 Smallest Axiom

o set(init.smallest) = +.

Plus infinity is the neutral element of operation smallest.

 Largest Axiom

o set(init.largest) = -.

Minus infinity is the neutral element of operation largest.

2. Rules. We propose the following rules.

 Init Rule

o set(h.init.h’) = set(init.h’)

Operation init makes the previous history irrelevant.

 Init Remove Rule

o set(init.remove(a).h) = set(init.h)

A remove operation has no effect on an empty set.

 Insert Remove Rule

o set(init.h.insert(a).remove(a).h+) = set(init.h.h+)

Operation remove cancels the effect of operation insert.

 Size Rule

o if (set(init.h.search(a))) then set(init.h.insert(a).size) = set(init.h.size)

170

else set(init.h.insert(a).size) = 1 + set(init.h.size)

Operation insert(a) increases the size of the set only if element a is not in the set

prior to insertion.

 Search Rule

o set(init.h.insert(a).search(b)) = (a=b) set(init.h.search(b))

If (a=b) then return true (since b is found in the set), else check prior to the

insertion of a.

 List Rule

o set(init.h.insert(a).list) = {a} ∪ set(init.h.list)

If a has been inserted, it should be listed.

 Commutativity Rule

o set(init.h.op1(a).op2(b).h’)=set(init.h.op2(b).op1(a).h’).

where op1 and op2 are any of insert and remove operations and a and b are

distinct. Interpretation: the order of operations of insert and remove of distinct

elements is immaterial.

 Insert Rule

o set(init.h.insert(a).insert(a).h’) = set(init.h.insert(a).h’)

if a is already inserted in the set, it should not be inserted again.

 Smallest Rule

o set(init.h.insert(a).smallest) = MIN(a , set(init.h.smallest))

Inductive argument on the min.

 Largest Rule

o set(init.h.insert(a).largest) = MAX(a , set(init.h.largest))

Inductive argument on the max.

 Empty Rules

o set(init.h.insert(a).h’.empty) set(init.h.h’.empty)

o set(init.h.empty) set(init.h. remove(a).empty)

Removing an insert or adding a remove operation to the input history of a set

makes it more empty.

 VX –Operation Rules

o set(init.h.size.h+) = set(init.h.h+)

o set(init.h.empty.h+) = set(init.h.h+)

o set(init.h.search.h+) = set(init.h.h+)

o set(init.h.choose.h+) = set(init.h.h+)

o set(init.h.list.h+) = set(init.h.h+)

o set(init.h.min.h+) = set(init.h.h+)

171

o set(init.h.max.h+) = set(init.h.h+)

VX operations leave no trace of their passage once they have been passed.

3. SPECIFICATION OF MULTISET

We discuss how to represent the specification of a multiset, in the same way that we

wrote the specification of sequence and set above. We represent in turn, the input space (from

which we infer the set of input histories), then the output space, then the relation, which we

denote by multiset.

1. Input Space. We let X be defined as:

X = {init, removeany, eraseany ,search, multisearch, choose, smallest, largest, list, list(n),

size, multisize, empty, least, most}∪{insert, insert(x, n), remove, remove(x, n), removeall}×

itemtype. We partition this set into OX = {init, insert, insert(x, n), remove, remove(x, n),

removeall, removeany, eraseany } and VX = { choose, least, most , smallest, largest, list,

list(n), size, multisize, multisearch, empty, search }. We let H be the set of sequences of

elements of X.

2. Output Space. We let the output space be defined as:

Y = {error} ∪ itemtype ∪ + ∪ - ∪ itemtype* ∪ emptymultiset ∪ integer ∪ Boolean.

1. Axioms. We propose the following axioms:

 Size Axiom

o multiset(init.size)= 0

The size of an empty multiset is zero.

 Multisize Axiom

o multiset(init.multisize)= 0

The multisize of an empty multiset is zero.

 Empty Axioms

o multiset(init.empty)= true

An initial multiset is empty.

o multiset(init.insertop(a).empty)= false

Where insertop() is any insert or insert(x, n) operation. Interpretation: A multiset

in which an element has been inserted is not empty.

 Search Axiom

o multiset(init.search(a))= false

The search of a in an empty multiset returns false.

 Multisearch Axiom

o multiset(init.multisearch(a))= 0

172

Requesting the multiplicity of an element a in an empty multiset returns zero.

 Choose Axioms

o multiset(init.choose) = error

One cannot choose an element from an empty multiset.

o multiset(init.h.insertop(a).choose)=a

If a is an element of the multiset, then it is a possible choose; we will add a

Commutativity rule later to make it possible to choose other elements than the

most recently inserted element.

 List Axiom

o multiset(init.list) = emptymultiset

Requesting a list of elements from empty multiset returns empty.

 List(n) Axiom

o multiset(init.list(n)) = emptymultiset

Requesting a list of elements with a multiplicity greater than or equal to n from

an empty multiset returns empty.

 Smallest Axiom

o multiset(init.smallest)= +

Plus infinity is the neutral element of operation smallest.

 Largest Axiom

o multiset(init.largest)= -

Minus infinity is the neutral element of operation largest.

 Least Axioms

o multiset (init.least)= error

Requesting the element with the minimal multiplicity from an empty multiset

returns error.

o multiset (init.insertop(a).insertop(_)*. least)= a , (_)*

where insertop(_)*is any insert operation including zero(no operation).

Interpretation: if more than one element has the same multiplicity that is minimal

one then Invoking least returns all this elements.

 Most Axioms

o multiset (init.most)= error

Requesting the element with the maximum multiplicity from an empty multiset

returns error.

o multiset (init.insertop(a).insertop(_)*.most)= a , (_)*

if more than one element has the same multiplicity that is maximum one then

Invoking most returns all this elements.

173

2. Rules. We propose the following rules.

 Init Rule

o multiset (h.init.h’) = multiset (init.h’)

Operation init makes the previous history irrelevant.

 Init Remove Rules

o multiset (init.remove(a).h) = multiset (init.h)

o multiset (init.remove(a, n).h) = multiset (init.h)

o multiset (init.removeall(a).h) = multiset (init.h)

o multiset (init.removeany.h) = multiset (init.h)

o multiset (init.eraseany.h) = multiset (init.h)

A remove operation has no effect on an empty multiset.

 Insert Remove Rules

o multiset (init.h.insert(a).remove(a).h+) = multiset (init.h.h+)

Operation remove cancels the effect of operation insert.

o multiset (init.h.insert(a, n).remove(a).h+) = multiset (init.h.insert(a,n-1).h+)

Operation remove reduce the multiplicity of an element a by 1.

 Insert Remove(x, n) Rule

o If (multiset (init.h.multisearch(a)) <= n) then

multiset (init.h.insertop(a)m.remove(a, n).h+) = multiset (init.h.h+)

else multiset (init.h.insertop(a)m.remove(a, n).h+) =

multiset (init.h.insertop(a)m-n .h+)

Where insertop(a)m is any insert operation of element a repeated m times.

Interpretation: if the multiplicity of an element a is less than or equal n then the

operation remove(a, n) deletes all instances of a else it reduce its multiplicity by

n.

 Insert Removeall Rule

o If (multiset (init.h.search(a)) then

multiset (init.h.insertop(a)*.removeall(a).h+) = multiset (init.h.h+)

else multiset (init.h.insertop(_)*.removeall(a).h+) =

multiset(init.h.insertop(_)*.h+)

Operation removeall deletes all instances of an element a if it is inserted in the

multiset else it has no effect.

 Insert Removeany Rules

o multiset (init.h.insert(a).removeany.h+) = multiset (init.h.h+)

Operation removeany deletes an arbitrary element of multiset.

o multiset (init.h.insert(a, n).removeany.h+) = multiset (init.insert(a, n-1).h.h+)

174

Operation removeany deletes an arbitrary element of multiset, reducing its

multiplicity by 1.

 Insert Eraseany Rule

o multiset (init.h.insertop(a).eraseany.h+) = multiset (init.h.h+)

Operation eraseany removes all instances of an arbitrary element of multiset.

 Size Rule

o if (multiset(init.h.search(a)) then

multiset(init.h.insertop(a).size)=multiset(init.h.size)

else multiset(init.h.insertop(a).size) = 1 + multiset(init.h.size).

Any insert() operation increases the size of the multiset by 1 if and only if

element a is not in the multiset prior to insertion.

 Multisize Rules

o multiset (init.h.insert(a).multisize) = 1+ multiset (init.h.multisize)

Operation insert() increases the size of the multiset by 1 if element a is in the

multiset prior to insertion or not.

o multiset (init.h.insert(a, n).multisize) = n+ multiset(init.h.multisize)

Operation insert(x, n) increases the size of the multiset by n if element a is in the

multiset prior to insertion or not.

 Search Rule

o multiset(init.h.insertop(a).search(b)) = (a=b) multiset(init.h.search(b))

If (a=b) then return true (since b is found in the multiset), else check prior to the

insertion of a.

 Multisearch Rules

o multiset(init.h.insert(a).insertop(_)*.multisearch(a)) = 1 +

multiset(init.h.insertop(_)*.multisearch(a))

Operation insert(a) increases the multiplicity of the element a by 1 if the element

a is already inserted in the multiset.

o multiset(init.h.insert(a, n).insertop(_)*.multisearch(a)) = n +

multiset(init.h.insertop(_)*.multisearch(a))

Operation insert(a, n) increases the multiplicity of the element a by n if the

element a is already inserted in the multiset.

o multiset(init.h. insertop(b).multisearch(a)) = multiset(init.h.multisearch(a))

searching a non-existing element in the multiset will return nothing.

 List Rules

o multiset (init.h.insert(a).list) = {a} ∪ multiset (init.h.list)

If a has been inserted, it should be listed.

175

o multiset (init.h.insert(a, n).list) = {a : n} ∪ multiset (init.h.list)

If a has been inserted n times, it should be listed n times.

 List(n) Rule

o if (multiset(init.h.multisearch(a)) >= n) then

multiset(init.h.insertop(a).list(n)) = {a} ∪ multiset (init.h.list(n))

else multiset (init.h.insertop(a).list(n)) = multiset (init.h.list(n))

If a has been inserted many times that are greater than or equal to n ,then it

should be listed.

 Commutativity Rule

o multiset(init.h.op1(a).op2(b).h’)=multiset(init.h.op2(b).op1(a).h’)

Where op1 and op2 are any of insert and remove operations and a and b are

distinct. Interpretation: the order of operations of insert and remove of distinct

elements is immaterial.

 Smallest Rule

o multiset(init.h.insertop(a).smallest) = MIN(a , multiset(init.h.smallest))

Inductive argument on the min.

 Largest Rule

o multiset(init.h.insertop(a).largest) = MAX(a , multiset(init.h.largest))

Inductive argument on the max.

 Least Rule

o If (multiset(init.h.multisearch(a)) < multiset(init.h.multisearch(b))) then

multiset(init.h.insertop(a).insertop(b).least)= multiset (init.h.insertop(a).least)

else

If (multiset(init.h.multisearch(a)) = multiset(init.h.multisearch(b))) then

multiset(init.h.insertop(a).insertop(b).least)= multiset (init.h.insertop(a)

insertop(b).least)

else multiset(init.h.insertop(a).insertop(b).least)= multiset(init.h.insertop(b).least)

 Most Rule

o If (multiset(init.h.multisearch(a)) > multiset(init.h.multisearch(b)) then

multiset(init.h.insertop(a).insertop(b).most) = multiset (init.h.insertop(a).most)

else

If (multiset(init.h.multisearch(a)) = multiset(init.h.multisearch(b)) then

multiset(init.h.insertop(a).insertop(b).most)=

multiset(init.h.insertop(a).insertop(b).most)

else multiset(init.h.insertop(a).insertop(b).most)=multiset(init.h.insertop(b).most)

176

 Empty Rules

o multiset (init.h.insertop(a).h’.empty) multiset (init.h.h’.empty)

o multiset (init.h.empty) multiset (init.h.remove(a).empty)

o multiset (init.h.empty) multiset (init.h. remove(a, n).empty)

o multiset (init.h.empty) multiset (init.h. removeall(a).empty)

o multiset (init.h.empty) multiset (init.h. removeany.empty)

o multiset (init.h.empty) multiset (init.h. eraseany.empty)

Removing any insert or adding any remove operations to the input history of a

multiset makes it more empty.

 VX– Operation Rules

o multiset (init.h.size.h+) = multiset (init.h.h+)

o multiset (init.h.multisize.h+) = multiset (init.h.h+)

o multiset (init.h.empty.h+) = multiset (init.h.h+)

o multiset (init.h.search(a).h+) = multiset (init.h.h+)

o multiset (init.h.multisearch(a).h+) = multiset (init.h.h+)

o multiset (init.h.choose.h+) = multiset (init.h.h+)

o multiset (init.h.list.h+) = multiset (init.h.h+)

o multiset (init.h.list(n).h+) = multiset (init.h.h+)

o multiset (init.h.least.h+) = multiset (init.h.h+)

o multiset (init.h.most.h+) = multiset (init.h.h+)

o multiset (init.h.smallest.h+) = multiset (init.h.h+)

o multiset (init.h.largest.h+) = multiset (init.h.h+)

VX operations leave no trace of their passage once they have been passed.

4. SPECIFICATION OF LIST

We discuss how to represent the specification of a list, in the same way that we wrote

the specification of sequence, set and multiset above. We represent in turn, the input space

(from which we infer the set of input histories), then the output space, then the relation, which

we denote by list.

1. Input Space. We let X be defined as:

X = {init, deletefirst, deletelast, deleteat, search, multisearch, choose, first, last, smallest,

largest, size, empty} ∪ { insertlast, insertfirst, insertat }× itemtype. We partition this set into

OX = {init, insertlast, insertfirst, insertat, deletefirst, deletelast, deleteat} and VX = {choose,

177

first, last, smallest, largest, size, multisearch, empty, search}. We let H be the set of sequences

of elements of X.

2. Output Space. We let the output space be defined as:

Y = {error} ∪ itemtype ∪ + ∪ - ∪ integer ∪ Boolean.

1. Axioms. We propose the following axioms:

 Size Axiom

o list(init.size)= 0

The size of an empty list is zero.

 Empty Axioms

o list(init.empty)= true

An initial list is empty.

o list(init.insertlast(a).empty)= false

A list in which an element has been inserted is not empty.

 Search Axiom

o list(init.search(a))= false

The search of a in an empty list returns false.

 Multisearch Axiom

o list(init.multisearch(a))= 0

Requesting the multiplicity of an element a in an empty list returns zero.

 Choose Axioms

o list(init.choose) = error

One cannot choose an element from an empty list.

o list(init.h.insertlast(a).choose)=a

If a is an element of the list, then it is a possible choose; we will add a

Commutativity rule later to make it possible to choose other elements than the

most recently inserted element.

 First Axioms

o list(init.first)= error

Invoking first on an empty list returns an error.

o list(init.insertlast(a).insertlast(_)*.first)= a

Invoking first on a non empty list returns the first element inserted into the list.

 Last Axioms

o list(init.last)= error

Invoking last on an empty list returns an error.

o list(init.insertlast(_)*.insertlast(a).last)= a

Invoking last on a non empty list returns the last element inserted into the list.

178

 Smallest Axiom

o list(init.smallest) = +

Plus infinity is the neutral element of operation smallest.

 Largest Axiom

o list(init.largest) = -

Minus infinity is the neutral element of operation largest.

2. Rules. We propose the following rules.

 Init Rule

o list(h.init.h’) = list(init.h’)

Operation init makes the previous history irrelevant.

 Init Delete Rules

o list(init.deletefirst.h) = list(init.h)

o list(init.deletelast.h) = list(init.h)

o list(init.deleteat(n).h) = list(init.h)

Any delete operation has no effect on an empty list.

 Insertlast Delete Rules

o list(init.insertlast(a).insertlast(_)*.deletefirst.h+) = list(init.insertlast(_)*.h+)

Operation deletefirst remove the first element in the list.

o list(init.insertlast(_)*.insertlast(a).deletelast.h+) = list(init.insertlast(_)*.h+)

Operation deletelast remove the last element in the list.

o If (list(init.h.h’.size) >= n) then

list(init.h.insertlast(a).deleteat(n).h’) = list(init.h.h’)

else list(init.h.insertlast(a).deleteat(n).h’) = list(init.h.insertlast(a).h’)

If the size of the list allows, operation deleteat(n) remove the element at the

position n in the list, else it has no effect.

 Search Rule

o list(init.h.insertlast(a).search(b))= (a=b) list(init.h.search(b))

If (a=b) then return true (since b is found in the list), else check prior to the

insertion of a.

 Multisearch Rules

o list(init.h.insertlast(a).insertlast(_)*.multisearch(a)) = 1 +

list(init.h.insertlast(_)*.multisearch(a))

Operation insertlast() increases the multiplicity of the element a by 1 if the

element a is already inserted in the list.

o list(init.h.insertlast(b).multisearch(a))=list(init.h.multisearch(a))

179

 Size Rule

o list(init.h.insertlast(a).size) = 1+ list(init.h.size)

insertlast() increases the size of the list by 1.

 Convert Rules

o list(init.h.insertfirst(a).h’) = list(init.h.insertlast(a).h’)

o If (list(init.h.h’.size) < n) then

list(init.h.insertat(a, n).h’) = list(init.h.h’)

else list(init.h.insertat(a, n).h’) = list(init.h.insertlast(a).h’)

 Smallest Rule

o list(init.h.insertlast(a).smallest) = MIN(a , list(init.h.smallest))

Inductive argument on the min.

 Largest Rule

o list(init.h.insertlast(a).largest) = MAX(a , list(init.h.largest))

Inductive argument on the max.

 Empty Rules

o list(init.h.insertlast(a).h’.empty) list(init.h.h’.empty)

o list(init.h.empty) list(init.h. deletefirst.empty)

o list(init.h.empty) list(init.h. deletelast.empty)

o list(init.h.empty) list(init.h. deleteat(n).empty)

Removing insert or adding any delete operations to the input history of a list

makes it more empty.

 VX–Operation Rules

o list(init.h.size.h+) = list(init.h.h+)

o list(init.h.empty.h+) = list(init.h.h+)

o list(init.h.search(a).h+) = list(init.h.h+)

o list(init.h.multisearch(a).h+) = list(init.h.h+)

o list(init.h.choose.h+) = list(init.h.h+)

o list(init.h.first.h+) = list(init.h.h+)

o list(init.h.last.h+) = list(init.h.h+)

o list(init.h.smallest.h+) = list(init.h.h+)

o list(init.h.largest.h+) = list(init.h.h+)

VX operations leave no trace of their passage once they have been passed.

180

APPENDIX -C

THE VALIDATION DATA FOR ABSTRACT DATA TYPES

1. THE VALIDATION DATA FOR QUEUE DATA TYPE

1. queue(init.enqueue(a).enqueue(b).front.dequeue.size) = 1

={ by virtue of VX-op rule }

queue(init.enqueue(a).enqueue(b).dequeue.size)

={ by virtue of enqueue dequeue rule }

queue(init.enqueue(b).size)

={ by virtue of the size rule, with h=< > }

1 + queue(init.size)

={ by virtue of the size axiom}

1 + 0

= {arithmetic}

1. QED

2. queue(init.enqueue(a).dequeue.enqueue(b).enqueue(c).empty.rear) = c

={ by virtue of VX-op rule }

queue(init.enqueue(a).dequeue.enqueue(b).enqueue(c).rear)

={ by virtue of enqueue dequeue rule, with enqueue(_)*= < > }

queue(init.enqueue(b).enqueue(c).rear)

={ by virtue of the second rear axiom}

c. QED

3. queue(init.enqueue(a).enqueue(b).front.init.dequeue.enqueue(a).dequeue.size) = 0

={ by virtue of init rule }

queue(init.dequeue.enqueue(a).dequeue.size)

={ by virtue of init dequeue rule }

queue(init.enqueue(a).dequeue.size)

={ by virtue of enqueue dequeue rule, with enqueue(_)*= < > }

queue(init.size)

={ by virtue of size axiom }

0. QED

4. queue(init.enqueue(a).enqueue(b).front.init.dequeue.enqueue(a).dequeue.empty.empty)=

true

={ by virtue of init rule }

181

queue(init.dequeue.enqueue(a).dequeue.empty.empty)

={ by virtue of init dequeue rule }

queue(init.enqueue(a).dequeue.empty.empty)

={ by virtue of VX-op rule }

queue(init.enqueue(a).dequeue.empty)

={ by virtue of enqueue dequeue rule, with enqueue(_)*= < > }

queue(init.empty)

={ by virtue of the first empty axiom }

true. QED

5. queue(init.enqueue(a).enqueue(b).front.init.dequeue.dequeue.size.enqueue(c).size.front) =

c

={ by virtue of init rule }

queue(init.dequeue.dequeue.size.enqueue(c).size.front)

={ by virtue of VX-op rule }

queue(init.dequeue.dequeue.enqueue(c).front)

={ by virtue of init dequeue rule, applied twice }

queue(init.enqueue(c).front)

={ by virtue of the second front axiom, with enqueue(_)*= < > }

c. QED

6. queue(init.enqueue(a).enqueue(b).front.init.dequeue.dequeue.init.size.front) = error

={ by virtue of init rule, applied twice}

queue(init.size.front)

={ by virtue of VX-op rules }

queue(init.front)

={ by virtue of the first front axiom}

error. QED

2. THE VALIDATION DATA FOR SEQUENCE DATA TYPE

1. sequence(init.puthead(a).puthead(b).putlast(c).deletelast.puthead(d).empty) = false

={ by virtue of the first putlast delete rule, with h=<puthead(a).puthead(b) }

sequence(init.puthead(a).puthead(b).puthead(d).empty)=

{ by virtue of the first empty rule , with h=<puthead(a) > ,h’=< puthead(d) >}

sequence(init.puthead(a).puthead(d).empty)

={ by virtue of the first empty rule , with h=<puthead(a)> ,h’=<>}

sequence(init.puthead(a).empty)

={ by virtue of the second empty axiom}

182

false. QED

2. sequence(init.puthead(a).puthead(b).putlast(c).init.puthead(d).length) = 1

={ by virtue of the init rule }

sequence(init.puthead(d).length)

={ by virtue of the length rule , with h=<> }

1+ sequence(init.length)

={ by virtue of the length axiom}

1 + 0

= {arithmetic}

1. QED

3. sequence(init.puthead(a).puthead(b).init.putlast(c).puthead(d).head) = d

={ by virtue of the init rule }

sequence(init.putlast(c).puthead(d).head)

={ by virtue of the second head axiom}

d. QED

4. sequence(init.puthead(a).puthead(b).init.putlast(c).puthead(d).Last) = c

={ by virtue of the init rule }

sequence(init.putlast(c).puthead(d).Last)

={ by virtue of the third last axiom }

c. QED

5. sequence(init.puthead(a).puthead(b).init.putlast(c).puthead(d).deletehead.last) = c

={ by virtue of the init rule }

sequence(init.putlast(c).puthead(d).deletehead.last)

={ by virtue of the first puthead delete rule, with h = <putlast(c) > }

sequence(init.putlast(c).last)

={ by virtue of the second last axiom }

c. QED

6. sequence(init.puthead(a).puthead(b).puthead(c).deletehead.deletehead.deletehead.

puthead(d).putlast(e).deletelast.head) = d

={ by virtue of the first puthead delete rule ,applied three times }

sequence(init.puthead(d).putlast(e).deletelast.head)

={ by virtue of the first putlast delete rule, with h = < puthead(d) >}

sequence(init.puthead(d).head)

={ by virtue of the second head axiom}

d. QED

183

7. sequence(init.puthead(a).head.puthead(b).length.puthead(c).last.deletehead.deletehead.

empty.deletehead.length) = 0

={ by virtue of VX-op rules }

sequence(init.puthead(a).puthead(b).puthead(c).deletehead.deletehead.deletehead. length)

={ by virtue of the first puthead delete rule ,applied three times }

sequence(init.length)

={ by virtue of the length axiom}

0. QED

8. sequence(init.puthead(a).puthead(b).puthead(c).deletehead.deletehead.deletehead.

deletelast.empty) = true

={ by virtue of the first puthead delete rule ,applied three times }

sequence(init.deletelast.empty)

={ by virtue of the init delete rule}

sequence(init.empty)

={ by virtue of the first empty axiom}

true. QED

3. THE VALIDATION DATA FOR SET DATA TYPE

1. set(init.insert(a).insert(b).remove(a).insert(c).init.empty) = true

= {by virtue of init rule}

set(init.empty)

= {by virtue of first empty axiom}

true. QED

2. set(init.insert(a).insert(b).remove(b).remove(a).insert(a).empty) = false

= {by virtue of the insert remove rule, with h = < insert(a) >}

set(init.insert(a).remove(a).insert(a).empty)

= {by virtue of the insert remove rule, with h = < >}

set(init.insert(a).empty)

= {by virtue of second empty axiom}

false. QED

set(init.insert(a).insert(b).remove(a).search(a).remove(b).choose.size) = 0

= {by virtue of VX-op rule}

set(init.insert(a).insert(b).remove(a).remove(b).size)

= {by virtue of Commutativity rule, with h = < >}

set(init.insert(b).insert(a).remove(a).remove(b).size)

= {by virtue of insert remove rule, with h = < insert(b) >}

184

set(init.insert(b).remove(b).size)

= {by virtue of the insert remove rule, with h = < >}

set(init.size)

= {by virtue of size axiom}

0. QED

3. set(insert(a).list.insert(b).init.insert(a).insert(b).insert(c).remove(a).empty.insert(a).size) =

3

= {by virtue of init rule}

set(init.insert(a).insert(b).insert(c).remove(a).empty.insert(a).size)

= {by virtue of VX-op rule}

set(init.insert(a).insert(b).insert(c).remove(a).insert(a).size)

= {by virtue of Commutativity rule, with h = < >}

set(init.insert(b).insert(a).insert(c).remove(a).insert(a).size)

= {by virtue of Commutativity rule, with h = < insert(b)>}

set(init.insert(b).insert(c).insert(a).remove(a).insert(a).size)

= {by virtue of insert remove rule, with h = < insert(b).insert(c)>}

set(init.insert(b).insert(c).insert(a).size)

= {by virtue of size rule, with h=< insert(b).insert(c) >}

1 + set(init.insert(b).insert(c).size)

= {by virtue of size rule, with h=< insert(b) >}

1 + 1 + set(init.insert(b).size)

= {by virtue of size rule, with h=<>}

1 + 1 + 1 + set(init.size)

= {by virtue of size axiom}

1 + 1 + 1 + 0

= {arithmetic}

3. QED

4. set(init.insert(a).insert(b).remove(a).insert(c).remove(b).insert(a).search(a)) = true

= {by virtue of Commutativity rule, with h = < >}

set(init.insert(b).insert(a).remove(a).insert(c).remove(b).insert(a).search(a))

= {by virtue of insert remove rule, with h=< insert(b) >}

set(init.insert(b).insert(c).remove(b).insert(a).search(a))

= {by virtue of Commutativity rule, with h = < >}

set(init.insert(c).insert(b).remove(b).insert(a).search(a))

= {by virtue of insert remove rule, with h=< insert(c) >}

set(init.insert(c).insert(a).search(a))

185

= {by virtue of the search rule, with h = < insert(c) >}

true. QED

5. set(insert(a).insert(b).remove(b).choose.init.insert(a).insert(b).empty.remove(b). choose) =

a

= {by virtue of init rule}

set(init.insert(a).insert(b).empty.remove(b).choose)

= {by virtue of VX-op rule}

set(init.insert(a).insert(b).remove(b).choose)

= {by virtue of the insert remove rule, with h = <insert(a) >}

set(init.insert(a).choose)

= {by virtue of second choose axiom, with h = <>}

a. QED

6. set(init.insert(a).insert(b).insert(c).smallest.insert(d).remove(b).remove(d).list) = {a, c}

= {by virtue of VX-op rule}

set(init.insert(a).insert(b).insert(c).insert(d).remove(b).remove(d).list)

= {by virtue of Commutativity rule, with h = < insert(a) >}

set(init.insert(a).insert(c).insert(b).insert(d).remove(b).remove(d).list)

= {by virtue of Commutativity rule, with h = < insert(a).insert(c) >}

set(init.insert(a).insert(c).insert(d).insert(b).remove(b).remove(d).list)

= {by virtue of insert remove rule, with h=< insert(a).insert(c).insert(d)>}

set(init.insert(a).insert(c).insert(d).remove(d).list)

= {by virtue of the insert remove rule with h=< insert(a).insert(c) >}

set(init.insert(a).insert(c).list)

= {by virtue of Commutativity rule, with h = < >}

set(init.insert(c).insert(a).list)

= {by virtue of list rule, with h=< insert(c) >}

{a} set(init.insert(c).list)

= {by virtue of list rule, with h=< >}

{a} {c} set(init.list)

= {by virtue of the list axiom}

{a} {c} emptyset

= {set theory}

{a ,c}. QED

7. set(init.insert(a).insert(a).remove(a).insert(c).remove(c).insert(a).list) = {a}

= {by virtue of insert rule, with h=< >}

set(init.insert(a).remove(a).insert(c).remove(c).insert(a).list)

186

= {by virtue of insert remove rule, with h = < >}

set(init.insert(c).remove(c).insert(a).list)

= {by virtue of insert remove rule, with h = < >}

set(init.insert(a).list)

= {by virtue of list rule, with h = < >}

{a} set(init.list)

= {by virtue of list axiom}

{a} emptyset

{set theory}

{a}. QED

8. set(init.insert(3).insert(2).choose.insert(1).remove(2).insert(4).remove(1).smallest) = 3

= {by virtue of VX-op rule}

set(init.insert(3).insert(2).insert(1).remove(2).insert(4).remove(1).smallest)

= {by virtue of Commutativity rule, with h=< insert(3) >}

set(init.insert(3).insert(1).insert(2).remove(2).insert(4).remove(1).smallest)

= {by virtue of insert remove rule, with h=< insert(3).insert(1) >}

set(init.insert(3).insert(1).insert(4).remove(1).smallest)

= {by virtue of Commutativity rule, with h=< insert(3) >}

set(init.insert(3).insert(4).insert(1).remove(1).smallest)

= {by virtue of insert remove rule, with h=< insert(3).insert(4) >}

set(init.insert(3).insert(4).smallest)

= {by virtue of smallest rule, with h=< insert(3)>}

Min (4 , set(init.insert(3).smallest))

= {by virtue of smallest rule, with h=< >}

Min (4 , 3, set(init.smallest))

= {by virtue of smallest axiom}

Min (4 , 3, +))

= {arithmetic}

3. QED

9. set(insert(5).insert(7).remove(5).init.insert(4).insert(5).search(7).insert(3).remove(4).

largest)=5

= {by virtue of init rule}

set(init.insert(4).insert(5).search(7).insert(3).remove(4).largest)

= {by virtue of VX-op rule}

set(init.insert(4).insert(5).insert(3).remove(4).largest)

= {by virtue of Commutativity rule, with h=< >}

187

set(init.insert(5).insert(4).insert(3).remove(4).largest)

= {by virtue of Commutativity rule, with h=< insert(5) >}

set(init.insert(5).insert(3).insert(4).remove(4).largest)

= {by virtue of insert remove rule, with h=<insert(5).insert(3)>}

set(init.insert(5).insert(3).largest)

= {by virtue of largest rule, with h=< insert(5) >}

Max (3, set(init.insert(5).largest))

= {by virtue of largest rule, with h=< >}

Max (3, 5, set(init.largest))

= {by virtue of largest axiom}

Max (3, 5, -)

5. QED

4. THE VALIDATION DATA FOR MULTISET DATA TYPE

1. multiset(init.insert(a).insert(b).insert(c,3).insert(b).remove(a).removeall(b).remove(c,2).

empty) = false

= {by virtue of Commutativity rule, with h= < >}

multiset(init.insert(b).insert(a).insert(c,3).insert(b).remove(a).removeall(b).remove(c,2).

empty)

= {by virtue of Commutativity rule, with h= < insert(b) >}

multiset(init.insert(b).insert(c,3).insert(a).insert(b).remove(a).removeall(b).remove(c,2).

empty)

= {by virtue of Commutativity rule, with h= < insert(b).insert(c,3) >}

multiset(init.insert(b).insert(c,3).insert(b).insert(a).remove(a).removeall(b).remove(c,2).

empty)

= {by virtue of the first insert remove rule, with h=< insert(b).insert(c,3). insert(b)>}

multiset(init.insert(b).insert(c,3).insert(b).removeall(b).remove(c,2).empty)

= {by virtue of the insert removeall rule}

multiset(init.insert(c,3).remove(c,2).empty)

= {by virtue of the insert remove(x,n) rule}

multiset(init.insert(c).empty)

= {by virtue of the second empty axiom}

false. QED

2. multiset(init.insert(a,4).insert(b).eraseany.init.insert(a).insert(a,2).insert(b).removeall(a).

removeany.empty) = true

= {by virtue of init rule}

188

multiset(init.insert(a).insert(a,2).insert(b).removeall(a).removeany.empty)

= {by virtue of Commutativity rule, with h= < insert(a)>}

multiset(init.insert(a).insert(b).insert(a,2).removeall(a).removeany.empty)

= {by virtue of Commutativity rule, with h= < >}

multiset(init.insert(b).insert(a).insert(a,2).removeall(a).removeany.empty)

= {by virtue of the insert removeall rule}

multiset(init.insert(b).removeany.empty)

= {by virtue of the first insert removeany rule, with h=<>}

multiset(init.empty)

= {by virtue of the first empty axiom}

true. QED

3. multiset(init.insert(a,5).insert(b).insert(a).insert(c,3).remove(a).search(a).remove(a).size)

= 3

= {by virtue of VX-op rules}

multiset(init.insert(a,5).insert(b).insert(a).insert(c,3).remove(a).remove(a).size)

= {by virtue of Commutativity rule, with h= < insert(a,5).insert(b) >}

multiset(init.insert(a,5).insert(b).insert(c,3).insert(a).remove(a).remove(a).size)

= {by virtue of the first insert remove rule, with h=< insert(a,5).insert(b). insert(c,3)>}

multiset(init.insert(a,5).insert(b).insert(c,3).remove(a).size)

= {by virtue of Commutativity rule, with h= < >}

multiset(init.insert(b).insert(a,5).insert(c,3).remove(a).size)

= {by virtue of Commutativity rule, with h= < insert(b) >}

multiset(init.insert(b).insert(c,3).insert(a,5).remove(a).size)

= {by virtue of the second insert remove rule, with h=< insert(b).insert(c,3)>}

multiset(init.insert(b).insert(c,3).insert(a,4).size)

= {by virtue of the size rule, with h=< insert(b).insert(c,3) >}

1 + multiset(init.insert(b).insert(c,3).size)

= {by virtue of the size rule, with h=< insert(b) >}

1 + 1 + multiset(init.insert(b).size)

= {by virtue of the size rule, with h=< >}

1 + 1 + 1 + multiset(init.size)

= {by virtue of size axiom}

1 + 1 + 1 + 0

= {arithmetic}

3. QED

189

4. multiset(init.insert(a).insert(b,4).insert(c,3).insert(a).remove(b).remove(c,2).choose.

multisearch(a).size.insert(c).multisize) = 7

= {by virtue of VX-op rules}

multiset(init.insert(a).insert(b,4).insert(c,3).insert(a).remove(b).remove(c,2).insert(c).

multisize)

= {by virtue of Commutativity rule, with h= < insert(a).insert(b,4) >}

multiset(init.insert(a).insert(b,4).insert(a).insert(c,3).remove(b).remove(c,2).insert(c).

multisize)

= {by virtue of Commutativity rule, with h= < insert(a).insert(b,4).insert(a) >}

multiset(init.insert(a).insert(b,4).insert(a).remove(b).insert(c,3).remove(c,2).insert(c).

multisize)

= {by virtue of the insert remove (x,n) rule}

multiset(init.insert(a).insert(b,4).insert(a).remove(b).insert(c).insert(c).multisize)

= {by virtue of Commutativity rule, with h= < insert(a) >}

multiset(init.insert(a).insert(a).insert(b,4).remove(b).insert(c).insert(c).multisize)

= {by virtue of the second insert remove rule, with h =< insert(a).insert(a) >}

multiset(init.insert(a).insert(a).insert(b,3).insert(c).insert(c).multisize)

= {by virtue of the first multisize rule, with h=< insert(a).insert(a). insert(b,3).insert(c)>}

1 + multiset(init.insert(a).insert(a).insert(b,3).insert(c).multisize)

= {by virtue of the first multisize rule, with h=< insert(a).insert(a).insert(b,3) >}

1 + 1 + multiset(init.insert(a).insert(a).insert(b,3).multisize)

= {by virtue of the second multisize rule, with h=< insert(a).insert(a) >}

1 + 1 + 3 + multiset(init.insert(a).insert(a).multisize)

= {by virtue of the first multisize rule, with h=< insert(a) >}

1 + 1 + 3 + 1+ multiset(init.insert(a).multisize)

= {by virtue of the first multisize rule, with h=<>}

1 + 1 + 3 + 1 + 1 + multiset(init.multisize)

= {by virtue of multisize axiom}

1 + 1 + 3 + 1 + 1 + 0

= {arithmetic}

7. QED

5. multiset(init.insert(a,3).insert(b).most.insert(c).removeall(a).insert(b,2).least.insert(c).

search(a)) = false

= {by virtue of VX-op rules}

multiset(init.insert(a,3).insert(b).insert(c).removeall(a).insert(b,2).insert(c).search(a))

= {by virtue of Commutativity rule, with h= < >}

190

multiset(init.insert(b).insert(a,3).insert(c).removeall(a).insert(b,2).insert(c).search(a))

= {by virtue of Commutativity rule, with h= < insert(b) >}

multiset(init.insert(b).insert(c).insert(a,3).removeall(a).insert(b,2).insert(c).search(a))

= {by virtue of the insert removeall rule}

multiset(init.insert(b).insert(c).insert(b,2).insert(c).search(a))

= {by virtue of the search rule}

multiset(init.insert(b).insert(c).insert(b,2).search(a))

= {by virtue of the search rule}

multiset(init.insert(b).insert(c).search(a))

= {by virtue of the search rule}

multiset(init.insert(b).search(a))

= {by virtue of the search rule}

multiset(init.search(a))

= {by virtue of the search axiom}

false. QED

6. multiset(init.insert(a).insert(b,3).insert(c).removeany.search(a).insert(c,5).list.insert(a,6).

remove(b).multisearch(a)) = 7

= {by virtue of VX-op rules}

multiset(init.insert(a).insert(b,3).insert(c).removeany.insert(c,5).insert(a,6).remove(b).

multisearch(a))

= {by virtue of the first insert removeany rule, with h = < insert(a).insert(b,3) >}

multiset(init.insert(a).insert(b,3).insert(c,5).insert(a,6).remove(b).multisearch(a))

= {by virtue of Commutativity rule, with h= < insert(a) >}

multiset(init.insert(a).insert(c,5).insert(b,3).insert(a,6).remove(b).multisearch(a))

= {by virtue of Commutativity rule, with h= < insert(a).insert(c,5) >}

multiset(init.insert(a).insert(c,5).insert(a,6).insert(b,3).remove(b).multisearch(a))

= {by virtue of the first insert remove rule, with h = < insert(a).insert(c,5). insert(a,6) >}

multiset(init.insert(a).insert(c,5).insert(a,6).insert(b,2).multisearch(a))

= {by virtue of the second multisearch rule, with h = < insert(a).insert(c,5)>}

6 + multiset(init.insert(a).insert(c,5).insert(b,2).multisearch(a))

= {by virtue of the first multisearch rule, with h = < >}

6 + 1 + multiset(init.insert(c,5).insert(b,2).multisearch(a))

= {by virtue of the third multisearch rule, with h = < insert(c,5) > }

6 + 1 + multiset(init.insert(c,5).multisearch(a))

= {by virtue of the third multisearch rule, with h = < > }

6 + 1 + multiset(init.multisearch(a))

191

= {by virtue of the multisearch axiom}

6 + 1 + 0

{arithmetic}

7. QED

7. multiset(init.insert(a,3).insert(b,2).insert(c).eraseany.list(2).insert(a).choose) = b

= {by virtue of VX-op rules}

multiset(init.insert(a,3).insert(b,2).insert(c).eraseany.insert(a).choose)

= {by virtue of the insert eraseany rule, with h = <insert(a,3).insert(b,2)>}

multiset(init.insert(a,3).insert(b,2).insert(a).choose)

= {by virtue of the Commutativity rule, with h = <insert(a,3)>}

multiset(init.insert(a,3).insert(a).insert(b,2).choose)

= {by virtue of the second choose axiom, with h = <insert(a,3).insert(a)>}

b. QED

multiset(init.insert(a).insert(b,5).remove(a).removeall(b).init.insert(a,2).insert(b).

insert(c,3).eraseany.list) = {b , c, c, c }

= {by virtue of init rule}

multiset(init.insert(a,2).insert(b).insert(c,3).eraseany.list)

= {by virtue of the Commutativity rule, with h = < >}

multiset(init.insert(b).insert(a,2).insert(c,3).eraseany.list)

= {by virtue of the Commutativity rule, with h = < insert(b) >}

multiset(init.insert(b).insert(c,3).insert(a,2).eraseany.list)

= {by virtue of the insert eraseany rule, with h = <insert(b).insert(c,3)>}

multiset(init.insert(b).insert(c,3).list)

= {by virtue of the Commutativity rule, with h = < >}

multiset(init.insert(c,3).insert(b).list)

= {by virtue of the first list rule, with h=< insert(c,3) >}

{b} multiset(init.insert(c,3).list)

= {by virtue of the second list rule, with h=< >}

{b} {c, c, c } multiset(init.list)

= {by virtue of the list axiom}

{b} {c, c, c } emptymultiset

{set theory}

{b , c, c, c }. QED

8. multiset(init.insert(a,3).insert(b).insert(b).remove(a).insert(c,4).multisearch(a).

remove(c,2). insert(a).remove(b).list(3)) = {a}

= {by virtue of VX-op rules}

192

multiset(init.insert(a,3).insert(b).insert(b).remove(a).insert(c,4).remove(c,2).insert(a).

remove(b).list(3))

= {by virtue of the insert remove(x,n) rule, with h= <insert(a,3).insert(b).insert(b).

remove(a)>}

multiset(init.insert(a,3).insert(b).insert(b).remove(a).insert(c,2).insert(a).remove(b).list(3))

= {by virtue of Commutativity rule, with h = < insert(a,3).insert(b) >}

multiset(init.insert(a,3).insert(b).remove(a).insert(b).insert(c,2).insert(a).remove(b).list(3))

= {by virtue of Commutativity rule, with h = < insert(a,3) >}

multiset(init.insert(a,3).remove(a).insert(b).insert(b).insert(c,2).insert(a).remove(b).list(3))

= {by virtue of the second insert remove rule , with h= < >}

multiset(init.insert(a,2).insert(b).insert(b).insert(c,2).insert(a).remove(b).list(3))

= {by virtue of Commutativity rule, with h = < insert(a,2).insert(b) >}

multiset(init.insert(a,2).insert(b).insert(c,2).insert(b).insert(a).remove(b).list(3))

= {by virtue of Commutativity rule, with h = < insert(a,2).insert(b).insert(c,2) >}

multiset(init.insert(a,2).insert(b).insert(c,2).insert(a).insert(b).remove(b).list(3))

= {by virtue of the first insert remove rule, with h=< insert(a,2).insert(b).insert(c,2).insert(a)>}

multiset(init.insert(a,2).insert(b).insert(c,2).insert(a).list(3))

= {by virtue of the list(n) rule}

{a} multiset(init.insert(b).insert(c,2).list(3))

= {by virtue of the list(n) rule, with h=< insert(b) >}

{a} multiset(init.insert(b).list(3))

= {by virtue of the list(n) rule, with h=< >}

{a} multiset(init.list(3))

= {by virtue of the list(n) axiom}

{a} emptymultiset

= {set theory}

{a}. QED

9. multiset(init.insert(a).insert(b,3).remove(a).insert(c,2).insert(a).remove(b,2).choose.

insert(b).least) = a

= {by virtue of VX-op rules}

multiset(init.insert(a).insert(b,3).remove(a).insert(c,2).insert(a).remove(b,2).insert(b). least)

= {by virtue of Commutativity rule, with h = < insert(a) >}

multiset(init.insert(a).remove(a).insert(b,3).insert(c,2).insert(a).remove(b,2).insert(b). least)

= {by virtue of the first insert remove rule , with h= <>}

multiset(init.insert(b,3).insert(c,2).insert(a).remove(b,2).insert(b).least)

= {by virtue of Commutativity rule, with h = < >}

193

multiset(init.insert(c,2).insert(b,3).insert(a).remove(b,2).insert(b).least)

= {by virtue of Commutativity rule, with h = < insert(c,2) >}

multiset(init.insert(c,2).insert(a).insert(b,3).remove(b,2).insert(b).least)

= {by virtue of the insert remove(x,n) rule}

multiset(init.insert(c,2).insert(a).insert(b).insert(b).least)

= {by virtue of the least rule}

multiset(init.insert(c,2).insert(a).least)

= {by virtue of the least rule}

multiset(init.insert(a).least)

= {by virtue of the second least axiom}

a. QED

10. multiset(init.insert(a,5).insert(b).removeall(a).insert(c,2).insert(a).insert(b,3).search(a).

insert(a,2).eraseany.most) = a, b

= {by virtue of VX-op rules}

multiset(init.insert(a,5).insert(b).removeall(a).insert(c,2).insert(a).insert(b,3).insert(a,2).

eraseany.most)

= {by virtue of Commutativity rule, with h = < >}

multiset(init.insert(b).insert(a,5).removeall(a).insert(c,2).insert(a).insert(b,3).insert(a,2).

eraseany.most)

= {by virtue of the insert removeall rule, with h= < insert(b)>}

multiset(init.insert(b).insert(c,2).insert(a).insert(b,3).insert(a,2).eraseany.most)

= {by virtue of Commutativity rule, with h = < >}

multiset(init.insert(c,2).insert(b).insert(a).insert(b,3).insert(a,2).eraseany.most)

= {by virtue of Commutativity rule, with h = < insert(c,2) >}

multiset(init.insert(c,2).insert(a).insert(b).insert(b,3).insert(a,2).eraseany.most)

= {by virtue of Commutativity rule, with h = < insert(c,2).insert(a) >}

multiset(init.insert(c,2).insert(a).insert(b,3).insert(b).insert(a,2).eraseany.most)

= {by virtue of Commutativity rule, with h = < insert(c,2).insert(a).insert(b,3) >}

multiset(init.insert(c,2).insert(a).insert(b,3).insert(a,2).insert(b).eraseany.most)

= {by virtue of the insert eraseany rule, with=< insert(c,2).insert(a).insert(b,3).insert(a,2)>}

multiset(init.insert(c,2).insert(a).insert(b,3).insert(a,2).most)

= {by virtue of the most rule}

multiset(init.insert(c,2).insert(a).insert(b,3).insert(a,2).most)

= {by virtue of the most rule}

multiset(init.insert(a).insert(b,3).insert(a,2).most)

= {by virtue of the second most axiom}

194

a, b. QED

11. multiset(init.insert(3).insert(2,3).list.remove(2).insert(1,5).multisearch(2).removeall(1).

size.insert(4).smallest) = 2

= {by virtue of VX-op rules}

multiset(init.insert(3).insert(2,3).remove(2).insert(1,5).removeall(1).insert(4).smallest)

= {by virtue of the second insert remove rule, with h= < insert(3) >}

multiset(init.insert(3).insert(2,2).insert(1,5).removeall(1).insert(4).smallest)

= {by virtue of the insert removeall rule, with h= < insert(3).insert(2,2) >}

multiset(init.insert(3).insert(2,2).insert(4).smallest)

= {by virtue of the smallest rule, with h = <insert(3).insert(2,2)>}

Min (4 , multiset(init.insert(3).insert(2,2).smallest))

= {by virtue of the smallest rule, with h = <insert(3) >}

Min (4 , 2, multiset(init.insert(3).smallest))

= {by virtue of the smallest rule, with h = < >}

Min (4 , 2 , 3 , multiset(init.smallest))

= {by virtue of the smallest axiom}

Min (4 , 2 , 3 , +)

{arithmetic}

2. QED

12. multiset(insert(1,3).insert(4).insert(6).init.eraseany.insert(3).insert(5,3).list(2).insert(1).

remove(5,2).choose.insert(2).remove(5).largest) = 3

= {by virtue of init rule}

multiset(init.eraseany.insert(3).insert(5,3).list(2).insert(1).remove(5,2).choose.insert(2).

remove(5).largest)

= {by virtue of the fifth init remove rule}

multiset(init.insert(3).insert(5,3).list(2).insert(1).remove(5,2).choose.insert(2).remove(5).

largest)

= {by virtue of VX-op rules}

multiset(init.insert(3).insert(5,3).insert(1).remove(5,2).insert(2).remove(5).largest)

= {by virtue of Commutativity rule, with h = < insert(3)>}

multiset(init.insert(3).insert(1).insert(5,3).remove(5,2).insert(2).remove(5).largest)

= {by virtue of the insert remove(x,n) rule, with h = < insert(3).insert(1) >}

multiset(init.insert(3).insert(1).insert(5).insert(2).remove(5).largest)

= {by virtue of Commutativity rule, with h = < insert(3).insert(1)>}

multiset(init.insert(3).insert(1).insert(2).insert(5).remove(5).largest)

= {by virtue of the first insert remove rule, with h=< insert(3).insert(1).insert(2)>}

195

multiset(init.insert(3).insert(1).insert(2).largest)

= {by virtue of the largest rule, with h = < insert(3).insert(1) >}

Max (2 , multiset(init.insert(3).insert(1).largest))

= {by virtue of the largest rule, with h = < insert(3) >}

Max (2 , 1 , multiset(init.insert(3).largest))

= {by virtue of the largest rule, with h = < >}

Max (2 , 1 , 3, multiset(init.largest))

= {by virtue of the largest axiom}

Max (2 , 1 , 3 , -)

{arithmetic}

3. QED

5. THE VALIDATION DATA FOR LIST DATA TYPE

1. list(init.insertfirst(a).insertfirst(b).deletelast.size) = 1

= {by virtue of the first convert rule}

list(init.insertlast(b).insertfirst(a).deletelast.size)

= {by virtue of the first convert rule}

list(init.insertlast(b).insertlast(a).deletelast.size)

= {by virtue of the second insertlast delete rule}

list(init.insertlast(b).size)

= {by virtue of the size rule, with h=< >}

1 + list(init.size)

= {by virtue of size axiom}

1 + 0

= {arithmetic}

1. QED

2. list(init.insertfirst(b).insertfirst(a).deletelast.deleteat(1).size) = 0

= {by virtue of the first convert rule}

list(init.insertlast(a).insertfirst(b).deletelast.deleteat(1).size)

= {by virtue of the first convert rule}

list(init.insertlast(a).insertlast(b).deletelast.deleteat(1).size)

= {by virtue of the second insertlast delete rule}

list(init.insertlast(a).deleteat(1).size)

= {by virtue of the third insertlast delete rule, with h= <>}

list(init.size)

= {by virtue of size axiom}

196

0. QED

3. list(init.insertfirst(a).insertfirst(b).deletelast.last) = b

= {by virtue of the first convert rule}

list(init.insertlast(b).insertfirst(a).deletelast.last)

= {by virtue of the first convert rule}

list(init.insertlast(b).insertlast(a).deletelast.last)

= {by virtue of the second insertlast delete rule}

list(init.insertlast(b).last)

= {by virtue of the second last axiom}

b. QED

4. list(init.insertfirst(a).insertfirst(b).insertlast(c).insertat(d,3).deletefirst.deleteat(2).first) = a

= {by virtue of the first convert rule}

list(init.insertlast(b).insertfirst(a).insertlast(c).insertat(d,3).deletefirst.deleteat(2).first)

= {by virtue of the first convert rule}

list(init.insertlast(b).insertlast(a).insertlast(c).insertat(d,3).deletefirst.deleteat(2).first)

= {by virtue of the second convert rule}

list(init.insertlast(b).insertlast(a).insertlast(d).insertlast(c).deletefirst.deleteat(2).first)

= {by virtue of the first insertlast delete rule}

list(init.insertlast(a).insertlast(d).insertlast(c).deleteat(2).first)

= {by virtue of the third insertlast delete rule}

list(init.insertlast(a).insertlast(c).first)

= {by virtue of the second first axiom}

a. QED

5. list(init.insertfirst(a).insertlast(b).insertlast(c).insertlast(d).insertat(a,1).insertat(b,3).last)=

d

= {by virtue of the first convert rule}

list(init.insertlast(a).insertlast(b).insertlast(c).insertlast(d).insertat(a,1).insertat(b,3).last)

= {by virtue of the second convert rule}

list(init.insertlast(a).insertlast(a).insertlast(b).insertlast(c).insertlast(d).insertat(b,3).last)

= {by virtue of the second convert rule}

list(init.insertlast(a).insertlast(a).insertlast(b).insertlast(b).insertlast(c).insertlast(d).last)

= {by virtue of the second last axiom}

d. QED

6. list(insertfirst(a).insertfirst(b).init.insertlast(c).deletefirst.empty) = true

= {by virtue of the init rule}

list(init.insertlast(c).deletefirst.empty)

197

= {by virtue of the first insertlast delete rule}

list(init.empty)

= {by virtue of the first empty axiom}

true. QED

7. list(init.insertfirst(a).init.insertlast(b).last.insertlast(c).deletelast.empty)= false

= {by virtue of the init rule}

list(init.insertlast(b).last.insertlast(c).deletelast.empty)

= {by virtue of the VX-op rules}

list(init.insertlast(b).insertlast(c).deletelast.empty)

= {by virtue of the second insertlast delete rule}

list(init.insertlast(b).empty)

= {by virtue of the second empty axiom}

false. QED

8. list(init.insertfirst(a).insertfirst(b).insertlast(c).insertlast(d).deleteat(3).first.insertat(a,2).

search(c)) = false

= {by virtue of the VX-op rules}

list(init.insertfirst(a).insertfirst(b).insertlast(c).insertlast(d).deleteat(3).insertat(a,2). search(c))

= {by virtue of the first convert rule}

list(init.insertlast(b).insertfirst(a).insertlast(c).insertlast(d).deleteat(3).insertat(a,2). search(c))

= {by virtue of the first convert rule}

list(init.insertlast(b).insertlast(a).insertlast(c).insertlast(d).deleteat(3).insertat(a,2). search(c))

= {by virtue of the third insertlast delete rule}

list(init.insertlast(b).insertlast(a).insertlast(d).insertat(a,2).search(c))

= {by virtue of the third convert rule}

list(init.insertlast(b).insertlast(a).insertlast(a).insertlast(d).search(c))

= {by virtue of the search rule}

list(init.insertlast(b).insertlast(a).insertlast(a).search(c))

= {by virtue of the search rule}

list(init.insertlast(b).insertlast(a).search(c))

= {by virtue of the search rule}

list(init.insertlast(b).search(c))

= {by virtue of the search rule}

list(init.search(c))

= {by virtue of the search axiom}

false. QED

9. list(init.insertlast(a).insertfirst(a).insertlast(b).insertlast(c).deleteat(2).insertat(a,3).

198

multisearch(a)) = 2

= {by virtue of the first convert rule}

list(init.insertlast(a).insertlast(a).insertlast(b).insertlast(c).deleteat(2).insertat(a,3).

multisearch(a))

= {by virtue of the third insertlast delete rule}

list(init.insertlast(a).insertlast(b).insertlast(c).insertat(a,3).multisearch(a))

= {by virtue of the third convert rule}

list(init.insertlast(a).insertlast(b).insertlast(a).insertlast(c).multisearch(a))

= {by virtue of the first multisearch rule, with h= < insertlast(a).insertlast(b)>}

1 + list(init.insertlast(a).insertlast(b).insertlast(c).multisearch(a))

= {by virtue of the first multisearch rule, with h= < >}

1 + 1 + list(init.insertlast(b).insertlast(c)multisearch(a))

= {by virtue of the second multisearch rule}

1 + 1 + list(init.insertlast(b).multisearch(a))

= {by virtue of the second multisearch rule}

1 + 1 + list(init.multisearch(a))

= {by virtue of the multisearch axiom}

1 + 1 + 0

= {arithmetic}

2. QED

10. list(init.insertfirst(a).init.insertlast(b).size.deletelast.insertlast(c).choose)= c

= {by virtue of the init rule}

list(init.insertlast(b).size.deletelast.insertlast(c).choose)

= {by virtue of the VX-op rules}

list(init.insertlast(b).deletelast.insertlast(c).choose)

= {by virtue of the second insertlast delete rule }

list(init.insertlast(c).choose)

= {by virtue of the second choose axiom, with h= < >}

c. QED

11. list(init.insertfirst(2).insertfirst(4).empty.insertlast(3).insertlast(2).deletefirst.deletelast.

smallest) =2

= {by virtue of the VX-op rules}

list(init.insertfirst(2).insertfirst(4).insertlast(3).insertlast(2).deletefirst.deletelast.smallest)

= {by virtue of the first convert rule}

list(init.insertlast(4).insertfirst(2).insertlast(3).insertlast(2).deletefirst.deletelast.smallest)

= {by virtue of the first convert rule}

199

list(init.insertlast(4).insertlast(2).insertlast(3).insertlast(2).deletefirst.deletelast.smallest)

= {by virtue of the first insertlast delete rule}

list(init.insertlast(2).insertlast(3).insertlast(2).deletelast.smallest)

= {by virtue of the second insertlast delete rule}

list(init.insertlast(2).insertlast(3).smallest)

= {by virtue of the smallest rule, with h=< insertlast(2) >}

Min (3, list(init.insertlast(2).smallest))

= {by virtue of the smallest rule, with h=< >}

Min (3 , 2 , list(init.smallest))

= {by virtue of the smallest axiom}

Min (3 , 2 , +)

{arithmetic}

2. QED

12. list(init.insertfirst(4).insertfirst(7).insertlast(2).insertlast(1).deletefirst.largest) = 4

= {by virtue of the first convert rule}

list(init.insertlast(7).insertfirst(4).insertlast(2).insertlast(1).deletefirst.largest)

= {by virtue of the first convert rule}

list(init.insertlast(7).insertlast(4).insertlast(2).insertlast(1).deletefirst.largest)

= {by virtue of the first insertlast delete rule}

list(init.insertlast(4).insertlast(2).insertlast(1).largest)

= {by virtue of the largest rule, with h = < insertlast(4).insertlast(2) >}

Max (1 , list(init.insertlast(4).insertlast(2).largest))

= {by virtue of the largest rule, with h = < insertlast(4) >}

Max (1 , 2, list(init.insertlast(4).largest))

= {by virtue of the largest rule, with h = < >}

Max (1 , 2, 4, list(init.largest))

= {by virtue of the largest axiom}

Max (1 , 2, 4, -)

{arithmetic}

4. QED

200

APPENDIX -D

SPECIFYING ABSTRACT DATA TYPES IN THE SYNTAX OF ALNEELAIN

SPECIFICATION LANGUAGE

1. QUEUE SPECIFICATION:

specification Queue;

type

itemtype : char;

input
vop front: itemtype ,

vop rear: itemtype ,

vop size: integer ,

vop empty: Boolean

oop init, dequeue, enqueue(itemtype)

endinput;

output

itemtype ^ error ^ integer ^ Boolean

endoutput;

variable

a: itemtype,

b: itemtype,

h: inputstar,

hprime: inputstar,

hplus: inputstar;

axioms

 axiom frontAxioms:

Queue(init.front)= error &

Queue(init.enqueue(a).enqueue(b).front)= a,

 axiom rearAxioms:

Queue(init.rear)= error &

Queue(init.enqueue(b).enqueue(a).rear)= a,

 axiom sizeAxiom:

 Queue(init.size)= 0,

 axiom emptyAxioms:

Queue(init.empty)= true &

Queue(init.enqueue(a).empty)= false

endaxioms;

rules

 rule initRule:

Queue(h.init.hprime) = Queue(init.hprime),

 rule initdequeueRule:

Queue(init.dequeue.h) = Queue(init.h),

 rule enqueuedequeueRule:

Queue(init.enqueue(a).enqueue(b).dequeue.hplus)=

Queue(init.enqueue(b).hplus),

rule sizeRule:

Queue(init.h.enqueue(a).size) =1+ Queue(init.h.size),

rule emptyRules:

201

Queue(init.h.enqueue(a).hprime.empty)=>

Queue(init.h.hprime.empty) &

Queue(init.h.empty) => Queue(init.h.dequeue.empty),

rule VopRules:

Queue(init.h.front.hplus) = Queue(init.h.hplus) &

Queue(init.h.rear.hplus) = Queue(init.h.hplus) &

Queue(init.h.size.hplus) = Queue(init.h.hplus) &

Queue(init.h.empty.hplus) = Queue(init.h.hplus)

endrules;

endspecification

2. SEQUENCE SPECIFICATION:

specification Sequence;

input

vop head : char ,

vop last: char ,

vop length: integer,

vop empty: Boolean

oop init, deletehead, deletelast, puthead(char), putlast(char)

endinput;

output

char ^ error ^ integer ^ Boolean

endoutput;

variable

a: char ,

b: char ,

h: inputstar,

hprime: inputstar,

hplus: inputplus;

axioms

 axiom LengthAxiom:

 Sequence(init.length) = 0,

 axiom emptyAxioms:

Sequence(init.empty)= true &

Sequence(init.puthead(a).empty)= false &

Sequence(init.putlast(a).empty)= false ,

axiom headAxioms:

Sequence (init.head)= error &

Sequence (init.h.putlast(b).puthead(a).head)= a &

Sequence (init.h.puthead(b).puthead(a).head)= a &

Sequence (init.h.puthead(a).putlast(b).head)= a ,

axiom lastAxioms:

Sequence (init.last)= error &

Sequence (init.h.putlast(b).putlast(a).last)= a &

Sequence (init.h.puthead(b).putlast(a).last)= a &

Sequence (init.h.putlast(a).puthead(b).last)= a

endaxioms;

rules

 rule initRule:

Sequence(h.init.hprime) = Sequence(init.hprime),

 rule initdeleteRules:

Sequence(init.deletehead.h) = Sequence(init.h) &

Sequence(init.deletelast.h) = Sequence(init.h) ,

202

rule putheaddeleteRules:

 Sequence(init.h.puthead(a).deletehead.hplus)=Sequence(init.h.hplus)&

Sequence(init.puthead(a).deletelast.hplus) = Sequence(init.hplus) ,

rule putlastdeleteRules:

Sequence(init.h.putlast(a).deletelast.hplus)= Sequence(init.h.hplus) &

Sequence(init.putlast(a).deletehead.hplus) = Sequence(init.hplus) ,

rule lengthRule:

Sequence(init.h.putlast(a).length) =1+ Sequence(init.h.length) ,

rule emptyRules:

 Sequence(init.h.puthead(a).hprime.empty)=>

Sequence(init.h.hprime.empty) &

Sequence(init.h.putlast(a).hprime.empty)=>

Sequence(init.h.hprime.empty) &

Sequence(init.h.empty) => Sequence(init.h.deletehead.empty) &

Sequence(init.h.empty) => Sequence(init.h.deletelast.empty) ,

rule VopRules:

Sequence(init.h.head.hplus) = Sequence(init.h.hplus) &

Sequence(init.h.last.hplus) = Sequence(init.h.hplus) &

Sequence(init.h.length.hplus) = Sequence(init.h.hplus) &

Sequence(init.h.empty.hplus) = Sequence(init.h.hplus)

endrules;

endspecification

3. SET SPECIFICATION:

specification Set;

type
itemtype: char;

input
vop choose : itemtype,

vop smallest: itemtype,

vop largest: itemtype,

vop List: itemtypestar,

vop size: integer ,

vop search(itemtype): Boolean,

vop empty : Boolean

oop init, insert(itemtype), remove(itemtype)

endinput;

output

error ^ itemtype ^ plusinfinity ^ minusinfinity ^ emptyset ^ itemtypestar ^

integer ^ Boolean

endoutput;

variable

a: itemtype,

b: itemtype,

h: inputstar,

hprime: inputstar,

hplus: inputplus ;

axioms

 axiom sizeAxiom:

 Set(init.size)= 0,

 axiom emptyAxioms:

Set(init.empty)= true &

203

Set(init.insert(a).empty)= false ,

axiom searchAxiom:

Set(init.search(a)) = false ,

axiom chooseAxioms:

Set(init.choose) = error &

Set(init.h.insert(a).choose)=a ,

axiom ListAxiom:

Set(init.List) = emptyset ,

axiom smallestAxiom :

Set(init.smallest) = plusinfinity ,

axiom largestAxiom:

Set(init.largest) = minusinfinity

endaxioms;

rules

 rule initRule:

Set(h.init.hprime) = Set(init.hprime) ,

 rule initremoveRule:

Set(init.remove(a).h) = Set(init.h) ,

 rule insertremoveRule:

Set(init.h.insert(a).remove(a).hplus) = Set(init.h.hplus) ,

rule sizeRule:

IF(Set(init.h.search(a))) THEN

Set(init.h.insert(a).size) = Set(init.h.size)

ELSE Set(init.h.insert(a).size) = 1 + Set(init.h.size) ,

rule searchRule:

Set(init.h.insert(a).hprime.search(b))=

(a=b) Set(init.h.hprime.search(a)) ,

rule ListRule:

Set(init.h.insert(a).List) = {a} ^ Set(init.h.List) ,

rule commutativityRule:

Set(init.h.insert(a).insert(b).hprime)=

Set(init.h.insert(b).insert(a).hprime) ,

rule insertRule:

Set(init.h.insert(a).insert(a).hprime) = Set(init.h.insert(a).hprime) ,

rule smallestRule:

Set(init.h.insert(a).smallest) = MIN(a , Set(init.h.smallest)) ,

rule largestRule:

Set(init.h.insert(a).largest) = MAX(a , Set(init.h.largest)),

rule emptyRules:

Set(init.h.insert(a).hprime.empty) => Set(init.h.hprime.empty)&

Set(init.h.empty) => Set(init.h. remove(a).empty) ,

rule VopRules:

Set(init.h.size.hplus) = Set(init.h.hplus) &

Set(init.h.empty.hplus) = Set(init.h.hplus) &

Set(init.h.search.hplus) = Set(init.h.hplus) &

Set(init.h.choose.hplus) = Set(init.h.hplus) &

Set(init.h.List.hplus) = Set(init.h.hplus) &

Set(init.h.smallest.hplus) = Set(init.h.hplus) &

Set(init.h.largest.hplus) = Set(init.h.hplus)

endrules;

endspecification

204

4. MULTISET SPECIFICATION:

specification Multiset;

input
vop choose: char,

vop least: char,

vop most: char,

vop smallest : char,

vop largest : char,

vop list : itemtypestar,

vop lists(integer): itemtypestar,

vop size : integer,

vop multisize : integer,

vop multisearch(char): integer,

vop empty : Boolean,

vop search(char): Boolean

oop init, removeany, eraseany, insert(char), insertxn(char, integer),

remove(char) , removexn(char, integer), removeall(char)

endinput;

output

error ^ char ^ plusinfinity ^ minusinfinity ^ emptymultiset ^ itemtypestar ^

integer ^ Boolean

endoutput;

variable

 a: char,

 b: char,

 n: integer,

 m: integer,

h: inputstar,

hprime: inputstar,

hplus: inputplus;

axioms

 axiom sizeAxiom:

Multiset(init.size)= 0 ,

axiom multisizeAxiom:

Multiset(init.multisize)= 0,

axiom emptyAxioms:

Multiset(init.empty)= true &

Multiset(init.insert(a).empty)= false,

axiom searchAxiom:

Multiset(init.search(a))= false ,

axiom multisearchAxiom:

Multiset(init.multisearch(a))= 0,

axiom chooseAxioms:

Multiset(init.choose) = error &

Multiset(init.h.insert(a).choose)=a ,

axiom listAxiom:

Multiset(init.list) = emptymultiset,

axiom listsAxiom:

Multiset(init.lists(n)) = emptymultiset,

axiom smallestAxiom:

Multiset(init.smallest)= plusinfinity,

 axiom largestAxiom:

205

Multiset(init.largest)= minusinfinity,

axiom leastAxioms:

Multiset (init.least)= error &

Multiset (init.insert(a).insert(b).least)= (a ,b) ,

axiom mostAxioms:

Multiset (init.most)= error &

Multiset (init.insert(a).insert(b).most)= (a , b)

endaxioms;

rules

 rule initRule:

Multiset (h.init.hprime) = Multiset (init.hprime),

rule initremoveRules:

Multiset (init.remove(a).h) = Multiset (init.h) &

Multiset (init.removexn(a, n).h) = Multiset (init.h) &

Multiset (init.removeall(a).h) = Multiset (init.h) &

Multiset (init.removeany.h) = Multiset (init.h) &

Multiset (init.eraseany.h) = Multiset (init.h) ,

rule insertremoveRules:

Multiset(init.h.insert(a).remove(a).hplus) = Multiset (init.h.hplus) &

Multiset(init.h.insertxn(a, n).remove(a).hplus) =

Multiset (init.h.insertxn(a,n-1).hplus) ,

rule insertremovexnRule:

IF (Multiset (init.h.multisearch(a)) <= n) THEN

Multiset (init.h.insertxn(a, m).removexn(a, n). hplus) =

Multiset (init.h.hplus)

ELSE Multiset (init.h.insertxn(a, m).removexn(a, n).hplus) =

Multiset (init.h. insertxn(a, m-n).hplus),

rule insertremoveallRule:

IF (Multiset (init.h.search(a))) THEN

Multiset (init.h.insert(a).removeall(a).hplus) = Multiset (init.h.hplus)

ELSE

Multiset (init.h.insert(b).removeall(a).hplus) =

Multiset(init.h.insert(b).hplus) ,

rule insertremoveanyRules:

 Multiset (init.h.insert(a).removeany.hplus) = Multiset (init.h.hplus) &

 Multiset (init.h.insertxn(a, n).removeany.hplus) =

 Multiset (init.insertxn(a, n-1).h.hplus) ,

rule inserteraseanyRule:

Multiset (init.h.insert(a).eraseany.hplus) = Multiset (init.h.hplus) ,

rule sizeRule:

IF (Multiset(init.h.search(a))) THEN

Multiset(init.h.insert(a).size)=Multiset(init.h.size)

ELSE Multiset(init.h.insert(a).size) = 1 + Multiset(init.h.size) ,

rule multisizeRules:

Multiset (init.h.insert(a).multisize) = 1+ Multiset (init.h.multisize)&

Multiset (init.h.insertxn(a, n).multisize) = n +

Multiset(init.h.multisize) ,

rule searchRule:

Multiset(init.h.insert(a).hprime.search(b))=

(a=b) Multiset(init.h.hprime.search(a)),

rule multisearchRules:

Multiset(init.h.insert(a).insert(b).multisearch(a)) = 1 +

Multiset(init.h.insert(b).multisearch(a)) &

206

Multiset(init.h.insertxn(a, n).insertxn(b, n).multisearch(a)) = n +

Multiset(init.h.insertxn(b, n).multisearch(a)) &

Multiset(init.h.insert(b).multisearch(a)) =

Multiset(init.h.multisearch(a)) ,

rule listRules:

Multiset (init.h.insert(a).list) = {a} ^ Multiset (init.h.list)&

Multiset (init.h.insertxn(a,n).list) = {a:n} ^ Multiset (init.h.list) ,

rule listsRule:

IF (Multiset(init.h.multisearch(a)) >= n) THEN

Multiset (init.h.insert(a).lists(n)) = {a} ^ Multiset (init.h.lists(n))

ELSE Multiset (init.h.insert(a).lists(n)) = Multiset (init.h.lists(n)) ,

rule commutativityRule:

Multiset(init.h.insert(a).insert(b).hprime)=

Multiset(init.h.insert(b).insert(a).hprime),

rule smallestRule:

Multiset(init.h.insert(a).smallest) = MIN(a , Multiset(init.h.smallest)),

rule largestRule:

Multiset(init.h.insert(a).largest) = MAX(a , Multiset(init.h.largest)) ,

 rule leastRule:

IF (Multiset(init.h.multisearch(a)) < Multiset(init.h.multisearch(b)))

THEN
Multiset(init.h.insert(a).insert(b).least)= Multiset(init.h.insert(a).least)

ELSE

IF (Multiset(init.h.multisearch(a)) = Multiset(init.h.multisearch(b)))

THEN Multiset(init.h.insert(a).insert(b).least)=

Multiset (init.h.insert(a). insert(b).least)

ELSE
 Multiset(init.h.insert(a).insert(b).least)= Multiset(init.h.insert(b).least),

 rule mostRule:

IF (Multiset(init.h.multisearch(a)) > Multiset(init.h.multisearch(b)))

THEN Multiset(init.h.insert(a).insert(b).most) =

Multiset (init.h.insert(a).most) ELSE

IF (Multiset(init.h.multisearch(a)) = Multiset(init.h.multisearch(b)))

THEN Multiset(init.h.insert(a).insert(b).most)=

Multiset(init.h.insert(a).insert(b).most)

ELSE
 Multiset(init.h.insert(a).insert(b).most)=Multiset(init.h.insert(b).most) ,

 rule emptyRules:

Multiset (init.h.insert(a).hprime.empty) =>

Multiset (init.h.hprime.empty) &

Multiset (init.h.empty) => Multiset (init.h.remove(a).empty) &

Multiset (init.h.empty) => Multiset (init.h. removexn(a, n).empty) &

Multiset (init.h.empty) => Multiset (init.h. removeall(a).empty) &

Multiset (init.h.empty) => Multiset (init.h. removeany.empty) &

Multiset (init.h.empty) => Multiset (init.h. eraseany.empty) ,

 rule VopRules:

Multiset (init.h.size.hplus) = Multiset (init.h.hplus) &

Multiset (init.h.multisize.hplus) = Multiset (init.h.hplus) &

Multiset (init.h.empty.hplus) = Multiset (init.h.hplus) &

Multiset (init.h.search(a).hplus) = Multiset (init.h.hplus) &

Multiset (init.h.multisearch(a).hplus) = Multiset (init.h.hplus) &

Multiset (init.h.choose.hplus) = Multiset (init.h.hplus) &

Multiset (init.h.list.hplus) = Multiset (init.h.hplus) &

Multiset (init.h.lists(n).hplus) = Multiset (init.h.hplus) &

207

Multiset (init.h.least.hplus) = Multiset (init.h.hplus) &

Multiset (init.h.most.hplus) = Multiset (init.h.hplus) &

Multiset (init.h.smallest.hplus) = Multiset (init.h.hplus) &

Multiset (init.h.largest.hplus) = Multiset (init.h.hplus)

endrules;

endspecification

5. LIST SPECIFICATION:

specification List;

type

itemtype: char;

input
vop choose : itemtype,

vop first : itemtype,

vop last: itemtype,

vop smallest: itemtype,

vop largest: itemtype,

vop size : integer,

vop multisearch(itemtype): integer,

vop empty : Boolean,

vop search(itemtype): Boolean

oop init, deletelast, deletefirst, deleteat(integer), insertlast(itemtype) ,

insertfirst(itemtype) , insertat(itemtype, integer)

endinput;

output

 error ^ itemtype ^ plusinfinity ^ minusinfinity ^ integer ^ Boolean

endoutput;

variable

 a: itemtype,

 b: itemtype,

n: integer,

h: inputstar,

hprime: inputstar,

hplus: inputplus;

axioms

 axiom sizeAxiom:

 List(init.size)= 0,

 axiom emptyAxioms:

List(init.empty)= true &

List(init.insertlast(a).empty)= false,

axiom searchAxiom:

List(init.search(a))= false ,

axiom multisearchAxiom:

 List(init.multisearch(a))= 0,

axiom chooseAxioms:

List(init.choose) = error &

List(init.h.insertlast(a).choose)=a,

axiom firstAxioms:

List(init.first)= error &

List(init.insertlast(a).insertlast(b).first)= a ,

axiom lastAxioms:

List(init.last)= error &

List(init.insertlast(b) .insertlast(a).last)= a,

208

axiom smallestAxiom:

List(init.smallest) = plusinfinity,

axiom largestAxiom:

List(init.largest) = minusinfinity

endaxioms;

rules

 rule initRule:

List(h.init.hprime) = List(init.hprime) ,

 rule initdeleteRules:

List(init.deletefirst.h) = List(init.h)&

List(init.deletelast.h) = List(init.h)&

List(init.deleteat(n).h) = List(init.h) ,

 rule insertlastdeleteRules:

List(init.insertlast(a).insertlast(b).deletefirst.hplus) =

List(init.insertlast(b).hplus)&

List(init.insertlast(b). insertlast(a).deletelast.hplus) =

List(init.insertlast(b) .hplus)&

IF (List(init.h.hprime.size) >= n) THEN

List(init.h.insertlast(a).deleteat(n).hprime) = List(init.h.hprime)

ELSE List(init.h.insertlast(a).deleteat(n).hprime) =

List(init.h.insertlast(a).hprime) ,

rule searchRule:

List(init.h.insertlast(a).hprime.search(b)) =

(a=b) List(init.h.hprime.search(a)) ,

rule multisearchRules:

List(init.h.insertlast(a).insertlast(b).multisearch(a)) = 1 +

List(init.h.insertlast(b).multisearch(a))&

List(init.h.insertlast(b).hprime.multisearch(a))=

List(init.h.hprime.multisearch(a)) ,

rule sizeRule:

List(init.h.insertlast(a).size) = 1+ List(init.h.size) ,

rule convertRules:

List(init.h.insertfirst(a).hprime) = List(init.h.insertlast(a).hprime)&

IF (List(init.h.hprime.size) < n) THEN

List(init.h.insertat(a, n).hprime) = List(init.h.hprime)

ELSE List(init.h.insertat(a, n).hprime) =

List(init.h.insertlast(a).hprime) ,

rule smallestRule:

List(init.h.insertlast(a).smallest) = MIN(a , List(init.h.smallest)),

rule largestRule:

List(init.h.insertlast(a).largest) = MAX(a , List(init.h.largest)),

rule emptyRules:

 List(init.h.insertlast(a).hprime.empty) => List(init.h.hprime.empty) &

List(init.h.empty) => List(init.h. deletefirst.empty) &

List(init.h.empty) => List(init.h. deletelast.empty) &

List(init.h.empty) => List(init.h. deleteat(n).empty) ,

rule VopRules:

List(init.h.size.hplus) = List(init.h.hplus)&

List(init.h.empty.hplus) = List(init.h.hplus) &

List(init.h.search(a).hplus) = List(init.h.hplus) &

List(init.h.multisearch(a).hplus) = List(init.h.hplus) &

List(init.h.choose.hplus) = List(init.h.hplus) &

List(init.h.first.hplus) = List(init.h.hplus) &

List(init.h.last.hplus) = List(init.h.hplus) &

209

List(init.h.smallest.hplus) = List(init.h.hplus) &

List(init.h.largest.hplus) = List(init.h.hplus)

endrules;

endspecification

210

APPENDIX -E

AN EXAMPLE FOR VERIFYING QUEUE DATA TYPE IMPLEMENTATION

1. AXIOMS OF QUEUE DATA TYPE

 Size Axiom

Queue(init.size) = 0.

 Init Empty Axiom

Queue(init.empty) = true.

 Enqueue Empty Axiom

Queue(init.enqueue(a).empty) = false.

 Init Front Axiom

Queue(init.front) = error.

 Enqueue Front Axiom

Queue(init.enqueue(a).enqueue(b).front) = a.

 Init Rear Axiom

Queue(init.rear) = error.

 Enqueue Rear Axiom

Queue(init.enqueue(b).enqueue(a).rear) = a.

2. AN IMPLEMENTATION OF QUEUE DATA TYPE

This source code is taken from the Apache C++ Standard Library (STDCXX)).

//***

// Header file queue.h

//***

const int SIZE = 100;

// an approximation of infinity: unbounded queue

typedef int qitemtype;

typedef int indextype;

211

class queue

 { public:

 queue(); // default constructor

 void init(); // initializes or re-initializes the queue

 bool empty () const; // tells whether queue is empty

 void enqueue (qitemtype qitem); //add qitem to the end of the queue

 void dequeue (); //deletes the element at the front of the queue

 qitemtype front (); // returns the element at the front of the queue

 qitemtype rear (); // returns the element at the end of the queue

 int size (); // returns size of the queue

 private:

 // array-based implementation.

 qitemtype qarray [SIZE];

 indextype qindex;

 int front1,rear1;

 };

// **

// Array-based C++ implementation for the queue ADT.

// file queue.cpp, refers to header file queue.h.

// **

#include "queue.h" // queue.h header file.

queue::queue()

{

 front1=-1;

 rear1=-1;

 qindex=0;

}

bool queue :: empty () const

{

 return (qindex==0);

}

void queue :: init ()

{

 qindex =0;

 front1=-1;

 rear1=-1;

}

void queue::enqueue(int qitem)

{

 if(front1==-1)

 {

 front1= front1+1;

212

 rear1= rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1;

 }

 else if(rear1>=SIZE-1)

 {

 return;

 }

 else

 {

 rear1=rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1;

 }

}

void queue::dequeue()

{

 if(front1==-1)

 {

 cout<<"Deletion is not possible:: Queue is empty

\n"<<endl;

 return;

 }

 else

 {

 if(front1==rear1)

 {

 front1=rear1=-1;

 qindex=0;

 return;

 }

 cout<<"The deleted element is

\n"<<qarray[front1]<<endl;

 front1=front1+1;

 qindex=qindex-1 ;

 }

}

qitemtype queue :: front ()

{

 int error = -9999;

 if (front1>=0)

 {

 return qarray[front1];

 }

 else

 {

 return error;

 }

}

qitemtype queue :: rear ()

{

 int error = -9999;

 if (rear1>=0)

 {

 return qarray[rear1];

 }

 else

213

 {

 return error;

 }

}

int queue :: size ()

{

 return qindex;

}

3. MAPPING AXIOMS TO HOARE FORMULAS

 Size Axiom

v: {true} init(); y=size() {y=0}

Where y is a variable of type integer.

 Init Empty Axiom

v: {true} init(); y=empty() {y=true}

Where y is a variable of type Boolean.

 Enqueue Empty Axiom

v:{true} init();enqueue(a);y=empty();{y= false}

For an arbitrary item a, where y is a variable of type Boolean.

 Init Front Axiom

v: {true} init(); y=front() {y=error}

Where y is declared as a variable that can hold the data type of the items that we

put on the queue (called itemtype) or the error message.

 Enqueue Front Axiom

v:{true} init();enqueue(a); enqueue(b);y=front();{y= a}

For an arbitrary item a, where y is a variable of type itemtype and h is an arbitrary

sequence of operations.

 Init Rear Axiom

v: {true} init(); y=rear() {y=error}

Where y is declared as a variable that can hold the data type of the items that we

put on the queue (called itemtype) or the error message.

 Enqueue Rear Axiom

v:{true} init();enqueue(b); enqueue(a);y=rear();{y= a}

For an arbitrary item a, where y is a variable of type itemtype and h is an arbitrary

sequence of operations.

214

4. VERIFYING QUEUE IMPLEMENTATION AGAINST AXIOMS

1. Size Axiom: v: {true} init(); y=size() {y=0}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

y:= (return qindex)

{y=0}

In order to prove formula v, we apply the sequence rule and generate the following

formulas using {qindex=0} as intermediate assertion:

v0: {true} qindex:=0 {qindex=0}

v1: {qindex=0} front1:= -1 {qindex=0}

v2: {qindex=0} rear1:= -1 {qindex=0}

v3: {qindex=0} y:= qindex{y=0}

By applying the assignment statement rule to v0, v1, v2 and v3 we find:

v00: true ⇒ 0=0,

v10: qindex=0 ⇒ qindex =0

v20: qindex=0 ⇒ qindex =0

v30: qindex=0 ⇒ qindex =0

All of which are tautologies, hence axioms of Hoare logic. This concludes the proof,

and establishes the validity of v.

2. Init Empty Axiom: v: {true} init(); y=empty() {y=true}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

y:=(qindex=0)

{y=true}

In order to prove formula v, we apply the sequence rule and generate the following

formulas using {qindex=0} as intermediate assertion:

v0: {true} qindex: =0 {qindex=0}

v1: {qindex=0} front1:=-1 {qindex=0}

215

v2: {qindex=0} rear1:=-1 {qindex=0}

v3: {qindex=0} y :=(qindex=0) {y=true}

By applying the assignment statement rule to v0, v1, v2 and v3 we find:

v00: true ⇒ 0=0,

v10: qindex=0 ⇒ qindex=0,

v20: qindex=0 ⇒ qindex=0,

v30: qindex=0 ⇒ (qindex=0) =true,

All of which are tautologies, hence axioms of Hoare logic. This concludes the proof,

and establishes the validity of v.

3. Init Front Axiom: v: {true} init(); y=front() {y=error}

v: {true}

qindex:=0;

front1:=-1;

rear1:=-1;

if (front1>=0){y:= qarray[front1];} else {return error;}

{y=error}

In order to prove formula v, we apply the sequence rule and generate the following

formulas using {qindex=0} and {qindex=0 ˄ front1= -1} as intermediate assertion:

v0: {true} qindex:=0 {qindex=0}.

v1: {qindex=0} front1:=-1 {qindex=0 ˄ front1= -1}.

v2: {qindex=0 ˄ front1= -1} rear1:=-1 {qindex=0 ˄ front1= -1}.

v3: {qindex=0 ˄ front1=-1} {y:= qarray[front1];}else {return error;} {y=error

}

By applying the assignment statement rule to v0, v1 and v2 we find:

v00: true ⇒ 0=0

v10: qindex=0 ⇒ qindex=0 ˄ front1= -1,

v20: qindex=0 ˄ front1= -1 ⇒ qindex=0 ˄ front1= -1,

All of which are tautologies, hence axioms of Hoare logic. We consider v3, to which

we apply the alternation rule. We find,

v30: {qindex=0 ˄ front1= -1 ˄ front1>=0} y: = qarray[front1]; {y=error}

v31: {qindex=0 ˄ front1= -1 ˄ front1<0} y:= error; {y=error}

216

The formula v30 is vacuously valid since the precondition is false. We apply the

assignment statement rule to v31:

v310: qindex=0 ˄ front1<0 ⇒ error = error

This formula is a tautology, hence an axiom of Hoare’s inference system; this

concludes our proof.

4. Init Rear Axiom: v: {true} init(); y=rear() {y=error}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

if (rear1>=0){y:=qarray[rear1];} else{y:= error;}

{y=error}

In order to prove formula v, we apply the sequence rule and generate the following

formulas using {qindex=0} and {qindex=0 ˄ rear1=-1} as intermediate assertions:

v0: {true} qindex:=0 {qindex=0}.

v1: {qindex=0} front1:=-1{qindex=0}.

v2: {qindex=0} rear1:=-1 {qindex=0 ˄ rear1=-1},

v3: {qindex=0 ˄ rear1=-1} if (rear1>=0){y:=qarray[rear1];}else{y:= error;}

{y=error }.

By applying the assignment statement rule to v0, v1 and v2 we find:

v00: true ⇒ 0=0

v10: qindex=0 ⇒ qindex=0,

v20: qindex=0 ⇒ qindex=0 ˄ rear1= -1,

All of which are tautologies, hence axioms of Hoare logic. We consider v3, to which

we apply the alternation rule. We find,

v30: {qindex=0 ˄ rear1=-1 ˄ rear1>=0} y: = qarray[rear1]; {y=error}

v31: {qindex=0 ˄ rear1=-1 ˄ rear1<0} y: = error; {y=error}

The formula v30 is vacuously valid since the precondition is false. We apply the

assignment statement rule to v31:

v310: qindex=0 ˄ rear1<0 ⇒ error = error

217

This formula is a tautology, hence an axiom of Hoare’s inference system; this

concludes our proof.

5. SUBMITTING TO HAHA THROUGH THE API

1. Size Axiom: v: {true} init(); y=size() {y=0}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

y:= qindex;

{y=0}

SizeAxiom.haha:

function S() : Z
 var
 qindex : Z
 front1: Z
 rear1: Z
 y : Z
begin
 skip
 {true}
 qindex:=0
 {qindex = 0}
 front1:=-1
 {qindex = 0}
 rear1:=-1
 {qindex = 0}
 y:=qindex
 { y = 0 }
 skip
end

2. Init Empty Axiom: v: {true} init(); y=empty() {y=true}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

y:=(qindex=0)

{y=true}

InitEmptyAxiom.haha:

function S() : Z

218

 var
 qindex : Z
 front1: Z
 rear1: Z
 y : Z
begin
 skip
 {true}
 qindex:=0
 {qindex = 0}
 front1:=-1
 {qindex = 0}
 rear1:=-1
 {qindex = 0}
 if (qindex=0) then
 y:=1
 else
 y:=0
 { y= 1 }
 skip
end

3. Enqueue Empty Axiom: v: {true} init(); enqueue(a); y=empty() {y=false}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

if(front1==-1){

 front1= front1+1;

 rear1= rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1;}

 else if(rear1>=SIZE-1)

 { return; }

 else {

 rear1=rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1; }

}

 y:=(sindex=0)

219

{y=false}

EnqueueEmptyAxiom.haha:

function S() : Z
var qindex : Z
 front1 : Z
 rear1 : Z
 qarray : ARRAY[Z]
 y : Z
 qitem: Z
 SIZE: Z
begin
skip
{true}
 qindex := 0
 { qindex = 0 }
 front1 := -1
 { qindex = 0 and front1 = -1 }
 rear1 := -1
 { qindex = 0 and front1 = -1 and rear1 = -1 }
 if (front1 = -1) then
 begin
 front1 := front1 + 1
 {qindex = 0 and front1 = 0 and rear1 = -1 }
 rear1 := rear1+1
 {qindex = 0 and front1 = 0 and rear1 = 0 }
 qarray[rear1] := qitem
 {qindex=0 and front1=0 and rear1=0 and qarray[0] = qitem}
 qindex := qindex+1
 end
 else begin
 if rear1>=SIZE-1 then
 begin

 end
 else
 begin
 rear1 := rear1+1
 { qindex = 0 and front1 <> -1 and rear1 = 0 }
 qarray[rear1] := qitem
 {qindex=0 and front1<>-1 and rear1=0 and qarray[0]=qitem}
 qindex := qindex+1
 end
 end
 {qindex=1 and front1<>-1 and rear1=0 and qarray[0]= qitem}
 if (qindex=0) then
 y := 1
 else

220

 begin
 y := 0
 { y= 0 }
 skip
 end
 skip
end

4. Init Front Axiom: v: {true} init(); y=front() {y=error}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

if (front1>=0){y:= qarray[front1];} else {return error;}

{y=error}

InitFrontAxiom.haha:

function S() : Z
 var
 qindex : Z
 front1: Z
 rear1: Z
 qarray: ARRAY[Z]
 y : Z
 error: Z
begin
 skip
 {true}
 qindex:=0
 {qindex = 0}
 front1:=-1
 {qindex = 0 and front1=-1}
 rear1:=-1
 {qindex = 0 and front1=-1 }
 if (front1>=0) then
 y := qarray[front1]
 else
 y:= error
 { y = error }
 skip
end

221

5. Enqueue Front Axiom: v:{true} init();enqueue(a); enqueue(b);y=front();{y= a}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

if(front1==-1){

 front1= front1+1;

 rear1= rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1;}

 else if(rear1>=SIZE-1)

 { return; }

 else {

 rear1=rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1; }

}

if(front1==-1){

 front1= front1+1;

 rear1= rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1;}

 else if(rear1>=SIZE-1)

 { return; }

 else {

 rear1=rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1; }

}

if (front1>=0){y:= qarray[front1];} else {return error;}

{y=a}

222

EnqueueFrontAxiom.haha:

function S() : Z
var qindex : Z
 front1 : Z
 rear1 : Z
 qarray : ARRAY[Z]
 y : Z
 a: Z
 b: Z
 SIZE: Z
 error: Z
begin
skip
{true}
 qindex := 0
 { qindex = 0 }
 front1 := -1
 { qindex = 0 and front1 = -1 }
 rear1 := -1
 { qindex = 0 and front1 = -1 and rear1 = -1 }
 if (front1 = -1) then
 begin
 front1 := front1 + 1
 { qindex = 0 and front1 = 0 and rear1 = -1 }
 rear1 := rear1+1
 { qindex = 0 and front1 = 0 and rear1 = 0 }
 qarray[rear1] := a
 {qindex =0 and front1 =0 and rear1 =0 and qarray[0] = a }
 qindex := qindex+1
 end
 else begin
 if rear1>=SIZE-1 then
 begin

 end
 else
 begin
 rear1 := rear1+1
 { qindex = 0 and front1 = 0 and rear1 = 0 }
 qarray[rear1] := a
 {qindex=0 and front1=0 and rear1=0 and qarray[0] = a }
 qindex := qindex+1
 end
 end
 { qindex = 1 and front1 = 0 and rear1 = 0 and qarray[0] =a }
 if (front1 = -1) then
 begin
 front1 := front1 + 1

223

 {qindex=1 and front1=0 and rear1=0 and qarray[0]= a }
 rear1 := rear1+1
 {qindex =1 and front1 =0 and rear1 =1 and qarray[0] =a }
 qarray[rear1] := b
 {qindex =1 and front1 =0 and rear1 =1 and qarray[0]=a
 and qarray[1] = b }
 qindex := qindex+1
 end
 else begin
 if rear1>=SIZE-1 then
 begin

 end
 else
 begin
 rear1 := rear1+1
 {qindex =1 and front1 =0 and rear1 =1 and qarray[0] =a}
 qarray[rear1] := b
 {qindex =1 and front1 =0 and rear1 =1 and qarray[0]=a
 and qarray[1] = b }
 qindex := qindex+1
 end
 end
 {qindex =2 and front1 =0 and rear1 =1 and qarray[0] =a
 and qarray[1] = b }
 if (front1>=0) then
 y:= qarray[front1]
 else
 y:= error
 { y= a }
 skip
 end

6. Init Rear Axiom: v: {true} init(); y=rear() {y=error}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

if (rear1>=0){y:=qarray[rear1];} else{y:= error;}

{y=error}

224

InitRearAxiom.haha:

function S() : Z
 var
 qindex : Z
 front1: Z
 rear1: Z
 qarray: ARRAY[Z]
 y : Z
 error: Z
begin
 skip
 {true}
 qindex:=0
 {qindex = 0}
 front1:=-1
 {qindex = 0 and front1=-1}
 rear1:=-1
 {qindex = 0 and front1=-1 and rear1=-1}
 if (rear1>=0) then
 y := qarray[rear1]
 else
 y:= error
 { y = error }
 skip
end

7. Enqueue Rear Axiom: v:{true} init();enqueue(b); enqueue(a);y=rear();{y= a}

v: {true}

qindex :=0;

front1:=-1;

rear1:=-1;

if(front1==-1){

 front1= front1+1;

 rear1= rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1;}

 else if(rear1>=SIZE-1)

 { return; }

 else {

 rear1=rear1+1;

225

 qarray[rear1]=qitem;

 qindex=qindex+1; }

}

if(front1==-1){

 front1= front1+1;

 rear1= rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1;}

 else if(rear1>=SIZE-1)

 { return; }

 else {

 rear1=rear1+1;

 qarray[rear1]=qitem;

 qindex=qindex+1; }

}

if (rear1>=0){y:=qarray[rear1];} else{y:= error;}

{y=a}

EnqueueRearAxiom.haha:

function S() : Z
var qindex : Z
 front1 : Z
 rear1 : Z
 qarray : ARRAY[Z]
 y : Z
 a: Z
 b: Z
 SIZE: Z
 error: Z
begin
skip
{true}
 qindex := 0
 { qindex = 0 }
 front1 := -1
 { qindex = 0 and front1 = -1 }
 rear1 := -1
 { qindex = 0 and front1 = -1 and rear1 = -1 }
 if (front1 = -1) then
 begin
 front1 := front1 + 1

226

 { qindex = 0 and front1 = 0 and rear1 = -1 }
 rear1 := rear1+1
 { qindex = 0 and front1 = 0 and rear1 = 0 }
 qarray[rear1] := b
 { qindex =0 and front1 =0 and rear1 =0 and qarray[0] =b}
 qindex := qindex+1
 end
 else begin
 if rear1>=SIZE-1 then
 begin

 end
 else
 begin
 rear1 := rear1+1
 { qindex = 0 and front1 = 0 and rear1 = 0 }
 qarray[rear1] := b
 {qindex =0 and front1 =0 and rear1 =0 and qarray[0]=b }
 qindex := qindex+1
 end
 end
 {qindex = 1 and front1 = 0 and rear1 = 0 and qarray[0] = b }
 if (front1 = -1) then
 begin
 front1 := front1 + 1
 {qindex =1 and front1 =0 and rear1 =0 and qarray[0] =b}
 rear1 := rear1+1
 {qindex =1 and front1 =0 and rear1 =1 and qarray[0] =b}
 qarray[rear1] := a
 { qindex =1 and front1 =0 and rear1 =1 and qarray[0] =b
 and qarray[1] = a }
 qindex := qindex+1
 end
 else begin
 if rear1>=SIZE-1 then
 begin

 end
 else
 begin
 rear1 := rear1+1
 {qindex =1 and front1 =0 and rear1 =1 and qarray[0] =b}
 qarray[rear1] := a
 {qindex =1 and front1 =0 and rear1 =1 and qarray[0]= b
 and qarray[1] = a }
 qindex := qindex+1
 end
 end

227

 {qindex =2 and front1 =0 and rear1 =1 and qarray[0] =b
 and qarray[1] = a }
 if (rear1>=0) then
 y:= qarray[rear1]
 else
 y:= error
 { y= a }
 skip
 end

