بسم الله الرحمن الرحيم

أقرأ باسم ربك الذي خلق خلق الإنسان من علق
أقرأ ورزبُك الأكرم الذي علم بالقلم علم الإنسان ما
لم يعلم

صدق الله العظيم

سورة العلق
Dedication

This thesis is dedicated to:

Soul my father

My mother

My brothers

My sisters

My family

My teachers

And to my friends
Acknowledgment

My faithful thanks and praise to Allah for providing me with health and strength to conduct this study. I would like to express my deep gratitude with special respect to my Supervisor Dr. Hussein Ahmed Hassan who gave me much of his time for suggestion and careful supervision during this period, to product this study. I wish to extend my thanks to Private Medical Institution. Lastly, I am also so grateful for Mr. Omer Mohammed Elhadi Babiker and to every person helped me in gathering information and guiding me in making this study.
Abstract

The aim of this study is to evaluate the of beam alignment of x-ray tube accuracy in the Khartoum hospitals, this study include 12 x-ray machines in 12 hospitals. The accuracy of radiation was tested and the most important results obtained that the alignment is 91.7% & misalignment is just 8.3% in along cassette, and 75% in across cassette 25% misalignment. in the central ray the alignment reached 83.3 % & misalignment 16.7%.

This study confirms that x-ray machine in the Khartoum state hospitals operate at a good level.
الملخص

الهدف من هذه الدراسة تقييم دقة تطابق شعاع انبعاث الاشعة السينية في مستشفيات ولاية الخرطوم.

شملت هذه الدراسة 12 جهاز اشعة سينية في 12 مستشفى. تم اختبار دقة تطابق الشعاع.

وقد وجد أن نسبة التطابق وصلت إلى 91.7 بالمائة ونسبة عدم التطابق 8.3 بالمائة على طول الفيلم. وعلى عرض الفيلم قد بلغت نسبة التطابق 75 بالمائة ونسبة عدم التطابق 25 بالمائة. أما في وسط الفيلم بلغت نسبة التطابق 83.3 بالمائة ونسبة عدم التطابق 16.7 بالمائة.

تؤكد هذه الدراسة أن أجهزة الإشعة السينية في مستشفيات ولاية الخرطوم تعمل بمستوى جيد.
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>No</th>
<th>Items</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>الآلة</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Dedication</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Abstract (English)</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>Abstract (Arabic)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Contents</td>
<td>VI</td>
</tr>
</tbody>
</table>

Chapter One

1.1 introduction
1.2 problem of the study
1.3 objective of the study
1.3.1 general objective
1.3.2 specific objective
1.4 lay out

Chapter Two

2.1 Background and literature Review
2.2 X-ray Tubes
2.2.1 Cathode
2.2.2 Anode
2.3 Production of x-rays
2.3.1 Bremsstrahlung Spectrum
2.3.2 Characteristic x-ray Spectrum
2.4. Interactions of X-ray with matter
2.4.1 Rayleigh Scattering
2.4.2 photoelectric effect
2.4.3 compton scattering
2.4.4 pair production
2.5. The Quality Control Program
2.5.1. Equipment Selection
2.5.2. Acceptance Test
2.6. Quality Control
2.6.1. Documentation
2.6.2. Staffing Considerations
2.6.3. QC INSTRUMENTATION
2.7. Light field/X-ray field alignment (congruence)
2.7.1. Method of test
2.7.1.1 Light field /beam alignment test
2.7.1.2 Equipment
2.7.1.3 Procedure
2.7.2 Test Procedure - Routine Test
2.7.3. Alternate Method
2.8. Previous studies

| Chapter Three |
|----------------|----------------|
| 3. Materials and Methods | 32 |
| 3.1 Materials | 32 |
| 3.1.1 Study sample | 32 |
| 3.1.2 Equipment | 32 |
| 3.1.3 Procedure | 34 |
| 3.2. Acceptance Parameters | 34 |
| 3.3 Record Keeping | 34 |
| 3.2.2 Analysis | 34 |

| Chapter Four |
|----------------|----------------|
| 4. Results | 37 |

| Chapter Five |
|----------------|----------------|
| 5.1 Discussion | 44 |
| 5.2 Conclusion | 47 |
| 5.3 Recommendation | 48 |
| 5.4 References | 49 |
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Item</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>distribution of machines according to manufactures</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>total misalignments measurements</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Total measurements of alignment of X-ray field to cassette holder</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>show beam alignments accuracy in total along cassette</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>show beam alignments accuracy in total across cassette</td>
<td>42</td>
</tr>
<tr>
<td>4.6</td>
<td>show accuracy of alignment of X-ray field to cassette holder</td>
<td>43</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>Item</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Minimum requirements for x-ray production include a source and target of electrons, an evacuated envelope, and connection of the electrodes to a high-voltage source</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Bremsstrahlung radiation arises from energetic electron interactions with an atomic nucleus of the target material</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Generation of a characteristic x-ray</td>
<td>13</td>
</tr>
</tbody>
</table>
2.4 Generation of a characteristic x-ray 13
2.5 Rayleigh scattering 15
2.6 Compton scattering 16
2.7 show photoelectric absorption 18
2.8 Beam alignment test tool 24
2.9 Template image 25
2.10 show the Arrangement of experimental set up for exposure 26
2.11 shows the arrangement of experimental set for exposure 27
3.1 Diagram of the layout for the nine penny test 33
3.2 Image of the nine penny test 33
3.3 Determining the Total Misalignment of the Light Field and the X-ray Field 35
3.4 Determining Alignment of X-ray Field to Cassette Holder 36
4.1 distribution of machines according to manufactures 38
4.2 Total misalignments measurements for along cassette & across cassette 39
4.3 Total measurements of alignment of X-ray field to cassette holder 40
4.4 show beam alignments accuracy in total along cassette 41
4.5 show beam alignments accuracy in total across cassette 42
4.6 show accuracy of alignment of X-ray field to cassette holder 43

List of abbreviation

QA : Quality Assurance

QC: Quality Control

SID: Source to image distance
LBDs: light beam diaphragms

FFD: focal film distance

AAPM: American Association of physicists in Medicine

AL1 + AL2: Total along cassette misalignment in cm

AC1 + AC2: Total across cassette misalignment in cm

CFR: Code of Federal Regulation

mAs: milliAmbere second

KVP: Kilovolt peak

BLD: Beam lighting device

CR: Computed Radiographer

NCRP: Nuclear commission radiation protection