
1

Table of Contents (Soft Version) :
 ii ... الاسْتهِْلال

DEDICATION... iii

ACKNOWLEDGEMENT .. iv

ABSTRACT ... v

 vi .. المستخلص

TABLE OF CONTENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1 INTRODUCTION ... 1

1.1 Preface .. 2

1.2 Problem Statement .. 2

1.3 Objectives ... 2

1.4 State of the Art .. 3

1.4.1 Data Glove Approach ... 3

1.4.2 Visual-Based Approach .. 3

1.4.3 Virtual-based Button Approach .. 3

1.5 Proposed Solution: .. 4

1.6 Methodology .. 5

1.7 Expected Results ... 6

1.8 Thesis Outline .. 6

CHAPTER 2 LITERATURE REVIEW & RELATED WORKS .. 8

2.1 Basic concepts of the projects .. 9

2.1.1 Sign language background .. 9

2.1.2 Gesture Recognition Methods ... 9

2.2 Communication between Normal People and Deaf People ... 12

2.2.1 Related Work ...12

2.2.2 Some Models of Sign Language Translator ...14

2.3 Summary .. 17

CHAPTER 3 RESEARCH METHODOLOGY ... 18

3.1 Research Phases .. 19

3.2 Overview about System components ... 20

3.2.1 Flex Sensors as fingers Gesture Recognition ...20

2

3.2.2 Contact Sensors or tactile sensors as fingers touching Recognition21

3.2.3 MPU-6050 3 Axis Gyroscope and Accelerometer Module as a Hand Motion

Recognition ..23

3.2.4 ARDUINO UNO as A Gesture Recognition Unit ..23

3.2.5 WiFi Module (ESP8266) as a transmitter ..25

3.2.6 Android O.S. with Specific Application as Output System26

3.3 System Flow Chart .. 26

3.4 Hardware Development .. 27

3.4.1 Detection Unit ...28

3.4.2 Hand Position Sensing: ..29

3.4.3 Base station Unit: ...35

3.5 Simulation .. 38

3.6 Summary .. 42

CHAPTER 4 RESULT AND DISCUSSION .. 43

4.1 Simulation Results .. 44

4.2 Hardware Implementation ... 45

4.3 Summary .. 50

CHAPTER 5 CONCLUSION AND RECOMMENDATION ... 51

5.1 Conclusion ... 52

5.2 Recommendation ... 52

REFERENCES .. 54

APPENDICES ... 1

Appendix – A : Arduino code .. 2

Appendix – B : Wi-Fi Module ESP8266 Code .. 29

Appendix – C : Android Application Code ... 31

i

Sudan University of Science and Technology

College of Engineering

Electronics Engineering

Development of

Smart Glove: Gesture Translator

A Research Submitted in Partial Fulfillment for the Requirements of the

The degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

1. Abdulrahman Babiker Fadlulmaula Hussain.

2. Basil Abul-Qasim Ahmad Mohammad.

3. Moez Babiker Hassan Mohammad-Zain.

4. Widaa’atullah Siddiq Abbas Fadlulmaula.

Supervised By:

Dr. Abu-Agla Babiker Mohammad

November 2017

ii

 الاسْتهِْلال

﷽

رِّي } حر لِِّ صَدر َ ِّ ٱشۡر رِّي ٢٥قاَلَ رَب مر
َ
ٓ أ ر لِِّ ِّ لُلر ٢٦وَيسَّ دَة وَٱحر ِّن عُقر م

ِّسَانِِّ لِِّ ٢٧ل قَهُواْ قَور {٢٨يَفر

 (28 , 27 , 26 , 25)طه سورة

iii

DEDICATION

Dedicated, in thankful appreciation for support,

encouragement and understandings to our beloved

mothers, fathers, brothers, sisters, teachers and our

friends.

iv

ACKNOWLEDGEMENT

First of all, our gratitude's goes for Allah for blessing us with the

patience, the strength and the ability to complete this study.

We thank all our mothers and fathers for the trust and the support that

have been guiding our way. from the very start, till this finishing line.

We also thank our families and friends, for pushing us beyond the

limits we have set for ourselves, and for changing every "we cannot"

To "we can”.

Our sincere gratitude goes for our supervisor Dr. Abu-Agla for his

sufficient advices, understanding, and reassuring.

We truly thank our friend Ahmed Mohammad Ali; this work would

have never seen light without your consideration.

v

ABSTRACT

Generally, people with hearing impaired and speech disability use sign

language based on hand gestures with specific motion to represent the

“language” they are communicating. A gesture in a sign language is a

particular movement of the hands with a specific shape from the fingers and

hole hand. This project aims to convert the hand gestures based on electronic

device that translate sign language into speech to make the communication

take place between the mute communities with the general public. In this

research, a practical implementation of a system which enables mute people

to use gloves so as to communicate with normal people via their smart phone

has been designed and implemented practically. Mute people can use the

glove to perform hand gesture and it will be converted into speech to allow

normal people to understand their expression. An Android Application

designed will be used that will convert the gestures into text depending on

hand shape detected and produce a voice. The developed project will

potentially reduce the communication gap between mute and normal people.

vi

 المستخلص

ً لغة الإشارة استناداً إلى إيماءات اليد مع بصفة عامة يستخدم الأشخاص المعاقين كلاميا

حركات معينة لتمثل اللغة التي يتواصلون بها. الإيماءة في لغة الإشارة عبارة عن حركة محددة عبر

ة عبر الأيدي، مع شكل محدد مصنوع عبر الأصابع. يهدف هذا المشروع إلى تحويل الإيماءات اليدوي

أجهزة إلكترونية إلى حديث من أجل جعل التواصل يجري بين ذوي الاحتياجات الخاصة مع عامة

يسمح للأشخاص البكم باستخدام قفاز للحديث مع الناس عمليالناس. في هذا البحث، تم تطوير نظام

ز لعمل إيماءات العاديين عبر هواتفهم الذكية وتم تصميمه وتجربته عمليا. يمكن للبكم استخدام القفا

اليد والتي سيتم تحويلها إلى حديث وحروف للسماح للأشخاص العاديين بفهم تلك التعابير. تم تصميم

تطبيق يعمل على نظام آندرويد لاستخدامه لتحويل الإيماءات إلى نصوص حسب شكل اليد المكتشف

ين الأشخاص البكم ويقوم بعدها بإخراج الصوت. من شأن هذا المشروع تقليل فجوة الاتصال ب

 والأشخاص العاديين.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

1

 الاستهلال

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

 المستخلص

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

INTRODUCTION

1.1 Preface

1.2 Problem Statement

1.3 Objectives

1.4 State of the Art

 1.4.1 Data Glove Approach

 1.4.2 Visual-Based Approach

 1.4.3 Virtual-based Button Approach

1.5 Proposed Solution

1.6 Methodology

1.7 Expected Results

ii

iii

iv

v

vi

vii

x

xi

xiii

1

2

2

2

3

3

3

3

4

5

6

viii

2

3

1.8 Thesis Outline

LITERATURE REVIEW & RELATED

WORKS

2.1 Basic Concepts of the projects

 2.1.1 Sign language background

 2.1.2 Gesture Recognition Methods

2.2 Communication between Normal People

and Deaf People

 2.2.1 Related Work

 2.2.2 Some Models of Sign Language

Translator

2.3 Summary

RESEARCH METHODOLOGY

3.1 Research Phases

3.2 Overview about System components

 3.2.1 Flex Sensors as fingers Gesture

Recognition

 3.2.2 Contact Sensors or tactile sensors as

fingers touching Recognition

 3.2.3 MPU-6050 3 Axis Gyroscope and

Accelerometer Module as a Hand Motion

Recognition

 3.2.4 ARDUINO UNO as A Gesture

Recognition Unit

6

8

9

9

9

12

12

14

17

18

19

20

20

21

23

23

ix

4

5

 3.2.5 WiFi Module (ESP8266) as a

transmitter

 3.2.6 Android O.S. with Specific

Application as Output System

3.3 System Flow Chart

3.4 Hardware Development

 3.4.1 Detection Unit

 3.4.2 Hand Position Sensing

 3.4.3 Base station Unit

3.5 Simulation

3.6 Summary

RESULT AND DISCUSSION

4.1 Simulation results

4.2 Hardware implementation

4.3 Summary

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

25

26

26

27

28

29

35

38

42

43

44

45

50

51

52

52

REFERENCES

APPENDICES

 Appendix – A : Arduino Code

 Appendix – B : WiFi Module ESP8266 Code

 Appendix – C : Android Application Code

54

x

LIST OF TABLES

TABLE NO. TITLE PAGE

1-1

3-1

4-1

Comparison of Different Approaches For Sign

Language Detection

Words and Letters Table

Hardware Words and Letters

4

41

46

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1-1

2-1

2-2

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

Sign Language Letters

Ahmad Zaki Shukor’s Model – (a) Overall

System Components and (b) the device worn

on user’s hand

Gesture Vocalizer for Deaf and Dumb People –

Block Diagram

Project Block Diagram

The Project in Real Life Action

2.2 inch Flex Sensor

Flex Bend Levels

InvenSense MPU-6050 sensor

ARDUINO UNO

WiFi Module (ESP8266)

System Flow Chart

Comparator Circuit

Wi-Fi Module ESP8266 Connected with

ARDUINO UNO

Letters R, U, and V.

6

15

17

20

20

21

21

23

25

26

28

28

29

31

xii

3-12

3-13

3-14

3-15

3-16

3-17

3-18

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

Outputs of Accelerometer through ARDUINO

IDE

(a) Axis Movement, (b) Directions of

Movement

Detection Unit Flow Chart

Base Station Unit Flow Chart

Android Application's Main Interface

Proteus Simulation Circuit

Virtual Terminal View

Letter 'S' Simulation at Virtual Terminal

Letter 'T' Simulation at Virtual Terminal

Letter 'C' Simulation at Virtual Terminal

Glove Prototype

'HELLO' gesture result at smart phone

application

'WE ARE' gesture result at smart phone

application

'STUDENTS' gesture result at smart phone

application

'AT' gesture result at smart phone application

'S' 'U' 'T' gesture result at smart phone

application

32

33

34

36

36

39

40

44

45

45

46

47

48

48

49

49

xiii

LIST OF ABBREVIATIONS

AC - Alternating Current

ADC - Analog to Digital Converter

ASL - American Sign Language

CMOS - Complementary Metal Oxide Semiconductor

CPU - Central Processing Unit

DC - Direct Current

DOF - Depth Of Field

GPIO - General Purpose Input Output

HDMI - High Definition Multimedia Interface

ICSP - In Circuit Serial Programming

IDE - Integrated Development Environment

IR - Infrared

LCD - liquid Crystal Display

MEMS - Microelectromechanical Systems

NTSC - National Transportation safety committee

OS - Operating System

PAL - Phase Alternating Line

PCB - Printed Circuit Board

PSE - Pidgin Sign English

PWM - Pulse Width Modulation

RX - Receiver

SEE - Signed Exact English

xiv

SOC - System On a Chip

TCP/IP - Transmission Control Protocol / Internet Protocol

TX - Transmitter

UI - User Interface

USB - Universal Serial Bus

VT - Virtual Terminal

XML - Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

2

1.1 Preface

“Sign language can be defined as combination of hand shape, body and

arms movements and facial expressions without a voice. Sign language is

main communication medium for the deaf and dumb people to communicate

with each other. Normally, normal people do not understand the sign

language used by deaf people. Therefore, the study of sign language is needed

to improve the communication barrier between the verbal and non-verbal

community.” (signsoflifeasl, February 27, 2013)

1.2 Problem Statement

 Sign language is the only communication tool used by deaf people to

communicate to each other. However, normal people do not understand sign

language, and this will create a large communication barrier between deaf

people and normal people.

 In addition, the sign language is also not easy to learn due to its natural

differences in sentence structure and grammar. Therefore, there is a need to

develop a system which can help in translating the sign language into text

and voice to ensure the effective communication can be easily take place in

this community.

1.3 Objectives

 The aim of Smart Glove: Gesture Translator was to design a user-

friendly glove that would translate sign language gestures into speech and

text with high level of accuracy for recognizing gestures. The specific

objectives are:

- To increase the efficiency of the past projects by increasing the letters

and words which got out by the glove.

3

- To minimize the glove size so that it become easier to handle.

1.4 State of the Art

This section will explain briefly about some common methods of

gesture recognizing and the comparison between these methods. Details of

these approaches are added to chapter 2 of this thesis.

1.4.1 Data Glove Approach

The data-glove approach uses a unique assembled electronic glove,

which has sensors that give us the hand shape. Most commercial sign

language translation systems use the data-glove method, as it simple to

acquire data on the bending of finger and 3D orientation of the hand using

gloves (Ahmad Zaki Shukor, 2015).

1.4.2 Visual-Based Approach

With the current advancement in computer technology and software,

there has been an increase in the use of visual-based methodology. Images of

the signer (the one uses the sign language) are captured by a camera and video

processing is done to perform detection of the sign language. Different from

the data glove approach, the fundamental advantage of visual-based

methodology is the adaptability of this approach. The recognition of facial

expression and head movements additionally can be incorporated to the

framework and also perform lip-perusing (Ahmad Zaki Shukor, 2015).

1.4.3 Virtual-based Button Approach

Function of a virtual button is to generate button events, a press and

discharge, by perceiving hand motions of holding and discharging

individually. This virtual button also can identify different sorts of gesture

and generate proper command. The virtual button method uses patterns of the

4

wrist shape. It can perceive a squeeze movement. By using small sized IR

optic sensors, the patterns of finger flexor muscles on wrist can be recognized

by moving fingers. These patterns are used to perceive finger or hand

movement. The IR emitter and IR optic sensor are attached on the bottom of

the wrist because the area comprises of finger flexor tendons that delicately

respond to finger movements. These sensors produce voltage values

according to the amount of IR radiation. In the system, this sensor is used to

monitor different patterns of the wrist shape resulting from the movement of

finger flexor tendons in the wrist when fingers are moving (Ahmad Zaki

Shukor, 2015).

The following table summarizes previously approaches.

Table 1-1 : Comparison of different approaches for sign language detection

Method Device/ components Gestures Environment Accuracy

Data-glove

approach

Flex sensor,

Accelerometer,

Microcontroller.

Fingerspelling

(alphabets and

numbers), sign gestures.

Practical, no environmental

concern.

Higher accuracy

if use more

sensors.

Visual-

based

approach

Custom-made glove,

computer’s webcam.

Effective for

fingerspelling only

(alphabets and numbers)

position of the camera,

background condition and

lighting sensitivity

can be

misinterpreted

Virtual

button

IR optic sensor Finger and hand

movement, not suitable

for gestures

no environmental concern. Overall

correctness

88.82%

1.5 Proposed Solution:

 In this project we propose a Sign Language Glove which will assist

those people who are suffering for any kind of speech defect to communicate

through gestures i.e. with the help of single handed sign language the user

will make gestures of alphabets. The glove will record all the gestures made

5

by the user and then it will translate these gestures into visual form as well as

in audio form.

1.6 Methodology

 In this project, gloves are implemented to capture the hand gesture

made by disabled person and converting it into speech as well as text. A pair

of gloves with flex sensors along each finger, thumb and arm, contact sensors

and accelerometer are used to capture the movement of user. With the help

of flex sensors degree of fingers thumb and arm are calculated in voltage

terms using voltage divider rule enters the comparator circuit to change it

from analog to digital. Contact sensors are used to recognize between some

letters which have similar finger shape and differ between another letter with

little finger bending degree, and the accelerometer is to differ between letters

with same hand shape but differ at gesture of the hand. Arduino is used for

the processing of the entered data and decides the outputted word or letter.

The letter or word that the Arduino produced get transferred to the phone that

the other person (listener) is using. The phone has an android application

designed by the team that present our outputted word or letter in the shape of

voice and text.

Either for the design process we took to come with this design first we

studied the ASL (American sign language) and then we decided the sensors

that will give us all the letters and most of the words of this language with

respect to the cost ,then we chose the process unit which is the Arduino UNO

and then we decided the tool that we’re going to use to transfer the signal

from the transmitter part to the receiver part and we chose the Wi-Fi to

connect between the Arduino and the phone .

6

We build our project by using a transmitter and receiver parts to

decrease the weight of the glove on the hand and to make it easily for the

hand to move. But in return the cost will increase because we use two

processors than one.

1.7 Expected Results

The expected results of the project are that it will express all the sign

language letters and some of the words in both text form at the android phone

and voice form at the speaker. Next Figure represents all sign language

gestures.

Figure 1-1 Sign Language Letters

1.8 Thesis Outline

 The thesis consists of five main chapters. The first chapter, Chapter

One explains on the background of the project, problem statement,

objectives, scopes, and summary of the work. Chapter Two comprises of

7

detail information on the theory and literature review related to the project.

In Chapter Three explains about method used in construction and designing

the project. The process includes are circuit design and construct and

development of software and algorithm. In Chapter Four discuss about the

results of the project. The data collected from the project are analyzed for

discussion. Lastly, Chapter Five covers the conclusions, problems,

recommendations and further improvement for the project.

8

CHAPTER 2

LITERATURE REVIEW & RELATED WORKS

9

2.1 Basic concepts of the projects

In this part we will discuss the main design component and the way to

connection between them.

2.1.1 Sign language background

“There are three major forms of Sign Language currently used in the

United States: American Sign (ASL), Pidgin Signed English (PSE), and

Signed Exact English (SEE). ASL is used by many deaf in the United States,

thus its use promotes assimilation into the Deaf Community. ASL is a visual

language, and speech-reading or listening skills are not needed to learn ASL

fluently.” (signsoflifeasl, February 27, 2013).

2.1.2 Gesture Recognition Methods

Referring to chapter 1, Nowadays, automatic sign language translation

systems generally use two different sensor-based approaches, which are data

glove and visual-based approaches. However, a new hand gesture recognition

method has been introduced, called virtual button. This section will explain

the detail these approaches. (Ahmad Zaki Shukor, 2015)

2.1.2.1 Data Glove Approach

The data-glove approach uses a unique assembled electronic glove,

which has sensors that give us the hand shape. Most commercial sign

language translation systems use the data-glove method, as it simple to

acquire data on the bending of finger and 3D orientation of the hand using

gloves. This approach requires less computational force and continuous

analysis is much simpler to achieve. Some of the sensors that we use in this

approach is the flex sensors and contact sensors which give us the finger

shape and the accelerometer for hand gesture. The data glove is highly

10

suitable in perceiving both fingerspelling and sign motions, which include

static and movement signs. However, these data glove can be costly. While

it is possible to create less expensive data glove, they are much more

vulnerable to noise. If the number of the sensors used is reduced, it will bring

about loss of important data about the hand shape. This will result in the loss

of accuracy in sign language interpretation. The data glove could also be less

comfortable to be worn by the signer (Ahmad Zaki Shukor, 2015).

2.1.2.2 Visual-Based Approach

With the current advancement in computer technology and software, there

has been an increase in the use of visual-based methodology. Images of the

signer (the one uses the sign language) are captured by a camera and video

processing is done to perform detection of the sign language. Different from

the data glove approach, the fundamental advantage of visual-based

methodology is the adaptability of this approach. The recognition of facial

expression and head movements additionally can be incorporated to the

framework and perform lip-perusing. This system can be separated into two

strategies, which are utilization hand crafted shading gloves and in light of

skin-color recognition. For the recognition based on skin-color, the approach

hard requires just a camera to capture the moving pictures of the signer with

no additional gadgets needed. It turns out to be more common and helpful for

constant applications. This system utilizes an uncovered hand to concentrate

information required for recognition, and it is simple, where the user directly

communicates with the system. In order to track the position of hand, the skin

color region will be fragmented using color threshold technique, and then the

region of interest can be determined. The image acquisition runs constantly

until the signer demonstrates a stop sign. After the threshold, the segmented

11

images are then analyzed to obtain the unique features of each sign. These

visual-based approaches are minimizing the equipment cost. However, these

systems are just suitable and viable for decoding alphabets and numbers, as

opposed to perceiving sign gestures. Signs with comparable stance to another

sign can be confused reducing the precision of the system. Moreover, the

image acquisition process is subject to numerous natural concerns, for

example, position of the camera, background condition and lighting effects.

The different height of the signer must also be considered. Adequate lighting

is additionally required to have enough brightness to be seen and analyzed

(Ahmad Zaki Shukor, 2015).

2.1.2.3 Virtual-based Button Approach

Function of a virtual button is to generate button events, a press and

discharge, by perceiving hand motions of holding and discharging

individually. This virtual button also can identify different sorts of gesture

and generate proper command. The virtual button method uses patterns of the

wrist shape. It can perceive a squeeze movement. By using small sized IR

optic sensors, the patterns of finger flexor muscles on wrist can be recognized

by moving fingers. These patterns are used to perceive finger or hand

movement. The IR emitter and IR optic sensor are attached on the bottom of

the wrist because the area comprises of finger flexor tendons that delicately

respond to finger movements. These sensors produce voltage values

according to the amount of IR radiation. In the system, this sensor is used to

monitor different patterns of the wrist shape resulting from the movement of

finger flexor tendons in the wrist when fingers are moving. However, this

method is not effective for interpreting sign language because it requires

more intricate stance of fingers. Also, sign language gestures utilize more

12

than a finger movement and wrist shape. Thus, this method is not practical

for perceiving communication via gestures motions (Ahmad Zaki Shukor,

2015).

2.2 Communication between Normal People and Deaf People

“Research projects have aimed to develop technology to facilitate

communication between hearing and non-hearing people. In 1999, the first

attempt to solve the problem described a simple glove system that can learn

to decipher sign language gestures and output the associated words. Since

then, numerous teams, mainly undergraduate or graduate university projects,

have created their own prototypes, each with its own advantages and design

decisions.” (Princesa Cloutier 2016).

2.2.1 Related Work

Using the concept of gestures, few attempts have been made in the past

to recognize the gestures made using hands but with limitations of

recognition rate and time which include:

1. Using CMOS camera.

2. Leaf switches based glove.

3. Copper plate based glove.

4. Flex sensor based glove (Kanika Rastogi May 2016) .

2.2.1.1 Using CMOS Camera

CMOS camera transmits image data via UART serial port. The UART

performs serial-to-parallel conversions on data received from a peripheral

device (CMOS camera in this case) and parallel-to-serial conversion on data

received from the CPU (Microcontroller in this case).

13

Hand gestures were detected using CMOS camera by 3 steps:

1. Capturing the image of the gesture

2. Edge detection of that image

3. Peak detection of that image

Disadvantage: Highly expensive, latency and each image occupies 50KB of

memories (Kanika Rastogi May 2016).

2.2.1.2 Leaf switches based glove

These are like normal switches, but these are designed in such a way

that when pressure is applied on the switch, the two ends come into contact

and the switch will be closed. These leaf switches are placed on the fingers

of the glove such that the two terminals of the switch come into contact when

the finger is bent.

Disadvantage: After prolonged usage, the switch instead of being open when

the finger is straight, it will be closed resulting in improper transmission of

gesture (Kanika Rastogi May 2016).

2.2.1.3 Copper Plate Based Glove

In this prototype, a copper plate is fixed on the palm as ground. The

copper strips indicate a voltage level of logic 1 in rest position. But when

copper strips meet the ground plate, the voltage associated with them is

drained and they indicate a voltage level of logic 0.

Disadvantage: The use of copper plate makes the glove bulky which makes

it unsuitable to use it for a long time (Kanika Rastogi May 2016).

2.2.1.4 Flex sensor based glove

Flex means “bend” or “curve”. Sensor refers to a transducer which

converts physical energy into electrical energy. Flex Sensor is a resistive

14

sensor which changes its resistance as per the change in bend or curvature of

it into analog voltage. This is a haptic based approach which consists of using

flex sensors to take in physical values for processing (Kanika Rastogi May

2016).

2.2.2 Some Models of Sign Language Translator

Mohammed et al. (2015) accomplished a model uses a glove fitted

with sensors that can interpret the (ASL) alphabet. The glove uses flex

sensors, contact sensors and 6 DOF accelerometer/Gyroscope on a single

chip. All these sensors are mounted on the hand to gather the data on every

finger’s position and the orientation of the hand to differentiate the letters.

Sensory data is sent to a computing unit (an Arduino microcontroller) to be

translated and then displayed. The Accelerometer/Gyroscope are used for the

movement and orientation detection and it is mounted at the upper side of the

hand. The contact or force sensors determine which fingers are touching and

how the fingers are relative to each other. To enable wireless transmission

between the controller and a smart phone, a Bluetooth module is chosen. The

selection of Bluetooth module is based on its capability of being easy to use,

and its wide compatibility with today’s gadgets. A serial Bluetooth module

device is utilized in this work. In some cases, similarity between

measurements pertained to different letters is very high. This misleading

similarity causes wrong detection as seen in the table above, we call it

ambiguity. This issue is known as identification problem.

Ahmad Zaki Shukor et al. (2015) developed a model (Figure 2-1) that

described it as “This is the first application of the tilt sensor in sign language

detection, to the best of the authors’ knowledge”, They specified it to

translate Malaysian Sign Language. The microcontroller used is Arduino,

15

which interprets the information received from the sensors (tilt and

accelerometer) to be sent to the Bluetooth module, and then the module sends

the interpreted sign/gesture to the Bluetooth-enabled mobile phone. They

said that constructing the data glove with flex sensors can be quite costly

because the price for flex sensor is quite expensive. Also, the reading of flex

sensor is not very stable and sensitive to noise. the accuracy for all the tests

is quite high. In the number of 10 attempts tested for each sign, at least 7 trials

were successful. The alphabet/number has higher accuracy due to the usage

of tilt sensors. The words have lower accuracy because the words involve

motion which needs to be detected by the accelerometer.

(a) (b)

Figure 2-1 Ahmad Zaki Shukor’s Model – (a) Overall System

Components and (b) the device worn on user’s hand

Mohammad Taye et al. (2016) constructed a model named it as : ANY

ONE CAN TALK TOOL. Based on this project they decided to divide it into

three Layers, which are: The application Layer, The Software System Layer

and The Hardware Layer. The first layer is Application Layer, which

contained two applications: Signal Generator Application, which responsible

on generating signal and sending it, and Interpreter Application which

responsible on interpreting signals and generating voice. Second layer is

16

System Software Layer, Their project contains two-system software, first

system software is RASPBIAN, which is a free operating system based on

Debian optimized for the Raspberry Pi hardware. Second one is ARDUINO,

it is some open-source electronics prototyping platform based on flexible

easy to use hardware and software. Third layer is concerned about Hardware

. This layer consists three main components, Main components are Gloves,

each glove includes five flex sensors each sensor placed on glove finger, and

microprocessor connected with these flex sensors. Hardware Used in their

project are: Arduino fio v3, Flex Sensor 2.2, Raspberry Pi Model B as

Interpreter, Video Out via Composite (PAL and NTSC),

HDMI or Raw LCD, Audio Out via 3.5mm Jack or Audio over

HDMI. Interpreter Can Be Connected to gloves in Two ways: Wireless or

Serial communication.

K.V.Fale et al. (2016) Proposed a system named : Gesture Vocalizer

for Deaf and Dumb People. In this system at the transmitter side they used a

glove which must be worn by the user. This glove is mounted with 4 flex

sensors each on the 4 fingers of the glove namely thumb, index, middle, ring.

The flex sensors give their output in the form of change in resistance

according to the bend angle. The output from the flex sensors is given to the

ADC channels of the microcontroller. The processed ADC values from the

microcontroller are compared with the threshold values for the recognition of

a particular gesture. The particular gesture is recognized and is given to the

microcontroller which transmits them through the RF module in a serial

manner (as in Figure 2-2) . For each value received at RF receiver, the

microcontroller gives corresponding commands to the LCD and the Voice

17

Module. Thus, they acquired the voice output for each gesture and displayed

of each gesture in form of text on the LCD display.

Figure 2-2 Gesture Vocalizer for Deaf and Dumb People - Block

Diagram of Transmitter Section

2.3 Summary

In this project, ASL is chosen because it is widely used by deaf people

around the world. Also, its gestures are like normal people motions and

expressions.

 After deep reading literature and related work, most models preferred

data glove approach. It seems the reasons of that is cheapness of its

components, less efforts in implementing it and its accuracy is relatively high

(with some insufficiency that can be overcomes by some additional work).

Most previous models discussed in this chapter used flex sensors as finger

gesture recognition, Flex sensor is the most suitable sensor to measure and

capture the movement of the fingers, accelerometer as hand motion

recognition, ARDUINO as a microcontroller that interprets the gesture of the

hand, and a smart phone with android application to outputs results.

 Next chapter will discuss our proposed solution, its components and

the methodology of constructing this model.

18

CHAPTER 3

RESEARCH METHODOLOGY

19

This chapter explains the development methodology and guidelines in

designing and construction the project. There are two major parts developing

the project: The circuit design and construct and the develop of software and

algorithm.

3.1 Research Phases

It was apparent that the completion of this project would require

meeting several Phases as described below:

1. Develop a sensing network that incorporates and differentiates the

different types of hand movement used in American Sign Language

(ASL):

▪ Flexion.

▪ Contact.

▪ Rotation.

▪ Translation.

2. Interface the sensor network with an Arduino.

3. Develop a program that recognizes sensor signals and stores those that

correspond to a designated ASL sign into a code library.

4. Successfully output ASL signs in a manner that can be understood by

a non ASL speaker.

It should be noted that the phases can be categorized into two main

categories, hardware and software. Phases 1 and 3 are hardware objectives,

as they relate to the physical, tangible parts of the glove, while Phase 3 is a

software objective and is instead focused on the glove’s code development

and signal processing. Phase 2 relates to both the hardware and software

components, can be considered embedded systems objectives.

20

3.2 Overview about System components

 In this section, all components used in this research will be clarified,

as shown in the next Figure.

Figure 3-1 Project Block Diagram

The implementation of this project in real life is shown in the next

Figure.

Figure 3-2 The Project in Real Life Action

3.2.1 Flex Sensors as fingers Gesture Recognition

A flex sensor (Figure 3-3) is a device that has very versatile

compatibilities. When the sensor is flexed, its resistance increases

significantly. Using a voltage divider circuit, comprising of the flex sensor

21

and a carefully chosen fixed resistor, we can know when the sensor is being

flexed and when it is not by connecting it with the comparator circuit. Flex

sensor is the most suitable sensor to measure and capture the movement of

the fingers. When sensor placed in gloves is bent, it produces a resistance

output correlated to the bend radius- the smaller the radius, the higher the

resistance value. The bending resistance range for flex sensor varies

approximately from 30Kohm to 125Kohms. The flex sensors are the most

critical sensors because most letters can be distinguished based on fingers’

flexes. (Eelctronics)

Figure 3-3 2.2 inch Flex Sensor

Figure 3-4 Flex Bend Levels

3.2.2 Contact Sensors or tactile sensors as fingers touching Recognition

Contact sensor uses transducer for the sensing operation. Some mostly

used sensors are potentiometer, strain gauge etc. Contact or touch sensors are

22

one of the most common sensors in robotics. These are generally used to

detect a change in position, velocity, acceleration, force, or torque at the

manipulator joints and the end-effecter. There are two main types, bumper

and tactile. Bumper type detect whether they are touching anything, the

information is either Yes or No. They cannot give information about how

hard is the contact or what they are touching. Tactile sensor are more complex

and provide information on how hard the sensor is touched, or what is the

direction and rate of relative movement.

3.2.2.1 Tactile sensors:

That measure the touch pressure rely on strain gauges or pressure

sensitive resistances. Variations of the pressure sensitive resistor principle

include carbon fibers, conductive rubber, piezoelectric crystals, and piezo-

diodes. These resistances can operate in two different modes: The material

itself may conduct better when placed under pressure, or the pressure may

increase some area of electrical contact with the material, allowing increased

current flow. Pressure sensitive resistors are usually connected in series with

fixed resistances across a DC voltage supply to form a voltage divider. The

fixed resistor limits the current through the circuit should the variable

resistance become very small. The voltage across the pressure variable

resistor is the output of the sensor and is proportional to the pressure on the

resistor. The relationship is usually non-linear, except for the piezo-diode,

which has a linear output over a range of pressures. An analog to digital

converter is necessary to interface these sensors with a computer. (Shailendra

Kumar Bohidar, 2015)

23

3.2.3 MPU-6050 3 Axis Gyroscope and Accelerometer Module as a

Hand Motion Recognition

 The InvenSense MPU-6050 sensor (Figure 3-5) contains a MEMS

accelerometer and a MEMS gyro in a single chip. It is very accurate, as it

contains 16-bits analog to digital conversion hardware for each channel.

Therefor it captures the x, y, and z channel at the same time. The sensor uses

the I2C-bus to interface with the Arduino. The MPU-6050 is not expensive,

especially given the fact that it combines both an accelerometer and a gyro.

(ARDUINOPlayground)

Figure 3-5 InvenSense MPU-6050 sensor

3.2.4 ARDUINO UNO as A Gesture Recognition Unit

ARDUINO is an open-source computer hardware and software

company, project and user community that designs and manufactures

microcontroller-based kits for building digital devices and interactive objects

that can sense and control the physical world.

The project is based on a family of microcontroller board designs

manufactured primarily by Smart Projects in Italy, and also by several other

vendors, using various 8-bit Atmel AVR microcontrollers or 32-bit Atmel

ARM processors. These systems provide sets of digital and analog I/O pins

24

that can be interfaced to various expansion boards ("shields") and other

circuits. The boards feature serial communications interfaces, including USB

on some models, for loading programs from personal computers. For

programming the microcontrollers, the Arduino platform provides an

integrated development environment (IDE) based on the Processing project,

which includes support for C, C++ and Java programming languages.

(ARDUINOWebsite)

Arduino Uno (Figure 3-6) is a microcontroller board based on the

ATmega328P. It has 14 digital input/output pins (of which 6 can be used as

PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB connection,

a power jack, an ICSP header and a reset button. It contains everything

needed to support the microcontroller; simply connect it to a computer with

a USB cable or power it with a AC-to-DC adapter or battery to get started.

You can tinker with your UNO without worrying too much about doing

something wrong, worst case scenario you can replace the chip for a few

dollars and start over again. "Uno" means one in Italian and was chosen to

mark the release of Arduino Software (IDE) 1.0. The Uno board and version

1.0 of Arduino Software (IDE) were the reference versions of Arduino, now

evolved to newer releases. The Uno board is the first in a series of USB

Arduino boards, and the reference model for the Arduino platform; for an

extensive list of current, past or outdated boards see the Arduino index of

boards. (ARDUINOWebsite)

The Arduino IDE (Integrated Development Environment) is a cross

platform application written in java, and is derived from the IDE for

processing programming language and writing this prototype. It includes a

code editor with features such as syntax highlighting, brace matching and

25

automation indentation and is also capable of compiling and uploading

programs to the board with a single click. (Kanika Rastogi May 2016)

Figure 3-6 ARDUINO UNO

3.2.5 WiFi Module (ESP8266) as a transmitter

 The ESP8266 WiFi Module (Figure 3-7) is a self-contained SOC with

integrated TCP/IP protocol stack that can give any microcontroller access to

your WiFi network. The ESP8266 is capable of either hosting an application

or offloading all Wi-Fi networking functions from another application

processor. Each ESP8266 module comes pre-programmed with an AT

command set firmware, meaning, you can simply hook this up to your

Arduino device and get about as much WiFi-ability as a WiFi Shield offers

(and that’s just out of the box)! The ESP8266 module is an extremely cost-

effective board with a huge, and ever growing, community. This module has

a powerful enough on-board processing and storage capability that allows it

to be integrated with the sensors and other application specific devices

through its GPIOs with minimal development up-front and minimal loading

during runtime. Its high degree of on-chip integration allows for minimal

26

external circuitry, including the front-end module, is designed to occupy

minimal PCB area. (SparkFun)

Figure 3-7 WiFi Module (ESP8266)

3.2.6 Android O.S. with Specific Application as Output System

 Android is a mobile operating system developed by Google, based on

the Linux kernel and designed primarily for touchscreen mobile devices

such as smartphones and tablets. Android's user interface is mainly based

on direct manipulation, using touch gestures that loosely correspond to real-

world actions, such as swiping, tapping and pinching, to manipulate on-

screen objects, along with a virtual keyboard for text input. In addition to

touchscreen devices, Google has further developed Android TV for

televisions, Android Auto for cars, and Android Wear for wrist watches,

each with a specialized user interface. Variants of Android are also used on

game consoles, digital cameras, PCs and other electronics. (Kekana)

 The following Figure represents the Block diagram of the Project.

3.3 System Flow Chart

 Next Figure represents the flow Chart of the System.

27

Start

Capture Hand

Shape and

Movement

Is a Word or letter
Condition Verified ?

Send The Data to Phone

Display the Word or

Letter in Text and

Speech in Phone

Yes

No

Figure 3-8 System Flow Chart

3.4 Hardware Development

The hardware in our system is basically consist of the flex sensor

partition, the contact sensor partition, the accelerometer partition, the glove

material, the Arduino and the WIFI module. The hardware also can be

divided into three parts: the detection unit, hand position sensing and base

station unit.

28

3.4.1 Detection Unit

The detection unit is the transmitter part of the project where the

detection of the hand shape and the processing happen. The core of the

detection unit is the glove circuit. There is a small board on the glove which

receives all the outputs from the flex sensors and contact sensors. Wires is

used to connect sensors with board and jumpers for connection with Arduino

pins. The wires from the contacts part enters the Arduino and the other end

connected with the Vcc. The wires from the flexes enter the comparator

circuit like shown in the next Figure.

Figure 3-9 Comparator Circuit

The detection unit’s transceiver (Wi-Fi Module ESP8266) is used only

for transmissions of the translated letters. The coding process for the Wi-Fi

was in two steps , first the code that will be inside Wi-Fi transported to the

Wi-Fi by the Arduino which has the following configuration: Vcc pin of the

module to the Arduino 3.3v, GND to the Arduino GND, ESP TX and RX to

Arduino TX and RX in the same order. ESP CH-PD pin to the Vcc source

(3.3v). When uploading the code, VGIO-0 is connected to the GND.

29

Figure 3-10 Wi-Fi Module ESP8266 Connected with ARDUINO UNO

After the programming of the Wi-Fi then we must program the

Arduino to interact with the Wi-Fi and after the first programing finishes the

connection differs to the follows : Vcc pin of the module to the Arduino 3.3v,

GND to the Arduino GND, ESP TX and RX to Arduino RX and TX in the

same order. ESP CH-PD pin to the Vcc source (3.3v). This time VGIO-0

doesn’t have to be connected to the GND. See Appendix – B : Wi-Fi Module

ESP8266 Code.

3.4.2 Hand Position Sensing:

We will use a lot of sensors to do the hand position sensing. To make

the finger sensing it was determined that the best sensor to use to measure

finger flexion was a flex sensor with the help of contact sensors. The flex

sensor system is the system most dependent on analog components, since the

motion of a finger gives us a continuous range of voltages. Due to this, we

decided to simulate the flex system to ensure linearity and adequate

sensitivity. “Linearity is important, because the microprocessor algorithm

assumes that similar ranges of finger flexion will have similar outputs from

30

the flex sensor system” (Princesa Cloutier 2016). The flex sensors are the

most important sensors because most letters can be distinguished based on

fingers’ flexes. All the fingers except the thumb have two flex sensors, one

over the knuckle and the other over the lower joint. This provides two degrees

of flexes for these fingers. For the thumb, there is one flex sensors over the

lower joint. The contact sensors are used for the letters which have the same

flex Figure but differs at the shape, for example letters R, U and V have the

same flex but the relative position between their index and middle finger

differ, as in Figure 3-11 .

Figure 3- 11 Letters R, U, and V

Contact sensors show which fingers are touching each other. They do

not give us any information of the relative position between fingers except

for whether they are together or not.

Each of the sensors are connected with a comparator instead of the

ARDUINO UNO ports. The ARDUINO UNO has 2 types of Ports: Digital

& Analog. Flex Sensors are connected to comparators. Comparators are

connected to Digital Ports of ARDUINO UNO which also are connected to

contact sensors.

The Accelerometer (Which has 3 output Pins) is connected to Analog

Ports of ARDUINO. Processing will be in ARDUINO then its output will be

31

at TXD Pin (PD1). The output is connected to the input pin of the Wi-Fi

Module ESP8266 then a signal will be sent to the Phone to show the letter.

The Arduino has internal ADC’s which could have been used for the flex

sensors. However, each flex sensor only needs to be converted to one bit:

flexed or not flexed. A one-bit ADC is not difficult to set up: a Schmitt

Trigger with a proper threshold can serve as a ADC. Additionally, there are

nine flex sensors, while the Arduino only has 4 pins with internal ADCs.

Finally, the accelerometers need to be converted, and they need more than

one bit in the digital output.

For these reasons, nine external comparator circuits convert the flex

sensor inputs to digital signals. The disadvantage is that the comparator

circuits take up a significant amount of space on the detection unit.

That all was for the finger sensing, either for the gesture there are one

accelerometer x-y-z axis. the accelerometer is used for movement and

orientation detection. Specific hand motions are the only way to detect the

letters J and Z. For letters such as G and Q, the only way to distinguish

between them is their orientation. while G has the palm facing sideways, Q

has the palm facing downwards.

The accelerometer is a sensor that not only gives us the acceleration of

the object but also the direction of the acceleration. It have three outputs AcX,

AcY and AcZ, as shown in Figure 3-12, each show the acceleration of the

three axis in both directions which represented by a positive and a negative

value for each output .

32

Figure 3-12 Outputs of Accelerometer through ARDUINO IDE

By getting the output, we can exactly determine the direction which

the hand is moving at like shown in the next Figure.

33

(a) (b)

Figure 3-13 (a) Axis Movement, (b) Directions of Movement

 By using this method, we can determine the direction of the hand at

each second.

 We know that the words at the sign language is a combination of the

fingers shape and hand movement. We represented the movement of the hand

in the program by using the concept of steps. A step is completed by either

two ways:

1- The hand acceleration direction at the exact second is similar to the

one at the code (like the phrase ‘we are’).

2- The difference in the acceleration in this step and the previous step

is similar to the one at the code (like the phrase ‘thank you’).

 For more accuracy we made more than root for the hand to take since

not always the hand take the exact root it took the last time to present the

word, for example at the phrase ‘We are’ the hand moves at the shape of a

circle starting by going back, sometimes the move starts by going directly

bake then to curve sometimes it stars by the curve to the back , and that’s

what we meant by roots .

34

 To know the best number of steps and the required value for the

accelerometer parameters and the required delay for the step the team made

several tests for the hand movement for the exact word and then noting the

output represented and come out with the exact values and number of steps

required to represent movement. Next Figure shows how all Detection Unit

works. See Appendix A : Arduino Code for more details.

Start

Condition

Confirmed ?

Send The Specified Letter or

Word via WiFi Server

Yes

NoWait Until Accelerometer

Condition Confirmed

Get Finger

Shapes from the

Flex Sensors

Initialize TCP Server

Figure 3-14 Detection Unit Flow Chart

35

3.4.3 Base station Unit:

3.4.3.1Android APP:

We made an Android app (Figure 3-15 represents the flow diagram of

the application and Figure 3-16 shows the main interface of the application)

to be the interface between the glove and the user and to be an easy and

affordable way to communicate. The app is developed using Android Studio

IDE. For more information about the code, see Appendix - C : Android

Application Code.

Android Studio is an integrated development environment (IDE) from

Google that provides developers with tools needed to build applications for

the Android OS platform. Android Studio is available for download on

Windows, Mac and Linux. The foundation for Android Studio is based on

IntelliJ IDEA. The Android Studio IDE is free to download and use. It has a

rich UI development environment with templates to give new developers a

launching pad into Android development. Developers will find that Studio

gives them the tools to build phone and tablet solutions as well as emerging

technology solutions for Android TV, Android Wear, Android Auto, Glass

and additional contextual models. (AndroidStudio)

36

Start

Connected ?

Display the Word or

Letter in Text and

Speech in Phone

Yes

No

Initialize New Client

Connect to Server

Receive Data Statement

Figure 3-15 Base Station Unit Flow Chart

Figure 3-16 Android Application’s Main interface

37

3.4.3.2 Text-to-Speech used

Google Text-to-Speech is a screen reader application developed by

Android, Inc. for its Android operating system. It powers applications to read

aloud (speak) the text on the screen.

It is a great piece of technology that was developed to help individuals

with visual impairments. However, device manufacturers these days enable

text-to-speech Android that allows books to be read out loud and new

languages to be learned.

Android text to voice was introduced when Android 4.2.2 Jelly Bean

was launched with a more conversational capability so that users can have a

familiar human-like interaction. More recently, two high-quality digital

voices were introduced for Google text-to-speech technology that further

enhance Android app that reads text, which is uncommon for Android users.

Now, there are not many Android text to speech app available in the

market that fully utilize Google text speech technology

The app is mainly constructed from two parts, the layout and the

controlling code. Both of them are written in the android studio and that what

makes it easier.

3.4.3.3 Application Layout

The layout (As seen in Figure 3-16) is written in XML programing

language, and its controlling code is written in java.

The code itself is mainly containing two main parts. the first one is the

part that act like server, a socket server that receive a transmitted data from

the Arduino, to make that happen it need the IP number of the Wi-Fi module

and a port number that can be conFigured from the Arduino.

38

The second part is integration to a built-in library called TextToSpeak,

it’s a class that’s allow us to pronounce words, and we use it for that purpose.

3.4.3.4 Socket Server

Sockets allow communication between two different processes on the

same or different machines. To be more precise, it's a way to talk to other

computers using standard Unix file descriptors. In Unix, every I/O action is

done by writing or reading a file descriptor. A file descriptor is just an integer

associated with an open file and it can be a network connection, a text file, a

terminal, or something else.

To a programmer, a socket looks and behaves much like a low-level

file descriptor. This is because commands such as read() and write() work

with sockets in the same way they do with files and pipes.

Sockets were first introduced in 2.1BSD and subsequently refined into

their current form with 4.2BSD. The sockets feature is now available with

most current UNIX system releases.

3.5 Simulation

 In the simulation for our project we used the software Protues to

simulate our project (see Figure 3-17).

 The Proteus Design Suite is a proprietary software tool suite used

primarily for electronic design automation. The software is used mainly by

electronic design engineers and technicians to create schematics and

electronic prints for manufacturing printed circuit boards. It was developed

in Yorkshire, England by Lab Center Electronics Ltd. (Wikipedia)

We used variable resisters to act like the flex sensors since we couldn’t

find a library for them, we have 9 flex sensors (variable resisters) in the

39

simulation connected with comparators and the out of the comparators is

entering the Arduino at pins 0and 2-9 at the digital pins , also we have 4

contact sensors which are represented by 4 normal switches which enters the

Arduino at pins 10-13 also at the digital pins , the values of the sensors get

processed inside the Arduino and get us the opposite letter or word or phrase

as told in our words and letters table (as shown in table 3-1) which represents

the hand shape to all letters and some words based on the ASL. Finally, in

the hardware the out of the Arduino at pin1 enters the Wi-Fi and got sent to

the phone to write and say the words or letters but in the simulation, we can’t

use the Wi-Fi module so we used what’s called Virtual Terminal (Figure 3-

18) which the output of the Arduino (from pin1) enters and get us the string

and write it in the VT view.

Figure 3-17 Proteus Simulation Circuit

40

Figure 3-18 Virtual Terminal View

41

Table 3-1: Words and letters table

Thump

Over

the

lower

joint

F1

Index

Over

the

lower

joint

F2

Index

over

the

knuckle

F3

Middle

finger

Over

the

lower

joint

F4

Middle

finger

over the

knuckle

F5

Ring

finger

Over

the

lower

joint

F6

Ring

over

the

knuck

le

F7

Pinky

Over

the

lower

joint

F8

Pinky

over the

knuckle

F9

Top

Middle

finger

Cont1

Side

Middle

finger

Cont2

side

ring

finger

Cont3

Side

pinky

Cont4

WORD

/

LETTER

1 0 0 0 0 0 0 0 0 1 1 1 1 A

0 1 1 1 1 1 1 1 1 0 1 1 1 B

1 0 1 0 1 0 1 0 1 0 1 1 1 C

1 1 1 0 1 0 1 0 1 1 0 1 1 D

0 0 1 0 1 0 1 0 1 1 1 1 1 E

0 0 1 1 1 1 1 1 1 0 0 0 0 F

1 1 0 0 0 0 0 0 0 1 0 1 1 G

0 1 1 1 1 0 0 0 0 0 1 0 1 H

0 0 0 0 0 0 0 1 1 1 1 1 1 I

0 0 0 0 0 0 0 1 1 1 1 1 0 J

1 1 1 1 1 0 0 0 0 0 0 0 1 K

1 1 1 0 0 0 0 0 0 1 0 1 1 L

0 0 1 0 1 0 1 0 0 1 1 1 1 M

0 0 1 0 1 0 0 0 0 1 1 1 1 N

0 0 1 0 1 0 1 0 1 1 1 1 1 O

1 1 1 1 0 0 0 0 0 0 0 0 1 P

1 1 1 0 0 0 0 0 0 1 0 1 1 Q

0 1 1 1 1 0 0 0 0 1 0 0 1 R

0 0 0 0 0 0 0 0 0 1 1 1 1 S

0 0 1 0 0 0 0 0 0 1 1 1 1 T

0 1 1 1 1 0 0 0 0 0 1 0 1 U

0 1 1 1 1 0 0 0 0 0 0 0 1 V

0 1 1 1 1 1 1 0 1 0 0 0 1 W

0 0 1 0 0 0 0 0 0 1 0 1 1 X

1 0 0 0 0 0 0 1 1 1 1 1 0 Y

0 1 1 0 0 0 0 0 0 1 0 1 1 Z

1 1 1 1 1 1 1 1 1 0 1 1 1 HELLO

42

3.6 Summary

 We began the design of this glove with its hardware. Flex sensors were

tested for linearity and sensitivity, then placed in locations on the glove that

the team determined to be the optimal sensing locations. An ADC was

implemented to input the flex sensors’ analog values to the Arduino so that

they may be processed effectively while taking up as few Arduino pins as

possible. Contact sensors were tested for responsiveness and then connected

to digital pins, as they only sensed if there was contact or not. Accelerometer

is used to recognize words and letters that have some hand motion plus

fingers gestures. We used wifi module for connection between hand detection

unit and base station unit. At base station unit, Android studio IDE is used

for programming the application that installed to a smart android phone to

receive the output of detection unit and converts it to voice as well as text.

Proteus Design Suite was used to simulate the hardware circuit of the project.

 The result of Smart Glove for using combination of four flex sensors,

four contact sensors and an accelerometer will be discussed next chapter.

43

CHAPTER 4

RESULT AND DISCUSSION

44

In this chapter we are going to represent the outputs of the Simulation

of the project and Hardware outputs.

4.1 Simulation Results

 The simulation as shown in the Figures (3-17) and (3-18) contains of

9 flex sensors, 4 contact sensors represented by switches in addition to an

Arduino and a virtual terminal to show to the output.

 As represented in chapter 3, because of the lack of libraries in the

Proteus simulation, we used a variable resistance instead of the flex sensors

and we used switches instead of contact sensors. We noticed that we couldn’t

make words in the simulation for the lack of the accelerometer library which

is essential to do this.

 And now, next Figures will represent some samples of the letters in the

table in chapter 3 as shown at the simulation virtual terminal.

Figure 4-1 Letter ‘S’ at Simulation Virtual Terminal

45

Figure 4-2 Letter ‘T’ at Simulation Virtual Terminal

Figure 4-3 Letter ‘C’ at Simulation Virtual Terminal

4.2 Hardware Implementation

 Our project prototype contains of 3 flex sensors, 4 contact sensors,

Arduino and the ADC circuit which consist of the comparator and the

resistors as shown in Figure below.

46

Figure 4-4 Glove Prototype

Keeping this in mind the following table was generated showing the

hardware implementation outputs

Table 4-1: Hardware Words and Letters

Inde

x

Over

the

lowe

r

joint

F2

Middle

finger

Over

the

lower

joint

F4

Ring

finge

r

Over

the

lower

joint

F6

Top

Middle

finger

Cont1

Side

Middle

finger

Cont2

side

ring

finger

Cont3

Side

pinky

Cont4

Hand

palm

Cont5

WORD

or

LETTER

1 1 1 0 1 1 1 X Thank you

0 0 0 1 1 1 0 X I

1 1 0 0 0 0 1 0 K

1 0 0 1 0 1 1 1 L

1 1 0 1 0 0 1 X R

0 0 0 1 1 1 1 0 S

0 0 0 1 1 1 1 1 T

1 1 0 0 1 0 1 1 U

1 1 0 0 0 0 1 1 V

1 1 1 0 0 0 1 X W

1 0 0 1 0 1 1 0 At

1 1 1 0 0 0 0 X HELLO

1 1 1 0 1 1 1 X Student

1 1 0 0 1 0 1 0 we are

47

We notice that we have only three flex sensors, considering the high

cost of the sensor and some fault occurred.

Due to all that, efficiency has decreased in the matter that we could not

represent all the characters using this number of flex sensors.

 According to that, we used a special push button in the palm of the

hand to be able to differ between the letters and words used in the

presentation.

 For example, when we want to differ in the R and S letters in our

implementation we can't because there is a similarity in the hand cannot be

differentiate between them which cannot be done by using three flex sensors

as we will show you later.

 Next Figures will represent some results of hand gestures through

mobile phone application.

Figure 4-5 ‘HELLO’ gesture result at smart phone application

48

Figure 4-6 ‘WE ARE’ gesture result at smart phone application

Figure 4-7 ‘STUDENTS’ gesture result at smart phone application

49

Figure 4-8 ‘AT’ gesture result at smart phone application

Figure 4-9 ‘S’ ‘U’ ‘T’ gestures result at smart phone application

50

4.3 Summary

 At this chapter, simulation and hardware proof are shown.

Due to lack of sensors libraries, simulation of the project is deficient.

Moreover, it is been concluded that the simulation isn’t good to present the

project since it is a very real-time system project where the changes of the

flexes and accelerometer done simultaneously. So, Hardware implementation

became more important to show true results.

We observe that the accuracy of the results is very good, but the

internal resistance of the flex is changing for various reasons that might be

related to the low quality of the flex itself or wrong usage which causes the

low accuracy.

Generally, when we find that when we use the camera the results will

be enhanced comparing to the flex results but that in the cost of other things

as, wearing a glove is much easier than holding a camera.

51

CHAPTER 5

CONCLUSION AND RECOMMENDATION

52

5.1 Conclusion

 Through this work, a user-friendly glove was designed the glove was

developed to be able to translate sign language gestures into words with high

level of accuracy in recognizing gestures, Efficiency was later increased by

increasing the number of letters and words that the glove translates.

Moreover, flex and contact sensor was used to collect the data form

finger and convert this data to characters.

Furthermore, as proven in chapter 4 we were able to calculate the

acceleration of the wrist using an accelerometer then convert it to words as

will later on.

Finally processing and converting steps were performed by Arduino

result were lastly presented using an android application.

5.2 Recommendation

In the future, there are several changes that can be made to improve

the glove into a well-rounded product. To help shape the device into

something more slim and comfortable, the team suggests a few

improvements to the prototype. Primarily, the team suggests designing a

smaller and more compact PCB, which will combine the components of the

system together more efficiently. The team also recommends using

conductive fabric to replace, the contact sensors, the flex sensors, and/or the

wiring to allow for a more lightweight glove that is less bulky and more easily

conforms to hand movement.

Another valued improvement to the prototype would be replacement

batteries which are slimmer but can still provide the required voltage of 5V

and enough power to last for at least 5 hours.

53

To add to that form a hardware perspective when increasing the

number of device used to collect the data the accuracy increases and the

number of words covered by the device increases too.

For a quick and easy usage two gloves must be used instead of one

From a software perspective the best inherent that must be focused on is the

language Arabic must be implemented for the convenience of use for largest

number of Arab people.

54

REFERENCES

55

AHMAD ZAKI SHUKOR, M. F. M., MUHAMMAD HERMAN

JAMALUDDIN, FARIZ BIN ALI@IBRAHIM, MOHD FAREED

ASYRAF, MOHD BAZLI BIN BAHAR 2015. A New Data Glove

Approach for Malaysian Sign Language Detection. Elsevier B.V,

Procedia Computer Science, 1877-0509 60 – 67.

ANDROIDSTUDIO. AndroidStudio - The Official IDE for Android

[Online]. Available: https://developer.android.com/studio/index.html

[Accessed 23-10-2017 2017].

ARDUINOPLAYGROUND. MPU-6050 Accelerometer + Gyro [Online].

Available: https://playground.arduino.cc/Main/MPU-6050 [Accessed

23-10-2017 2017].

ARDUINOWEBSITE. Arduino Uno Rev3 [Online]. Available:

https://store.arduino.cc/usa/arduino-uno-rev3 [Accessed 22-10-2017

2017].

ARDUINOWEBSITE. What is Arduino? [Online]. Available:

https://www.arduino.cc/en/Guide/Introduction [Accessed 20-10-2017

2017].

EELCTRONICS, L. A. How to Build a Flex Sensor Circuit with a Voltage

Comparator [Online]. Available:

http://www.learningaboutelectronics.com/Articles/Flex-sensor-

circuit-with-a-voltage-comparator.php [Accessed 20-10-2017 2015].

K.V.FALE, A. P., PRATIK CHAUDHARI, PRADEEP JADHAV 2016.

Smart Glove: Gesture Vocalizer for Deaf and Dumb People.

International Journal of Innovative Research in Computer and

Communication Engineering, 4, 7.

KANIKA RASTOGI , P. B. May 2016. A Review Paper on Smart Glove -

Converts Gestures into Speech and Text. International Journal on

Recent and Innovation Trends in Computing and Communication 4,

92 - 94.

KEKANA, I. L. End User Computing.

https://developer.android.com/studio/index.html
https://playground.arduino.cc/Main/MPU-6050
https://store.arduino.cc/usa/arduino-uno-rev3
https://www.arduino.cc/en/Guide/Introduction
http://www.learningaboutelectronics.com/Articles/Flex-sensor-circuit-with-a-voltage-comparator.php
http://www.learningaboutelectronics.com/Articles/Flex-sensor-circuit-with-a-voltage-comparator.php

56

MOHAMMAD TAYE, M. A. S., MOYAD RAYYAN AND HUSAM

YOUNIS February 2016. ANYONE CAN TALK TOOL. Computer

Applications: An International Journal (CAIJ), 3.

MOHAMMED ELMAHGIUBI, M. E., NABIL DRAWIL, AND

MOHAMED SAMIR ELBUNI June 2015. Sign Language Translator

and Gesture Recognition. IEEE.

PRINCESA CLOUTIER , A. H. R. M. 2016. Prototyping a Portable,

Affordable Sign Language Glove. Bachelor of Science, Faculty of

Worcester Polytechnic Institute.

SHAILENDRA KUMAR BOHIDAR, K. P., PRAKASH KUMAR SEN

2015. ROBOTIC SENSOR: CONTACT AND NON-CONTACT

SENSOR. International Conference on Emerging Trends in

Technology, Science and Upcoming Research in Computer Science,

67.

SIGNSOFLIFEASL. February 27, 2013. 3 Forms of Sign Language: ASL

vs. PSE vs. SEE [Online]. Available:

https://signsoflifeasl.wordpress.com/2013/02/27/3-forms-of-sign-

language-asl-vs-pse-vs-see/ [Accessed 5-4-2017 2017].

SPARKFUN. WiFi Module - ESP8266 [Online]. Available:

https://www.sparkfun.com/products/13678 [Accessed 23-10-2017

2017].

WIKIPEDIA. Proteus Design Suite [Online]. Available:

https://en.wikipedia.org/wiki/Proteus_Design_Suite [Accessed 24-

10-2017 2017].

https://signsoflifeasl.wordpress.com/2013/02/27/3-forms-of-sign-language-asl-vs-pse-vs-see/
https://signsoflifeasl.wordpress.com/2013/02/27/3-forms-of-sign-language-asl-vs-pse-vs-see/
https://www.sparkfun.com/products/13678
https://en.wikipedia.org/wiki/Proteus_Design_Suite

1

APPENDICES

2

Appendix – A : Arduino code
#include<Wire.h>

const int MPU_addr=0x68; // I2C address of the MPU-6050

int16_t

AcX,AcY,AcZ,Tmp,AcX1,AcY1,AcZ1,AcX2,AcY2,AcZ2,AcX0,AcY0,AcZ

0;

int flex1 = 7;

int flex2 = 8;

int flex3 = 9;

int contact4 = 13;

int contact1 = 10;

int contact2 = 11;

int contact3 = 12;

int contact5 = 2;

int counter = 0;

int con1=3;

int con2=4;

int con3=5;

int con4=6;

void setup() {

Wire.begin();

Wire.beginTransmission(MPU_addr);

Wire.write(0x6B); // PWR_MGMT_1 register

Wire.write(0); // set to zero (wakes up the MPU-6050)

Wire.endTransmission(true);

Serial.begin(9600);

pinMode(flex1, INPUT);

pinMode(flex2, INPUT);

3

pinMode(flex3, INPUT);

pinMode(contact1, INPUT);

pinMode(contact2, INPUT);

pinMode(contact3, INPUT);

pinMode(contact4, INPUT);

pinMode(contact5, INPUT);

pinMode(con1, OUTPUT);

pinMode(con2, OUTPUT);

pinMode(con3, OUTPUT);

pinMode(con4, OUTPUT);

}

int q=0, a1=0, a2=0,f=0, w=1,h=0,j=1 ;

void loop() {

// read the input pin:

int F2 = digitalRead(flex1);

int F4 = digitalRead(flex2);

int F6 = digitalRead(flex3);

int C1 = digitalRead(contact1);

int C2 = digitalRead(contact2);

int C3 = digitalRead(contact3);

int C4 = digitalRead(contact4);

int C5= digitalRead(contact5);

while (F2 == HIGH and F4 == HIGH and F6 == HIGH and C1

== LOW and C2 == LOW and C3 == LOW and C4 == LOW)

{

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

4

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

// Serial.print("\nAcX = "); Serial.print(AcX);

// Serial.print(" | AcY = "); Serial.print(AcY);

// Serial.print(" | AcZ = "); Serial.print(AcZ);

if (q==0)

{

AcX1=AcX;

AcZ1=AcZ;

AcY1=AcY;

q++;

}

else

{

AcX2=AcX;

AcZ2=AcZ;

AcY2=AcY;

if (w==1)

{

if (AcY2-AcY1 <-5000)

{

5

if (AcX2-AcX1 > 1500)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

f++;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

}

}

else if (w==2)

{

if (f==0 and AcX2-AcX1 > 1500 and AcY2-AcY1 > 5000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

else if (AcX2-AcX1 < -1500 and AcY2-AcY1 > 2500)

{

AcX1=AcX2;

6

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

f=0;

}

}

else if (w==3)

{

if (f==0 and AcX2-AcX1 < -1500 and AcY2-AcY1 > 5000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

q=0;

w=1;

Serial.print("\nHello ");

// digitalWrite(con1, HIGH);digitalWrite(con2,

LOW);digitalWrite(con3, HIGH);digitalWrite(con4, HIGH);

// delay(200);

// digitalWrite(con1, HIGH);digitalWrite(con2,

HIGH);digitalWrite(con3, HIGH);digitalWrite(con4, HIGH);

}

7

else if (AcY2-AcY1 > 5000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

q=0;

w=1;

Serial.print("\nHello ");

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

f=0;

}

}

}

// Serial.print(" \n"); Serial.print(q);

Serial.print(w);Serial.print(f);

delay(200);}

// S , T are the same

while (F2 == LOW and F4 == LOW and F6 == LOW and C1 ==

HIGH and C2 == HIGH and C3 == HIGH and C4 == HIGH) {

if (C5==1)

{

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

8

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

// Serial.print("\nAcX = "); Serial.print(AcX);

// Serial.print(" | AcY = "); Serial.print(AcY);

// Serial.print(" | AcZ = "); Serial.print(AcZ);

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("T");

w=1;}

delay(500);

}

}

if (C5==0)

{

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

9

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

// Serial.print("\nAcX = "); Serial.print(AcX);

// Serial.print(" | AcY = "); Serial.print(AcY);

// Serial.print(" | AcZ = "); Serial.print(AcZ);

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("S");

w=1;}

delay(500);

}

}

}

// 'student' and 'thank you' have the same hand shape

while (F2 == LOW and F4 == LOW and F6 == LOW and C1 ==

LOW and C2 == HIGH and C3 == HIGH and C4 == HIGH) {

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

10

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

// Serial.print("\nAcX = "); Serial.print(AcX);

// Serial.print(" | AcY = "); Serial.print(AcY);

// Serial.print(" | AcZ = "); Serial.print(AcZ);

//

if (q==0)

{

AcX1=AcX;

AcZ1=AcZ;

AcY1=AcY;

q++;

}

else

{

AcX2=AcX;

AcZ2=AcZ;

AcY2=AcY;

if (w==1)

{

if (AcY2-AcY1<-1000 and AcZ2-AcZ1>4000)

{

AcX0=AcX;

AcZ0=AcZ;

AcY0=AcY;

AcX1=AcX2;

11

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

}

else if (w==2)

{

if (AcY2-AcY1>1000 and AcZ2-AcZ1<-1000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

Serial.print(" \n student");

w=1;

q=0;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

}

}

}

// Serial.print("\n");Serial.print(w);Serial.print(q);

if (h==0)

{

AcX1=AcX;

12

AcZ1=AcZ;

AcY1=AcY;

h++;

}

else

{

AcX2=AcX;

AcZ2=AcZ;

AcY2=AcY;

if (j==1)

{

if (AcZ2-AcZ1>5000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

j++;

}

}

else if (j == 2)

{

if (AcZ2-AcZ1<-5000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

j++;

}

else

13

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

j=1;

f=0;}}

else if (j==3)

{

if (AcZ2<-5000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

h=0;

j=1;

f=0;

Serial.print("\nThanks ");

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

j=1;

f=0;

}

}

}

14

Serial.print(" \n"); Serial.print(q);

Serial.print(w);Serial.print(f);

delay(200);

}

while (F2 == LOW and F4 == LOW and F6 == LOW and C1 ==

HIGH and C2 == HIGH and C3 == HIGH and C4 == HIGH) {

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

// Serial.print("\nAcX = "); Serial.print(AcX);

// Serial.print(" | AcY = "); Serial.print(AcY);

// Serial.print(" | AcZ = "); Serial.print(AcZ);

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("I");

w=1;}

delay(500);

}

}

15

//K and V

while (F2 == HIGH and F4 == HIGH and F6 == LOW and C1 ==

LOW and C2 == LOW and C3 == LOW and C4 == HIGH and C5 ==

LOW) {

if (C5==0)

{

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

Serial.print("\nAcX = "); Serial.print(AcX);

Serial.print(" | AcY = "); Serial.print(AcY);

Serial.print(" | AcZ = "); Serial.print(AcZ);

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("K");

w=1;}

delay(500);

}}

if (C5==1)

16

{

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

Serial.print("\nAcX = "); Serial.print(AcX);

Serial.print(" | AcY = "); Serial.print(AcY);

Serial.print(" | AcZ = "); Serial.print(AcZ);

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("V");

w=1;}

delay(500);

}

}

}

//L and AT

while (F2 == HIGH and F4 == LOW and F6 == LOW and C1 ==

HIGH and C2 == LOW and C3 == HIGH and C4 == HIGH) {

Wire.beginTransmission(MPU_addr);

17

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

// Serial.print("\nAcX = "); Serial.print(AcX);

// Serial.print(" | AcY = "); Serial.print(AcY);

// Serial.print(" | AcZ = "); Serial.print(AcZ);

if (C5==1)

{

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("L");

w=1;}

delay(500);

}}

else if (c5==0)

{

if (q==0)

{

AcX1=AcX;

18

AcZ1=AcZ;

AcY1=AcY;

q++;

}

else

{

AcX2=AcX;

AcZ2=AcZ;

AcY2=AcY;

if (w==1)

{

if (AcX2-AcX1>3000 and AcX2>16000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

}

else if (w==2)

{

if (AcX2<3000 and AcZ2-AcZ1<-5000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

f++;

}

19

else if (AcX2<3000 and AcZ2-AcZ1>3000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

f=0;

}

}

else if (w==3)

{

if (f==0 and AcX2<-10000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

Serial.print("\nAT");

q=0;

w=1;

f=0;

}

else if (AcX2<-10000)

20

{ AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

Serial.print("\nAT");

q=0;

w=1;

f=0;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

f=0;

}

}

}

//Serial.print("\n");Serial.print(q);Serial.print(w);Serial

.print(f);

delay(200);

}

}

}

while (F2 == HIGH and F4 == HIGH and F6 == LOW and C1 ==

HIGH and C2 == LOW and C3 == LOW and C4 == HIGH) {

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

21

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

Serial.print("\nAcX = "); Serial.print(AcX);

Serial.print(" | AcY = "); Serial.print(AcY);

Serial.print(" | AcZ = "); Serial.print(AcZ);

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("R");

w=1;}

delay(500);

}

}

//U and "we are" have the same gesture

while (F2 == HIGH and F4 == HIGH and F6 == LOW and C1 ==

LOW and C2 == HIGH and C3 == LOW and C4 == HIGH) {

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

22

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

Serial.print("\nAcX = "); Serial.print(AcX);

Serial.print(" | AcY = "); Serial.print(AcY);

Serial.print(" | AcZ = "); Serial.print(AcZ);

if (C5==0)

{

if (q==0)

{

AcX1=AcX;

AcZ1=AcZ;

AcY1=AcY;

q++;

}

else

{

AcX2=AcX;

AcZ2=AcZ;

AcY2=AcY;

if (((AcY1-AcY0) <-3000 && (AcY2-AcY0) <-3000) ||(AcY1

<-1000 && AcY2 <-1000 && AcZ1 <-1000 && AcZ2 <-1000)||(

AcY1 >1000 && AcY2 >1000 && AcZ1 <-1000 && AcZ2 <-1000)||(

AcY1 >1000 && AcY2 >1000 && 1200>AcZ1<-1200 && 1200>AcZ2<-

1200)||(AcY1 >1000 && AcY2 >1000 && AcZ1 >1000 &&

AcZ2>1000)||(AcZ1 >1000 && AcZ2 >1000 && 1200>AcY1<-1200

&& 1200>AcY2<-1200))

goto MOEZ ;

if (w==0)

23

{

if (AcY2-AcY0<-1300)

{

AcX0=AcX;

AcZ0=AcZ;

AcY0=AcY;

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

}

else if (w==1)

{

if (AcY2<-1000 and AcZ2<-1000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

}

}

24

else if (w==2)

{

if (AcY2>1000 and AcZ2<-1000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

}

}

else if (w==3)

{

if (AcY2>1000 and 1200>AcZ2<-1200)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

else if (AcY2>1000 and AcZ2>1000)

{

AcX1=AcX2;

25

AcZ1=AcZ2;

AcY1=AcY2;

w++;

w++;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

}

}

else if (w==4)

{

if (AcY2>1000 and AcZ2<-1000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

else if (AcZ2>1000 and 1200>AcY2<-1200)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w++;

}

26

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

}

}

else if (w==5)

{

if (AcY2<-1000)

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

Serial.print("\nWe are");

q=0;

w=1;

}

else

{

AcX1=AcX2;

AcZ1=AcZ2;

AcY1=AcY2;

w=1;

}

}

}

MOEZ :

27

Serial.print("\n");

//Serial.print(w);Serial.print(q);

delay(170);

}

if (C5==1)

{

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("letter");

w=1;}

delay(500);

}

}

}

while (F2 == HIGH and F4 == HIGH and F6 == LOW and C1 ==

LOW and C2 == LOW and C3 == LOW and C4 == HIGH) {

delay(3000);

Serial.println("V ");

}

while (F2 == HIGH and F4 == HIGH and F6 == HIGH and C1 ==

LOW and C2 == LOW and C3 == LOW and C4 == HIGH) {

Wire.beginTransmission(MPU_addr);

Wire.write(0x3B); // starting with register 0x3B

(ACCEL_XOUT_H)

Wire.endTransmission(false);

Wire.requestFrom(MPU_addr,14,true); // request a total of

14 registers

28

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) &

0x3C (ACCEL_XOUT_L)

AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) &

0x3E (ACCEL_YOUT_L)

AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) &

0x40 (ACCEL_ZOUT_L)

Serial.print("\nAcX = "); Serial.print(AcX);

Serial.print(" | AcY = "); Serial.print(AcY);

Serial.print(" | AcZ = "); Serial.print(AcZ);

if (2000<AcY>-2000 and AcX>13000 and AcZ>2000)

w++;

else

w=1;

if (w==5){

Serial.print("W");

w=1;}

delay(500);

}

}

}

29

Appendix – B : Wi-Fi Module ESP8266 Code
#include <ESP8266WiFi.h>

const char* ssid = "ssid";

const char* password = "password";

WiFiServer server(4999);

WiFiClient client;

char data[1500];

int ind = 0;

long c = 0 ;

void setup() {

// put your setup code here, to run once:

Serial.begin(115200);

// Connect to WiFi network

Serial.println();

Serial.println();

Serial.print("Connecting to ");

Serial.println(ssid);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(500);

Serial.print(".");}

Serial.println("");

Serial.println("WiFi connected");

server.begin();

Serial.println("Server started");

Serial.setDebugOutput(true);}

void loop() {

// put your main code here, to run repeatedly:

if (client.connected())

30

{

client.print(" Thanks for the data ");client.println(c);

delay(3000);

c++ ;}

if(!client.connected())

{

//try to connect to a new client

client = server.available();

// Serial.println("A client connected !") ; // i thought

that the line above means its offer it self to new clent ,

seems thats not true}

else

{

if (client.available()> 0){

// Serial.println("A client connected !?") ; // this line

make the server response everytime it get a data .

while(client.available())

{

data[ind] = client.read();

ind++;}

client.flush();

// Serial print data

for (int j = 0 ; j< ind ; j++)

{

Serial.print(data[j]);}

ind = 0;

// client.print(" Thank you fot the data ");

} }}

31

Appendix – C : Android Application Code
package com.example.ahmedali.sakadik;

import android.content.Intent;

import android.net.Uri;

import android.os.Build;

import android.speech.tts.TextToSpeech;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import java.io.*;

import java.net.*;

import java.util.Locale;

import android.util.Log;

import android.view.View;

import android.widget.*;

import com.google.android.gms.appindexing.Action;

import com.google.android.gms.appindexing.AppIndex;

import com.google.android.gms.appindexing.Thing;

import com.google.android.gms.common.api.GoogleApiClient;

public class MainActivity extends AppCompatActivity

implements TextToSpeech.OnInitListener {

private Socket socket;

private static final int SERVER_PORT = 4999;

// private static final String SERVER_IP =

"192.168.43.150";

private EditText currentEditText, destinationEditText;

private TextView resultTextView;

private Button button;

private PrintWriter printWriter;

32

private BufferedReader bufferedReader;

private String currentLocationMessage,

destinationLocationMessage, messageReceived;

private TextToSpeech tts;

Button speackBtn ;

private int MY_DATA_CHECK_CODE = 0;

EditText ipEd ;

String SERVER_IP = "192.168.43.150";

/**

* ATTENTION: This was auto-generated to implement the App

Indexing API.

* See https://g.co/AppIndexing/AndroidStudio for more

information.

*/

private GoogleApiClient client;

//Called when the activity is first created

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

ipEd = (EditText) findViewById(R.id.ipEd);

tts = new TextToSpeech(getApplicationContext(), this);

button = (Button) findViewById(R.id.button);

resultTextView = (TextView) findViewById(R.id.textView);

SERVER_IP = ipEd.getText().toString();

Intent checkTTSIntent = new Intent();

checkTTSIntent.setAction(TextToSpeech.Engine.ACTION_CHECK_T

TS_DATA);

startActivityForResult(checkTTSIntent, MY_DATA_CHECK_CODE);

button.setOnClickListener(

33

new Button.OnClickListener() {

public void onClick(View v) {

new Thread(new SendMessage()).start();

}});

// ATTENTION: This was auto-generated to implement the App

Indexing API.

// See https://g.co/AppIndexing/AndroidStudio for more

information.

client = new

GoogleApiClient.Builder(this).addApi(AppIndex.API).build();

}

@Override

protected void onActivityResult(int requestCode, int

resultCode, Intent data) {

if (requestCode == MY_DATA_CHECK_CODE) {

if (resultCode ==

TextToSpeech.Engine.CHECK_VOICE_DATA_PASS) {

//the user has the necessary data - create the TTS

tts = new TextToSpeech(this, this);

}

else {

//no data - install it now

Intent installTTSIntent = new Intent();

installTTSIntent.setAction(TextToSpeech.Engine.ACTION_INSTA

LL_TTS_DATA);

startActivity(installTTSIntent);

}}}

/**

* ATTENTION: This was auto-generated to implement the App

Indexing API.

34

* See https://g.co/AppIndexing/AndroidStudio for more

information.

*/

private void speakWords(String speech) {

//speak straight away

tts.speak(speech, TextToSpeech.QUEUE_FLUSH, null);

}

@Override

public void onInit(int status) {

if (status == TextToSpeech.SUCCESS) {

int result = tts.setLanguage(Locale.US);

if (result == TextToSpeech.LANG_MISSING_DATA

|| result == TextToSpeech.LANG_NOT_SUPPORTED) {

Log.e("TTS", "This Language is not supported");}

else {

// speakWords("Initialization completed "); //TODO

}

} else {

Log.e("TTS", "Initilization Failed!");

}}

// private void speakOut() {

//

// CharSequence text = "hey";//messageReceived ;

//

// // if (Build.VERSION.SDK_INT >=

Build.VERSION_CODES.LOLLIPOP) {

// tts.speak(text, TextToSpeech.QUEUE_FLUSH,

null,"id1");

//

Toast.makeText(this,"sure",Toast.LENGTH_SHORT).show();

35

// // }

// }

private class SendMessage implements Runnable {

public void run() {

try {

String inputMessage = currentLocationMessage + "#" +

destinationLocationMessage;

socket = new Socket(InetAddress.getByName(SERVER_IP),

SERVER_PORT);

printWriter = new PrintWriter(socket.getOutputStream());

bufferedReader = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

printWriter.println(inputMessage);

printWriter.flush();

currentLocationMessage = "";

destinationLocationMessage = "";

while(true){

messageReceived = bufferedReader.readLine();

runOnUiThread(new Runnable() {

@Override

public void run() {

resultTextView.append(messageReceived+"\n");

speakWords(messageReceived);

}});}

} catch (UnknownHostException e) {

System.out.println(e.getLocalizedMessage());

} catch (IOException e) {

System.out.println(e.getLocalizedMessage());

}}}

//Called when the activity is about to become visible

36

@Override

public void onDestroy() {

if (tts != null) {

tts.stop();

tts.shutdown();

}

printWriter.close();

try {

bufferedReader.close();

} catch (IOException e) {

e.printStackTrace();

}

try {

socket.close();

} catch (IOException e)

super.onDestroy();}}

