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ABSTRACT 

The closed-loop control algorithm for regulating the blood glucose 

concentration in diabetic patients is used. The digital Proportional-integral 

derivative (PID) controller is designed based on different tuning methods, 

Ziegler–Nichols method, Cohen-Coon method, and Chien-Hrones-Reswick 

(CHR) method, to control the blood glucose level for diabetic patient.  

The blood glucose level of the patient is considered as input variable & 

injected insulin level is considered as output variable which is to be 

manipulated. A dynamic model is constructed and transfer function is defined 

for this system. The tuning responses are studied and the parameters were 

compared. During the process the step responses given by the PID is 

converted into digital PID controller.   

The results show that Ziegler-Nichols method yields a very high overshoot 

where as Cohen-Coon method exhibits a low overshoot with a low settling 

time, Chien-Hrones-Reswick yields high settling time. 
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 المستخلص

تم استخدام نظرية نظام التحكم المغلق لتنظيم تركيز الجلكوز في الدم لمريض السكر.تم تصميم  

المتحكم الرقمي )التناسبي, التكاملي, التفاضلي( اعتمادا على عدد من طرُق الضبط المختلفة طريقة 

ريسوك. للتحكم في مستوى السكر في -هرونس-شينكون و طريقة -نيكولس, طريقة كوهن-زيقلر

الدم لمريض السكر. تم إعتبار مستوى السكر في الدم كمتغير دخل و مستوى الإنسولين المراد حقنه 

كمتغير خرج , و الذي يراد معالجته. تم استخدام النموذج الديناميكي للنظام و كذلك تم تعريف دالة 

 التحويل للنظام.

بات المضبوطة و مقارنة المعاملات. أثناء المعالجة تم تحويل الإستجابات تمت دراسة الإستجا

الناتجة من المتحكم )التناسبي, التكاملي, التفاضلي( التقليدي إلى المتحكم )التناسبي, التكاملي, 

نيكولس حصلت على قيمة عالية لتجاوز -التفاضلي( الرقمي. النتائج أوضحت أن طريقة زيقلر

كون على قيمة أقل لتجاوز الزمن الأقصى و زمن -بالمقابل حصلت طريقة كوهنالزمن الأقصى و 

ريسوك على قيمة زمن استقرار أعلى. -هرونس-استقرار أقل,  و حصلت طريقة شين  
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Chapter 1 

Introduction 

1.1 Preface 

According to WHO (World Health Organization) report, 9% of adult and 

older age people suffered from diabetes in 2014 and in 2012 1.5 million 

people died due to diabetes and day by day the numeric figure is increasing.  

Diabetes is a chronic disease (or lifelong disease) which occurs either when 

the pancreas doesn’t produce insulin or body does not respond to insulin 

appropriately.  

Due to diabetes many problems occur such as coronary heart disease, 

weakness, kidney problem, non-traumatic amputations, blindness, secondary 

infection and so on. There are three main types of diabetes such as Type-1 

diabetes, Type-2 diabetes and Gestational diabetes [1]. 

Type-1 diabetes occurs due to absence of beta cells in the pancreas and 

pancreas does not produce insulin in appropriate amount i.e. as per body 

requirement (healthy blood glucose level is between 60 mg/dl to 120 mg/dl). 

It is also referred as insulin-dependent or childhood diabetes.  

Hence we can easily diagnose by applying insulin injection and the amount 

of insulin provided for type-1 diabetes patient is automatically controlled by 

using Digital PID (Proportional integral derivative) controller [3]. 

Type-2 diabetes is commonly taking place in the person who has over weight 

or above the age of 40. It happens when insulin secretion is not enough 
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because person has developed resistance to insulin. It also referred as non-

insulin dependent or adult onset [1]. 

Gestational diabetes usually occurs in pregnant woman. During pregnancy 

hyperglycemia increases and it affects the offspring (babies).  

Due to high blood glucose level (above 180 mg/dl) it is referred as 

Hyperglycemia. Conversely Hypoglycemia occurs due to low blood glucose 

level (less than 60 mg/dl) [2].  

1.2 Related Works 

Different contributions and studies have already been done about the control 

of blood glucose level of diabetic patients: 

For instance, authors in [4] undertaken a theoretical analysis of the control of 

plasma glucose levels in diabetic individuals using a simple mathematical 

model of the dynamics of glucose and insulin interaction in the blood system. 

Authors in [5] developed a model-based predictive algorithms for insulin 

infusion pump control. This algorithm is sufficient for controlling blood 

glucose, but results in glucose concentrations near the output lower bound.  

Authors in [6] demonstrate the subcutaneous route to insulin dependent 

diabetes therapy system by using different schemes, these schemes is 

concentrated on one type of diabetic patients.   

Authors in [7] presented two Control methodologies for regulating multiple 

variables in critical care patients, they were focused on critical care patients 

such as those in intensive care or undergoing surgery, require close 

monitoring of all their vital signs.            

Authors in [8] focused to envisage the regulation and management of the 

concentration of glucose and insulin in the blood of a diabetic, implemented 

and analyzed using Matlab/Simulink.      
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Authors in [9] present a novel method for determining the PID controller 

parameters based on Fruit Fly Optimization Algorithm (FOA), namely 

FOAPID. 

Authors in [10] designed a digital PID controller based on Field 

Programmable Gate Array (FPGA) device for regulating blood glucose level 

of diabetic patients.                  

Authors in [11] studied the performances of three types of closed loop 

controllers to control blood glucose level of a type 1 diabetes patient as a 

nonlinear model, which was simulated in MATLAB Simulink environment. 

In this thesis we use various tuning algorithms in PID controller to control 

blood glucose level of diabetic patient, we also convert the conventional PID 

into the digital PID controller.1  

1.3 Problem Statement  

Diabetes mellitus is a syndrome of impaired carbohydrate, fat, and protein 

metabolism caused by either lack of insulin secretion or decreased sensitivity 

of the tissues to insulin. The problem of blood glucose system is the lack of 

the stability of the system that affect the life of the patient, so care must take 

to make a life of a patient safe.          

If someone’s glucose concentration level is constantly out of range, this 

person is considered to have blood glucose problem. 

1.4 Proposed Solution  

Using digital Proportional integral derivative (PID) controller which control 

automatically blood glucose level of diabetic patient by externally applied 

insulin dosage.    

Using digital PID controller with the plant can enhance the value of the 

parameters of the step response of the diabetic patient. 
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1.5 Objectives 

The objectives of this thesis are to: 

1. Compare between different PID tuning methods. 

2. Convert the conventional PID to digital PID controller.1 

1.6 Methodology  

In order to implement digital PID controller parameters, equations and 

relations to get results we use MATLAB environment as a simulation tool. 

The system model equations are applied in the MATLAB environment as a 

differential equation by setting the values of parameters, then the solution 

was converted to Laplace transform as a transfer function, this called the 

plant.  

Then the PID controller is applied to the plant by using different tuning 

methods, then the conventional PID controller in s-domain is converted to 

digital PID controller in z-domain.  

1.7 Thesis Outlines 

The rest of this thesis is organized as follows: Chapter 2 gives background of 

diabetes and blood glucose control systems. Chapter 3 gives a description of 

the system model and explanation of its parameters. Chapter 4 provides 

results from a system model of blood glucose patient and discussion about 

the results, and the final chapter presents the conclusion and also gives a brief 

discerption on how this work can be extended for further enhancement.     
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Chapter 2 

Literature Review 

2.1 Introduction to diabetes 

Diabetes mellitus is a condition of chronically elevated blood glucose 

concentrations which give rise to its main symptom of passing large 

quantities of sweet tasting urine (diabetes from the Greek word meaning       

“a siphon”, as the body acts as a conduit for the excess fluid, and mellitus 

from the Greek and Latin for honey). The fundamental underlying 

abnormality is a net (relative or absent) deficiency of the hormone insulin. 

Insulin is essentially the only hormone that can lower blood glucose.  

There are two categories of diabetes: type 1 is caused by an autoimmune 

destruction of the insulin producing 𝛽 cell of the islets of Langerhans in the 

pancreas (absolute deficiency); and type 2 is a result of both impaired insulin 

secretion and resistance to its action often secondary to obesity (relative 

deficiency).                                         

Diabetes is common and is becoming more common. Age adjusted 

prevalence is set to rise from 5.9% to 7.1% (246 – 380 million) worldwide in 

the 20 – 79 year age group, a 55% increase (Figure 2.1). The relative 

proportions of type 1 to type 2 vary from 15 : 85 for Western populations to 

5 : 95 in developing countries [12]. Estimated comparative prevalence (age 

adjusted) of diabetes and impaired glucose tolerance (IGT) together with 

numbers affected for the global population age 20 – 79 years for 2007 (red) 

and 2025 (blue) is shown in Figure 2.1. 
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Figure 2.1 Estimated comparative prevalence (age adjusted) of diabetes and impaired 

glucose tolerance (IGT) together with numbers affected for the global population [12] 

  

2.2 Hyperglycemia 

Hyperglycemia refers to an elevated glucose concentration in the circulating 

blood. While blood glucose level (BG) is often elevated after a meal, it 

usually normalizes to a range of 3.5–5.6 mmol/l within 3 hours of a meal in 

a healthy individual. During fasting, BGs are also usually maintained within 

the normal range of 3.5–5.6 mmol/l [13]. Patients with diabetes mellitus, 

however, exhibit impaired regulatory responses. 

BG remains elevated postprandially, and during the fasting state. Patients 

under surgical or medical stress may also exhibit a diabetogenic response, 

even though they are not diabetics [14]. This is due to an elevated 

catecholamine and other “counter-regulatory” hormones in their circulation. 

2.3 Causes of Hyperglycemia 

2.3.1 Physiological Background 

Blood glucose level is usually regulated by two hormones insulin and 

glucagon secreted by the endocrine pancreas. Insulin is anabolic, and causes 

rapid uptake and use of glucose by most tissues in the body.  
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It also causes the storage of excess glucose as glycogen, mainly in the liver 

and skeletal muscles. Excess glucose, that cannot be stored as glycogen, is 

converted to fatty acids and stored in adipose tissues. Insulin also promotes 

protein synthesis and storage. 

Conversely, glucagon is catabolic, mobilizing glucose, fatty acids and amino 

acids from stores to the circulation, primarily through a breakdown of liver 

glycogen (glycogenolysis) and the generation of glucose from amino acids 

(gluconeogenesis). 

The two hormones (insulin and glucagon) are reciprocal in their overall 

action and are secreted appropriately in most circumstances to keep the blood 

glucose concentration within the normal range [15]. When the glucose 

concentration rises too high, insulin is secreted, which then lowers the blood 

glucose concentration toward normal. Conversely, a decrease in blood 

glucose stimulates glucagon secretion; glucagon then functions in the 

opposite manner to increase the glucose concentration towards normal [16]. 

2.3.2 Historical Background 

Before insulin was discovered, patients with diabetes suffered from polyuria 

and a catabolic state, which depleted them of strength, weight and fluid. As 

described by Arestaeus of Cappadocia in the 2nd century, “Diabetes is a 

dreadful affliction, not very frequent among men, being a melting down of 

the flesh and limbs into urine. The patients never stop making water and the 

flow is incessant, like the opening of aqueducts. 

Life is short, unpleasant and painful, thirst unquenchable, drinking excessive, 

and disproportionate to the large quantity of urine, for yet more urine is 

passed. One cannot stop them either from drinking or making water. If for a 

while they abstain from drinking, their mouth becomes parched and their 

body dry; the viscera seem scorched up, the patients are affected by nausea, 

restlessness and a burning thirst and within a short time, they expire. 



 
10 

For centuries, the only available treatment for patient with diabetes was 

starvation. If the diabetes worsened, then more starvation was prescribed. 

The discovery of insulin at the University of Toronto in 1921–1922 was one 

of the most important milestones in the history of medicine [18]. The team 

that discovered insulin was quickly awarded a Nobel Prize in 1923. 

2.3.3 Diabetic Patients 

In patients with diabetes mellitus, the correlation between insulin delivery 

and blood glucose concentration is impaired. Both Type I and Type II 

diabetics have a dysfunctional endocrine pancreas, which produces little (as 

in Type II) or no insulin (as in Type I). Apart from this, the insulin receptor 

on the tissue cells in Type II diabetics also respond abnormally to the 

circulating insulin (“insulin resistance”). Type I diabetes is also known as 

Insulin-Dependent Diabetes Mellitus (IDDM), while Type II is also known 

as Non-Insulin-Dependent Diabetes Mellitus (NIDDM). 

2.3.4 Surgical Patients 

Surgical patients commonly enter a hypermetabolic stress state, induced by 

the area of infection or injury, and promoted by organs involved in the 

immunologic response to stress. In this stressed state, insulin secretion is 

suppressed, and the normal carbohydrate metabolism is altered. This results 

in increased glucose production, depressed glycogenesis (i.e. reduced 

conversion of glucose into the storable form of glycogen), glucose 

intolerance, and insulin resistance [19]. 

2.4 Importance of Tighter BG Level Control 

BG level should be kept within the normal range, because: 

1. A high glucose concentration exerts an osmotic pressure in the 

extracellular fluid, and can cause cellular dehydration. 

2. Too low a BG level carries the risk of hypoglycaemic coma. Glucose is the 

only source of energy that can be used by the brain. Prolonged and profound 
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hypoglycaemia can produce severe brain damage. 

3. Too high a glucose concentration (>11.1 mmol/l) can affect wound healing 

and interfere with human neutrophil function [20]. 

4. Therapy that maintains BG level at below 11.9 mmol/l has been shown to 

improve the long-term outcome of diabetic patients with acute myocardial 

infarction [21]. 

Researchers in the last few decades have found that the mere use of insulin 

alone is not enough to guarantee the well-being of the patient ([17, 21]), as 

diabetic microvascular complications have emerged. These microvascular 

complications include retinopathy (visual impairment), nephropathy (kidney 

disease) and neuropathy (nerve damage). 

2.5 Achieving Tighter Control 

In an effort to achieve tighter control, attempts have been made to sample the 

patients’ BG level regularly, and adjust the insulin infusion rate 

automatically, so as to steer the BG towards a given target value. In such 

early experiments, whole blood was sampled continuously for glucose 

measurement, using the invasive method.  

On the other hand, clinical routines have progressed with manual BG level 

control, which uses intermittent (and not continuous) BG level sampling. BG 

samples are taken from finger pricks or in-dwelling cannula, hourly, 2 hourly 

or 4 hourly, depending on severity. Various algorithms for perioperative 

control of BG level have been proposed, using hourly and three-hourly whole 

blood BG level sampling. Closed-loop (automatic) systems were not practical 

for use in routine treatment, due to the cost and preparation associated with 

their operation. Furthermore, long term use of the system posed safety 

concerns, due to the invasive nature of the measuring technique. 
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2.6 Glucose Control: Input and Output 

Automatic regulation of a patient’s blood glucose (BG) level requires a 

minimum of three components, namely, a continuous BG sensor, a controller 

that matches BG level with an appropriate insulin delivery rate, and an 

infusion pump to deliver the insulin to the subject. 

Shown here is a simple model of the control loop:  

 

Figure 2.2 Simple model of the control loop 

As the variable to be controlled is a patient’s BG level, a knowledge of the 

BG is required. This is provided by a glucose sensor, and represents the input 

to the control system. Since insulin is used to lower a high BG level, the rate 

of insulin delivery represents the output of the control system. The patient is 

the “plant” to be controlled in control system terminology. 

The controller is the component of the system that regulates the blood glucose 

levels in the patient. The formulation of the control rule depends on the 

knowledge we have about the sensor, the pump and the patient and 

specifically, the BG measurement methods, the type (or preparation) of 

insulin used, the route of infusion, and the patient’s characteristics. Various 

BG measurement techniques exist, and each has its unique characteristics.  

As for insulin, each type of insulin has different kinetics, and different 

infusion routes exhibit different characteristics. 



 
13 

2.7 Glucose Control: Patient Dynamics 

The role of the control algorithm in a closed-loop insulin delivery system is 

to regulate the patient’s BG level, replacing the intrinsic glucose regulatory 

function, which is abnormal in diabetics. To develop an effective algorithm, 

a knowledge of how glucose is intrinsically regulated in a healthy person is 

essential. 

The human pancreas has between 1 and 2 million islets of Langerhans. These 

islets contain three major cell types: alpha, beta and delta. The beta cells 

constitute about 60% of the cells, and secrete insulin.  

The alpha cells, about 25% of the total, secrete glucagon. The delta cells, 

about 10% of the total, secrete somatostatin. The remaining 5% of cells are 

made up of other cell types which secrete hormones of uncertain function 

[22]. Insulin and glucagon play the most important roles in the glucose-

regulatory system. 

The glucose-regulatory mechanism is not an isolated system, but has 

connections with many other metabolic pathways in the body. 

2.8 Intrinsic Blood Glucose Regulation 

In a normal healthy person, blood glucose concentration is controlled to 

within a narrow band, usually between 3.5 mmol/l and 5.6 mmol/l in the 

fasting state. 

During fasting, insulin secretion is reduced to a basal level, and glucagon is 

released to allow the liver to: 

• mobilize glucose from its glycogen stores (glycogenolysis) and 

• synthesize glucose from amino acid (gluconeogenesis). 

In addition, when insulin levels are low, the uptake of glucose by muscle is 

minimized, and there is lipolysis of stored fats to release free fatty acids. 

When fasting persists longer than 12 to 18 hours, these free fatty acids then 

become the main energy substrate, used by essentially all tissues of the body, 
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except the brain. Gluconeogenesis still supplies glucose for obligatory 

glycolytic tissues, notably the brain. 

This mechanism effects a stable fasting blood glucose concentration so that 

the brain, which has no energy stores, has a sufficient supply of nutrients for 

normal activity. Glucose is an essential nutrient for the brain, retina, and 

germinal epithelium of the gonads.  

Insulin is always present, and a low level of circulating insulin regulates the 

rate of lipolysis, glucose transport and gluconeogenesis at all times [23]. 

When a person prepares to eat a meal, two phases of insulin secretion occur: 

an anticipatory phase (first phase) and a glucose-sensitive phase (second 

phase). 

In the anticipatory phase, the sight of food and the first bite of a meal cause 

the brain to send signals to the pancreas. These signals cause the pancreas to 

release insulin into the hepatic circulation (Figure 2.3). Once the insulin is in 

the hepatic circulation, the liver stops breaking down glycogen into glucose. 

As the food enters the stomach, the release of insulin is further facilitated by 

gastrointestinal hormones. These hormones increase the sensitivity of the 

islet cells to glucose [24].  

As nutrients are absorbed into the circulation, the glucose sensitive phase 

begins, and there is continuous secretion of insulin. These two phases are 

sometimes termed the biphasic response of insulin secretion. 

After absorption of all the carbohydrates, the feedback system for control of 

blood glucose returns the glucose concentration rapidly back to the control 

level, usually within 2 hours. 

Although glucose is an important physiological stimulant of insulin secretion, 

nutrients other than glucose, particularly amino acids, are also capable of 

stimulating insulin release. 

 



 
15 

 

Figure 2.3 Anatomy of the intrinsic blood glucose regulation mechanism 

 

Nevertheless, amino acids stimulate a much greater insulin response when 

accompanied by hyperglycaemia, than the modest degree expressed in the 

presence of normal plasma glucose level. 

 

 

Figure 2.4 Biphasic insulin response (illustration) 
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The biphasic response (Figure 2.4) is also observed in the plasma 

compartment during glucose clamp studies, where a square wave of 

hyperglycaemia is introduced intravenously under normal conditions in a 

normal individual. The first phase of the insulin response consists of a rapid 

rise in the insulin level during the first 10 min, with a peak response at 4 min; 

the plasma insulin level then falls and reaches a nadir at 10 min [25]. After 

10 min, the plasma insulin level is then observed to increase gradually 

according to the degree of hyperglycaemia and persists for the duration of the 

stimulus [26]. 

2.9 Diabetic Patients 

In patients with Type I and Type II diabetes mellitus, beta cells have either 

been partially (as in Type II) or completely (as in Type I) destroyed. The 

destruction of beta cells results in reduced or no insulin secretion, and also 

the disappearance of the first phase (anticipatory phase). 

With no anticipatory phase, the liver does not receive the message to stop 

breaking down glycogen into glucose, resulting in continued hepatic glucose 

production. 

Added the glucose absorbed from the meal, and a lack of insulin release, 

hyperglycaemia ensued [27]. The major difference between Type I and Type 

II diabetes mellitus is that Type I diabetic patients cannot survive without 

exogenous insulin, contrary to Type II patients who suffer from either a 

reduced (but present) insulin secretion, or abnormal insulin response 

(increased peripheral insulin resistance) or both. Hence, Type I diabetes is 

also known as insulin-dependent diabetes mellitus (IDDM), whereas Type II 

is also known as non-insulin-dependent diabetes mellitus. 

A solution to “artificially” achieve the first phase insulin release using a 

closed loop system would be to use sensors that have a very fast response 

time (e.g. 1 min at least), and to immediately deliver insulin when BG level 
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starts rising (with the assumption that the rise of BG level signifies the start 

of a meal). 

As for the second phase insulin release, the matching of the insulin dose to 

the blood sugar intake depends on: 

• A knowledge of how much glucose is ingested. In a healthy pancreas, beta 

cells also function as “fuel-sensors” and are capable of adapting the rate of 

insulin secretion to variations in plasma glucose level. 

• The responsiveness of the insulin receptors on target cells to enable glucose 

to enter and be utilized by the cells. 

2.10 Importance of BG Control 

It is important for BG level to be kept within the normal range, because: 

1. A high glucose concentration exerts an osmotic pressure in the 

extracellular fluid, and causes cellular dehydration. This excessive BG level 

causes loss of glucose through urination (glycosuria), leading to osmotic 

diuresis that depletes the body further of fluids and electrolytes. 

2. Too low a BG level carries the risk of hypoglycaemic coma. The BG level 

should not drop below a certain level because glucose is the only nutrient that 

can be used for energy by the brain, retina, and germinal epithelium of the 

gonads. 

3. Too high a glucose concentration (>11.1 mmol/l) can affect wound healing 

and interfere with human neutrophil function [20]. 

4. Therapy that maintains BG level at below 11.9 mmol/l improves the long 

term outcome in diabetic patients with acute myocardial infarction [21]. 

5. Pre-prandial blood glucose concentrations between 3.9 mmol/l and 

6.7mmol/l, and postprandial concentration of less than 10 mmol/l was found 

to delay the onset of diabetic microvascular complications. These 

microvascular complications included retinopathy (visual impairment), 
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vision-threatening lesions, nephropathy (kidney disease) and neuropathy 

(nerve damage). 

Complications not only occurred in diabetic patients, but also has an impact 

on critically ill patient population: 

1. A recent finding ([21]) has shown that the use of intensive insulin therapy 

to maintain BG at a level that did not exceed 110 mg/dl (6.1 mmol/l) 

substantially reduced mortality and morbidity in critically-ill patients in the 

ICU (8.0% with conventional treatment to 4.6% with intensive insulin 

therapy).  

2. The finding also reported that a pronounced hyperglycaemia in critically 

ill patients, even those who have not previously had diabetes, may lead to 

complications in such patients [21]. 

3. Patients with mean glucose concentrations >11.1 mmol/l within 36 h 

following surgery were more likely to develop infectious complications than 

their counterparts who were under better glycaemic control. 

2.11 Glucose Control in Critically Ill Patients 

Critically ill patients are different from non-critically ill patients in many 

respects. Major surgery and critical illness are physiologically stressful 

events that provoke complex metabolic responses in the patient. In general, 

the greater the degree of surgical trauma, the greater the endocrine upset. 

Critical care medicine uses the term “stress” to describe the systemic 

response to severe injury or infection.  

Some of the responses to stress include alterations in carbohydrate 

metabolism, and a state of hypermetabolism. The hypermetabolic state is 

induced by sepsis or injury, as well as by organs involved in the immunologic 

response to stress [19].  

It is manifested as an increase in glucose production that appears to be 

directed toward maintaining glucose delivery to wound and immune tissues. 
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These alterations make the control of plasma glucose more difficult than in 

ordinary diabetic patients. 

Factors that affect glucose regulation in critically ill patients include: 

• Loss of the inhibitory effects of elevated glucose levels. 

• Stress-induced release of counter-regulatory hormones 

• Increased Insulin resistance 

• Medication that induces hyperglycaemia 

• Effects of Feeding 

• Gastro-intestinal (GI) tract functionality 

• Stress in liver 

2.11.1 Loss of the Inhibitory Effects of Elevated Glucose Levels 

In the non-stressed state, elevated serum glucose levels exert an inhibitory 

effect on gluconeogenesis. In critically ill patients, this important feedback 

mechanism is blunted, often resulting in continued endogenous hepatic 

glucose production and hyperglycaemia. Although there may be an increase 

in glucose production and turnover, the reliance on glucose as an energy 

source is reduced. 

2.11.2 Stress-Induced Release of Counter Regulatory Hormones 

In response to stress, the counter-regulatory or anti-insulin hormones are 

secreted. These hormones include epinephrine, norepinephrine, cortisol, 

growth hormone, and glucagon. 

• Both norepinephrine and epinephrine cause constriction of essentially all 

blood vessels of the body (vasopressor activity), and an increased activity of 

the heart (inotropic activity). The constriction of the vessels increases the 

total peripheral resistance and elevates arterial pressure. Epinephrine (also 

known as adrenaline) also mobilizes glucose from glycogen and raises blood 

glucose level. 
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• Cortisol (a gluco-corticoid) stimulates hepatic glycogen and glucose 

production, and inhibits insulin action on peripheral tissues. It stimulates 

protein synthesis, providing substrate for gluconeogenesis. Gluco-corticoids 

also suppress the inflammatory and immune response [16]. 

• Growth hormone increases the rate of protein synthesis in all cells of the 

body, and increases mobilization of fatty acid from adipose tissues into the 

blood.  

There is also increased use of the fatty acid for energy, with a decreased rate 

of glucose utilization throughout the body [16]. 

2.11.3 Increased Insulin Resistance 

Patients with Type II diabetes (also known as NIDDM) are usually insulin 

resistant. 

Surgical stress potentiates this insulin resistance, mainly due to the release of 

the counter-regulatory hormones. Enhanced gluconeogenesis during stress is 

also resistant to inhibition by insulin and glucose. Although skeletal muscle 

has traditionally been implicated as the major site of peripheral insulin 

resistance, stress may also induce insulin resistance in adipose tissue, liver, 

and heart [19]. 

2.11.4 Medication that Induces Hyperglycemia 

Concurrent administration of exogenous vasopressors and gluco-corticoids 

can further amplify the effects of stress-induced counter-regulatory hormones 

in ICU patients as described above. Drugs with vasopressor and/or inotropic 

activity (such as epinephrine and norepinephrine) are useful for resuscitation 

of critically ill patients, and are administered when fluid resuscitation alone 

fails to reverse hypotension. 

2.11.5 Effects of Feeding 

Patient in Intensive Care are usually sedated. During this period, nutrition is 

delivered either enterally or parentally. 
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• Enteral nutrition delivery is always the preferred route whenever the GI 

tract is functional. Nutrition is delivered proximal or distal to the pylorus 

through a naso-enteric tube. Since gastric emptying is often impaired in 

critically ill patients, feeding distal to the pylorus maybe preferable [28]. 

• Total parenteral nutrition (TPN) is given in situations where the patient has 

contra-indications to enteral feeding (such as bowel obstruction, 

overwhelming intra-abdominal sepsis, or nectronizing pancreatitis), or when 

the patient is unable to absorb nutrients via the GI tract. TPN in the ICU 

setting is delivered through a central venous catheter, since most critically ill 

patients already have central venous monitoring in place.    

2.11.6 GI Tract Functionality 

In terms of meal intake, perhaps the difference between an outpatient and a 

critically ill patient is in “how” and “when” they receive their daily nutrition. 

The direct intubation to the pylorus implies that food ingestion does not go 

through any peristaltic action of the esophagus, nor the normal stomach 

stimulation by the presence of food, as would occur in a normal individual. 

There is the effect of no chewing, no visual stimulation by food, and no 

activity of the stomach which pre-empts insulin release in sedated patients. 

Food absorption in critically ill patients remains dependent on gut motility 

and other functions of the GI tract. The meal pattern is also abnormal in that 

nutrient is given continuously over hours rather than as discrete meals. 

2.11.7 Stress in Liver 

The liver functions as an important blood glucose buffer system. During the 

blood glucose rise after a meal, the liver stores as much as two thirds of the 

glucose absorbed from the gut in the form of glycogen.  

The stored glycogen is later released back into the circulation as glucose 

when required. This action of the liver decreases the fluctuations in blood 
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glucose level. However, in patients with severe liver disease, it becomes 

difficult to maintain a narrow range of blood glucose level [16]. 

2.12 BG Management in the ICU 

Critically ill patients are treated by the method of continuous administration 

of intravenous insulin by infusion pump, although intermittent subcutaneous 

injections may also be given in certain cases. Continuous intravenous 

infusion obviates concerns over the patient’s state of perfusion (which 

influences subcutaneously injected insulin), and permits fine-tuning of BG 

level within a chosen range: 

• 8.3–13.8 mmol/l (150–250 mg/dl) [23] 

• 6.7–10 mmol/l (120–180 mg/dl) [29] 

• 6–10 mmol/l (108–180 mg/dl) [30]. 

In the current clinical setting, BG level less than 6 mmol/l (108 mg/dl) carries 

the potential risk of hypoglycaemia, while BG level in excess of 13.8 mmol/l 

(250 mg/dl) would also require intervention. 

Continuous infusion of insulin may increase the risk of hypoglycaemia, but 

the continuous monitoring of patients in an ICU minimizes this risk and 

enables BG to be controlled safely.  

2.12.1 BG Measurement 

Current clinical practices examine BG two- to four-hourly, with hourly 

checks during critical cases. BG determination is by conventional glucometer 

with the blood sample obtained from arterial or venous cannula. 

2.12.2 Insulin Infusion Adjustment 

Insulin infusions are administered in saline or colloid solution, and mixed 

such that 1ml/hr of delivery equates to 1U/hr of insulin. A rate of 0.5 to 1 unit 

of insulin per hour is the recommended starting dose.  

This dose is usually for patients who are not severely stressed. Higher rates 

may be needed for adequate BG control. 
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Adjustments to insulin rate are made hourly, two-hourly or four hourly based 

on arterial blood (from arterial cannula) or finger stick glucose 

determinations. The adjustment frequency depends on the stability (or 

severity) of the BG elevation. 

Patients may vary greatly in their sensitivity to insulin and some, especially 

long-term type 1 diabetic patients are quite sensitive to small changes in 

insulin dose. 

2.13 Mathematics of Glucose Control 

Recall that the beta cells (which being the fuel sensor as well as the insulin 

production source) were destroyed in a diabetic patient, causing an 

impairment of the ability to self-regulate glucose level. Glucose level 

regulation must then be restored by means of carefully calculated external 

insulin infusion. The goal of a closed-loop control system is thus to mimic 

the functionality of the pancreas in providing automatic regulation of blood 

glucose level in patients. 

To be precise, the closed-loop control systems (with its algorithm) should 

really answer the question: “How much insulin should be given such that the 

person blood glucose is restored, as closely as possible, to that of a healthy 

individual?” 

2.14 Model-Less (Empirical) Control Algorithms 

In the model-less (empirical) approach to control algorithm design, the 

relationship between the input (insulin) and output (desired glucose level) are 

determined based on experimental data, not on a theory. A control rule is then 

formulated using the experimental data as the basis. 

2.14.1 Control Algorithm Based on Curve-Fitting  

In this method, the relationship between the inputs and outputs are obtained 

by fitting simple curve equations to the experimental data. As an example, 

experiments could be conducted to observe the glucose level measured from 
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a patient when different amounts of insulin injections were given over a 

period of time. A curve would then be fitted to arrive at a simple glucose-

insulin response curve, which would then be used as the control rule. 

The control equation formulated by Albisser et al consists of a sigmoidal dose 

response curve, with an incorporated predictive equation. 

The predictive portion of Albisser et al’s algorithm takes into account: 

• The trend of BG (i.e. rise, fall) 

• The delay between blood extraction and the ultimate measurement 

The control equation is likened to a Proportional-Derivative controller. The 

derivative action is based upon the rise or fall of BG, while the dose-response 

curve provides the Proportional action. 

Unlike other methods that relied on variables that correlated with the whole 

blood glucose, invasive BG measurement has the advantage of being more 

accurate, because it measured glucose content in the whole blood itself. 

2.14.2 Glucose-Insulin Response Curve (Sigmoidal Dose-Response 

Curve) 

The glucose-insulin response curve came from the discovery that insulin 

secretion did not respond as a linear function of glucose concentration. The 

relationship between the extracellular glucose concentration and the rate of 

insulin secretion in vitro is sigmoidal, with a threshold corresponding to the 

glucose level normally seen under fasting conditions, and with the steep 

portion of the dose-response curve corresponding to the range of glucose 

levels normally achieved postprandially.  
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Figure 2.5 Sigmoidal Glucose-Insulin Response Curve 

 

This sigmoidal nature of the dose-response curve could be attributed to a 

Gaussian distribution of threshold for stimulation in beta-cells. This also 

means that linear model is not adequate to describe the glucose-insulin 

interaction in human. 

Albisser et al’s Infusion Algorithm 

• Glucose infusion rate, 𝑅𝑑 = 
1

2
  𝑀𝑑 [1 − tanh 𝑆𝑑(𝐺 − 𝐵𝑑)] 

• Insulin infusion rate, 𝑅𝑖 = 
1

2
  𝑀𝑖  [1 − tanh 𝑆𝑖  (𝐺𝑝 − 𝐵𝑖)] 

• Projected BG, 𝐺𝑝 = 𝐺 + 𝐾1[exp (𝐴/𝐾2) −1)] 

where 𝑀 = maximum infusion rate; S = slope; 𝐵 = BG level at which half 

maximum infusion rate is chosen to occur; subscript 𝑑, 𝑖 = for glucose/ 

dextrose and insulin respectively; 𝐴 = rate of change of BG, which is minute 

to-minute changes of BG averaged over the preceding four minutes; 𝐾1 is 

chosen to adjust the magnitude of the difference factor, and 𝐾2 selected to 

establish its sensitivity to changes in 𝐴. 
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2.14.3 Control Algorithm Based on Lookup Table 

In this method, the relationship between the inputs and outputs is obtained by 

mapping the inputs and outputs in the form of a lookup table. In the day-to-

day care of patients in the hospital settings, blood glucose control is 

commonly achieved using model-less approach in an open loop manner.  

BG samples are taken intermittently (at defined internals), and insulin 

delivery rate is adjusted manually using: 

• Lookup table control, such as a sliding scale table. The table has a 

continuous BG “partitioned” into ranges, with an insulin rate assigned to each 

range. 

Insulin is given in accordance with the range in which the BG sample resides 

(Table 2.1). The insulin delivery can either be intravenous or subcutaneous, 

and different tables are prescribed for different routes of delivery. Tables that 

used 1-hourly [32], and 3-hourly BG sampling [31] for subsequent 

adjustment of intravenous insulin delivery rate have been reported to achieve 

good normalization of high BG. 

• Linearized lookup table, where the “step-wise” insulin increase is replaced 

by a “slope”. Furler et al [33] used such an algorithm, where insulin rates are 

0.5 U/hr for BG<4 mmol/l and 2.5 U hr for BG > 8 mmol/l, with a linear 

transition between these rates over the range of BG of 4–8 mmol/l.   

 

                  Table 2.1 Example sliding scale table 

BG range (mmol/l) Insulin infusion rate (U/hr) 

> 20.0 4 

15.1 – 20.0 3 

10.1 – 15.0 2 

6.1 – 10.0 1 

0 – 6.0 0 
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2.14.4 Control Algorithm Based on Rule-Based Control 

Model-less approach to blood glucose control could also use expert rules 

(rules that are based on experience) as the control rules. They can be seen in 

clinical techniques, which include: 

• Titration control, where the intravenous (IV) insulin infusion rate is started 

at an empirical level, and progressively tuned to an appropriate rate which 

lowered and maintained the BG in the target range; 

• Variable-rate IV insulin infusion algorithm, where insulin rates are 

increased/decreased by 0.5 U/hr (or remain unchanged) every 2 hours, based 

on the BG measurement. This method is similar to a sliding table, except that 

the insulin rates are given in terms of increment or decrement to the previous 

rate, instead of a fixed insulin rate for each BG ranges. Proposed by Watts et 

al [20] to maintain BG in patients within a certain range, this method was 

reported to be safe and efficacious [14]; 

• Experience, where control is achieved by means of accumulated 

experiences in controlling glucose level; 

• Neuro-fuzzy method, where insulin rates are increased/decreased every 4 

hours, based on a simple nomogram (similar to a look-up table). The 

nomogram details the insulin infusion rate variation to be added or subtracted 

from the current rate based on “preceding” and “present” BG values. The 

nomogram is obtained by training a Back Error Propagation Neural Network 

using 1000 paired BG–insulin values, and then providing the neural network 

with 400 pairs of BG values that represents every possible combination of 

glycaemic values between 3.3 and 13.9 mmol/l to obtain 400 corresponding 

variations of the insulin infusion rates [29]. 

2.14.5 Control Algorithm Based on PID Control 

Proportional-Integral-Derivative control (or any combination of P, I or D) is 

an easy-to-use feedback control system. It does not require advanced 
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mathematics to design and can be easily “tuned”. The controller takes a 

measurement from a plant process and compares it with a set point 

(reference) value. The difference (or “error” signal) is then used to adjust the 

input to the plant in order to bring the measured value back to its desired set 

point (Figure 2.6). PID controller can adjust process outputs based on the 

history and rate of change of the error signal.  

However, PID controller are sensitive to dead-time in the measurement (i.e. 

delay in measurement could upset the control action, bringing the control 

loop into possible oscillations). 

 

Figure 2.6 PID controller 

• Proportional (P): The error signal is multiplied by a constant 𝐾𝑝 for 

immediate correction. 

• Integral (I): To learn from the past, the error signal is integrated (added up) 

over a period of time, and then multiplied by a constant 𝐾𝑖. The result is then 

added to the controller output signal. 

• Derivative (D): The slope of the error signal (i.e. the change of the error 

signal over a pre-defined interval) is calculated, and multiplied by a constant 

𝐾𝑑, and the result is added to the controller output signal.  
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2.15 Model-Based Control Algorithms 

As the name implies, the model-based approach involves the use of a model 

in the control of blood glucose level. This model is the human glucose-insulin 

interaction. 

If this complex interaction can be captured and described in terms of 

mathematics, then the glucose control problem becomes a mathematical 

problem, and mathematical problem can be solved using various 

mathematical techniques. 

Other advantages of using a model: 

• It offers useful description and insight into the underlying process. For 

example, the observations obtained from accessible variables (e.g. glucose at 

tissue) can be used to measure those system quantities that are of interest, but 

were inaccessible to direct measurement (e.g. glucose at hepatic artery). 

• It can help in predicting overall system behavior under a variety of 

perturbations [34]. In another word, it can serve to determine how a system 

would respond to a stimulus or changes in the system. 

• It allows the testing or simulation of the control algorithm to be performed 

without involving real patients. 

• It allows the study into the effect of insulin therapy regime to be undertaken 

without risking patient safety. 

The mathematical model used in BG regulation can be divided into two 

groups: 

2.15.1 Theoretical 

Theoretical modelling attempts to model the underlying process by means of 

a theory. The theory is derived using the knowledge about the function or 

structure of the underlying system, chemical process, physical laws, and 

quantitative data (from observable measurements). 
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The extent to which a pure theoretical model can be derived depends on 

current understanding of the system or process. It may not always be possible 

to fully model the underlying process, either due to a lack of measurable 

variables, or simply lack of detailed knowledge about the system. 

2.15.2 Empirical + Theoretical 

In metabolic system, it is rare to have adequate detailed knowledge of the 

underlying system to allow full derivation of the theoretical models. 

Hence, a combination of theoretical and empirical knowledge is used. 

Certain parts of the system are modelled empirically, whereas others are 

modelled theoretically. We could postulate about the internal structure of a 

system based on empirical observation, and fit the hypothesis to the 

observation. 

When deriving the glucose-insulin model, one could conceptualize the model 

based on 

• Physiological knowledge of the system, 

• Functional description of the relevant processes 

• The interconnection between the processes, and 

• Relationship between the processes to the observable glucose (or insulin) 

measurements in practical situation. 

2.16 Mathematical Models of Gluco-regulatory System 

The attempts to capture the glucose-insulin mechanism have resulted in the 

formulation of various glucose-insulin kinetic models. These models range 

from simple expressions that relate glucose and insulin, to very complete 

mathematical models. The three general groupings of mathematical models 

are: 

1. Linear 

2. Non linear 

3. Comprehensive   
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2.16.1 Linear Models  

Linear models are adequate when the intrinsic dynamics of the metabolic 

system are essentially linear. In linear modelling of glucose-insulin kinetics, 

the models are described by linear time-invariant equations: 

                                         �̇� (𝑡) =  𝐴𝐱(𝑡) +  𝐵𝐮(𝑡)                                           (2.1) 

                               y(𝑡) =  𝐶𝐱(𝑡) +  𝐷𝐮(𝑡);         𝑡 0 <  𝑡 <  𝑇         (2.2)               

where the state variable 𝐱(𝑡) and its derivative appear in linear combination 

only, and 𝐮(𝑡) represents the input (or disturbances) into the system.  

Models of glucose-insulin kinetics can be derived using technique like 

“compartmental analysis”. 

Compartmental Analysis 

Compartmental analysis is the simplest method in biomathematics to 

describe the transfer of materials in biological systems, and it can quickly 

lead to mathematical relationships. 

A compartment is fundamentally an idealized store of a substance. 

Compartmental analysis consists of studying the exchanges of matter 

between the stores (i.e. compartments) as a function of time, t. The material 

exchange between compartments takes place either by physical transport 

from one location to another, or by chemical reactions (Figure 2.7). The 

mathematical model then consists of the mass balance equations for each 

compartments and relations describing the rate of material transfer between 

compartment:  

                                                 
dQ𝑖𝑗

d𝑡
= ∑ 𝑅𝑖𝑗 ∑ 𝑅𝑗𝑖                                        (2.3) 

where Q𝑖𝑗 = quantity of substance in compartment i that interchanges matter 

with other compartments; ∑ 𝑅𝑖𝑗 = summation of the rates of mass transfer 

into compartment i from all relevant compartments; ∑ 𝑅𝑗𝑖 = summation of 
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the rates of mass transfer from compartment i to other compartments of the 

system. 

 

Figure 2.7 Compartmental analysis 
For example, consider two compartments 1 and 2. Figure 3.3 shows the flow 

of material between the two compartments. 𝐾𝑖𝑗  indicates the rates at which 

the materials in 𝑖 is transferred to compartment j and vice versa.  

Let 𝑄1, 𝑄2 = quantity of materials in compartment 1 and 2 respectively, and 

𝐽(𝑡), 𝐾(𝑡) = flow of material from exogenous sources, the mass balance 

equations can be written as follows: 

                                  
𝑑𝑄1

𝑑𝑡
= −𝑘11𝑄1 − 𝑘12𝑄1 + 𝑘21𝑄2 + 𝐽(𝑡)                    (2.4) 

                                 
𝑑𝑄2

𝑑𝑡
= 𝑘12𝑄1 − 𝑘21𝑄2 − 𝑘22𝑄2 + 𝐾(𝑡)                      (2.5) 

which can be simplified to: 

                                 
𝑑𝑄1

𝑑𝑡
= −𝑚1𝑄1 + 𝑘21𝑄2 + 𝐽(𝑡)                                      (2.6) 

                                 
𝑑𝑄2

𝑑𝑡
= 𝑘12𝑄1 − 𝑚3𝑄2 + 𝐾(𝑡)                                        (2.7) 

where 𝑚1 = 𝑘11 + 𝑘12 and 𝑚3 = 𝑘21 + 𝑘22 

2.16.2 Ackerman’s Linear Model 

There are many linear models proposed in the literature to-date. Among 

them, Ackerman’s model has been by far the most commonly cited linear 

model. Ackerman’s model consists of a system of equations in which the 
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parameters have been lumped into two dependent variables, 𝐺 and 𝐻, and 

four rate constants [3]:  

                                                
𝑑𝑔

𝑑𝑡
= −𝑚1𝑔 − 𝑚2ℎ + 𝐽                                    (2.8) 

                                                
𝑑ℎ

𝑑𝑡
= −𝑚3ℎ + 𝑚4𝑔 + 𝐾                                   (2.9) 

where 𝐺 = glucose concentration; 𝐺0 = fasting glucose concentration;                

𝑔 ≡ 𝐺 − 𝐺0; 𝐻 = blood hormone concentration (including insulin).  

This is the effective hormone concentration which included consideration of 

the role of epinephrine and other hormone; 𝐻0 = fasting blood hormone 

concentration (including insulin); ℎ ≡ 𝐻 − 𝐻0 

The rate constants are: 

• 𝑚1= rate constant for the removal of glucose above the initial fasting level 

due to its own excess above the initial level. Also known as glucose 

effectiveness, this term normally has a value of 0.01–0.02/min but it is likely 

that its true value is reduced at chronic hyperglycemia due to glucose toxicity; 

• 𝑚2= rate constant for the removal of glucose above the initial level due to 

blood hormone concentration above the initial level has a value of 

0.0031/min; 

• 𝑚3= rate constant for the removal of hormone above the initial fasting level 

due to its own excess above the initial level (duration of insulin action) has a 

value of 0.0415/min; 

• 𝑚4= rate constant for the removal of hormone above the initial level due to 

blood glucose concentration above the initial level equal to zero. 

2.16.3 Non-linear and Comprehensive Models  

The linear model has the disadvantage that it is a gross oversimplification of 

the underlying glucose-insulin interaction in actual human (which is far more 

complex than the linear model). Biological system dynamics are often non-



 
34 

linear in nature, and low-order models may not adequately describe the real 

process and therefore could contain both unacceptable levels of modelling 

error and significant process-model mismatch [35].  

2.16.4 Minimal Model 

Also known as Bergman’s model, the minimal model was proposed by 

Bergman et al [36] in the early 1980’s for the interpretation of glucose and 

insulin plasma concentrations following the intravenous glucose tolerance 

test (IVGTT). This model has been popular among past physiological 

researches on the metabolism of glucose.  

It is composed of two parts:                        

1. Minimal model for glucose disappearance: Two differential equations 

which describe the glucose plasma concentration time-course, accounting for 

the dynamics of glucose uptake dependent on, and independent of circulating 

insulin. It treated insulin plasma concentration as a known forcing function 

[201].  

                                
𝑑𝐺(𝑡)

𝑑𝑡
= −(𝑝1 + 𝑋(𝑡)) 𝐺(𝑡) + 𝑝1𝐺𝐵                          (2.10) 

                                
𝑑𝑋(𝑡)

𝑑𝑡
= −𝑝2 𝑋(𝑡) + 𝑝3[𝐼(𝑡) − 𝐼𝐵]                             (2.11) 

where the term 𝑝1𝐺𝐵 accounts for the body’s natural tendency to move 

towards basal glucose levels [37].                         

2. Minimal model for insulin kinetic: Single equation which describes the 

time-course of plasma insulin concentration, accounting for the dynamics of 

pancreatic insulin release in response to the glucose stimulus. The glucose 

plasma concentration is to be regarded as a known forcing function. 

𝑑𝐼(𝑡)

𝑑𝑡
= {

 𝛾[𝐺(𝑡) − ℎ]𝑡 − 𝑛[𝐼(𝑡) − 𝐼𝐵]       𝑓𝑜𝑟  𝐺(𝑡) − ℎ > 0

−𝑛[𝐼(𝑡) − 𝐼𝐵]                                  𝑓𝑜𝑟 𝐺(𝑡) − ℎ ≤ 0
             (2.12) 

 

where the state variables: 
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• 𝐺(𝑡) [mg/dl] = the blood glucose concentration at time 𝑡 [min]; 

• 𝐼(𝑡) [𝜇U/ml] = blood insulin concentration at time 𝑡 [min]; 

• 𝑋(𝑡) [min−1] = a function representing insulin-excitable tissue glucose 

uptake activity, proportional to insulin concentration in a “distant” 

compartment; 

• 𝐺𝐵 [mg/dl] = the subject’s basal glucose level (or pre-injection value of 

glucose concentration); 

• 𝐼𝐵 [μU/ml] = the subject’s basal insulin level (or pre-injection value of 

insulin concentration); 

• 𝐺𝑜 [mg/dl] = the theoretical glucose level at time 0 after the instantaneous 

glucose bolus, i.e. glucose concentration that would be obtained immediately 

after glucose injection if there were instantaneous mixing of glucose in the 

extracellular fluid compartment [38]. 

The parameters are:  

• 𝛾 [(𝜇U/ml)/(mg/dl)−1min−1] = the rate of pancreatic release of insulin after 

the bolus, per minute and per mg/dl of glucose concentration above the 

“target” glycaemia; 

• h [mg/dl] = the pancreatic “target glycaemia” [39]. It is a threshold value 

such that only glucose level above h will effect a secretion of insulin [41]. 

It represents the critical value of plasma glucose at which glucose begins to 

have a marked influence on the magnitude of the second phase; 

• n [min−1] = the time constant for insulin disappearance [36], or fractional 

disappearance rate constant for endogenous insulin [40]; 

• 𝐼𝑜 [𝜇U/ml] = the theoretical plasma insulin concentration at time 0, above 

basal insulinemia, immediately after the glucose bolus. 

The two parts are to be separately estimated on the available data. That is, the 

model parameter fitting has to be done in two steps: 
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1. Using the recorded insulin concentration as input data, in order to derive 

the parameters in the first two equations. 

2. Then, using the recorded glucose as input data to derive the parameters in 

the third equation. 

The glucose and insulin recordings are obtained by first injecting a bolus of 

glucose into the bloodstream of the experimental subject, to induce an 

(impulsive) increase in the plasma glucose concentration 𝐺(𝑡) and a 

corresponding increase of the plasma insulin concentration 𝐼(𝑡), secreted by 

pancreas. These concentrations are measured during a three-hour time 

interval beginning at injection, until 𝐺(𝑡) and 𝐼(𝑡) have returned to normal 

[39].  

To represent a person in a diabetic state, the original model has taken the 

general form: 

                       
𝑑𝐺(𝑡)

𝑑𝑡
= −(𝑝1 + 𝑋(𝑡)) 𝐺(𝑡) + 𝑝1𝐺𝐵 + 𝑝(𝑡)                     (2.13) 

                      
𝑑𝑋(𝑡)

𝑑𝑡
= −𝑝2𝑋(𝑡) + 𝑝3[𝐼(𝑡) − 𝐼𝐵]                                        (2.14) 

                       
𝑑𝐼(𝑡)

𝑑𝑡
= −𝑛[𝐼(𝑡) − 𝐼𝐵] + 𝑢(𝑡)                                               (2.15) 

where endogenous insulin secretion (i.e. the term 𝛾[𝐺(𝑡)  −  ℎ]𝑡) in equation 

2.12 was removed, and a term of exogenous infusion of glucose 𝑝(𝑡) and 

insulin 𝑢(𝑡) was added.   

2.16.5 Cobelli’s Model 

Cobelli et al’s model consists of a metabolic plant (glucose), and two-

hormone controller (insulin and glucagon) [42]. The glucose subsystem is 

described by a one-compartment model of distribution and metabolism 

(extracellular fluids), involving net hepatic glucose balance (i.e. the 

difference between liver glucose production and liver uptake), renal excretion 

of glucose, insulin-dependent glucose utilization (mainly by muscle and 
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adipose tissue), insulin-independent glucose utilization (mainly by the central 

nervous system and the red blood cell).  

Glucose Subsystem 

�̇�(𝑡) = NHGB(𝑥1, 𝑢12, 𝑢2) − 𝐹3(𝑥1) − 𝐹4(𝑥1, 𝑢13) − 𝐹5 𝐼𝑥(𝑡),       

          𝑥1(0) = 𝑥10                                                                                             (2.16)  

          �̇�1𝑝(𝑡) = −𝑘21𝑢1𝑝 + 𝑘12𝑢2𝑝 + 𝑊(𝑥1),        𝑢1𝑝(0) = 𝑢1𝑝0        (2.17) 

          �̇�2𝑝(𝑡) = 𝑘21𝑢1𝑝 − (𝑘12 + 𝑘02(𝑥1))𝑢2𝑝,     𝑢2𝑝(0) = 𝑢2𝑝0         (2.18) 

where  

NHGB = 𝐹1(𝑥1, 𝑢12, 𝑢2) − 𝐹2(𝑥1, 𝑢12) is the net hepatic glucose balance; 

𝐹1= the liver glucose production; 

𝐹2 = the liver glucose uptake;  

𝐹3 = the renal excretion;  

𝐹4 = the peripheral insulin-dependent glucose utilization;  

𝐹5 = the peripheral insulin-independent glucose utilization;  

𝐼𝑥(𝑡) is the rate of exogenous glucose given intravenously;  

𝑊(𝑥1) = insulin synthesis controlled by BG concentration;  

𝑥1 = quantity of glucose in plasma and extracellular fluids [mg];  

𝑢1𝑝 = quantity of pancreatic stored insulin [𝜇U];  

𝑢2𝑝 = quantity of pancreatic, promptly releasable insulin [𝜇U].  

The constants are 𝑘12=0.01, 𝑘21=4.34×10−3 (values for a normal state). 

Liver glucose production 
                       𝐹1(𝑥1, 𝑢12, 𝑢2) = 𝑎11𝐺1(𝑢2)𝐻1(𝑢12)𝑀1(𝑥1)                      (2.19) 

where 

                       𝐺1(𝑢2) = 0.5 {1 + tanh[𝑏11(𝑒21 + 𝑐11)]}                          (2.20) 

                       𝐻1(𝑢12) = 0.5 {1 − tanh[𝑏12(𝑒12 + 𝑐12)]}                        (2.21) 

                        𝑀1(𝑥1) = 0.5 {1 − tanh[𝑏13(𝑒𝑥 + 𝑐13)]}                           (2.22) 
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Baseline parameter values for a normal state: 𝑎11= 1.51; 𝑏11= = 2.14; 𝑏12= 

0.0728; 𝑏13= =0.0275; 𝑐11= =−0.85; 𝑐12= =7; 𝑐13= =20. 

 

 

 

Figure 2.8 Cobelli et al’s compartmental model. Solid line represents material flow; 

Dashed line represents control signal 
 Liver glucose uptake 

𝐹2(𝑥1, 𝑢12) = 𝐻2(𝑢12)𝑀2(𝑥1) 

𝐻2(𝑢12 = 0.5{1 − tanh[𝑏21(𝑒12 + 𝑐12)]} 
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𝑀2(𝑥1) = 𝑎221 + 𝑎2220.5 {1 + tanh[𝑏22(𝑒𝑥 + 𝑐22)]} 

Baseline parameter values for a normal state: 𝑎221= 0.00195; 𝑎222= 0.00521; 

𝑏21 = 0.0111; 𝑏22=0.0145; 𝑐12=51.3; 𝑐22=−108.5. 

 Renal excretion of glucose 

𝐹3(𝑥1) = 𝑀31(𝑥1)𝑀32(𝑥1) 

where 

𝑀31(𝑥1) = 0.5 {1 + tanh[𝑏31(𝑦1 + 𝑐31)]} 

                          𝑀32(𝑥1) = 𝑎321𝑦1 + 𝑎322 

Baseline parameter values for a normal state: 𝑎321= 1.43×10−5; 𝑎322= 

−1.31× 10−5; 𝑏31 = 20; 𝑐31=−180. 

 Insulin-dependent peripheral glucose utilization 
𝐹4(𝑥1, 𝑢13) = 𝑎41𝐻4(𝑢13)𝑀4(𝑥1) 

where 

𝑀4(𝑢13) = 0.5 {1 + tanh[𝑏41(𝑒13 + 𝑐41)]} 

                            𝑀4(𝑥1) = 0.5 {1 + tanh[𝑏42(𝑒𝑥 + 𝑐42)]} 

Baseline parameter values for a normal state: 𝑎41= 0.0287; 𝑏41= 0.031; 

𝑏42= 0.0144; 𝑐41= −50.9; 𝑐42= −20.2. 

 Insulin-independent glucose uptake 

𝐹5(𝑥1) = 𝑀51(𝑥1)𝑀52(𝑥1) 

where 

𝑀51(𝑥1) = 𝑎51 tanh[𝑏51(𝑒𝑥 + 𝑐51)] 

                               𝑀52(𝑥1) = 𝑎52𝑒𝑥 + 𝑏52 

Baseline parameter values for a normal state: 𝑎51 = 1.01×10−3; 𝑎52 = 

4.6×10−6; 𝑏51 = 0.0278; 𝑏52=4.13×10−4. 
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Insulin Subsystem 

The insulin subsystem is described by a five-compartment model, involving 

pancreatic insulin storage, liver and portal plasma insulin, plasma insulin and 

insulin in the interstitial fluid. 

�̇�11(𝑡) = −(𝑚01 + 𝑚21 + 𝑚31)𝑢11 + 𝑚12𝑢12 + 𝑚13𝑢13 + 𝐼𝑢(𝑡), 𝑢11(0) = 𝑢110 

�̇�12(𝑡) = −(𝑚02 + 𝑚12)𝑢12 + 𝑚21𝑢11 + 𝑘02(𝑥1)𝑢2𝑝,   𝑢12(0) = 𝑢120 

�̇�13(𝑡) = −𝑚13𝑢13 + 𝑚31𝑢11                                                        𝑢13(0) = 𝑢130 

where 𝑢11 = the quantity of insulin in plasma [𝜇U]; 𝑢12 = the quantity of 

insulin in the liver [𝜇U]; 𝑢13= the quantity of insulin in the interstitial fluid 

[𝜇U]; 𝐼𝑢(𝑡) = the insulin test input. The constants are 𝑚01=0.125, 𝑚02=0.185, 

𝑚12=0.209, 𝑚13=0.02, 𝑚21=0.268, 𝑚31=0.042 (values for a normal state). 

The term 𝑘02(𝑥1)𝑢2𝑝 = 𝐹6(𝑢2𝑝, 𝑥1) represents the insulin secretion rate. 

 Insulin synthesis 

𝑊(𝑥1) = 0.5𝑎𝑤{ 1 + tanh[𝑏𝑤(𝑒𝑥 + 𝑐𝑤)]} 

Baseline parameter values for a normal state: 𝑎𝑤=0.287; 𝑏𝑤=0.0151; 

𝑐𝑤=−92.3. 

 Insulin secretion 

𝐹6(𝑢2𝑝, 𝑥1) = 0.5𝑎6{ 1 + tanh[𝑏6(𝑒𝑥 + 𝑐6)]} 𝑢2𝑝 

Baseline parameter values for a normal state: 𝑎6=1.3; 𝑏6=0.0923; 𝑐6=−19.68. 

Glucagon Subsystem 

The glucagon subsystem is described by a one-compartment model: 

�̇�2(𝑡) = −ℎ02𝑢2 + 𝐹7(𝑥1, 𝑢13),                       𝑢2(0) = 𝑢20 

where 𝑢2 = the quantity of glucagon in the plasma and interstitial fluid [ng]; 

𝐹7 = the endogenous release of glucagon, dependent on BG and interstitial 

fluid insulin; ℎ02=0.086. 

• Glucagon secretion 

𝐹7(𝑥1, 𝑢13) = 𝑎71𝐻7(𝑢13)𝑀7(𝑥1) 
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where 

𝐻7(𝑢13) = 0.5 { 1 − tanh[𝑏71(𝑒13 + 𝑐71)]} 

𝑀7(𝑥1) = 0.5 { 1 − tanh[𝑏72(𝑒𝑥 + 𝑐72)]} 

Baseline parameter values for a normal state: 𝑎71=2.35; 𝑏71=6.86×10−3; 

𝑏72=0.03; 𝑐71=99.2; 𝑐72=40. 

𝑊 and 𝐹1 – 𝐹7 are nonlinear functions, 𝑚𝑖𝑗, ℎ𝑖𝑗, and 𝑘𝑖𝑗 are constant rate 

parameters [min−1] with the exception of 𝑘02 which is a function of 𝑥1. 
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Chapter 3 

System Model 

This chapter concentrate about parameters used in this thesis, simulation, the 

operation of evaluation and modeling the project simulation tool.  

3.1 Normal Subject 

The model describing the glucose–insulin control system during a meal is 

shown in Figure 3.1. This section provides a brief overview of the model. 

Continuous lines denote fluxes of material and dashed lines control signals. 

In addition to plasma glucose and insulin concentration measurements, 

glucose fluxes (i.e., meal rate of appearance, production, utilization, and renal 

extraction) and insulin fluxes (i.e., secretion and degradation) 

The model is made up of a glucose and insulin subsystem linked by the 

control of glucose on insulin secretion and by insulin on glucose utilization 

and endogenous production.  

The glucose subsystem consists of a two-compartment model of glucose 

kinetics: insulin-independent utilization occurs in the first compartment, 

representing plasma and fast equilibrating tissue, while insulin-dependent 

utilization occurs in a remote compartment, representing peripheral tissues.  

The insulin subsystem also consists of two compartments, the first 

representing the liver and the second the plasma. The most important model 

unit processes are endogenous glucose production, glucose rate of 

appearance, glucose utilization, and insulin secretion.  
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Suppression of endogenous glucose production is assumed to be linearly 

dependent on plasma glucose concentration, portal insulin concentration, and 

a delayed insulin signal.  

Key parameters are hepatic glucose effectiveness (glucose control on 

endogenous glucose production suppression) and hepatic insulin sensitivity 

(insulin control on endogenous glucose production suppression).  

Glucose intestinal absorption describes the glucose transit through the 

stomach and intestine by assuming that the stomach is represented by two 

compartments (one for solid and one for triturated phases), while a single 

compartment is used to describe the gut; the rate constant of gastric emptying 

is a nonlinear function of the amount of glucose in the stomach.  

Glucose utilization during a meal (both insulin independent and dependent) 

is made up of two components.  

Insulin-independent utilization in the brain and erythrocytes takes place in 

the first compartment and is constant, whereas insulin-dependent utilization 

in muscle and adipose tissue takes place in the remote compartment and 

depends nonlinearly from glucose in the tissues.  

Beta-cell insulin secretion is described by dynamic and static components. 

The dynamic component likely represents the release of promptly releasable 

insulin and is proportional to the rate of increase of glucose concentration 

through a parameter called dynamic beta-cell responsivity.  

The static component describes the provision of new insulin to the releasable 

pool and is proportional to a delayed glucose signal through a parameter 

called static beta-cell responsivity [45].  
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Figure 3.1 Scheme of the glucose–insulin control system 

 

3.2 Tuning of PID Controllers   

If a mathematical model of the plant can be derived, then it is possible to 

apply various design techniques for determining parameters of the controller 

that will meet the transient and steady-state specifications of the closed-loop 

system.  

 However, if the plant is so complicated that its mathematical model cannot 

be easily obtained, then an analytical or computational approach to the design 

of a PID controller is not possible. Then we must resort to experimental 

approaches to the tuning of PID controllers. 

The process of selecting the controller parameters to meet given performance 

specifications is known as controller tuning.  
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Figure 3.2 PID control of a plant 
 

Ziegler and Nichols [5] suggested rules for tuning PID controllers (meaning 

to set values 𝑘𝑝, 𝑇𝑖 and 𝑇𝑑) based on experimental step responses or based on 

the value of 𝑘𝑝 that results in marginal stability when only proportional 

control action is used [43].   

3.2.1 Ziegler–Nichols Rules for Tuning PID Controllers 

Ziegler and Nichols proposed rules for determining values of the proportional 

gain 𝑘𝑝 integral time 𝑇𝑖 and derivative time 𝑇𝑑 based on the transient response 

characteristics of a given plant. There are two methods called Ziegler–

Nichols tuning rules: the first method and the second method. 

First Method. In the first method, we obtain experimentally the response of 

the plant to a unit-step input. If the plant involves neither integrator(s) nor 

dominant complex-conjugate poles, then such a unit-step response curve may 

look S-shaped. This method applies if the response to a step input exhibits an 

S-shaped curve [43]. 

 

Figure 3.3 Unit-step response of a plant 
 

The S-shaped curve may be characterized by two constants, delay time 𝐿 

and time constant 𝑇. The delay time and time constant are determined by 

drawing a tangent line at the inflection point of the S-shaped curve and 
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determining the intersections of the tangent line with the time axis and line 

𝑐(𝑡) = 𝐾. 

 

Figure 3.4 S-shaped response curve 

Ziegler and Nichols suggested to set the values of 𝑘𝑝, 𝑇𝑖, and 𝑇𝑑 according 

to the formula shown in Table 3.1. 
 

 

Table 3.1 Ziegler–Nichols Tuning Rule Based on Step Response of Plant (First Method) 
 

Type of Controller 𝒌𝒑 𝑻𝒊 𝑻𝒅 

P 𝑇

𝐿
 

∞ 0 

PI 
0.9

𝑇

𝐿
 

𝐿

0.3
 

0 

PID 
1.2

𝑇

𝐿
 

2𝐿 0.5𝐿 

 

3.2.2 Cohen–Coon Tuning Method 

Cohen-coon method is another tuning method of PID controller where using 

this tuning method the steady state response is minimum as given according 

to Ziegler Nichols method. The Cohen-Coon method is a more complex 

version of the Ziegler-Nichols method. The method is similar to the Ziegler- 
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Nichols method but the difference comes with the fact that Cohen-Coon 

provides the faster rise time [44]. 

Based on time constant and time delay the output response can be determined. 

Table 3.2 Cohen–Coon Tuning method 

Type of Controller 𝒌𝒑 𝑻𝒊 𝑻𝒅 

P 1

𝐾

𝑇

𝜏
(1 +

𝜏

3𝑇
) 

   

PI 1

𝐾

𝑇

𝜏
(0.9 +

𝜏

12𝑇
) 𝜏

(30 + 3𝜏/𝑇)

(9 + 20𝜏/𝑇)
 

 

PID 1

𝐾

𝑇

𝜏
(

4

3
+

𝜏

4𝑇
) 𝜏

(32 + 6𝜏/𝑇)

(13 + 8𝜏/𝑇)
 𝜏

4

(11 + 2𝜏/𝑇)
 

 

3.2.3 Chien-Hrones-Reswick tuning method 

This method was developed by Chien-Hrones-Reswick which gives a better 

way to select a compensator for control applications. There are basically two 

forms of CHR which are Chien- Hrone-Reswick (set point regulation) also 

known as CHR-1 and the Chien-Hrone-Reswick (disturbance rejection). 

According to Chien-Hrones-Reswick suggestion controller parameters are 

tuned in industry process. These controller parameters has 0% and 20% 

overshoot which is summarized in Table 3.3.  

Table 3.3 Chien-Hrones-Reswick Tuning method set point regulation 

Overshoot 0 % 20 % 

Type of 

Controller 

𝒌𝒑 𝒌𝒊 𝒌𝒅 𝒌𝒑 𝒌𝒊 𝒌𝒅 

P 0.3𝑎    0.7/𝑎   

PI 0.35/𝑎 1.2𝑇  0.6/𝑎 𝑇  

PID 0.6/𝑎 𝑇 0.5𝐿 0.95/𝑎 1.4𝑇 0.47𝐿 
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3.3 Mathematical Model of Blood Glucose Level    

By considering the blood glucose equation of Ackerman’s Linear Model, in 

order to obtain the differential equation, we use the MATLAB simulation to 

solve the differential equations.  

We use the function dsolve to solve the differential equations because it 

gives the solution as a function in time domain, the solution of the equations 

has many terms, so we use another function simplify to simplify the 

solution and also in time domain. 

Now we convert this equation into Laplace domain by using the function 

laplace transform, and also we use the function simplify to simplify 

the solution in a simple form. 

 

The open loop transfer function of blood glucose level obtained is  

                                         𝐺(𝑠) =
20𝑠 + 8

100𝑠3 + 52𝑠2 + 3𝑠
                                   (3.1) 

The closed loop transfer function of blood glucose level obtained is  

                                         𝐺(𝑠) =
20𝑠 + 8

100𝑠3 + 52𝑠2 + 23𝑠 + 8
                         (3.2) 

The step response of blood glucose level of diabetic patient is shown in figure 

3.5.  

3.3 Step response of blood glucose of diabetic patient 

Figure 3.2 shows the step response of blood glucose level of diabetic patient. 

This figure shows the blood glucose insulin system has taken more settling 

time to settle down to steady state, it means that system takes more time to 

reach steady state of the system, so we can use digital PID controller to 

overcome the steady state error and we can also get accurate step response 

with less rise time. 
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Figure 3.5 Step response of blood glucose of diabetic patient 

The figure shows that the settling time is 80.8 sec and the overshoot value is 

72.9 % so the performance of the system cannot be a good system for us. 

The transfer function of blood glucose level in time domain is  

           𝐺𝑐(𝑠) =
3.155 𝑠3 + 3.973 𝑠2 + 1.462 𝑠 + 0.1511

𝑠4 + 3.675 𝑠3 + 4.003 𝑠2 + 1.462 𝑠 + 0.1511
              (3.3) 

The discrete transfer function in z-domain with sampling time 0.5 sec is 

          𝐺(𝑧) =
0.0082 𝑧3 − 0.0256 𝑧2 − 0.185 𝑧 − 0.0065

𝑧3 − 2.764 𝑧2 + 2.536 𝑧 − 0.7711
                     (3.4) 
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Figure 3.6 z-plane of blood glucose of diabetic patient 

In which the zeros and poles are: 

Zeros: −3.678, 0.8187, 0.2639. 

Poles: 1, 0.9675, 0.797. 
Gain: 0.0082 
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Chapter 4 

Results and Discussions 

This chapter illustrate the results of the simulation after executing the 

program which described in the previous chapter. Also analysis and comment 

on these results has been described. 

4.1 Tuning of PID controller by using Ziegler-Nichols  

By applying the PID controllers on blood glucose equation we obtain the unit 

step response as in figure 4.1. 

The value of PID parameters can be determined by using table 3.1. 

𝑘𝑝 = 4.8, 𝑇𝑖 = 3, 𝑇𝑑 = 0.75. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Step response of blood glucose insulin system by using Ziegler-Nichols 

 

The figure shows that the settling time is 5.44 sec and the overshoot value is 

27 % so the performance of the system is not say a good system for us. 



 
54 

The transfer function of Ziegler-Nichols method in time domain is  

               𝐺𝑐(𝑠) =
2.16 𝑠3 + 3.744 𝑠2 + 2.112 𝑠 + 0.384

𝑠4 + 2.68 𝑠3 + 3.774 𝑠2 + 2.112 𝑠 + 0.384
               (4.1) 

The discrete transfer function in z-domain with sampling time 0.5 sec is 

             𝐺𝑐(𝑧) =
0.8894 𝑧3 − 2.111 𝑧2 + 1.669 𝑧 − 0.4399

𝑧4 − 2.664 𝑧3 + 2.624 𝑧2 − 1.135 𝑧 + 0.1827
           (4.2) 

In which the zeros and poles are: 

Zeros: 0.8189, 0.7329, 0.693. 

Poles: 0.8265, 0.7764, 0.5465 + 0.3308𝑖, and 0.5465 − 0.3308𝑖. 
Gain: 0.8239 

Figure 4.2 shows z-plane of the system. 

 

Figure 4.2 z-plane of blood glucose insulin system by using Ziegler-Nichols method 

4.2 Tuning of PID controller by using Cohen-Coon method 

By applying the PID controllers on blood glucose equation we obtain the unit 

step response as in figure 4.3. 

The value of PID parameters can be determined by using table 3.2. 

𝑘𝑝 = 1.8893, 𝑇𝑖 = 7.1744, 𝑇𝑑 = 1.1638. 
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The figure shows that the settling time is 3.72 sec and the overshoot value is 

13.7 % so the performance of the system can be say a good system for us. 

The transfer function of Cohen-Coon method in time domain is  

               𝐺𝑐(𝑠) =
3.155 𝑠3 + 3.973 𝑠2 + 1.462 𝑠 + 0.1511

𝑠4 + 3.675 𝑠3 + 4.003 𝑠2 + 1.462 𝑠 + 0.1511
          (4.3) 

The discrete transfer function in z-domain with sampling time 0.5 sec is 

              𝐺𝑐(𝑧) =
0.8989 𝑧3 − 2.196 𝑧2 + 1.778 𝑧 − 0.4773

𝑧4 − 2.685 𝑧3 + 2.611 𝑧2 − 1.081 𝑧 + 0.1592
          (4.4) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Step response of blood glucose insulin system by using Cohen-Coon method 

In which the zeros and poles are:  

Zeros: 0.708, 0.8168, 0.9162. 

Poles: 0.3574, 0.5967, 0.8138, and 0.9173. 
Gain: 0.8989 

Figure 4.4 shows z-plane of the system. 



 
56 

 

Figure 4.4 z-plane of blood glucose insulin system by using Cohen-Coon method 

4.3 Tuning of PID controller by using Chien-Hrones-Reswick method 

 By applying the PID controllers on blood glucose equation we obtain the 

unit step response as in figure 4.5. 

The value of PID parameters can be determined by using table 3.3. 

𝑘𝑝 = 1.2, 𝑘𝑖 = 7, 𝑘𝑑 = 1. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Step response of blood glucose insulin system by using Chien-Hrones-

Reswick method 
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The figure shows that the settling time is 4.08 sec and the overshoot value is 

22.4 % so the performance of the system is not good for us. 

The transfer function of Chien-Hrones-Reswick method in time domain is  

              𝐺𝑐(𝑠) =
1.68 𝑠3 + 2.352 𝑠2 + 0.912 𝑠 + 0.096

𝑠4 + 2.20 𝑠3 + 2.382 𝑠2 + 0.912 𝑠 + 0.096
                (4.5) 

The discrete transfer function in z-domain is by using Zero-Order hold with 

sampling time 0.5 sec is 

              𝐺𝑐(𝑧) =
0.6738 𝑧3 − 1.613 𝑧2 + 1.275 𝑧 − 0. .3325

𝑧4 − 2.949 𝑧3 + 3.301 𝑧2 − 1.681 𝑧 + 0.3329
          (4.6) 

In which the zeros and poles are: 

Zeros: 0.6572, 0.8186, and 0.9173.  
Poles: 0.9188, 0.813, 0.609 + 0.2733𝑖, and 0.609 − 0.2733𝑖. 
Gain: 0.6738 

Figure 4.6 shows z-plane of the system. 

 

Figure 4.6 z-plane of blood glucose insulin system by using Chien-Hrones-Reswick 

method 
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     CHAPTER V    

CONCLUSION AND RECOMMENDATIONS 
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Chapter 5 

Conclusion and Recommendations  

The main ideas presented in the thesis are collected and summarized in this 

chapter and recommendation for future work. 

5.1 Conclusion 

In this thesis we designed the Digital PID controllers for blood glucose level 

of diabetic patient using various tuning algorithm.  

The plots of time response characteristics of blood glucose level gave a very 

awful response without using tuning methods.  

From the results it is obvious that Ziegler-Nichols method yields a very high 

overshoot where as Cohen-Coon method exhibits a low overshoot with a low 

settling time. The overshoot in blood glucose level controller may create 

sudden high insulin level and endanger the life of patient.  

Similarly due to high settling time in Chien-Hrones-Reswick method the 

blood glucose level takes a very long time to maintain the steady state hence 

resulting in chances of life danger.  

Finally these PIDs are converted into digital PIDs using various conversion 

methods. After tuning the PID it is essential to convert the analog PID to 

digital PID. 
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5.2 Recommendations 

The work presented in this thesis can be extended and enhanced in some 

specific areas. There are different models of blood glucose level of diabetic 

patients, Linear Models, Bolie’s Model, Minimal Model (Bergman’s) and 

Cobelli’s Model. 

Further tuning of PID after implementation also become very easy and the 

system also becomes very accurate. 

It is essential to convert the analog PID to digital PID as we known hardware 

implementation of digital PID is very easy in minimized area. 
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