
 67

Appendix “A”

 68

clear all;
close all;

% Measurement data
% 1045 propeller
% RobbeRoxxy Motor (1100 kV, data collected in 2010)
data = [45, 7.4;...
 38, 5.6;...
 33, 4.3;...
 26, 3.0;...
 18, 2.0;...
 10, 1.0];

% Normalize the data, as we're operating later
% anyways in normalized units
data(:,1) = data(:,1) ./ max(data(:,1));
data(:,2) = data(:,2) ./ max(data(:,2));

% Fit a 2nd degree polygon to the data and
% print the x2, x1, x0 coefficients
p = polyfit(data(:,2), data(:,1),2)

% Override the first coffefficient for testing
% purposes
pf = 0.62;

% Generate plotting data
px1 = linspace(0, max(data(:,2)));
py1 = polyval(p, px1);

pyt = zeros(size(data, 1), 1);
corr = zeros(size(data, 1), 1);

% Actual code test
% the two lines below are the ones needed to be ported to
C:
% pf: Power factor parameter.
% px1(i): The current normalized motor command (-1..1)
% corr(i): The required correction. The motor speed is:
% px1(i)
fori=1:size(px1, 2)

% The actual output throttle
pyt(i) = -pf * (px1(i) * px1(i)) + (1 + pf) * px1(i);

% Solve for input throttle
% y = -p * x^2 + (1+p) * x;

 69

%
end

plot(data(:,2), data(:,1), '*r');
hold on;
plot(px1, py1, '*b');
hold on;
plot([0 px1(end)], [0 py1(end)], '-k');
hold on;
plot(px1, pyt, '-b');
hold on;
plot(px1, corr, '-m');

 70

Appendix”B”

 71

close all;
clear all;
M = importdata('px4io_v1.3.csv');
voltage = M.data(:, 1);
counts = M.data(:, 2);
plot(counts, voltage, 'b*-', 'LineWidth', 2, 'MarkerSize', 15);
coeffs = polyfit(counts, voltage, 1);
fittedC = linspace(min(counts), max(counts), 500);
fittedV = polyval(coeffs, fittedC);
hold on
plot(fittedC, fittedV, 'r-', 'LineWidth', 3);

slope = coeffs(1)
y_intersection = coeffs(2)

 72

Appendix”C”

 73

#!/usr/bin/env python

"""

Autonomous drone Mission control.

University of sudan for science and technology 2017.

"""

import time

from dronekit import connect, VehicleMode, LocationGlobalRelative,
LocationGlobal, Command

import math

import pymavlink

from pymavlink import mavutil

import getch

from RPIO import PWM

import sys

defarm_and_takeoff(vehicle,aTargetAltitude):

 """

 Arms vehicle and fly to a Target Altitude.

 """

 print "Arming motors"

 # Copter should arm in GUIDED mode

vehicle.mode = VehicleMode("GUIDED")

 74

vehicle.armed = True

vehicle.flush()

 # Confirm vehicle armed before attempting to take off

 while not vehicle.armed:

 print "Waiting for arming..."

vehicle.mode = VehicleMode("GUIDED")

 vehicle.armed = True

 vehicle.flush()

time.sleep(1)

 print "Taking off!"

vehicle.simple_takeoff(aTargetAltitude) # Take off to target altitude

vehicle.flush()

 # Wait until the vehicle reaches a safe height before processing the goto
(otherwise the command

 # after Vehicle.simple_takeoff will execute immediately).

 while True:

 print " Altitude: ", vehicle.location.global_relative_frame.alt

 #Break and return from function just below target altitude.

 if vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

 print "Reached target altitude"

 75

 break

time.sleep(1)

defshows_data(vehicle):

 """

 show vehicle data.

 """

 print "Get some vehicle attribute values:"

 print "Autopilot Firmware version: %s" % vehicle.version

 print "Autopilot capabilities (supports ftp): %s" % vehicle.capabilities.ftp

 print "Global Location: %s" % vehicle.location.global_frame

 print "Global Location (relative altitude): %s" %
vehicle.location.global_relative_frame

 print "Local Location: %s" % vehicle.location.local_frame

 print "Heading: %s" % vehicle.heading

 print "attitude: %s" % vehicle.attitude

 print "velocity: %s" % vehicle.velocity

 print "channels: %s" % vehicle.channels

 print "Altitude (global frame): %s" % vehicle.location.global_frame.alt

 print "Altitude (global relative frame): %s" %
vehicle.location.global_relative_frame.alt

 print "GPS: %s" % vehicle.gps_0

 76

 print "Battery: %s" % vehicle.battery

 print "Last Heartbeat: %s" % vehicle.last_heartbeat

 print "Is Armable?: %s" % vehicle.is_armable

 print "System status: %s" % vehicle.system_status.state

 print "armed: %s" % vehicle.armed

 print "Mode: %s" % vehicle.mode.name

 print "groundspeed: %s" % vehicle.groundspeed

 print "airspeed: %s" % vehicle.airspeed

time.sleep(0.01)

defmanual_control(vehicle):

 """

 Function that makes the vehicle be controlled with keyboard.

 """

arm_and_takeoff(vehicle,2)

 #changing vehicle mode to stabilize

 print "\nSet Vehicle mode = STABILIZE (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='STABILIZE':

 print 'waiting to change Mode to STABILIZE...'

vehicle.mode = VehicleMode('STABILIZE')

vehicle.flush()

 77

 print "vehicle mode: %s" % vehicle.mode

 # initialize servo objects with PWM function

 roll = PWM.Servo()

 pitch = PWM.Servo()

 throttle = PWM.Servo()

 yaw = PWM.Servo()

 # start PWM on servo specific GPIO no, this is not the pin no but it is the
GPIO no

roll.set_servo(17,1520)# pin 11

pitch.set_servo(18,1520)# pin 12

throttle.set_servo(27,1100)# pin 13, pin 14 is Ground

yaw.set_servo(22,1520)# pin 15

 # assign global min and max values

th_min = 1100

th_max = 2000

th =1100

 print "control drone from keyboard"

 try:

 while True:

 # waiting for key strokes

 key = getch.getch()

 if key == 'w':

 78

th = th + 10

 if (th<th_min):

th = 1100

throttle.set_servo(27,th)

time.sleep(0.3)

elif (th>th_max):

th = 2000

throttle.set_servo(27,th)

time.sleep(0.3)

 else:

throttle.set_servo(27,th)

time.sleep(0.3)

 print 'th :' + str(th)

elif key == 's':

th = th - 10

 if (th<th_min):

th = 1100

throttle.set_servo(27,th)

time.sleep(0.3)

elif (th>th_max):

th = 2000

throttle.set_servo(27,th)

 79

time.sleep(0.3)

 else:

throttle.set_servo(27,th)

time.sleep(0.3)

 print 'th :' + str(th)

 #yaw left

elif key == 'a':

yaw.set_servo(22,1350)

 print "yaw left"

time.sleep(0.3)

yaw.set_servo(22,1500)

 #yaw right

elif key == 'd':

yaw.set_servo(22,1650)

 print "yaw right"

time.sleep(0.3)

yaw.set_servo(22,1500)

 #roll left

elif key == '4':

roll.set_servo(17,1350)

 print "roll left"

time.sleep(0.3)

 80

roll.set_servo(17,1500)

 #roll right

elif key == '6':

roll.set_servo(17,1650)

 print "roll right"

time.sleep(0.3)

roll.set_servo(17,1500)

 #pitch forward

elif key == '8':

pitch.set_servo(18,1650)

 print "pitch forward"

time.sleep(0.3)

pitch.set_servo(18,1500)

 #pitch back

elif key == '2':

pitch.set_servo(18,1350)

 print "pitch back"

time.sleep(0.3)

pitch.set_servo(18,1500)

 #atlitude hold

elif key == 'h':

vehicle.mode = VehicleMode("ALT_HOLD")

 81

time.sleep(0.5)

 print " mode is %s" % vehicle.mode.name

 #land mode

elif key == 'l':

vehicle.mode = VehicleMode("LAND")

time.sleep(5)

 print " mode is %s " % vehicle.mode.name

 #stabilize mode

elif key =='5' and th<1200:

vehicle.mode = VehicleMode("STABILIZE")

time.sleep(0.5)

 print "mode is %s" % vehicle.mode.name

elif key == 'q':

time.sleep(0.1)

 break

 else:

 print "wrong input...."

time.sleep(0.1)

 except KeyboardInterrupt:

vehicle.mode = VehicleMode("LAND")

time.sleep(5)

 82

 print "keyboard interrupt- Landed"

 finally:

roll.stop_servo(17)

pitch.stop_servo(18)

throttle.stop_servo(27)

yaw.stop_servo(22)

defsend_ned_velocity(vehicle, velocity_x, velocity_y, velocity_z, duration):

 """

 Move vehicle in direction based on specified velocity vectors.

 """

msg = vehicle.message_factory.set_position_target_local_ned_encode(

 0, # time_boot_ms (not used)

 0, 0, # target system, target component

mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

 0b0000111111000111, # type_mask (only speeds enabled)

 0, 0, 0, # x, y, z positions (not used)

velocity_x, velocity_y, velocity_z, # x, y, z velocity in m/s

 0, 0, 0, # x, y, z acceleration (not supported yet, ignored in
GCS_Mavlink)

 0, 0) # yaw, yaw_rate (not supported yet, ignored in GCS_Mavlink)

 # send command to vehicle on 1 Hz cycle

 83

 for x in range(0,duration):

vehicle.send_mavlink(msg)

def diamond(vehicle):

 """

 Move vehicle in direction based on diamond points.

 """

 NORTH=2

 SOUTH=-2

 EAST=2

 WEST=-2

 UP=-0.5

 DOWN=0.5

 DURATION=10

 # Shape shape

 print "Making a diamond!"

condition_yaw(0)

send_ned_velocity(vehicle,NORTH,0,0,DURATION)

 print "Flying for 20 seconds direction NORTH!"

 #send_ned_velocity(vehicle,0,0,0,5)

condition_yaw(90)

send_ned_velocity(vehicle,0,EAST,0,DURATION)

 print "Flying for 20 seconds direction EAST!"

 84

 #send_ned_velocity(vehicle,0,0,0,5)

condition_yaw(180)

send_ned_velocity(vehicle,SOUTH,0,0,DURATION)

 print "Flying for 20 seconds direction SOUTH!"

 #send_ned_velocity(vehicle,0,0,0,5)

condition_yaw(270)

send_ned_velocity(vehicle,0,WEST,0,DURATION)

 print "Flying for 20 seconds direction WEST!"

 #send_ned_velocity(vehicle,0,0,0,5)

 print("Going North, East and up")

condition_yaw(90)

send_ned_velocity(vehicle,NORTH,EAST,UP,DURATION)

 print("Going South, East and down")

condition_yaw(90)

send_ned_velocity(vehicle,SOUTH,EAST,DOWN,DURATION)

 print("Going South and West")

condition_yaw(90)

send_ned_velocity(vehicle,SOUTH,WEST,0,DURATION)

 print("Going North and West")

condition_yaw(90)

send_ned_velocity(vehicle,NORTH,WEST,0,DURATION)

 print "Returning to Launch"

 85

vehicle.mode = VehicleMode("RTL")

 print "Waiting 10 seconds RTL"

time.sleep(10)

 print "Landing the Aircraft"

vehicle.mode = VehicleMode("LAND")

defbuild_loop_mission(vehicle, loop_center, loop_radius, altitude):

 """

 Adds a takeoff command and 12 waypoint commands to the current
mission.

 The waypoints are positioned to form a dodecagon with vertices at
loop_radius around the specified

LocationGlobal (loop_center).

 The function assumes vehicle.commands matches the vehicle mission
state

 (you must have called download at least once in the session and after
clearing the mission)

 Modified from Dronekit-python

 """

cmds = vehicle.commands

 print " Clearing any existing commands"

cmds.clear()

 print " Building loop waypoints."

 86

 # Add new commands. The meaning/order of the parameters is
documented in the Command class.

 # Add MAV_CMD_NAV_TAKEOFF command. This is ignored if the vehicle
is already in the air.

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF,

 0, 0, 0, 0, 0, 0, 0, 0, 10))

 # Define the twelve MAV_CMD_NAV_WAYPOINT locations and add the
commands

 for n in range(0, 11, 1):

d_north = math.sin(math.radians(n*30))*loop_radius

d_east = math.cos(math.radians(n*30))*loop_radius

 point = get_location_metres(loop_center, d_north, d_east)

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT,

 0, 0, 0, 0, 0, 0, point.lat, point.lon, altitude))

 print " Upload new commands to vehicle"

cmds.upload()

defget_location_metres(original_location, dNorth, dEast):

 """

 Returns a LocationGlobal object containing the latitude/longitude
`dNorth` and `dEast` metres from the

 87

 specified `original_location`. The returned Location has the same `alt`
value

 as `original_location`.

 The function is useful when you want to move the vehicle around
specifying locations relative to

 the current vehicle position.

 The algorithm is relatively accurate over small distances (10m within
1km) except close to the poles.

 """

earth_radius=6378137.0 #Radius of "spherical" earth

 #Coordinate offsets in radians

dLat = dNorth/earth_radius

dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180))

 #New position in decimal degrees

newlat = original_location.lat + (dLat * 180/math.pi)

newlon = original_location.lon + (dLon * 180/math.pi)

 return LocationGlobal(newlat, newlon,original_location.alt)

defgetSSMeters(aLocation, alpha, dLat, dLon, turn):

 """

 Returns a LocationGlobal object containing the latitude/longitude values
of the next position in the sector search

 """

earth_radius=6378137.0 #Radius of "spherical" earth

 88

 if turn == 0:

 #Coordinate offsets in radians

 bearing = math.radians(alpha - 180 + 60)

 if bearing >=360:

 bearing += 360

Lat = (dLat * math.sin(bearing)) / earth_radius

 Lon = (dLat * math.cos(bearing)) / earth_radius

 #

elif turn == 1:

 #Coordinate offsets in radians

 bearing = math.radians(alpha + 180 - 60)

 if bearing >=360:

 bearing += 360

Lat = (dLat * math.sin(bearing)) / earth_radius

 Lon = (dLat * math.cos(bearing)) / earth_radius

 #New position in decimal degrees

newlat = aLocation.lat + (Lat * 180/math.pi)

newlon = aLocation.lon + (Lon * 180/math.pi)

 return LocationGlobal(newlat, newlon,aLocation.alt)

defcondition_yaw(heading, relative=False):

 if relative:

is_relative=1 #yaw relative to direction of travel

 89

 else:

is_relative=0 #yaw is an absolute angle

 # create the CONDITION_YAW command using command_long_encode()

msg = vehicle.message_factory.command_long_encode(

 0, 0, # target system, target component

mavutil.mavlink.MAV_CMD_CONDITION_YAW, #command

 0, #confirmation

 heading, # param 1, yaw in degrees

 0, # param 2, yaw speed deg/s

 1, # param 3, direction -1 ccw, 1 cw

is_relative, # param 4, relative offset 1, absolute angle 0

 0, 0, 0) # param 5 ~ 7 not used

 # send command to vehicle

vehicle.send_mavlink(msg)

defget_bearing(aLocation1, aLocation2):

 """

 Returns the bearing between the two LocationGlobal objects passed as
parameters.

 This method is an approximation, and may not be accurate over large
distances and close to the

 earth's poles.

 """

 90

off_x = aLocation2.lon - aLocation1.lon

off_y = aLocation2.lat - aLocation1.lat

 bearing = math.degrees(math.atan2(off_y, off_x))

 if bearing < 0:

 bearing += 360.00

 return bearing;

defget_distance_metres(aLocation1, aLocation2):

 """

 Returns the ground distance in metres between two LocationGlobal
objects.

 This method is an approximation, and will not be accurate over large
distances and close to the

 earth's poles.

 """

dlat = aLocation2.lat - aLocation1.lat

dlong = aLocation2.lon - aLocation1.lon

 return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5

defdownload_mission(vehicle):

 """

 Download the current mission from the vehicle.

 """

cmds = vehicle.commands

 91

cmds.download()

cmds.wait_ready() # wait until download is complete.

defclear_mission(vehicle):

 """

 Clear the current mission.

 """

cmds = vehicle.commands

vehicle.commands.clear()

vehicle.flush()

download_mission(vehicle)

defadds_square_mission(vehicle,aLocation, aSize):

 """

 Adds a takeoff command and four waypoint commands to the current
mission.

 The waypoints are positioned to form a square of side length 2*aSize
around the specified LocationGlobal (aLocation).

 The function assumes vehicle.commands matches the vehicle mission
state

 (you must have called download at least once in the session and after
clearing the mission)

 """

cmds = vehicle.commands

 print " Clear any existing commands"

 92

cmds.clear()

 print " Define/add new commands."

 # Add new commands. The meaning/order of the parameters is
documented in the Command class.

 #Add MAV_CMD_NAV_TAKEOFF command. This is ignored if the vehicle
is already in the air.

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, 0, 0, 10))

 #Define the four MAV_CMD_NAV_WAYPOINT locations and add the
commands

 point1 = get_location_metres(aLocation, aSize, -aSize)

 point2 = get_location_metres(aLocation, aSize, aSize)

 point3 = get_location_metres(aLocation, -aSize, aSize)

 point4 = get_location_metres(aLocation, -aSize, -aSize)

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point1.lat,
point1.lon, 11))

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point2.lat,
point2.lon, 12))

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

 93

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point3.lat,
point3.lon, 13))

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point4.lat,
point4.lon, 14))

 #add dummy waypoint "5" at point 4 (lets us know when have reached
destination)

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, point4.lat,
point4.lon, 14))

 print " Upload new commands to vehicle"

cmds.upload()

###################

SEARCH PATTERNS #

###################

defaddsParallelTrack(Area, initPoint, alt):

 """

 Adds mission to perform Parallel Track across specified area.

 """

cmds = vehicle.commands

 print " Clear any existing commands"

cmds.clear()

 94

 print " Define/add new commands."

 # Add new commands. The meaning/order of the parameters is
documented in the Command class.

 #Calculate track properties

trackLength = 2 * math.sqrt(dFSA/math.pi)

legConst = 5 #Arbitrary ratio of leg length to
track length

legLength = legConst * trackLength #Leg length function of
dFSA radius

numLegs = Area / (trackLength * legLength)

 #Add MAV_CMD_NAV_TAKEOFF command. This is ignored if the vehicle
is already in the air.

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, 0, 0, alt))

 #Go to initial point as specified by user

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, initPoint.lat,
initPoint.lon, alt))

 #Define waypoint pattern - point(lat, long, alt)

i = 1;

 waypoint = initPoint

 while i<= numLegs :

 # Strafe

 95

 waypoint = get_location_metres(waypoint, 0, (legLength*(-1)**i))

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, waypoint.lat,
waypoint.lon, alt))

 # Advance

 waypoint = get_location_metres(waypoint, trackLength, 0)

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, waypoint.lat,
waypoint.lon, alt))

i += 1

 # Return to Launch

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, initPoint.lat,
initPoint.lon, alt))

 print " Upload new commands to vehicle"

cmds.upload()

defaddsSectorSearch(Area, initPoint, alt):

 """

 Adds mission to perform sector search across specified area.

 """

cmds = vehicle.commands

 print " Clear any existing commands"

 96

cmds.clear()

 print " Define/add new commands."

 # Add new commands. The meaning/order of the parameters is
documented in the Command class.

 #Add MAV_CMD_NAV_TAKEOFF command. This is ignored if the vehicle
is already in the air.

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, 0, 0, alt))

 #Define waypoint pattern - point(lat, long, alt)

 #Initial waypoint

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, initPoint.lat,
initPoint.lon, alt))

currLocation = initPoint

 #Initial direction

 alpha = 90

 #Area radius

 Radius = math.sqrt(Area/math.pi)

 # 1st waypoint

 waypoint = get_location_metres(currLocation, Radius*math.cos(alpha),
Radius*math.sin(alpha))

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

 97

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, waypoint.lat,
waypoint.lon, alt))

 alpha = get_bearing(currLocation, waypoint)

currLocation = waypoint

 tri = 1

 # Sector Search

 while tri <= 3 :

triCnr = 1

 while triCnr< 3:

 waypoint = getSSMeters(currLocation, alpha, Radius, 1)

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, waypoint.lat,
waypoint.lon, alt))

 alpha = get_bearing(currLocation, waypoint)

currLocation = waypoint

triCnr += 1

 tri += 1

 if tri != 4:

 waypoint = getSSMeters(currLocation, alpha,Radius , 0)

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, waypoint.lat,
waypoint.lon, alt))

 98

 alpha = get_bearing(currLocation, waypoint)

currLocation = waypoint

 # Return to Launch

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, initPoint.lat,
initPoint.lon, alt))

 print " Upload new commands to vehicle"

cmds.upload()

defaddsExpandSquare(initPoint, Area, alt):

 """

 Adds mission to expanding square search search across specified area.

 """

cmds = vehicle.commands

 print " Clear any existing commands"

cmds.clear()

 print " Define/add new commands."

 # Add new commands. The meaning/order of the parameters is
documented in the Command class.

 #Determine number of loops - Square search area

 Radius = math.sqrt(dFSA / math.pi)

numLoops = math.sqrt(Area) / Radius

 99

 #Add MAV_CMD_NAV_TAKEOFF command. This is ignored if the vehicle
is already in the air.

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, 0, 0, alt))

 #Initial Waypoint - Centre of search area

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, initPoint.lat,
initPoint.lon, alt))

 #Define waypoint pattern - point(lat, long, alt)

i = 1;

dist = Radius

advanceToggle = 1

strafeToggle = 1

 waypoint = initPoint

 while i<= numLoops :

 if i % 2 == 0:

 # Strafe

 waypoint = get_location_metres(waypoint, 0, (dist*(-
1)**strafeToggle))

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, waypoint.lat,
waypoint.lon, alt))

 100

strafeToggle ^= 1

dist += Radius

 else:

 # Advance

 waypoint = get_location_metres(waypoint, (dist*(-
1)**advanceToggle), 0)

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, waypoint.lat,
waypoint.lon, alt))

advanceToggle ^= 1

i += 1

 # Return to Launch

cmds.add(Command(0, 0, 0,
mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0, initPoint.lat,
initPoint.lon, alt))

 print " Upload new commands to vehicle"

cmds.upload()

CONNECTION

 101

Connection to the vehicle

print "Connecting to drone...."

vehicle = connect('/dev/ttyAMA0', baud = 57600, wait_ready= True)

print "Connected..."

clear_mission(vehicle)

print "mission cleared..."

print "\n\nMission start...!!\n\n"

while True:

 print "Basic pre-arm checks"

 # Don't let the user try to fly autopilot is booting

 if vehicle.mode.name == "INITIALISING":

 print "Waiting for vehicle to initialise"

time.sleep(1)

 while vehicle.gps_0.fix_type < 2:

 print "Waiting for GPS...:", vehicle.gps_0.fix_type

time.sleep(1)

 # wait for user input

 print "Commands:\n 'takeoff' = arm and takeoff for 2 meter \n 'fly
manual' = controll vehicle with keyboard \n 'fly auto' = arm and takeoff for
2 meter and change mode to AUTO \n 'fly square' = fly to form a square \n
'fly diamond' = fly to form a diamond \n 'fly dodecagon' = fly to form a
dodecagon \n 'show' = show vehicle data \n 'search' = mission to search

 102

across specified area \n 'land' = change mode to LAND! \n 'loiter' = change
mode to LOITER! \n 'guided' = change mode to GUIDED! \n 'circle' =
change mode to CIRCLE! \n 'althold' = change mode to ALT_HOLD! \n
'stabilize' = change mode to STABILIZE! \n 'acro' = change mode to ACRO!
\n 'sport' = change mode to SPORT! \n 'poshold' = change mode to
POSHOLD! \n 'simple' = change mode to SIMPLE! \n 'supersimple' =
change mode to SUPER_SIMPLE! \n 'return' = change mode to RTL! \n
'auto' = change mode to AUTO! \n "

 string = raw_input ('Enter Command: ')

 word = string.split()

 word1 = word[0]

 # take off the drone for a scpecific Altitude

 if word1 == 'takeoff':

 arm_and_takeoff(vehicle,2)

time.sleep(1)

elif word1 == 'fly':

 # mapping for MANUAL MODE

 if word[1] == 'manual':

 print 'Flight control: MANUAL'

manual_control(vehicle)

 # mapping for AUTO MODE

elif word[1] == 'auto':

arm_and_takeoff(vehicle,2)

 103

time.sleep(10)

vehicle.mode = VehicleMode("AUTO")

 # fly to shape a square

elif word[1] == 'square':

 print 'Flight control: square'

 size = 4

add_square_mission(vehicle,vehicle.location.global_frame,size)

time.sleep(2)

arm_and_takeoff(vehicle,2)

 print "Starting mission"

vehicle.commands.next=0

 # Set mode to AUTO to start mission

vehicle.mode = VehicleMode("AUTO")

vehicle.flush()

 # fly to shape a diamond

elif word[1] == 'diamond':

 print 'Flight control: diamond'

 diamond(vehicle)

time.sleep(2)

arm_and_takeoff(vehicle,2)

 print "Starting mission"

 104

vehicle.commands.next=0

 # Set mode to AUTO to start mission

vehicle.mode = VehicleMode("AUTO")

vehicle.flush()

 # fly to shape a dodecagon

elif word[1] == 'dodecagon':

 print 'Flight control: dodecagon'

loopcenter = vehicle.location.global_frame

build_loop_mission(vehicle,loopcenter,4,2)

time.sleep(2)

arm_and_takeoff(vehicle,2)

 print "Starting mission"

vehicle.commands.next=0

 # Set mode to AUTO to start mission

vehicle.mode = VehicleMode("AUTO")

vehicle.flush()

 else:

arm_and_takeoff(vehicle,2)

time.sleep(1)

elif word1 == 'show':

 105

shows_data(vehicle)

elif word1 == 'search':

 Pattern = raw_input("Enter 'SS' = Sector Search \n 'PT' = Parallel Track
\n 'ES' = Expanding Square\nSpecify desired search pattern: ")

Lat = raw_input("Enter Latitude: ")

 Lon = raw_input("Enter Longitude: ")

 Area = raw_input("Enter Specify search area (m2): ")

 Alt = raw_input("Enter Specify search altitude (m): ")

 point = LocationGlobal(float(Lat), float(Lon), float(Alt))

 if Pattern == 'SS':

 addSectorSearch(float(Area), point, float(Alt))

elif Pattern == 'PT':

addsParallelTrack(float(Area), point, float(Alt))

elif Pattern == 'ES':

addsExpandSquare(point, float(Area), float(Alt))

arm_and_takeoff(vehicle, 2)

vehicle.commands.next=0

vehicle.mode = VehicleMode("AUTO")

vehicle.flush()

 print 'Drone is armed'

elif word1 == 'land':

 106

 print "\n\nLanding!\n\n"

 #changing vehicle mode to LAND

 print "\nSet Vehicle mode = LAND (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='LAND':

 print 'waiting to change Mode to LAND...'

 vehicle.mode = VehicleMode('LAND')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(5)

 print 'The drone has landed!'

vehicle.flush()

elif word1 == 'loiter':

 print "\n\nsetting mode to loiter!\n\n"

 #changing vehicle mode to LOITER

 print "\nSet Vehicle mode = LOITER (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='LOITER':

 print 'waiting to change Mode to LOITER...'

 vehicle.mode = VehicleMode('LOITER')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

 107

time.sleep(1)

 print 'loiter mode!'

vehicle.flush()

elif word1 == 'auto':

 print "\n\nsetting mode to AUTO!\n\n"

 #changing vehicle mode to AUTO

 print "\nSet Vehicle mode = AUTO (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='AUTO':

 print 'waiting to change Mode to AUTO...'

 vehicle.mode = VehicleMode('AUTO')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 print 'AUTO mode!'

vehicle.flush()

elif word1 == 'guided':

 print "\n\nsetting mode to GUIDED!\n\n"

 #changing vehicle mode to GUIDED

 print "\nSet Vehicle mode = GUIDED (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='GUIDED':

 108

 print 'waiting to change Mode to GUIDED...'

 vehicle.mode = VehicleMode('GUIDED')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 print 'GUIDED mode!'

vehicle.flush()

elif word1 == 'circle':

 print "\n\nsetting mode to CIRCLE!\n\n"

 #changing vehicle mode to CIRCLE

 print "\nSet Vehicle mode = CIRCLE (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='CIRCLE':

 print 'waiting to change Mode to CIRCLE...'

 vehicle.mode = VehicleMode('CIRCLE')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 print 'CIRCLE mode!'

vehicle.flush()

elif word1 == 'althold':

 print "\n\nsetting mode to ALT HOLD!\n\n"

 109

 #changing vehicle mode to ALT_HOLD

 print "\nSet Vehicle mode = ALT_HOLD (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='ALT_HOLD':

 print 'waiting to change Mode to ALT_HOLD...'

 vehicle.mode = VehicleMode('ALT_HOLD')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 print 'ALT HOLD mode!'

vehicle.flush()

elif word1 == 'stabilize':

 print "\n\nsetting mode to STABILIZE!\n\n"

 #changing vehicle mode to stabilize

 print "\nSet Vehicle mode = STABILIZE (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='STABILIZE':

 print 'waiting to change Mode to STABILIZE...'

 vehicle.mode = VehicleMode('STABILIZE')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

vehicle.mode = VehicleMode("STABILIZE")

 110

time.sleep(1)

 print 'STABILIZE mode!'

vehicle.flush()

elif word1 == 'acro':

 print "\n\nsetting mode to ACRO!\n\n"

 #changing vehicle mode to ACRO

 print "\nSet Vehicle mode = ACRO (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='ACRO':

 print 'waiting to change Mode to ACRO...'

 vehicle.mode = VehicleMode('ACRO')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 print 'ACRO mode!'

vehicle.flush()

elif word1 == 'sport':

 print "\n\nsetting mode to SPORT!\n\n"

 #changing vehicle mode to SPORT

 print "\nSet Vehicle mode = SPORT (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='SPORT':

 111

 print 'waiting to change Mode to SPORT...'

 vehicle.mode = VehicleMode('SPORT')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 print 'SPORT mode!'

vehicle.flush()

elif word1 == 'poshold':

 print "\n\nsetting mode to POSHOLD!\n\n"

 #changing vehicle mode to POSHOLD

 print "\nSet Vehicle mode = POSHOLD (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='POSHOLD':

 print 'waiting to change Mode to POSHOLD...'

 vehicle.mode = VehicleMode('POSHOLD')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 print 'POSHOLD mode!'

vehicle.flush()

elif word1 == 'simple':

 print "\n\nsetting mode to SIMPLE!\n\n"

 112

 #changing vehicle mode to stabilize

 print "\nSet Vehicle mode = SIMPLE (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='SIMPLE':

 print 'waiting to change Mode to SIMPLE...'

 vehicle.mode = VehicleMode('SIMPLE')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 print 'SIMPLE mode!'

vehicle.flush()

elif word1 == 'supersimple':

 print "\n\nsetting mode to SUPER SIMPLE!\n\n"

 #changing vehicle mode to SUPER_SIMPLE

 print "\nSet Vehicle mode = SUPER_SIMPLE (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='SUPER_SIMPLE':

 print 'waiting to change Mode to SUPER_SIMPLE...'

 vehicle.mode = VehicleMode('SUPER_SIMPLE')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(1)

 113

 print 'SUPER SIMPLE mode!'

vehicle.flush()

elif word1 == 'return':

 print "\n\nReturning to Launch!\n\n"

 #changing vehicle mode to Return To Launch

 print "\nSet Vehicle mode = RTL (currently: %s)" %
vehicle.mode.name

 while not vehicle.mode=='RTL':

 print 'waiting to change Mode to RTL...'

 vehicle.mode = VehicleMode('RTL')

 vehicle.flush()

 print "vehicle mode: %s" % vehicle.mode

time.sleep(10)

 print 'The drone has returned!'

vehicle.flush()

 else:

 print 'Wrong Input....'

time.sleep(0.1)

while vehicle.armed:

 vehicle.armed = False

 print "disarming..."

 114

 time.sleep(1)

 vehicle.flush()

print "DISARMED"

print "closing vechicle object..."

vehicle.close()

print "\n\nMission complete\n\n"

