
i 

 

 

Sudan University of Science & Technology 

College of Graduate Studies  

 

 

Assessment and Modelling of Quality of Experience 

for user of Mobile Devices 

 

الأجهزة النقالة لمستخدميجودة التجربة  ونمذجة تقييم  

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy in Computer Science 

By: 

Abubker Elmnsi Abdalla Mohamed 

Supervisors: 

Prof. Is-Haka Mkwawa 

Dr.Niema Izeldeen 

 

October 2017 



ii 

Abstract 

 

Quality of Experience (QoE) in multimedia networking and communication is a wider 

term that encompasses not  only network impairments and video signal quality, but also 

covers other factors such as the end user devices, service infrastructure, network 

bandwidth, user expectation and the environment where the end user is communicating 

or consuming multimedia services. Smart phones and other portable devices such as 

tablets and game consoles have experienced exponential growth in numbers over the 

recent years. This tremendous growth has come with a lot challenges, amongst them are 

power consumption and quality of experience. The challenges in the quality of 

experience are due to the fact that there are many mobile device types from different 

manufactures having varying display technologies, size, memory and processors. These 

varying technologies make assessment, measurements and prediction of quality of 

experience a challenge for researchers in academia and industrial domain. In this study, 

mobile device screen size and mobile device user preferences are considered as mobile 

device context parameters for which their impact on the quality of experience over the 

video services is investigated. Through subjective tests, the impact of mobile device 

pixel density on the video quality is evaluated and the new quality of experience model 

is proposed that takes pixel density into consideration. The proposed quality model is 

validated through unseen video sequences, and the results have shown that the proposed 

model performs well regarding correlation coefficient.  This study, through subjective 

tests, has also conducted an investigation on the impact of mobile device preferences on 

the quality of experience for video services. Based on this investigation, the 

experimental results has shown that quality of experience is highly correlated with user 

preferences on mobile devices. The new proposed quality of experience model and the 

findings on the impact of mobile device user preferences on the quality of experience 

have potential use for multimedia service providers such as YouTube, Facebook and 

Netflix in areas of quality control and optimization of network and multimedia services.  
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 المستخلص

 

وجودة إشارة  جودة التجربة في الشبكات متعددة الوسائط هو مصطلح واسع لا يشمل ضعف الشبكة

الفديو فحسب، بل يغطي عوامل أخرى مثل أجهزة المستخدم، والبنية التحتية للخدمات، وعرض 

النطاق الترددي للشبكة، وتوقعات المستخدم والبيئة التي يتصل فيها المستخدم او يستهلك فيها 

الأجهزة اللوحية شهدت الهواتف الذكية وغيرها من الأجهزة المحمولة مثل .خدمات الوسائط المتعددة

وقد جاء هذا النمو الهائل مع . وأجهزة الألعاب نمواً هائلا في العدد على مدى السنوات الأخيرة

تعزى التحديات في جودة التجربة . الكثير من التحديات، من بينها استهلاك الطاقة و جودة التجربة

سطة مختلف المصنعين، ويؤدي إلى حقيقة أن هناك العديد من أنواع الأجهزة النقالة المصممة بوا

تجعل هذه التقنيات المتنوعة التقييم . ذلك إلى تتنوع في تقنيات العرض وحجم والذاكرة والمعالجة

في هذه .والقياسات والتنبؤ بجودة التجربة تحديا للباحثين في المجال الأكاديمي والمجال الصناعي

المستخدم لنوع الهاتف معاملات سياق  الدراسة، يُعتبر حجم شاشة جهاز الهاتف النقال وتفضيل

ومن ثم يتم تقييم تأثير هذه المعاملات على جودة التجربة الخاصة بخدمات . للهاتف المحمول

من خلال الاختبارات الذاتية، تم تقييم تأثير كثافة بكسل الهاتف . الفيديو التي أُجري عليها التحقُق

وذج جديد لجودة التجربة يأخذ كثافة البكسل بعين المحمول على جودة الفيديو، كما تم إقتراح نم

وقد أظهرت . تم التحقق من صحة نموذج المقترح من خلال تسلسل فيديو غير مرئي. الاعتبار

تم في هذه الدراسة أيضا، .النتائج أن النموذج المقترح يؤدي أداءً جيداً فيما يتعلق بمعامل الارتباط

تحقيقا حول تأثير تفضيلات الجهاز المحمول على جودة من خلال الاختبارات الذاتية، إجراء 

وبناء على هذا التحقيق، أظهرت النتائج التجريبية أن جودة التجربة ترتبط . التجربة لخدمات الفيديو

 .ارتباطا وثيقا بتفضيل المستخدم للهاتف المحمول
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ة بتأثير تفضيل المستخدم يمكن أن يستخدم النموذج الجديد المقترح لجودة التجربة والنتائج المتعلق

للهاتف المحمول على جودة التجربة في مجالات مراقبة الجودة وتحسين الشبكة والوسائط المتعددة 

 .لمقدمي خدمات الوسائط المتعددة مثل يوتيوب و فيسبوك ونيتفليكس
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CHAPTER I 

 

 

 

1 Introduction 

This chapter presents the motivations behind this research project, the 

research questions, and the aims and objectives of the project. In addition, it 

outlines the main contributions of this research. The chapter is organized as 

follows. Section 1.1 presents the motivations of this research. Section 1.2 

discusses the e research questions. Aims and objectives of this research are 

presented in Section 1.3. The research contributions are outlined in in Section 1.4. 

The organization of the thesis is presented in Section 1.5. 

 

1.1 Research Motivations 

Advances in video coding have enabled significant reduction in video 

transmission, bandwidth and storage. For instance, for the same video quality, the 

HEVC video codec [2] can half the transmission bandwidth requirement 

compared to H.264 video codec [3]. Furthermore, advances in mobile network 

technologies from 2G to 4G have led to an increase in network capacity and 

hence, the reduction in video transmission bandwidth requirements.  The increase 

in network bandwidth has prompted an increase in the proliferation of video 

applications and streaming services such as YouTube and Netflix. 

Despite these advances in video coding and mobile networks, the success of 

video applications and services will rely on the perceived Quality of Experience 
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(QoE). In this context, QoE measurements and prediction is vital to multimedia 

and network service providers in order to avoid churn and increase business 

revenues. 

Subjective and objective methods are used for QoE measurement and prediction. 

Subjective methods involve tests for which participants are asked to grade the 

video quality on a five point scale known as Mean Opinion Score (MOS). MOS 

values are ranged from “bad” (1) to “excellent” (5). Subjective tests are usually 

conducted in a laboratory also known as controlled environment. Although 

subjective tests can provide accurate results, they are slow, time-consuming and 

expensive. They also cannot be repeatable and cannot be used to monitor video 

quality in an on-line and real-time environment [4]. 

 

Objective methods can be conducted in two ways, intrusive or non-intrusive. The 

intrusive way needs access to the original video sequence to compare it with the 

impaired sequence. Peak- Signal-to-Noise-Ratio (PSNR), Structural Similarity 

(SSIM) and Video Quality Metric (VQM) are examples of intrusive ways of 

video quality measurements [5]. In Non-intrusive ways, measurements and 

prediction of video quality are done by using network layer and application 

parameters without the need to access the original video.  The Non-intrusive way 

is the one that is mainly used in on-line and real-time video quality measurements 

and prediction. 

Existing studies such as [6, 7, 8, 9, 10] on non-intrusive video quality assessment 

and predictions rely mainly on coding parameters while others such as [11, 12, 

13, 14, 15, 16] are mainly based on network parameters. These studies are limited 

because mobile devices can have an impact on QoE in terms of their display size, 

resolution and device make and model. Therefore, there is a need to investigate 

and propose models that take device parameters into consideration and use them 

as variables in the QoE assessment and prediction. 
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This thesis specifically seeks to carry out an investigation of the impact of mobile 

device preferences on QoE and proposes a QoE model that takes into account 

mobile devices display parameters together with video content and H.264 video 

coding parameters. This research is important because it forms the basis of the 

mobile device displays to be quantified in order to develop video quality 

measurement metrics. 

 

The measurement metrics are important for service and network service providers 

as they can be used for effective monitoring and provisioning for acceptable 

video quality for. 

The proposed model based on mobile devices display has the following potential 

usage, 

• Measurements, prediction of end-to-end video quality control and 

optimization over Dynamic Adaptive Streaming over HTTP (DASH). 

• prediction of initial encoded video before transmission over the IP 

networks and storage 

1.2 Research Questions 

This thesis has the following research questions to address, 

• What is the impact of mobile device preference on the video QoE? 

This question has triggered an investigation on the impact of mobile device 

preferences on the video QoE. The investigation to answer this question 
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was carried out by the use of subjective tests on varying mobile device 

manufacturers over the H.264 codec. 

• What is the impact of mobile device displays on the video QoE? 

This question has lead to investigate the impact of mobile device displays 

on the video QoE. The investigation to answer this question was carried out 

by the use of subjective tests on several mobile devices with various 

display sizes and resolutions. A novel model based on display parameters 

was also developed to answer this question. 

1.3 Aims and Objectives 

The main aims of this research are (1) to investigate the impact of the mobile 

device preferences on the quality of video (2) to investigate the impact of mobile 

device displays on the video quality (3) develop and evaluate an objective 

reference free model based on the mobile devices displays for video QoE 

measurements and prediction. In order to achieve these aims, the following out, 

• Investigate video coding and content parameters that impact video quality 

on the delivery of H.264 video and further identify parameters that can be 

used for video quality measurements and predictions. 

• Investigate mobile device preferences and their impact on the end to end 

video quality delivery of H.264. 

• Investigate mobile device display parameters and their impact on the video 

quality. 

• Develop and evaluate a novel objective model based on the display sizes 

over varying mobiles devices for QoE measurements and predictions. 

• Implement the proposed model under DASH standards as a proof of 

concept to demonstrate its usefulness in the control and optimization of 

video quality over video streaming services. 
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1.4 Research Contributions 

The contributions of this thesis are outlined as follows, 

• Mobile device preferences have an impact on the overall end-to-end video 

quality transmission. Videos and network service providers should consider 

this on their video quality control and optimizations schemes. This 

contribution has been published in [17]. 

• The mobile device displays have an impact on the video quality. The 

proposed non-intrusive new model which takes display sizes into 

consideration can be used by video service and network providers such as 

YouTube and Netflix for video quality control and optimization. This 

contribution [18]. 

• The dataset generated as a result of this research can be used by other 

researchers in academia and industry as a public dataset. 

1.5 Thesis Outline 

Chapter 2 discusses the literature review related to this research, techniques, tools 

and software used in this study.  It also reviews video quality assessment such as 

subjective and objective methods, video coding techniques and mobile devices 

and quality of experience. 

Research methodology which includes approaches to methods, source of data, 

sample population, data collection, data analysis, validation of results and 

experimentation tools are discussed in Chapter 3. 

Chapter 4 presents the impact of mobile device preference on the video quality 

which includes experimental setup, discussions and results. 
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Chapter 5 discusses the impact of mobile device displays on the quality of the 

video. It also proposes and evaluates the new model that takes into consideration 

display parameters for measurements and prediction of video QoE. 

Chapter 6 demonstrates the implementation and application of the proposed 

model through the Libdash open source library which is proposed and discussed 

in Chapter 5. 

Chapter 7 concludes the thesis and proposes future work. This chapter includes 

contributions to knowledge and limitations of the current research. 

The outline of this thesis is depicted in Figure 1. 
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Introduction 
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Impact of Mobile  
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Model Implementation 

Chapter 6 

Conclusions and Future Work 

Figure 1.1: Thesis outline 
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CHAPTER II 

 

 

 

 

2  Literature Review 

2.1  Video Coding Techniques 

Video compression techniques are deployed in raw video (uncompressed video) 

in order to reduce video size for storage and transmission while maintaining the 

perceived video quality for end users. For instance, an HD video of 720 x 1280 

resolution with 30 frames per second of 1 hour long with full colour will need 

about 298GB of storage space and around 83MB/s transmission bandwidth. 

These requirements are not feasible to satisfy. Therefore, compression techniques 

are vital to reduce storage and transmission requirements. 

 

Lossless and lossy techniques are categories of video coding techniques. 

• Lossy: 

In this category, the high frequency components that are not apparent to 

human visual system are removed and therefore, the original data of the 

source video will not be fully retrievable. 

• Lossless: In this category, the original data of the source video is fully 

retrievable. 
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The compression standards for transmission of video over IP networks are 

MPEG-4 part 2, H.264 also known as Advanced Video Coding (AVC) and 

MPEG-4 part 10. The latest one is HEVC.  

In this research, the lossy compression has been used on H.264 codec. 

2.1.1 Sampling and YUV Format 

The first stage of video compression is sampling in temporal, spatial and colour 

domains. In temporal domain, sampling denotes the number of frames per second 

(fps). In the spatial domain, sampling refers to the number of pixels in each frame 

depending on the resolution. The colour space of Red, Blue and Green (RGB) 

and the number of bits required to represent each colour in each pixel is referred 

as sampling in the colour domain. Every pixel is composed of one luma (Y) 

component and two chroma components (U, V). Luma relates to the brightness of 

a pixel while U and V relate to the colour of the pixel. 

The visual system of the human being is more sensitive to brightness (luma) than 

colour (chroma), therefore, the colour components are under sampled to reduce 

the transmission and storage of video sequences [3, 19]. Three parts ratio is used 

to represent chroma sub-sampling. For instance, YUV 4:2:0 denotes that for 

every 4 pixels of luma there is only one pixel of blue and one pixel for red. For 

YUV 4:2:0, there is half compression from its original YUV 4:4:4. 

2.1.2 Video Compression Artefacts 

In coding schemes that rely on motion compensation and on a block-based 

Discrete Cosine Transform (DCT) with the subsequent quantization of the 

coefficients, degradation in quality is typically caused by the quantization of the 



10 

transform coefficients which controlled by the Quantization Parameter (QP). The 

QP controls the amount of spatial detail that is retained and the encoded bit rate 

[20, 21, 22, 23]. 

Increasing the QP value of an encoder leads to detail aggregation and drop in 

encoded video bit rate and quality. Even though, other factors such as motion 

prediction or decoding buffer size impact the visual quality of encoded video.  

These factors do not directly introduce visual degradation in quality. The 

following artefacts (though not exhaustive) are associated with video 

compression, 

• Blurring: 

This is exhibited by the reduction of edge sharpness and a loss of spatial 

details. This is commonly due to coarse quantization, which suppresses 

high-frequency coefficients. Figure 2 illustrates an example of blurring. 

 

 

Figure 2.1: Blurring example 

• Blocking artefact: 

This refers to patterns of blocks in a compressed video. This is due to 

discontinuities at the boundaries of adjacent blocks in block-based coding 
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schemes where individual blocks are independently quantized. Newer 

coding standards such as HEVC employ a deblocking filter followed by 

Sample Adaptive Offset (SAO) filter to reduce deblocking artefacts. Figure 

3 shows an example of blocking. 

 

 

Figure 2.2: Blocking example 

• Jerkiness: 

This refers to object motion disorder caused by insufficient motion 

compensation or low temporal resolution. Typically, this happens as a 

result of poor performance of poor motion estimation. 

• Colour bleeding: 

This is the smearing of colours between different strong areas of the 

chrominance. This happens because of the suppression of high-frequency 

coefficients chrominance components. Colour bleeding will typically extend 

over an entire Coding tree unit (CTU) or macroblock. 
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2.1.3 MPEG-4 

ISO/IEC Moving Picture Experts Group defines MPEG4 video compression 

standard for encoding and decoding video storage and transmission over IP 

networks. Parts 2 and 10 out of 23 parts specify how the uncompressed video is 

compressed ready for transmission over the IP network. Part 10 defines 

Advanced Video Coding (AVC) most commonly known as H.264. In MPEG-4, a 

series of consecutive frames are divided in a Group of Pictures (GOP). Within a 

GOP, frames are of three different types, normally starting with I-frame followed 

by a number of P-frames and B-frames. 

1. Intra coded frames (I-frame): 

I-frames are coded as a single picture. They do not have references to either 

P-frame or B-frame and are relatively bigger than other frame types. 

2. Predictive coded frames (P-frame): 

P-frames are coded from previous I or P frames and are normally 

Smaller than the I-frames, but bigger than the B-frames. 

3. Bi-directional coded frames (B-frame): 

B-frames are coded from preceding and succeeding I or P frames in the 

GOP structure. B-frames are normally the smallest. 
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Figure 2.3: MPEG-4 GOP structure 

A sample of MPEG-4 GOP structure is depicted in Figure 4. GOP(N,M) denoted 

N as the I to I frame distance and M is the I to P frame distance. Figure 4 can be 

presented as GOP(9,3), this means that one I-frame, 6 B frames and 2 P-frames 

are in the GOP. The second I-frame marks the start of the next GOP. Arrows in 

Figure 4 indicate that the B-frames and P-frames are decoded depending on the 

succeeding and preceding I-frames or 

P-frames. 

2.1.4 Advanced Video Coding H.264/AVC 

There are seven profiles targeted to different classes of applications 

recommended for H.264. The baseline profile is used in this research because it is 

designed for mobile applications because of its low rate and complexity. The 

baseline profile only supports P-frames and I-frames. 

H.264 has structured layers that consist of Video Coding Layer (VCL) and 

Network Abstraction Layer (NAL). VCL is structured to effectively represent the 

video content. NAL maps VCL data into different network transport layers such 
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as RTP an RTSP and storage format such as ISO. Each frame in H.264 is 

partitioned into non-overlapping areas called macroblocks (MB). MBs are made 

up of 16×16 samples of the luma and 8×8 samples of each of the two chroma 

components. The MBs are arranged in slices representing subsets of MBs that can 

independently be decoded. The MBs can further be divided into smaller blocks of 

up to 4 x 4 pixels. 

2.1.5     Slices: 

A video frame can be divided into slices. Slices contain a sequence of 

macroblocks that are grouped together. This structure enables decoding and 

encoding of slices independently from other slices in a video frame. Slices 

are useful in a scenario whereby if a packet is lost during video streaming, 

only part of the frame will be lost and not the whole frame. The following 

types of slices are defined in H.264 standard: 

 

1. Intra slices or I-slices: They contain MBs that are encoded using 

MBs in the same slice of the same frame. All the slices of the first frame 

are encoded as I-slices. 

2. Predicted slices or P-slices: These are MBs that are encoded using 

MBs in a previously encoded and decoded frame. Some MBs in a P-

slice may be encoded in intra mode. 

3. Bi-directional or B-slices: These are predicted slices containing MBs 

encoded using MBs of the past and future I-slices or Pslices. The 

decoding order of B-slice is after the past and future I-slice or P-slice 

references. 
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2.2 Video Quality Assessment 

There are several factors that impact video quality. These factors can be 

characterized as network, video coding and content parameters. The impact of 

these parameters on video quality as perceived by the user is referred to as the 

Quality of Experience (QoE). QoE is difficult to measure as it goes beyond the 

boundary of these parameters. According to the ITU-T P.10/G.100 [24], the 

definition of QoE is the overall acceptability of a service or an application as 

perceived subjectively by its users. This definition should include some other 

factors such as the end user device, service infrastructure, network bandwidth, 

user expectation and the environment where the end user is communicating [25, 

26, 27, 28]. 

Subjective and objective methods are used to evaluate Video quality. Subjective 

quality is determined human perception of the quality of service as described by 

ITUT P.910 recommendations [29]. The Mean Opinion Score (MOS) is the QoE 

metric that has been widely used in telecommunication industry. Since subjective 

methods involve human beings, they are deemed to be the most reliable at 

measuring video quality. The disadvantages of subjective methods is that, can be 

expensive since volunteers have to be paid for participating in the tests.  They can 

also be time consuming since participants have to be recruited. Therefore, to 

mitigate subjective method’s drawbacks, there is a need for using objective 

method. Objective methods are used to predict video quality and hence, can lead 

to comparable results as those obtained by subjective methods. Results obtained 

through objective methods can be obtained by either intrusive or non-intrusive 

ways. The source of the video sequence is required (full or reduced reference) in 

the intrusive way to compare it with the impaired video sequence. Peak Signal-to-

Noise Ratio (PSNR), Video Quality Monitor (VQM) [30] and Structure 

Similarity Index Measurement (SSIM) [31] are some of full reference quality 

metrics. Non-intrusive methods also known as reference free methods do not 

have access to the source video sequence and widely used because they are 

suitable for on-line quality measurements and prediction. 
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2.2.1 Subjective Video Quality Measurement Methods 

Video Quality Experts Group (VQEG) and the International Telecommunication 

Union (ITU) have defined the subjective methods for video which involve a 

number of subjects, these subjects watch a video sequence in laboratory 

environment and the n score the video sequence after watching it. This score is 

defined as the Mean Opinion Score (MOS) and normally has a range from 1 to 5. 

Subjective test methods have been clearly described in ITUT T.50011 and 

ITUT Rec.P.910 (1999) [29] recommendations.  Amongst other things, these 

recommendations propose viewing conditions, assessment procedures and testing 

materials. Subjective methods based on television applications are recommended 

in ITUT Rec. BT.50011 and multimedia applications are found in ITUT Rec. 

P.910. The main used subjective methods are: 

 

2.2.1.1 Double Stimulus Impairment Scale (DSIS): 

Pairs of the degraded video sequences along with video references are shown to 

the participants. The reference video sequences are supposed to be shown before 

degrade video sequences. The five point scale ranging from 1 to 5 are used for 

scoring as imperceptible, perceptible but not annoying, slightly annoying, 

annoying and very annoying. 

2.2.1.2 Single Stimulus Methods: 

The participants in this method are watching multiple separate video sequences. 

This method can have a single stimulus whereby video sequences are not 

repeated or a single stimulus with repetition whereby video sequences can be 

repeated several times. This method has three different scoring ways, 

1. Adjectival: This is similar to DSIS, however, half scales are per- 
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mitted. 

2. Numerical: This is comprised of 11-grade numerical scale. 

3. Non-categorical: This is made up of a continuous scale with no 

numbers. For instance, 0 – 100. 

 

2.2.1.3 Stimulus Comparison Method: 

In this method is used when there are two matched displays in the 

test. The differences between the two scenes are scored by the either of the 

following two ways, 

4. Adjectival: This is using a 7 grade scale marked from +3 to 3 which 

denotes "much better, better, slightly better, the same, slightly worse, 

worse, and much worse" 

5. Non-categorical: There is continuous scale with no numbers as the 

one discussed before. 

2.2.1.4 Single Stimulus Continuous Quality Evaluation (SSCQE):  

The participants in this method watch a video sequence of about 

2030 minutes without a reference of the original video sequence. 

The participants score by using a slider continuously at an instant of 

time from bad to excellent. This scale is an equivalent to numerical 

values between 0 and 100. 

 

2.2.1.5 Double Stimulus Continuous Quality Scale (DSCQS): 
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In DSCQS method, the participants are required to watch several 

pairs of short videos sequences that can last for ten seconds. The 

video sequences are usually composed of sequence tests and 

reference video sequences. Both test and reference video sequences 

are randomly shown to participants twice. Participants are required 

to have no knowledge of the existence of reference video 

sequences. Participants are requested to score both test and the 

reference video sequences on a continuous quality scale ranging 

from bad to excellent equivalent to a numerical scale between 0 and 

100. DSCQS method is mainly for the television signals and is 

explained in detail in the ITU-R Rec. T.500-13. 

2.2.1.6 Absolute Category Rating (ACR) method: 

The Absolute Category Rating (ACR) method is the widely used 

method telecommunication industry giving the Mean Opinion Score 

(MOS) as a measurement metric. While the Degradation Category 

Rating (DCR) method is deployed in some scenarios proving it uses 

the Degradation Mean Opinion Score (DMOS) as a measurement 

metric 

The participants are required to watch video sequences without the 

original video sequences. After watching the video sequences, the 

participants are requested to give their opinion score. The quality 

evaluation by participants is based on the 5 points scale (Table 1). 

The Mean Opinion Score (MOS) will finally be computed as the 

average of the opinion scores from all participants’ scores. 

 

Table 2.1: ACR opinion scores 

Category Video quality 

1 Bad 

2 Poor 
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3 Fair 

4 Good 

5 Excellent 

 

Figure 5 illustrates the ACR time pattern for the video sequences 

presentation. The voting time is required to be at most 10 seconds. 

2.2.1.7 Degradation Category Rating (DCR) Method: 

The DCR method is more suitable in the scenario whereby there is no much 

difference in the quality of the video sequences. The use of ACR method 

finds it hard to distinguish small differences in video sequence qualities 

such as 4 and 5. 

 

 

Figure 2.4: ACR method stimulus presentation 

In this method, participants will compare the degraded video sequence 

against the original video sequence.  It uses the Degradation Mean Opinion 

Score (DMOS) as a measurement metrics.  The five scale points or the 

degradation levels are outlined in Table 2. 
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Table 2.2: DCR opinion scores 

Category Video quality 

1 Very annoying 

2 Annoying 

3 Slightly annoying 

4 Perceptible but not annoying 

5 Imperceptible 

 

Figure 6 illustrates the DCR time pattern for the video sequences 

presentation. The voting time is required to be at most 10 seconds. 

 

Pair Comparison Method (PC): 

 

In PC method, comparison of video test sequences are repeatedly 

conducted in pairwise manner. The video sequences in this method are put 

in all possible combinations and presented to participants in all possible 

orders. The participants give preferences between the pairs instead of 

grading the video sequences as in ACR or DCR. Figure 7 illustrates the PC 

time pattern for the video sequences presentation. 

 

 

Figure 2.5: DCR method stimulus presentation 
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The voting time is required to be at most 10 seconds. 

 

Figure 2.6: PC method stimulus presentation 

2.2.2 Subjective Tests Design and Procedures 

There are several aspects of subjective tests design and procedures that should be 

taken into account once data has been collected. 

1. Scene characteristics: 

It is vital to have a choice of video test sequences that are a representation 

of the data that is to be collected. To avoid the boredom of participants in a 

test, video test sequences should be different. However, the video test 

sequences should be the same for all participants. 

2. Replications: 

ITUT P.910 recommends that video test sequences should be replicated. 

Between two to four repetitions of the same video test sequences should be 
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shown to participants in a test. This procedure is important because it will 

validate both subjects and the results they produce. 

3. Presentation order: 

The order of presentation of all video test sequences are required to be 

randomized. The random order should be different to participants in the 

same test. After the test has been completed, the analysis of the results 

should follow the same presentation order. The reason behind this is that, 

participants might grade a fair sequence as good after watching a bad 

sequence. 

4. Participants: 

According to ITU-T recommendations, the number of recommended 

participants are between 4 and 40. In general, a minimum of 15 nonexpert 

participants are recommended for better results. Participants should have 

no experience in video coding or multimedia communication. 

 

 

5. Viewing conditions: 

The viewing conditions such as display and equipment for all participants 

in a test should be uniform. 

 

6. Briefing: 

Participants in a test should be briefed about the aims and objectives of the 

test they are doing. The briefing should be in writing and clearly outlines 

what participants are supposed to do. 

 

7. Training: 

The training session should be conducted prior to the test in order for the 

participants to familiarize themselves with the test. 
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8. Evaluation: 

Several evaluative scales can be considered depending on the subjective 

test method used. Grading scales or continuous scales can be used and 

should clearly be briefed to participants. 

 

Subjective tests are made up of two phases, initial phase which has briefing and 

training procedures and test phase which should not last more than 30 minutes. 

The session should have breaks to avoid tiredness and fatigue. 

2.2.3 Objective Video Quality Assessment 

As it has been mentioned earlier that subjective tests are expensive and time 

consuming because a large number of participants and equipment should be 

involve for meaningful statistical results. Objective methods are easy to conduct 

and quick to setup and therefore, they are ideal for video quality evaluation. 

VQEG SG9 has been pioneering the research of objective methods in order to 

obtain objective results that are comparable with the subjective results for video 

quality evaluation. Objective methods can be classified as intrusive and non-

intrusive video quality evaluation [71]. 

 

2.2.3.1 Intrusive Video Quality Assessment Methods 

Intrusive methods are defined as full and reduce references. 

1. Full Reference Method 
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The original video sequence is required in the full reference method in 

order to compare it with the degraded video sequence. The comparison is 

used as an indicator of the video quality. This method is not suitable for on-

line and real-time scenario because it is impossible to get the reference 

video. PSNR and SSIM are the widely used in this method 

– PSNR 

Peak Signal-to-Noise- Ration (PSNR) is widely used as an 

objective video quality metric. The objective value is found by 

comparing each video frame of the original sequence against the one 

in the degraded sequence. PSNR is defined as the Mean Squared 

Error (MSE) of two compared frames (1). The higher the PSNR the 

lower the MSE and hence, the higher the quality. PSNR values are 

given in (2).  

 

Where maxi denotes the maximum pixel value of the frame i. 

 

– SSIM 

Structure Similarity Index Measurement (SSIM) provides the index 

Measure of the similarity between two frames. The measure between 

two frames x and y of size NxN is given by Equation (3). 

(2µxµy + c1)(2δxy + c2) 

                     (3) 

SSIM(x, y) = (µ2 + µ2y + c1)(δx2 + δ2y + c2)   
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Where SSIM in Equation (3) is applied luma and the maximum value 

of 1 will denote that the video is of excellent quality. Structure 

Dissimilarity (DSSIM) is given in Equation (4). 

1 

 DSSIM(x, y) =  (4) 

1 − SSIM(x, y) 

2. Reduced Reference Method 

In this method, only some features of the original video sequence are used. 

Video quality is predicted by using some features that are extracted from 

the original video sequence and some form the degraded video sequence. 

2.2.3.2 Non-intrusive Video Quality Measurement 

This method of quality measurement does not require accessing the original video 

sequence for video quality prediction, and is more suitable for real-time 

multimedia communication. Figure 8 depicts the block diagram of the non-

intrusive method. This method can be categorized into signal, parameter and 

Hybrid based. 

1. Signal based 

Signal based measures the input signal of the video sequence such 
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Figure 2.7: Non-intrusive measurement 

Video content features. 

2. Parameter based 

This measurements gets parameters from the application layer such as 

codec and content type or from the network such as packet loss, delay and 

jitter or from device parameters such as display and luminance. Table 3 

outlines some of the possible parameters that can be taken into 

consideration in quality measurements. 

 

Table 2.3: DCR opinion scores 

Category Parameters 

Network type, bandwidth, delay, jitter, packet loss, RTT, loss 

burst size, protocols used, received signal strength, 

congestion levels 

User and environment location, temperature, heart rate, eye movement, social 

context, light, background noise, age, gender, education 

Devices screen size, design layout, resolution, general 

intuitiveness, buttons placement, input/output methods, 

appeal, usability 

Application Codec, content type 

 

3. Hybrid based 

This combines both signal and parameter based measurements. 

This thesis proposes non-intrusive video quality prediction model using 

parameter based method. 
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2.2.4 Regression based methods 

For parameter based measurements, a number of parameters will be the source of 

regression analysis and a model is fitted to get a goodness of the fit based on 

correlations coefficient and the Root Mean Squared Error (RMSE). Figure 9 

illustrates the regression based method for video quality 

Prediction. 

Figure 2.7: Regression based method for video prediction 

  

2.3 Mobile devices and QoE 

This research investigate the impact of mobile device preference and pixel density on 

the QoE of video services.  Following is an overview of pervious work that consider 

these two factors. 
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2.3.1 Mobile Devices Preferences 

The impact of video content preference have been investigated in several studies 

[32, 33, 34, 35], but none have investigated the impact of mobile device 

preference on the QoE over video service. With respect to mobile device 

specifications, there are some challenges for managing video traffic and 

displaying video to ensure an acceptable QoE for end users. This is due to the fact 

that the perceptual quality of video content depends on the properties of the 

display device and the viewing conditions [36]. 

Authors in [37, 38] aimed to assess the QoE in video streaming when the user is 

employing tablet devices that vary in terms of display size, resolution, hardware 

configuration and operating system. Authors conducted subjective video quality 

assessment on 216 video streams at two different bit rates (200 kbps and 400 

kbps) with H.264/AVC. The videos were reproduced on Apple iPad 2 and the 

Samsung Galaxy Tab GTP1000.The values of the coefficients were very similar 

for both devices; and playout delay error was greater in the iPad 2 with respect to 

the Galaxy Tab. They also found that there is a strong correlation between the 

proposed quality index and the MOS for the iPad 2 and the Galaxy Tab. 

The authors in [39] studied the user’s preference for video content and how it can 

affect the video quality. The authors conducted subjective tests and proposed a 

video quality assessment method by taking the user preference for video content.  

From their experiment, they found that the values of QoE are highly correlated 

with the user’s preference for video content type. 

In [40], authors investigated the impact of image resolution, screen size, and 

screen resolution on user’s perceived image quality. In the experiment, nine 

mobile phones and a quality monitor were used as test devices and allocated to 

evaluate the impact on perceived image quality (c.f., Table 4). 1360 data points 
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were attained on the mobile phones. The authors also proposed an integrated 

assessment parameter to investigate the impact of mutual interaction between the 

device dependent image quality and image resolution. The assessment model was 

suggested to estimate the perceived image quality on different mobile devices. 

ANOVA was performed to check the significance of the influence of the screen 

size on the perceived image quality. The authors found that the improvement of 

screen resolution from 1080P to Quad HD did not have any impact.  For the 

1440P, 1080P, and 720P, the variation of perceived image quality for these 

images was similar to that for the 4K images. 

To the best of our understanding, no prior study has considered the impact of 

device preferences on the Quality of Experience. In this thesis, we go beyond 

these and investigate the impact of device preferences on the Quality of 

Experience by using subjective tests. 

2.3.2 Pixel Density 

A systematic study regarding the impact of high resolution displays on the 

performance measures of subjective wellbeing such as the mood state and 

physical discomfort was conducted by Mayr et. al [41]. It was observed 

 

Table 2.4: Parameters of display devices 

Display 

device 

Screen size 

(inch) 

Resolution Screen type 

P1 4" 1136×640 IPS LCD 

P2 4.3" 1280×720 IPS LCD 

P3 4.9" 1920×1080 IPS LCD 

P4 5.1" 1280×720 IPS LCD 
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P5 5.1" 1920×1080 AMOLED 

P6 5.1" 2560×1440 AMOLED 

P7 5.5" 1920×1080 TFT-LCD 

P8 5.5" 2560×1440 SLCD 

P9 5.7" 1920×1080 AMOLED 

M1 30" 4096×2160 OLED 

 

that reading speed and proofreading performance were not affected by the display 

resolution of 132 ppi or 264 ppi, and was further indicated that visual 

performance improves with pixel density up to around 130 ppi and 150 ppi, it 

then remains constant if pixel density is above 150 ppi. Although this study was 

based on visual reading speed and proofreading, similar investigation could be 

conducted for video streaming on different screens while varying with variable 

Pixel density. 

 

An investigation based on subjective tests by Floris et., al [37] assessed the video 

quality during streaming over different tablet devices (Apple iPad 2 and Samsung 

Galaxy Tab GTP1000) while varying display sizes, resolutions, hardware 

configuration and operating systems. Based on their results, they observed that 

there is a high correlation between the proposed quality index and the MOS 

values for the two tablet devices in the experiment. Although display sizes and 

resolutions were part of the parameters in the assessment, pixel density could 

have been more appropriate to compare the two tablets in the experiment. 

The impact of image resolution, screen size, and screen resolution on image 

quality was investigated by Zou et., al [40]. The image quality assessment model 

was proposed to estimate the perceived image quality on several mobile devices. 

Analysis of Variance (ANOVA) was applied to assess the significance of the 

impact of the screen size on the perceived image quality. It was concluded that 

increasing screen resolution from 1080P to Quad HD (QHD) did not affect 
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perceived image quality. This study was based on the image quality which is 

different to video quality since the video has more complex parameters such as 

frame and bit rates. Therefore, a detailed study is important to investigate the 

impact of pixel density on the video quality. 

ITU-T recommendation ITU-T P.1203.1 [42] has calculated the video quality 

degradation based on the quantization, upscaling and temporal degradation. 

 

Upscaling video quality degradation was described as scaleFactor, 

                
      

      
                             (5) 

where, disRes is the device display resolution in pixels and codRes is the video 

encoding resolution in pixels. In this paper we argue that pixel density measured 

by the number of pixels per inch should be one of the parameters to be included 

in the scaleFactor because the same disRes for a 17 inch and a 5 inch screen 

would give different perceived video quality. It is only pixel density parameter 

that will fairly differentiate the perceived quality of the video depending on its 

codRes. 

  



32 

 

CHAPTER III 

 

 

 

 

3 Research Methodology 

This chapter starts by describing approaches to methods of data collection 

conducted in this study and comparing the advantages and disadvantages of using 

laboratory settings (controlled) and natural settings (uncontrolled or public 

environment). The sources of data and the reasons of sample population will be 

explained. The methods of data collection and analysis of the data will be 

outlined. The justification of the selected research methodology including 

reliability and validity issues will also be described. 

3.1 Approached to Methods 

Deciding the settings (laboratory or natural) in which to conduct subjective tests 

is crucial because it can determine the final results of the tests. Laboratory 

setting, also known as controlled setting, has an advantage because the sources of 

variability can be controlled [43]. In multimedia laboratory settings these 

variables can include lights, the size of device display, and the distance of 

viewing, for mobile devices, this can include luminance and the type of devices. 

In general, all tasks, time and physical space are controlled. By contrast, in 
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natural setting, these variables are not under the control of the evaluator or 

experimenter. 

The level of control depends on the nature of the research questions and the aims 

of the research. Real situations might require nature settings instead of laboratory 

settings. 

In this study, based on the nature of video experiments, variables such as light, 

distance of viewing and time have to be controlled because a minor change in the 

lights or distance of viewing can affect the video quality. 

Therefore, laboratory setting was selected to conduct the subjective tests. 

3.2 Source of Data 

Data was collected from participants of the subjective tests through 

questionnaires after watching each video sequence. Participants were asked to 

come to the laboratory of computer science at the National University in 

Khartoum, Sudan. 

 

3.3 Sample Population 

Undergraduate students of the National University in Khartoum, Sudan were 

recruited in this study as volunteers, no money was paid to them. This sample 

was selected because they are the ones who are more likely to watch videos 

streamed into their mobile devices form popular content providers such as 

YouTube and Facebook. So students feel comfortable to judge the quality of what 

they are watching in their daily lives. 

Judgemental sampling [44] was used to select the sample of this research. In this 

sampling, the researcher selects of participants who were presumed to be 
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representing the population in qualitative research. Participants were recruited 

through emails (Appendix B) sent in a mailing to the computer science students 

at the National University in Khartoum, Sudan. 

3.4 Collection of Data 

Following are the participants’ tasks, the experimental setting and test procedures. 

 

3.4.1 Tasks 

Participants were given the following tasks that should be executed in order: 

1. Sign the consent form. 

2. Participate in a training session of no longer than 5 minutes 

3. Watch video played back on a mobile which can last up to 60 seconds 

4. Fill in the questionnaire by grading the video quality in the range of 1 (bad) 

to 5 (Excellent). 

5. Answer any extra questions that might appear in the questionnaire 

6. Have a break after watching a video before watching the next video 

 3.4.2 Experimental Setting 

The subjective tests were conducted in the computer science laboratory at 

the National University in Khartoum, Sudan. This Laboratory has facilities 
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such as personal computers, projectors and desks where participants can 

read and fill in consent forms and questionnaires. A timetable for 

participants was prepared and each participant knew his/her appointment. 

Particular days and times were set for each participant due to limited 

number of mobile phones availability. 

Participants were supervised by the experimenter. The experimenter 

remained silent and unobtrusive during the course of subjective tests. 

Mobile devices were mounted on a stand in order to provide a more 

consistent viewing angle and viewing distance to all participants. The 

participants were allowed to adjust the viewing distance according to their 

preference, the display size and the video content quality. This is an ITU-T 

Recommendation P.913 [45]. In daily life the participants are not 

constrained when watching video content on their smartphone, however, 

they constrained when watching on TVs. 

 3.4.3 Test Procedures 

The following procedures were followed in the subjective tests: 

(a) On arrival, participants were briefed about the aims, objectives and 

the importance of the tests they were about to conduct (Appendix D). 

(b) Participants were asked to read and sign the consent forms. Which 

amongst other things, participant’s rights to withdraw are explicitly 

outlined. 

(c) If a participant has signed the consent form, they will be given 

training to familiarize themselves with tools and tasks involved in the 

test. 

(d) After the training session, participants were ready to undergo the real 

test by watching video sequences of not more than 60 seconds long. 

(e) Once each video sequence has ended, participants fill in the MOS 

values score in the range of 1 (bad) to 5 (excellent). The voting was 

conducted by using paper ballots (Appendix C). Participants continue 
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to watch video sequences in a particular device until all sequences are 

completed. 

3.5 Analysis of Data 

After the tests were completed, all the participants’ forms are collected and the 

data are input into the Excel sheet for averaging to compute MOS for each video 

sequence for a particular mobile device. 

To remove participant bias, the technique introduced by [46] was used with the 

following steps. 

1. Estimate MOS for each video sequence, 

 

where, pij denotes observer rating of participant i for video sequence j and 

Nj is the total number of subjects that rated video sequence j. to estimate 

participant bias, 

 

 

where MOSδi estimates the overall shift between the i participant’s scores 

and the true values (opinion bias) and Ji is the number of video sequences 

rated by participant i. 

3. Compute the normalized ratings by removing participant bias from each 

rating, 
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where αij is the normalized rating for paricipant i and video sequence j. 

MOS is then calculated normally. This normalization does not impact 

MOS, 

 

For mobile device preferences subjective tests, the tests were done in two groups 

of 20 participants each from the National University in Khartoum, Sudan. Each 

participant in each group had to watch 7 short videos (arranged in random order 

according to ITU-T standard [47]) of not more than a minute each on each mobile 

device. The age of the participants varied from 18 to 23 years old, with average 

age of 22 years old. Participants had no knowledge of video signalling and 

processing. They were 55% men and 45% women; all had normal vision and 

clear understanding of the test. 

For mobile device pixel density subjective tests, the tests involved 35 university 

students from the National University in Khartoum, Sudan. Each had to watch 10 

short videos (rendered randomly as per ITU-T standard [47] recommendation). 

Each video length was 60 seconds. The age of the participants varied from 20 to 

25 years old, with average age of 23 years old. All participants did not have any 

knowledge of video coding. All participants had normal eye vision, they were 22 

men and 13 women. 
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3.6 Validation of Results 

Analysis of Variance (ANOVA) is a statistical method that is used to test the 

differences of at least more than two means. The t-test (Independent Samples) has 

been used in this study to compare two groups of data, especially in the 

comparison of MOS values amongst group of participants ([48], [49]). In this 

research, values that are at most 0.05 would mean that there is statistical 

significant difference in the values under the experiments. 

For the subjective tests regarding mobile device preferences, ANOVA was used 

to denote the statistical significant difference of MOS values with variation in 

mobile devices in this experiment. 

For the subjective tests on pixel density, ANOVA was analyzed to demonstrate 

the statistical significant difference with variation in the pixel densities and MOS 

values. 

Non-linear regression method was used to develop the proposed model based on 

pixel density. The regression based method of quality prediction deploys a 

number of parameters in the analysis and the proposed model is fitted depending 

on the correlation coefficient (R
2
) which measures the goodness of the fit together 

with the root mean squared error (RMSE). If R
2 

approaches 100% then the 

correlation coefficient is a very good fit. If RMSE approaches 0 then that means 

the error is very small on the proposed model. 
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3.7 Experimentation Tools 

3.7.1 Mobile devices and OS 

Android Operating System (OS) based smartphones were used in this study. 

Android is a mobile OS developed by Google. It is based on the Linux kernel and 

designed mainly for mobile devices such as smartphones and tablets. As of May 

2017, Android OS has about 2 billion monthly active users, and it has the largest 

installed base of any OS [50]. 

For mobile device preference subjective tests, three mobile devices were used 

(Table 5). 

Table 3.1: Properties of display devices 

Device Model size (in) Resolution Density 

Sony Xperia Z 5.0 1080x1920 441 

HTC One Max 5.9 1010x1920 373 

Samsung A3 4.5 540x960 245 

 

For pixel density subjective tests, eight Samsung mobile devices were used in the 

experiment (Table 6). 

 

Table 3.2: Samsung Galaxy S series Smartphones 

Mobile Screen 

size 

Screen 

Resolution 

Pixel Density 

Galaxy S 4.0 480x800 233.23 

Galaxy S II 4.3 480x800 207.32 

Galaxy S III 4.8 720x1280 305.96 
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Galaxy S 4 5.0 1080x1920 440.58 

Galaxy S 5 5.1 1080x1920 431.94 

Galaxy S 6 5.1 1440x2560 575.93 

Galaxy S 7 edge 5.5 1440x2560 515.30 

Galaxy S 8 5.8 1440x2960 506.42 

 

3.7.2 Video Coding 

FFmpeg is a free and open source software project that provides Application 

Programming Interfaces (APIs) and programs for handling multimedia data, such 

as coding and encoding video sequences. FFMPEG was used to encode YUV 

videos to MPEG-4 H.264/AVC with different bit rates and frame rates. All 

experiments to handle multimedia data under FFmpeg were conducted in Ubuntu 

14.04.1 LTS trusty with Intel(R) Pentium(R) 4 CPU 

2.80GHz, memory 8GB and 64 bits OS. 

3.7.3 Video sequences 

For mobile device preference subjective tests, two videos were used, FFMpeg 

was used to encode YUV videos to MPEG-4 H.264/AVC with the same frame 

rate (25 fps) and seven different bit rates 2000 Kbps, 2750 Kbps, 3000 Kbps, 

3500 Kbps, 3750 Kbps, 4500 Kbps and 6000 Kbps. All videos were one minute 

long with 25 fps and 720p resolution. 
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For pixel density subjective tests, three videos were used, FFMpeg was used to 

encode YUV videos to MPEG-4 H.264/AVC at different bit rates and frame rates 

(Table 7 ). 

Table 3.3: Video bit rate, resolution and frame rate 

Sequence Bit rate 

(kbps) 

Resolution  Frame rate 

(fps) 

 

Vidyo 500 480p 720p 1080p 15 20 30 

 1000 480p 720p 1080p 15 20 30 

——- 1500 480p 720p 1080p 15 20 30 

——- 2000 480p 720p 1080p 15 20 30 

 2500 480p 720p 1080p 15 20 30 

   

Johnny 

500 480p 720p 1080p 15 20 30 

 1000 480p 720p 1080p 15 20 30 

——- 1500 480p 720p 1080p 15 20 30 

——- 2000 480p 720p 1080p 15 20 30 

——- 2500 480p 720p 1080p 15 20 30 

   

BasketballDrive 

500 

 

480p 720p 1080p 15 20 30 

 1000 480p 720p 1080p 15 20 30 

——- 1500 480p 720p 1080p 15 20 30 

——- 2000 480p 720p 1080p 15 20 30 

——- 2500 480p 720p 1080p 15 20 30 



42 

3.7.4 DASH server and Client 

Libdash [51] was used as a DASH server and client via the Apache 2 web server. 

The implementation of the proposed model based on pixel density enables 

content providers to optimally select video bit rate, frame rate and resolution 

depending on the mobile device pixel density and resolutions. 
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CHAPTER IV 

The Impact of Mobile Device Preference on the Quality of Experience 

 

This chapter present results obtained from the mobile device preference 

experiment.  It also t-test and the distribution of mobile device preference as well 

as discussion. 

Overview 

Quality of Experience (QoE) is not only related to network impairments and 

video signal quality but it is a broad term that also covers other factors such as the 

end user devices, service infrastructure, network bandwidth, user expectation and 

the environment where the end user is communicating or consuming multimedia 

services. Recent studies have found that video content preference also has an 

impact on the QoE. To date, no research has reported the impact of device 

preference on the QoE. In this context, we investigate the impact of mobile 

devices preference on the QoE for video services. We evaluate the QoE of 

watching videos using mobile devices of different models, sizes, resolutions and 

densities. The experimental results based on subjective tests have shown that QoE 

is highly correlated with user preference on mobile devices. 
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4.1 Introduction 

Mobile devices such as smart phones and tablets have witnessed exponential 

growth in number over the last decade. According to the Cisco Visual 

Networking Index (VNI) Global Mobile Data Traffic Forecast Update, more than 

half a billion mobile devices and Internet connections were added in 2015 [52]. In 

addition, video traffic accounted for 55% of the total mobile traffic in 2015 [52]. 

In this context, it is important to evaluate the Quality of Experience (QoE) with 

respect to different types of mobile devices in order for service providers and 

device vendors to increase revenue and avoid churn. 

According to the ITU-T P.10/G.100 [24], the definition of QoE is the overall 

acceptability of a service or an application as perceived subjectively by its users. 

This definition should include some other factors such as the end user devices, 

service infrastructure, network bandwidth, user expectation and the environment 

where the end user is communicating [25]. The recommendations from the ITU-T 

for evaluating QoE with subjective tests are described in ITU-T Rec. P.800 [47]. 

The ITU-T recommends the PESQ model (ITU-T Recommendation, P.862) [55] 

and the E-model (Recommendation ITUT G.107) [56] to evaluate the quality of 

Voice over IP (VoIP). There are three classifications for QoE measurement; 

Machine Learning based techniques [57, 58, 59] liner and non-liner regression 

techniques [60, 61] and finally artificial intelligence techniques [57, 58, 59]. 

The impact of video content preference have been investigated in several studies 

[32, 33, 34, 32, 35], but none have investigated the impact of mobile device 

preference on the QoE over video service. With respect to mobile device 

specifications, there are some challenges for managing video traffic and 

displaying video to ensure an acceptable QoE for end users. This is due to the fact 

that the perceptual quality of video content depends on the properties of the 

display device and the viewing conditions [36]. 

In general, mobile devices impact QoE in terms of their display size, resolution 

and device make and model. In this study, the impact of mobile device size, 
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resolution and device make and model is investigated to examine the impact of 

mobile devices preference on the QoE for video services. 

Mobile devices with similar display size and resolution but from difference 

manufacturers were used in the experiment. From subjective tests conducted in 

Sudan at the National University in Khartoum, it was concluded that mobile 

device preference had an impact on QoE for video services. 

This research is important for service providers such as YouTube, Facebook and 

FlexiNet because the results can be used as input to video streaming adaptation 

schemes in order to provide acceptable video quality under different network 

conditions. 

The rest of this chapter is organized as follows, the experimental setup which 

includes participants, mobile devices and video sequences is discussed in Section 

4.2. Section 4.3 presents the results obtained from the experiments which 

includes t-test and the distribution of the mobile devices preferences and 

discussion. The summary of this chapter is outlined in Section 4.4. 

4.2 Experimental Setup 

Objective video quality assessment and measurements tools such as PSNR and 

VQM are not computational intensive, however, they have drawbacks because 

they cannot capture the human visual perception such as the preferences of the 

devise used in conducting quality tests or even video content preferences. This is 

the reason why subjective tests are user because they can capture human visual 

perception of video quality. 

In the subjective test, Absolute Category Rating (ACR) method was used 

whereby the participants were required to watch video sequences without the 

original video sequences. After watching the video sequences, the participants 

were requested to give their opinion score. The quality evaluation by participants 

was based on the 5 points scale. The Mean Opinion Score (MOS) were finally be 
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computed as the average of the opinion scores from all participants’ scores. The 

subjective video tests followed the ITU recommendations [29] and [62]. 

The first five minutes of the subjective test session was used to explain to 

participants the purpose and importance of the test. The grading scale and how to 

vote, the video sequences and timing of each video were also explained to 

participants. All participants were requested to provide written consent forms (see 

Appendix A). A training session was conducted to allow participants to 

familiarize themselves with all the procedures involved. 

 

4.2.1 Participants 

This study has been done in two groups of 20 participants each. Each participant 

in each group had to watch 7 short videos (arranged in a random order according 

to ITU-T standard [47]) of less than a minute each on each mobile device. The 

age of the participants varied from 18 to 23 years old, with average age of 22. All 

participants were students in computer sciences at the National University in 

Khartoum, Sudan. Participants had no knowledge of video signaling and 

processing. They were 55% men and 45% women; all had normal vision and 

clear understanding of the test. 

4.2.2 Video Sequences 

Two videos sequences, Big Buck Bunny and Elephant Dreams were selected (See 

Figure 7). 
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Figure 4.1: Encoded video sequences 

 

Big Buck Bunny 

 

 

 

 

 

 

Elephant Dreams 

 

These videos are standard and are available with highest resolution. They were 

chosen because of their difference in content and complexity. Big Buck Bunny is 

medium movement video sequence, it is a short computer based animated 

comedy film where a large and adorable rabbit deals with three relatively tiny 

bullies including a flying and annoying squirrel, all of the bullies are adamant to 

crush the rabbit happiness. While the Elephant dreams video sequence is a fast 

movement video sequence. It is an animated science fiction film. The two main 

characters are on a journey in the folds of a giant machine, exploring the twisted 

and dark complex of wires and gears. FFMPEG version 3.3.3 under Linux was 

used to encode YUV videos to MPEG-4 H.264/AVC with the same frame rate 

(25 fps) and seven different bit rates 2000 Kbps, 2750 Kbps, 3000 Kbps, 3500 
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Kbps, 3750 Kbps, 4500 Kbps and 6000 Kbps. All videos were one minute long 

with 25 fps and 720p resolution. The selected range of these bit rates are 

recommended by YouTube for the 720p quality level for 24, 25 and 30 frame 

rates [34]. 

 

The participants in each group had to randomly watch video sequences, one 

group watched Big Buck Bunny and another group watched Elephant Dreams on 

three different mobile phones. 

4.2.3 Mobile Devices 

Participants were invited to watch video sequences and evaluate the quality of the 

video on three mobile devices. This experiment included three mobile devices, 

Sony Xperia Z, HTC One Max and Samsung Galaxy A3. Screen specifications 

for these devices are given in Table 8. Each mobile device was formatted and was 

installed with Android 5.0 (Lollipop) and Android Media Player to ensure that 

cache and memory were clear before playing the videos. The same media player 

was used in all tests and mobiles were set up on flight mode to avoid any 

interruptions during the experiment. 

The brightness was adjusted on the same level on all mobile devices, the sleep 

and portrait mode were disabled. Participants were asked to fill in the Mean 

Opinion Score (MOS) based on a discrete level as stated in ITU-R quality ratings 

(from bad (1) to excellent (5)). The experiment used NonReference (NR) method 

because it is practical in multimedia communication. 

 

 

Table 4.1: Properties of display devices 

Device Model size (in) Resolution Density 

Sony Xperia Z 5.0 1080x1920 441 
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HTC One Max 5.9 1010x1920 373 

Samsung A3 4.5 540x960 245 

 

 

4.3 Results and Discussion 

In this study the variables display density and resolutions were used to evaluate 

the quality of experience using MOS values. Table 9 and Figure 10 show the 

MOS scores for seven sequences of Big Buck Bunny video for the first group of 

participants. 

 

Table 4.2: MOS values for Big Buck Bunny 

Bit rates (Kbps) Sony HTC A3 

2000 2.56 2.91 3.91 

2750 2.94 3.32 4.72 

3000 3.08 3.21 4.79 

3500 3.58 4.14 4.52 

3750 4.01 4.58 4.64 

4000 4.00 4.35 4.54 

6000 4.10 4.22 4.39 

 

The results show that MOS values for Galaxy A3 mobile phone are better than 

the rest of the devices at low bit rates between 2000 Kbps and 3740 Kbps and 

slightly higher at higher bit rates above 3750 Kbps. Although the Galaxy A3 

mobile phone specifications are inferior compared to other mobile phones in the 

experiment, but participants gave higher MOS values. This is contrary to the 

expectations, given the screen densities of each mobile phone, it was expected 
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that MOS values would be higher for Sony Xperia Z with 441 screen density, 

followed by HTC One Max and Samsung Galaxy A3 mobile phones. 

To eliminate the influence of video content preference on the QoE, participants 

with no preference to any of the videos in the experiment were cho- 

 

Figure 4.2: MOS values for different mobile phones-Group 1 

sen. They were asked one question, "Amongst the three devices used in the 

experiment, which device you liked the most?" The response was 33% for 

Samsung Galaxy A3, 45% for HTC and 22% for Sony Xperia Z (c.f., Figure 

11). 
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Figure 4.3: Device preferences distribution-Group 1 

To support the significance of these results, the P-value from Analysis of 

Variance (ANOVA) was 0.00056≤0.05 (Table 10) which denotes that the MOS 

values show the statistically significant difference with variation between mobile 

phones at each bit rate of Big Buck Bunny video sequence in the experiment. 

This means that a null hypothesis is rejected because 0.00056≤0.05, 0.05 is a 

significance threshold level (α). A null hypothesis is a hypothesis that shows 

there is no statistical significance of the MOS values between the mobile devices 

in the experiment. 

 

Table 4.3: P-value for devices with all bit rates 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 3.88 2 1.94 14.89 0.00056 3.89 

Within devices 3.77 6 0.63 4.83   
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Total 9.21 8     

 

In Table 10 SS in the first row is the sum of the squares between mobile devices 

sample MOS means. While in the second row SS is the sum of squares MOS 

means within the mobile devices. MS is the weighted average of the mobile 

devices sample variances. df is the degree of freedom and F-value 

> F-critical. 

Table 4.4: P-value for devices at 2000 Kbps 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 19.75 2 9.87 55.69 3.92E-14 3.16 

Within devices 10.11 57 0.18    

       

Total 29.85 59     

 

Results are further broken down into individual bit rates in order to support the 

significance of these results, the P-value in Table 11 denotes that the MOS values 

show the significant difference with variation between mobile phones at 2000 

Kbps of Big Buck Bunny video sequence. 

P-value in Table 12 shows that the MOS values have significant difference with 

variation between mobile phones at 2750 Kbps of Big Buck Bunny video 

sequence. The P-value for this bit rate is smaller (3.92E-14) compared to the 

significance level of 0.05 and therefore, the null hypothesis is rejected. 

 

 



53 

 

Table 4.5: P-value for devices at 2750 Kbps 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 35.15 2 17.58 164.45 2.13E-24 3.16 

Within devices 6.09 57 0.11    

       

Total 41.24 59     

 

 

P-value in Table 13 demonstrates that the MOS values have significant difference 

with variation between mobile phones at 3000 Kbps of Big Buck 

Bunny video sequence. 

 

Table 4.6: P-value for devices and 3000 Kbps 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 36.25 2 18.12 257.76 2.79E-29 3.16 

Within devices 4.01 57 0.07    

       

Total 40.26 59     

 

 

P-value in Table 14 demonstrates that the MOS values have significant difference 

with variation between mobile phones at 3500 Kbps of Big Buck 

Bunny video sequence. 
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Table 4.7: P-value for devices at 3500 Kbps 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 8.94 2 4.47 58.57 1.50E-14 3.16 

Within devices 4.35 57 0.076    

       

Total 13.30 59     

 

P-value in Table 15 demonstrates that the MOS values have significant difference 

with variation between mobile phones at 3750 Kbps of Big Buck 

Bunny video sequence. 

 

Table 4.8: P-value for devices at 3750 Kbps 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 4.84 2 2.44 23.21 4.23-08 3.16 

Within devices 5.94 57 0.10    

       

Total 10.77 59     

 

P-value in Table 16 demonstrates that the MOS values have significant difference 

with variation between mobile phones at 4500 Kbps of Big Buck 

Bunny video sequence. 
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Table 4.9: P-value for devices at 4500 Kbps 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 3.00 2 1.50 15.01 5.79E-06 3.15 

Within devices 5.70 57 0.10    

       

Total 8.70 59     

 

P-value in Table 17 demonstrates that the MOS values have significant difference 

with variation between mobile phones at 6000 Kbps of Big Buck 

Bunny video sequence. 

 

Table 4.10: P-value for devices at 6000 Kbps 

Source of Variation SS df MS F-value P-value F-critical 

Between Groups 0.85 2 0.42 6.89 0.044 3.16 

Within Groups 8.37 57 0.15    

       

Total 9.22 59     

 

 

Table 18 and Figure 12 illustrate the MOS scores for seven sequences of 

Elephant Dream video for the second group of participants. 
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Table 4.11: MOS values for Elephant Dream 

Bit rates sony HTC A3 

2000 3.01 3.56 3.21 

2750 3.50 4.31 3.82 

3000 4.09 4.31 4.11 

3500 4.15 4.52 4.25 

3750 4.19 4.25 4.19 

4000 4.10 4.19 4.15 

6000 4.02 4.12 4.105 

 

The results show that MOS values for HTC One Max mobile phone are better 

than Sony Xperia Z and Samsung Galaxy A3 devices at bit rates between 2000 

Kbps and 3740 Kbps and slightly higher at higher bit rates more than 3750 Kbps. 

It was expected that Sony Xperia Z would have better MOS values because it has 

higher screen density than the rest, but its MOS values were the lowest. Although 

Samsung Galaxy A3 mobile phone specifications 
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Figure 4.4: MOS values for different mobile phones-Group 2 are 

inferior compared to other mobiles phones in the experiment, its MOS values 

came second. It was observed that these results are correlated to the participants’ 

preferences to three mobile phones in the experiment as in the first group. 

 

 

 

Figure 4.5: Device preferences distribution-Group 2 

Similarly to Group 1 participants, participants in this second group were also 

asked one question, "Amongst the three devices used in the experiment, which 

device you liked the most?" The response was 59% for Samsung Galaxy A3, 

26% for HTC One Max and 15% for Sony Xperia Z (c.f., Figure 13). 

To illustrate the statistical significance of these results, P-value from Analysis of 

Variance (ANOVA) was 0.032≤0.05 (Table 19) which denotes that the MOS 

values for this second group show the statistically significant difference with 

variation in the mobile phones for Elephant dream video sequence. 
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Table 4.11: P-value for devices with all bit rates 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 2.50 6 0.42 11.21 0.00026 3.00 

Within devices 0.345 2 0.17 4.65 0.032 3.89 

       

Total 3.29 20     

 

In order to support the significance of these results, the P-value in Table 20 

denotes that the MOS values show the significant difference with variation 

between mobile phones at 2000 Kbps of Elephant Dream video sequence. 

 

Table 4.12: P-value for devices at 2000 Kbps 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 0.85 2 0.42 12.89 0.03 3.15 

Within devices 8.37 57 0.15    

       

Total 9.22 59     

 

The videos quality based on the PSNR values were also provided for both video 

sequences for each bit rates selected in the test (Figure 14). The Big Buck Bunny 

as slow movement video demonstrated higher quality than Elephant Dreams 

video sequence as fast movement video sequence. This is because fast movement 

videos have more complex features such as motions compared to medium and 

slow 
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Figure 4.6: PSNR values at each bit rate 

movement video sequences. Therefore, at the same bit rates, slow or medium 

video sequence will have better quality than fast video sequences [7].  
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4.4 Summary 

This chapter has investigated the impact of device preferences on the Quality of 

Experience for video services. Results based on subjective tests have shown that 

there is a correlation between device preferences and QoE. The subjective test 

conducted had followed ITU-T recommendations [62, 29]. Apart from MOS 

values, PSNR values were also provided for both video sequences. Medium 

movement video sequenced (Big Buck Bunny) demonstrated to have higher 

quality at the same bit rates compared to fast movement video sequences 

(Elephant Dreams). Based on these results, there is a need to consider human 

factors such as device and content preferences when objective models are 

proposed by video service providers such as YouTube and Netflix. This 

investigation is important in the multimedia services networking and 

communications because it can be used in the video quality control and 

optimization in order not to over provision the video quality for limited 

bandwidth and storage usage. 
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CHAPTER V 

Mobile Device Pixel Density and Video QoE 

This chapter explain the experiment setup and demonstrates results.  It also proposes 

and evaluate a scale factor density based method.  

 

5 Mobile Device Pixel Density and Video QoE 

Overview 

Device screen size, design layout and resolution are some of the device context 

parameters which impact video quality on mobile devices. In this thesis, through 

subjective tests, we evaluate the impact of mobile device pixel density on the 

video quality. We then, through the subjective test, propose a video quality model 

that takes pixel density into consideration. The proposed model was evaluated, 

and the preliminary results have shown that the proposed model performs well 

regarding correlation coefficient. The model has potential use for multimedia 
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service providers such as YouTube and Netflix in areas of quality control and 

optimization of network and multimedia services. 

5.1 Introduction 

Smart phones and other portable devices such as tablets and game consoles have 

experienced exponential growth in number in recent years. According to the 

Cisco Mobile Visual Networking Index (VNI) Forecast (20162021) released in 

February 2017, there will be 5.5 billion mobile device users, 12 billion mobile-

ready devices and connections and 587 Exabytes annual rate of Mobile IP traffic 

[63]. The forecast also predicts that just over 75% of the video traffic of the world 

will be mobile data traffic [63]. These figures put enormous pressure to 

multimedia service providers such as Netflix and YouTube to provide acceptable 

video quality to its customers. 

According to OpenSignal report which tracks sensors and networks, in 2015, 

there were 24,093 Android based mobile devices. These devices come with 

different shapes and sizes, with diverse performances, display sizes and display 

resolution [64]. This level of fragmentation put another pressure to multimedia 

service providers on how to accurately provide acceptable video quality to their 

customers. 

To this end, it is vital to conduct thorough evaluation of the Quality of Experience 

(QoE) in order to satisfy customers with this level of mobile device 

fragmentation. Customers satisfaction will make them happy with the service 

they consume and hence increase revenue for service and network providers. 

QoE represents the customer’s experience measure of consumed services such as 

voice and video calling, IPTV and gaming services [53]. Three groups can be 

used to classify parameters that impact QoE [54], 
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• quality of multimedia content where they are produced 

• network parameters, also known as Quality of Service (QoS) 

• human perception, which includes among other things emotions, the degree 

of annoyance and past experience 

QoE can be quantified by using either subjective assessments or objective tools. 

Most of these techniques are based on available on freely tools and 

methodologies [65]. QoE is normally measured by the Mean Opinion Score 

(MOS) metric. The MOS metric has a 1 to 5 points scale representing five terms 

of multimedia quality (bad, poor, fair, good and excellent) [29]. 

Although subjective assessments can give accurate MOS values, they require 

stringent environment, and they are expensive and time consuming if they are to 

be repeated frequently. They are also impossible to use in real time multimedia 

communication. Therefore, objective modelling is preferred to predict multimedia 

quality based on subjective tests. 

Pixels per inch (ppi) is used to measure pixels density (PD). Pixel density has an 

impact on the visual quality, the higher the pixel density the higher the quality of 

the video [41]. Pixel density is computed by using the display diagonal size and 

the display resolution (width × height) in pixels. The display resolution in pixels 

(dp) is given by, 

 

       
     

  (10) 

where, wp and hp are width and high resolutions, respectively. The pixel density 

(pd) is then calculated as, 

   
  

  
 (11) 
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Where, di is the display diagonal size in inches. The diagonal size in inches is the 

one normally advertised as the screen/display size. 

Display technology has experienced tremendous increase in Pixel density over the 

last three decades. In 1980s, the common pixel densities were between 60 and 90 

ppi, while in 1990s, it was up to 120 ppi. By now we have pixel density of more 

than 260 ppi [41]. For a large screen of lets say 46 inch HDTV with a 1920x1080 

resolution, the pixel density is only 52 ppi. This can be perceived to be lower than 

common smart phone screens. However, such big screens are not viewed at the 

same distance as mobile devices. When watching big screens from the comfort of 

your an arm chair, individual pixels are impossible to distinguish, making pixel 

density more important for small displays than big displays. 

Table 21 depicts some of the mobile phone Pixel Density. 

Table 5.1: Pixel density of some mobile phones 

Mobile Screen 

size 

(di) 

Screen 

Resolution 

(wd × hd) 

Pixel Den- 

sity (ppi) 

Sony Xperia Z5 Premium 5.5 3840×2160 801.06 

Samsung Galaxy S6 5.1 2560×1440 575.92 

Samsung Galaxy S8 5.8 2960×1440 567.53 

LG G6 5.7 2880×1440 564.90 

Motorola Droid Turbo 5.2 2560×1440 564.85 

Samsung Galaxy Note 4 5.5 2960×1440 515.30 

BlackBerry KeyONE 4.5 1620×1080 432.67 

Apple iPhone 7 Plus 5.5 1920×1080 400.53 

 



65 

This study is vital for multimedia service providers such as YouTube and NetFlix 

because the proposed results can be applied in their video streaming quality 

adaptation algorithms in order to provide acceptable video quality under different 

level of pixel density fragmentations. Knowing the pixel density of mobile 

devices is vital for service providers not to over provision video quality and 

therefore, saving limited bandwidth and storage. 

The rest of this chapter is organized as follows, the experimental setup is 

presented in Section 5.2. Section 5.3 will outline the results and discussion. The 

proposed model based on scale factor pixel density is derived in Section 5.4 and 

evaluated in Section 5.5. The summary is presented in Section 5.6. 

5.2 Experimental Setup 

Absolute Category Rating (ACR) method was used in this study whereby the 

participants were required to watch video sequences without the original video 

sequences. After watching the video sequences, the participants were requested to 

give their opinion score. The quality evaluation by participants was based on the 

5 points scale. The Mean Opinion Score (MOS) were 

finally be computed as the average of the opinion scores from all participants 

scores. The subjective video tests followed the ITU recommendations [29] and 

[62]. 

5.2.1 Participants 

This study involved 35 university students from the National University in 

Khartoum, Sudan. Each had to watch 10 short videos (rendered randomly as per 

ITU-T standard recommendation [47]). Each video length was 60 seconds. The 

age of the participants varied from 20 to 25 years old, with average age of 23 

years old. All participants did not have any knowledge of video coding. All 

participants had normal eye vision, they were 22 men and 13 women. 
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The first five minutes of the subjective test session was used to explain to 

participants the purpose and importance of the test. The grading scale and how to 

vote, the video sequences and timing of each video were also explained to 

participants. All participants were requested to provide written consent forms (see 

Appendix A). A training session was conducted to allow participants to 

familiarize themselves with all the procedures involved. 

5.2.2 Video Sequences 

H264/AVC encoded video sequences were used in this experiment. The encoding 

and decoding was done by FFMpeg software. The videos were categorized into 

slow (Johnny sequence), medium (Vidyo sequence) and fast movements 

(BasketballDrive sequence). Figure 22 illustrates the thumbnails of video 

sequences used in the study. Video sequences bit rates and frame rates are listed 

in Table 7 Each video sequence was 1 minute long. 

Figure  22: Encoded video sequences 

 

 Johnny Vidyo 

 

BasketballDrive 

Johnny sequence is a slow movement video because the news reader is seated, the 

upper part of the body moves slowly while he is talking. The Vidyo sequence is a 



67 

medium movement because it shows men chatting while seated and the upper 

parts of their bodies are gently moving. The BasketballDrive video sequence is 

categorized as fast movement videos due to rapid movements of the basketball 

players. 

Table 5.2: video sequences 

Sequence Bit rate 

(Kbps) 

Resolution  Frame Rate(fps) 

Vidyo 500 480p 720p 1080p 15 20 30 

 1000 480p 720p 1080p 15 20 30 

——- 1500 480p 720p 1080p 15 20 30 

——- 2000 480p 720p 1080p 15 20 30 

 2500 480p 720p 1080p 15 20 30 

    

Johnny 

500 480p 720p 1080p 15 20 30 

 1000 480p 720p 1080p 15 20 30 

——- 1500 480p 720p 1080p 15 20 30 

——- 2000 480p 720p 1080p 15 20 30 

——- 2500 480p 720p 1080p 15 20 30 

    

Basketball 

500 

a 

480p 720p 1080p 15 20 30 

 1000 480p 720p 1080p 15 20 30 

——- 1500 480p 720p 1080p 15 20 30 

——- 2000 480p 720p 1080p 15 20 30 

——- 2500 480p 720p 1080p 15 20 30 
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5.2.3 Mobile Devices 

Samsung Galaxy S series smartphones were used in this study, they are all based 

on Android operating system. They are all based on the same display technology 

(Super AMOLED) with varying display sizes and resolutions. Samsung Galaxy S 

series smartphones used in this experiment are listed in Table 23. 

All smartphones were formatted to make sure that cache and memory were freed 

before playing the video sequences. In all the smartphones, flight mode was set 

up in order to avoid any interference that can be caused by cellular and wireless 

signals during the experiment. 

Table 5.3: Samsung Galaxy S series Smartphones 

Mobile Screen 

size 

(di) 

Screen 

Resolution 

(wd × hd) 

Pixel Density 

(ppi) 

Galaxy S 4.0 480x800 233.23 

Galaxy S II 4.3 480x800 207.32 

Galaxy S III 4.8 720x1280 305.96 

Galaxy S 4 5.0 1080x1920 440.58 

Galaxy S 5 5.1 1080x1920 431.94 

Galaxy S 6 5.1 1440x2560 575.93 

Galaxy S 7 edge 5.5 1440x2560 515.30 

Galaxy S 8 5.8 1440x2960 506.42 

 

In all the smartphones, the brightness was set on the same level (full), the sleep 

and portrait mode were disabled. All participants were requested to choose the 

Mean Opinion Score as stipulated in ITU-R quality ratings from 1 to 5. The study 
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deployed Non-Reference (NR) method which is ideal for end-to-end multimedia 

communication. 

 

5.3 Results and Discussions 

The bit rate, frame rate, mobile display size, mobile display resolution and video 

codec resolution where used as variables in this study. Smartphones from the 

manufacture (Samsung) were used in the study in order to keep the same display 

technology for reliable results. For Galaxy S smartphone with 480X800 display 

resolution and and 4" display size, the relationship between frame rate and quality 

of video in terms of MOS values is evaluated. This is done by setting the bit rate 

and resolution constant at each frame rate it can be seen that the higher the frame 

rate the better the quality (c.f., Figure 5.1). The same trend is seen for other bit 

rates such as for 1500 Kbps (c.f., Figure 5.2). 

 

Figure 5.1: MOS values for Galaxy S at 500 Kbps for Johnny sequence 

To demonstrate the impact of pixel density on the video quality, the Galaxy S III 

smart phone with 720X1280 display resolution and and 4.8" display size is used. 

The relationship between frame rate and MOS values is evaluated, it can be 

observed that the same trend occurs as with the Galaxy S. 
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Figure 5.2 and Figure 5.3 illustrate this trend for Johnny slow movement se- 

 

Figure 5.2: MOS values for Galaxy S at 1500 Kbps for Johnny sequence 

 

Figure 5.3: MOS values for Galaxy S III at 500 Kbps for Johnny sequence 

quence. The same trend was observed for Vidyo medium movement sequence 

with not much difference in the video quality compared to Johnny video 

sequence. 

Smartphones that are listed in Table 6 are evaluated based on their pixel densities 

against the MOS values. This chapter has introduced scaling factor based on pixel 

density. This is done by first mapping the video enconding resolution into the 

device display resolution, which can be called video encoding pixel density 

(codPd), 
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Figure 5.4: MOS values for Galaxy S III at 1500 Kbps for Johnny sequence 

 

where, di is the display diagonal size in inches and cdp is the encoding video 

display resolution in pixels an as given as 

   

where, cwp and chp are width and hight resolutions of the video sequence, 

respectively. The scale factor based on pixel density sfp is therefore, 
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Where, pd is pixel density as formulated in (11). 

The scale factor proposed in [42] does not consider the display size and there for 

will not perform well in a scenario where mobile devices have the same 

resolution but variable display sizes. For instance, if we take Galaxy S 5 with 

display size of 4" and resolution of 480x800 and S II with display size of 4.3" and 

resolution of 480x800, for a video sequence of 480p, the scale factor derived in 

[42] will be the same (0.19) for both mobile devices and therefore, will give the 

same video quality. However, the scale factor sfp proposed in this thesis will be 

different for Galaxy S (1.17) and Galaxy II (1.11) and therefore, will give 

different video quality as expected. 

Samsung Galaxy S with pixel density 233.24 is compared to S III with pixel 

density 305.96 for Johnny video sequence with 480p resolution. It can be 

observed that the Galaxy S III MOS values are better than the ones in Galaxy S at 

each frame rate. This is because the pixel density of Galaxy S III is higher than 

Galaxy S. Figure 19 depicts the comparison of the video quality between Galaxy 

S and S III. The results emphasise on the already existing literature on the impact 

of frame rate on the video quality, the higher the frame rate the better the quality 

[66, 67]. 

 

Figure 5.5: Video quality: Galaxy S and S III at 500 Kbps for Johnny sequence 

The same trend can be seen for other bit rates (c.f., Figure 20-23) which are 
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1000 Kbps, 1500 Kbps, 2000 Kbps and 2500 Kbps at each frame rate of 15, 25 

and 30. 

 

Figure 5.6: Video quality: Galaxy S and S III at 1000 Kbps for Johnny sequence 

 

Figure 21: Video quality: Galaxy S and S III at 1500 Kbps for Johnny sequence 

The results shown in from Figure 19 to Figure 23 have emphasised on the already 

existing results in the literature that show the impact of bit rates on the video 

quality. As the bit rate increases, the video quality increases [5, 68, 69]. 

The statistical significance of pixel density on the video quality is illustrated by 

the use of P-value from Analysis of Variance (ANOVA). The P-value was 1.7E-

06 ≤ 0.05 (Table 24) which shows that the MOS values for all smartphones in the 

experiment have demonstrated the statistical significant difference with variation 

in the pixel densities for all bit rates and frame rates 
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Figure 5.7: Video quality: Galaxy S and S III at 2000 Kbps for Johnny sequence 

 

Figure 5.7: Video quality: Galaxy S and S III at 2500 Kbps for Johnny sequence 

used in the experiment for the Johnny video sequence as the slow movement 

video. 

The P-value result demonstrates that a null hypothesis is rejected because 1.7E-06 

≤ 0.05, 0.05 is a significance threshold level (α). A null hypothesis is a hypothesis 

that shows there is no statistical significance of the MOS values between the 

mobile devices in the experiment. 

The P-value for mobile devices and medium movement video is illustrated in 

Table 25. The P-value is 0.002 ≤ 0.05. This results rejects the null hypothesis and 

accept the alternative hypothesis which shows that there is a 
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Table 5.4: P-value for devices and slow movement video 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 49.69 7 7.69 6.90 1.7E-06 2.20 

Within devices 120.92 112 0.25    

       

Total 170.61 119     

 

statistical significance of the MOS values between all mobile devices in the 

experiment. 

 

Table 5.5: P-value for devices and medium movement video 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 21.74 7 3.11 3.53 0.002 2.10 

Within devices 98.42 112 0.88    

       

Total 120.16 119     

 

The P-value for mobile devices and medium movement video is illustrated in 

Table 26. The P-value is 9.4E-05 ≤ 0.05. This results rejects the null hypothesis 

and accept the alternative hypothesis which shows that there is a statistical 

significance of the MOS values between all mobile devices in the experiment. 
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Table 5.6: P-value for devices and fast movement video 

Source of Variation SS df MS F-value P-value F-critical 

Between devices 25.72 7 3.67 4.80 9.4E-05 2.09 

Within devices 85.76 112 0.77    

       

Total 111.48 119     

 

 

5.4 QoE Modelling based on Regression Technique 

This section models the QoE based on scale factor pixel density sfpd, bit rate and 

frame rate. A non-linear regression technique was used to derive QoE model. The 

dataset was divided into 70% and 30% for training and testing, respectively. 

Based on the subjective results, the MOS values can be modelled as, 

 

 MOS = f(BR,FR,SFPD) (15) 

where BR, FR and SFPD denote bit rate, frame rate and scale factor pixel density, 

respectively. The proposed model is then derived as, 

 MOS = α + γ ∗ FR + β ∗ ln(BR) + δe
SFPD 

(16) 
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where α, γ, β and δ are coefficients of the proposed model (c.f., Table 27). 

Table 5.7: Coefficients of the proposed model 

 α γ β δ 

Slow movement -2.18 0.05 0.63 0.37 

Medium movement 0.95 0.06 0.24 -0.07 

Fast movement 0.64 0.07 0.28 0.01 

 

5.5 Model Evaluation 

The propose QoE model based on scale factor pixel density was evaluated by the 

use of 30% of the dataset for validation. The Root Mean Squared Error (RMSE) 

and correlation coefficient R
2 

were used to find the accuracy of the proposed 

model in (16). The correlation coefficients and RMSE values are tabulated in 

Table 28. 

 

Table 5.8: R
2 

and RMSE of the proposed model 

 Slow movement Medium movement Fast movement 

R2 83% 93% 93% 

RMSE 0.24 0.02 0.14 

 

Figure 24, Figure 25 and Figure 26 illustrate the correlations of subjective MOS 

values against the proposed scale factor pixel density model. From these results, 

it can be concluded that the proposed scale factor pixel density model can be 

deployed by multimedia and network service providers as a simple yet accurate 

objective assessment. 
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Figure 5.8: Validation of the proposed model for slow movement video 

5.6 Summary 

This chapter has evaluated the impact of mobile device pixel density on the 

Quality of Experience for video services. Through subjective tests, results have 

demonstrated that there is a correlation between mobile device pixel density and 

video quality. This chapter has also proposed QoE model based on scale factor 

pixel density. It has been shown that the proposed model performed well in terms 

of the correlation coefficient. This model can be applicable to video service 

providers such as YouTube, Netflix and Facebook for control and optimization of 

video quality. By getting user smartphones manufacturer and model parameters, 

service providers can easily provision video streams with an acceptable quality 

based on the smartphones display futures. 
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Figure 5.9: Validation of the proposed model for medium movement video 

 

Figure 5.10: Validation of the proposed model for fast movement video 
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CHAPTER VI 

 Pixel Density Based Model Implementation 

Overview 

Dynamic Adaptive Streaming over HTTP popularly known as DASH, is a 

standard developed by ISO/IEC MPEG. DASH implements the convenient and 

smooth transmission of video streams over heterogeneous end user devices over 

the IP network with limited bandwidth. This chapter demonstrates the 

implementation and the application of the new proposed model over DASH by 

using an open source libdash library. 

 

6.1 Libdash 

Libdash is an open source library providing an object-oriented interface to the 

DASH standard. It has become and official reference implementation of the 

ISO/IEC MPEG-DASH standard [1]. The libdash source code is licensed under 

the GNU Lesser General Public License 2.1+. 

Figure 27 depicts the general architecture of MPEG-DASH. The orange parts of 

the figure are standardized as the Media Presentation Description (MPD) and 

segment formats. The orange parts which include the transmission of the MPD, 
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streaming control, media player and segment parser are not standardized, which 

allows different solutions to be implemented. Libdash resides at the client side 

encapsulating the MPD parsing and HTTP module. The HTTP module is 

responsible for handling the HTTP download via the streaming logic. 

 

Figure 6.1: MPEG-DASH architecture [1] 

DASH server enables the transmission of segments in several video bit rates and 

resolutions. At the beginning of the HTTP request, a client receives the MPD by 

using libdash [1] through an object-oriented interface to that MPD. The MPD has 

the information description of several video segments of varying qualities and 

durations. The client is able to download individual video segments. At any time 

in this context, variable bandwidth conditions can be mitigated by switching 

quality levels of video segments. This approach provides smooth streaming 

experience by avoiding re-buffering and hence improves QoE. 

 

 

Figure 6.2: Libdash within MPEG-DASH architecture [1] 
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The new proposed model based on pixel density is implemented in the client side 

and based on the pixel density, frame rate and bit rate, the client can request 

varying quality levels of video segments. 

6.2 Demonstration Setup 

The DASH client with implemented pixel density based model requests video 

sequences via the WiFi router from the DASH server running under Apache 2 on 

Ubuntu 14.04.1 64 bit with 8GB RAM. This demonstration setup is depicted in 

Figure 29. 

 

Figure 6.3: Demonstration setup 

6.2.1 Segments creation 

MP4Box was used to create DASH content to conform with the MPEGDASH 

specification. Before applying MP4Box, FFMpeg is used to create multi bit rate 

streams for DASH. 
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Producing MP4 files to work with HTML5 video on devices which supports 

H.264 video codec and AAC-LC audio, keyframes aligned video files at different 

bit rates and resolutions should be generated. This is the main requirement for 

adaptive bit rate in DASH. 

For instance, a 1920x1080 30fps input video file input.mov, the following 

command in Figure 30 can be executed. The parameters are explained as, 

 

Figure 6.4: Multi bit rate generation 

 

• -i input.mov: Denotes the input video file 

• -s 640x360: Resizes ther input file to 640x360 

• -c:v libx264: Denotes that x264 is used as the video encoding 

• -b:v 650k: Denotes the video bitrate of 650 kbps 

• -r 30: Denotes the constant framerate at 30 fps 

• -x264opts keyint=48:min-keyint=48:no-scenecut: Denotes that one 

keyframe at every 48 frames. 

• -profile:v main: Denotes the use of H.264 main profile 

• -preset fast: Denotes the usage of fast preset for x264 transcoding 

• -movflags +faststart: Denotes that the file should be web ready 
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• -c:a libfdk_aac: Denotes that usage of libfdk_aac for audio encoding 

• -b:a 128k: Denotes the target audio bitrate at 128 kbps 

• -ac 2: Denotes a stereo output 

• out-low.mp4: Denotes the output file as an MP4 file named 

Once the output MP4 file is produced then, MP4Box is used to generate 

DASH segments, 

MP4Box -dash 4000 -frag 4000 -rap -segment-name out-low.mp4 

The parameters are explained as, 

• -dash 4000: Denotes the 4000 ms segment duration 

• -frag 4000: Denotes the duration of sub segments. This duration is always 

less than the segment duration 

• -rap: This parameter forces segments to begin with random access 

points 

• -segment-name: Denotes the segment name for generated segments 

• Three video sequences with different spatio and temporal characteristics 

where used for the implementation of the proposed model . Four People 

video sequence is a slow movement video, Park Joy is the medium 

movement video sequence and Stockholm is the fast movement video 

sequence. 

• These videos are presented in Table 38. 
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Figure 6.5: Encoded unseen video sequences 

 

 Four People Park Joy 

 

Stockholm 

 

6.3 Video Player via Libdash 

Figure 31 illustrates the libdash client playing the Park Joy video sequence. The 

model was implemented in the client to measure the MOS values for the video 

quality as the video sequences were played. 

 

Figure 6.6: Libdash client screen-shot of park Joy video sequence 
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The inputs of the model are the bit rates which are obtained by using the libdash 

API, frame rates which are also read from the API and the pixel density which is 

obtained from the mobile itself. The proposed model will be used to trigger the 

switch of various quality levels of video segments from the DASH server 

whenever the measured MOS values drop to the predetermined threshold, for this 

demo this threshold was set at MOS value of 3.5 which is generally referred as an 

acceptable quality for video streaming. 

Figures 32 and 33 illustrate the libdash client playing the Stockholm and Four 

People video sequences. The statistics on the right hand side of the implemented 

player show, 

• Buffer Length: Is the length of forwarding buffer in seconds • Bitrate 

Downloading: The bitrate of the presentation being downloaded. 

• Index Downloading: The index of the presentation being downloaded. 

• Current Index/Max Index: The index of the current presentation being 

rendered. 

 

Figure 6.7: Libdash client screen-shot of Stockholm video sequence 
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• Dropped Frames: The number of frames dropped during rendering. This 

can be caused by overflowing buffer. 

• Latency (min|avg|max): The minimum, average and maximum latency over 

the last four requested segments. Latency is the time in seconds from the 

request of segment to receipt of first byte. 

• Download (min|avg|max): The minimum, average and maximum download 

time for the last four requested segments. Download time is the time in 

seconds from the first byte being received to the last byte. 

• Ratio (min|avg|max): The minimum, average and maximum ratio of the 

segment playback time to total download time over the last 4 segments. 

 

Figure 6.8: Libdash client screen-shot of Four People video sequence 

6.4 Media Presentation Description 

The DASH media player uses the Media Presentation Description (MPD) [104] is 

an Extensible Markup Language (XML) formatted document which contains all 

the information regarding media segments, and other necessary instructions on 
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how select media segments and other metadata that can be used by the DASH 

media player. The MPD file has five main parts, 

• Periods: Describes a part of the video content containing a starting time and 

its duration. Several Periods can be used to describe scenes and chapters. 

• Adaptation Sets: Contains a media stream or set of media streams with 

different qualities in order to reduce bandwidth. 

• Representations: Permits an Adaptation Set to have the same content 

encoded at different qualities. The most used varying qualities are video 

resolutions and bit rates. Apart from resolution and bit rates, representation 

can also be encoded at different codecs. This will allow media player to 

select the preferred codec for media playback. 

• Media Segments: These are the actual media files that are played by the 

DASH player. These segments are played back to back as if they are in the 

same file. 

• Index Segment: These are of two types, Representation Index Segment for 

the whole Representation and a Single Index Segment for each Media 

Segment. In the case of a Representation Index Segment, this is normally a 

separate file and in the case of a Single Index Segment, this takes a byte 

range in the same file. Index Segment contains information regarding 

Media Segment durations in bytes and time by using ISO Base Media File 

Format (ISOBMFF) Segmentation IndexboX (SIDX) [105]. 

The MPD file format for Four People video sequence is depicted in Figure 34. In 

this MPD, there is one Period which consists of one Adaptation Set with three 

Representations. The duration of the media is 20 seconds. The Adaptation Set has 

Maximum Frame Rate of 30 and Resolution of 1280x720. 
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The first Representation has bandwidth of 598369 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 4000 

milliseconds each in length at 598369 bits/sec bit rate. 

The second Representation has bandwidth of 1187292 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 

4000 milliseconds each in length at 1187292 bits/sec bit rate. 

The third Representation has bandwidth of 2365295 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 

4000 milliseconds each in length at 2365295 bits/sec bit rate. 

The MPD file format for Stockholm video sequence is depicted in Figure 35. In 

this MPD, there is one Period which consists of one Adaptation Set with three 

Representations. The duration of the media is 20 seconds. The Adaptation Set has 

Maximum Frame Rate of 30 and Resolution of 1280x720. 

The first Representation has bandwidth of 623340 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 

4000 milliseconds each in length at 623340 bits/sec bit rate. 

The second Representation has bandwidth of 1234006 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 

4000 milliseconds each in length at 1234006 bits/sec bit rate. 

The third Representation has bandwidth of 2430909 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 

4000 milliseconds each in length at 2430909 bits/sec bit rate. 

The MPD file format for Park Joy video sequence is depicted in Figure 36. 
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In this MPD, there is one Period which consists of one Adaptation Set with three 

Representations. The duration of the media is 16 seconds. The Adaptation Set has 

Maximum Frame Rate of 30 and Resolution of 1280x720. 

The first Representation has bandwidth of 600907 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 

4000 milliseconds each in length at 600907 bits/sec bit rate. 

The second Representation has bandwidth of 1195963 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 

4000 milliseconds each in length at 1195963 bits/sec bit rate. 

The third Representation has bandwidth of 2365207 bits/sec, resolution of 

1280x720 and Frame Rate of 30. This Representation has seven segments of 

4000 milliseconds each in length at 2365207 bits/sec bit rate. 

6.5 Quality Assessment 

The video quality assessment is performed to evaluate the performance of the 

proposed pixel density model implementation. Extensive experiments have been 

conducted by using several available bandwidth parameters and on three different 

video sequences (Park Joy, FourPeople and Stockholm) for three quality levels 

(600 Kbps, 1200 Kbps and 2400 Kbps bit rates). The bandwidths of 2400 Kbps, 

1200 Kbps and 600 Kbps are depicted in Figures 37 and 38 for for Park Joy video 

sequence, respectively. The performance measures used to assess the video 

quality are average number of stalls and average number of stall time. 
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6.5.1 DASH without the Proposed Model 

The maximum available was fixed at 100 Mbps to assess the performance of 

DASH without the proposed model. The available bandwidth was varied by 

introducing the Transmission Control Protocol (TCP) traffic by using iperf traffic 

generator tool [106]. 

At 512 Kbps of available bandwidth, Figure 39 depicts the average number of 

stalls experienced by each video sequence. If the DASH client buffer is starved 

due to bandwidth fluctuation, the re-buffering will commence, this behaviour 

causes video to stall. Video stalling plays an important part in the evaluation of 

video streaming quality. The less the stalling the better the quality. 

 

At 2400 Kbps quality level, more number of stalls occurred for fast movement 

video sequences (Stockholm = 12) than medium movement (Park Joy = 7) and 

slow movement (Four People = 5) (c.f., Figure 39). Similar trend can be seen at 

1200 Kbps and 600 Kbps quality levels. This is due to the fact that fast movement 

video sequences occupy more bandwidth than medium and slow movements 

videos due to high bit rates. 

More number of stalls was also observed for fast movement video sequences at 

1200 Kbps quality level (Stockholm = 7) than medium movement (Park Joy = 4) 

and slow movement (Four People = 3) (c.f., Figure 40). Similar trend can be seen 

at 600 Kbps quality level. This is due to the fact that fast movement video 

sequences occupy more bandwidth than medium and slow movements videos due 

to high bit rates. 

At 600 Kbps quality level, average number of stalls was observed for fast 

movement video sequences at 600 Kbps quality level (Stockholm = 3) than 

medium movement (Park Joy = 1) and slow movement (Four People = 0) 

(c.f., Figure 40). 
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The average stalling time also plays a major role in the evaluation of video 

quality over DASH, the longer the stalling time, the more dissatisfied users will 

be. The average stall time in seconds for DASH is taken into consideration in the 

video quality assessment over DASH. 

The average stalling time in seconds is illustrated in Figure 42 for all video 

sequences at 2400 Kbps quality level. Because of a high bandwidth requirements, 

fast movement video sequence (Stockholm) had longer average stalling time than 

medium and slow video sequences (Park Joy and 

Four People). 

For the 1200 Kbps quality level, Figure 43 illustrates the average stalling time in 

seconds for all video sequence, similar trend is demonstrated in this quality level 

as in 2400 Kbps. 

For the 600 Kbps quality level, no stalls were experienced for slow movement 

video sequence (Four People) (c.f., Figure 44).  
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6.5.2 DASH with the Proposed Model 

The proposed mobile pixel density model was implemented in the Libdash 

framework for measurement and control of the video quality. Based on the the 

proposed model which takes into account the codec resolution, frame rate and 

device pixel density, Libdash will use it to provide video quality without over 

provisioning of bandwidth. This is necessary for fair consumption and the 

increase of multimedia consumption by more users. At 24000 Kbps quality level, 

the average number of stalling and average stalling time are compared to the 

default Libdash adaptation. The results show that the proposed model performs 

better (c.f., Figure 45 and Figure). 

At 1200 Kbps quality level, the same trend was observed. The fast moving video 

sequence (Stockholm) had more number of stalls and at the same time the 

duration of stalling was longer than the medium movement video sequence (Park 

Joy) (c.f., Figure 47 and Figure 48). For the 600 Kbps video quality level, the 

proposed model implementation of the video quality measurement and control 

did not experience any stalling. 

 

6.6 Summary 

This chapter has illustrated and implemented the proposed model based on the 

pixel density of the smart phones display. The implementation has shown that, 

the model can be used in DASH standard by video content service providers such 

as YouTube, Facebook and Netflix to measure and control the video quality 

(quality adaptation). The implementation has shown that the proposed model 

performs better than the default Libdash quality adaptation in terms of average 

stalling numbers and average stalling time.  



94 

 

Figure 6.9: MPD file of Four People video sequence 
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Figure 6.10: MPD file of Stockholm video sequence 
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Figure 6.11: MPD file of Park Joy video sequence 

 

Figure 6.12: Video bandwidth display at 2400 Kbps 
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Figure 6.13: Video bandwidth display at 1200 Kbps 

 

Figure 6.14: Number of stalls at 2400 Kbps bit rates 
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Figure 6.15: Number of stalls at 1200 Kbps bit rates 

 

Figure 41: Number of stalls at 600 Kbps bit rates 
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Figure 6.16: Average stalling time at 2400 Kbps bit rate 

 

Figure 6.17: Average stalling time at 1200 Kbps bit rate 
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Figure 6.18: Average stalling time at 600 Kbps bit rate 

 

Figure 6.19: Average number of stalls: Proposed model at 2400 Kbps 
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Figure 6.20: Average stalling time: Proposed model at 2400 Kbps 

 

Figure 6.21: Average number of stalls: Proposed model at 1200 Kbps 
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Figure 6.22: Average stalling time: Proposed model at 1200 Kbps 
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CHAPTER VII 

7 Conclusions and Future Work 

The advances in computational power and memory storage of mobile devices, 

video coding efficiency and advances experienced in wireless communication 

networks has increased the widespread usage of mobile devices and mobile video 

applications for several video streaming service providers. However, the success 

of the current and future mobile video applications will rely on the perceivable 

Quality of Experience of end users. Several end to end factors impact QoE. These 

factors can be categorized into network, devices and users. For devices, 

parameters such as display size and resolution can have an effect on the quality of 

the video. It is therefore, important for multimedia service and network providers 

to measure, monitor or predict the QoE especially of end users mobile devices. 

Subjective tests or objective methods are used to measure video quality. The 

Mean Opinion Score is recommended by the ITU [29] to be used in subjective 

tests for measuring video quality. The drawback of subjective tests is that it 

expensive and it is time consuming. Subjective test cannot be deployed to 

measure video quality in real time scenarios such as in live video steaming. 

Therefore, objective methods are ideal for live video streaming.  
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7.1 Contributions to knowledge 

This thesis has the following main contributions: 

1. Provision of the detailed understanding of the relationship between video 

quality and users’ mobile device preferences: 

This work has contributed to a detailed understanding through subjective 

tests of human preference of mobile devices and the quality of video when 

viewed on preferred mobile devices. This understanding can provide a 

foundation for the development of efficient objective models that can be 

deployed by multimedia service providers such as YouTube, Netflix and 

Facebook for video quality monitoring, control and optimization. 

This work has been contributed to the research community through 

dissemination as a publication published in the International Journal of 

Computing and Information Sciences [17]. 

2. New non-intrusive model to predict video quality non-intrusively based on 

mobile device pixel density: 

This work has contributed to the development of a new non-intrusive 

model for video quality measurement and prediction. The model was based 

on the combination of coding parameters (bit rate and frame rate) and 

device parameters (pixel density). The model was derived by a non-linear 

regression method from the subjective tests on Samsung mobile phones 

with variable display sizes and resolutions. 

This study has been contributed to the research community through a 

publication to be published by the Conference on Information and 

Computer Science [18]. 

3. Application of the proposed model in the Dynamic Adaptive Streaming 

over HTTP (DASH): 
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The new model was applied in DASH to demonstrate its usefulness. DASH 

is a popular standard used by major video streaming providers such as 

YouTube to measure, control and optimize video quality. Libdash [51] was 

used as a DASH server via the Apache 2 web server. The implementation 

enables content providers to optimally select video send bit rate, frame rate 

and resolution depending on the mobile device pixel density and resolution. 

4. Availability of the subjective tests dataset to the research community: 

The subjective tests results of the mobile device preferences and the pixel 

densities will be available to the research community for further research 

by either evaluating or validating their studies against the ones obtained in 

this research. These dataset will include raw videos, encoded vidoes and 

MOS values. 

7.2 Limitations of the Current Research 

All this thesis has successfully met all the requirements and objective set out in 

the Introduction chapter, there are some limitations that can be addressed in the 

future work. 

1. considerations of mobile device options: 

For mobile device preferences subjective tests, three mobile devices were 

used. More mobile devices with varying manufactures can be used in future 

work in order to capture the widely used mobile devices. This also applies 

to the subjective tests for pixel density experiment. 

2. Improved validation of the work: 
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Although the new Scale Factor model has been validated by the data that 

was not used to derive the model, external dataset and large scale dataset is 

still needed to further validate the model. 

3. Content types consideration: 

In this thesis, five different video sequences were considered. These video 

sequences covered slow moving (head and shoulder like news broadcaster) 

to fast moving (sports type like basketball). Although cartoons video 

sequence were considered, movie video sequences were considered. The 

spatio and temporal features of movie sequences may have an impact on 

the content type and therefore, on the new proposed quality model. 

 

 

7.3 Suggested Future work 

There are some aspects of this research that can further be investigated in the 

future. 

1. Wide range of video send bit rates, frame rates and resolutions: 

The send bit rates used in this research ranged from 1000 Kbps to 6000 

Kbps. The target was to consider HD video transmission ranging from 

1000 Kbps to 6000 kbps for HD quality of 480p to 1080p. Future work 

could consider low bit rates from 300 Kbps for 240p, 360p to 480p. Higher 

resolutions of 1440p to 4K could be considered in the future with 

corresponding bit rates from 6000 Kbps to 51000 Kbps. The frame rate of 

60 fps could also be considered in the future corresponding to 4K video 

quality. This will make the proposed model more generic for a wide range 

of values of frame rates, bit rates and resolutions. 

2. Objective methods of measuring and predicting video quality based on 

mobile device preferences: 
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This study has conducted subjective tests to find the impact of mobile 

device preferences on the quality of experience for video services. As 

mentioned in the literature review chapter regarding the importance of 

objective methods in real time scenarios and cost, there is a need to develop 

non-intrusive video quality model that take into account the device 

preference parameters. In order to improve this model, ideas from the 

business and economics disciplines can investigated on how modelling 

consumer preferences are conducted [70]. 

 

 

7.4   Conclusions 

Exponential growth of mobile devices especially smartphones have come with 

challenges which include varying display sizes, resolutions, hardware 

configuration and operating systems. Inspired by these challenges, this research 

was initiated to investigate the impact of mobile devices preferences, pixel 

density and resolutions on the quality of video services. 

Based on subjective tests, results have shown that there is a correlation between 

device preferences and QoE for video services. Medium movement video 

sequences (Big Buck Bunny) demonstrated to have higher quality at the same bit 

rates compared to fast movement video sequences (Elephant Dreams). Based on 

these results, there is a need to consider human factors such as device and content 

preferences when objective models are proposed by video service providers such 

as YouTube and Netflix. This investigation has shown the importance of its 

results in the multimedia services networking and communications because it can 

be used in the video quality control and optimization over the limited bandwidth 

and storage environment. 

Based on the subjective tests, a new non-linear regression model was developed 

which takes pixel density into considerations together with video coding 

parameters such as send bit rates, frame rates and resolutions. It has been shown 

that the proposed model performed well in terms of the correlation coefficient. 
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The proposed model can be used by video service providers such as YouTube, 

Netflix and Facebook for control and optimization of video quality. By obtaining 

user smartphones manufacturer and model parameters, service providers can 

easily provision video streams with an acceptable quality based on the 

smartphones display futures. 

As a proof of concept, the proposed model was deployed and integrated in the 

DASH test-bed. The implementation was successful which shown the usefulness 

of the proposed model in the control and optimization of video quality over video 

streaming services. 

This thesis has successfully met all the objectives and answered all questions that 

have been posed in the introduction chapter.  
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