DEDICATION

To the soul of my Mother With deep love
And for
My Family
Father, Brothers, Husband, Teachers and Friends
With love

Ashwag
ACKNOWLEDGEMENTS

First Sincere thanks to Allah who helped me and gave me health to finish this study.

I would like to express my gratitude, deep thanks and sincere appreciation to my Supervisor, Prof. Asim Ali Abdelrahman for his keen guidance, full co-operation, care and support to make this study possible. My indebtedness is also due to my Co-Supervisor Dr. Abdelgader Osman.

My sincere indebtedness is to the soul of my Mother Fatima for her encouragement and patience and to my Father, my family and my husband for their encouragement and support.

I’m very much appreciated the efforts of the Sudan University of Science and Technology which have offered the chance for my studies, and sincere thanks to all the staff of the Department of Plant Protection - Faculty of Agri. Studies- Sudan University of Science and Technology.

I also thank my friends Dr. Tag Alser Ibrahim, Austaz Omer Hassen, Fatima Deyab and others who have encouraged me during this work.

Lastly but not least, thanks are due to the Arab Authority for Agricultural Investment and Development for their support and to Prof. Murgani Kogali Ahmed from Ministry of Agriculture, Department of Date Palm- Shambat who supplied me with valuable information.

Finally, my thanks are also to the Ministry of Agriculture -Department of Agricultural Extension for providing me with a
field at Karari area. Thanks are also extended to all those who helped me to produce this thesis and to all farmers who helped me especially Hassan at Karari area and Siddig at Shambat area.
Contents

Dedication i
Acknowledgement ii
Contents iii
List of Tables viii
List of Figures x
Abstract xiii
Arabic Abstract xvi

CHAPTER ONE: Introduction 1

CHAPTER TWO: Review of Literature 4
2.1 Botanical insecticides 4
2.2 Intercropping 5
2.2.1 Types of intercropping practices 5
2.2.2 Advantages 5
2.3 Tomato 6
2.3.1 Scientific Classification 7
2.3.2 Common name in different languages 7
2.3.3 Description 7
2.3.4 Distribution 8
2.3.5 Importance of tomato 10
2.3.6 Nutrient value of tomato 10
2.3.7 Medical uses of tomato 11
2.3.8 Toxicity of tomato 11
2.3.9 Classification of tomato cultivars 11
2.3.10 Type of tomato in the Sudan 13
2.3.11 Climatic requirements and Agriculture practices 13
2.3.11.1 Temperature 13
2.3.11.2 Soil 14
2.3.11.3 Irrigation 16
2.3.11.4 Fertilizer 17
2.3.12 Culture and care 19
2.3.12.1 Pruning 19
2.3.12.2 Stacking 19
2.3.12.3 Caging 19
2.3.12.4 Plastic mulches 19
2.3.12.5 Organic mulches 20
2.3.13 Harvest, Storage, market and market: 20
2.3.14 Greenhouse tomato production 22
2.3.15 Common growing problems and solution 23
2.3.15.1 Physiological disorders 23
2.3.15.2 Blossom-end rot 23
2.3.15.3 Blossom drop 24
2.3.15.4 Fruit cracking 24
2.3.15.5 Catface and Blossom scar 24
2.3.15.6 Puffiness 24
2.3.15.7 Blotchy ripening 25
2.3.15.8 Yellow top 25
2.3.15.9 Large Core, Green Gel 25
2.3.15.10 Sun burn or sunscald 25
2.3.16 Tomato Diseases 25
2.3.16.1 Fusarium wilt 26
2.3.16.2 Verticillium wilt 26
2.3.16.3 Bacterial wilt 26
2.3.16.4 Bacterial canker 26
2.3.16.5 Bacterial speck 27
2.3.16.6 Bacterial spots 27
2.3.16.7 Early blights 27
2.3.16.8 Anthracnose 27
2.3.16.9 Powdery mildew 28
2.3.17 Viruses diseases 28
2.3.18 Nematodes 28
2.3.19 Tomato Insect pests 29

2.3.20 Weeds 29
2.4 Actara®25WG (Neonicotinoid) 30
2.4.1 Active ingredient 30
2.4.2 Insecticidal activity 30
2.4.3 Mode of action 31
2.5 Argel Solenostemma argel (Del) 32
2.5.1 Scientific Classification 32
2.5.2 Description 32
2.5.3 Distribution 33
2.5 Medicinal value 33
2.5.4 Insecticides activity of argel 35
2.5.5 Chemical constituents of argel 37
2.6 Garad or sunt Acacia nilotica (L) 37
2.6.1 Scientific classification 37
2.6.2 Description 38
2.6.3 Distribution 39
2.6.4 Habitation 39
2.6 Economic Important 40
2.6.6 Medical uses 42
2.6.7 Chemical consistent 42
2.6.8 Insecticides activity 44
2.7 Cafur Eucalyptus camaldulensis 45
2.7.1 Scientific classification 45
2.7.2 Description 45
2.7.3 Distribution 46
2.7.4 Habitation 48
2.7.5 Economic important 48
2.7.6 Medicine use 49
2.7.7 Insecticides activity 49
2.7.8 Chemical consistent 51
2.8 Cotton Gossypium barbadense (L) 51
2.8.1 scientific classifications 51
2.8.2 Description 51
2.8.3 Distribution 52
2.8.4 Habitation 52
2.14.1.1.8.1 Chemical control

2.14.1.1.8.2 Botanical control

2.14.1.2 Leaf miner *Argomyza trifolii* (Burgess)

2.14.1.2.1 Scientific classification

2.14.1.2.2 Description

2.14.1.2.3 Distribution

2.14.1.2.4 Host plants

2.14.1.2.5 Damage and economic importance

2.14.1.2.6 Behavior

2.14.1.2.7 Life cycle

2.14.1.2.8 Control measures

2.14.1.2.8.1 Chemical control

2.14.1.2.8.2 Biological control

2.14.1.2.8.3 Cultural practices

2.14.1.2.8.4 Cultural practices

2.14.3 Cotton aphids

2.14.3.1 Scientific classification

2.14.3.2 Distribution

2.14.3.3 Distribution

2.14.3.4 Host plants

2.14.3.5 Damage and economic importance

2.14.3.6 Life Cycle

2.14.3.7 Control measures

2.14.3.7.1 Chemical Control

2.14.3.7.2 Cultural practices

2.14.3.7.3 Physical control

2.14.3.7.4 Biological control

2.14.4 African bollworm *Helicoverpa armigera*

2.14.4.1 Scientific classification

2.14.4.2 Description

2.14.4.3 Distribution

2.14.4.4 Life cycle

2.14.4.5 Host plants

2.14.4.6 Damage and Economic Importance

2.14.4.7 Control measures

2.14.4.7.1 Cultural practices

2.14.4.7.2 Sanitation

2.14.4.7.3 Mechanical control

2.14.4.7.4 Trap crops

2.14.4.7.5 Crop rotation

2.14.4.7.6 Biological control

2.14.4.7.7 Botanicals

2.14.4.7.8 Bt (*Bacillus thuringensis*)

2.14.4.7.9 Physical methods

2.15 Predators

2.15.1 Lady Beetles (Coccinellidae)

2.15.1.1 Scientific classification

2.15.1.2 Description

2.15.1.3 Distribution

2.15.1.4 Lifecycle

2.15.1.5 Use in biological control

2.15.2 Chrysopidae

2.15.2.1 Scientific classification

vii
List of Tables

Table (A):- shows the area and production of tomato in the Sudan except southern region for years 1978, 1981, and 2003

Table (B):- Nutrient value of some vegetable and quantity elements in 100g from a part of plant which use

Table (C): Some physical and chemical properties of the experimental area (Shambat, June 2007).

Table (D):-Field lay-out of experiment in season(2006-2007), and (2007-2008) at Shambatarea.

Table (1): Pre and post spray counts and percent drop in population of whitefly (Bemisia tabaci) adult (per 100 leaves) at Shambat area (winter,2006/2007).

Table (2): Pre and post spray counts of damage by leaf miner in tomato at Shambat area (winter, 2006/2007).

Table (3): Assessment of pre, post spray counts (per 100 leaves) of different predators(Coccinellidae larvae, Chrysopidae larvae, Hemiptera nymph and spider) on tomato at Shambat area (winter, 2006/2007)

Table (4): Assessment of Sound fruits of tomato per plant in the different treatments at Shambat area (winter, 2006/2007).

Table (5): Assessment of tomato fruits damaged by African bollworm (Helicoverpa armigera) (Hub) larvae in the different treatments at Shambat area (winter, 2006/2007).

Table (6): Assessment of sunscald fruits of tomato in the different treatments at Shambat area(winter, 2006/2007).

Table (7): Assessment of tomato plants damaged by leaf curl disease in the different treatments at Shambat area (winter, 2006/2007).

Table (8): Assessment of percentage (%) damage by leaf miner in tomato intercropping with fenugreek (Fe), garlic(Ga), and Hot pepper(Ho) at Shambat area (winter, 2006/2007).
Table (9): Pre and post spray counts and percent drop in population of whitefly (*Bemisia tabaci*) adult (per 100 leaves) on tomato at Shambat area (winter, 2007/2008).

Table (10): Pre and post spray counts of damage by leaf miner in tomato leaves at Shambat area (winter, 2007/2008).

Table (11): Pre and post spray counts of Aphids (*Aphis gossypii*) adult population (per 100 leaves) on tomato at Shambat area (winter, 2007/2008).

Table (12): Assessment of pre, post spray counts (per 100 leaves) of different predators (Coccinellidae larvae, Chrysopidae larvae, Hemiptera nymph and spider) on tomato during winter (2007/2008) season at Shambatarea.

Table (13): Assessment of Sound fruits of tomato per plant (5pick) in the different treatments at Shambat area (winter, 2007/2008).

Table (14): Assessment of tomato fruits damaged by African bollworm (*Helicoverpa armigera*) (Hub) larvae in the different in the different treatments at Shambat area (winter, 2007/2008).

Table (15): Assessment of sunscald fruits of tomato in the different treatments at Shambat area (winter, 2007/2008).

Table (16): Assessment of tomato plants damaged by leaf curl disease in the different treatments at Shambat area (winter, 2007/2008).

Table (17): Assessment of percentage (%) damage by leaf miner in tomato intercropping with fenugreek (Fe), garlic (Ga), and hot pepper (Ho) in at Shambat area (winter, 2007/2008).

4.18 Table (18): Pre and post spray counts, and percent drop in population dynamic of whitefly (*Bemisia tabaci*) adult on tomato (per 100 leaves) at Karari area (winter, 2007/2008).

Table (19): Pre and post spray counts of damage by leaf miner in tomato leaves at Karari area (winter, 2007/2008).

Table (20): Pre and post spray counts of Aphids (*Aphis gossypii*) adult population (per 100 leaves) on tomato at Karari area (winter, 2007/2008).

Table (21): Assessment of pre, post spray counts (per 100 leaves) of different Predators (Coccinellidae larvae, Chrysopidae larvae, Hemiptera nymph and spider) on tomato at Karari area (winter, 2007/2008).
Table (22): Assessment of Sound fruits of tomato per plant (4 picks) in the different treatments at Karari area (winter, 2007/2008).

Table (23): Assessment of tomato fruits damaged by Africa bollworm (*Helicoverpa armigera*) (Hub) larvae in the different treatments at Karari area (winter, 2007/2008).

Table (24): Assessment of sunscald fruits of tomato in the different treatments at Karari area (winter, 2007/2008).

Table (25): Assessment of tomato fruits damaged by Blossom End Rot in experimental site Karari (winter, 2007/2008).

Table (26): Comparative between sun and shade tomato seedling 20 days from growing in nursery (winter, 2006/2007).

Table (27): Production of tomato fruits ton/feddan in the different seasons.

List of Figures

Fig 1 (a): Pre and post spray counts of whitefly (*Bemisia tabaci*) adult population (per 100 leaves) on tomato at Shambat area (winter, 2006/2007).

Fig 1 (b): Percent drop in population of whitefly *Bemisia tabaci* adult (per 100 leaves) on tomato at Shambat area (winter, 2006/2007).

Fig 2: Pre and post spray counts of damage by leaf miner in tomato leaves at Shambat area (winter, 2006/2007).

Fig 3: Pre and post spray counts (per 100 leaves) of different predators (Coccinellidae larvae, Chrysopidae larvae, Hemiptera nymph and spider) on tomato at Shambat area (winter, 2006/2007).

Fig 4 (a): Number of Sound fruits of tomato per plant (9 picks) in the different treatments at Shambat area (winter, 2006/2007).

Fig 4 (b): Weight assessment of Sound fruits of tomato per plant (9 picks) in the different treatments at Shambat area (winter, 2006/2007).

Fig 5 (a): Assessment of tomato fruits damaged by African bollworm *Helicoverpa armigera* (Hub) larvae in the different treatments at Shambat area (winter, 2006/2007).

Fig 5 (b): Weight assessment of tomato fruits damaged by African bollworm *Helicoverpa armigera* (Hub) larvae in the different treatments at Shambat area (winter, 2006/2007).

Fig 6 (a): Number of sunscald tomato fruits in the different treatments at Shambat area (winter, 2006/2007).
Fig 6(b): Weight of tomato sunscald fruits in the different treatments at Shambat area (winter, 2006/2007)

Fig 7: Assessment of tomato plants damaged by leaf curl disease in the different treatments Shambat area (winter, 2006/2007).

Fig 8: Percent damage by leaf miner in tomato intercropped with fenugreek (Fe), garlic (Ga), and Hotpepper (Ho) at Shambat area (winter, 2006/2007).

Fig 9 (a): Pre and post spray counts in population of whitefly *Bemisia tabaci* Adult (per 100 leaves) on tomato at Shambat area (winter, 2007/2008).

Fig 9 (b): Percent drop in population of whitefly *Bemisia tabaci* Adult (per 100 leaves) on tomato at Shambat area (winter, 2007/2008).

Fig 10: Pre and post spray counts of damage by leaf miner in tomato leaves at Shambat area (winter, 2007/2008).

Fig 11: Pre and post spray counts of Aphids adult (*Aphis gossypii*) population (per 100 leaves) on tomato at Shambat area (winter, 2007/2008).

Fig 12: Pre and post spray counts (per 100 leaves) of different predators (Coccinellidae larvae, Chrysopidae larvae, Hemiptera nymph and spider) on tomato at Shambat area (winter, 2007/2008).

Fig 13(a): Number of Sound fruits of tomato per plant (5 picks) in the different treatments at Shambat area (winter, 2007/2008).

Fig 13(b): Weight assessment of Sound fruits of tomato per plant (5 picks) in the different treatments at Shambat area (winter, 2007/2008).

Fig 14(a): Assessment of tomato fruits damaged by African bollworm *Helicoverpa armigera* (Hub) larvae in the different treatments at Shambat area (winter, 2007/2008).

Fig 14(b): Weight assessment of tomato fruits damaged by African Bollworm *Helicoverpa armigera* (Hub) larvae in the different treatments at Shambat area (winter, 2007/2008).

Fig 15(a): Number of sunscald tomato fruits in the different treatments at Shambat area (winter, 2007/2008).

Fig 15(b): Weight of tomato sunscald fruits in the different treatments at Shambat area.
Fig 16: Assessment of tomato plants damaged by leaf curl disease in the different treatments at Shambat area (winter, 2007/2008).

Fig 17: Percent damage by leaf miner in tomato intercropped with fenugreek (Fe), garlic (Ga), and hot pepper (Ho) at Shambat Area (winter, 2007/2008).

Fig 18(a): Pre and post spray counts in population of whitefly *Bemisia tabaci* adult (per 100 leaves) on tomato at Karari area (winter, 2007/2008).

Fig 18(b): Percent drop in population of whitefly *Bemisia tabaci* (per 100 leaves) adult on tomato at Karari area (winter, 2007/2008).

Fig 19: Pre and post spray counts of damage by leaf miner in tomato leaves at Karari area (winter, 2007/2008).

Fig 20: Pre and post spray counts of Aphids (*Aphis gossypii*) adult population (per 100 leaves) on tomato at Karari area (Winter, 2007/2008)

Fig 21: Pre and post spray counts (per 100 leaves) of different predators (Coccinellidae larvae, Chrysopidae larvae, Hemiptera nymph and spider) on tomato at Karari area (winter, 2007/2008).

Fig 22(a): Number of Sound fruits of tomato per plant (4 picks) in the different treatments at Karari area (winter, 2007/2008).

Fig 22(b): Weight assessment of Sound fruits of tomato per plant (4 picks) in the different treatments at Karari area (winter, 2007/2008).

Fig 23(a): Assessment of tomato fruits damaged by African bollworm *Helicoverpa armigera* (Hub) larvae in the different treatments at Karari area (winter, 2007/2008).

Fig 23(b): Weight assessment of tomato fruits damaged by African bollworm *Helicoverpa armigera* (Hub) larvae in the different treatments at Karari area (winter, 2007/2008).

Fig 24(a): Number of sunscald tomato fruits in the different treatments at Karari area (winter, 2007/2008).

Fig 24(b): Weight of tomato sunscald fruits in the different treatments at Karari area (winter, 2007/2008).

Fig 25(a): Number of tomato fruits damaged by blossom end rot in the different treatments at Karari area (winter, 2007/2008).

Fig 26: Comparative between sun and shade tomato seedling after 20 days from growing in nursery.

Fig (27): Production of tomato fruits ton/feddan in the different seasons.
ABSTRACT

An integrated Pest Management (IPM) approach was adopted to minimize or nullify the use of insecticides in tomato fields. The study was carried out in 2006/2007-2007/2008 seasons at Shambat and Karari areas particularly to find out whether the yield of tomato, *Lycopersicon esculentum* (variety Peto86) can be increased without the use of synthetic insecticides. The following treatments were compared:

1. Neem -seed-kernel hexane extract (2.5%) (*Azadirachta indica*) (No).
2. Cotton-seed-kernel hexane extract (2.5%) (*Gossypium hirsutum*) (Co).
3. Argel leaves aqueous extract at 37.3g/6L (*Solenostemma argel*) (S).
4. Soap solution at 25 ml /4L (So).
5. Actara®25WG at the rate of 0.75g/f (act) as (standard) (M).
6. Intercropping tomato with fenugreek (*Trigonella foenum –graecum*) (F).
7. Intercropping tomato with hot pepper (*Capsicum annuum*) (H).
8. Intercropping tomato with garlic *Allium sativum* (G).
9. Intercropping tomato with garad (*Acacia nilotica*) (A).
10. Intercropping tomato with neem (*Azadrachta indica*) seedlings (N).
11. Intercropping tomato with cafour (*Eucalyptus camaldulensis*) seedlings (E).

12. Control (tomato only) (C).

Both treatments spraying with dissolved materials and intercropping were tested to observe the effect of these treatments on the population dynamics of the whitefly *Bemisia tabaci*, leaf miner *Argomyza trifolii*, African bollworm (*Helicoverpa armigera*) (Hub) larvae as well as fruit damage by both pests and by the sun (sunscald) and predators (Coccinellidae larvae, Chrysopidae larvae, Hemiptera nymph and Spider). Observations were also made on other pests (Aphids) and diseases such as Tomato Leaf Curl (TLCV) virus and comparison between damage by leaf miner in tomato and the plants intercropped with tomato such as fenugreek, garlic, and hot pepper were done. In addition to other observations on the damage caused by blossom end rot and the effect of sunlight on the growth of seedlings in the nursery also were made.

The results showed that Actara, neem oil, and cotton oil were the superior treatments in controlling whitefly, whereas cotton oil, neem oil, and garlic were found effective in suppression the population of the leaf miner followed by neem, garad, cafour and Actara. argel seem to be attractive to leaf miners. Actara was better in protecting the natural enemies, followed by garlic, soap, garad, neem oil, argel, and neem .

Tomato fruits showed that, cotton oil and neem oil exhibited good results in controlling *Helicoverpa armigera*, but argel and garad were better in increasing the number of sound fruits. However, Actara, garad, neem and cafour treatments gave good results in the control of *Helicoverpa armigera*. All above mentioned treatments (cotton oil, neem oil, argel and garad) resulted increased the size of tomato fruits. Soap gave the best result in increasing the number of small size of sound fruits.
Assessment of tomato plants damaged by leaf curl disease at Shambat indicated that neem and fenugreek treatments resulted in good protection of tomato plants from leaf curl disease, followed by Actara, cotton oil and soap, whereas argel, garlic, cafour and garad showed high level of damage by leaf curl disease. However there is no damage observed at Karari area in all the treatments.

The results in intercropping plots of fenugreek, garlic, and hot pepper with tomato plants at Shambat area indicated that hot pepper and garlic plants were not damaged by leaf miner while fenugreek plants were susceptible to damage by leaf miner. However, tomato intercropped with hot pepper gave good results; it gave low damage by leaf miner whereas tomato intercropped with fenugreek gave high damage by leaf miners.

Neem oil, cotton oil and fenugreek were the superior treatments in the control of Aphids, *Aphis gossypii*, followed by cafour and soap at both Shambat and Karari areas in 2007/2008 season.

Also assessment of tomato fruits damaged by blossom end rot at Karari area showed that cotton oil and neem oil gave the best results in the control of blossom end rot. There was no blossom end rot damage appeared in the experimental site at Shambat.

Comparative study was also done comparing tomato seedlings exposed to the sun and seedlings grown under the shade after 20 days from germination in the nursery. The results indicated that the seedlings which were exposed to the sun were better than the shaded seedlings.

Spraying treatments gave the best result in production of tomato fruits ranging between (160.00- 117.36) ton/feddan which was achieved by argel and soap respectively. Whereas intercropping treatments exhibited low production of tomato fruits ranging between (113.52- 93.60) ton/ feddan, which was achieved by garad and cafour respectively.
Finally, result show that the best production was in (2006/2007) season. Argel gave high production in tomato fruits ranging between (160.00- 42.24) ton/ feddan while cafour gave the last recorded in the production of tomato fruits ranging between (93.60-58.32) ton/ feddan.

الخلاصة

1. المستخلص الهكساني لنوءة بذرة النيم (Azadrachta indica) (No) (%2.5).
2. المستخلص الهكساني لنوءة بذرة القطن (Cotton spp) (Co) (%2.5).
3. المستخلص المائي لأوراق المرجل (Solenostemma argel) (S) تركيز 37.3g/6L. تركيز 37.3g/6L.
4. محلول الصابون (M) (%25wg 0.75كمبيد قياسي (1). أكتارا تركيز® بمعدل 0.75 Actara.
5. الزراعة البينيه للطماطم مع نبات الحلبة (Trigonella foenum – graecum). (F).
6. الزراعة البينيه للطماطم مع نبات الحلبة (H) (Capsicum annuum).
7. الزراعة البينيه للطماطم مع نبات التوم (Allium sativum) (G).
8. الزراعة البينيه للطماطم مع نبات التوم (Acacia nilotica) (A).
10. الزراعة البيئية للطماطم مع شتلون النيم (Azadirachta indica) (N)

11. الزراعة البيئية للطماطم مع شتلون الكافور (Eucalyptus camaldulensis) (E)

12. الشاهد (طماطم فقط) (C)

(الزراعة الينهلطيطماطم معشتوالنيم
(Azadrachta indica)

(الزراعة الينهلطيطماطم معشتوالكافور
(Eucalyptus camaldulensis)

أجريت تجربة رش وزراعة بيئة لملاحظة تأثير المعاملات على الديناميكا السكانية للذبابة البيضاء (Argus mylaius) وحافرة الأنفاق (Bemisia tabaci) ونماذج الأحافير (Helicoverpa armigera) (Hub)). تمكث أيضاً ملاحظات على آفات أخرى مثل الأسلام كويروس (Sunscald) (Aphus crassivora) من الآبار الشامنية ضربة الشمس. تمكح أيضاً ملاحظات على آفات أخرى مثل الأسلام كويروس (Sunscald) (Aphus crassivora) من الآبار الشامنية.

(الشاهد الطماطم فقط
(C.

أظهرت النتائج على أوراق الطماطم أن مبيد اكثرا زيت النيم وزيت القطن هي أفضل المعاملات في مكافحة الذبابة البيضاء بينما زيت النيم والقطن والثوم لها تأثير في خفض كفاءة حافة الأنفاق وتجنيبها النيم والقرص والكافور ومبيد اكثرا. الحشرات يبدو أنه جاذب لحشرة حافرة الأنفاق. كان مبيد اكثرا الأفضل من حيث عدم تأثيره علي الأعشاب الحيوية يتبعه الثوم والصابون والقرص وزيت النيم والرحل ونباتات النيم.

أظهرت النتائج على شمار الطماطم أن زيت النيم وزيت القطن أعطت نتائج جيدة في مكافحة دودة اللوز الأفريقية. والحمية من ضربة الشمس. بينما معاملات مبيد اكثرا والقرص والنيم والكافور أعطت نتائج جيدة في مكافحة دودة اللوز الأفريقية فقط.

الرحل والقرص أعطيا أفضل النتائج في زيادة الشمار السليمة بينما معاملات زيت القطن والرحل والقرص أعطت شمار كبيرة في الحجم. الصوابون أعطى نتائج جيدة في زيادة عدد الشمار السليمة لكنها صغيرة الحجم.

اختيار اصابة نباتات الطماطم بمرض تجعد الأوراق في شحبات ذلت على أن معاملتي النم والحلبة أعطت حماية جيدة لنباتات الطماطم من الإصابة بالمرض بينما لم تلاحظ أي إصابا بالمرض في كري. الزراعة البيئية للطماطم مع نباتات الحلبة والثوم والقطن في منطقة شحبات ذلت على ان نباتات الشابة والثوم غير قابلة للإصابة بحافرة الأنفاق بينما نباتات الحلبة حساس للإصابة بحافرة الأنفاق. الطماطم المزروعة مع الشابة أعطت نتائج جيدة

xviii
اذ انها اعطت اصابه منخفضة بحافره الانفاق بينما الطماطم المزروعة مع الحلبة اعطت اصابة عالية بحافرة الانفاق.

زيت النين وزيت القطن والحلبة اعطت نتائج افضل مع ماء التربة اعطت اصابه عالية بحافرة النفاق.

والصابون في منطقة شمبات وكري في موسم 2008/2007). (إختبار اصابة ثمار الطماطم بالعفن البقمي في منطقة كري دلت التجارب على أن معاملته زيت النين وزيت القطن اعطت نتائج جيدة في مكافحة المرض. بينما لم نلاحظ الاสบายة في منطقة شمبات.

تمت مقارنة بين الشتل والتي تنمو في ضوء الشمس والشتل التي تنمو في الظل بعد 20 يوم من نموها في المخطط حيث دلت النتائج على أن الشتل التي تنمو في ضوء الشمس أفضل من التي تنمو في الظل.

معاملات الرش اعطت انتاجية جيدة تتراوح ما بين (160.00-117.36) طن/لفدان اعطت بواسطة الحرجل والصابون بالترتيب، مقارن مع معاملات الزراعة البيئية حيث اظهرت انتاجية أقل تتراوح ما بين (113.52-93.60) طن/لفدان والتي اعطيت بواسطة القرض والكافور بالترتيب.

أخيراً تشير النتائج الى أنه أفضل إنتاجية لطماطم كانت في موسم (2007) في منطقة شمبات. ومعاملة الحرجل قد أعطت أفضل انتاجية لطماطم والتي تتراوح ما بين (160.00-42.24) طن/لفدان بينما الكافور أعطي أقل انتاجية (93.60-40.56) طن/لفدان.