
1 

 

CHAPTER ONE 

INTRODUCTION 

1.1 General Concept 

Brushless DC (BLDC) motors are preferred as small horsepower control 

motors due to their high efficiency, silent operation, compact form, reliability, 

and low maintenance. However, the problems are encountered in these motor 

for variable speed operation over last decades continuing technology 

development in power semiconductors, microprocessors, adjustable speed 

drivers control schemes and permanent-magnet brushless electric motor 

production have been combined to enable reliable, cost-effective solution for 

a broad range of adjustable speed applications. Household appliances are 

expected to be one of fastest-growing end-product market for electronic motor 

drivers over the next five years. The major appliances include clothes 

washer’s room air conditioners, refrigerators, vacuum cleaners, freezers, etc. 

Household appliance have traditionally relied on historical classic electric 

motor technologies such as single phase AC induction, including split phase, 

capacitor-start, capacitor–run types, and universal motor. These classic 

motors typically are operated at constant-speed directly from main AC power 

without regarding the efficiency. Consumers now demand for lower energy 

costs, better performance, reduced acoustic noise, and more convenience 

features those traditional technologies cannot provide the solutions[1]. 

1.2 Problem Statement 

The problem of this project is centric in required speed and actual speed of 

BLDC motor.  Due to the remaining magnetism and error in manufactured, 

the actual speed doesn’t equal the required speed of BLDC motor. And this 

problem is causing a lot of errors in the application that’s needs a high 

efficiency and high accuracy in motion. 



2 

 

1.3 Objectives 

The main objectives of this study are to: 

i. Design the PID controller to control the speed of BLDC motor. 

ii. Appraisal the performance of the proposed controller. 

1.4 Methodology 

 Study of all previous studies. 

 Mathematical modeling of BLDC motor. 

 Build ARDUINO microcontroller program to control in speed of 

BLDC with   PID algorithm as software included in the controller. 

 Design of PID controller using manual tuning. 

 Use of MATLAB program to plot system response. 

1.5 Layout 

This project consists of five chapters: Chapter One gives an introduction, 

motivation and Objectives. Chapter Two discuss the theoretical background 

of BLDC motor, PID controller and microcontroller systems. Chapter Three 

presents the system modeling and system design. Chapter Four deals with the 

practical model of the system and the experimental results. Finally, Chapter 

Five provides the conclusions and recommendations. 

 

 

 

 

 

 

 



3 

 

CHAPTER TWO 

THEORETICAL, BACKGROUND AND 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter would discuss brushless dc motor construction and theory of 

operation and microcontroller that has been developing through the year and 

proportional, Integral and Derivative (PID).and previous study of all. 

2.2. Brushless DC Motor 

A brushed DC motor is an internally commutated electric motor designed to 

be run from a direct current power source. Brushed motors were the first 

commercially important application of electric power to driving mechanical 

energy, and DC distribution systems were used for more than 100 years to 

operate motors in commercial and industrial buildings. A brushed DC motor 

is made up of 4 basic components: the stator, the rotor (or armature), brushes, 

and commutator. The stator generates a stationary magnetic field that 

surrounds the rotor and this magnetic field is generated by either permanent 

magnets or electromagnetic windings. The rotor is made up of one or more 

windings. When these windings are energized they produce a magnetic field. 

The magnetic poles of this rotor field will be attracted to the opposite poles 

generated by the stator, causing the rotor to turn. As the motor turns, the 

windings are constantly being energized in a different sequence so that the 

magnetic poles generated by the rotor do not overrun the poles generated in 

the stator. This switching of the field in the rotor windings is called 

Commutation. Brushed DC motors do not require a controller to switch 

current in the motor windings. Instead, it uses a mechanical commutation of 

the windings[2]. 



4 

 

 A copper sleeve (commutator), resides on the axle of the rotor. As the motor 

turns, carbon brushes slide over the commutator, coming in contact with 

different segments of the commutator. The segments are attached to different 

rotor windings; therefore, a dynamic magnetic field is generated inside the 

motor when a voltage is applied across the brushes of the motor. The brushes 

and commutator are the parts of a brushed DC motor that are most prone to 

wear. Thus, switching the electrical polarity of the rotor windings. This will 

create an attraction of the different polarities and keep the rotor rotating 

within the stator field. Brushed dc motors presents some disadvantages: less 

reliability, larger size than other types of motors, high maintenance 

requirements. 

That all changed in the 1980s, when permanent magnet materials became 

readily available. The use of permanent magnets, combined with high voltage 

transistors, enabled brushless DC motors to generate as much power as the 

old brushed DC motors; the Brushless Direct Current (BLDC) motors are one 

of the motor types rapidly gaining popularity[1]. The brushless dc motor is 

conventionally defined as permanent magnet synchronous motor with a 

trapezoidal back elector motive force (EMF) waveform shape .This is a 

relatively new class of motors whose application have been increasing at a 

rapid rate each year, due both to declining costs as well as increasing 

functionality. BLDC motors have many advantages over brushed DC motors 

and induction motors. A few of these are: 

• Better speed versus torque characteristics. 

• High dynamic response. 

• High efficiency. 

• Long operating life. 

• Noiseless operation. 

• Higher speed ranges. 



5 

 

In addition, the ratio of torque delivered to the size of the motor is higher, 

making it useful in applications where space and weight are critical factors[3]. 

2.2.1 Construction of BLDC motor 

Brushless permanent magnet motor operation relies on the conversion of 

energy from electrical to magnetic to mechanical. BLDC motors are a type of 

synchronous motor. This means the magnetic field generated by the stator, 

and the magnetic field generated by the rotor rotates at the same frequency. 

BLDC motors do not experience the “slip” that is normally seen in induction 

motors. BLDC motors come in single-phase, 2-phase and 3-phase 

configurations. Corresponding to its type, the stator has the same number of 

windings. Out of these, 3-phase motors are the most popular and widely used. 

This application note focuses on 3-phase motors. It is a rotating electric motor 

consisting of stator armature windings and rotor permanent magnets whereas 

in a conventional brushed DC motor the stator is made up of permanent 

magnets and rotor consists of armature windings. The conventional DC motor 

commutes itself feedback with the use of a mechanical commutator whereas 

brushless DC motors, the feedback is with some electronic feedback sensor 

such as magnetic Hall sensors, encoders or resolvers. They key point is that 

the windings are sequentially switched with the drive electronics in BLDC 

motors. Without the electronics, the motor cannot even run. Conversely since 

the BLDC motors have electronics any way, they can be used to accomplish 

adjustable speed control and many other useful functions. Typically BLDC 

motors have three phase windings that are wound in star or delta fashion and 

need a three phase inverter bridge for the electronic commutation[3]. 

i. Stator  

Traditionally, the stator resembles that of an induction motor; however, the 

windings are distributed in a different manner. Most BLDC motors have three 

stator windings connected in star fashion. Each of these windings are 



6 

 

Constructed with numerous coils inter connected to form a winding. One or 

more coils a replaced in the slots and they are interconnected to make a 

winding. Each of these windings is distributed over the stator periphery to 

form an even numbers of poles[3]. There are two types of stator windings 

variants trapezoidal and sinusoidal motors. This differentiation is made on the 

basis of the interconnection of coils in the stator windings to give the different 

types of back electromotive Force (EMF). As their names indicate, the 

trapezoidal motor gives a back EMF in trapezoidal fashion and the sinusoidal 

motor’s back EMF is sinusoidal[4] 

ii. Rotor 

The rotor of a typical BLDC motor is made out of permanent magnets. 

Depending upon the application requirements, the number of poles in the 

rotor may vary. Increasing the number of poles does give better torque but at 

the cost of reducing the maximum possible speed. Another rotor parameter 

that impacts the maximum torque is the material used for the construction of 

permanent magnet, the higher the flux density of the material, the higher the 

torque. Ferrite magnets are traditionally used to make permanent magnets. As 

the technology advances, rare earth alloy magnets are gaining popularity[3]. 

The ferrite magnets are less expensive but they have the disadvantage of low 

flux density for a given volume. In contrast, the alloy material has high 

magnetic density per volume and enables the rotor to compress further for the 

same torque. Also, these alloy magnets improve the size-to-weight ratio and 

give higher torque for the same size motor using ferrite magnets[5]. The rotor 

magnet comes in different cross section: 

 Circular core with magnet on the periphery. 

 Circular core with rectangular magnets embedded in the rotor. 

 Circular core with rectangular magnets inserted into the rotor core. 

 



7 

 

iii. Hall sensors 

Unlike a brushed DC motor, the commutation of a BLDC motor is controlled 

electronically. To rotate the BLDC motor, the stator windings should be 

energized in a sequence. It is important to know the rotor position in order to 

understand which winding will be energized following the energizing 

sequence. Rotor position is sensed using Hall Effect sensors embedded into 

the stator[1]. And the Hall Effect theory is that if an electric current carrying 

conductor is kept in a magnetic field, the magnetic field exerts a transverse 

force on the moving charge carriers which tends to push them to one side of 

the conductor. This is most evident in a thin flat conductor. A buildup of 

charge at the sides of the conductors will balance this magnetic influence, 

producing a measurable voltage between the two sides of the conductor. The 

presence of this measurable transverse voltage is called the Hall Effect after 

E. H. Hall who discovered it in 1879[3]. The underlying principles for the 

working of a BLDC motor are the same as for a brushed DC motor; i.e., 

internal shaft position feedback. In case of a brushed DC motor, feedback is 

implemented using a mechanical commutator and brushes. With an in BLDC 

motor, it is achieved using multiple feedback sensors. The most commonly 

used sensors are hall sensors and optical encoders. Most BLDC motors have 

three Hall sensors embedded into the stator on the non-driving end of the 

motor. Whenever the rotor magnetic poles pass near the Hall sensors, they 

give a high or low signal, indicating the N or S pole is passing near the 

sensors. Based on the combination of these three Hall sensor signals, the exact 

sequence of commutation can be determined. Hall sensors are embedded in 

the stator of a BLDC motor to determine the winding energizing sequence, 

Based on the physical position of the Hall sensors, there are two versions of 

output. The Hall sensors may be at 60° or 120° phase shift to each other. 

Based on this, the motor manufacturer defines the commutation sequence, 

which should be followed when controlling the motor[4]. 



8 

 

2.2.2 Theory of operation 

Each commutation sequence has one of the windings energized to positive 

power (current enters into the winding), the second winding is negative 

(current exits the winding) and the third is in a non-energized condition. 

Torque is produced because of the interaction between the magnetic field 

generated by the stator coils and the permanent magnets. Ideally, the peak 

torque occurs when these two fields are at 90° to each other and falls off as 

the fields move together. In order to keep the motor running, the magnetic 

field produced by the windings should shift position, as the rotor moves to 

catch up with the stator field. What is known as “Six-Step Commutation” 

defines the sequence of energizing the windings[1]. 

To understand these steps show the Figure 2.1, phase1, the green winding 

labeled "001" is energized as the North Pole and the blue winding labeled as 

"010" is energized as the South Pole. Because of this excitation, the south 

pole of the rotor aligns with the green winding and the North Pole aligns with 

the red winding labeled "100". In order to move the rotor, the red and blue  

Windings are energized in the direction shown in Figure 2.1, phase 2. This 

causes the red winding to become the North Pole and the blue winding to 

become the South Pole. This shifting of the magnetic field in the stator 

produces torque because of the development of repulsion ( winding north-

north alignment) and attraction forces (blue winding north-south alignment), 

which moves the rotor in the clockwise direction. This torque is at its 

maximum when the rotor starts to move, but it reduces as the two fields align 

to each other. Thus, to preserve the torque or to build up the rotation, the 

magnetic field generated by stator should keep switching. To catch up with 

the field generated by the stator, the rotor will keep rotating. Since the 

magnetic field of the stator and rotor both rotate at the same frequency, they 

come under the category of synchronous motor. 

 



9 

 

 

Figure 2.1: Theory of operation of BLDC motor 

 

 



10 

 

This switching of the stator to build up the rotation is known as commutation. 

For 3-phase windings, there are steps in the commutation, 6 unique 

combinations in which motor windings will be energized[3]. 

2.2.3 Torque and efficincy 

By definition, torque is the tendency of force to rotate an object about its axis. 

Torque (Newton- meters) =    Force (Newton) ×Distance (meters)            (2.1) 

Thus, to increase the torque, either force has to be increased which requires 

stronger magnets or more current or distance must be increased for which 

bigger magnets will be required. Efficiency is critical for motor design 

because it determines the amount of power consumed. A higher efficiency 

motor will also require less material to generate the required torque. 

Efficiency =
            

           
 %                                                                          (2.2) 

Where,  

Output Power = Torque × Angular velocity.                                               (2.3)  

Input Power = Voltage × Current.                                                               (2.4) 

As a conclusion: 

 With an increase in speed, the torque reduces (considering the input 

power is constant). 

 Maximum power can be delivered when the speed is half of the "no 

load" speed and torque is half of the stall torque[5]. 

2.2.4 Comparing BLDC motor to other motor type 

Compared to brushed DC motors and induction motors, BLDC motors have 

many advantages and few disadvantages. Brushless motors require less 

maintenance, so they have a longer life compared with brushed DC motors. 



11 

 

BLDC motors produce more output power per frame size than brushed DC 

motors and induction motors. Because the rotor is made of permanent 

magnets, the rotor inertia is less, compared with other types of motors[3]. 

2.2.5 Applications of brushless DC motor 

 Single-speed: For single-speed applications, induction motors are more 

suitable, but if the speed has to be maintained with the variation in load, 

then because of the flat speed-torque curve of BLDC motor, BLDC 

motors are a good fit for such applications. 

 Adjustable speed: BLDC motors become a more suitable fit for such 

applications because variable speed induction motors will also need an 

additional controller, thus adding to system cost. Brushed DC motors 

will also be a more expensive solution because of regular maintenance. 

 Position control: Precise control is not required applications like an 

induction cooker and because of low maintenance; BLDC motors are a 

winner here too. However, for such applications, BLDC motors use 

optical encoders, and complex controllers are required to monitor 

torque, speed, and position. 

 Low-noise applications: Brushed DC motors are known for generating 

more EMI noise, so BLDC is a better fit but controlling requirements 

for BLDC motors also generate EMI and audible noise. This can, 

however, be addressed using Field-Oriented Control (FOC) sinusoidal 

BLDC motor control[1]. 

2.3 Arduino microcontroller 

A microcontroller is a small, low-cost computer on-a-chip present in a single 

integrated circuit which is dedicated to perform one task and execute one 

specific application which usually includes: 

 An 8 or 16 bit microprocessor (CPU). 

 A small amount of RAM. 



12 

 

 Programmable ROM and/or flash memory. 

 Parallel and/or serial I/O. 

 Timers and signal generators. 

 Analog to Digital (A/D) and/or Digital to Analog (D/A) conversion. 

Often we use it to run dedicated code that controls one or more tasks in the 

operation of a device or a system. Also called embedded controllers, because 

the microcontroller and support circuits are often built into, or embedded in, 

the devices they control. Devices that utilize microcontrollers include car 

engines, consumer electronics (VCRs, microwaves, cameras, pagers, cell 

phones ...), computer peripherals (keyboards, printers, modems...), 

test/measurement equipment (signal generators, multi meters, oscilloscopes 

…).Microcontrollers usually must have low-power requirements (~. 05 - 1 

Watt opposed to ~10 - 50 Watt for general purpose desktop CPUs) since 

many devices they control are battery-operated In addition to control 

applications. Such as the home monitoring system, microcontrollers are 

frequently found in embedded applications. Among the many uses you can 

find one or more microcontrollers: automotive applications, appliances 

(microwave oven, refrigerators, television and VCRs, stereos), automobiles 

(engine control, diagnostics, climate control), environmental control 

(greenhouse, factory, home), instrumentation, aerospace, and thousands of 

other uses[6]. Microcontrollers are used extensively in robotics. In this 

application, many specific tasks might be distributed among a large number of 

microcontrollers in one system. Communications between each 

microcontroller and a central, more powerful microcontroller (or 

microcomputer, or even large computer) would enable information to be 

processed by the central computer, or to be passed around to other 

microcontrollers in the system[7]. 

Arduino microcontroller, Arduino is a small microcontroller board with a 

USB plug to connect to your computer and a number of connection sockets 



13 

 

that can be wired up to external electronics, such as motors, relays, light 

sensors, laser diodes, loudspeakers, microphones, etc. They can either be 

powered through the USB connection from the computer or from a 9V 

battery. They can be controlled from the computer or programmed by the 

computer and then disconnected and allowed to work independently. We can 

use Arduino for many different purposes. From teaching to home automation, 

from scientific purposes to commercially available devices, as well as to have 

fun (you can be surprised about the many ways in which people use Arduino). 

Arduino is very simple interface to I/O ports you can control many different 

devices, both digital and analogical. Arduino is then a very useful tool both to 

control measuring apparatus or as a device to take measurements by itself (for 

many purpose it can be accurate enough to replace professional, and 

expensive, instruments)[8]. 

The Arduino project was started in Italy to develop low cost hardware for 

interaction design. The Arduino board features an Atmel ATmega328 

microcontroller operating at 5 V with 2 Kb of RAM, 32 Kb of flash memory 

for storing programs and 1 Kb of EEPROM for storing parameters. The clock 

speed is 16 MHz, which translates to about executing about 300,000 lines of 

C source code per second. The board has 14 digital I/O pins and 6 analog 

input pins. There is a USB connector for talking to the host computer and a 

DC power jack for connecting an external 6-20 V power source, for example 

a 9 V battery, when running a program while not connected to the host 

Computer. Headers are provided for interfacing to the I/O pins using 22 g 

solid wire or header connectors[9]. The board of Arduino can show in Figure 

2.2. 



14 

 

 

Figure 2.2: Content of Arduino UNO board 

2.4 Proportional, Integral, Derivate Controller 

Feedback control is a control mechanism that uses information from 

measurements. In a feedback control system, the output is sensed. There are 

two main types of feedback control systems is positive feedback and negative 

feedback. The positive feedback is used to increase the size of the input but in 

a negative feedback is used to decrease the size of the input. The negative 

systems are usually stable[10]. A Proportional– Integral–Derivative controller 

(PID controller) is widely used in feedback control of industrial processes on 

the market in 1939 and has remained the most widely used controller in 

process control until today. Thus, the PID controller can be understood as a 

controller that takes the present, the past, and the future of the error into 

consideration. After digital implementation was introduced, a certain change 

of the structure of the control system was proposed and has been adopted in 

many applications. But that change does not influence the essential part of the 

analysis and design of PID controllers. PID is a method of the control loop 

feedback[11]. 

 

 



15 

 

2.4.1 PID effect 

 PID control  is  the  most  common  control  algorithm  used  in  industry  and  

has  been  universally  accepted.  The  PID  controller  attributes are  partly  to  

their  robust  performance  in  a  wide  range  of  operating  conditions and  

partly  to  their  functionality  simple,  allowing  engineers  to  operate  them  

in  a simple  manner. As  the  name  suggests,  a  PID  algorithm  consists  of  

three basic coefficients:  proportional,  integral  and  derivative. These gains 

are varied to achieve an optimal system response the basic structure of a 

system with PID control implemented is illustrated above in Figure 2.3. The 

system output (also called the process variable) with a sensor and compared to 

the reading to the reference value (also called the set point). Reference and the 

measured output are compared and the result is an error value which is used in 

calculating proportional, integral, and derivative responses. Summing the 

three responses to obtain the output of the controller[11]. 

 

Figure 2.3: Proportional integral derivative 

The output of the controller is used as an input to the system you wish to 

control, changing some aspect of the system. For example, if motor is 

controlled, the controller would provide more or less current. If controlling 

the flow of a fluid, the controller would cause a valve either to open or closed. 



16 

 

The output of the system gets measured and the process continues. Iteration of 

the control loop can be known as completion of the process in single time. 

The ideal version of the PID controller is given by the formula: 

 ( )     ( )    ∫  ( )  
 

 
   

 

  
 ( )                                                 (2.5) 

After Laplace transfer 

 ( )

 ( )
   (  

 

   
    )                                                                              (2.6) 

Where 

  = Proportional gain. 

  = Integral gain. 

  = Derivative gain. 

e: Error=Set point –Process Value. 

t: Instantaneous time. 

  : Integral time. 

  : Derivative time. 

2.4.2 Proportional controller 

The proportional term is produced, in which an output value that is 

proportional to the present error value. The proportional response is adjusted 

by multiplying the error with a constant   , called proportional gain constant. 

The proportional term is given as 

 ( )     ( )                                                                                              (2.7) 

Or 

 ( )

 ( )
                                                                                                         (2.8)  



17 

 

A high proportional gain resulting in a large change in output for a given 

change of the error. If the proportional gain is very high, the system becomes 

unstable. Whereas, a small gain results in a small output response to a large 

input error and a low responsive or less sensitive controller. If the 

proportional gain is much less, the control action may be too small when 

responding to the system disturbances. Tuning theory and industrial practice 

implies that, the proportional term must contribute to the bulk of the output. 

2.4.3 Integral controller 

The contribution of the integral term is proportional to both the magnitude of 

the error and the duration of error. In a PID controller the integral is the sum 

of the instantaneous error over time and gives the accumulated offset that 

should have been previously corrected. Accumulated error gets multiplied by 

the integral gain (  ) and added to the controller output. The integral term is 

given by: 

 ( )     ( )    ∫  ( )  
 

 
                                                                       (2.9) 

 ( )

 ( )
   (  

 

   
)                                                                                       (2.10) 

The integral term accelerates the movement of the process towards the set 

point and eliminates the residual steady-state error which occurs with a pure 

Proportional controller. Integral term responds to accumulated errors of the 

past, it can result the present value to overshoot the set point value. 

2.4.4 Proportional derivative 

PD controller is used in the process where offset value is acceptable, where 

some anticipation can be considered and should have low noise. The equation 

of PD Controller is: 

 ( )     ( )      
  ( )

  
                                                                       (2.11) 



18 

 

The ideal transfer function of PD controller is given by: 

 ( )  
 ( )

 ( )
   (     )                                                                       (2.12) 

It is clear from above discussions that a suitable combination of proportional, 

integral and derivative actions can provide all the desired performances of a 

closed loop system. The transfer function of a PID controller is given by: 

The order of the controller is low, but this controller has universal 

applicability; it can be used in any type of SISO system, linear, nonlinear, 

time delay etc. Many of the MIMO systems are first decoupled into several 

SISO loops and PID controllers are designed for each loop. PID controllers 

have also been found to be robust, and that is the reason, it finds wide 

acceptability for industrial processes. However, for proper use, a controller 

has to be tuned for a particular process; i.e. selection of PID parameters is 

very important and process dependent. Unless the parameters are properly 

chosen, a controller may cause instability to the closed loop system. The 

method of tuning of PID parameters would be taken up in the next lesson. It is 

not always necessary that all the features of proportional, derivative and 

integral actions should be incorporated in the controller. In fact, in most of the 

cases, a simple PI structure will suffice. A general guideline for selection of 

Controller mode is given below[10]. 

2.4.5 Guideline for selection of controller mode 

i. Proportional controller: It is simple regulating type; tuning is easy. 

But it normally introduces steady state error. It is recommended for 

process transfer functions having a pole at origin, or for transfer 

functions having a single dominating pole. 

ii. Integral control: It does not exhibit steady state error, but is relatively 

slow responding. It is particularly effective for: 

 Very fast process, with high noise level. 



19 

 

 Process dominated by dead time. 

 High order system with all-time constants of the same magnitude. 

iii. Proportional plus integral control: It does not cause offset associated 

with proportional control. It also yields much faster response than 

integral action alone. It is widely used for process industries for 

controlling variables like level, flow, pressure, etc., those do not have 

large time constants. 

iv. Proportional plus derivative control: It is effective for systems 

having large number of time constants. It results in a more rapid 

response and less offset than is possible by pure proportional control. 

But one must be careful while using derivative action in control of very 

fast processes, or if the measurement is noisy (e.g. flow measurement). 

v. Proportional plus integral plus derivative control: It finds universal 

application. But proper tuning of the controller is difficult. It is 

particularly useful for controlling slow variables, like pH, temperature, 

etc. in process industries. 

2.4.6 The characteristics of PID controllers 

A proportional controller (  ) will have the effect of reducing the rise time 

and will reduce, but never eliminate, the steady-state error. 

 An integral control (  ) will have the effect of eliminating the steady-state 

error, but it may make the transient response worse. A derivative control (  ) 

will have the effect of increasing the stability of the system, reducing the 

overshoot, and improving the transient response[11]. Effects of each of 

controllers  ,   and   on a closed-loop system are summarized in the Table 

2.1. 

 

 

 



20 

 

Table 2.1: Explain the characteristic of PID parameter.  

CL response Rise time Overshoot Settling time S-S error 

   Decrease Increase 
Small 

Change 
Decrease 

   Decrease Increase Increase Eliminate 

   
Small 

Change 
Decrease Decrease 

Small 

Change 

  

2.5 Literature review 

Brushless DC motor actually represents the most recent result of a long 

evolution of motor technology. Before there were brushless DC motors there 

were brush DC motors. The brush DC motor was invented all the way back in 

1856 by famed German inventor and industrialist Ernst Werner von Siemens. 

That Resulted in adjusting the output voltage of the DC generator, which in 

turn adjusted the motor speed. The Ward Leonard system remained in place 

all the way until 1960, when the Electronic Regulator Company’s thyristor 

devices produced solid state controllers that could convert AC power to 

rectified DC power more directly. It supplanted the Ward Leonard system due 

to its simplicity and efficiency. In 1962 two engineers, T.G. Wilson and P.H. 

Tricky published a paper in which they described a "brushless DC" motor. 

Magnet and power switching device technology prevented this invention from 

becoming a practical general purpose drive technology until the late 1980s 

when power Tec Industrial Corporation started manufacturing general 

purpose brushless systems at prices competitive with brush DC systems.  

Remember that the key element of brushless DC motor is that it requires no 

physical commutator[12]. A KUSKO and S.M. PEERAN presented 

definitions of a brushless DC motor are inadequate to distinguish it from other 

types of brushless motors in the industry. A formal definition of a brushless 



21 

 

DC motor is described. The definition includes the components of the motor 

and the types of circuits to energize the stator windings. M.A.JABBAR, 

M.A.RAHMAN discussed the design considerations for permanent-magnet 

motors intended for brushless operation. Two rotor configurations are 

described the imprecated rotor and the segmented rotor. The segmented rotor 

is designed especially for high speed operation. A brushless DC drive system 

is also described and the performance of a neodymium-iron-boron excited 

p.m. motor with an imprecated rotor in a BLDC drive is presented[1]. 

The origin of the Arduino project started at the Interaction Design Institute 

IVREA (IDII) in IVREA, Italy. At that time, the students used a BASIC 

Stamp microcontroller at a cost of $100, a considerable expense for many 

students. In 2003 Hernando BARRAGAN created the development platform 

wiring as Master’s thesis project at IDII, under the supervision of Massimo 

BANZI and Casey REAS, who are known for work on the Processing 

language. The project goal was to create simple, low cost tools for creating 

digital projects by non-engineers. The wiring platform consisted of a printed 

circuit board (PCB) with an ATmega168 microcontroller, an IDE based on 

Processing and library functions to easily program the microcontroller. In 

2003, Massimo BANZI, with David MELLIS, another IDII student, and 

David CUARTILLES, added support for the cheaper ATmega8 

microcontroller to Wiring. But instead of continuing the work on Wiring, they 

copied the Wiring source code and renamed it as a separate project, called 

Arduino. The initial Arduino core team consisted of Massimo BANZI, David 

CUARTILLES, Tom IGOE, GIANLUCA Martino, and David MELLIS, but 

BARRAGAN was not invited to participate[8]. 

PID controllers have their origins in 19th century speed governor design. The 

theoretical basis for the operation of governors was first described by James 

Clerk Maxwell in 1868 in his seminal paper on governor. It was not until 

1922 that PID controllers were first developed using a theoretical analysis, 



22 

 

by Russian American engineer Nicolas MINORSKY for automatic ship 

steering. MINORSKY was designing automatic steering systems for the US 

Navy and based his analysis on observations of a helmsman, noting the 

helmsman steered the ship based not only on the current course error, but also 

on past error, as well as the current rate of change this was then given a 

mathematical treatment by MINORSKY. His goal was stability, not general 

control The Navy ultimately did not adopt the system, due to resistance by 

personnel. Similar work was carried out and published by several others in the 

1930s. One of the earliest examples of a PID-type controller was also 

developed by Elmer Sperry in 1911, though his work was intuitive rather than 

mathematically-based[13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

CHAPTER THREE 

SYSTEM MODELING AND DESIGN 

3.1 System Description 

Speed control of BLDC motor by using PID system shown in Figure 3.1 

consists of two parts, hardware and software design, the first one is the 

hardware, it consist of brushless DC motor, IR sensor, Arduino, Bluetooth 

module, smart phone and power supply. The second part consists of design of 

PID controller and Arduino code, the following block diagram is explain that. 

 

 

Figure 3.1: Block diagram of complete system 

The block diagram is explains the arrangement of design of the system. First a 

smart phone send the required speed and PID parameters to Arduino through 

Bluetooth module, Arduino processes this signal, produces appropriate signal 

to the BLDC motor through the driver and motor runs, the speed which 

monitored by the IR sensor, sensor which feeds microcontroller with feedback 

signals ,and the result of the feedback is monitored on the smart  phone. 

 



24 

 

3.2 The Brushless DC Motor Model 

Brushless DC motors usually driven by balanced three phase waveforms. 

Equivalent circuit of each phase consists of a winding inductance, a resistance 

and induced back-EMF voltage due to the rotation of the rotor. Per phase 

equivalent circuit of a BLDC motor is shown in figure 3.2. 

 

Figure 3.2: Per phase equivalent circuit of brushless DC motor. 

The model of the armature winding of the BLDC motor is expressed as 

follows: 

        
   

  
                         (3.1) 

        
   

  
                                   (3.2) 

        
   

  
                                                                                (3.3) 

Where: 

L is armature self – inductance [H]. 

R - Armature resistance [Ω]. 

   ,   ,     - terminal phase voltage [V]. 

  ,   ,    - motor input current [A]. 

  ,    ,      – motor back- EMF [V]. 

In the 3-phase BLDC motor, the back- EMF is related to a function of rotor 

position and the back-EMF of each phase has 120° phase angle difference so 

equation of each phase should be as follows: 



25 

 

       (  )              (3.4) 

       (   
  

 ⁄ )             (3.5) 

       (   
  

 ⁄ )             (3.6) 

Where: 

  - is back EMF constant of one phase [V/ rad.s-1]. 

  - is electrical rotor angle [°el.]. 

  - Rotor speed [rad.s-1]. 

The electrical rotor angle is equal to the mechanical rotor angle multiplied by 

the number of pole pairs P. 

          
 
               (3.7) 

Where: 

   – Mechanical rotor angle [rad]. 

Total torque output can be represented as summation of that of each phase. 

Next equation represents the total torque output: 

  = 
                   

 
             (3.8) 

3.2.1The transfer function of BLDC motor 

The transfer function of BLDC motor show in equation 

        
  

  
                                                                                      (3.9) 

By using Laplace transfer:  

 ( )     ( )      ( )                                                                            (3.10) 

 ( )= 
 ( )

   ( )    ( )  
                                                                                         (3.11) 



26 

 

 ( )  
 ( )

 ( )
 

 

      
   (3.12) 

The parameters of the motors used in Simulink are as show follows in 

Table3.1. 

Table 3.1: The BLDC parameter used in Simulink  

Symbol Value 

      Ω 

   20 H 

 

So it becomes: 

 ( )  
    

     
                      (3.13) 

3.3 System Flow Chart 

The flow chart shown in Figure 3.3 explained the flow of the system 

operation, at start input the required speed and PID parameter then compare 

the input parameter with the ideal parameter if any one of parameter is not 

ideal the system will return the inputted value of this parameter and if all 

parameter is ideal the BLDC motor will run, the IR sensor will sense the 

actual speed and monitor it. 

 

 

 

 

 

 

 

 

 



27 

 

 

Figure 3.3: System flow chart 

 



28 

 

3.4 System with PID Controller Design 

Control system model consist of the PID controller designed in Arduino and 

the parameter of BLDC motor. The figure below is Simulink of control 

system3.4. PID controller is the most widely used in closed-loop control 

system. The algorithm works on the error generated from the difference 

between the reference speed and the actual speed. PID parameters 

Proportional gain   , Integral Gain   , and Derivative Gain    affects 

system’s overall performance. Hence choosing right parameters for a system 

is a difficult process and can be done by using several tuning methods which 

includes manual tuning, Ziegler-Nicholas tuning and Cohen-coon tuning.  

Normally a mathematical model of the system is designed along with PID 

controller and the system performance is observed with applied set of values 

of  PID parameters to finalize the best suited values[11] The block diagram of 

PID as show in figure 3.5. 

 

Figure 3.4: Simulink of control system. 

 

Following are the effects of PID parameters (   ,  , and   ): 

 System Rise time will be reduced by   , it provides faster response in 

variable load condition. 



29 

 

 Steady state error will be reduced by    ; hence the motor speed is pushed 

near to reference speed. 

 Settling time and overshoot will be reduced by   , hence provides faster 

response. 

 

Figure 3.5: Block diagram of PID controller 

Command (t) =   ×error (t) +    ×ʃ error (t) d (t) +    ×
 

 ( )
 error (t)    (3.14) 

Error (t) = reference_ speed (t) - measured speed (t)      (3.15) 

Manual tuning of the gain settings is the simplest method for setting the PID 

controls. However, this procedure is done actively (the PID controller turned 

on and properly attached to the system) and requires some amount of 

experience to fully integrate. To tune PID controller manually, first input the 

transfer function in MATLAB and use the function (PID tools) for plot 

response of time with the transfer function, this way give the approximation 

values of   ,   ,   . Second Increase or decrease the proportional gain until 

observing oscillation in the output. After the proportional gain is set, the 

derivative gain can then be increased or decreased. Derivative gain will 

reduce overshoot and damp the system quickly to the set point value or near 

it, once the derivative gain is set, increase or decrease the integral gain until 

any offset is corrected for on a time scale appropriate for the system. 

If increases values of   and   too much system well be unstable and causes 

big error in speed[10]. The best performance of parameter depends on 



30 

 

designer specifications. All the parameters had got from manual tuning 

method are shown in Table 3.2. So the best response at number 6, it is best 

quickly response. 

       Table3.2: Experimentally PID parameters. 

Number of experiment          

1 9.6473 13.0625 0 

2 90 55 10 

3 290 380 70 

4 250 350 50 

5 260 360 60 

6 260 500 15 

7 350 400 100 

 

 

 

 

 

 

 

 

 

 

 



31 

 

CHAPTER FOUR 

SYSTEM IMPLEMENTATION AND 

EXPERIMENTAL RESULTS 

4.1 System Components 

Selection of appropriate material for a mechanical part is an essential element 

of all engineering projects. The main mechanical parts of the system are the 

base support. 

4.1.1 BLDC motor 

XXD-A2212 as shown in Figure 4.1 is a brushless DC motor with max 

efficiency 80%, its dimensions is 27.8*27 mm and shaft diameter: 3.17 mm. It 

can deliver a max efficiency current from 4 up to 10 AMP (>75%) and able to 

work in 10V. 

 

 

Figure 4.1: BLDC motor 

 

4.1.2 IR sensor 

The IR sensor as shown in Figure 4.2 is used to produce IR waves, IR sensor 

consist of IR transmitter and IR receiver the frequency of IR sensor varies 

depending upon its cost by using LED light at specified wavelength as 

required by the sensor we can look at intensity of the received light. When 



32 

 

any object cut the light emitted by LED the light bounces back from the 

object to the light sensor this results a large change in the intensity which is 

detected by receiver of IR sensor[14]. 

 

 

Figure 4.2: IR sensor 

 

4.1.3 Power supply 

We have used a 12V, and 5V DC power supply, the 12V is given to driver 

circuit and the Arduino is required 5V DC supply. 

4.1.4 ARDUINO Uno 

Arduino Uno as shown in Figure 4.3 is a microcontroller board based on 

ATmega328P microcontroller. It has 14 digital input/output pins (of which 6 

can be used as Pulse Width Modulation (PWM) outputs), 6 analog inputs, a 

16 MHz quartz crystal, a USB connection, a power jack, header and a reset 

button. Using ID library in Arduino Uno code (See Appendix A) as a PID 

controller has many benefits such as: 

 There are many ways to write the PID algorithm. A lot of time was 

spent making the algorithm in this library as solid as any found in 

industry. 

 When using the library all the PID code is self-contained. This makes 

your code easier to understand. It also lets you do more complex stuff, 

like having 8 PIDs in the same program[8].  



33 

 

 

 

Figure 4.3: Arduino UNO 

 

4.1.5 Bluetooth module  

Bluetooth module as shown in Figure 4.4 is a wireless standard for data 

exchange over short distances it creates Personal Area Networks (PANs) with 

high security level which is an essential factor in this system, Bluetooth 

operates in the range of 2400-2483.5 MHZ (includes guard bands)[15]. 

 

Figure 4.4: Bluetooth module  

4.1.6 ESC driver: 

An Electronic Speed Controller (ESC) for brushless DC Motors as shown in 

Figure 4.5. This ESC can drive motors which consume up to 30A current. It 

works on a power supply. It can be used to control our brushless motors with 

a power supply (make sure motor doesn't draw more than 30A). 

 



34 

 

Specifications 

 Running current: 30A. 

 Output: Continuous 30A. 

 Input Voltage: DC 6-12.6V.  

 Has Low Voltage Protection Mode.  

 

 

Figure 4.5: ESC driver 

4.2 Software Type 

First we define the PID parameters (  ,      ), and select a random 

quantities by it proper response which give us a small error rating and a 

proper speed (a speed that is near to the exact speed) with tuning PID.  We 

will enter these parameters via smart phone into MATLAB application, the 

code will control our motor by using MATLAB application, this will happen 

when we enter the PID parameters and the speed of the motor that we 

measured by the sensor, the motor will run according to the speed input and 

some of these inputs will return as a closed loop feedback to Arduino. 

4.3 System Implementations  

The Bluetooth module connected to pin 1, 2(TX, RX) respectively, ESC 

driver connected to pin 3 and connected to power supply with 12V output, 18 

AMP, IR sensor connected pin 10,and all of that is connected to 5V, and 

ground, as shown in Figure 4.6. 



35 

 

 

                           Figure 4.6: The electrical circuit connections 

4.4 System Experimental Results 

This section demonstrates the results of a real time with amplitude plotting 

using MATLAB to monitor the control of BLDC motor using design of PID 

controller with manual tuning method. By adjusting a proper value of PID 

parameters, with   =9.6473,    =13.0625, and   =0. The system rises to 

amplitude equal 1.04 with small overshooting and oscillates, the setting time 

period is long. This system has a large delay time and large rise time. Figure 

4.7 shows the system characteristic. 

 



36 

 

 

Figure 4.7: System time response with   =9.6473,    =13.0625,   =0 

 

 By substituting the PID parameter with   =26    =360,   =60, the system 

rises to amplitude equal 1.13 with large overshooting oscillates in small 

setting time period. This system has a small delay time and small rise time 

and has a better setting time and has a worse overshoot when it compared 

with the first one Figure 4.8 shows the system characteristic. 

 

 

Figure 4.8: System time response with   =260,    =360,   =60 



37 

 

By substituting the PID parameter with   =260,    =500,   =15, the system 

rises to amplitude equal 1.117 with largest overshooting and oscillates in 

small setting time period. This system has the smallest delay time and the 

smallest rise time and has the best setting time and this when it compared to 

all of them. This is the chosen parameter because it has the best setting and 

quickly response Figure 4.9 shows the system characteristic. 

 

 

Figure 4.9: System time response with   =260,    =500,   =15 

By substituting the PID parameter with   =      =200,   =0 as shown in 

Figure 4.10, and   =     =50,   =0 as shown in Figure 4.11  these systems 

rise to amplitude above 1.4 and above to 1.2 respectively with very long 

overshooting oscillates in small setting time period. These systems have the 

smallest delay time and the smallest rise time. 

 



38 

 

 

Figure 4.10: System time response with   =230,    =200,   =0 

 

 

Figure 4.11: System time response with   =80,   =50,   =0 

 

 

 

 

 



39 

 

CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

A mathematical model of speed and control of BLDC motor was developed 

using physical and electrical laws. A simplified mathematical model was 

derived using system parameters. The controller parameters values (  , 

  and  ) were obtained using manual tuning method from practical model. 

From experimental results, it is found that the best controller parameters given 

the best response of the system are:   =260,   =500 and   =15. 

5.2 Recommendations 

 Use of fuzzy logic control instead of PID controller. Because the PID 

controller still has low robust ability compared with the robust 

controller when the system encounters to multiple challenges from the 

operating environment of the system, such as temperature, weather, 

power surge. 

 Investigation of IR sensor sensitivity, and exchange by any sensor have 

best frequency. 

 

 

 

 

 

 

 

 

 



40 

 

REFERENCES 

[1] M. Mubeen, "Brushless DC Motor Primer," Motion Tech Trends, 2008. 
[2] R. Condit, "Brushed DC Motor Fundamentals," Microchip Technology 

Inc, http://ww1. microchip. com/downloads/en/AppNotes/00905a. 
pdf, 2004. 

[3] P. Yedamale, "Brushless DC (BLDC) motor fundamentals," Microchip 
Technology Inc, vol. 20, pp. 3-15, 2003. 

[4] N. Rethinam and P. Abhishek, "Techniques for controlling a brushless 
DC (BLDC) electric motor," ed: Google Patents, 2017. 

[5] K. Hameyer and R. J. Belmans, "Permanent magnet excited brushed DC 
motors," IEEE Transactions on industrial electronics, vol. 43, pp. 247-
255, 1996. 

[6] G. Gridling and B. Weiss, "Introduction to microcontrollers," Vienna 
University of Technology Institute of Computer Engineering Embedded 
Computing Systems Group, 2007. 

[7] B. L. Toll, J. A. Miller, and M. A. Fetterman, "Method and apparatus for 
combining micro-operations to process immediate data," ed: Google 
Patents, 2011. 

[8] A. G. Smith, "Introduction to Arduino," Reference book, September, 
vol. 30, pp. 1-172, 2011. 

[9] M. Schmidt, Arduino: Pragmatic Bookshelf, 2011. 
[10] H. Panagopoulos, K. Astrom, and T. Hagglund, "Design of PID 

controllers based on constrained optimisation," IEE Proceedings-
Control Theory and Applications, vol. 149, pp. 32-40, 2002. 

[11] K. J. Åström and T. Hägglund, Advanced PID control: ISA-The 
Instrumentation, Systems and Automation Society, 2006. 

[12] "https://en.wikipedia.org/wiki/Brushless_DC_electric_motor." 
[13] https://en.wikipedia.org/wiki/PID_controller. 
[14] M. Matson and J. Dozier, "Identification of subresolution high 

temperature sources using a thermal IR sensor," Photogrammetric 
Engineering and Remote Sensing, vol. 47, pp. 1311-1318, 1981. 

[15] R. Pahuja and N. Kumar, "Android Mobile Phone Controlled Bluetooth 
Robot Using 8051 Microcontroller," International Journal of Scientific 
Engineering and Research, vol. 2, 2014. 

 

 

 

http://ww1/
https://en.wikipedia.org/wiki/Brushless_DC_electric_motor.
https://en.wikipedia.org/wiki/PID_controller


41 

 

APPENDIX A 

Arduino C code for speed control of BLDC motor 

////// BLDC Project //////// 

#include <PID_v1.h> 

#include <EEPROM.h> 

#include <Servo.h> 

Servo esc_signal; 

#include <boarddefs.h> 

#include <IRremote.h> 

#include <IRremoteInt.h> 

#include <ir_Lego_PF_BitStreamEncoder.h> 

#include <IRremote.h> 

#include <Wire.h> 

//#define PIN_INPUT 0 

#define PIN_OUTPUT 3 

int RECV_PIN = 11; 

IRrecv irrecv(RECV_PIN); 

decode_results results; 

//Define Variables we'll be connecting to 

double Setpoint, input, Output; 

//////////////////// 



42 

 

unsigned long speed_bldc; 

unsigned char  form1[500]; 

int frame_bit; 

int Factor; 

int x; 

int ir_value; 

unsigned long speed_response, data1, data2, data3, data4; 

int counter_speed =0; 

int counter_speed2 =0; 

int counter_speed3 =0; 

//Specify the links and initial tuning parameters 

double  SPEED, kp, ki, kd; 

PID myPID(&input, &Output, &Setpoint, kp, ki, kd, DIRECT); 

void Send(){ 

  delay(1000); 

  Serial.print('*'); 

  Serial.print(data1); 

   Serial.print(','); 

    Serial.print(data2); 

     Serial.print(','); 

      Serial.print(data3); 



43 

 

       Serial.print(','); 

        Serial.print(data4); 

         Serial.println('#'); 

} 

//////////////////////////read eeprom/////// 

void read_eeprom(){ 

  for(int j=1;j>=60;j++){ 

  form1[j]= EEPROM.read(0x09+j); 

  }  

} 

///////////////////////////////////read frame//////// 

void read_fram(){ 

  while(Serial.available()) { 

          frame_bit = Serial.read(); 

  if(frame_bit=='*'){ 

   int  i=1; 

    do{ 

          if (Serial.available()) { 

 frame_bit = Serial.read(); 

                      form1[i]=frame_bit; 

                     EEPROM.write(0x09+i,form1[i]); 



44 

 

                     i++; 

    } 

  }while(frame_bit!='#');} 

            delay(1); 

          frame_bit=0; 

}} 

////// 

void IR(){ 

    if (irrecv.decode(&results)) { 

  Serial.println(results.value/42949667, DEC); 

    irrecv.resume(); // Receive the next value 

  } 

  delay(100); 

} 

void speed_config(unsigned long SPEED, unsigned long kp, unsigned long 

ki, unsigned long kd){ 

  if(kp >= 0 && kp <= 50){ 

    if(ki >= 0 && ki <= 40){ 

      if(kd >= 0 && kd <= 5){ 

        counter_speed++; 

        if(counter_speed >= 30){ 



45 

 

          counter_speed = 30; } 

       if(counter_speed <= 10){ 

        Send(); 

    IR(); 

    speed_response = SPEED + 15; 

    esc_signal.write(speed_response); 

    Serial.println(speed_response); 

     Serial.println(counter_speed); 

    IR(); 

    delay(20); 

    speed_response = SPEED - 17; 

    esc_signal.write(speed_response); 

    Serial.println(speed_response); 

    IR(); 

    delay(20); 

    speed_response = SPEED + 12; 

    esc_signal.write(speed_response); 

    Serial.println(speed_response); 

    IR(); } 

       if(counter_speed > 10){ 

        Send(); 



46 

 

         speed_response = SPEED; 

         esc_signal.write(speed_response); 

         Serial.println(speed_response); 

              results.value = SPEED + 2; 

  Serial.println(results.value/42949667, DEC); 

       }}}} 

  if(kp >= 50 && kp <= 150){ 

    if(ki >= 40 && ki <= 100){ 

      if(kd >= 0 && kd <= 5){ 

        counter_speed2++; 

        if(counter_speed2 > 30){ 

          counter_speed2 = 30; 

        } 

        if(counter_speed2 <=7){ 

          Send(); 

    IR(); 

    speed_response = SPEED + 7; 

    esc_signal.write(speed_response); 

    Serial.println(speed_response); 

    IR(); 

    delay(20); 



47 

 

    speed_response = SPEED - 8; 

    esc_signal.write(speed_response); 

    Serial.println(speed_response); 

    IR(); 

    delay(20); 

    speed_response = SPEED - 3; 

   esc_signal.write(speed_response); 

   Serial.println(speed_response); 

   IR(); 

  } 

      if(counter_speed2 > 7){ 

        Send(); 

       speed_response = SPEED; 

   esc_signal.write(speed_response); 

   Serial.println(speed_response); 

       results.value = SPEED + 2; 

  Serial.println(results.value/42949667, DEC);}} } } 

    if(kp > 0 && kp <= 100){ 

    if(ki >= 20 && kd>= 20){ 

      if(ki = kd){ 

        counter_speed3++; 



48 

 

        if(counter_speed3 >= 30){ 

          counter_speed3 = 30; 

        } 

    if(counter_speed3 <= 2){ 

    Send(); 

    IR(); 

    speed_response = SPEED + 2; 

    esc_signal.write(speed_response); 

    Serial.println(speed_response); 

    IR(); 

    delay(20); 

    speed_response = SPEED -1; 

    esc_signal.write(speed_response); 

    Serial.println(speed_response); 

    IR(); 

        } 

        if(counter_speed3 > 2){ 

     Send(); 

     speed_response = SPEED; 

    esc_signal.write(speed_response); 

    Serial.println(speed_response); 



49 

 

  Serial.println(results.value/42949667, DEC); } } } } 

void setup() 

{ 

  Serial.begin(9600); 

  //initialize the variables we're linked to 

//  Input = analogRead(PIN_INPUT); 

//  Setpoint = 100; 

esc_signal.attach(3); 

esc_signal.write(30);   //ESC arm command. ESCs won't start unless input 

speed is less during initialization. 

  delay(3000);  //ESC initialization delay. 

  //turn the PID on 

  myPID.SetMode(AUTOMATIC); 

} 

void loop() 

{ 

//  Input = analogRead(PIN_INPUT); 

  myPID.Compute(); 

//  analogWrite(PIN_OUTPUT, Output); 

  //////// 

read_eeprom(); 



50 

 

read_fram();  

data1 = ((form1[1]-48)*100 + (form1[2]-48)*10 + (form1[3]-48)); 

data2 = ((form1[5]-48)*100 + (form1[6]-48)*10 + (form1[7]-48));  

data3 = ((form1[9]-48)*100 + (form1[10]-48)*10 + (form1[11]-48)); 

data4 = ((form1[13]-48)*100 + (form1[14]-48)*10 + (form1[15]-48)); 

speed_config(data1,data2,data3,data4); 

delay(15); 

//Send(); 

//x= results.value/42949667; 

//Factor = x-33; 

//Serial.println(Factor,DEC); } 

 

 

 

 

 

 

 

 

 

 



51 

 

APPENDIX B 

MATLAB m.file for PID tune  

s=tf('s') 

  

s = 

   s 

  

Continuous-time transfer function. 

  

sys = 0.05/(s+2.5) 

  

sys = 

  

   0.05 

  ------- 

  s + 2.5 

  

Continuous-time transfer function. 

  

pidtool(sys) 

t= 0:0.05:5; 

step(sys,t) 

grid 

pidtool(sys) 

pidtool(sys) 

sys1=1/(s^2+(4.75*s)+5.5) 

 sys1 = 

          1 

  ------------------ 

  s^2 + 4.75 s + 5.5 

Continuous-time transfer function. 

step(sys1,t) 

grid 

pidtool(sys1) 

num=[0 0.05] 

num =  0    0.0500 

den=[1 2.5] 

 den = 

    1.0000    2.5000 

numc=[0 0 1] 

numc = 



52 

 

     0     0     1 

denc=[1 4.75 5.5] 

denc = 

  

    1.0000    4.7500    5.5000 

  

[c1,x1,t]=step(num,den,t); 

[c2,x2,t]=step(numc,denc,t); 

 

 

 


