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ABSTRACT 

 

The Optimal Power Flow Problem is a large and complicated non-linear 

optimization problem in power system transmission, design, planning and 

operation subjected to various types of constraints. This research focuses on the 

understanding of Optimal Power flow (OPF) using Linear programming (LP) 

optimization method, firstly, the OPF problem is discussed in a li terature manner 

in view of the historical review, problem formulation and the different methods 

that used in order to solve the OPF problem, then a detailed illustration of LP as 

an optimization tool, likewise, Linear programming Optimal Power Flow 

(LPOPF) using Piecewise linear approach and the full AC Incremental LP method 

illustration and mathematical formulation was presented, moreover a conceptual 

review of reactive power pricing and a proposed formulation of including the 

VAR cost function to the objective function was presented, lastly, a brief 

illustration about the Locational Marginal Prices (LMPs) and an implementation 

of both methods using POWERWORLD Simulator and Microsoft Excel on the 6-

bus test system using step by step procedure and the IEEE 30 bus system was 

made, and then a comparison between both methods before and after the OPF and 

before and after the inclusion of the VAR cost function was presented.  

 

 

 

 

 

 

 

 

 

 



V 

 

صل  خ  ت  س  م    

 ة  يو غير خط ة  ، معقدة  مضخ معضلة   عباره عن الكهربائية   التدفق الأمثل للقدرة   

لى عهذا البحث يركز . الكهربائية   م، تخطيط و تشغيل منظومات القدرة  ه في تصميت واج  

، أولاً، ة  الخطي ة  عن طريق إستخدام البرمج ة  الكهربائي ة  الأمثل للقدر تدفقوضيح و شرح الت

معضل للمعضله  ة  و تاريخي ة  ب مراجعات أدبيالأمثل  ة  الكهربائي ة  القدر تدفق ة  تم التطرق ل 

 ة  الأمثل للقدر لتدفقا ة  المستخدمه في حل مشكل ة  فوطرق الإستمثال الرياضي المختل

ً. تم شرح طريقة البرمجه الخطيه  ة  ومن ثم تمت صياغة المشكل ة  الكهربائي أداة في كرياضيا

ً تم شرح الصياغ ،هابسعلم الإستمثال الرياضي بإ على  ة  للطرق المبني ة  الرياضي ة  أيضا

 Piecewise Linear) ة  ربائيالكه ة  الأمثل للقدر تدفقلفي حل معضلة ا ة  الخطي ة  البرمج

approach and Incremental LP method ة  القدر تدفق( بالإضافه إلى توضيح نظري لتسعير 

 ةلى الدالإ ة  فعالالغير  ة  وتوليد القدر تدفقل ةمع مقترح لتضمين دالة التكلف ة  الفعالغير 

ً، شرح مبسط لتأثير إضافةالفعال ة)دالة تكلفة القدر ةالرئيسي لة حمل في ة أو إزا(، و أخيرا

 Locational) ة  العامه لتوليد و سريان القدر ة  على التكلف ة  الكهربائي ة  منظومة القدر

Marginal Prices( وبإستخدام برنامج المحاكاة .)POWERWORLD Simulator والبرنامج )

تتكون  (، تم تطبيق الطريقتين أعلاه على منظومتين، الأولىMicrosoft Excelالمهام )متعدد 

طريقتين الأمثل بإستخدام ال ة  القدر تدفقمن ستة قضبان توصيل و هنا تم شرح طريقة تطبيق 

توصيل لل ضيبتتكون من ثلاثين ق ة  الثاني ة  إتباع الخطوات بالتفصيل، المنظومهاب مع سبإ

و  ين قبلبالطريقتين و بين  ة  الطريقتين، و من ثم تمت المقارن يعليها تطبيق كلتوأيضا تم 

 .ة  الرئيسي ة  للدال ة  فعالالغير  ة  القدر تدفقل ة  بعد تضمين دالة التكلف
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Introduction: 

Before the invention of the optimal power flow, the economic dispatch 

(ED) was used to determine the optimum (best) way to share the real load between 

several thermal generating units having a total capacity greater than the 

generation required [1]. Best or optimum way incomes the scheduling of these 

units to meet the minimum generation cost with respect to a constraint that the 

total generation must equal to total demand plus losses. 

 Till the early of 1960s, and when the use of the network being close to 

their limit, line overloading became a real problem and threatening to the 

economical dispatched power systems, therefore a more constraints were 

introduced to insure the security of the system and then the optimal power flow 

(OPF) was presented. An optimal power flow is defined in [1] as “the 

determination of the complete state of the power system with an optimum 

operation within security constraints”. Optimum for the minimum fuel cost and 

security for operating at that optimal point without a violation of any constraint , 

these constraints may be represented as the real and reactive power generation 

limits, bus voltage limits, transformer tab ratios, phase shift limits, transmission 

line limits and possibly the emission constraints and this made the problem larger 

and more complicated. However, this is solved by using an optimization 

mathematical tool plus power flow calculation. 

Optimization is defined in [2] as “the process of minimizing or 

maximizing an objective functional”, this process is done through a mathematical 

optimization tool such as linear optimization, non-linear optimization, and many 

other techniques. Linear optimization is done through linear programming (LP) 

method, LP is one of the most powerful optimization methods due to its ability 
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to solve linear and non-linear objective functions through linearization and its 

ability to handle the inequality constraints very easily [3]. 

1.2 Objectives: 

 Illustration of LP OPF understanding. 

 To Obtain an optimum secured system. 

1.3 Statement of the Problem: 

Before stating the problem, the system is assumed to be all thermal power 

system network and running at the normal operating conditions with constant 

loads and constant losses.  

The optimal power flow (OPF) problem is a combination between 

economic dispatch (ED) and power flow (PF) therefore the ED and PF are solved 

simultaneously [3], the power flow problem is to determine the unknown 

parameters of all three types of buses; slack or reference bus, P-V or voltage 

regulated buses and P-Q or load buses, the total losses are part of the PF 

calculation and the ED problem is solved using an optimization tool, in the ED 

problem, in addition to the power balance constraints and the real power 

generation limits constraints, reactive power limits, other reactive power sources 

limits such as synchronous condensers, capacitor banks and FACTS devices, bus 

voltage limits, transmission line limits and transformer tab ratio and phase shift 

limits are employed and hence the problem is to minimize the total operating cost 

subject to all of these constraints. 

1.4 The Proposed Solution: 

Starting with a base power flow calculation and substituting the results 

into the ED objective function [3] where it is a polynomial in output power, 

usually in degree 2 in ($/hr.), the power flow problem is solved using N-R power 

flow solution [4], linearizing the objective function and linearizing the 

constraints, setting the variables limits and using the simplex LP optimization 

method to minimize the objective function, a new variables are calculated, 

substituting theses variables into the power flow as new set points and run the 
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power flow calculation. Repeating this process until there is no change in 

variables of the power flow or LP and thus the problem is solved.  

1.5 The Aim of this research: 

The Aim of this research is to illustrate the understanding of Linear 

Programming optimal power flow theoretically and mathematically, what is 

optimization? What is LP optimization? How to implement LP optimization in 

OPF? What is the benefits of running the system in an optimal secured way? In 

addition to make sure that the reader can get the full understanding of LPOPF 

and how to Implement LPOPF into any system. 

1.6 Research Methodology: 

The optimal power flow in general will be discussed in a literature manner 

and a quick historical review of the OPF and the optimization techniques that 

used in order to solve the OPF problem, the anticipated linear programming OPF 

will be introduced theoretically and mathematically including the concept of 

reactive power pricing and the locational marginal pricing and then an 

implementation in a simple power system network using two methods: Piecewise 

linear approach and incremental LP method and both are solved using step by 

step procedure in order to illustrate the understanding through incorporation of 

an LP solver (Microsoft Excel 2016) and POWERWORLD   Simulator, then an 

implementation on the IEEE 30 bus system will be introduced. Finally, a 

discussion and a comparison before and after LPOPF using both methods and 

before and after the addition of the VAR cost function to the objective  function. 

1.7 Thesis Layout: 

 CHAPTER II Literature Review: a brief review about the power 

flow problem, the ED dispatch problem and the OPF problem in a 

literature manner.  

 CHAPTER III Linear Programming Optimization: a detailed 

illustration of LP optimization methods such as the graphical 

method and the simplex method with illustrative examples. 

 CHAPTER IV Linear Programming Optimal Power Flow: 

illustration and mathematical formulation of the piecewise linear 
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approach, the full AC incremental method to solve the LPOPF, 

reactive power pricing and the locational marginal pricing (LMP). 

 CHAPTER V Implementation: implementation of piecewise linear 

approach and full AC incremental LPOPF using POWERWORLD   

Simulator and Microsoft Excel for the six-bus system example of 

[3] in detailed illustration, and then for the IEEE 30 bus system. 

 CHAPTER VI Conclusion and Future work: a conclusion of the 

research and a suggestion about that additional studies could be 

applied to this research. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.1 The Power Flow Problem: 

The power flow problem is to identify the unknown parameters of the 

power system network parts; the system is assumed to be operating under 

balanced condition and represented by a single line diagram. The power system 

network contains hundreds of buses and branches with impedances specified in 

per-unit on a common MVA base. 

The formulation of the network equations in the nodal admittance form 

results in a complex linear simultaneous equation in terms of node (bus) currents , 

thus the resulting equations become non-linear and must be solved through 

iterative techniques, the iterative techniques that used to solve the pow er flow 

equation are: 

 Gauss-Seidel method. 

 Newton-Raphson method. 

 Decoupled power flow solution. 

 Fast Decoupled power flow solution. 

Power flow (load flow) studies are very important for power system 

analysis and design, it is important for planning and operation such as 

optimization studies, sensitivity analysis, economic studies, voltage stability, 

transient stability and contingency analysis.   

As stated earlier power flow problem is to define the unknown parameters, 

these parameters are classified depending on the type of the buses  in the network. 

Four quantities are associated with each bus:  

 Bus voltage magnitude |V|. 

 The voltage Phase angle 𝛿. 

 Generator real power P. 
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 Generator reactive power Q. 

The types of buses are classified into: 

 The Slack bus: also, known as the swing bus, it is taken as the 

reference bus which takes the differences between the generated 

power and loads that caused by the losses in the network. In this 

bus, the voltage magnitude and the phase angle are specified, the 

real and reactive power to be calculated. 

 Load buses: also, known as the P-Q buses where the real and 

reactive powers are specified, the voltage magnitude and the phase 

angle to be calculated. 

 Regulated buses: also, known as the P-V buses and voltage 

controlled buses, these buses are the generator buses where the real 

power and voltage magnitude are specified and the limits  of the 

generator reactive power are specified, the real power and the phase 

angle to be calculated [4]. See [4] for a detailed information. 

2.2 Economic Dispatch: 

Optimal Dispatch or Economic Dispatch [3], [5], [6] is a process of 

determination the scheduling of generating units to minimize the total operating 

cost subject to a constraint that the total generation must equal to total demand 

plus losses. 

ED problem is a non-linear optimization problem subject to equality and 

inequality constraints, the non-linearity came from the input-output (I/O) 

generation cost function, the equality constraint is the power balance constraint 

and the inequality constraint is the generation capacity limits  constraint. 

Economic dispatch problem dates back form 1920s or even earlier since 

the idea of scheduling the generators to minimize the total operating cost became 

in mind. In 1930, various methods were used to find the most economic form for 

the network: “the base load method” and “the best point loading method”.   

The most economic results are gained by the use of the equal incremental  

method in the early of 1930s. The effect of losses is considered in the ED in 
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1940s and a method of combining the incremental fuel costs with the incremental 

transmission losses and the refinement of the loss formula was the next challenge 

till the appearance of the use of the coordination equations  [5] and defining a 

more accurate economic dispatch for the system considering the system losses 

and used till this day. For a more detailed comprehensive survey see [6], this 

paper covered more than 112 references about ED and OPF. 

2.3 The Optimal Power Flow: 

2.3.1 Introduction: 

The Optimal Power Flow (OPF) problem is first discussed by Carpentier 

in 1962 and took more than three decades to become a successful algorithm that 

could be applied in everyday use, the (OPF) problem is large and complicated 

non-linear optimization problem, it’s a combination between the economic  

dispatch and the power flow solution which they are solved simultaneously [3], 

[5].  

The objective of the OPF is to find an optimum secured system, optimum 

for minimizing total generation cost and total losses, secured for all operating 

parts that must run at their limits such as generators, bus-bars, transformers and 

transmission lines. 

Optimal power flow results in an optimal active and reactive power 

generated and bought at each bus, the bus (nodal) pricing is very important in the 

electricity market. These bus prices known as the locational marginal prices 

(LMPs), the basic definition of the LMP is the marginal increase in cost to the 

system to supply one additional MW of load at a bus in the system. The LMP 

values are affected by generator bid prices, transmission system congestion, the 

losses on the system and the electrical characteristics of the system [3], [7]. 

2.3.2 The Objective Function:                                                                                                                                     

The OPF problem is an optimization problem, consists of an objective 

function and constraints, usually, in OPF the optimization process is for 

minimizing the objective function, the objective function in OPF problem could 

be for:  



8 

 

 Minimization of the real power operating cost. 

 Minimization of real and reactive power operating cost. 

 Minimization of real and reactive power transmission losses. 

 Environmental effects minimization by the addition of the emission 

variables and constraints. 

The General form of the OPF objective function: 

                                                    Min f (𝑥, 𝑢) 

Subject to: 

𝜔(𝑥, 𝑢) = 0 

𝑔(𝑥, 𝑢) ≥ 0 

Where: 

 𝑥 ≡ a vector of the controlled variables such as the generator bus real 

power, the generator bus voltage magnitude, the transformer taps ratios and 

reactive power compensation devices. Note that the slack bus variables are not 

included. 

𝑢 ≡ a vector of the dependent variables such as the slack bus real and 

reactive power, the generator bus reactive power (in case of real power only 

OPF), the load bus voltage magnitude and the flow in transmission lines.  

𝜔(𝑥, 𝑢) ≡ the conventional ED power balance equality constraint that total 

generation must equal to the total load plus losses. 

𝑔(𝑥, 𝑢) ≡ the set of the inequality constraints such as all generators real 

and reactive power limits, all bus voltage limits, transformer tap ratio limits, 

other reactive power sources limits (shunt devices) and transmission line flow 

limits. 
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2.3.3 OPF Optimization Methods: 

In order to solve the OPF objective function, there are several methods 

that can be used to solve the OPF problem, these methods are classified into two 

main parts, conventional methods and intelligent methods: 

i. Conventional Methods: 

 The Gradient methods [5]. 

 The Hessian-based method. 

 The Newton-based method [5]. 

 The Linear Programming method [3], [5]. 

 The Quadratic Programming method [3]. 

 The Interior point method [3], [5]. 

ii. Intelligent Methods: 

 Artificial Neural Networks method. 

 Fuzzy Logic. 

 Evolutionary Programming. 

 Ant Colony. 

 Particle Swarm Optimization (PSO) methods. 

[8] made a detailed review about these methods history, definitions, merits 

and demerits, this paper guides the reader to many papers discussing the OPF 

optimization methods. 
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CHAPTER THREE 

 

LINEAR PROGRAMMING OPTIMIZATION 

 

3.1 Introduction: 

 Linear programming [9], [10] is a mathematical tool used to solve the 

optimization problems, it has the capability to solve linear objective functions 

and constraints and non-linear objective functions and constraints through 

linearization and it has the capability to easily handle the inequality constraints 

where this is one of Linear programming‘s powerful features [3]. 

 There are several LP techniques that might be used to solve the 

optimization problems such as the Graphical method, the Standard (Canonical) 

form solution and the Simplex method, the last one is the most widely used due 

to speed and simplicity. 

3.2 The linear programming is summarized mathematically as: 

Minimize: cTx                                (3.1)                 

Subjected to: Ax = b                   (3.2)                                                                     

x ≥ 0 

   x ∈ ℛ𝑛 

Where: 

c ≡ the 𝑛 × 1 vector of cost coefficients. 

x ≡ the  𝑛 × 1 vector of the unknown variables. 

A ≡ the 𝑚 × 𝑛 matrix of cost coefficients. 

b ≡ the right-hand side 𝑚 × 1 vector. 
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3.3 The Graphical method: 

Solving the following classical problem using LP Graphically: 

Minimize:  −𝑥1 − 3𝑥2 

Subjected to: 𝑥1 + 𝑥2 ≤ 6 

                   -𝑥1 + 2𝑥2 ≤ 8 

                 -2𝑥1 + 3𝑥2 ≥ 0 

                          𝑥1, 𝑥2 ≥ 0 

After drawing each set of constraints, the following figure is presented: 

 

Figure (3.1): LP graphically 

This graph is representing the graphical linear  programming optimization, 

from the graph, the linear constraints are bounded an area, this area is called the 

feasible region because in this region the optimal solution can be found within 

satisfaction of all constraints.  

The intersection of the three constraints  forms a two points, A and B, and 

the optimum solution is within these two points.  

For point A, Z = -15.333, and for point B, Z = -10.8, therefore the optimal 

solution at point A when 𝑥1 = 1.333 and 𝑥2 = 4.667 [9], [11]. 
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3.4 The standard form solution: 

In order to solve LP problems, problem should be formulated in a standard 

form, the standard form as in [3] is built to minimize not to maximize. This type 

of solution searches for the basic feasible solution and then for the optimal basic 

feasible solution by setting a number of sets and searching through these sets 

until the optimal solution to be found. 

The first step of the solution is converting all inequality constraints to 

equality constraints by adding a slack variable, for all greater than or equal, we 

will subtract a slack variable and for all less than or equal we will add a slack 

variable: 

a- {
∑ 𝑎𝑖𝑗𝑥𝑖𝑗𝑗 ≥ 𝑏𝑖                                      (3.3)

∑ 𝑎𝑖𝑗𝑥𝑖𝑗 − 𝑠𝑖 = 𝑏𝑖                             (3.4)𝑗
 

b- {
∑ 𝑎𝑖𝑗𝑥𝑖𝑗𝑗 ≤ 𝑏𝑖                                       (3.5)

∑ 𝑎𝑖𝑗𝑥𝑖𝑗 + 𝑠𝑖 = 𝑏𝑖                             (3.6)𝑗
 

Returning to the mathematical representation of the LP: 

 Minimize: cTx 

Subjected to: Ax = b 

                        x ≥ 0 

                     x ∈ ℛ𝑛 

The second step is dividing the [A] matrix into basic and non-basic 

variables, and dividing the 𝑥 and 𝑐 vectors into basic and non-basic variables as 

well. Hence: 

𝐴 ≡ [𝐴𝐵|𝐴𝑁] 

𝑥 ≡ [
𝑥𝐵
𝑥𝑁
] 

𝑐 ≡ [
𝑐𝐵
𝑐𝑁
] 
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Where:  

𝐴𝐵 ≡ non-singular 𝑛 × 𝑛 submatrix called the basis and contains the basic 

constraint coefficients. 

𝐴𝑁 ≡ the non-basic variables submatrix contains the slack variables coefficients.  

𝑥𝐵 ≡ the unknown vector of the basic variables. 

𝑥𝑁 ≡ the unknown vector of the non-basic variables. 

𝑐𝐵 ≡ the cost coefficients of the basic variables. 

𝑐𝑁 ≡ the cost coefficients of the non-basic variables.  

3.4.1 Defining the basic feasible region: 

To define the basic feasible solution, and then the optimal solution, a trial 

of all combinations of the basic and non-basic variables of the [A] matrix must 

be made in order to find the optimal set of variables. To find the number of the 

trial combinations: 

𝐶𝑚
𝑛 =

𝑛!

(𝑛 − 𝑚)!𝑚!
                                                                                                                   (3.7) 

Where:  

𝑚 ≡  the number of rows and 𝑛 ≡  the number of columns of the [A] matrix. And, 

to find the unknown vector [x], from [A][x] =[b], ∴ [𝑥] = [𝐴]−1[𝑏] 

This method is not useful for big problems, if we have an [A] matrix 

consists of 5 rows and 10 columns, the number of the trial sets is 252, and this is 

very big and usually problems are larger and has more complexity, therefore the 

Simplex method is presented. 

3.5 The Simplex Method: 

Invented by George Dantzig in 1947, the simplex method [3], [9], [12] 

procedure is to move from one basic feasible solution to another with the lower 

cost. 
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Starting with the basic LP problem: 

Minimize: 𝑧 = cTx 

Subjected to: Ax = b 

                        x ≥ 0 

                     x ∈ ℛ𝑛 

Dividing the [A] matrix, [c] and [x] into basic and non-basic parts, hence: 

Minimize: 𝑧 = 𝑐𝐵
 𝑇𝑥𝐵 + 𝑐𝑁

 𝑇𝑥𝑁                                                                                               (3.8) 

Subjected to: [𝐴𝐵  𝐴𝑁] [
𝑥𝐵
𝑥𝑁
]= b                                                                                          (3.9) 

∴ 𝐴𝐵  𝑥𝐵 + 𝐴𝑁 𝑥𝑁 = b  

∴ 𝐴𝐵  𝑥𝐵 = b − 𝐴𝑁 𝑥𝑁  

∴ 𝑥𝐵 = 𝐴𝐵
−1(b − 𝐴𝑁 𝑥𝑁)  

∴ 𝑧 = 𝑐𝐵
 𝑇𝐴𝐵

−1(b − 𝐴𝑁 𝑥𝑁) + 𝑐𝑁
 𝑇𝑥𝑁 = 𝑐𝐵

 𝑇𝐴𝐵
−1𝑏 − 𝑐𝐵

 𝑇𝐴𝐵
−1𝐴𝑁 𝑥𝑁 + 𝑐𝑁

 𝑇𝑥𝑁  

∴ 𝑧 = 𝑐𝐵
 𝑇𝐴𝐵

−1𝑏 − (𝑐𝐵
 𝑇𝐴𝐵

−1𝐴𝑁 + 𝑐𝑁
 𝑇)𝑥𝑁  

Or 𝑧 = 𝑐𝐵
 𝑇𝐴𝐵

−1𝑏 + (𝑐𝑁
 𝑇 − 𝑐𝐵

 𝑇𝐴𝐵
−1𝐴𝑁)𝑥𝑁 

Let:  𝑐𝑁
 𝑇 − 𝑐𝐵

 𝑇𝐴𝐵
−1𝐴𝑁 = 𝑟𝑁

  𝑇 

∴ the objective function become: 

Minimize: 𝑧 = 𝑐𝐵
 𝑇𝐴𝐵

−1𝑏 + 𝑟𝑁
  𝑇𝑥𝑁                                                                                    (3.10) 

Subjected to: 𝑥𝐵 = 𝐴𝐵
−1(b − 𝐴𝑁 𝑥𝑁)                                                                            (3.11) 

𝑥𝐵, 𝑥𝑁 ≥ 0 

Where 𝑟𝑁
  𝑇 ≡ the reduced cost row in the LP Tableau. 

In this form, the objective function become a function of the non-basic 

variables and the basic variables become a function of the non-basic variables. 
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3.5.1 The LP Tableau: 

The LP tableau consists of the elements of the [A] matrix plus the right-

hand side vector [b] and the reduced cost row, it is designated as the [Y] matrix. 

Unlike the standard form solution where slack variables are taken as the non-

basic variables, in the [Y] matrix the slack variables are taken as the basic 

variables. 

In the [Y] matrix the basic part is an identity matrix, and the inverse of 

any identity matrix equals to the identity matrix itself ∴ 𝐴𝐵 = 𝐴𝐵
−1

 and by this, 

𝐴𝐵
−1

 can be eliminated from the reduced cost equation to become: 

𝑟𝑁
  𝑇 = 𝑐𝑁

 𝑇 − 𝑐𝐵
 𝑇𝐴𝑁                                                                                                                   (3.12) 

The general form of the [Y] matrix is: 

𝑥1 𝑥2 𝑥3 𝑥𝑛 𝑠1 𝑠2 𝑠3       b 

𝑎11 𝑎12 𝑎13 𝑎1𝑛 1 0 0 𝑏1 

𝑎21 𝑎22 𝑎23 𝑎2𝑛 0 1 0 𝑏2 

𝑎31 𝑎32 𝑎33 𝑎3𝑛 0 0 1 𝑏3 

𝑟1 𝑟2 𝑟3 𝑟𝑛 0 0 0 −𝑐𝐵
 𝑇𝑏 

 Non-Basic    Basic   

 

3.5.2 Pivoting: 

Pivoting is used to move from one basic solution to another by changing 

the set of basic variables.  

3.5.3 Pivoting steps: 

 Identify the pivot element 𝑦𝑖𝑗: 

And this is made through identifying the row element і and the column  

element ј, to identify the column element ј, we choose the most negative value at 

the reduced cost row and locate this value at which column, and then ј is 

identified.  

And the row element і is identified through the epsilon test: 

𝜖 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚{
𝑏𝑖
𝑦𝑖𝑗

: 𝑦𝑖𝑗 > 0}                                                                                             (3.13) 
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Here a division of each element at the right-hand side vector [b] by the 

corresponding element of the identified column results in a different set of values, 

locate the most minimum value at which row and then the і element is identified. 

 Normalize the row of the pivot to make 𝑦𝑖𝑗 = 1. 

 Make all the elements of the pivot column equal to zero except 𝑦𝑖𝑗. 

3.5.4 The Simplex Algorithm: 

 Start with a basic feasible solution. 

 Formulate the [A] matrix and the right-hand side vector [b], calculate the 

reduced cost and then formulate the [Y] matrix. 

 If the reduced cost 𝑟𝑖 ≥ 0 stop, otherwise: 

 Identify the pivot element by finding the most negative cost to identify ј 

and use 휀 test to determine the variable that should leave the basis  і. 

 Pivot on element 𝑦𝑖𝑗, repeat until 𝑟𝑖 ≥ 0. 

In case of greater than or equal (≥) constraints, the Simplex Big M method 

must be used to obtain the optimal solution, and in case of a negative right hand 

side value, multiply the constraint equation by -1 and change the sign of the 

inequality, if it is less than or equal (≤) then it must be changed into great than 

or equal (≥) and vice versa. 

In both LP OPF solution methods the Simplex algorithm is used, and 

problem still huge, where for example in the full AC OPF, the number of the 

slack variables depends on the number of the inequality constraints and the full 

AC OPF has numerous number of inequality constraints; could be thousands, and 

thus a huge [Y] matrix will exist, how much will take to pivot on each non-basic 

variable? Therefore, the OPF problem is a very big and complicated problem. 
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CHAPTER FOUR 

 

LINEAR PROGRAMMING OPTIMAL POWER FLOW 

 

4.1 Introduction: 

As stated in Chapter two, the OPF problem is a combination between ED 

and PF calculation in which by calculating the dependent and control variables  

of the objective function through the power flow calculation and solve the 

optimization problem as same as solved through the ED, several methods are used 

to solve this problem such as non-linear methods, linear methods…etc., as stated 

in [13] the non-linear methods are suffering from some difficulties, lambda 

iteration and Newton based methods have been found to converge very fast but 

has difficulties in handling the inequality constraints, the gradient method is 

suffering from both convergence speed and inequality constraints, but these 

drawbacks did not exist in LP methods.  

Linear programming as stated earlier is a very useful technique to be used, 

where it has no difficulties with both inequality constraints or convergence speed 

as observed in the previous chapter.  

In OPF problem, two different methods of solution using LP optimization 

can be used, the Piecewise (PW) Linear approach method and the full AC Linear 

Programming method, in the Piecewise approach the linearization is done through 

approximating the input-output (I/O) cost function [5] (the objective function) by 

straight line segments; in the full AC incremental  LP method the linearization is 

done through the first order Taylor series expansion and solves the OPF problem 

through either the decoupled set of AC equation or the full AC power  flow 

equations. Before the formulation of both methods, the general formulation of 

the OPF problem is presented. 
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4.2  The General Formulation of the Optimal Power Flow: 

4.2.1 The Economic Dispatch Formulation: 

The ED solves the following problem: 

 Minimize the generation cost function: 

𝑚𝑖𝑛∑𝐹𝑖(𝑃gen𝑖)

𝑛

𝑖=1

                                                                                                                      (4.1) 

Where: 𝐹𝑖(𝑃gen𝑖) = 𝑎 + 𝑏𝑃gen𝑖 + 𝑐𝑃gen𝑖
2 and a, b and c are cost coefficients. 

 Subjected to the equality constraint: 

∑𝑃gen𝑖

𝑁

𝑖=1

= 𝑃Total load + 𝑃Total losses                                                                                          (4.2) 

 Subjected to the inequality constraint: 

𝑃gen𝑖
min ≥ 𝑃gen𝑖 ≥ 𝑃gen𝑖

max , for 𝑖 = 1,2,3, … , 𝑛                                                             (4.3) 

The ED formulation in a compacted form: 

𝑓(𝑃gen, 𝑢) 

Subject to:                       𝜔 (𝑃gen, 𝑢) = 0 

𝑔 (𝑃gen, 𝑢) ≥ 0 

Where: 

𝑃gen = [

𝑃gen1
⋮

𝑃gen𝑛

] , 𝑎𝑛𝑑 𝑢 ≡ 𝑃𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑, 𝑃𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠𝑒𝑠, 𝑃gen𝑖
min and 𝑃gen𝑖

max  

𝜔 =∑𝑃𝑔𝑒𝑛𝑖

𝑁

𝑖=1

= 𝑃𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 + 𝑃𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠𝑒𝑠, 𝑔 = 𝑃gen𝑖
min ≤ 𝑃gen𝑖 ≤ 𝑃gen𝑖

max 

 



19 

 

4.2.2 The Optimal Power Flow Formulation combining the 

Economic dispatch and the Power Flow: 

 The objective function: 

min∑𝐹𝑖(𝑃gen𝑖)

𝑛

𝑖=1

, Same as ED 

 Subjected to the equality constraint: 

 ∑𝑃gen𝑖

𝑁

𝑖=1

= 𝑃Total load + 𝑃Total losses, Same as ED 

 Subjected to the inequality constraints: 

𝑃gen𝑖
min ≤ 𝑃gen𝑖 ≤ 𝑃gen𝑖

max 

𝑄gen𝑖
min ≤ 𝑄gen𝑖 ≤ 𝑄gen𝑖

max 

𝑃𝑖𝑗
min ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗

max 

Or, 𝑆𝑖𝑗
min ≤ 𝑆𝑖𝑗 ≤ 𝑆𝑖𝑗

max 

𝑉𝑖
min ≤ 𝑉𝑖 ≤ 𝑉𝑖

max, for 𝑖 = 1,2,3, … , 𝑛 

Where 𝑃gen𝑖, 𝑄gen𝑖, 𝑉𝑖, 𝑃𝑖𝑗 and 𝑆𝑖𝑗 are the real generated power at generator 

𝑖, the reactive generated power at generator 𝑖, the voltage at bus 𝑖, the real power 

flow at line 𝑖𝑗 and the complex or the apparent power flow at line 𝑖𝑗 respectively. 

These variables are calculated through the power flow solution [4]. 

4.2.3 The Power Flow Equation: 

𝑃gen𝑖 − 𝑗𝑄gen𝑖
𝑉𝑖
∗ = 𝑉𝑖∑𝑦𝑖𝑗

𝑛

𝑗=0
𝑖≠𝑗

−∑𝑦𝑖𝑗𝑉𝑗

𝑛

𝑗=0
𝑖≠𝑗

                                                                                  (4.4) 

∴ 𝑃gen𝑖 − 𝑗𝑄gen𝑖 = 𝑉𝑖
∗

[
 
 
 
 

𝑉𝑖∑𝑦𝑖𝑗

𝑛

𝑗=0
𝑖≠𝑗

−∑𝑦𝑖𝑗𝑉𝑗

𝑛

𝑗=0
𝑖≠𝑗 ]

 
 
 
 

                                                                     (4.5) 
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∴ 𝑃gen𝑖 = ℜ

{
 
 

 
 

𝑉𝑖
∗

[
 
 
 
 

𝑉𝑖∑𝑦𝑖𝑗

𝑛

𝑗=0
𝑖≠𝑗

−∑𝑦𝑖𝑗𝑉𝑗

𝑛

𝑗=0
𝑖≠𝑗 ]

 
 
 
 

}
 
 

 
 

                                                                           (4.6) 

And 𝑄gen𝑖 = −ℑ

{
 
 

 
 

𝑉𝑖
∗

[
 
 
 
 

𝑉𝑖∑𝑦𝑖𝑗

𝑛

𝑗=0
𝑖≠𝑗

−∑𝑦𝑖𝑗𝑉𝑗

𝑛

𝑗=0
𝑖≠𝑗 ]

 
 
 
 

}
 
 

 
 

                                                                  (4.7) 

𝑃𝑖𝑗 = ℜ {𝑉𝑖 [(𝑉𝑖 − 𝑉𝑗)𝑦𝑖𝑗 + 𝑉𝑖
2𝑦shunt𝑖𝑗]

∗

}                                                                            (4.8) 

𝑆𝑖𝑗 = abs {𝑉𝑖 [(𝑉𝑖 − 𝑉𝑗)𝑦𝑖𝑗 + 𝑉𝑖
2𝑦shunt𝑖𝑗]

∗

}                                                                         (4.9) 

Where: 

𝑦𝑖𝑗 ≡ the 𝑖𝑗 term of the admittance matrix. 

 𝑉𝑖
∗ ≡ the conjugate value of the complex voltage at bus 𝑖. 

𝑦shunt𝑖𝑗 ≡ the shunt charging admittance to ground of line 𝑖𝑗.  

Therefore, the OPF equality constraint is written as: 

 The equality constraint: 

(𝑃gen𝑖 − 𝑃load𝑖) − 𝑗(𝑄gen𝑖 − 𝑄𝑙𝑜𝑎𝑑𝑖) = 𝑉𝑖
∗

[
 
 
 
 

𝑉𝑖∑𝑦𝑖𝑗

𝑛

𝑗=0
𝑖≠𝑗

−∑𝑦𝑖𝑗𝑉𝑗

𝑛

𝑗=0
𝑖≠𝑗 ]

 
 
 
 

                               (4.10) 

𝑃gen𝑖 − 𝑃load𝑖 = ℜ

{
 
 

 
 

𝑉𝑖
∗

[
 
 
 
 

𝑉𝑖∑𝑦𝑖𝑗

𝑛

𝑗=0
𝑖≠𝑗

−∑𝑦𝑖𝑗𝑉𝑗

𝑛

𝑗=0
𝑖≠𝑗 ]

 
 
 
 

}
 
 

 
 

                                                              (4.11) 

𝑄gen𝑖 − 𝑄load𝑖 = −ℑ

{
 
 

 
 

𝑉𝑖
∗

[
 
 
 
 

𝑉𝑖∑𝑦𝑖𝑗

𝑛

𝑗=0
𝑖≠𝑗

−∑𝑦𝑖𝑗𝑉𝑗

𝑛

𝑗=0
𝑖≠𝑗 ]

 
 
 
 

}
 
 

 
 

                                                         (4.12) 
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As observed, the equality constraint changed from total generation must 

equal to total load plus total losses as in ED, into total generation minus total 

load at bus 𝑖 must equal to the power flow into bus 𝑖, because the power flow 

calculation results in generation output equal to total load plus losses as required, 

therefore there is no need to calculate the losses or the generator incremental  

losses as was in conventional ED. 

The OPF formulation in a compacted form: 

𝑓(𝑃gen, 𝑢) 

Subject to:                       𝜔 (𝑃gen, 𝑢) = 0 

𝑔 (𝑃gen, 𝑢) ≥ 0 

Where: 

The vector 𝑢 now is containing the generator cost function parameters plus 

all the power flow solution parameters such as the generator real and reactive 

power limits, the admittance matrix, the fixed voltages of the P-V busses, the 

reference bus fixed voltage magnitude and phase angle.   

𝜔 (𝑃gen, 𝑢) = 0 representing the power flow admittance matrix equations. 

𝑔 (𝑃gen, 𝑢) ≥ 0 containing all inequality constraints limits, such as 

generator real and reactive power limits, power flow transmission equations and 

bus voltage limits. 

This formulation is implemented in the full AC optimal power flow, the 

Piecewise linear approach OPF is as well iterates between the ED and the PF but 

it differs from the full AC OPF in several aspects . However, in the next section 

the PW LPOPF (real power OPF) is introduced. 
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4.3 Linear Programming Optimal Power flow using Piecewise Linear 

Approach: 

As in [14] “the piecewise approach can fit an arbitrary curve convexly to 

any desired accuracy with a sufficient number of segments”. In LPOPF the 

piecewise approach is used to fit the non-linear I/O cost curve (figure 4.1.a) into 

fixed straight line segments (figure 4.1.b) and therefore the objective function 

becomes linear objective function. 

 

  

                             

 

  

    

   

 

 

 Figure (4.1.a): I/O cost curve.             Figure (4.1.b): PW I/O cost curve. 

                                                      

  

 

  

  

 

 

Figure (4.1.c): I/O IC curve.                Figure (4.1.d): PW I/O IC curve. 
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4.3.1 Formulation of the Piecewise Linear Programming: 

The first step of formulating the piecewise LP OPF objective function is 

by converting the I/O cost curve into straight line segments through break points: 

The break point step =
Max.  limit – Min.  Limit

No. of the desired segments
                                                  (4.13) 

The cost curve is representing the relation between the fuel input in 

(MBtu/h) and the output power in MW, the above figure is a plot for a unit having 

a capacity limits from 50MW to 200MW (Figure 4.1.a), the above equation is 

used to change the relation into linear relation by converting the I/O curve into 

six straight line segments (Figure 4.1.b), the same process is used to convert the 

I/O incremental cost curve (Figure 4.1.c) into straight line segments (figure 

4.1.d), each segment can be represented as Pi1, Pi2, Pi3,…,Pin, and each segment 

will have a limit which is given by: 

Segment Limit = BP𝑖+1 − BP𝑖                                                                                            (4.14) 

And each segment will have a slope designated as 𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3….𝑠𝑖𝑛, the 

slope of the generator cost curve segments is given by: 

𝑠𝑖𝑗 =
𝐹𝑖(𝑃𝑖𝑗

𝑚𝑎𝑥) − 𝐹𝑖(𝑃𝑖𝑗
𝑚𝑖𝑛)

𝑃𝑖𝑗
𝑚𝑎𝑥 − 𝑃𝑖𝑗

𝑚𝑖𝑛
                                                                                                (4.15) 

∴The linearized objective function is: 

𝐹𝑖(𝑃𝑖) = 𝐹𝑖(𝑃𝑖
𝑚𝑖𝑛) + 𝑠𝑖1𝑃𝑖1 + 𝑠𝑖2𝑃𝑖2 + 𝑠𝑖3𝑃𝑖3 +⋯+ 𝑠𝑖𝑛𝑃𝑖𝑛                                        (4.16) 

Where: 

 𝐹𝑖(𝑃𝑖
𝑚𝑖𝑛) = 𝑎 + 𝑏𝑃𝑖

𝑚𝑖𝑛 + 𝑐(𝑃𝑖
𝑚𝑖𝑛)2 

For the new values of the generation power Pi: 

 𝑃𝑖 = 𝑃𝑖
𝑚𝑖𝑛 + 𝑃𝑖1 + 𝑃𝑖2 + 𝑃𝑖3 +⋯+ 𝑃𝑖𝑛                                                             (4.17) 
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4.3.2 Optimal Power Flow Problem Formulation using Piecewise LP 

method: 

Minimize: 𝐹𝑖(𝑃𝑖) =∑𝐹𝑖(𝑃𝑖
𝑚𝑖𝑛) +∑𝑠𝑖𝑗𝑃𝑖𝑗

𝑛

𝑖=1
𝑗=1

                                                                (4.18) 

Subjected to: ∑ 𝑃𝑖𝑗
𝑛
𝑖=1
𝑗=1

=  Total generation + losses - ∑ 𝑃𝑖
𝑚𝑖𝑛𝑛

𝑖=1                           (4.19) 

𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗
𝑚𝑎𝑥 

𝑃𝑖𝑗 ≥ 0 

Where: 

𝑃𝑙𝑜𝑎𝑑 ≡ total load of the system. 

𝑃𝑙𝑜𝑠𝑠 ≡ total transmission losses. 

∑ 𝑃𝑖𝑗
𝑛
𝑖=1
𝑗=1

=  Total generation + losses - ∑ 𝑃𝑖
𝑚𝑖𝑛𝑛

𝑖=1 ≡ power balance equality 

constraint. 

𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗
𝑚𝑎𝑥 and 𝑃𝑖𝑗 ≥ 0 ≡ the inequality constraints for each segment. 

4.3.3 Solution Algorithm for Piecewise LP OPF: 

 Start with a base power flow solution. 

 Linearize the objective function using equation (4.13), (4.14) and 

(4.15). 

 Set the control variables limits (the equality and inequality 

constraints). 

 Formulate the problem in an LP solver and solve. 

 Substitute the LP results into the power flow as new set points and 

run a power flow solution. 

 No change in variables and no transmission overloads, stop. 

Otherwise: 

 Set the new variables limits. 
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 No change in variables but transmission overload, use the 

generation shift factors to relief the overloading. 

 Add the new transmission constraints. 

 Repeat until there is no change in variables of power flow or LP. 

 In this method the control variables are the real powers only, where the 

iteration process between the power flow and LP are just for the real powers and 

the reactive power (voltages) are adjusted through the AVR [4], but PW linear 

approach may go beyond than (real OPF) such as in [15], however, this method 

has a very fast rate of convergence but solution may vary with respect to the 

number of segmentation [3], therefore the number of segments must be specified 

correctly to meet the most accurate approximation to the non-linear objective 

function in order to get the most optimal solution. 

The full AC optimal power flow more complicated where in addition to 

generation real power limits and transmission limits, the reactive power limits 

and the bus voltage limits are employed as observed in section 4.2.1. 

4.4 The Full AC Linear Programming Optimal power flow- The Iterative LP 

Method: 

The full ACOPF iterative LP method or the incremental LP method as in 

[13] is formulated by “linearizing the nonlinear objective function and constraints 

of the OPF AC power flow formulation around the current operating point using 

a first order Taylor series expansion in order to create a convex LP problem”, and 

since the real and reactive power constraints are not well represented by linear  

functions, a suggested solution to this drawback is presented in [13] as “The real 

and reactive power equality constraints, however, are not well represented by 

linear functions. In order for the linearized problem to accurately model the 

nonlinear problem, the movement of each variable must be restricted to a small 

region during each iteration, and the problem must be re-linearized after each 

iteration”, this small region is suggested as a window as stated in [3] “This 

smaller set of limits can be referred to as a window within which the variables 

are allowed to move on any LP execution. At the end of that execution, the limits 

of the window are moved but always stay within the limits. Thus, the LP solves 

one small region about a starting point, then re-linearizes about the solution and 
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solves another LP within a small region about the solution”. This method 

possesses speed and flexibility during calculation and produces reliable results 

for all types of systems which is called the trust region method, however, the 

adjustment of the window size and implementation of trust region method is not 

included in this research, for more information see [13]. 

4.4.1 Problem Formulation: 

In the full AC power flow using Newton-Raphson method [4], the 

following problem is solved: 

[
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝜕𝑃2
𝜕𝛿2

⋯
𝜕𝑃𝑛
𝜕𝛿2

⋮ ⋱ ⋮
𝜕𝑃2
𝜕𝛿𝑛

⋯
𝜕𝑃𝑛
𝜕𝛿𝑛]

 
 
 
 

[
 
 
 
 
𝜕𝑃2
𝜕𝑉2

⋯
𝜕𝑃𝑛
𝜕𝑉2

⋮ ⋱ ⋮
𝜕𝑃2
𝜕𝑉𝑛

⋯
𝜕𝑃𝑛
𝜕𝑉𝑛]

 
 
 
 

[
 
 
 
 
𝜕𝑄2
𝜕𝛿2

⋯
𝜕𝑄𝑛
𝜕𝛿2

⋮ ⋱ ⋮
𝜕𝑄2
𝜕𝛿𝑛

⋯
𝜕𝑄𝑛
𝜕𝛿𝑛 ]

 
 
 
 

[
 
 
 
 
𝜕𝑄2
𝜕𝑉2

⋯
𝜕𝑄𝑛
𝜕𝑉2

⋮ ⋱ ⋮
𝜕𝑄2
𝜕𝑉𝑛

⋯
𝜕𝑄𝑛
𝜕𝑉𝑛 ]

 
 
 
 

]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
∆𝛿2
⋮

∆𝛿𝑛
∆𝑉2
⋮

∆𝑉𝑛]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑃scheduled2 − 𝑃2(𝑉, 𝛿)

⋮
𝑃scheduled𝑛 − 𝑃𝑛(𝑉, 𝛿)

𝑄scheduled2 − 𝑄2(𝑉, 𝛿)

⋮
𝑄scheduled𝑛 − 𝑄𝑛(𝑉, 𝛿)]

 
 
 
 
 
 

               (4.20) 

Equation (4.20) in a compacted form: 

[𝓙] [
∆𝛿
∆𝑉

] = [
∆𝑃gen
∆𝑄gen

]                                                                                                               (4.21) 

Where: 

𝒥 ≡ the Jacobean matrix.  

∆𝑃 & ∆𝑄 ≡ are the change in power due to the change of voltage 

magnitudes ∆𝑉 and their phase angles ∆𝛿. 

In the Incremental LP method and since using the first order Taylor series 

expansion, the optimization process will be written in terms of ∆𝑃gen, ∆𝑄gen, ∆𝑉 

and ∆𝛿 where: 

𝐹𝑖(𝑃gen𝑖) =  𝐹𝑖(𝑃gen𝑖) + 𝐹𝑖(𝑃gen𝑖)
′
(𝑃scheduled𝑖 − 𝑃gen𝑖(𝑉, 𝛿))                                         (4.22) 
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The LP OPF should be started by a base power flow solution, here the 

power flow solution is designated as power flow zero (PF0) and the values of the 

base power flow solution are designated as: 

𝑃gen
0 , 𝑄gen

0 , 𝑉0 and 𝛿0 

The linearized objective function of the incremental LPOPF is:  

min∑[𝐹𝑖(𝑃gen𝑖
0 ) +

d𝐹𝑖(𝑃gen𝑖
0)

d𝑃gen𝑖
0 ∆𝑃gen𝑖]

𝑛

𝑖=1

                                                                           (4.23) 

Where: 

𝐹𝑖(𝑃gen𝑖
0 ) ≡ the objective function in terms of the base PF solution values. 

d𝐹𝑖(𝑃gen𝑖
0)

d𝑃gen𝑖
0 ≡ the incremental cost function in terms of the base PF solution.  

∵  𝐹𝑖(𝑃gen𝑖
0 ) is considered to be as constant, it can be eliminated from the 

objective function, therefore the linearized objective function becomes:  

min∑[
d𝐹𝑖(𝑃gen𝑖

0)

d𝑃gen𝑖
0 ∆𝑃gen𝑖]                                                                                                (4.24)

𝑛

𝑖=1

 

In order to linearize the real and reactive power equality constraints, the 

constraints of the power flow solution are formulated similar to the expression of 

the N-R method except that all variables are included even the slack bus 

variables, and there is no need for the inversion of the Jacobean matrix to 

calculate ∆𝛿𝑖 and ∆𝑉𝑖 since the LP optimization is responsible of calculating these 

values [3]. The linearized real and reactive power equality constraints are: 

[
 
 
 
 
 
 
 
 

[
 
 
 
𝜕𝑃1

𝜕𝛿1
⋯

𝜕𝑃𝑛

𝜕𝛿1

⋮ ⋱ ⋮
𝜕𝑃1

𝜕𝛿𝑛
⋯

𝜕𝑃𝑛

𝜕𝛿𝑛]
 
 
 

[
 
 
 
𝜕𝑃1

𝜕𝑉1
⋯

𝜕𝑃𝑛

𝜕𝑉1

⋮ ⋱ ⋮
𝜕𝑃1

𝜕𝑉𝑛
⋯

𝜕𝑃𝑛

𝜕𝑉𝑛]
 
 
 

[
 
 
 
𝜕𝑄1

𝜕𝛿1
⋯

𝜕𝑄𝑛

𝜕𝛿1

⋮ ⋱ ⋮
𝜕𝑄1

𝜕𝛿𝑛
⋯

𝜕𝑄𝑛

𝜕𝛿𝑛]
 
 
 

[
 
 
 
𝜕𝑄1

𝜕𝑉1
⋯

𝜕𝑄𝑛

𝜕𝑉1

⋮ ⋱ ⋮
𝜕𝑄1

𝜕𝑉𝑛
⋯

𝜕𝑄𝑛

𝜕𝑉𝑛]
 
 
 

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿𝑛
∆𝑉1
⋮

∆𝑉𝑛 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑃scheduled1 − 𝑃1(𝑉, 𝛿)

⋮
𝑃scheduled𝑛 − 𝑃𝑛(𝑉, 𝛿)

𝑄scheduled1 − 𝑄1(𝑉, 𝛿)

⋮
𝑄scheduled𝑛 − 𝑄𝑛(𝑉, 𝛿)]

 
 
 
 
 
 

         (4.25)  

Where ∆𝛿1, ∆𝑉1 , ∆𝑃load𝑖 and ∆𝑄load𝑖 are taken as constants and equal to zero. 
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The inequality constraints are formulated as: 

 The generator real power limits: 

𝑃gen𝑖
min − 𝑃gen𝑖

0 ≤ ∆𝑃gen𝑖 ≤ 𝑃gen𝑖
max − 𝑃gen𝑖

0  (∀ generators 𝑖) 

 The generator reactive power limits: 

𝑄gen𝑖
min − 𝑄gen𝑖

0 ≤ ∆𝑄gen𝑖 ≤ 𝑄gen𝑖
max − 𝑄gen𝑖

0  (∀ generators 𝑖) 

 The bus voltage magnitude limits: 

𝑉𝑖
min − 𝑉𝑖

0 ≤ ∆𝑉𝑖 ≤ 𝑉𝑖
max − 𝑉𝑖

0  (∀ buses 𝑖) 

 The phase angle limits: 

𝛿𝑖
min − 𝛿𝑖

0 ≤ ∆𝛿𝑖 ≤ 𝛿𝑖
max − 𝛿𝑖

0 (∀ buses 𝑖) 

 Transformer tap ratio limits: 

𝑡𝑖𝑗
min − 𝑡𝑖𝑗

0 ≤ ∆𝑡𝑖𝑗 ≤ 𝑡𝑖𝑗
max − 𝑡𝑖𝑗

0 (∀ transformer 𝑖𝑗) 

4.4.2 Full ACOPF Incremental LP method General Formulation: 

min∑[
d𝐹𝑖(𝑃gen𝑖

0)

d𝑃gen𝑖
0 ∆𝑃gen𝑖]

𝑛

𝑖=1

 

Subject to: 

∑
𝜕𝑃𝑖(𝑉, 𝛿)

𝜕𝑉𝑖

𝑛

𝑖=1

∆|𝑉𝑖| +∑
𝜕𝑃𝑖(𝑉, 𝛿)

𝜕𝛿𝑖

𝑛

𝑖=1

∆|𝛿𝑖| +∑
𝜕𝑃𝑖
𝜕𝑡𝑖𝑗

𝑛

𝑖=1

∆𝑡𝑖𝑗 = ∆𝑃gen𝑖 

∑
𝜕𝑄𝑖(𝑉, 𝛿)

𝜕𝑉𝑖

𝑛

𝑖=1

∆|𝑉𝑖| +∑
𝜕𝑄𝑖(𝑉, 𝛿)

𝜕𝛿𝑖

𝑛

𝑖=1

∆|𝛿𝑖| +∑
𝜕𝑄𝑖
𝜕𝑡𝑖𝑗

𝑛

𝑖=1

∆𝑡𝑖𝑗 = ∆𝑄gen𝑖 

∑𝑃gen𝑖
0 + ∆𝑃gen𝑖

𝑁gen

𝑖=1

= ∑𝑃gen𝑖

𝑁gen

𝑖=1

+ 𝑃loss 

∑Qgen𝑖
0 + ∆Qgen𝑖

𝑁gen

𝑖=1

= ∑Qgen𝑖

𝑁gen

𝑖=1

+ Qloss 

𝑃gen𝑖
min − 𝑃gen𝑖

0 ≤ ∆𝑃gen𝑖 ≤ 𝑃gen𝑖
max − 𝑃gen𝑖

0  (∀ generators 𝑖) 
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𝑄gen𝑖
min − 𝑄gen𝑖

0 ≤ ∆𝑄gen𝑖 ≤ 𝑄gen𝑖
max − 𝑄gen𝑖

0  (∀ generators 𝑖) 

𝑉𝑖
min − 𝑉𝑖

0 ≤ ∆𝑉𝑖 ≤ 𝑉𝑖
max − 𝑉𝑖

0  (∀ buses 𝑖) 

𝛿𝑖
min − 𝛿𝑖

0 ≤ ∆𝛿𝑖 ≤ 𝛿𝑖
max − 𝛿𝑖

0 (∀ buses 𝑖) 

𝑡𝑖𝑗
min − 𝑡𝑖𝑗

0 ≤ ∆𝑡𝑖𝑗 ≤ 𝑡𝑖𝑗
max − 𝑡𝑖𝑗

0 (∀ transformer 𝑖𝑗) 

∆𝑉𝑖ref., ∆𝛿𝑖ref., ∆𝑃load𝑖and ∆𝑄load𝑖 = 0 

Where: 

𝑡𝑖𝑗≡ Transformer tap ratio in case of a transformer between bus i and j. 

4.5 Reactive Power Pricing: 

Reactive power plays an important role in real power transfer and effects 

power system operation in numerous ways [16], [17]. Pricing of reactive power 

is very important for the deregulated electric industry both financially and 

operationally, financially through improving the economic  efficiency of the 

system which is reactive power has an operation cost same as the real power, 

operationally the system efficiency and reliability will be improved by the 

reduction of the total transmission losses and the improvement of the voltage 

profile of the network [18]. 

As observed in the last section, the incremental  LPOPF is optimizing both 

real and reactive powers through the linearized objective function but a pricing 

procedure for reactive power is not considered and there is no reactive power 

representative in the objective function. In this section, the inclusion of reactive 

power cost function in the objective function and a pricing procedure are 

introduced. 

Reactive power costing is composed of two components, fixed costs  or 

investment costs and variable costs, the variable costs are the operating costs 

(operation costs and maintenance costs) and opportunity costs, opportunity cost 

is resulting from reduction of the active power generation [19]. The costing of 

other reactive power sources such as FACTS devices, capacitor banks, 
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synchronous condensers and transformers are considered as well and named as 

the explicit costs of these sources [16]. 

The pricing procedure of other reactive power sources such as shunt 

devices, condensers and transformers is illustrated in [16] and [20] which is not 

included in this research. 

4.5.1 Reactive Power Cost Allocation: 

The conventional reactive power cost function which is based on empirical 

approximation is: 

Cost Q𝑖 = profit rate ∗ b ∗ Q𝑖
2                                                                                             (4.26) 

Where: 

Profit rate≡ the profit rate of the real power and usually ranged from 5% 

to 10%, in this research the profit rate is taken as 5% or 0.05, this equation only 

considers the operating cost of reactive power [19]. 

Another approach is introduced in [21] to overcome the inaccuracies with 

the conventional method and it is based on the triangular relationship between 

the real and reactive powers, this method is criticized in [19] in which that it is 

mainly depend on the real power cost and the investment cost of generators is 

essentially based on the optimal solution for active power solution and using the 

same formula for reactive power costing will lead to calculation of wrong fixed 

costs for reactive power. Another approach is introduced in [22] in which that a, 

b and c constants are approximated to be 10% of those for the cost of real power , 

also this approach has a limitation which is valid for a special range of reactive 

power production as observed in [19]. 

In [19] a new approach is proposed which is covers all investment, 

operation and opportunity costs by considering the cost of the maximum 

generation power (Pmax), the cost of generation when producing both real  and 

reactive powers (Pmax − ∆P) and the cost of the reduction of the active power due 

to the production of reactive power (the opportunity cost, ∆P) figure (4.2), the 

cost of reactive power is then given by: 
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Cost(Q𝑖) =
Pmax − ∆P

Pmax
 cost(Pmax) − cost(∆P)                                                               (4.27) 

The amount of Q𝑖 is generated in terms of the real power reduction and it is 

calculated through: 

Q𝑖 = √𝑃𝑚𝑎𝑥
2 − 𝑃𝑖

2                                                                                                                (4.28) 

 

 

 

 

 

 

Figure (4.2): Reduction of real power due to production of reactive power 

And  

∆P=𝑃𝑚𝑎𝑥 − 𝑃𝑖                                                                                                                          (4.29) 

The amount of Q𝑖 is calculated as a function of 𝑃𝑖 by the use of equation 

(4.11) and the cost of Q𝑖 is calculated in function of P𝑖 by using equation (4.10), 

the results are interpolated by the use of Newton-Gregory polynomial to be fitted 

into quadratic polynomial form as: 

F𝑖(Q𝑖) = a + b Q𝑖 + c Q𝑖
2                                                                                                     (4.30) 

Another approach is proposed in [23] in a manner similar to the proposed 

method in [19] with a slight difference which is the cost of reactive power is 

equal to the cost of the reduced real power due to generation of reactive power: 

Cost(Q𝑖) = Cost(∆P)                                                                                                            (4.31) 

Where: Cost(∆P) = Cost (Prated) −  Cost (P𝑖)                                                                (4.32) 
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And by the use of the same technique of [19] the final quadratic cost 

function of reactive power is obtained. 

In this research, the conventional reactive power operating cost function 

with a profit rate of 0.05 is employed: 

F𝑖(Q𝑖) = 0.05bQ𝑖
2                                                                                                                 (4.33) 

4.5.2 The Inclusion of reactive power cost function to the objective 

function: 

Linearizing equation (4.33) using Taylor series expansion:  

Fi(Qgen𝑖) +
dFi(Qgen𝑖

)

dQgen𝑖
∆Qgeni                                                                                              (4.34) 

Then the objective function of the incremental LPOPF becomes: 

min∑[
d𝐹𝑖(𝑃gen𝑖

0)

d𝑃gen𝑖
0 ∆𝑃gen𝑖 +

d𝐹𝑖(𝑄gen𝑖
0)

d𝑄gen𝑖
0 ∆𝑄gen𝑖]                                                           (4.35)

𝑛

𝑖=1

 

Subject to: 

∑
𝜕𝑃𝑖(𝑉, 𝛿)

𝜕𝑉𝑖

𝑛

𝑖=1

∆|𝑉𝑖| +∑
𝜕𝑃𝑖(𝑉, 𝛿)

𝜕𝛿𝑖

𝑛

𝑖=1

∆|𝛿𝑖| +∑
𝜕𝑃𝑖
𝜕𝑡𝑖𝑗

𝑛

𝑖=1

∆𝑡𝑖𝑗 = ∆𝑃gen𝑖 

∑
𝜕𝑄𝑖(𝑉, 𝛿)

𝜕𝑉𝑖

𝑛

𝑖=1

∆|𝑉𝑖| +∑
𝜕𝑄𝑖(𝑉, 𝛿)

𝜕𝛿𝑖

𝑛

𝑖=1

∆|𝛿𝑖| +∑
𝜕𝑄𝑖
𝜕𝑡𝑖𝑗

𝑛

𝑖=1

∆𝑡𝑖𝑗 = ∆𝑄gen𝑖 

∑𝑃gen𝑖
0 + ∆𝑃gen𝑖

𝑁gen

𝑖=1

= ∑𝑃gen𝑖

𝑁gen

𝑖=1

+ 𝑃loss 

∑Qgen𝑖
0 + ∆Qgen𝑖

𝑁gen

𝑖=1

= ∑Qgen𝑖

𝑁gen

𝑖=1

+ Qloss 

𝑃gen𝑖
min − 𝑃gen𝑖

0 ≤ ∆𝑃gen𝑖 ≤ 𝑃gen𝑖
max − 𝑃gen𝑖

0  (∀ generators 𝑖) 

𝑄gen𝑖
min − 𝑄gen𝑖

0 ≤ ∆𝑄gen𝑖 ≤ 𝑉𝑖
max − 𝑉𝑖

0  (∀ buses 𝑖) 

𝛿𝑖
min − 𝛿𝑖

0 ≤ ∆𝛿𝑖 ≤ 𝛿𝑖
max − 𝛿𝑖

0 (∀ buses 𝑖) 
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𝑡𝑖𝑗
min − 𝑡𝑖𝑗

0 ≤ ∆𝑡𝑖𝑗 ≤ 𝑡𝑖𝑗
max − 𝑡𝑖𝑗

0 (∀ transformer 𝑖𝑗) 

∆𝑉𝑖ref., ∆𝛿𝑖ref.,∆𝑃load𝑖 and ∆𝑄load𝑖 = 0 

In incremental LP method, reactive power is already optimized therefore 

the inclusion of reactive power to the objective function is for improving the 

optimization process, if the influence of this inclusion is favorably i.e. improving 

the optimization process for the real power, then it can be included, if the 

influence is unfavorably then reactive power cost function must not be included 

(Prof. Wollenberg). 

4.6 The Locational Marginal Price (LMP): 

The basic definition of LMP is the marginal increase in cost to the system 

to supply 1 additional MW of load at bus j [3]. The LMP value is the same as the 

Lagrange multiplier of the conventional ED and non-linear OPF, the LMP values 

are differ in AC OPF due to transmission losses and limits, if the line is congested 

(at their limit) then the LMP values at each bus will have different magnitudes as 

illustrated in [3]. 

4.6.1 The LMP At No Line Congestion: 

LMP=LMPref. −
𝜕Ploss
∂P𝑖

LMPref.                                                                                              (4.36) 

Where: 

LMPref. ≡ the LMP at reference bus and can be calculated by: 
𝜕𝐹𝑖(𝑃𝑟𝑒𝑓.)

𝜕𝑃𝑟𝑒𝑓.
. 

𝜕Ploss

𝜕P𝑖
≡ the incremental loss at bus 𝑖 see [24] . 

4.6.2 The LMP At a Congested Line: 

LMP=LMPref. −
𝜕Ploss
∂P𝑖

LMPref. −∑𝜇ℓ𝑎ℓ𝑖

𝑁𝑙𝑙

ℓ=1

                                                                       (4.37) 

Where: 

𝜇ℓ ≡ the Lagrange multiplier for line l. 
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𝜇ℓ =
𝜕𝐹𝑟𝑒𝑓(𝑃𝑟𝑒𝑓.)

𝜕𝑃𝑟𝑒𝑓.
(1 −

𝜕Ploss
𝜕P𝑖

) (
1

𝑎ℓ𝑖
) −

𝜕𝑓𝑖(𝑃𝑖)

𝜕𝑃𝑖
(
1

𝑎ℓ𝑖
)                                                   (4.38) 

𝑎ℓ𝑖 ≡ the line flow sensitivity factor. 

𝑁𝑙𝑙 ≡ number of lines at limit. 

LMP calculation is very important in OPF, where LMPs gives an 

indication of how much increase or decrease of the total system cost in case of 

addition or removal of load in a specific bus. Derivations of equation (4.36), 

(4.37) and (4.38) are available in [3]. 

Solution algorithm for the full AC incremental  LPOPF is same as 

algorithm for the piecewise LPOPF in section 4.3.3 except that in step 2 the 

linearization process is done through equation (4.24) and (4.25). 
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CHAPTER FIVE 

 

IMPLEMENTATION 

 

5.1 Introduction: 

In this chapter, implementation of Piecewise LPOPF and full AC iterative 

LPOPF are introduced, a step by step procedure using POWERWORLD   

Simulator and Microsoft  Excel for the 6-bus test system of [3], likewise, an 

implementation of both methods for the IEEE 30 bus system and a comparison 

between both methods are presented. 

5.2 Systems Description: 

 The 6-bus System: 

The system is consisted of 6-buses, 3 generating units and 11 transmission 

lines, bus 1 is the slack (reference bus), bus 2 and bus 3 are the P-V buses, bus 

4, 5 and 6 are the load (P-Q) busses. The impedances are in per-unit on a base of 

a 100 MVA and bus voltage limits are from 1.07pu. to 0.95pu. The power flow 

input data and generation cost functions are available in [3] and Appendix B. 

 

 

 

 

 

 

 

Figure (5.1): Single line diagram of the 6-bus system. 

 

 



36 

 

  The IEEE 30 Bus System: 

This system is part of the American Power Service Cooperation  Network 

which is being made available to the electric utility industry as a standard test 

case for evaluating various analytical methods and computer programs for the 

solution of power system problems [4]. This system consists of 30 buses, 6 

generating units and 41 transmission lines, bus 1 is the slack bus, bus 2, 5, 8, 11 

and 13 are the P-V buses, capacitor banks are existing on bus 2 and bus 10, tap 

changing transformers are existing between bus 4-12, 6-9, 6-10 and 28-27, the 

impedances are in per-unit on a base of a 100 MVA and bus voltage limits are 

from 1.1pu. to 0.9pu, the power flow data for the base power flow study are 

different from the data for economic and optimization studies where for the power 

flow studies, generators on bus 5, 8, 11 and 13 are synchronous condensers, and 

for the economic and optimization studies are generating units which generates 

both real and reactive powers. Data are available in Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.2): Single line diagram of the IEEE 30 bus System 
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5.3 Implementation of Piecewise LPOPF in the 6-bus system: 

 Step one: Start with a base power flow solution: 

Using solution algorithm of section (4.3.3) for solving PW LPOPF, the 

first step of solution is starting with a base power flow solution. Results of the 

initial power flow using POWERWORLD Simulator are: 

 Initial power flow results: 

Table (5.1): Initial Power Flow Results.  

Bus No. Generation Generation Bus Angles 

  MW MVAR PU Volt Radians 

1 212.96 -10.76 1.07 0 

2 50 21.76 1.05 -0.13 

3 50 19.02 1.05 -0.16 

4 0 0 1.02721 -0.15 

5 0 0 1.02212 -0.18 

6 0 0 1.02458 -0.21 

Total Gen. 312.96 MW 30.02 MVAR   

Total losses 12.96 MW -14.98 MVAR   
 

Table (5.2): Line flows and losses of the initial PF. 

From Bus To Bus MW Flow Lim MW MW Loss 

1 2 62.18 100 3.6 

1 4 82.8 100 3.02 

1 5 67.98 100 3.25 

2 3 14.76 60 0.1 

2 4 28.86 60 0.42 

2 5 21.94 60 0.45 

2 6 43.01 60 1.17 

3 5 12.43 60 0.2 

3 6 52.23 60 0.55 

4 5 8.21 60 0.14 

5 6 6.53 60 0.05 

    Total Losses 

    12.95 MW 

 Step two: Linearize the objective function: 

Linearization of the objective function is the second step of the solution 

algorithm, using equations (4.13), (4.14) and (4.15) in order to linearize the 

objective function, the I/O generation cost functions and generation limits of unit 

1, 2, and 3 respectively are: 
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𝐹1(𝑃1) = 213.1 + 11.669𝑃1 + 0.00533𝑃1
2                                                                        (5.1) 

𝐹2(𝑃2) = 200 + 10.333𝑃2 + 0.00889𝑃2
2                                                                           (5.2) 

𝐹3(𝑃3) = 240 + 10.833𝑃3 + 0.00741𝑃3
2                                                                           (5.3) 

Unit 1 limits: 50 ≤ 𝑃1 ≤ 200 MW. 

Unit 2 limits: 37.5 ≤ 𝑃2 ≤ 150 MW. 

Unit 3 limits: 45 ≤ 𝑃3 ≤ 180 MW. 

As stated in section (4.3.1), the first step of formulating the piecewise LP 

OPF objective function is by converting the I/O cost curve into straight line 

segments through break points through equation (4.13): 

The break point step=
𝑀𝑎𝑥.  𝑙𝑖𝑚𝑖𝑡– Min.  Limit

No. of the desired segments
 

The number of the desired segments are chosen to be 3, therefore: 

The BP step for unit 1:  

200 − 50

3
= 50 

∴ the BPs for unit 1 are:  

Table (5.3): BPs of Unit 1. 

Unit Break point 1 BP2 BP3 BP4 

1 50 100 150 200 

Note that during calculation in this case and the IEEE 30 bus case, when 

identical break point values are used, solution did not converge with the power 

flow solution and circles infinitely, therefore a change of one or two BP steps is 

compulsory in order to obtain the final solution. In this case, BP No. 3 is changed 

to be equal to 160 as used in [5], and hence: 

Table (5.4): BPs of the three units. 

Unit Break point 1 BP2 BP3 BP4 

1 50 100 160 200 

2 37.5 70 130 150 

3 45 90 140 180 
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The next step is obtaining the limit of each segment using equation (4.14):  

Segment 1 of unit 1 𝑃11, segment 2 of unit 1 𝑃12, segment 3 of unit 1 𝑃13 limits 

are: 𝑃11 = 100 − 50 = 50, 𝑃12 = 60 and 𝑃13 = 40. And for unit 2 and 3: 

Table (5.5): Segment values of unit 2 and 3.  

Unit Segment Limit 

 𝑃21 32.5 

2 𝑃22 60 

 𝑃23 20 

 𝑃31 45 

3 𝑃32 50 

 𝑃33 40 

Next, the calculation of generation cost segments slope using equation (4.15): 

Table (5.6): Segment slopes of unit 1.  

Unit 1   

Pi F(Pi) Slope 

50 809.875 12.4685 

100 1433.3 13.0548 

160 2216.588 13.5878 

200 2760.1  
 

Table (5.7): Segment slopes of unit 2. 

Unit 2   

Pi F(Pi) Slope 

37.5 599.989063 11.288675 

70 966.871 12.111 

130 1693.531 12.8222 

150 1949.975  
 

Table (5.8): Segment slopes of unit 3.  

Unit 3   

Pi F(Pi) Slope 

45 742.49025 11.83335 

90 1274.991 12.5373 

140 1901.856 13.2042 

180 2430.024  
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And therefore, the linearized objective functions for unit 1, unit 2 and unit 3 using 

equation (4.16) are: 

𝐹1(𝑃1) = 50 + 12.4685𝑃11 + 13.0548𝑃12 + 13.5878𝑃13                                             (5.4) 

𝐹2(𝑃2) = 37.5 + 11.2886𝑃21 + 12.111𝑃22 + 12.8222𝑃23                                           (5.5) 

𝐹3(𝑃3) = 45 + 11.8333𝑃31 + 12.5373𝑃32 + 13.2042𝑃33                                            (5.6) 

∵ 𝐹𝑖(𝑃𝑖
𝑚𝑖𝑛) for all units are considered to be constants, the generalized objective  

function including all units is: 

Objective function

= 12.4685𝑃11 + 13.0548𝑃12 + 13.5878𝑃13 + 11.2886𝑃21

+ 12.111𝑃22 + 12.8222𝑃23 + 11.8333𝑃31 + 12.5373𝑃32

+ 13.2042𝑃33                                                                                                 (5.7) 

 Step three: Set the control variable limits: 

Starting with the equality constraint where total generation must equal to 

total load plus losses: 

∑ 𝑃𝑖𝑗
𝑛
𝑖=1
𝑗=1

=  Total generation + losses - ∑ 𝑃𝑖
𝑚𝑖𝑛𝑛

𝑖=1                                              (5.8) 

∴ 𝑃11 + 𝑃12 + 𝑃13 + 𝑃21 + 𝑃22 + 𝑃23 + 𝑃31 + 𝑃32 + 𝑃33 = 180.46                            (5.9) 

Next the inequality constraints that each segment must be at their limit: 

 𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗
𝑚𝑎𝑥, 𝑃𝑖𝑗 ≥ 0 therefore: 

 

Table (5.9): Segment limits for the three units. 

𝑃𝑖𝑗 𝑃𝑖𝑗
𝑚𝑎𝑥 

𝑃11    ≤ 50 

𝑃12    ≤ 60 

𝑃13    ≤ 40 

𝑃21    ≤ 32.5 

𝑃22    ≤ 60 

𝑃23    ≤ 20 

𝑃31    ≤ 45 

𝑃32    ≤ 50 

𝑃33    ≤ 40 
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 Step four: Formulate the problem in an LP solver and solve: 

The used LP solver is Microsoft  Excel 2016 which is responsible of 

obtaining the unknow variables (𝑃11 to 𝑃33), for a detailed illustration of how to 

use Excel to solve LP problems see Appendix A. 

Before optimizing the objective function, the total cost of the initial power 

flow solution was 4478.9062 $/hr. and total system losses were 12.96 MW. After 

solving the LP program, a new generation schedule is obtained: 

Table (5.10): Segments values of the initial LP results. 

Segment Min. MW Solution Max. MW 

𝑃11 0 42.96 50 

𝑃12 0 0 60 

𝑃13 0 0 40 

𝑃21 0 32.5 32.5 

𝑃22 0 60 60 

𝑃23 0 0 20 

𝑃31 0 45 45 

𝑃32 0 0 50 

𝑃33 0 0 40 

 

Table (5.11): Initial LP results after using equation (4.17) 

P1 P2 P3 LP results 

92.96 130 90  
Total cost   

4312.432 $/hr.   
 Step five: Substitute the LP results into the power flow as new set 

points and run a power flow solution: 

After substituting the LP results into POWERWORLD Simulator, the 

power flow results are: 

Table (5.12): PF results. 

P1 P2 P3 PF results 

87.44 130 90  

 Step six: No change in variables and no transmission overloads 

stop, otherwise use step seven which setting the new variables 

limits, and because of 𝑃1 of the LP solution is not equal to 𝑃1 of the 

PF, another solution must be found. 

The new variable limit is the new power balance equality constraint that 

reflects the new value of losses due to the new generation scheduling, therefore: 
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𝑃11 + 𝑃12 + 𝑃13 + 𝑃21 + 𝑃22 + 𝑃23 + 𝑃31 + 𝑃32 + 𝑃33 = 307.44 − 132.5

= 174.95                                                                                                       (5.10) 

After solving the LP program with the new equality constraint: 

Table (5.13): Iteration 2 LP results. 

P1 P2 P3 LP results 

87.44 130 90  
Total cost   

4242.7 $/hr.   

The PF results: 

Table (5.14): Iteration 2 PF results. 

P1 P2 P3 PF results 

87.44 130 90  
 

Table (5.15): Line flow and losses after convergence of LP and PF. 

From Bus To Bus MW Flow Lim MW MW Loss 

1 2 8.68 100 0.1 

1 4 42.78 100 0.91 

1 5 35.99 100 0.96 

2 3 5.26 60 0.01 

2 4 64.65 60 1.9 

2 5 29.83 60 0.81 

2 6 38.83 60 0.96 

3 5 28.54 60 0.89 

3 6 66.72 60 0.85 

4 5 4.62 60 0.05 

5 6 -3.73 60 0.01 

    Total losses 

    7.44 MW 

 

And here, LP results and PF results are equal after 2 iterations and hence 

the convergence is reached, total cost is 4242.84 $/hr. and total losses are 7.45 MW 

which is the most least operation cost can be reached. Back to step six: no change in 

variables? Yes, No transmission overloads? No, there are overloading in line 2-4 

and line 3-6, moving to step eight. 

 Step eight: No change in variables but transmission overload, use 

the generation shift factors to relief the overloading: 
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And here a new inequality constraint is introduced in which that the flow 

of line 2-4 and line 3-6 must be less than or equal to the flow limits. In order to 

hold each line to their limit, the generation shift factors (GSF) (transmission 

loading relief TLR factors) must be used, see [3]. 

 Step nine: Add the new transmission constraints: 

The new flow constraints for line 2-4 and line 3-6 are modeled as: 

𝑓2−4 = 𝑓2−4
0 + 𝑎2−4,1(𝑃1 − 𝑃1

0) + 𝑎2−4,2(𝑃2 − 𝑃2
0) + 𝑎2−4,3(𝑃3 − 𝑃3

0) ≤ 60          (5.11) 

𝑓3−6 = 𝑓3−6
0 + 𝑎3−6,1(𝑃1 − 𝑃1

0) + 𝑎3−6,2(𝑃2 − 𝑃2
0) + 𝑎3−6,3(𝑃3 − 𝑃3

0) ≤ 60          (5.12) 

Where: 

𝑓2−4
0 ≡ the initial power flow in line 2-4. 

𝑓3−6
0 ≡ the initial power flow in line 3-6. 

𝑎2−4,1 ≡ the GSF factor which is the sensitivity of line 2-4 overloading on 

generation at bus 1 and always equal to zero for the slack bus. 

𝑎2−4,2, 𝑎2−4,3 ≡ the sensitivity of line 2-4 overloading on generation at bus 

2 and 3. As well for 𝑎3−6,1, 𝑎3−6,2 and 𝑎3−6,3. 

𝑓2−4
0 =  28.86 MW, 𝑎2−4,1 = 0, 𝑎2−4,2 = 0.325, 𝑎2−4,3 = 0.239, 𝑃2

0 = 50 MW, 

𝑃2 = 37.5 + 𝑃21 + 𝑃22 + 𝑃23, 𝑃3
0 = 50, 𝑃3 = 45 + 𝑃31 + 𝑃32 + 𝑃33. 

∴ the new flow constraint for line 2-4 is: 

28.86 + 0.325(37.5 + 𝑃21 + 𝑃22 + 𝑃23 − 50) + 0.239(45 + 𝑃31 + 𝑃32 + 𝑃33 − 50)

≤ 60                                                                                                               (5.13) 

Or 0.325(𝑃21 + 𝑃22 + 𝑃23) + 0.239(𝑃31 + 𝑃32 + 𝑃33) ≤ 36.3975                          (5.14) 

Similarly, for line 3-6: 

−0.005(𝑃21 + 𝑃22 + 𝑃23) + 0.371(𝑃31 + 𝑃32 + 𝑃33) ≤ 9.5625                               (5.15) 
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After the addition of the new flow constraints, the LP results are: 

Table (5.16): LP results after the addition of the new flow constraints . 

 

 

 

 

The PF Results: 

Table (5.17): PF results of generator 1, 2 and 3. 

P1 P2 P3 PF results 

106.65 129.16 71.91  
 

Table (5.18): Line flow and losses. 

From Bus To Bus MW Flow Lim MW MW Loss 

1 2 16.06 100 0.23 

1 4 48.66 100 1.12 

1 5 41.97 100 1.28 

2 3 11.71 60 0.06 

2 4 60.01 60 1.63 

2 5 30.12 60 0.82 

2 6 43.13 60 1.18 

3 5 23.54 60 0.6 

3 6 59.99 60 0.7 

4 5 5.91 60 0.08 

5 6 -1.24 60 0 

    Total losses 

    7.72 MW 

 

Repeating step six: 

𝑃11 + 𝑃12 + 𝑃13 + 𝑃21 + 𝑃22 + 𝑃23 + 𝑃31 + 𝑃32 + 𝑃33 = 175.22                              (5.16) 

After solving the LP program with the new equality constraint: 

Table (5.19): Iteration 2 LP results after the overloading relief. 

P1 P2 P3 LP results 

106.6938 129.14778 71.878  
Total cost    

4258.462 $/hr.    
And hence the convergence is reached. Note that the total operating cost 

and total losses are increased after overloading relief from 4242.84 $/hr., 7.44 MW 

to 4258.488 $/hr., 7.72 MW due to the new generation scheduling. 

P1 P2 P3 LP results 

106.4138457 129.1477862 71.87836814  
Total cost    

4254.9 $/hr.    
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The OPF solution is found after four iterations and therefore, this is an indication 

of the PW LPOPF speed in obtaining the optimal solution. 

 Results of PW LPOPF in a Compacted Form: 

 Results of the initial PF and results of the OPF: 

Table (5.20): Results of the initial power flow PF0. 

Bus No. Generation Generation Bus Angles 

 MW MVAR PU Volt Radians 

1 212.96 -10.76 1.07 0 

2 50 21.76 1.05 -0.13 

3 50 19.02 1.05 -0.16 

4 0 0 1.02721 -0.15 

5 0 0 1.02212 -0.18 

6 0 0 1.02458 -0.21 

Total Gen 312.96 30.02   
Total losses 12.96 -14.98   
Total Cost 4478.9062 $/hr.    

 

Table (5.21): LPOPF results by incorporating POWERWORLD   

Simulator and Microsoft Excel. 

Bus No. Generation Generation Bus Angles 

 MW MVAR PU Volt Radians 

1 106.69 17.22 1.07 0 

2 129.15 -16.43 1.05 -0.03 

3 71.88 12.29 1.05 -0.05 

4 0 0 1.02412 -0.08 

5 0 0 1.02193 -0.11 

6 0 0 1.02492 -0.11 

Total Gen 307.72 13.08   
Total losses 7.72 -31.92   
Total Cost 4258.487 $/hr.    

 Reduction of total operating cost and transmission losses: 

Table (5.22): Reduction of total and losses cost during iterations. 

Total Cost  Losses 

Iteration $/hr. Mw 

0 4478.9 12.96 

1 4312.4 7.44 

2 4242.7 7.72 

3 4254.9 7.72 

4 4258.49 7.72 
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  Figure (5.3): Reduction of total cost.             Figure (5.4): Reduction of losses. 

Note that POWERWORLD   Simulator uses LP method in order to solve 

the OPF problems by using the same technique. 

 Results of OPF using POWERWORLD   Simulator directly: 

Table (5.23): Result of LPOPF using POWERWORLD   Simulator 

Bus No. Generation Generation Bus Angles 

 MW MVAR PU Volt Radians 

1 106.71 17.21 1.07 0 

2 129.1 -16.42 1.05 -0.03 

3 71.9 12.28 1.05 -0.05 

4 0 0 1.02412 -0.08 

5 0 0 1.02193 -0.11 

6 0 0 1.02492 -0.11 

Total Gen 307.71 13.07   
Total losses 7.71 -31.93   
Total Cost 4258.35$/hr.    

 

5.4 Implementation of Full AC Incremental LP Method in the 6-bus System: 

By the use of same steps that used in order to obtain the PW LPOPF, the 

incremental LPOPF is solved.  

 Step one: Start with a base PF solution: 

Results of the base PF are in table 5.1. 

 Step two: Linearize the objective function and linearize 

constraints: 
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As illustrated in the previous chapter, linearization of the objective 

function is done through equation (4.24) and linearization of constraints through 

equation (4.25) knowing that the incremental LPOPF is formulated through the 

increments of 𝑃𝑔𝑒𝑛, 𝑄𝑔𝑒𝑛, |𝑉𝑖| and 𝛿𝑖 which is ∆𝑃gen, ∆𝑄gen, ∆𝑉 and ∆𝛿. Linearizing 

equation (5.3), (5.4) and (5.6): 

𝜕𝐹1(𝑃1
0)

𝜕𝑃1
0 = 11.669 + 0.01066𝑃1

0                                                                                    (5.18) 

𝜕𝐹2(𝑃2
0)

𝜕𝑃2
0 = 10.333 + 0.01778𝑃2

0                                                                                    (5.19) 

𝜕𝐹3(𝑃3
0)

𝜕𝑃3
0 = 10.833 + 0.01482𝑃3

0                                                                                    (5.20) 

Where: 𝑃1
0, 𝑃2

0 and 𝑃3
0 are the initial power flow results PF0, therefore: 

𝜕𝐹1(𝑃1
0)

𝜕𝑃1
0 = 11.669 + 0.01066 × 212.96 = 13.94 

𝜕𝐹2(𝑃2
0)

𝜕𝑃2
0 = 10.333 + 0.01778 × 50 =  11.222 

𝜕𝐹3(𝑃3
0)

𝜕𝑃3
0 = 10.833 + 0.01482 × 50 = 11.574 

∴ The linearized objective function using equation (4.24) is: 

𝜕𝐹1(𝑃1
0)

𝜕𝑃1
0 ∆𝑃1 +

𝜕𝐹2(𝑃2
0)

𝜕𝑃2
0 ∆𝑃2 +

𝜕𝐹3(𝑃3
0)

𝜕𝑃3
0 ∆𝑃3                                                               (5.21) 

= 13.94∆𝑃1 + 11.222∆𝑃2 + 11.574∆𝑃3                                                                          (5.22) 

From equation (4.25): 

∆𝑃 = [𝓙] [
∆𝛿
∆𝑉

]                                                                                                                         (5.23) 

Therefore: 

∆𝑃1 = [
𝜕𝑃1

𝜕𝛿1
⋯

𝜕𝑃1

𝜕𝛿6

𝜕𝑃1

𝜕𝑉1
⋯

𝜕𝑃1

𝜕𝑉6
]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

                                                                     (5.24) 
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∆𝑃2 = [
𝜕𝑃2

𝜕𝛿1
⋯

𝜕𝑃2

𝜕𝛿6

𝜕𝑃2

𝜕𝑉1
⋯

𝜕𝑃2

𝜕𝑉6
]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

                                                                      (5.25) 

∆𝑃3 = [
𝜕𝑃3

𝜕𝛿1
⋯

𝜕𝑃3

𝜕𝛿6

𝜕𝑃3

𝜕𝑉1
⋯

𝜕𝑃3

𝜕𝑉6
]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

                                                                      (5.26) 

The linearized objective function becomes: 

Minimize: 13.94 [
𝜕𝑃1
𝜕𝛿1

⋯
𝜕𝑃1
𝜕𝛿6

𝜕𝑃1
𝜕𝑉1

⋯
𝜕𝑃1
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+              11.222 [
𝜕𝑃2
𝜕𝛿1

⋯
𝜕𝑃2
𝜕𝛿6

𝜕𝑃2
𝜕𝑉1

⋯
𝜕𝑃2
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+                11.574 [
𝜕𝑃3
𝜕𝛿1

⋯
𝜕𝑃3
𝜕𝛿6

𝜕𝑃3
𝜕𝑉1

⋯
𝜕𝑃3
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

                                                        (5.27) 

Therefore, the unknown variables that to be calculated through the LP 

solution are ∆𝛿2 to ∆𝛿6 and ∆𝑉2 to ∆𝑉6.  

The linearized real and reactive power balance constraints are: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑃1
𝜕𝛿1

⋯
𝜕𝑃1
𝜕𝛿6

𝜕𝑃1
𝜕𝑉1

⋯
𝜕𝑃1
𝜕𝑉6

𝜕𝑃2
𝜕𝛿1

⋯
𝜕𝑃2
𝜕𝛿6

𝜕𝑃2
𝜕𝑉1

⋯
𝜕𝑃2
𝜕𝑉6

𝜕𝑃3
𝜕𝛿1

⋯
𝜕𝑃3
𝜕𝛿6

𝜕𝑃3
𝜕𝑉1

⋯
𝜕𝑃3
𝜕𝑉6

𝜕𝑄1
𝜕𝛿1

⋯
𝜕𝑄1
𝜕𝛿6

𝜕𝑄1
𝜕𝑉1

⋯
𝜕𝑄1
𝜕𝑉6

𝜕𝑄2
𝜕𝛿1

⋯
𝜕𝑄2
𝜕𝛿6

𝜕𝑄2
𝜕𝑉1

⋯
𝜕𝑄2
𝜕𝑉6

𝜕𝑄3
𝜕𝛿1

⋯
𝜕𝑄3
𝜕𝛿6

𝜕𝑄3
𝜕𝑉1

⋯
𝜕𝑄3
𝜕𝑉6 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

=

[
 
 
 
 
 
∆𝑃1
∆𝑃2
∆𝑃3
∆𝑄1
∆𝑄2
∆𝑄3]

 
 
 
 
 

                                                                                        (5.28) 
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 Step three: Set the control variables limits: 

And from section (4.4.2), the inequality constraints are: 

𝑃gen𝑖
min − 𝑃gen𝑖

0 ≤ ∆𝑃gen𝑖 ≤ 𝑃gen𝑖
max − 𝑃gen𝑖

0  (∀ generators 𝑖) 

𝑄gen𝑖
min − 𝑄gen𝑖

0 ≤ ∆𝑄gen𝑖 ≤ 𝑄gen𝑖
max − 𝑄gen𝑖

0  (∀ generators 𝑖) 

𝑉𝑖
min − 𝑉𝑖

0 ≤ ∆𝑉𝑖 ≤ 𝑉𝑖
max − 𝑉𝑖

0  (∀ buses 𝑖) 

𝛿𝑖
min − 𝛿𝑖

0 ≤ ∆𝛿𝑖 ≤ 𝛿𝑖
max − 𝛿𝑖

0 (∀ buses 𝑖) 

The real and reactive power limits: 

Table (5.24): Real power limits. 

Real Power limits Min. Max. 

Unit 1 50 200 

Unit 2 37.5 150 

Unit 3 45 180 

 

Table (5.25): Reactive power limits. 

Reactive Power limits Min. Max. 

Unit 1 -100 150 

Unit 2 -100 150 

Unit 3 -100 120 

∆𝑃gen, ∆𝑄gen, ∆𝑉 and ∆𝛿 limits: 

Table (5.26): ΔP limits. 

ΔP limits Min. Max. 

Unit 1 -162.96 -12.96 

Unit 2 -12.5 100 

Unit 3 -5 130 

 

Table (5.27): ΔQ limits. 

ΔQ limits Min. Max. 

Unit 1 -89.24 160.76 

Unit 2 -121.76 128.24 

Unit 3 -119.02 100.98 

 

Table (5.28): Bus voltage limits. 

V limits  
Min. Max. 

0.95 1.07 
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Different values can be used for ∆𝛿 limits such as from -45 to 45 or from 

-90 to 90, in this solution, from -56.7 to 56.7 degrees are used.  

And the new values of 𝑃gen and 𝑄gen are: 

𝑃gen i new = 𝑃gen𝑖
0 + ∆𝑃gen𝑖                                                                                                     (5.29) 

𝑄gen i new = 𝑄gen𝑖
0 + ∆𝑄gen𝑖                                                                                                   (5.30) 

The Final Problem form to be formulated in Microsoft Excel: 

Minimize:                 13.94 [
𝜕𝑃1
𝜕𝛿1

⋯
𝜕𝑃1
𝜕𝛿6

𝜕𝑃1
𝜕𝑉1

⋯
𝜕𝑃1
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+ 11.222 [
𝜕𝑃2
𝜕𝛿1

⋯
𝜕𝑃2
𝜕𝛿6

𝜕𝑃2
𝜕𝑉1

⋯
𝜕𝑃2
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+ 11.574 [
𝜕𝑃3
𝜕𝛿1

⋯
𝜕𝑃3
𝜕𝛿6

𝜕𝑃3
𝜕𝑉1

⋯
𝜕𝑃3
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

 

Subjected to: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑃1
𝜕𝛿1

⋯
𝜕𝑃1
𝜕𝛿6

𝜕𝑃1
𝜕𝑉1

⋯
𝜕𝑃1
𝜕𝑉6

𝜕𝑃2
𝜕𝛿1

⋯
𝜕𝑃2
𝜕𝛿6

𝜕𝑃2
𝜕𝑉1

⋯
𝜕𝑃2
𝜕𝑉6

𝜕𝑃3
𝜕𝛿1

⋯
𝜕𝑃3
𝜕𝛿6

𝜕𝑃3
𝜕𝑉1

⋯
𝜕𝑃3
𝜕𝑉6

𝜕𝑄1
𝜕𝛿1

⋯
𝜕𝑄1
𝜕𝛿6

𝜕𝑄1
𝜕𝑉1

⋯
𝜕𝑄1
𝜕𝑉6

𝜕𝑄2
𝜕𝛿1

⋯
𝜕𝑄2
𝜕𝛿6

𝜕𝑄2
𝜕𝑉1

⋯
𝜕𝑄2
𝜕𝑉6

𝜕𝑄3
𝜕𝛿1

⋯
𝜕𝑄3
𝜕𝛿6

𝜕𝑄3
𝜕𝑉1

⋯
𝜕𝑄3
𝜕𝑉6 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

=

[
 
 
 
 
 
∆𝑃1
∆𝑃2
∆𝑃3
∆𝑄1
∆𝑄2
∆𝑄3]

 
 
 
 
 

 

212.96 + ∆𝑃1 + 50 + ∆𝑃2 + 50 + ∆𝑃3 = 312.96 MW 

−10.76 + ∆𝑄1 + 21.76 + ∆𝑄2 + 19.02 + ∆𝑄3 = 30.02 MVAR 
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-162.96 ≤ ΔP1 ≤ -12.96 

-12.5 ≤ ΔP2 ≤ 100 

-5 ≤ ΔP3 ≤ 130 

-89.24 ≤ ΔQ1 ≤ 160.76 

-121.76 ≤ ΔQ2 ≤ 128.24 

-119.02 ≤ ΔQ3 ≤ 100.98 

-0.1 ≤ ΔV2 ≤ 0.02 

-0.1 ≤ ΔV3 ≤ 0.02 

-0.07721 ≤ ΔV4 ≤ 0.04279 

-0.07212 ≤ ΔV5 ≤ 0.04788 

-0.07458 ≤ ΔV6 ≤ 0.04542 

-0.86 ≤ Δδ2 ≤ 1.12 

-0.83 ≤ Δδ3 ≤ 1.15 

-0.84 ≤ Δδ4 ≤ 1.14 

-0.81 ≤ Δδ5 ≤ 1.17 

-0.78 ≤ Δδ6 ≤ 1.2 

50 ≤ P1 ≤ 200 

37.5 ≤ P2 ≤ 150 

45 ≤ P3 ≤ 180 

-100 ≤ Q1 ≤ 150 

-100 ≤ Q2 ≤ 150 

-100 ≤ Q3 ≤ 120 

 

                                             P1, P2, P3 ≥ 0 

 Step four: Formulate the problem in an LP solver and solve: 

And by formulating the above equations in Microsoft Excel, the optimal 

solution can be found. Note that ΔV1 and Δδ1 must not set to equal to zero, they 

must set as non-constraint variables to circulate freely in order to obtain the final 

solution, during solution and when they are forced to equal to zero, solution 

circles infinitely and convergence will not be reached. Therefore, the LP program 

must calculate the values of ΔV1 and Δδ1 as non-restricted variables, but, actually the 

values of ΔV1 and Δδ1 are equal to zero where P1 and Q1 are calculated through the PF 

solution, but in LP formulation they are set to be as non-restricted variables in order to 

solve the OPF problem correctly.  
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i. The First Iteration: LP results: 

Table (5.29): Variables result after the first LP solution. 

Variable Min. Solution Max. 

Δδ2 -0.86 1.120 1.120 

Δδ3 -0.83 1.150 1.150 

Δδ4 -0.84 -0.840 1.140 

Δδ5 -0.81 -0.810 1.170 

Δδ6 -0.78 -0.780 1.200 

ΔV2 -0.1 0.020 0.020 

ΔV3 -0.1 0.020 0.020 

ΔV4 -0.077 -0.077 0.043 

ΔV5 -0.072 -0.072 0.048 

ΔV6 -0.075 -0.075 0.045 

 

Table (5.30): Variables result after the first LP solution. 

Variable Min. Solution Max. 

ΔP1 -163 -95.225519 -12.96 

ΔP2 -12.5 67.927 100.000 

ΔP3 -5 27.298 130.000 

ΔQ1 -89.24 61.885 160.760 

ΔQ2 -121.8 -57.120 128.240 

ΔQ3 -119 -4.765 100.980 

 

And by the use of equation (5.29) and (5.30):  

Table (5.31): LP results for real power. 

P1 117.73448 

P2 117.92748 

P3 77.29804 

Total generation 312.96 

 

Table (5.32): LP results for reactive power. 

Q1 51.124887 

Q2 -35.35973 

Q3 14.254848 

Total generation 30.02 

The objective function value, equation (5.22): 

13.93915×-95.2255187+11.222×67.9274787+11.574×27.29804 = -249.133  

 Step five: Substitute the LP results into the power flow as new set 

points and run a power flow solution: 
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PF results: 

Table (5.33): Generation results.  

Unit MW MVAR 

1 112.99 37.25 

2 117.93 -35.36 

3 77.3 14.25 

Total Generation 308.22 16.14 

 

Table (5.34): Bus voltages & phase angles.  

Bus No. PU Volt Angle in Radians 

1 1.07 0 

2 1.03027 -0.03 

3 1.03561 -0.05 

4 1.01064 -0.08 

5 1.00863 -0.11 

6 1.00896 -0.11 

 

Table (5.35): Line flows and total losses. 

From Bus To Bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

1 2 19.65 9.31 21.75 100 0.45 -3.5 

1 4 50.6 18.72 53.95 100 1.31 0.91 

1 5 42.74 9.22 43.72 100 1.39 -1.28 

2 3 9.39 -7.14 11.8 60 0.05 -6.16 

2 4 57.78 -7.93 58.32 60 1.59 1.11 

2 5 28.91 -3.09 29.08 60 0.79 -1.79 

2 6 41.04 -4.37 41.27 60 1.11 -2.02 

3 5 24.44 -2.48 24.57 60 0.67 -3.78 

3 6 62.2 15.74 64.16 60 0.77 1.78 

4 5 5.47 -6.23 8.29 60 0.07 -8.02 

5 6 -1.35 -2.71 3.03 60 0 -6.1 

     Total losses 8.2 -28.85 

 

Therefore, the reduced total cost using equations (5.1), (5.2) and (5.3): 

𝐹1(𝑃1) + 𝐹2(𝑃2) + 𝐹3(𝑃3)

= 213.1 + 11.669 × 112.99 + 0.00533 × 122.992 + 200 + 10.333

× 117.93 + 0.00889 × 117.932 + 240 + 10.833 × 77.3 + 0.00741

× 77.32 = 4263.5031 $/hr. 

 Step seven: set the new control variables limits: 

Here, the new variables to be substituted in the LP program are the new 

total generation values for both real and reactive powers, the new voltage 

magnitudes, the new phase angles and the new Jacobean matrix. 
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After eight iterations, PF and LP results are equal, but as observed there 

is overloading in line 2-4 and line 3-6 and therefore the GSF factors must be used, 

moving to step eight: 

 Step eight: No change in variables but transmission overload, use 

the generation shift factors to relief the overloading: 

A new inequality constraint will be added to the LP program: 

∑𝑎ℓ𝑖𝑃𝑖

𝑁gen

𝑖=1

 ≤  𝑓ℓ
max +∑𝑎ℓ𝑖𝑃𝑖

0

𝑁gen

𝑖=1

− 𝑓ℓ
0                                                                               (5.31) 

For line 2-4:  

𝑎2−4,2 = 0.327, 𝑎2−4,3 = 0.245, 𝑃2 = 127.01MW,𝑃3 = 77.93MW, 𝑓ℓ
max = 60MW, 𝑓ℓ

0

= 28.86MW, 𝑃2
0 = 50MW,𝑃3

0 = 50MW  

∴ 0.327×127.01+0.245×77.93 ≤60+(0.327×50+0.245×50)-28.86 

∴ The new transmission constraint for line 2-4 is: 

60.7 ≤ 59.77 

For line 3-6: 

𝑎3-6,2 = -0.0045, 𝑎3-6,3 = 0.372, 𝑃2 = 127.01MW,𝑃3 = 77.93MW, 𝑓ℓ
max

= 60MW, 𝑓ℓ
0 = 52.23MW,𝑃2

0 = 50MW,𝑃3
0 = 50MW  

∴  -0.0045×127.01+0.372×77.93 ≤60+(-0.0045×50+0.372×50)-52.23 

∴ The new transmission constraint for line 3-6 is: 

28.45 ≤ 26.167 

After twelve iterations, the optimal solution is found, where total 

operating cost is reduced from 4478.906 $/hr. to 4258.032 $/hr., total 

transmission losses for real power from 12.96 MW to 7.62 MW and total 

transmission losses for reactive power from -14.98 MVAR to -32.82 MVAR. 
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 Final Solution of Incremental and PW LPOPF in a Compacted 

from: 

Table (5.36): Results of the initial power flow PF0. 

Bus No. Generation Generation Bus Angles 

 MW MVAR PU Volt Radians 

1 212.96 -10.76 1.07 0 

2 50 21.76 1.05 -0.13 

3 50 19.02 1.05 -0.16 

4 0 0 1.02721 -0.15 

5 0 0 1.02212 -0.18 

6 0 0 1.02458 -0.21 

Total Gen 312.96 30.02   
Total losses 12.96 -14.98   
Total Cost 4478.9062 $/hr.    

 

Table (5.37): Incremental LPOPF results by incorporating 

POWERWORLD   Simulator and Microsoft Excel. 

Bus No. Generation Generation Bus Angles 

  MW MVAR PU Volt Radians 

1 110.01 7.18 1.07 0 

2 125.83 -10.8 1.05732 -0.03 

3 71.78 15.81 1.05982 -0.06 

4 0 0 1.02962 -0.09 

5 0 0 1.02867 -0.11 

6 0 0 1.03377 -0.11 

Total Gen 307.62 12.19   
Total losses 7.62 -32.81     

Total Cost 4258.032 $/hr.       

 

Table (5.38): PW LPOPF results by incorporating POWERWORLD   

Simulator and Microsoft Excel. 

Bus No. Generation Generation Bus Angles 

 MW MVAR PU Volt Radians 

1 106.69 17.22 1.07 0 

2 129.15 -16.43 1.05 -0.03 

3 71.88 12.29 1.05 -0.05 

4 0 0 1.02412 -0.08 

5 0 0 1.02193 -0.11 

6 0 0 1.02492 -0.11 

Total Gen 307.72 13.08   
Total losses 7.72 -31.92   
Total Cost 4258.487 $/hr.    

Where from table (5.98) and table (5.99), the full AC incremental  LPOPF 

is better than the PW LPOPF in all aspects. 
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 Results of Incremental LPOPF Graphically: 

  

 

 

 

 

  

Figure (5.5): Total cost reduction.        Figure (5.6): Total loss reduction (MW). 

 

 

 

 

 

  

 

 

Figure (5.7): Total loss reduction (MVAR).      Figure (5.8): Objective function. 

5.5 Reactive Power Pricing for the 6-bus System and Including the VAR cost 

Function in the Objective Function: 

The equation that will be used in order to calculate the total operating cost 

for reactive power is: 

F𝑖(Q𝑖)=0.05bQ𝑖
2                                                                                                                      (5.32) 

The linearized version of equation (5.31) is:  

𝜕F𝑖(Q𝑖)

𝜕Q𝑖
= 0.1bQ𝑖                                                                                                                    (5.33) 

∴ For unit 1, 2 and 3: 
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𝜕F1(Q1)
0

𝜕𝑄1
0 = 0.1 × 11.669 × −10.76

= −12.555                                                             (5.34) 

𝜕F2(Q2)
0

𝜕𝑄2
0 = 0.1 × 10.333 × 21.76

= 22.485                                                                    (5.35) 

𝜕F3(Q3)
0

𝜕𝑄3
0 = 0.1 × 10.833 × 19.02

= 20.6                                                                         (5.36) 

And from equation (4.34), the new part to be added is: 

𝜕F1(Q1)
0

𝜕𝑄1
0 ∆Q1 +

𝜕F2(Q2)
0

𝜕𝑄2
0 ∆Q2 +

𝜕F3(Q3)
0

𝜕𝑄3
0 ∆Q3                                                          (5.37) 

Where: 

∆Q1 = [
𝜕𝑄1
𝜕𝛿1

⋯
𝜕𝑄1
𝜕𝛿6

𝜕𝑄1
𝜕𝑉1

⋯
𝜕𝑄1
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

                                                                    (5.38) 

∆Q2 = [
𝜕𝑄2
𝜕𝛿1

⋯
𝜕𝑄2
𝜕𝛿6

𝜕𝑃2

𝜕𝑉1
⋯

𝜕𝑄2
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

                                                                     (5.39) 

∆Q3 = [
𝜕𝑃3

𝜕𝛿1
⋯

𝜕𝑃3

𝜕𝛿6

𝜕𝑃3

𝜕𝑉1
⋯

𝜕𝑃3

𝜕𝑉6
]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

                                                                     (5.40) 

∴ The term to be added to the objective function is: 
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                                         −12.555 [
𝜕𝑄1
𝜕𝛿1

⋯
𝜕𝑄1
𝜕𝛿6

𝜕𝑄1
𝜕𝑉1

⋯
𝜕𝑄1
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+     22.485 [
𝜕𝑄2
𝜕𝛿1

⋯
𝜕𝑄2
𝜕𝛿6

𝜕𝑃2
𝜕𝑉1

⋯
𝜕𝑄2
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+            20.6 [
𝜕𝑃3
𝜕𝛿1

⋯
𝜕𝑃3
𝜕𝛿6

𝜕𝑃3
𝜕𝑉1

⋯
𝜕𝑃3
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

 

Therefore, the new objective function is: 

Minimize:                                  13.94 [
𝜕𝑃1
𝜕𝛿1

⋯
𝜕𝑃1
𝜕𝛿6

𝜕𝑃1
𝜕𝑉1

⋯
𝜕𝑃1
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+              11.222 [
𝜕𝑃2
𝜕𝛿1

⋯
𝜕𝑃2
𝜕𝛿6

𝜕𝑃2
𝜕𝑉1

⋯
𝜕𝑃2
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+              11.574 [
𝜕𝑃3
𝜕𝛿1

⋯
𝜕𝑃3
𝜕𝛿6

𝜕𝑃3
𝜕𝑉1

⋯
𝜕𝑃3
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

−            12.555 [
𝜕𝑄1
𝜕𝛿1

⋯
𝜕𝑄1
𝜕𝛿6

𝜕𝑄1
𝜕𝑉1

⋯
𝜕𝑄1
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+            22.485 [
𝜕𝑄2
𝜕𝛿1

⋯
𝜕𝑄2
𝜕𝛿6

𝜕𝑄2
𝜕𝑉1

⋯
𝜕𝑄2
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

+                 20.6 [
𝜕𝑄3
𝜕𝛿1

⋯
𝜕𝑄3
𝜕𝛿6

𝜕𝑄3
𝜕𝑉1

⋯
𝜕𝑄3
𝜕𝑉6

]

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
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Subjected to: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑃1
𝜕𝛿1

⋯
𝜕𝑃1
𝜕𝛿6

𝜕𝑃1
𝜕𝑉1

⋯
𝜕𝑃1
𝜕𝑉6

𝜕𝑃2
𝜕𝛿1

⋯
𝜕𝑃2
𝜕𝛿6

𝜕𝑃2
𝜕𝑉1

⋯
𝜕𝑃2
𝜕𝑉6

𝜕𝑃3
𝜕𝛿1

⋯
𝜕𝑃3
𝜕𝛿6

𝜕𝑃3
𝜕𝑉1

⋯
𝜕𝑃3
𝜕𝑉6

𝜕𝑄1
𝜕𝛿1

⋯
𝜕𝑄1
𝜕𝛿6

𝜕𝑄1
𝜕𝑉1

⋯
𝜕𝑄1
𝜕𝑉6

𝜕𝑄2
𝜕𝛿1

⋯
𝜕𝑄2
𝜕𝛿6

𝜕𝑄2
𝜕𝑉1

⋯
𝜕𝑄2
𝜕𝑉6

𝜕𝑄3
𝜕𝛿1

⋯
𝜕𝑄3
𝜕𝛿6

𝜕𝑄3
𝜕𝑉1

⋯
𝜕𝑄3
𝜕𝑉6 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
∆𝛿1
⋮

∆𝛿6
∆𝑉1
⋮

∆𝑉6]
 
 
 
 
 

=

[
 
 
 
 
 
∆𝑃1
∆𝑃2
∆𝑃3
∆𝑄1
∆𝑄2
∆𝑄3]

 
 
 
 
 

 

212.96 + ∆𝑃1 + 50 + ∆𝑃2 + 50 + ∆𝑃3 = 312.96 MW 

−10.76 + ∆𝑄1 + 21.76 + ∆𝑄2 + 19.02 + ∆𝑄3 = 30.02 MVAR 

-162.96 ≤ ΔP1 ≤ -12.96 

-12.5 ≤ ΔP2 ≤ 100 

-5 ≤ ΔP3 ≤ 130 

-89.24 ≤ ΔQ1 ≤ 160.76 

-121.76 ≤ ΔQ2 ≤ 128.24 

-119.02 ≤ ΔQ3 ≤ 100.98 

-0.1 ≤ ΔV2 ≤ 0.02 

-0.1 ≤ ΔV3 ≤ 0.02 

-0.07721 ≤ ΔV4 ≤ 0.04279 

-0.07212 ≤ ΔV5 ≤ 0.04788 

-0.07458 ≤ ΔV6 ≤ 0.04542 

-0.86 ≤ Δδ2 ≤ 1.12 

-0.83 ≤ Δδ3 ≤ 1.15 

-0.84 ≤ Δδ4 ≤ 1.14 

-0.81 ≤ Δδ5 ≤ 1.17 

-0.78 ≤ Δδ6 ≤ 1.2 

50 ≤ P1 ≤ 200 

37.5 ≤ P2 ≤ 150 

45 ≤ P3 ≤ 180 

-100 ≤ Q1 ≤ 150 

-100 ≤ Q2 ≤ 150 

-100 ≤ Q3 ≤ 120 

 

                                           P1, P2, P3   ≥ 0 
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Following the same algorithm that used in last section, the final optimal 

solution after the addition of the reactive power cost function: 

LP results: 

Table (5.39): Variables result of the optimal solution. 

Variable Min. Solution Max. 

ΔP1 -163 -97.960062 -12.96 

ΔP2 -12.5 71.2137638 100 

ΔP3 -5 21.7262979 130 

ΔQ1 -89.24 33.0168704 160.8 

ΔQ2 -121.8 -41.937472 128.2 

ΔQ3 -119 -6.5993981 101 

 

Table (5.40): Real power results. 

P1 114.999938 

P2 121.213764 

P3 71.7262979 

Total generation 307.94 

 

Table (5.41): Reactive power results. 

Q1 22.2568704 

Q2 -20.177472 

Q3 12.4206019 

Total generation 14.5 

PF results: 

Table (5.42): Generation results. 

Unit MW MVAR 

1 115 22.26 

2 121.21 -20.18 

3 71.73 12.42 

Total Generation 307.94 14.5 

 

Table (5.43): Bus voltages & phase angles. 

Bus No. PU Volt Angle in Radians 

1 1.07 0 

2 1.0433 -0.03 

3 1.0441 -0.06 

4 1.01973 -0.09 

5 1.0171 -0.11 

6 1.01883 -0.11 
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Table (5.44): Line flows and total losses. 

From Bus To Bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

1 2 19.9 2.3 20.03 100 0.36 -3.74 

1 4 51.29 13.8 53.12 100 1.26 0.68 

1 5 43.81 6.1 44.24 100 1.4 -1.27 

2 3 11.33 -5.7 12.69 60 0.06 -6.23 

2 4 57.45 -3.6 57.57 60 1.52 0.91 

2 5 29.32 -1.6 29.37 60 0.79 -1.88 

2 6 42.63 -3.2 42.75 60 1.17 -1.98 

3 5 22.99 -1.9 23.07 60 0.58 -4.05 

3 6 60.01 14.8 61.81 60 0.71 1.41 

4 5 5.96 -6.4 8.73 60 0.08 -8.14 

5 6 -0.77 -3.4 3.52 60 0 -6.22 

          Total losses 7.93 -30.51 

 

The objective function value is -1808.34. 

The reduced cost for real power is 4263.777 $/hr. 

The reduced cost for reactive power is 582.93$/hr. 

As observed, the optimal results before the addition of the reactive 

power cost function was better in all aspects except that the voltage profile is 

improved: 

Table (5.45): Before and after the addition of the VAR cost function. 

 Before After 

Total real power cost 4258 $/hr. 4263.777 $/hr. 

Total reactive power cost 159.9 $/hr. 362.2 $/hr. 

Total real power losses 7.62 MW 7.94 MW 

Total reactive power losses -32.81 MVAR -30.51 MVAR 
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Figure (5.9): Total cost reduction. 

 

 

 

 

 

 

 

 

 

 

Figure (5.10): Loss reduction MW. 

 

 

 

 

 

 

 

 

Figure (5.11): Loss reduction MVAR. 
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Table (5.46): Voltage profile Before and after.  
 Voltage profile 

Bus No. Before After 

1 1.07 1.07 

2 1.05732 1.0433 

3 1.05982 1.0441 

4 1.02962 1.01973 

5 1.02867 1.0171 

6 1.03377 1.01883 

 

  

 

 

 

 

Figure (5.12): Voltage profile before and after. 

In this case, the effect of including the VAR cost function in the 

optimization process is unfavorable where optimization results before the 

inclusion was better and therefore in this case, the VAR function must not be 

added to the objective function while it can be used for pricing purposes only. 

Note that the addition of the VAR function can improve the optimization process 

in other systems. 

5.6 Calculation of The Locational Marginal Prices: 

Using equation (4.37) and equation (4.38): 

LMP=LMPref. −
𝜕Ploss
∂P𝑖

LMPref. −∑𝜇ℓ𝑎ℓ𝑖

𝑁𝑙𝑙

ℓ=1

 

𝜇ℓ =
𝜕𝐹𝑟𝑒𝑓(𝑃𝑟𝑒𝑓.)

𝜕𝑃𝑟𝑒𝑓.
(1 −

𝜕Ploss
𝜕P𝑖

) (
1

𝑎ℓ𝑖
) −

𝜕𝑓𝑖(𝑃𝑖)

𝜕𝑃𝑖
(
1

𝑎ℓ𝑖
) 

LMPref. =
𝜕𝐹1(𝑃1)

𝜕𝑃1
= 11.669 + 0.01066 × 110.01 = 12.842 $/MWH 

LMP2 = 12.57$/MWH, LMP3 = 11.897$/MWH. 
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Table (5.47): The LMP calculation. 

Bus No. LMP ref. 

 
𝜕Ploss
𝜕P𝑖

 
 

1-
𝜕Ploss
𝜕P𝑖

 
𝑎2-4 

 

𝜇2-4 
 

 

𝑎3-6 
 

 

𝜇3-6 
  LMP $/MWH 

1 12.841 0 0 0 0 0 0 0 12.841 

2 12.841 -0.0164 1.0164 0.3215 1.499 -0.007 3.772 0.4555 12.596 

3 12.841 -0.0357 1.0357 0.2324 1.499 0.3720 3.772 1.7519 11.548 

4 12.841 -0.0634 1.0634 -0.382 1.499 -0.002 3.772 -0.583 14.239 

5 12.841 -0.0782 1.0782 0.1181 1.499 0.0125 3.772 0.2243 13.621 

6 12.841 -0.0674 1.0674 0.2399 1.499 -0.357 3.772 -0.987 14.694 

 

  

  

 

 

 

 

 Figure (5.13): The LMP values at each bus. 

Based on the basic definition of the LMP, where in case of adding a 1 MW 

of load to the system for example at bus-3, the marginal increase of the total 

operating cost is approximately 11.55 dollars and for bus-6 is approximately 14.7 

dollars which is the most expensive bus. Therefore, LMP calculation is  very 

important for planning, operation and future studies of electrical power systems. 
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5.7 Implementation on the IEEE 30-bus System: 

 Initial power flow results: 

Table (5.48): Initial PF results for the IEEE 30-bus system. 

 Generation Generation Generation Generation Generation 

Bus No. MW MVAR Min MW Max MW Initial Cost 

1 260.95 -16.53 50 200 614.37 

2 40 49.56 20 80 252 

3 0 36.94 15 50 0 

4 0 37.22 10 35 0 

5 0 16.18 10 30 0 

6 0 10.63 12 40 0 

Total Generation 300.95  134     
Total Load 283.4  126.2     

Total Losses 17.55  7.8     
Total Cost 875.256 $/hr. 591.8 $/hr.    

 

Table (5.49): Voltage magnitudes and phase angles.  

Bus No. Min BUS PU Volt Max. Angle (Radians) 

1 0.9 1.06 1.1 0 

2 0.9 1.043 1.1 -0.09 

3 0.9 1.02071 1.1 -0.13 

4 0.9 1.01173 1.1 -0.16 

5 0.9 1.01 1.1 -0.25 

6 0.9 1.01023 1.1 -0.19 

7 0.9 1.00236 1.1 -0.22 

8 0.9 1.01 1.1 -0.21 

9 0.9 1.0509 1.1 -0.25 

10 0.9 1.04511 1.1 -0.27 

11 0.9 1.082 1.1 -0.25 

12 0.9 1.0571 1.1 -0.26 

13 0.9 1.071 1.1 -0.26 

14 0.9 1.04226 1.1 -0.28 

15 0.9 1.03767 1.1 -0.28 

16 0.9 1.04437 1.1 -0.27 

17 0.9 1.03988 1.1 -0.28 

18 0.9 1.02814 1.1 -0.29 

19 0.9 1.02563 1.1 -0.29 

20 0.9 1.02972 1.1 -0.29 

21 0.9 1.03271 1.1 -0.28 

22 0.9 1.03324 1.1 -0.28 

23 0.9 1.02716 1.1 -0.28 

24 0.9 1.02156 1.1 -0.29 

25 0.9 1.01732 1.1 -0.28 

26 0.9 0.99964 1.1 -0.29 

27 0.9 1.02323 1.1 -0.27 

28 0.9 1.0068 1.1 -0.2 

29 0.9 1.00339 1.1 -0.29 

30 0.9 0.99191 1.1 -0.31 
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Table (5.50): Line flows and losses. 

From bus To bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

1 2 173.2 -21.09 174.5 130 5.18 9.69 

1 3 87.7 4.57 87.85 130 3.11 6.97 

2 4 43.6 3.9 43.79 65 1.02 -0.79 

2 5 82.4 1.75 82.4 130 2.95 8 

2 6 60.3 0.44 60.34 65 1.95 1.97 

3 4 82.2 -3.6 82.29 130 0.86 1.59 

4 6 72.2 -16.35 73.98 90 0.63 1.29 

4 12 44.2 14.24 46.44 65 0 4.69 

5 7 -14.8 11.69 18.83 70 0.17 -1.63 

6 7 38.1 -2.97 38.23 130 0.38 -0.55 

6 8 29.6 -8.14 30.67 32 0.11 -0.53 

6 9 27.7 -8.17 28.9 65 0 1.63 

6 10 15.8 0.16 15.84 32 0 1.28 

6 28 18.7 -0.04 18.67 32 0.06 -1.12 

8 28 -0.5 -0.39 0.67 32 0 -4.35 

9 10 27.7 5.91 28.34 65 0 0.8 

9 11 0 -15.71 15.71 65 0 0.47 

10 17 5.3 4.42 6.92 32 0.01 0.04 

10 20 9 3.71 9.75 32 0.08 0.18 

10 21 15.8 10.01 18.69 32 0.11 0.24 

10 22 7.6 4.6 8.9 32 0.05 0.11 

12 13 0 -10.49 10.49 65 0 0.14 

12 14 7.9 2.4 8.22 32 0.07 0.15 

12 15 17.9 6.8 19.14 32 0.22 0.43 

12 16 7.2 3.35 7.99 16 0.05 0.11 

14 15 1.6 0.65 1.71 16 0.01 0.01 

15 18 6 1.6 6.23 16 0.04 0.08 

15 23 5 2.91 5.82 16 0.03 0.06 

16 17 3.7 1.44 3.97 16 0.01 0.03 

18 19 2.8 0.62 2.85 16 0 0.01 

19 20 -6.7 -2.79 7.28 16 0.02 0.03 

21 22 -1.8 -1.43 2.32 32 0 0 

22 24 5.7 3.06 6.51 16 0.05 0.07 

23 24 1.8 1.25 2.2 16 0.01 0.01 

24 25 -1.2 2.02 2.35 16 0.01 0.02 

25 26 3.5 2.37 4.26 16 0.04 0.07 

25 27 -4.8 -0.37 4.77 16 0.02 0.05 

28 27 18.1 5.03 18.75 65 0 1.29 

27 29 6.2 1.67 6.41 16 0.09 0.16 

27 30 7.1 1.66 7.28 16 0.16 0.31 

29 30 3.7 0.61 3.75 16 0.03 0.06 
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 Piecewise LPOPF results: 

By following the same algorithm that used in solving the 6 -bus system, 

the IEEE 30-bus system is solved, the I/O curve is fitted into 6 straight line 

segments through 7 break-points: 

Table (5.51): BPs of all units. 

Unit No Min MW Max MW BP1 BP2 BP3 BP4 BP5 BP6 BP7 

1 50 200 50 75 100 125 150 180 200 

2 20 80 20 30 40 50 60 73 80 

3 15 50 15 20.8 25.8 31.6 37.5 44.5 50 

4 10 35 10 14.2 18.36 22.6 26.76 31 35 

5 10 30 10 13.3 16.6 20 23.3 27.6 30 

6 12 40 12 16.7 21.4 26.1 30.8 36 40 

 

Table (5.52): Segment slopes for all units. 

Uni1 1   Unit 2   Unit 3   
Pi F(Pi) Slope Si Pi F(Pi) Slope Pi F(Pi) Slope 

50 109.25 2.4625 20 42 2.625 15 29.0625 3.2375 

75 170.8125 2.6475 30 68.25 2.975 20.8 47.84 3.9125 

100 237 2.8325 40 98 3.325 25.8 67.4025 4.5875 

125 307.8125 3.0175 50 131.25 3.675 31.6 94.01 5.31875 

150 383.25 3.221 60 168 4.0775 37.5 125.390625 6.125 

180 479.88 3.406 73 221.0075 4.4275 44.5 168.265625 6.90625 

200 548  80 252  50 206.25  
Unit 4   Unit 5   Unit 6   

Pi F(Pi) Slope Pi F(Pi) Slope Pi F(Pi) Slope 

10 33.33 3.45086 10 32.5 3.5825 12 39.6 3.7175 

14.2 47.823612 3.520248 13.3 44.32225 3.7475 16.7 57.07225 3.9525 

18.36 62.4678437 3.589968 16.6 56.689 3.915 21.4 75.649 4.1875 

22.6 77.689308 3.659688 20 70 4.0825 26.1 95.33025 4.4225 

26.76 92.9136101 3.729408 23.3 83.47225 4.2725 30.8 116.116 4.67 

31 108.7263 3.7978 27.6 101.844 4.44 36 140.4 4.9 

35 123.9175  30 112.5  40 160  
 

Table (5.53): Segment limits for all units. 

P11 ≤ 25  P21 ≤ 10  P31 ≤ 5.8 

P12 ≤ 25  P22 ≤ 10  P32 ≤ 5 

P13 ≤ 25  P23 ≤ 10  P33 ≤ 5.8 

P14 ≤ 25  P24 ≤ 10  P34 ≤ 5.9 

P15 ≤ 30  P25 ≤ 13  P35 ≤ 7 

P16 ≤ 20  P26 ≤ 7  P36 ≤ 5.5 

P41 ≤ 4.2  P51 ≤ 3.3  P61 ≤ 4.7 

P42 ≤ 4.16  P52 ≤ 3.3  P62 ≤ 4.7 

P43 ≤ 4.24  P53 ≤ 3.4  P63 ≤ 4.7 

P44 ≤ 4.16  P54 ≤ 3.3  P64 ≤ 4.7 

P45 ≤ 4.24  P55 ≤ 4.3  P65 ≤ 5.2 

P46 ≤ 4  P56 ≤ 2.4  P66 ≤ 4 
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After performing PW LPOPF, the optimal solution results are: 

Table (5.54): PW LPOPF results by incorporating POWERWORLD   

Simulator and Microsoft Excel. 

  Generation Generation Generation Generation 

Bus No. MW MVAR Min MW Max MW 

1 191.4 -3.48 50 200 

2 50 32.69 20 80 

3 20.8 27.51 15 50 

4 10 27.7 10 35 

5 10 15.4 10 30 

6 12 8.82 12 40 

Total Generation 294.2 108.64     

Total Load 283.4 126.2     

Total Losses 10.8 -17.56     

Real & Reactive power Costs 802.866 $/hr. 304.484 $/hr.      
Total Cost 1107.35 $/hr.    

 

Table (5.55): Line flows and losses. 

From bus To bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

1 2 124 -9 125 130 2.65 2.1 

1 3 67 5.51 67.3 130 1.83 2.26 

2 4 35.8 3.7 36 65 0.69 -1.8 

2 5 65.5 3.38 65.6 130 1.88 3.48 

2 6 48.7 1.82 48.7 65 1.27 -0.1 

3 4 62.8 2.05 62.8 130 0.5 0.55 

4 6 56.1 -8.7 56.7 90 0.37 0.36 

4 12 33.8 14 36.6 65 0 2.88 

5 7 -9.8 8.42 12.9 70 0.08 -1.9 

6 7 32.9 -0.2 32.9 130 0.28 -0.9 

6 8 20.7 -0.1 20.7 32 0.05 -0.8 

6 9 19.8 -8.2 21.4 65 0 0.89 

6 10 13.3 0.05 13.3 32 0 0.9 

6 28 16.5 1.41 16.5 32 0.05 -1.2 

8 28 0.6 -1.7 1.78 32 0 -4.4 

9 10 29.8 5.7 30.3 65 0 0.91 

9 11 -10 -15 17.9 65 0 0.6 

10 17 4.7 4.55 6.54 32 0.01 0.03 

10 20 8.7 3.79 9.51 32 0.08 0.17 

10 21 16.1 9.9 18.9 32 0.11 0.24 

10 22 7.8 4.53 9.01 32 0.05 0.11 

12 13 -12 -8.6 14.7 65 0 0.27 

12 14 8 2.33 8.37 32 0.08 0.16 

12 15 18.6 6.63 19.8 32 0.23 0.45 

12 16 7.9 3.25 8.53 16 0.06 0.13 
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Table (5.55): Line flows and losses (continued). 

From bus To bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

14 15 1.8 0.57 1.85 16 0.01 0.01 

15 18 6.3 1.51 6.49 16 0.04 0.09 

15 23 5.7 2.72 6.28 16 0.04 0.07 

16 17 4.3 1.32 4.52 16 0.01 0.04 

18 19 3.1 0.53 3.12 16 0.01 0.01 

19 20 -6.4 -2.9 7.05 16 0.02 0.03 

21 22 -1.6 -1.5 2.19 32 0 0 

22 24 6.2 2.87 6.81 16 0.05 0.08 

23 24 2.4 1.05 2.64 16 0.01 0.02 

24 25 -0.2 1.63 1.64 16 0 0.01 

25 26 3.5 2.37 4.26 16 0.04 0.07 

25 27 -3.7 -0.8 3.78 16 0.02 0.03 

28 27 17 5.26 17.8 65 0 1.16 

27 29 6.2 1.67 6.41 16 0.09 0.16 

27 30 7.1 1.66 7.28 16 0.16 0.3 

29 30 3.7 0.61 3.75 16 0.03 0.06 

 

 

 

 

 

 

 Figure (5.14): Reduction of total cost.    Figure (5.15): Reduction of total losses. 

 Locational marginal prices: 

In this case and due to line congestion (no overloaded line being forced at 

their limit), equation (4.37) is used in order to calculate the LMPs of the system: 

Table (5.56): LMP calculation. 

Bus No. LMP Ref. 

 
𝜕Ploss
𝜕P𝑖

 
LMP $/MWH 

1 3.4355 0 3.43550 

2 3.4355 -0.022 3.51108 

3 3.4355 -0.0496 3.60590 

 



71 

 

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L
M

P
 $

/M
W

H

Bus No.

Table (5.56): LMP calculation (continued). 

Bus No. LMP Ref. 

 
𝜕Ploss
𝜕P𝑖

 
LMP $/MWH 

4 3.4355 -0.0639 3.65503 

5 3.4355 -0.0942 3.75912 

6 3.4355 -0.0763 3.69763 

7 3.4355 -0.0909 3.74779 

8 3.4355 -0.0808 3.71309 

9 3.4355 -0.0769 3.69969 

10 3.4355 -0.0773 3.70106 

11 3.4355 -0.0769 3.69969 

12 3.4355 -0.0627 3.65091 

13 3.4355 -0.0626 3.65056 

14 3.4355 -0.0802 3.71103 

15 3.4355 -0.086 3.73095 

16 3.4355 -0.0764 3.69797 

17 3.4355 -0.0806 3.71240 

18 3.4355 -0.0981 3.77252 

19 3.4355 -0.1011 3.78283 

20 3.4355 -0.0958 3.76462 

21 3.4355 -0.0886 3.73989 

22 3.4355 -0.0882 3.73851 

23 3.4355 -0.0967 3.76771 

24 3.4355 -0.1019 3.78558 

25 3.4355 -0.0968 3.76806 

26 3.4355 -0.1171 3.83780 

27 3.4355 -0.0853 3.72855 

28 3.4355 -0.0827 3.71962 

29 3.4355 -0.1155 3.83230 

30 3.4355 -0.1365 3.90445 

 

 

 

 

 

 

 

Figure (5.16): LMP values at each bus. 
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 Incremental LPOPF results: 

 Before the addition of the VAR cost function: 

Table (5.57): Incremental LPOPF results before adding the VAR cost 

function by incorporating POWERWORLD   Simulator and Microsoft Excel. 

 Generation Generation Generation Generation 

Bus No. MW MVAR Min MW Max MW 

1 147.78 7.8 50 200 

2 80 -3.83 20 80 

3 24.86 30.21 15 50 

4 13.82 38.97 10 35 

5 10.27 16.03 10 30 

6 15.26 10.83 12 40 

Total Generation 291.99 100.01   

Total Load 283.4 126.2   

Total Losses 8.59 -26.19   

Real power cost 824.497 $/hr.    

Reactive power cost 355.951 $/hr.    

Total operating cost 1180.448 $/hr.    

 

Table (5.58): Line flows and losses. 

From bus To bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

1 2 89.8 4.91 89.91 130 1.39 -1.67 

1 3 58 2.9 58.08 130 1.36 0.53 

2 4 36.2 -2.65 36.33 65 0.69 -1.81 

2 5 62.8 -1.85 62.86 130 1.72 2.8 

2 6 47.6 -5.46 47.94 65 1.22 -0.27 

3 4 54.2 1.18 54.25 130 0.37 0.16 

4 6 50.4 -13.18 52.07 90 0.31 0.12 

4 12 31.4 11.76 33.57 65 0 2.39 

5 7 -8.2 6.56 10.52 70 0.06 -1.96 

6 7 31.3 1.38 31.37 130 0.25 -0.99 

6 8 17.4 -9.97 20.02 32 0.04 -0.79 

6 9 19.1 -9.2 21.22 65 0 0.86 

6 10 12.9 -0.38 12.95 32 0 0.84 

6 28 15.7 -0.32 15.72 32 0.04 -1.22 

8 28 1.1 -0.22 1.15 32 0 -4.47 

9 10 29.4 5.34 29.87 65 0 0.87 

9 11 -10.3 -15.4 18.51 65 0 0.63 

10 17 4.3 4.49 6.2 32 0.01 0.03 

10 20 8.5 3.76 9.29 32 0.07 0.16 

10 21 16 9.86 18.8 32 0.11 0.24 

10 22 7.8 4.5 8.97 32 0.05 0.11 

12 13 -15.3 -10.42 18.48 65 0 0.41 

12 14 8.1 2.31 8.46 32 0.08 0.16 

12 15 19 6.65 20.17 32 0.23 0.46 
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From bus To bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

12 16 8.3 3.32 8.96 16 0.07 0.14 

14 15 1.9 0.55 1.94 16 0.01 0.01 

15 18 6.5 1.53 6.72 16 0.04 0.09 

15 23 5.9 2.71 6.51 16 0.04 0.08 

16 17 4.8 1.38 4.95 16 0.01 0.04 

18 19 3.3 0.54 3.34 16 0.01 0.01 

19 20 -6.2 -2.87 6.84 16 0.01 0.03 

21 22 -1.6 -1.58 2.25 32 0 0 

22 24 6.1 2.82 6.72 16 0.05 0.07 

23 24 2.7 1.03 2.88 16 0.01 0.02 

24 25 0 1.68 1.68 16 0 0.01 

25 26 3.5 2.36 4.26 16 0.04 0.06 

25 27 -3.5 -0.7 3.59 16 0.01 0.03 

28 27 16.8 5.14 17.58 65 0 1.1 

27 29 6.2 1.66 6.41 16 0.08 0.16 

27 30 7.1 1.65 7.28 16 0.16 0.3 

29 30 3.7 0.6 3.75 16 0.03 0.06 

Table (5.58): Line flows and losses (continued). 

 

 

 

 

 

 

    Figure (5.17): Total cost reduction.            

                                                                    

 

 

 

 

    

       Figure (5.18): MW loss reduction.         Figure (5.19): MVAR loss reduction. 
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Table (5.59): LMP calculation. 

Bus No.   

   

  
 

LMP Calc. 
LMP Ref.   

1  3.108 0 3.108 

2  3.108 -0.0238 3.211 

3  3.108 -0.0438 3.280 

4  3.108 -0.0564 3.329 

5  3.108 -0.0806 3.429 

6  3.108 -0.0683 3.371 

7  3.108 -0.081 3.417 

8  3.108 -0.0728 3.385 

9  3.108 -0.0701 3.375 

10  3.108 -0.0716 3.378 

11  3.108 -0.0691 3.374 

12  3.108 -0.0529 3.327 

13  3.108 -0.0521 3.325 

14  3.108 -0.0705 3.381 

15  3.108 -0.0774 3.401 

16  3.108 -0.0689 3.372 

17  3.108 -0.0742 3.387 

18  3.108 -0.0905 3.440 

19  3.108 -0.0941 3.450 

20  3.108 -0.0892 3.434 

21  3.108 -0.0828 3.413 

22  3.108 -0.0824 3.411 

23  3.108 -0.0891 3.435 

24  3.108 -0.0959 3.453 

25  3.108 -0.0928 3.438 

26  3.108 -0.113 3.501 

27  3.108 -0.0823 3.403 

28  3.108 -0.0748 3.391 

29  3.108 -0.1127 3.497 

30   3.108 -0.1337 3.561 

 

 

 

 

 

 

 

 

 

Figure (5.20): LMP values at each bus. 
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 After the addition of the VAR cost function:  

Table (5.60): Incremental LPOPF results after adding the VAR cost 

function by incorporating POWERWORLD   Simulator and Microsoft Excel. 

  Generation Generation Generation Generation 

Bus No. MW MVAR Min MW Max MW 

1 149.83 11.34 50 200 

2 80 3.03 20 80 

3 24.67 30.28 15 50 

4 15.64 26.65 10 35 

5 10 18 10 30 

6 12 12.32 12 40 

Total Generation 292.14 101.62   

Total Load 283.4 126.2   

Total Losses 8.74 -24.58     

Real power cost 823.515 $/hr.      

Reactive power cost 246.235 $/hr.      

Total operating cost 1069.75 $/hr.      

Table (5.61): Line flows and losses. 

From bus To bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

1 2 91.1 5.9 91.31 130 1.43 -1.53 

1 3 58.7 5.43 58.96 130 1.41 0.71 

2 4 36.8 -0.19 36.79 65 0.72 -1.72 

2 5 63.2 -0.2 63.2 130 1.75 2.93 

2 6 48 -1.85 48.03 65 1.24 -0.2 

3 4 54.9 3.51 55.01 130 0.38 0.21 

4 6 49.5 -8.08 50.15 90 0.29 0.07 

4 12 33.5 11.31 35.36 65 0 2.68 

5 7 -8.1 8.16 11.48 70 0.07 -1.92 

6 7 31.2 -0.14 31.19 130 0.25 -0.97 

6 8 15.8 0.58 15.77 32 0.03 -0.83 

6 9 20 -10.56 22.62 65 0 0.99 

6 10 13.4 -0.83 13.4 32 0 0.91 

6 28 15.6 1.15 15.68 32 0.04 -1.19 

8 28 1.4 -1.94 2.37 32 0 -4.39 

9 10 30 5.72 30.54 65 0 0.91 

9 11 -10 -17.26 19.95 65 0 0.74 

10 17 4.9 4.15 6.39 32 0.01 0.03 

10 20 8.8 3.58 9.49 32 0.08 0.17 

10 21 16.1 9.94 18.92 32 0.11 0.24 

10 22 7.8 4.55 9.05 32 0.05 0.11 

12 13 -12 -11.97 16.95 65 0 0.35 

12 14 8 2.43 8.39 32 0.08 0.16 

12 15 18.5 7.03 19.83 32 0.23 0.45 

12 16 7.7 3.64 8.54 16 0.06 0.13 

14 15 1.8 0.67 1.88 16 0.01 0.01 
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Table (5.61): Line flows and losses (continued). 

From bus To bus MW MVAR MVA Lim MW MW Loss MVAR Loss 

15 18 6.2 1.72 6.48 16 0.04 0.08 

15 23 5.6 3.03 6.39 16 0.04 0.07 

16 17 4.2 1.71 4.5 16 0.01 0.03 

18 19 3 0.73 3.09 16 0.01 0.01 

19 20 -6.5 -2.68 7.03 16 0.02 0.03 

21 22 -1.5 -1.5 2.13 32 0 0 

22 24 6.3 2.94 6.92 16 0.05 0.08 

23 24 2.4 1.36 2.74 16 0.01 0.02 

24 25 -0.1 2.07 2.07 16 0.01 0.01 

25 26 3.5 2.37 4.26 16 0.04 0.07 

25 27 -3.7 -0.31 3.68 16 0.01 0.03 

28 27 17 4.78 17.62 65 0 1.12 

27 29 6.2 1.67 6.41 16 0.09 0.16 

27 30 7.1 1.66 7.28 16 0.16 0.3 

29 30 3.7 0.6 3.75 16 0.03 0.06 

 

 

 

 

 

 

 

 

 

    Figure (5.21): Total cost reduction. 

  

 

 

 

 

 

Figure (5.22): MW loss reduction.      Figure (5.23): MVAR loss reduction. 
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Table (5.62): LMP calculation 

Bus No. LMP Ref. 

 

  
 

LMP Calc. 

1  3.124 0 3.124 

2  3.124 -0.025 3.229 

3  3.124 -0.047 3.300 

4  3.124 -0.06 3.351 

5  3.124 -0.083 3.452 

6  3.124 -0.071 3.393 

7  3.124 -0.083 3.441 

8  3.124 -0.072 3.407 

9  3.124 -0.073 3.398 

10  3.124 -0.074 3.401 

11  3.124 -0.072 3.396 

12  3.124 -0.061 3.354 

13  3.124 -0.06 3.352 

14  3.124 -0.078 3.410 

15  3.124 -0.084 3.428 

16  3.124 -0.074 3.398 

17  3.124 -0.078 3.412 

18  3.124 -0.096 3.467 

19  3.124 -0.099 3.477 

20  3.124 -0.093 3.460 

21  3.124 -0.085 3.437 

22  3.124 -0.085 3.436 

23  3.124 -0.094 3.462 

24  3.124 -0.099 3.480 

25  3.124 -0.093 3.464 

26  3.124 -0.113 3.528 

27  3.124 -0.081 3.427 

28  3.124 -0.076 3.414 

29  3.124 -0.112 3.523 

30   3.124 -0.133 3.590 

 

 

 

 

 

 

Figure (5.24): LMP values at each bus. 
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 Comparison between LPOPF results before and after the 

inclusion of reactive power cost function graphically: 

 

 

 

 

  

 

Figure (5.25): Total cost reduction. 

 

 

 

 

 

 

 

Figure (5.26): MW loss reduction.  

 

 

 

 

 

 

Figure (5.27): MVAR loss reduction. 
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Figure (5.28): LMP values at each bus 

 

 

 

 

 

 

 

Figure (5.29): Voltage profile. 

Unlike the 6-bus case, the inclusion of the VAR cost function into the 

objective function improved the optimization process in different aspects, as 

observed, total operating cost is reduced by 110.7 $/hr. from the first optimal 

solution and by 397.3 $/hr. from the base case, likewise the voltage profile has 

improved by a considerable amount than of the first optimal solution and thus 

system security is improved after including of the VAR cost function.  

And as observed the LMP values are increased at each bus and hence 

adding a new load at any bus will be more expensive than the first optimal  

solution, likewise, the first optimal solution has an advantage on total real  and 

reactive power losses. 
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CHAPTER SIX 

 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion: 

This research illustrated an important study in power system design, 

planning, operation and optimization, as the name implies “Linear Programming 

Based Optimal Power Flow”, LP optimization is used in order to solve the OPF 

problem, its explained in detail with illustrative examples for both graphical and 

simplex methods. 

Two different methods based on LP are used through this research, the 

Piecewise Linear Approach and full Incremental LP method, PW linear approach 

is used in order to optimize the real power only while the full AC incremental LP 

method for optimizing both real and reactive powers, both methods are 

implemented on the 6-bus and the IEEE 30 bus test systems through incorporating 

POWERWORLD Simulator and Microsoft Excel 2016, it is observed that the PW 

method has a very fast rate of convergence and simple formulation compared with 

the full AC method, but the full AC method has an advantage of all optimization  

goals aspects such as total operating cost and total losses .  

Reactive power pricing is found to be very important in power system 

operation and optimization studies, the conventional VAR cost function is used 

for pricing the reactive power, a proposed formulation is presented by including 

the VAR cost function to the objective function of the incremental LP method 

and through simulation, the influence of this addition is found to be unfavorably 

for the 6-bus system while satisfactory for the 30-bus system, but in both systems 

and after the inclusion, their voltage profiles are improved.  

Research has shown that the way of formulating the LPOPF problem in 

Microsoft Excel is simple and provides accurate results with fast rate of 

convergence.  
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6.2 Future Work: 

This research focused on the understanding and the mathematical 

formulation of LPOPF but OPF studies may go beyond than this such as:  

 Security constraint OPF (SCOPF): this analysis for improving 

system security, it is OPF plus contingency analysis, by adding new 

contingency constraints for the worst cases to the OPF constraints 

in case of all system parts outages.  

 Voltage stability analysis: voltage stability analysis can be added 

to this research to identify the weakest bus in the system in order 

to find the optimal placement for the shunt compensation device.  

 Series and parallel compensation: as observed in the 6-bus 

system, two lines are run at their limits (at critical values) and this 

is very dangerous for system security, therefore series 

compensation must be applied in order to improve system security, 

likewise, in the IEEE 30 bus system, bus 11 and bus 13 are running 

near to their limits and therefore a shunt compensation must be 

applied in order to improve system security.  
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APPENDICES 

APPENDIX A 

LINEAR PROGRAMMING USING MICROSOFT EXCEL SOLVER 

Starting with the Objective Function: 

Minimize: 𝑍 = −3𝑥1 − 5𝑥2 

                                                Subjected to:  𝑥1 ≤ 4 

                                                                       𝑥2 ≤ 6 

3𝑥1 + 2𝑥2  ≤ 18 

                                                                  𝑥1, 𝑥2 ≥ 0 

We do need to find the optimum values for  𝑥1 and 𝑥2 that satisfies all constraints and to 

minimize the objective function.  

 Step 1: Formulating this problem into Excel as: 

 

 

 

The unknown values are in column B, therefore the objective function in Excel can be 

written as 3*B2+5*B3 and as in the above figure it is equal to zero because we didn’t ran 

the solver yet. 

Step 2: Using the LP solver: 

Open Data ribbon and select analysis/solver, if the solver did not appear in the analysis 

tap go to file/options/add-ins, select Excel Add-ins/solver add-in and press OK and the 

solver appears as: 

 

 

 

 

 



 

 

Optimum Solution Objective Function Constraints

2 -36 4

6 6

18 18

0

𝟑𝒙𝟏 +  𝒙𝟐 =

𝑥2 ≤

𝑥1 ≤

3𝑥1+ 2𝑥2 ≤

𝑥1 , 𝑥2 ≥

𝒙𝟏
𝒙𝟐

𝟑𝒙𝟏 +𝟐𝒙𝟐

1. Set the objective function in set objective by highlight the objective cell and choose 

which you want to maximize or minimize. 

2. In by Changing the Variable Cells, you will highlight the unknown victor where it is 

in column B in our example, therefore highlighting B2 and B3. 

3. In subject to the constraints select Add and a small window will appear: 

 

 

 

 

Set all variables constraints and press OK. 

4. In select a solving method select Simplex LP. 

Finally, the Solver will appear as: 

 

 

 

 

 

 

 

 

After pressing solve the optimal solution for minimizing the OF will be introduced by 

filling all the empty cells: 

 

 

∴ The optimal solution when 𝑥1 = 2 and 𝑥2 = 6. 



 

 

APPENDIX B 

POWER FLOW AND ECONOMIC INFORMATION FOR THE 6-BUS SYSTEM 

Bus Data: 

Bus type Nom. kV Radians Min. Max. Load MW Load MVAR G Shunt MW B Shunt MVAR 

Slack 230 0 0.95 1.07 0 0 0 0 

P-V 230 0 0.95 1.07 0 0 0 0 

P-V 230 0 0.95 1.07 0 0 0 0 

P-Q 230 0 0.95 1.07 100 15 0 0 

P-Q 230 0 0.95 1.07 100 15 0 0 

P-Q 230 0 0.95 1.07 100 15 0 0 

 

Generator Data: 

Bus No. Gen MW Gen MVAR Set Volt Min MW Max MW Min MVAR Max MVAR 

1 0 0 1.07 50 200 -100 150 

2 50 0 1.05 37.5 150 -100 150 

3 50 0 1.05 45 180 -100 120 

 

Branch Data: 

From Bus To Bus R X B Lim MW 

1 2 0.1 0.2 0.04 100 

1 4 0.05 0.2 0.04 100 

1 5 0.08 0.3 0.06 100 

2 3 0.05 0.25 0.06 60 

2 4 0.05 0.1 0.02 60 

2 5 0.1 0.3 0.04 60 

2 6 0.07 0.2 0.05 60 

3 5 0.12 0.26 0.05 60 

3 6 0.02 0.1 0.02 60 

4 5 0.2 0.4 0.08 60 

5 6 0.1 0.3 0.06 60 

 

Economic Data: 

Gen. No. a b c 

1 213.1 11.669 0.00533 

2 200 10.333 0.00889 

3 240 10.833 0.00741 

 

 



 

 

APPENDIX C 

POWER FLOW AND ECONOMIC INFORMATION FOR THE IEEE 30-BUS SYSTEM 

Bus Data: 

Bus type` Nom kV Angle rad. Load MW Load MVAR G Shunt MW B Shunt MVAR 

Slack 132 0 0 0 0 0 

P-V 132 0 21.7 12.7 0 0 

P-Q 132 0 2.4 1.2 0 0 

P-Q 132 0 7.6 1.6 0 0 

P-V 132 0 94.2 19 0 0 

Bus 132 0 0 0 0 0 

P-Q 132 0 22.8 10.9 0 0 

P-V 132 0 30 30 0 0 

Bus 1 0 0 0 0 0 

P-Q 33 0 5.8 2 0 19 

P-V 11 0 0 0 0 0 

P-Q 33 0 11.2 7.5 0 0 

Bus 11 0 0 0 0 0 

P-Q 33 0 6.2 1.6 0 0 

P-Q 33 0 8.2 2.5 0 0 

P-Q 33 0 3.5 1.8 0 0 

P-Q 33 0 9 5.8 0 0 

P-Q 33 0 3.2 0.9 0 0 

P-Q 33 0 9.5 3.4 0 0 

P-Q 33 0 2.2 0.7 0 0 

P-Q 33 0 17.5 11.2 0 0 

Bus 33 0 0 0 0 0 

P-Q 33 0 3.2 1.6 0 0 

P-Q 33 0 8.7 6.7 0 4 

Bus 33 0 0 0 0 0 

P-Q 33 0 3.5 2.3 0 0 

Bus 33 0 0 0 0 0 

Bus 132 0 0 0 0 0 

P-Q 33 0 2.4 0.9 0 0 

P-Q 33 0 10.6 1.9 0 0 

 

 



 

 

Branch Data: 

From Bus To Bus Branch Type R X B Lim MW Tap Ratio 

1 2 Line 0.0192 0.0575 0.0528 130 - 

1 3 Line 0.0452 0.1652 0.0408 130 - 

2 4 Line 0.057 0.1737 0.0368 65 - 

2 5 Line 0.0472 0.1983 0.0418 130 - 

2 6 Line 0.0581 0.1763 0.0374 65 - 

3 4 Line 0.0132 0.0379 0.0084 130 - 

4 6 Line 0.0119 0.0414 0.009 90 - 

4 12 Transformer 0 0.256 0 65 0.932 

5 7 Line 0.046 0.116 0.0204 70 - 

6 7 Line 0.0267 0.082 0.017 130 - 

6 8 Line 0.012 0.042 0.009 32 - 

6 9 Transformer 0 0.208 0 65 0.978 

6 10 Transformer 0 0.556 0 32 0.969 

6 28 Line 0.0169 0.0599 0.013 32 - 

8 28 Line 0.0636 0.2 0.0428 32 - 

9 10 Line 0 0.11 0 65 - 

9 11 Line 0 0.208 0 65 - 

10 17 Line 0.0324 0.0845 0 32 - 

10 20 Line 0.0936 0.209 0 32 - 

10 21 Line 0.0348 0.0749 0 32 - 

10 22 Line 0.0727 0.1499 0 32 - 

12 13 Line 0 0.14 0 65 - 

12 14 Line 0.1231 0.2559 0 32 - 

12 15 Line 0.0662 0.1304 0 32 - 

12 16 Line 0.0945 0.1987 0 16 - 

14 15 Line 0.221 0.1997 0 16 - 

15 18 Line 0.1073 0.2185 0 16 - 

15 23 Line 0.1 0.202 0 16 - 

16 17 Line 0.0524 0.1923 0 16 - 

18 19 Line 0.0639 0.1292 0 16 - 

19 20 Line 0.034 0.068 0 16 - 

21 22 Line 0.0116 0.0236 0 32 - 

22 24 Line 0.115 0.179 0 16 - 

23 24 Line 0.132 0.27 0 16 - 

24 25 Line 0.1885 0.3292 0 16 - 

25 26 Line 0.2544 0.38 0 16 - 

25 27 Line 0.1093 0.2087 0 16 - 

28 27 Transformer 0 0.396 0 65 0.968 

27 29 Line 0.2198 0.4153 0 16 - 

27 30 Line 0.3202 0.6027 0 16 - 

29 30 Line 0.2399 0.4533 0 16 - 



 

 

Shunt Capacitor Data: 

Bus No. MVAR 

10 19 

24 4 

 

Generator Data: 

Bus No. Gen MW Gen MVAR Set Volt Min MW Max MW Min MVAR Max MVAR 

1 0 -16.5266 1.06 50 200 -20 200 

2 40 49.56483 1.043 20 80 -20 100 

5 0 36.93597 1.01 15 50 -20 80 

8 0 37.21866 1.01 10 35 -15 60 

11 0 16.17982 1.082 10 30 -10 50 

13 0 10.63062 1.071 12 40 -15 60 

 

Economic Data: 

Gen No. a b c 

1 0 2 0.00375 

2 0 1.75 0.0175 

5 0 1 0.0625 

8 0 3.25 0.00834 

11 0 3 0.025 

13 0 3 0.025 
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