

بسم الله الرحمن الرحيم

Sudan University of Science and Technology

College of Graduate Studies

Synthesis of some dihydropyrimidinone derivatives

تخليق بعض مشتقات الدايهيدر وبير ميدينون

By

Amaal Awad Babiker Al-haj

A thesis submitted for the partial fulfillment of the requirement of M.Sc degree in Chemistry

B.Sc.(Honours) Chemistry

Supervisor:

Prof.Dr. Ahmed Elsadig Mohammed Saeed

May 2017

Dedication

То

My parent

My brother and sister

My family

My friend

Acknowledgment

First of all, praise is to Almighty Allah benevolent bleesing enabled me to accomplish this work.

I would like to express my deep gratitude and thanks to my supervisor prof. Dr Ahmad Alsadig Mohammed Saeed for his keen interest, priceless help, fruitful and expert guidance, personal support, valuable comments and advices and continuous encouragement during the period of this research work.

I am very grateful to the department of chemistry, Sudan University of Science and technology for all facilities and unlimited help.

I wish to thanks ustaz Fathi Abbas for being available willing to provide help when being asked. and grateful to the chemistry laboratory staff for their great help .

Finally, I would like to extend my hearted and special thanks to my family and friends for their patience assistance and support and all those who assisted me to complete this work.

Abstract:

In the present work, some new functionalized dihydropyrimidinones were prepared, this include a three component cyclocondensation reaction of benzoylacetone, an aldehyde and urea, in the presence of catalytic amount of Zinc chloride in ethanol. The yield percentage is (35, 47, 49, 84 %).

The reaction progress was followed by TLC. The reaction products were recrystallized from appropriate solvents and pure samples were subjected for m. p, IR, UV and mass spectroscopic analysis.

Possible mechanistic explanation of the synthetic routes together with retro synthetic analysis discussed.

المستخلص

في هذا العمل خلقت بعض مشتقات الدايهايدروبيريميدينون و ذلك بتكاثف ثلاثه مكونات للتفاعل هي بنزوايل استون مع انواع مختلفه من الادهيدات الحلقيه واليوريا باستخدام الزنك كلورايد كمحفذ في الايثانول. النسب المتحصل عليها (35, 47, 49, 84).

وتتبع مسار التفاعل بتقنية كروماتوغرافيا الطبقة الرقيقة واعيدت بلورة الناتج بالمذيب المناسب واالعينه النقيه خضعت للتحليل لنقاط الانصبهار والاشعه تحت الحمراء والاشعه فوق البنفسجية و طيف الكتلة

نوقشت الميكانيكيه المحتمله لمسار التفاعل والتخليق العكسي.

List of Contents

Title	page No.	
الايه	i	
Dedication	ii	
Acknowledgments	iii	
Contents	iv	
List of tables	vi	
List of figures	vii	
List of abbreviations	Ix	
Abstract (English)	Х	
Abstract (Arabic)	xi	
Chapter one		
Introduction	_	
1 Introduction	1	
1.1. Multicomponent Reaction	1	
1.1.1 The Biginelli Reaction	1	
1.1.2. Mechanistic studies	2	
1.1.3. Modification of Biginelli	4	
reaction		
1.1.4. Reaction Advancements	5	
1.1.5.Asymmetric Biginelli Reaction	6	
1.1.6. Reaction conditions	6	
1.1.7. Biological Activity of	7	
Dihydropyrimidines		
1.2. β-diketone	7	
1.2.1.synthesis of β -diketones	8	
1.2.2. Reaction of β diketones	10	
1.3. objective	11	
Chapter two		
Materials and Methods	10	
2.1. materials	12	
2.1.1. solvent	12	

2.1.2. Chemicals	12
2.1.3. instrument	12
2.1.3.1.TLC	12
2.1.3.2. infra red spectroscopy	12
2.1.3.3. ultra violet spectroscopy	12
2.1.3.4. mass spectroscopy	13
2.1.4. general equipment	13
2.2. methods	14
2.2.1. general procedure for synthesis	
of Benzoyl acetone	
2.2.2.General Procedure for	14
synthesis of 5-methyl-6-phenyl-	
4aryl-1,3-dihydropyrimidin-2-one	
2.3-Synthetic method	16
2.4. reaction condition	18
2.5. IR of synthesized compound	19
2.6. UV of synthesized compound	20
2.7.Mass of synthesized compound	21
2.8.Retention factor for synthesized	22
compounds	
Chapter three	

Discussion	
3.1.Retro synthetic analysis (RSA)	23
3.2. Reaction mechanism	24
3.3 Spectral Characterization	26
3.4. Conclusion	27
Chapter four	
reference	28

List of tables

Table (2.5.1.) Chemical name of the	Page no. 17
prepared compound Table 2.6.1 Reaction condition of	18
the prepared dihydropyrimidinones	10
derivatives	
Table (2.7.1.) Infra-red spectral data	19
of the compound	
Table (2.8.1) Ultra violet	20
spectroscopy data of the compound Table (2.10.1)TLC data of 5- benzoyl-6-methyl-4-aryl-3,4-	22
dihydropyrimidine-2-one (I,II,III,IV) Table (2.9.1) mass spectral data of the compound :	21

List of figures

Fig. 1.1.1 Classical synthesis of	1
Biginelli reaction	
Fig.1.1.2.Folkers and Johnson	2
mechanism	
Fig. 1.1.3.Formation of 3,4-	3
dihydropyrimidinon via Aldol	
condensation	
Fig.1.1.4. Kappe mechanism	4
Fig.1.1.5. Atwal modification of	4
Biginelli reaction	
Fig. 1.1.6 Shutalev modification	5
Fig.1.2.1. Acylation of ketones.	8
Fig. 1.2.2.Acylation of silyl enol	9
ethers.	
Fig. 1.2.3. synthesis of	9
benzoylacetone	
Fig. 1.2.4. formation of 2-fluoro- and	10
2,2-difluoro-compounds	
Fig. 1.2.5. Reaction of elemental	10
fluorine with cyclic β -diketone	
Fig. 1.2.6. preparation of 2,4-	10
dichlorobenzaldehyde	
Fig. 1.2.7. formation of the imino methylene substituted cyclohexadiene	11
Fig. 2.5.1. chemical reaction of benzoylacetone with urea and	16

different aldehydes .

Fig. 3.1.1. retro synthetic analysis of 23 5-benzoyl-6-methyl-4-aryl-3,4dihydropyrimidine-2-one (I,II,III,IV) Fig. 3.2.1. reaction mechanism of 25

dihydropyrimidinone derivatives

List of abbreviation

UV	Ultra violet
DHPM	Dihydropyrimidinone
gm	gram
hr.	hour
IR	Infrared spectroscopy
mL	milliliter
mmol	millimole
mp	melting point
R _f	Retention factor
α	alpha
β	beta