Genotypic detection of the Virulence Factors of Uropathogenic
Escherichia coli Isolated from Diarrheic and Urinary Tract Infected
Patients in Khartoum State

اﻟﻜﺸﻒ اﻟﺠﺰﺋﻲ ﻋﻦ ﻋﻮاﻣﻞ اﻟﻀﺮاوة ﻓﻲ ﺑﻜﺘﺮﯿﺎ اﻻﺷﺮﯾﻜﯿﺔ اﻟﻘﻮﻟﻮﻧﯿﺔ ﻟﻌﺪوى اﻟﻤﺴﺎﻟﻚ البولیة و الاسﮭﺎﻻت ﻓﻲ مرضى من ولاية الخرطوم

A Dissertation submitted in partial fulfillment of the requirement of M.Sc. in
medical laboratory science (Microbiology)

By:

HusamEldin Mohamed Hassan Musa

B.Sc. of Medical Laboratory Science, Karari University, 2014

Supervised by:

Dr. Hisham Nouraldayem Altayeb Mohammed

(B.Sc, M.Sc and Ph.D)

July, 2017
بسم الله الرحمن الرحيم

قال تعالى:

آمن الرسول بما أنزل إلينا من ربه والمؤمنون كل آمن بالله والمائدة وكتبه ورسله
لا نفرق بين أحد من رسوله وقالوا سمعنا وأطعنا غفرانك ربنا وإليك المصير

صدق الله العظيم

سورة البقرة الآية 285
Dedication

I dedicate this work:

To whom breastfed me the love and compassion to the symbol of love, and healing balms to pure whiteness heart.

(My mother)

To who spend His life working to give me a drop of love and happiness to that who pave my way to science to the big heart?

(My father)

To the pure hearts and innocent souls to my life basil's.

(My brothers and sister)

Now open the sails and raise the anchor for the ship to start running in the dark sea, the sea of life there is no light in this darkness except candles of distant memory, to those I loved them and loved me.

(My friends)

For all world nation that fight for life, for all Islamic nations and our lovely home.

Best wishes…
Acknowledgement

First of all, a great thanks to Almighty Allah for helping me to finish this study.

My deepest gratitude to my supervisor Dr. Hisham Nouraldayem Altayeb Mohammed, for his guidance, criticism and advice which made this work easy to achieve.

My great thanks to staff members of Microbiology Department, Sudan University of Science and Technology, they have stellar education program.

I am also grateful to staff of the Research Laboratory, Sudan University of Science and Technology for their help and support during laboratory work.
I am grateful to my patients for their co-operation and consent to collect the clinical specimens used in this project.
Lastly, my Thanks and appreciation to all those who supported me to achieve this work.
ABSTRACT

The aim of this study was to determine the virulence factor of Uropathogenic *E. coli* isolated from diarrheic and urinary tract infected patients in Khartoum State by multiplex PCR assay. A total of 100 clinical specimens (50 urine, 50 diarrhea) were collected in this study. Urine samples were culture on CLED agar, while diarrhea samples were culture on MacConky agar, identification scheme was done by conventional method. Modified Kirby-bauer method was performed using the following antibiotic discs; Gentamicin, Amikacin, Ciprofloxacin and Co-trimoxazole. Fifty five percent of samples were found sensitive to Gentamicin, 96% were sensitive to Amikacin, 57% were sensitive to Ciprofloxacin and 63% were sensitive to Co-trimoxazole. Boiling method was adopted for DNA extraction. Finally Multiplex PCR was done for the detection of *E. coli* virulent genes (*pap, fim, sfa, aer and hly)*.

Most study population were females 57(57%); 42 of them suffering from UTIs and 15 suffering from diarrhea, while males were 43(43%); 8 of them were suffering from UTIs and 35 of them were suffering from diarrhea. Among enrolled subjects, 82 were positive for one or more Uropathogenic *E. coli* virulent genes. While 18 isolates were negative for all genes. The results of multiplex PCR searching for different virulent factors revealed the following: Thirty tow (n=32) diarrheal samples appear as *aer* gene positive while the remaining fourteen (n=14) urine samples appear as *aer* gene positive. Thirty three (n=33) urine samples appear as *fim* gene positive while the remaining eight (n=8) diarrheal samples appear as *fim* gene positive. Twenty four (n=24) urine samples appear as *pap* gene positive while the remaining nine (n=9) diarrheal samples appear as
pap gene positive. Fourteen (n=14) urine samples appear as hly gene positive while the remaining three (n=3) diarrheal samples appear as hly gene positive. Fifteen (n=15) urine samples appear as sfa gene positive while in diarrheal samples was not detected. The study concluded that fim gene was highly prevalent among UTIs patients, aer gene was high prevalent among diarrhea patients and Amikacin is the most effective antibiotic
المستخلص

هدفت هذه الدراسة إلى تحديد عوامل الضراوة في البكتيريا الاشريكية القولونية بنسبة لعدد المسالك البولية المعزولة من مرضى الإنسال ومرضى المسالك البولية في ولاية الخرطوم، حيث تم الكشف عنها عن طريق فحص تفاعل البلمرة المتعدد المحتوي على عدسة بادئة. تم جمع 100 عينة (50 عينة بول، 50 عينة إسهال) في هذه الدراسة. ثم تم تزريع عينات البول على وسط MacConkey وعينات الإسهال على وسط CLED وتم التعرف على البكتريا بالطرق التقليدية. تم استخدام طريقة Kirby-bauer المحورية لإجراء اختبار الحساسية باستخدام أقراص المضادات الحيوية التالية: جنتاميسين، أميكاسين، سيبروفلوكساسين والكوريموكسازول وجديدا أن 55% من العينات حساسة للجناميسين، 96% حساسة للأميكاسين، 57% حساسة للسيبروفلوكساسين و 63% حساسة للكوريموكسازول. تم استخدام طريقة الغليان لاستخراج الحمض النووي أخيرا تم إجراء اختبار تفاعل البلمرة المتعدد المحتوي على عدة بادئة للكشف عن عوامل الضراوة في بكتريا الاشريكية القولونية.

وكان معظم المشاركين في الدراسة من الإناث 57 (75%); 42 منهم يعانون من عددى المسالك البولية و 15 منهم يعانون من الإنسال، في حين بلغ عدد الذكور 43 (43%); 8 منهم يعانون من التهاب المسالك البولية و 35 منهم يعانون من الإنسال. من عينات الدراسة، كانت 82 (82%) عينة إيجابية لواحدة أو أكثر منجينات الضراوة، بينما كانت 18 (18%) عينة سلبية لجميع الجينات. نتيجة اختبار تفاعل البلمرة المتعدد المحتوي على عدة بادئة للكشف عن عوامل
الضرأوة كانت كالالتالي: اثنين و ثلاثون (ن=32) عينة إسهال ظهرت موجبة للجين aer و المتباقي
اربعة عشر (ن=14) عينة بول ظهرت موجبة للجين fim و المتباقي ثمانية (ن=8) عينات إسهال ظهرت موجبة للجين.
اربعة و عشرون (ن=24) عينة بول ظهرت موجبة للجين pap و المتباقي تسعة (ن=9) عينات إسهال ظهرت
اربعة عشر (ن=14) عينة بول ظهرت موجبة للجين hly و المتباقي ثلاثة.
خمسة عشر (ن=15) عينة بول ظهرت موجبة hly.
لم يظهر نفس الجين في أي عينة إسهال. وخلصت الدراسة إلى أن الجين fim للجين fim
منتشرًا بكثرة بين مرضى المسالك البولية، وكان الجين hab عالي الانتشار بين مرضى
الإسهال ووجدنا المضاد الحيوي الأميكاسين هو المضاد الحيوي الأكثر فعالية.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>الآية</td>
<td>I</td>
</tr>
<tr>
<td>Dedication</td>
<td>II</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>III</td>
</tr>
<tr>
<td>Abstract</td>
<td>IV</td>
</tr>
<tr>
<td>المستخلص</td>
<td>VI</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>VIII</td>
</tr>
<tr>
<td>List of Table</td>
<td>XI</td>
</tr>
<tr>
<td>List of Figure</td>
<td>XII</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>XIII</td>
</tr>
</tbody>
</table>

CHAPTER ONE

INTRODUCTION AND OBJECTIVES

1.1. Introduction 1

1.2. Rationale 5

1.3. Objectives 7

1.3.1. General objectives 7

1.3.2. Specific objectives 7

CHAPTER TWO

LITERATURE REVIEW

2.1. *Escherichia coli* 8

2.2. Pathology of *E. coli* and clinical features of Infections 10

2.2.1. Extraintestinal Pathogenic *E. coli* 11

2.2.2. Urinary Tract Infections 12

2.2.3. Bacteremia and Meningitis-Associated *E. coli* 14

2.2.4. Intestinal Pathogenic *E. coli* 16
2.3. Antibiotic resistance
2.3.1. Resistance patterns
2.4. Host defense mechanisms
2.5. Virulence factor of *Escherichia coli*
2.5.1. Type 1 and P fimbriae
2.5.2. adhesion-encoding genes
2.5.3. Alpha hemolysin (Hly) and cytotoxic necrotizing factor 1 (CNF-1)
2.5.4. Aerobactin
2.6. Laboratory methods for isolation and detection of pathogenic *E. coli*

CHAPTER THREE
MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Materials and Methods</td>
<td>31</td>
</tr>
<tr>
<td>3.1. Type of study</td>
<td>31</td>
</tr>
<tr>
<td>3.2. Study area and sample collections</td>
<td>31</td>
</tr>
<tr>
<td>3.3. Identification scheme</td>
<td>31</td>
</tr>
<tr>
<td>3.3.1. Conventional methods</td>
<td>31</td>
</tr>
<tr>
<td>Growth examination</td>
<td>31</td>
</tr>
<tr>
<td>MacConkey agar</td>
<td>31</td>
</tr>
<tr>
<td>CLED agar</td>
<td>31</td>
</tr>
<tr>
<td>Nutrient agar</td>
<td>32</td>
</tr>
<tr>
<td>Colony morphology</td>
<td>32</td>
</tr>
<tr>
<td>Gram Stain</td>
<td>32</td>
</tr>
<tr>
<td>Biochemical tests</td>
<td>32</td>
</tr>
<tr>
<td>Susceptibility testing</td>
<td>33</td>
</tr>
</tbody>
</table>
3.3.2. Molecular characterizations
DNA Extraction
3.10.2. Gel electrophoresis of extracted DNA
3.10.3. Preparation of 10 X TBE buffer
3.10.4. Preparation of 1X TBE buffer
3.10.5. Preparation of ethidium bromide solution
3.10.6. Preparation of agarose gel
3.10.7. Polymerase Chain Reaction Amplification
3.10.8. Visualization of the DNA products
3.11. Data analysis

CHAPTER FOUR
RESULTS
4. Results
4.1. The association between the presence of UPEC virulence genes and Age group
4.2. The association between the presence of UPEC virulence genes and gender
4.3. The association between the presence of UPEC virulence genes and Samples
4.4. The association between the presence of UPEC virulence genes and Antibiotic

CHAPTER FIVE
DISCUSSION
5. Discussion
CHAPTER SIX
Conclusion and Recommendations

6.1. Conclusion

6.2. Recommendations

Reference

Appendices

LIST OF TABLE

Table (I) Different virotypes of *E. coli* causing human infection

Table(2) Summary of pathogenicity-related characteristics of intestinal pathotypes of *E. coli*

Table (3) Primers used for detection of virulence genes in UPEC strains

Table (4) Result of The association between the presence of UPEC virulence genes and Age group

Table (5) the association between the presence of UPEC virulence genes and gender

Table (6) the presence of UPEC virulence genes in urine and diarrhea samples

Table (7) the association between presence of UPEC virulence genes and susceptibility to Gentamycin

Table (8) the association between presence of UPEC virulence genes and Amikacin

Table (9) the association between presence of UPEC virulence genes and Ciprofloxacin

Table (10) the association between presence of UPEC virulence genes and Co-trimoxazole

Table (11) Biochemical reactions of most strains of *E. coli*
LIST OF FIGURES

Figure (1) Age group of enrolled patients 39
Figure (2) the association between presence of UPEC virulence genes and gender 41
Figure (3) the presence of UPEC virulence genes in urine and diarrhea samples 43
Figure (4) Agarose gel electrophoresis of multiplex PCR product 44
Figure (5) Agarose gel electrophoresis of multiplex PCR product 44
Figure (6) the association between presence of UPEC virulence genes and Gentamycin 47
Figure (7) the association between presence of UPEC virulence genes and Amikacin 48
Figure (8) the association between presence of UPEC virulence genes and Ciprofloxacin 49
Figure (9) the association between presence of UPEC virulence genes and Co-trimoxazole 51
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Complete word</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>UTIs</td>
<td>Urinary Tract Infections</td>
</tr>
<tr>
<td>UPEC</td>
<td>Uropathogenic Escherichia coli</td>
</tr>
<tr>
<td>fim</td>
<td>fimbriae type 1 gene</td>
</tr>
<tr>
<td>pap</td>
<td>pyelonephritis associated pili gene</td>
</tr>
<tr>
<td>sfa</td>
<td>S-family adhesions gene</td>
</tr>
<tr>
<td>aer</td>
<td>aerobactin gene</td>
</tr>
<tr>
<td>hly</td>
<td>hemolysin gene</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbant Assay</td>
</tr>
<tr>
<td>GUD</td>
<td>Beta-D-glucuronidase</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet light</td>
</tr>
</tbody>
</table>