
Sudan University of Science and Technology

College of Graduate Studies

School of Electronics Engineering

Implementing Nayan Seth’s Dynamic Load Balancing

Algorithm in Software-Defined Networks: A case study

الديناميكية في الشبكات المعرفة موازنة الحمل تنفيد خوارزمية نايان سيث ل

: دراسة حالةبرمجيا

A research submitted in partial fulfillment for the requirements of the M.Sc.

degree in Computer and Network Engineering.

By:

Monzir Hassan Osman Hassan.

Supervisor:

Dr. Ahmed Abdullah.

April, 2017

I

 : تعالى قال

﴿
رِيدُْ إِنْ

ُ
حاْ إِلَّْ أ لَا ِص

ا الْ ع ْ ما تاطا ْتُْاس
ا ي هِْباِلَلِّْ إِلَّْ تاو فِيقِْ واما لا نِيبُْوَإِلا ْ تُْكَّ ْتاواْ عا

ُ
 ﴾هِْأ

 العظيم الله صدق

 هود سورة

 ٨٨ الآية

II

Dedication

To my PARENTS, TEACHERS, COLLEAGUES,

and of course to my BELOVED COUNTRY.

III

Acknowledgements

I would like to dedicate special thanks to my supervisor Dr. Ahmed

Abdullah for sharing his expert knowledge within the domain and for

his continuous help and support along the way. Thanks to him, not

only for his help in general but also for his trust and guidance during

the revision process.

I would also like to express my appreciation and gratitude to Dr. Sami

H. Salih who, through his ideas, suggestions and advice improved this

research.

My deepest thanks to all the staff in the School of Electronics

Engineering and the College of Graduate Studies at Sudan University

of Science and Technology, who, in many ways contributed in making

this research a memorable and an enriching experience.

Finally, I thank my family, who constantly supported and encouraged

me throughout the course of my studies.

IV

Abstract

Traditional networking architectures have many significant limitations that must

be overcome to meet modern IT requirements. To overcome these limitations;

Software Defined Networking (SDN) is taking place as the new networking

approach. One of the major issues of traditional networks is that they use static

switches that cause poor utilization of the network resources. Another issue is the

packet loss and delay in case of switch breakdown. This research proposes an

implementation of a dynamic load balancing algorithm for SDN based data

center network to overcome these issues. A test-bed has been implemented using

Mininet software to emulate the network, and OpenDaylight platform (ODL) as

SDN controller. Python programming language is used to define a fat-tree

network topology and to write the load balancing algorithm program. Finally,

iPerf is used to test network performance. The network was tested before and

after running the load balancing algorithm. The testing focused on some of

Quality of Service (QoS) parameters such as throughput, bandwidth, delay, jitter,

and packet loss between two servers in the fat-tree network. The algorithm

increased throughput with at least 32.3%, and improved network utilization.

However, in large networks it increased mean jitter from 0.3736 ms to 3.2891

ms, and it increased packet loss by 4.9%.

V

 المستخلص

مات ا المعلوولوجييجب التغلب عليها لتلبية متطلبات تكن تعاني بنية الشبكات التقليدية من محدودية وقصور

شاكل مام. أحد لإهتموللتغلب على هذه القيود أخذت تقنية الشبكات المعرفة برمجيا حيزا كبيرا من ا الحديثة.

 كلة أخرىة، مشالشبكات التقليدية أنها تستخدم المحولات الثابتة التي تؤدي لضعف استغلال موارد الشبك

مل ة الحارزمية موازنهي فقدان وتأخر الحزم في حالة إنهيار المحول. يعرض هذا البحث تنفيذا لخو

 ة إختبارء بيئالديناميكية لشبكات مراكز البيانات المعرفة برمجيا، للتغلب على هذه المشاكل. تم إنشا

مجيا. فة برباستخدام برنامج المينينت لمحاكاة الشبكة، ومنصة أوبن ديلايت كمتحكم في الشبكة المعر

لحمل زنة افرعة ولكتابة برنامج خوارزمية موااستخدمت لغة بايثون في تعريف هيكل شبكة الشجرة المت

رزمية طبيق خوابعد توالديناميكية. أخيرا استخدم برنامج ايبرف لإختبار أداء الشبكة. تم إختبار الشبكة قبل

ر ، تأخموازنة الحمل. ركز الإختبار على بعض من عوامل جودة الخدمة مثل الإنتاجية، عرض النطاق

 ية منوارزمزادت الخ وفقدان الحزم بين مخدمين في شبكة الشجرة المتفرعة.الحزم، تباين تأخر الحزم،

الشبكات ب%، وحسنت من استغلال موارد الشبكة. ولكن في ما يتعلق 32.3الإنتاجية بنسبة لا تقل عن

لي ثانية، م 3.2891ملي ثانية إلى 0.3736الواسعة زادت الخوارزمية من متوسط تباين تأخر الحزم من

 %.4.9دت من فقدان الحزم بنسبة كما زا

VI

 Table of Content

Dedication II

Acknowledgements III

Abstract.. IV

 V....... .. المستخلص

Table of Content.. VI

List of Tables VIII

List of Figures.. IX

AbbreviationsX

1. Chapter One: Introduction 1

1.1. Preface .. 1

1.2. Problem statement .. 2

1.3. Proposed Solution .. 2

1.4. Methodology .. 3

1.5. Aims and Objectives .. 3

1.6. Thesis Outlines ... 3

2. Chapter Two: Literature Review 4

2.1. Introduction .. 4

2.2. Traditional Networks Limitations .. 4

2.3. Software-Defined Networking (SDN) ... 5

2.3.1. SDN Architecture.. 6

2.3.2. SDN Advantages... 7

2.3.3. SDN Applications ... 8

2.4. OpenFlow ... 9

2.4.1. OpenFlow applications ... 10

2.5. Network Load Balancing ... 11

2.5.1. Round Robin forwarding. ... 11

2.5.2. Time dependent approach: .. 11

2.5.3. Hashing based approaches. ... 12

2.5.4. Routing traffic as per the metrics calculated from the traffic. 12

2.6. Interconnection networks ... 12

VII

2.6.1. Fat-Tree topology.. 13

2.7. Dijkstra's algorithm .. 14

2.8. SDN Dynamic Load Balancing Algorithm .. 15

2.8. literature Review .. 17

3. Chapter Three: Methodology 19

3.1. Introduction .. 19

3.2. Algorithm Description.. 19

3.3. Implementation Overview .. 21

3.4. Components and Software Tools ... 22

3.4.1. Mininet .. 22

3.4.2. The OpenDaylight Project (ODL)... 23

3.4.3. iPerf ... 24

3.4.4. Programming Language used: Python .. 24

4. Chapter Four: Results and Performance Evaluation... 26

4.1. Introduction .. 26

4.2. Network Topology ... 26

4.3. Scenario Description .. 27

4.3.1. First Scenario: Performance Measurement at the Aggregation Layer 27

 4.3.1.1.Tests results of the first scenario ... 29

 4.3.1.2.Performance Analysis of the first scenario ... 30

4.3.2. Second Scenario: Performance Measurement at the Core Layer 32

 4.3.2.1.Tests results of the second scenario .. 34

 4.3.2.2.Performance Analysis of the second scenario 35

5. Chapter Five: Conclusion and Recommendations for Future Work 37

5.1. Conclusion.. 37

5.2. Recommendations for Future Work ... 37

References 38

Appendixes... 41

A Mininet topology.. 41

B Load balancing algorithm program.. 43

VIII

List of Tables

No. Table Title Page

4-1 Tests results of the first scenario 29

4-2 Average results of the first scenario 30

4-3 Tests results of the second scenario 34

4-4 Average results of the second scenario 35

IX

List of Figures

No. Figure Title Page

2-1 SDN Architecture 6

2-2 Fat-tree network topology 13

3-1 SDN Dynamic Load Balancing algorithm 20

3-2 Beryllium-SR4 architecture framework 23

3-3 iPerf Bandwidth measurement 24

4-1 Datacenter Network Topology used 26

4-2 The selected hosts and possible paths in the first scenario 27

4-3 ping from h1 to h4 before load balancing 28

4-4 iPerf h1 to h4 before load balancing – TCP connection 28

4-5 iPerf h1 to h4 before load balancing – UDP connection 29

4-6 Comparison of Bandwidth tests results in first scenario 31

4-7 Comparison of QoS parameters in first scenario 31

4-8 The selected hosts and possible paths in the second scenario 32

4-9 ping from h1 to h6 before load balancing 33

4-10 iPerf h1 to h6 before load balancing – TCP connection 33

4-11 iPerf h1 to h6 before load balancing – UDP connection 34

4-12 Comparison of Bandwidth tests results in second scenario 36

4-13 Comparison of QoS parameters in second scenario 36

X

Abbreviations

ACL Access Control List

API Application program interface

BYOD Bring Your Own Device

CAPEX Capital Expenditure

CPU Central Processing Unit

FSM Finite State Machine

HPC High-Performance Computing

ICMP Internet Control Message Protocol

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IS-IS Intermediate System to Intermediate System

IT Information Technology

LAN Local Area Network

LLB Link Load Balancing

MAC Media Access Control

MPLS Multi-Protocol Label Switching

NE Network Elements

ODL OpenDaylight

ONF Open Networking Foundation

OPEX Operational Expenditure

OS Operating System

OSPF Open Shortest Path First

QoE Quality Of Experience

XI

QoS Quality Of Service

SCTP Stream Control Transmission Protocol

SDN Software Defined Networking

TCL Tool Command Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

Chapter One

Introduction

1

Chapter One

Introduction

1.1. Preface

Traditional networking architectures have many significant limitations that must

be overcome to meet modern IT requirements. To overcome these limitations; The

Software Defined Networking (SDN) [1] is taking place as the new networking

approach.

The traditional network system has the control plane and data plane together.

Whereas the SDN approaches to build a computer network which separates and

abstracts the network into control and data plane. The data plane does an operation

of transferring the packets through the network. Unlike traditional networks, the

underlying switches do not implement the control plane. The control plane with

its intelligence are able to instruct the data planes over the network.

The control plane is a software or logical entity, which processes all the routing

decisions taken by the data plane. Hence the network becomes directly

programmable and agile [2].

OpenFlow is the most common protocol used in SDN networks which are used to

communicate the controller with all the network elements (NE). It is an open

standard that provides a standardized hook to allow researchers to run

experiments, without requiring vendors to expose the internal workings of their

network devices [2].

OpenFlow is often confused with the SDN concept itself, but they are different

things. While SDN is the architecture dividing the layers, OpenFlow is just a

protocol proposed to convey the messages from the control layer to the network

elements. There is a bunch of OpenFlow based projects, including several

controllers, virtualized switches and testing applications [2].

2

In order to increase available bandwidth, maximize throughput, and add

redundancy; network load balancing must be used. Network load balancing is the

ability to balance traffic across multiple Internet connections. This capability

balances network sessions like Web, email, etc. over multiple connections in order

to spread out the amount of bandwidth used by each LAN user, thus increasing the

total amount of bandwidth available. Load balancing usually involves dedicated

software or hardware, such as link load balancer.

Link load balancer, also called a link balancer, is a network appliance that

distributes in-bound and out-bound traffic to and from multiple Internet links. Link

load balancers are typically located between gateway routers and the firewall.

Load balancing methods that are applicable to link load balancing (LLB) are round

robin, destination IP hash, least bandwidth, and least packets.

1.2. Problem statement

There is a need for dynamic management of network resources for high

performance and low latency of data transmission in a network.

Traditional networks use static switches. Issue with these networks is that each

flow follows a single pre-defined path through the network. In case of switch

breakdown, packets tend to drop until a different path is selected. Another issue is

poor utilization of the network resources, where alternative links to the destination

reside idle.

1.3. Proposed Solution

This research proposes a load balancer for SDN based data center networks. A

dynamic load balancing algorithm is to be implemented in the SDN controller.

The task of the algorithm is to distribute traffic of upcoming and incoming network

3

flows in order to achieve the best possible resource utilization of each of the links

present in a network.

1.4. Methodology

To assess the performance of the proposed scheme, the open-source OpenDaylight

platform (ODL) is used as SDN controller, and the network is emulated using

Mininet software. Objective measurement of throughput, delay and packet loss

determines whether the chosen scheme provides better performance on the

network.

1.5. Aims and Objectives

The aim of this research is to implement Nayan Seth’s dynamic load balancing

algorithm[19] in SDN-based data center networks in order to analyze the

possibilities of achieving a better performance.

The objective of the research is to evaluate and validate the functionality of the

proposed algorithm.

1.6. Thesis Outlines

The reminder of the document is organized in the following manner: Chapter Two

provides background research relevant to SDN and Network Load Balancing.

Chapter Three describes the methodology of the load balancing algorithms and

presents the components used in this research to set the testbed. Chapter Four

describes the proposed scenarios, and presents the results of the implementation.

Chapter Five draw the conclusions and areas for future work.

Chapter Two

Literature Review

4

Chapter Two

Literature Review

2.1. Introduction

This chapter gives a general background and overview about the concept of

Software Defined Networking, OpenFlow, Network Load Balancing,

Interconnection networks, Dijkstra's algorithm; providing the information that

must be taken into account in order to understand this research. Then is gives a

brief summary about the literature review which have been taken into account in

order to develop this research.

2.2. Traditional Networks Limitations

Traditional networking architectures have significant limitations that must be

overcome to meet modern IT requirements. Today’s network must scale to

accommodate increased workloads with greater agility, while also keeping costs

at a minimum. Traditional approach has substantial limitations such as:

 Complexity: The abundance of networking protocols and features for

specific use cases has greatly increased network complexity. Old

technologies were often recycled as quick fixes to address new business

requirements. Features tended to be vendor specific or were implemented

through proprietary commands.

 Inconsistent policies: Security and quality‐of‐service (QoS) policies in

current networks need to be manually configured or scripted across

hundreds or thousands of network devices. This requirement makes policy

changes extremely complicated for organizations to implement without

5

significant investment in scripting language skills or tools that can

automate configuration changes. Manual configuration is prone to error

and can lead to many hours of troubleshooting to discover which line of a

security policy or access control list (ACL) was entered incorrectly on a

given device. In addition, when applications were removed, it was almost

impossible to remove all the associated policies from all the devices,

further increasing complexity.

 Inability to scale: As application workloads change and demand for

network bandwidth increases, the IT department either needs to be

satisfied with an oversubscribed static network or needs to grow with the

demands of the organization. Unfortunately, the majority of traditional

networks are statically provisioned in such a way that increasing the

number of endpoints, services, or bandwidth requires substantial planning

and redesign of the network [3].

Traditional networking architectures are ill-suited to meet the requirements of

today’s enterprises, carriers, and end users. Thanks to a broad industry effort

spearheaded by the Open Networking Foundation (ONF); SDN is transforming

networking architecture [4].

2.3. Software-Defined Networking (SDN)

SDN is an emerging network architecture where network control is decoupled

from forwarding and is directly programmable. This migration of control,

formerly tightly bound in individual network devices, into accessible computing

devices enables the underlying infrastructure to be abstracted for applications

and network services, which can treat the network as a logical or virtual entity.

6

As a result, enterprises and carriers gain unprecedented programmability,

automation, and network control, enabling them to build highly scalable, flexible

networks that readily adapt to changing business needs [4].

SDN are controlled by software applications and SDN controllers rather than the

traditional network management consoles and commands that required a lot of

administrative overhead and could be tedious to manage on a large scale [3].

2.3.1. SDN Architecture

Network intelligence is (logically) centralized in software-based SDN

controllers, which maintain a global view of the network. As a result, the

network appears to the applications and policy engines as a single, logical

switch. With SDN, enterprises and carriers gain vendor-independent control over

the entire network from a single logical point, which greatly simplifies the

network design and operation. SDN also greatly simplifies the network devices

themselves, since they no longer need to understand and process thousands of

protocol standards but merely accept instructions from the SDN controllers [4].

The figure 2-1 below depicts a logical view of the SDN architecture.

Figure 2-1: SDN Architecture.

7

SDN architectures support a set of APIs that make it possible to implement

common network services, including routing, multicast, security, access control,

bandwidth management, traffic engineering, quality of service, processor and

storage optimization, energy usage, and all forms of policy management, custom

tailored to meet business objectives. For example, an SDN architecture makes it

easy to define and enforce consistent policies across both wired and wireless

connections on a campus [4].

2.3.2. SDN Advantages

OpenFlow is the first standard interface designed specifically for SDN,

providing high-performance, granular traffic control across multiple vendors’

network devices. OpenFlow-based SDN is currently being rolled out in a variety

of networking devices and software, delivering substantial benefits to both

enterprises and carriers, including:

• Centralized management and control of networking devices from multiple

vendors.

• Improved automation and management by using common APIs to abstract

the underlying networking details from the orchestration and provisioning

systems and applications.

• Rapid innovation through the ability to deliver new network capabilities

and services without the need to configure individual devices or wait for

vendor releases.

• Programmability by operators, enterprises, independent software vendors,

and users (not just equipment manufacturers) using common programming

8

environments, which gives all parties new opportunities to drive revenue

and differentiation.

• Increased network reliability and security as a result of centralized and

automated management of network devices, uniform policy enforcement,

and fewer configuration errors.

• More granular network control with the ability to apply comprehensive

and wide-ranging policies at the session, user, device, and application

levels.

• Better end-user experience as applications exploit centralized network

state information to seamlessly adapt network behavior to user needs [4].

2.3.3. SDN Applications

To give an idea of how huge SDN is, the list below mentioned some of the

applications which is related to.

 Appliance Virtualization: Firewalls, Load balancers, Content

distribution, and Gateways.

 Service Assurance: Content-specific traffic routing for optimal Quality

of Experience (QoE), Congestion control based on network conditions,

Dynamic policy-based traffic engineering.

 Service Differentiation: Value-add service features, Bandwidth-on-

demand features, BYOD across multiple networks, Service

insertion/changing.

 Service Velocity: Virtual edge, distributed app testing environments,

Application development workflows.

9

 Traditional Control Plane: Network discovery, Path computation,

Optimization & maintenance, Protection & restoration.

 Network Virtualization: Virtual network control on shared infrastructure,

Multi-tenant network automation & API.

 Application Enhancement: Specific SDN application, Reserved

bandwidth for application needs, Geo-distributed applications, Intelligent

network responses to app needs [2].

2.4. OpenFlow

OpenFlow is the first standard communications interface defined between the

control and forwarding layers of an SDN architecture. OpenFlow allows direct

access to and manipulation of the forwarding plane of network devices such as

switches and routers, both physical and virtual (hypervisor-based). It is the

absence of an open interface to the forwarding plane that has led to the

characterization of today’s networking devices as monolithic, closed, and

mainframe-like. No other standard protocol does what OpenFlow does, and a

protocol like OpenFlow is needed to move network control out of the networking

switches to logically centralized control software [4].

OpenFlow was originally imagined and implemented as part of network research

at Stanford University. Its original focus was to allow the creation of

experimental protocols on campus networks that could be used for research and

experimentation. Prior to that, universities had to create their own

experimentation platforms from scratch. What evolved from this initial kernel of

an idea was a view that OpenFlow could replace the functionality of layer 2 and

10

layer 3 protocols completely in commercial switches and routers. This approach

is commonly referred to as the clean slate proposition [1].

In 2011, a nonprofit consortium called the Open Networking Foundation (ONF)

was formed by a group of service providers to commercialize, standardize, and

promote the use of OpenFlow in production networks [1].

2.4.1. OpenFlow applications

There is a wide range of applications, where use of OpenFlow can improve

overall system performance. The following list brings some of the experiments

(performed at the Stanford University) [8].

 Slicing the network: The network infrastructure can be divided into

logical slices (using e.g. FlowVisor software). Hence, different services

can be mapped to different network slices, and the traffic could then be

treated accordingly.

 Load balancing: The whole network can be viewed as one big software

load balancing switch instead of deploying expensive load balancing

hardware switches.

 Packet and circuit network convergence: OpenFlow provides a solution

for merging packet and circuit networks into one, thus reducing

CAPEX/OPEX spending of telecommunications companies.

 Reduction of energy consumption: The unused links can be switched

off, so that less energy is needed to run e.g. a data center network.

 Dynamic flow aggregation: OpenFlow can help saving the resources

(CPU, routing tables) or further ease management of the network.

11

 Providing MPLS services: OpenFlow can simplify deployment of new

MPLS services (e.g. new tunnels including adjustments of their bandwidth

reservation).

2.5. Network Load Balancing

Load balancing is very important in building high speed networks and also to

ensure high performance in the network backbone.

The main idea of load balancing is to map the part of the traffic from the heavily

loaded paths to some lightly loaded paths to avoid congestion in the shortest path

route and to increase the network utilization and network throughput.

Approached used for Load Balancing can be broadly classified in to following

types [9]:

2.5.1. Round Robin forwarding.

Per packet round robin scheduling is advantageous only when all the paths are of

equal cost. Otherwise packet disordering will take place which can be interpreted

as false congestion signals. This would lead in unnecessary degradation in the

throughput of the network leaving some links unutilized whereas at the same

time leading to the overutilization of the other links.

2.5.2. Time dependent approach:

Balancing traffic on the basis of long time span as per the experience of the

traffic.

Time dependent approach will vary the traffic on the basis of variations in the

traffic over a long time span. These types of approaches are insensitive to the

dynamic traffic variations.

12

2.5.3. Hashing based approaches.

Hashing based approaches are a stateless approach which applies the hash

function on subset of five tuples (source address, destination address, source

port, destination port and protocol id). This type of traffic splitting is fairly easy

to compute. Though, it maintains the flow based traffic splitting yet by this

method the traffic can- not be distributed unevenly. And more over as it does not

maintain the state so dynamic traffic engineering is not applicable to these types

of approaches.

2.5.4. Routing traffic as per the metrics calculated from the traffic.

Various authors have proposed traffic engineering with some calculated metrics

like packet delay or/and packet loss etc. dynamically and applying them to split

the traffic. This method is highly advantageous if the flow integrity is maintained

and if the metrics calculation overhead is not considerable.

2.6. Interconnection networks

Interconnection networks were traditionally defined as networks that connect

multiprocessors. However, interconnection networks evolved dramatically in the

last 20 years and nowadays play a crucial role in areas like Data Centers or high

performance computing (HPC) clusters.

Topologies for interconnection networks can be classified into four major

groups: shared-bus networks, direct networks, indirect networks and hybrid

networks. The choice of topology is one of the most important steps when

constructing an interconnection network. The chosen topology combined with

the routing algorithm and application’s workload determines the traffic

distribution in the network [10].

13

2.6.1. Fat-Tree topology

The fat-tree topology is very popular for building medium and large system area

networks [11]. It was invented by Charles E. Leiserson of the Massachusetts

Institute of Technology in 1985 [12].

The fat-tree topology contains multiple paths among hosts so it can provide

higher available bandwidth than a single-path tree with the same number of

nodes. It is typically a 3-layer hierarchical tree that consists of switches on the

core, aggregation and edge layers. The hosts connect to the switches on the Edge

layer. The multipath feature of fat-tree networks enables chances to distribute

data traffic on different network components.

Figure 2-2: Fat-tree network topology.

There are three properties that make fat-trees the topology of choice for high

performance interconnects [10]:

a) Deadlock freedom, the use of a tree structure makes it possible to route

fat-trees without using virtual channels for deadlock avoidance.

b) Inherent fault-tolerance, the existence of multiple paths between

individual source destination pairs makes it easier to handle network

faults.

c) Full bisection bandwidth, the network can sustain full speed

communication between the two halves of the network.

14

Although the fat-tree topology provides rich connectivity, having a fat-tree

topology alone does not guarantee high network performance: the routing

mechanism also plays a crucial role. Historically, adaptive routing, which

dynamically builds the path for a packet based on the network condition, has

been used with the fat-tree topology to achieve load balance in the network.

However, the routing in the current major system area networking technology is

deterministic. For a fat-tree based system area network with deterministic

routing, it is important to employ an efficient load balance routing scheme in

order to fully exploit the rich connectivity provided by the fat-tree topology [11].

2.7. Dijkstra's algorithm

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in

1956 and published in 1959 [13][14], is a graph search algorithm that solves the

single-source shortest path problem for a graph with nonnegative edge path

costs, producing a shortest path tree.

This algorithm is often used in routing and as a subroutine in other graph

algorithms. For a given source vertex (node) in the graph, the algorithm finds the

path with lowest cost (i.e. the shortest path) between that vertex and every other

vertex.

It can also be used for finding costs of shortest paths from a single vertex to a

single destination vertex by stopping the algorithm once the shortest path to the

destination vertex has been determined. For example, if the vertices of the graph

represent cities and edge path costs represent driving distances between pairs of

cities connected by a direct road, Dijkstra's algorithm can be used to find the

shortest route between one city and all other cities. As a result, the shortest path

15

first is widely used in network routing protocols, most notably IS-IS and

OSPF[15].

2.8. SDN Dynamic Load Balancing Algorithm

This research algorithm takes into account the advantages and features of SDN,

which can sense the state of each of the elements on the network in order to act

consequently.

In order to describe the algorithm, first it is needed to disclose the different data

structures involved on it. Such structures characterize the different elements that

have been taken in account in order to achieve an efficient load balancing, at the

same time that to reduce as much as possible the computational cost and time [2].

The main data structures are explained bellow.

a) Flow

Since the algorithm provides load balancing based on flows, it is necessary to

define a structure to describe each of the different flows with distinctive

parameters.

Notice that for the goal of this research have been taking in account the IP

sand Ports, but using OpenFlow it is possible to make a much more accurate

identification of each flow with any of the header fields.

A Flow structure specifies a specific traffic flow from one host to another one.

The structure is as follows:

Flow = {<FlowID>, <SrcIP>, <DstIP>, <SrcPort>, <DstPort>,<UsedBandwidth>}

FlowID: identify each flow with a unique ID.

16

SrcIP: this field contains the IPv4 of the source host who initialized a flow.

DstIP: IPv4 of the destination host.

SrcPort: port number of the source.

DstPort: port number of the destination.

UsedBandwidth: transmission speed of a specific flow, in Mbps.

b) Flows Collection

Groups of flows are put together in collections, which contain a number of

flows with common characteristic (e.g. flows that goes through a same link).

FlowsCollection={< Flow 1 >,< Flow2 > ... < Flow n >}

c) Path

Keeping information about each parallel route between each pair of hosts it is

crucial to be able to redirect the flows according to the current network

conditions. To accomplish that tracking, a data structure representing each of

the possible paths has been designed.

A Path structure contains the information about a precise path between two

hosts, and it is composed as shown below:

Path={<PathID>,<Hops>,<Links>,<Ingress>,<Egress>,<Capacity>,< Flows>,

<UsedBandwidth>, <FreeCapacity>}

PathID: identify each single possible path with a unique ID.

Hops: contains a identifier of each of the switches within the path.

Links: list of all the links involved in the path. Each of the links is composed

by a pair of Switch-Port identifiers.

17

Ingress: identifier of the switch with the source host is connected to.

Egress: identifier of the switch with the destination host is connected to.

Capacity: specify the maximum capacity of the path. Which corresponds to

the capacity of the link with smallest capacity along the path.

Flows: list of flows which are routed through this path.

Used Bandwidth: sum of the traffic of all the flows that are using this path, in

Mbps.

Free Capacity: capacity available in this path. It’s the minimum capacity free

of the Links that shape the path.

d) Paths Collection

Path Collection contains a list of all the possible paths of the hosts that have

initiated a communication between them, and information about each of the

paths [2].

PathsCollection={< Path 1 >,< Path2 > ... < Path n >}

2.9. Literature Review

In 2014, Yuanhao Zhou, Li Ruan, Limin Xiao andRui Liu published the paper

“A Method for Load Balancing based on Software-Defined Network”. The paper

presented a method for load balancing based on SDN. It implemented load

balancing according to PyResonance controller. PyResonance is Resonance

implemented with Pyretic. Resonance is an SDN control platform that advocates

event-driven network control. It preserves a Finite State Machine (FSM) model

18

to define a network policy. The paper showed that traffic can be distributed more

efficiently and easily with the aid of the proposed solution [5].

In May 2015, Senthil Ganesh N and Ranjani S. published the paper “Dynamic

Load Balancing using Software Defined Networks”. In this paper a Software-

Defined Network using OpenFlow protocol was implemented to improve the

efficiency of load balancing in enterprise networks. By using this technique, the

network becomes directly programmable and agile. Here the http requests from

different clients will be directed to different pre-defined http servers based on

Round-Robin scheduling. Round-Robin scheduling is easy to implement and are

good to be used in geographically distributed web servers [6].

In June 2015, Smriti Bhandarkar and Kotla Amjath Khan published the paper

“Load Balancing in Software-defined Network (SDN) Based on Traffic

Volume”. The paper showed that the key limitations are statically configured

forwarding plane and uneven load balancing among the controllers in the

network. It proposed The dynamic load balancer which dynamically shifts the

load to the other shortest path when it is greater than the bandwidth of the link.

By experimental analysis, the paper concluded that the proposed approach gives

better results in terms of responses/sec and efficiency as compared with the

existing Round-Robin load balancing algorithm [7].

Chapter Three

Methodology

19

Chapter Three

Methodology

3.1. Introduction

This chapter describes the algorithm designed to accomplish a dynamic load

balancing system, and presents the components and software tools used in this

research to set the testbed.

3.2. Algorithm Description

As explained formerly, the task of the Nayan Seth’s algorithm[19] is to distribute

traffic of upcoming and incoming network flows in order to achieve the best

possible resource utilization of each of the links present in a network. In order to

achieve such aim, it is necessary to keep track of the current state of the network.

Figure 3-1 illustrates the steps of the load balancing algorithm.

20

Figure 3-1: SDN Dynamic Load Balancing algorithm.

The first step of the algorithm is to collect operational information of the

topology and its devices. Such as IPs, MAC addresses, Ports, Connections, etc.

21

Next step is to find route information based on Dijkstra's algorithm (see Chapter

2 section 8), the goal here is to narrow the search into a small segment of the Fat-

Tree topology and to find the shortest paths from source host to destination host.

And then find total link cost for all these paths between the source and

destination hosts.

Once the transmission costs of the links are calculated, the flows are created

depending on the minimum transmission cost of the links at the given time.

Based on the cost, the best path is selected and static flows are pushed into each

switch in the current best path. with that, every switch within the selected path

will have the necessary flow entries to carry out the communication between the

two end points.

Finally, the program continues to update this information every minute thereby

making it dynamic.

3.3. Implementation Overview

In this research a test-bed has been implemented under Linux, using Mininet

software to emulate the network, the open-source OpenDaylight platform (ODL)

as SDN controller, and Python programming language to define the fat-tree

topology and to write the load balancing algorithm program, and iPerf to test

network performance. The following diagram illustrate the design steps.

22

3.4. Components and Software Tools

3.4.1. Mininet

Mininet is a network emulator that allows prototyping large networks on a single

machine. It runs a collection of end-hosts, switches, routers, and links on a single

Linux kernel. It uses lightweight virtualization to make a single system look like

a complete network, running the same kernel, system, and user code.

Mininet main advantages:

1. Mininet is an open source project.

2. Custom topologies can be created.

3. Mininet runs real programs.

4. Packet forwarding can be customized.

Setting a Linux
Environment -

Ubuntu 14.04 LTS

Install Java SE
Development Kit

(JDK)

Download and
install Mininet

Download the
OpenDaylight

Platform

Install
OpenDaylight

features

Install Python
libraries and

modules

Define Fat-tree
network

topology using
Python

Run
OpenDaylight

Controller

Run the network
topology in Mininet,

and set it to use
OpenDaylight as its

controller

Test network
performance
using iPerf

Run the Dynamic
Load balancing

algorithm
program

Test network
performance

using iPerf after
LB

Results and
Performance

analysis

23

Compared to simulators, Mininet runs real, unmodified code including

application code, OS kernel code, and control plane code (both OpenFlow

controller code and Open vSwitch code) and easily connects to real networks.

3.4.2. The OpenDaylight Project (ODL)

The OpenDaylight Project (ODL) is a highly available, modular, extensible,

scalable and multi-protocol controller infrastructure built for SDN deployments

on modern heterogeneous multi-vendor networks. ODL provides a model-driven

service abstraction platform that allows users to write apps that easily work

across a wide variety of hardware and south-bound protocols.

Furthermore, it contains internal plugins that add services and functionalities to

the network. For example, it has dynamic plugins that allow to gather statistics

as well as to obtain the topology of the network [17].

Figure 3-2: Beryllium-SR4 architecture framework.

24

3.4.3. iPerf

iPerf is a commonly used network testing tool for measuring Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP) bandwidth

performance and the quality of a network link. By tuning of various parameters

related to timing, buffers and protocols (TCP, UDP, SCTP with IPv4 and IPv6),

the user is able to perform a number of tests that provide an insight on the

network's bandwidth availability, delay, jitter and data loss.iPerf is an open

source software and runs on various platforms including Linux, UNIX and

Windows.

Figure 3-3: iPerf Bandwidth measurement.

3.4.4. Programming Language used: Python

In this research, Python has been used in mininet to define the Fat-tree topology,

also it has been used to write the load balancing algorithm program.

Python is an interpreted, object-oriented language suitable for many purposes. It

has a clear, intuitive syntax, powerful high-level data structures, and a flexible

dynamic type system. Python can be used interactively, in stand-alone scripts,

for large programs, or as an extension language for existing applications. The

language runs on Linux, Macintosh, and Windows machines [18].

25

Python is easily extensible through modules written in C or C++, and can also be

embedded in applications as a library. There are also a number of system-specific

extensions. A large library of standard modules written in Python also exists.

Compared to C, Python programs are much shorter, and consequently much

faster to write. In comparison with Perl, Python code is easier to read, write and

maintain. Relative to TCL, Python is better suited for larger or more complicated

programs [18].

Chapter Four

Results and Performance Evaluation

26

Chapter Four

Results and Performance Evaluation

4.1. Introduction

This chapter describes the proposed scenarios, then shows and explains the results

obtained with the scenarios proposed.

4.2. Network Topology

The network topology used in this research is a three-levels fat-tree Data Center

topology. It consists of 8 servers, 4 edge switches, 4 aggregation switches, and 2

core switches. As presented in Figure 4-1.

Figure 4-1: Datacenter Network Topology used.

27

4.3. Scenario Description

4.3.1. First Scenario: Performance Measurement at the Aggregation Layer

In this scenario the severs h1 and h4 has been selected to perform the load

balancing between them. As shown is the figure 4-2 below.

Figure 4-2: The selected hosts and possible paths in the first scenario.

The network was tested before and after running the load balancing algorithm. The

testing focused on some of QoS parameters such as throughput, delay, jitter, and

packet loss between the two servers in the fat-tree network.

Delay has been measured by sending five Internet Control Message Protocol

(ICMP) Echo Request packets to the destination host and calculated the time until

ICMP Echo Reply was received at the source host.

Throughput, Jitter, and Packet Loss has been tested using iPerf, first case by using

the TCP and then by using UDP, with 10 seconds for each test.

The following figures 4-3 to 4-5 show examples of the testing results.

28

Figure 4-3: ping from h1 to h4 before load balancing.

Figure 4-4: iPerf h1 to h4 before load balancing – TCP connection.

29

Figure 4-5: iPerf h1 to h4 before load balancing – UDP connection.

4.3.1.1. Tests results of the first scenario

The network was tested ten times before and after running the load balancing

algorithm; to study any abnormal behavior. The following table illustrates the

results obtained.

Table 4-1: Tests results of the first scenario.

Test

No.

Load

Balancing

TCP UDP
Delay

(ms)
Throughput

(Mbits/sec)

Transfer

(Mbytes)

Throughput

(Mbits/sec)

Transfer

(Mbytes)

Jitter

(ms)

Packet

Loss %

1
Before 191 228 354 422 0.641 15% 0.297

After 13414.4 15564.8 524 594 0.081 13% 0.142

2
Before 221 265 299 357 0.325 38% 0.496

After 28262.4 32870.4 726 866 0.011 5% 0.176

3
Before 255 304 274 327 0.521 59% 0.203

After 16076.8 18739.2 713 849 0.006 6% 0.09

4 Before 185 220 361 431 0.491 52% 0.578

30

After 21196.8 24678.4 765 912 0.001 2% 0.101

5
Before 238 284 228 278 14.67 35% 0.69

After 28876.8 33689.6 653 778 0.005 11% 0.159

6
Before 184 223 283 338 0.42 41% 0.529

After 26828.8 31334.4 625 745 0.176 12% 0.16

7
Before 208 249 256 305 0.365 30% 0.518

After 30617.6 35635.2 743 885 0.014 4% 0.133

8
Before 233 278 298 355 0.543 36% 0.425

After 34201.6 39833.6 738 880 0.013 5% 0.115

9
Before 236 281 255 304 0.691 43% 0.707

After 24268.8 28262.4 742 885 0.193 4% 0.152

10
Before 244 292 215 256 0.172 42% 0.708

After 36761.6 42803.2 740 881 0.015 3% 0.144

To summarize the previous table, an average performance has been calculated as

shown in the following table.

Table 4-2: Average results of the first scenario.

Load

Balancing

TCP UDP
Delay

(ms)
Throughput

(Mbits/sec)

Transfer

(Mbytes)

Throughput

(Mbits/sec)

Transfer

(Mbytes)

Jitter

(ms)

Packet

Loss %

Before 219.5 262.4 282.3 337.3 1.884 39.10% 0.5151

After 26050.56 30341.12 696.9 827.5 0.0515 6.43% 0.1372

4.3.1.2. Performance Analysis of the first scenario

The network showed a much better performance in the first scenario after running

the load balancing program. The average network Throughput before load

balancing was 219.5 Mbits/sec, and it became 25.4 Gbits/sec after load balancing.

The average delay has decreased by 73.36% after load balancing with an average

of 0.1372 ms, the Jitter has decreased by 97.27%, and the Packet Loss has

decreased by 32.67%.

31

Figure 4-6: Comparison of Throughput tests results in first scenario.

Figure 4-7: Comparison of QoS parameters in first scenario.

219.5 262.4 282.3 337.3

26050.56

30341.12

696.9 827.5

0

5000

10000

15000

20000

25000

30000

35000

TCP - Throughput
(Mbits/sec)

TCP - Transfer
(Mbytes)

UDP - Throughput
(Mbits/sec)

UDP - Transfer
(Mbytes)

Before After

1.884

39.10%
0.5151

0.0515 6.43%
0.1372

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Jitter (ms) Packet Loss % Delay (ms)

Before After

32

4.3.2. Second Scenario: Performance Measurement at the Core Layer

In this scenario the severs h1 and h6 has been selected to perform the load

balancing between them. In this scenario the traffic will have to go through the

core switches in order to reach its destination. The figure 4-8 below shows the

selected hosts and the possible paths.

Figure 4-8: The selected hosts and possible paths in the second scenario.

The network was tested before and after running the load balancing algorithm. The

testing focused on some of QoS parameters such as throughput, delay, jitter, and

packet loss between the two servers in the fat-tree network.

The following figures 4-9 to 4-11 show examples of the testing results.

33

Figure 4-9: ping from h1 to h6 before load balancing.

Figure 4-10: iPerf h1 to h6 before load balancing – TCP connection.

34

Figure 4-11: iPerf h1 to h6 before load balancing – UDP connection.

4.3.2.1. Tests results of the second scenario

The network was tested ten times before and after running the load balancing

algorithm; to study any abnormal behavior. The following table illustrates the

results obtained.

Table 4-3: Tests results of the second scenario.

Test

No.

Load

Balancing

TCP UDP
Delay

(ms)
Throughput

(Mbits/sec)

Transfer

(Mbytes)

Throughput

(Mbits/sec)

Transfer

(Mbytes)

Jitter

(ms)

Packet

Loss %

1
Before 195 234 291 347 0.121 34% 0.552

After 268 319 263 313 0.438 51% 0.439

2
Before 194 233 225 268 0.061 54% 0.268

After 273 326 336 401 0.529 52% 0.323

3
Before 150 179 147 176 0.889 39% 0.943

After 215 257 203 242 0.529 42% 0.561

4 Before 183 219 201 239 0.292 34% 0.374

35

After 240 287 238 288 14.12 44% 0.401

5
Before 187 225 194 231 0.564 45% 0.242

After 236 283 232 283 14.32 36% 0.662

6
Before 219 261 226 268 0.166 36% 0.553

After 288 344 380 453 0.567 51% 0.618

7
Before 203 243 246 293 0.691 46% 0.566

After 222 266 367 437 0.537 53% 0.499

8
Before 164 196 225 268 0.128 28% 0.596

After 220 263 252 299 0.587 35% 0.432

9
Before 220 264 258 307 0.415 38% 0.615

After 301 359 281 335 0.335 38% 0.332

10
Before 176 210 179 213 0.409 40% 0.582

After 239 288 234 280 0.913 41% 0.54

To summarize the previous table, an average performance has been calculated as

shown in the following table.

Table 4-4: Average results of the second scenario.

Load

Balancing

TCP UDP
Delay

(ms)
Throughput

(Mbits/sec)

Transfer

(Mbytes)

Throughput

(Mbits/sec)

Transfer

(Mbytes)

Jitter

(ms)

Packet

Loss %

Before 189.1 226.4 219.2 261 0.3736 39.40% 0.5291

After 250.2 299.2 278.6 333.1 3.2891 44.30% 0.4807

4.3.2.2. Performance Analysis of the second scenario

In the second scenario, the network showed good performance after running the

load balancing program. The average network throughput was 189.1 Mbits/sec,

and it became 250.2 Mbits/sec after load balancing with 32.3% increasing

percentage. The average delay has decreased by 9.15% after load balancing with

an average of 0.4807ms. But the average jitter has increased from 0.3736 ms to

3.2891 ms after the load balancing, and the packet loss has also increased by 4.9%.

36

The load balancing program managed to increase the throughput in all cases. It

showed a great performance under the second layer of the fat-tree topology, but as

the network grows larger and the core layer gets involved, it presents increasing

in the packet loss and jitter.

Figure 4-12: Comparison of Throughput tests results in second scenario.

Figure 4-13: Comparison of QoS parameters in second scenario.

189.1

226.4 219.2

261
250.2

299.2
278.6

333.1

0

50

100

150

200

250

300

350

TCP - Throughput
(Mbits/sec)

TCP - Transfer
(Mbytes)

UDP - Throughput
(Mbits/sec)

UDP - Transfer
(Mbytes)

Before After

0.3736 39.4%
0.5291

3.2891

44.3% 0.4807

0

0.5

1

1.5

2

2.5

3

3.5

Jitter (ms) Packet Loss % Delay (ms)

Before After

Chapter Five

Conclusion and Recommendations for Future Work

37

Chapter Five

Conclusion and Recommendations for Future Work

5.1. Conclusion

This research describes the implementation of Nayan Seth’s dynamic load

balancing algorithm to efficiently distribute flows for fat-tree networks through

multiple alternative paths between a single pair of hosts.

The network was tested before and after running the load balancing algorithm. The

testing focused on some of QoS parameters such as throughput, delay, and packet

loss between two servers in the fat-tree network.

The results showed that the network performance has increased after running the

load balancing algorithm program, the algorithm was able to increase throughput,

and improve network utilization. However, in large networks it increased packet

loss and jitter.

5.2. Recommendations for Future Work

In future work, next suggestions are planned: The first suggestion is to investigate

the performances of the dynamic load balancing program on a different popular

SDN controllers, such as Research Floodlight, Beacon, NOX/POX, etc. and

compare the results.

The second suggestion is to investigate the performances of different topologies

of different sizes, other than the fat-tree topology. To test if there are any other

limitations with the algorithm.

And finally is to extend the algorithm to traditional networks, or hybrid networks

with both OpenFlow and regular switches.

38

References

[1] Thomas D. Nadeau and Ken Gray. “SDN: Software Defined Networks”.

O'Reilly Media, Inc. Ebook, 1st edition, 9-20. August 2013.

[2] Martí Boada Navarro. “Dynamic Load Balancing in Software-Defined

Networks”. Aalborg University, Department of Electronic Systems, Fredrik

Bajers Vej 7B, DK-9220 Aalborg. June 2014.

[3] Brian Underdahl and Gary Kinghorn. “Software Defined Networking for

Dummies”, Cisco Special Edition, John Wiley & Sons, Inc., Hoboken, New

Jersey, 2015.

[4] “Software-Defined Networking: The New Norm for Networks”. Open

Networking Foundation (ONF), White Paper. April 13, 2012.

[5] Yuanhao Zhou, Li Ruan, Limin Xiao and Rui Liu. “A Method for Load

Balancing based on Software-Defined Network”. Advanced Science and

Technology Letters, Vol.45 (CCA 2014), pp.43-48, 2014.

[6] Senthil Ganesh N and Ranjani S. “Dynamic Load Balancing using Software

Defined Networks”. International Journal of Computer Applications (0975 –

8887), International Conference on Current Trends in Advanced Computing

(ICCTAC-2015), May 2015.

[7] Smriti Bhandarkar and Kotla Amjath Khan. “Load Balancing in Software-

defined Network (SDN) Based on Traffic Volume”. Advances in Computer

Science and Information Technology (ACSIT), Krishi Sanskriti Publications,

Volume 2, Number 7; April – June, 2015.

[8] Petr Marciniak. “Load Balancing in OpenFlow Networks”. Department of

Information Systems, Faculty of Information Technology, Brno University

of Technology. Brno, Czech Republic, 2013.

39

[9] Ravindra Kumar Singh, Narendra S. Chaudhari, and Kanak Saxena. “Load

Balancing in IP/MPLS Networks: A Survey”. Published online by Scientific

Research Corporation (SciRes). Atlanta, March 15, 2012.

[10] Bartosz Bogda´nski. “Optimized Routing for Fat-Tree Topologies”.

Department of Informatics, Faculty of Mathematics and Natural Sciences,

University of Oslo, Norway. January, 2014.

[11] Xin Yuan, Wickus Nienaber, Zhenhai Duan, Rami Melhem. “Oblivious

Routing for Fat-Tree Based System Area Networks with Uncertain Traffic

Demands”. SIGMETRICS’07, June 12-16, San Diego, California, USA. 2007.

[12] Charles E. Leiserson. “Fat-trees: universal networks for hardware-efficient

supercomputing”. IEEE Transactions on Computers, Vol. 34 , no. 10, Oct. 1985,

pp. 892-901.

[13] Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs"

(http:/ / www-m3. ma. tum. de/ twiki/ pub/ MN0506/ WebHome/ dijkstra. pdf).

Numerische Mathematik 1: 269–271. doi:10.1007/BF01386390.

[14] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford

(2001). "Section 24.3: Dijkstra's algorithm". Introduction to Algorithms (Second

ed.). MIT Press and McGraw-Hill. pp. 595–601. ISBN 0-262-03293-7.

[15] Fredman, Michael Lawrence; Tarjan, Robert E. (1984). "Fibonacci heaps and

their uses in improved network optimization algorithms". 25th Annual

Symposium on Foundations of Computer Science (IEEE): 338–346.

doi:10.1109/SFCS.1984.715934.

[16] Fredman, Michael Lawrence; Tarjan, Robert E. (1987). "Fibonacci heaps and

their uses in improved network optimization algorithms" (http:/ / portal. acm. org/

citation. cfm?id=28874). Journal of the Association for Computing Machinery 34

(3): 596–615. doi:10.1145/28869.28874.

40

[17] Bernat Ribes Garcia. “OpenDaylight SDN controller platform”. Faculty of

the Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona, Universitat

Politècnica de Catalunya. Barcelona, October 2015.

[18] Guido van Rossum. “An Introduction to Python for UNIX/C Programmers”.

Proceedings of the NLUUG najaarsconferentie. Amsterdam, Netherlands, 1993.

[19] Nayan Seth. April, 2016. SDN Load Balancing. Retrieved from

https://github.com/nayanseth/sdn-loadbalancing

41

Appendixes

A Mininet topology

#!/usr/bin/python

from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch
from mininet.topo import Topo

class fatTreeTopo(Topo):

 "Fat Tree Topology"
 def __init__(self):
 "Create Fat tree Topology"

 Topo.__init__(self)

#Add hosts
h1 = self.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None)
h2 = self.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None)
h3 = self.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None)
h4 = self.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None)
h5 = self.addHost('h5', cls=Host, ip='10.0.0.5', defaultRoute=None)
h6 = self.addHost('h6', cls=Host, ip='10.0.0.6', defaultRoute=None)
h7 = self.addHost('h7', cls=Host, ip='10.0.0.7', defaultRoute=None)
h8 = self.addHost('h8', cls=Host, ip='10.0.0.8', defaultRoute=None)

#Add switches
s1 = self.addSwitch('s1', cls=OVSKernelSwitch)
s2 = self.addSwitch('s2', cls=OVSKernelSwitch)
s3 = self.addSwitch('s3', cls=OVSKernelSwitch)
s4 = self.addSwitch('s4', cls=OVSKernelSwitch)
s10 = self.addSwitch('s10', cls=OVSKernelSwitch)
s11 = self.addSwitch('s11', cls=OVSKernelSwitch)
s17 = self.addSwitch('s17', cls=OVSKernelSwitch)
s18 = self.addSwitch('s18', cls=OVSKernelSwitch)
s21 = self.addSwitch('s21', cls=OVSKernelSwitch)
s22 = self.addSwitch('s22', cls=OVSKernelSwitch)

#Add links
self.addLink(h1, s1)
self.addLink(h2, s1)
self.addLink(h3, s2)
self.addLink(h4, s2)
self.addLink(h5, s3)
self.addLink(h6, s3)
self.addLink(h7, s4)
self.addLink(h8, s4)

42

self.addLink(s1, s21)
self.addLink(s21, s2)
self.addLink(s1, s10)
self.addLink(s2, s10)
self.addLink(s3, s11)
self.addLink(s4, s22)
self.addLink(s11, s4)
self.addLink(s3, s22)
self.addLink(s21, s17)
self.addLink(s11, s17)
self.addLink(s10, s18)
self.addLink(s22, s18)

topos = { 'mytopo': (lambda: fatTreeTopo()) }

43

B Load balancing algorithm program

#!/usr/bin/env python
Orignal Code written by: Nayan Seth
Date: Apr 26, 2016

import requests
from requests.auth import HTTPBasicAuth
import json
import unicodedata
from subprocess import Popen, PIPE
import time
import networkx as nx
from sys import exit

Method To Get REST Data In JSON Format
def getResponse(url,choice):
 response = requests.get(url, auth=HTTPBasicAuth('admin', 'admin'))
 if(response.ok):
 jData = json.loads(response.content)
 if(choice=="topology"):
 topologyInformation(jData)
 elif(choice=="statistics"):
 getStats(jData)
 else:
 response.raise_for_status()

def topologyInformation(data):
 global switch
 global deviceMAC
 global deviceIP
 global hostPorts
 global linkPorts
 global G
 global cost

 for i in data["network-topology"]["topology"]:
 for j in i["node"]:
 # Device MAC and IP
 if "host-tracker-service:addresses" in j:
 for k in j["host-tracker-service:addresses"]:
 ip = k["ip"].encode('ascii','ignore')
 mac = k["mac"].encode('ascii','ignore')
 deviceMAC[ip] = mac
 deviceIP[mac] = ip

 # Device Switch Connection and Port
 if "host-tracker-service:attachment-points" in j:

44

 for k in j["host-tracker-service:attachment-
points"]:
 mac = k["corresponding-
tp"].encode('ascii','ignore')
 mac = mac.split(":",1)[1]
 ip = deviceIP[mac]
 temp = k["tp-id"].encode('ascii','ignore')
 switchID = temp.split(":")
 port = switchID[2]
 hostPorts[ip] = port
 switchID = switchID[0] + ":" + switchID[1]
 switch[ip] = switchID

 # Link Port Mapping
 for i in data["network-topology"]["topology"]:
 for j in i["link"]:
 if "host" not in j['link-id']:
 src = j["link-
id"].encode('ascii','ignore').split(":")
 srcPort = src[2]
 dst = j["destination"]["dest-
tp"].encode('ascii','ignore').split(":")
 dstPort = dst[2]
 srcToDst = src[1] + "::" + dst[1]
 linkPorts[srcToDst] = srcPort + "::" + dstPort
 G.add_edge((int)(src[1]),(int)(dst[1]))

def getStats(data):
 print "\nCost Computation....\n"
 global cost
 txRate = 0
 for i in data["node-connector"]:
 tx = int(i["opendaylight-port-statistics:flow-capable-node-
connector-statistics"]["packets"]["transmitted"])
 rx = int(i["opendaylight-port-statistics:flow-capable-node-
connector-statistics"]["packets"]["received"])
 txRate = tx + rx
 #print txRate

 time.sleep(2)

 response = requests.get(stats, auth=HTTPBasicAuth('admin', 'admin'))
 tempJSON = ""
 if(response.ok):
 tempJSON = json.loads(response.content)

 for i in tempJSON["node-connector"]:
 tx = int(i["opendaylight-port-statistics:flow-capable-node-
connector-statistics"]["packets"]["transmitted"])

45

 rx = int(i["opendaylight-port-statistics:flow-capable-node-
connector-statistics"]["packets"]["received"])
 cost = cost + tx + rx - txRate

 #cost = cost + txRate
 #print cost

def systemCommand(cmd):
 terminalProcess = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True)
 terminalOutput, stderr = terminalProcess.communicate()
 print "\n*** Flow Pushed\n"

def pushFlowRules(bestPath):

 bestPath = bestPath.split("::")

 for currentNode in range(0, len(bestPath)-1):
 if (currentNode==0):
 inport = hostPorts[h2]
 srcNode = bestPath[currentNode]
 dstNode = bestPath[currentNode+1]
 outport = linkPorts[srcNode + "::" + dstNode]
 outport = outport[0]
 else:
 prevNode = bestPath[currentNode-1]
 #print prevNode
 srcNode = bestPath[currentNode]
 #print srcNode
 dstNode = bestPath[currentNode+1]
 inport = linkPorts[prevNode + "::" + srcNode]
 inport = inport.split("::")[1]
 outport = linkPorts[srcNode + "::" + dstNode]
 outport = outport.split("::")[0]

xmlSrcToDst = '\'<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"no\"?><flow
xmlns=\"urn:opendaylight:flow:inventory\"><priority>32767</priority><flow-
name>Load Balance 1</flow-name><match><in-port>' + str(inport) +'</in-
port><ipv4-destination>10.0.0.1/32</ipv4-destination><ipv4-
source>10.0.0.4/32</ipv4-source><ethernet-match><ethernet-
type><type>2048</type></ethernet-type></ethernet-
match></match><id>1</id><table_id>0</table_id><instructions><instruction><o
rder>0</order><apply-actions><action><order>0</order><output-
action><output-node-connector>' + str(outport) +'</output-node-
connector></output-action></action></apply-
actions></instruction></instructions></flow>\''

xmlDstToSrc = '\'<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"no\"?><flow
xmlns=\"urn:opendaylight:flow:inventory\"><priority>32767</priority><flow-

46

name>Load Balance 2</flow-name><match><in-port>' + str(outport) +'</in-
port><ipv4-destination>10.0.0.4/32</ipv4-destination><ipv4-
source>10.0.0.1/32</ipv4-source><ethernet-match><ethernet-
type><type>2048</type></ethernet-type></ethernet-
match></match><id>2</id><table_id>0</table_id><instructions><instruction><o
rder>0</order><apply-actions><action><order>0</order><output-
action><output-node-connector>' + str(inport) +'</output-node-
connector></output-action></action></apply-
actions></instruction></instructions></flow>\''

flowURL = "http://127.0.0.1:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:"+ bestPath[currentNode] +"/table/0/flow/1"

command = 'curl --user "admin":"admin" -H "Accept: application/xml" -H
"Content-type: application/xml" -X PUT ' + flowURL + ' -d ' + xmlSrcToDst

systemCommand(command)

flowURL = "http://127.0.0.1:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:"+ bestPath[currentNode] +"/table/0/flow/2"

command = 'curl --user "admin":"admin" -H "Accept: application/xml" -H
"Content-type: application/xml" -X PUT ' + flowURL + ' -d ' + xmlDstToSrc

systemCommand(command)

 srcNode = bestPath[-1]
 prevNode = bestPath[-2]
 inport = linkPorts[prevNode + "::" + srcNode]
 inport = inport.split("::")[1]
 outport = hostPorts[h1]

xmlSrcToDst = '\'<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"no\"?><flow
xmlns=\"urn:opendaylight:flow:inventory\"><priority>32767</priority><flow-
name>Load Balance 1</flow-name><match><in-port>' + str(inport) +'</in-
port><ipv4-destination>10.0.0.1/32</ipv4-destination><ipv4-
source>10.0.0.4/32</ipv4-source><ethernet-match><ethernet-
type><type>2048</type></ethernet-type></ethernet-
match></match><id>1</id><table_id>0</table_id><instructions><instruction><o
rder>0</order><apply-actions><action><order>0</order><output-
action><output-node-connector>' + str(outport) +'</output-node-
connector></output-action></action></apply-
actions></instruction></instructions></flow>\''

xmlDstToSrc = '\'<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"no\"?><flow
xmlns=\"urn:opendaylight:flow:inventory\"><priority>32767</priority><flow-
name>Load Balance 2</flow-name><match><in-port>' + str(outport) +'</in-
port><ipv4-destination>10.0.0.4/32</ipv4-destination><ipv4-

47

source>10.0.0.1/32</ipv4-source><ethernet-match><ethernet-
type><type>2048</type></ethernet-type></ethernet-
match></match><id>2</id><table_id>0</table_id><instructions><instruction><o
rder>0</order><apply-actions><action><order>0</order><output-
action><output-node-connector>' + str(inport) +'</output-node-
connector></output-action></action></apply-
actions></instruction></instructions></flow>\''

flowURL = "http://127.0.0.1:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:"+ bestPath[-1] +"/table/0/flow/1"

command = 'curl --user \"admin\":\"admin\" -H \"Accept: application/xml\" -
H \"Content-type: application/xml\" -X PUT ' + flowURL + ' -d ' + xmlSrcToDst
systemCommand(command)

flowURL = "http://127.0.0.1:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:"+ bestPath[-1] +"/table/0/flow/2"

command = 'curl --user "admin":"admin" -H "Accept: application/xml" -H
"Content-type: application/xml" -X PUT ' + flowURL + ' -d ' + xmlDstToSrc

systemCommand(command)

Main
Stores H1 and H2 from user
global h1,h2,h3
h1 = ""
h2 = ""

print "Enter Host 1"
h1 = int(input())
print "\nEnter Host 2"
h2 = int(input())
print "\nEnter Host 3 (H2's Neighbour)"
h3 = int(input())

h1 = "10.0.0." + str(h1)
h2 = "10.0.0." + str(h2)
h3 = "10.0.0." + str(h3)

flag = True
while flag:
 #Creating Graph
 G = nx.Graph()
 # Stores Info About H3 And H4's Switch
 switch = {}
 # MAC of Hosts i.e. IP:MAC
 deviceMAC = {}
 # IP of Hosts i.e. MAC:IP
 deviceIP = {}

48

 # Stores Switch Links To H3 and H4's Switch
 switchLinks = {}
 # Stores Host Switch Ports
 hostPorts = {}
 # Stores Switch To Switch Path
 path = {}
 # Stores Link Ports
 linkPorts = {}
 # Stores Final Link Rates
 finalLinkTX = {}
 # Store Port Key For Finding Link Rates
 portKey = ""
 # Statistics
 global stats
 stats = ""
 # Stores Link Cost
 global cost
 cost = 0

 try:
 # Device Info (Switch To Which The Device Is Connected & The MAC
Address Of Each Device)
 topology = "http://127.0.0.1:8181/restconf/operational/network-
topology:network-topology"
 getResponse(topology,"topology")

 # Print Device:MAC Info
 print "\nDevice IP & MAC\n"
 print deviceMAC

 # Print Switch:Device Mapping
 print "\nSwitch:Device Mapping\n"
 print switch
 # Print Host:Port Mapping
 print "\nHost:Port Mapping To Switch\n"
 print hostPorts

 # Print Switch:Switch Port:Port Mapping
 print "\nSwitch:Switch Port:Port Mapping\n"
 print linkPorts

 # Paths
 print "\nAll Paths\n"
 #for path in nx.all_simple_paths(G, source=2, target=1):
 #print(path)
 for path in nx.all_shortest_paths(G,
source=int(switch[h2].split(":",1)[1]),
target=int(switch[h1].split(":",1)[1]), weight=None):
 print path

49

 # Cost Computation
 tmp = ""
 for currentPath in nx.all_shortest_paths(G,
source=int(switch[h2].split(":",1)[1]),
target=int(switch[h1].split(":",1)[1]), weight=None):
 for node in range(0,len(currentPath)-1):
 tmp = tmp + str(currentPath[node]) + "::"
 key = str(currentPath[node])+ "::" +
str(currentPath[node+1])
 port = linkPorts[key]
 port = port.split(":",1)[0]
 port = int(port)
 stats =
"http://localhost:8181/restconf/operational/opendaylight-
inventory:nodes/node/openflow:"+str(currentPath[node])+"/node-
connector/openflow:"+str(currentPath[node])+":"+str(port)
 getResponse(stats,"statistics")
 tmp = tmp + str(currentPath[len(currentPath)-1])
 tmp = tmp.strip("::")
 finalLinkTX[tmp] = cost
 cost = 0
 tmp = ""
print "\nFinal Link Cost\n"
print finalLinkTX

shortestPath = min(finalLinkTX, key=finalLinkTX.get)
print "\n\nShortest Path: ",shortestPath
pushFlowRules(shortestPath)
 time.sleep(60)
 except KeyboardInterrupt:
 break
 exit

