
Sudan University of Science and Technology

College of Graduate Studies

School of Electronics Engineering

Performance Evaluation of Software Defined
Networking compare to
Traditional Networks

التقلیدیةالشبكات المقارنة مع الشبكات المعرفة برمجیا ب تقویم اداء

A research submitted in partial fulfillment for the requirements of the M.Sc.

degree in Computer and Network Engineering.

By:

Mohammed Khalil Abdalla Elmedani.

Supervisor:

Dr. Rashid A. Saeed.

April, 2017

I

:قال تعالى

 صدق الله العظیم

سراء سورة الإ

)111(الآیة

II

DEDICATION

To My parents, teachers, colleagues,

AND OF COURSE, TO OUR

BELOVED COUNTRY.

III

Acknowledgements

 I wish to express our appreciation and gratitude to Dr. Rashid A.

Saeed.who, through his ideas, suggestions and advice improved this

project. Thanks to him, not only for his help in general but also for his trust

and guidance during the revision process.

 My deepest thanks to all the staff in electronic department at Sudan

University of Science and Technology, who, in many ways contributed in

making this project a memorable and an enriching experience.

Finally, I thank my families for their patience and understanding

during the days of writing and revising this project.

IV

ABSTRACT

Software-defined network continues to be one of the most hyped

technology evolutions in information and communication technology

compare to all traditional and perfuse network technologies.

These traditional networks introduce many challengestime-consuming,

Multi-vendor environments require a high level of expertise and complicate

network segmentation, inconvenience and difficulty of learning to manage

such a huge systems and devices and more.

In this study, mininet software is emulated using many different scenarios

in order to evaluate the connectivity and performance of SDN networks

compare to traditional networks.

Consider the difficulty of SDN network as new technology the performance

of these scenarios is evaluated by using iperf tool to investigate that the

SDN networks can meet the basic function of traditional networks.

The requirements for the functionalities of the current network are not

complex, only basic switching and routing are required. These were

simulated with the different topologies.

V

 المستخلص

را في تكنولوجیا یالمعرفة بالبرمجیات واحدة من أكثر التطورات التكنولوجیة تأث اتالشبك تعتبر

.التقلیدیةالمعلومات والاتصالات مقارنة بجمیع تكنولوجیات الشبكات

 المختلفھ التيتستغرق وقتا طویلا، والبیئات حیث انھا العدید من التحدیات ھذه الشبكات التقلیدیة بھا

ھذه وصعوبة التعلم لإدارة مثل الشبكة حیث تكون مجزئة،تتطلب مستوى عال من الخبرة وتعقید

.النظم والأجھزة الضخمة وأكثر من ذلك

امج مینینیت باستخدام العدید من السیناریوھات المختلفة من أجل نبربفي ھذه الدراسة، یتم محاكاة

.مقارنة بالشبكات التقلیدیة الشبكات المعرفة برمجیاتقییم توصیل وأداء

تقییم أداء ھذه السیناریوھات باستخدام باعتبارھا التكنولوجیا الجدیدة یتم الشبكة النظر في صعوبة

أن تلبي الوظیفة الأساسیة للشبكات ھایمكن داة إیبرف للتحقیق في أن شبكات المعرفة بالبرمجیاتأ

وتم عمل إن متطلبات وظائف الشبكة الحالیة لیست معقدة، ولا یلزم سوى التبدیل الأساسي والتوجیھ

. محاكاة ھذه المتطلبات المختلفھ والتوصل الي تحقیق كل متطلبات الشبكات التقلیدیة

VI

 Table of Content

Dedication II

Acknowledgements III

Abstract IV

 V المستخلص

Table of Contents VI

List of Tables XI

List of Figures XII

Abbreviations XV

1. Chapter One: Introduction ... 2

1.1 Preface ... 2

1.2 Problem Statement .. 3

1.3 Proposed Solution ... 4

1.4 Methodology ... 4

1.5 Thesis Outlines ... 5

2. Chapter Two: Literature Review ... 7

2.1 Overview ... 7

2.2 Traditional IP Networks ... 7

2.3 MPLS Networks ... 8

2.4 SDN Network ... 9

2.4.1SDN Architecture .. 10

VII

2.4.1.1 Openflow protocol .. 13

2.4.1.2 SDN concept ... 15

2.4.1.3 SDN Applications... 16

2.4.1.4 SDN Controller ... 18

2.4.1.4.1Two sets of SDN controllers ... 19

2.4.1.4.2Open and community driven initiatives .. 19

2.4.1.5SDN Data path ... 20

2.4.1.6SDN Control to Data-Plane Interface (CDPI) 20

2.4.1.7SDN Northbound Interfaces (NBI) ... 20

2.4.1.8SDN Southbound Interfaces (SBI) .. 20

2.5 Traditional Networking to SDN .. 21

2.6Related Works in SDN .. 22

2.7differences between traditional and SDN types ... 25

3. Chapter Three: Methodology ...27

3.1 Overview ... 27

3.2 SDN Evaluation .. 27

3.3The SDN Controllers Considered for the Experiment 27

3.3.1Open Daylight Helium ... 27

3.3.1.1Operation ODL .. 28

3.3.1.2Available Applications .. 28

3.3.2Pox SDN Controller ... 28

3.3.2.1General information about POX ... 28

VIII

3.3.2.2POX components ... 29

3.4The Simulation Software used for the Experiment 29

3.4.1Mininet Basic Operation .. 29

3.4.1.1Build SDN networks ... 30

3.4.1.2Start MiniEdit .. 30

3.4.1.3Alternative method: Mininet command line .. 32

3.4.1.4Mininet features ... 32

3.4.1.5Thereissomelimitationsinmininet…………………...………...…....33

3.4.2Packet sniffer (Wireshark) ... 33

3.4.2.1Features .. 34

3.4.2.2Live capture and offline analysis .. 34

3.5Description of the Experiment……………………………………....35

3.6The Setup of the Experiment .. 36

3.6.1Setting up ODL Helium ... 36

3.7The Experiment.. 36

3.8 The Topologies Used in the Experiment ... 38

3.8.1First Scenario Connectivity Test .. 38

3.8.2Second Scenario using Looped Topology .. 40

3.8.3Third Scenario using A Larger Number of Nodes 41

3.8.4Fourth Scenario using Utilizing Flows [Appendix I] 42

3.8.4.1Running the POX .. 43

3.8.4.2Script Explanation (important parts) .. 43

IX

3.8.4.3First step install POX controller .. 45

3.8.4.4Second step run the script [Appendix I] ... 45

3.8.4.5Third step add feature to learn layer 3 routing 46

3.8.4.6Fourth step add default routing in mininet software 47

3.8.4.7Fifth step ping all hosts .. 47

4. Chapter Four: Results and Discussions ..49

4.1 Overview ... 49

4.2 Simulation 1 Linear network ... 49

4.3 connectivity between hosts .. 51

4.4 Performance and Bandwidth .. 54

4.5 Simulation 2 Looped Topology ... 54

4.5.1 Connectivity between hosts .. 56

4.5.1.1 Performance and Bandwidth.. 56

4.5.1.2 Simulation 3 A Larger Number of Nodes ... 56

4.5.1.3 Connectivity between hosts ... 57

4.5.1.4Performance and Bandwidth... 57

4.5.2 Simulation 4 Utilizing Flows [Appendix I] ... 59

4.5.2.1 Connectivity between hosts ... 60

4.5.2.2 Performance and Bandwidth.. 60

4.5.3 Analysis the Results .. 61

4.6 Transitioning to SDN ... 62

X

5. Chapter Five: Conclusion and Future Work64

5.1Conclusion ... 64

5.2 Recommendations .. 64

 References .. 66

XI

LIST OF TABLES

Table No. Table Title Page No.

1 difference between traditional and software

defined networking types

25

XII

LIST OF FIGURES

Figure No. Figure Title Page No.

1 Open Network Foundation’s software-defined

network architecture

2

2 difference between traditional networking and

software defined networking

7

3 MPLS in ISP environment 9

4 Traditional Architecture 11

5 SDN Architecture 12

6 Open Flow instruction set 14

7 SDN Controller 18

8 Transitional Models from Traditional Networking

to SDN

21

9 Simple tree with three switches 30

10 enable CLI in miniedit 31

11 configure the controller as a remote controller 31

12 flow chare 35

13 install the image of Mininet 37

14 After installing Ubuntu 14.04 64-bit in VMware 37

15 Xterm to access to mininet 38

16 one controller and two switches 39

17 start the Linear topology 40

18 Linear topology looks like in Open daylight

controller

40

19 Looped Topology 41

XIII

20 Larger Number of Nodes 42

21 SDN controller works as router 43

22 install POX controller in ubuntu 45

23 run the python script 45

24 testing the reachability 46

25 add feature to POX controller 46

26 add default routing 47

27 reach the h4 host 47

28 testing the hole network 47

29 start Open daylight controller 50

30 two switches in ODL controller 50

31 Test connectivity 51

32 topology in ODL controller after ping 51

33 start Wireshark 52

34 start Wireshark capture 52

35 ARP within Open flow 53

36 ICMP within open flow 53

37 open flow 1.3 53

38 Node Traffic statistics 54

39 Bandwidth with host 1 and host 2 54

40 wireshark with looped topology 54

41 Looped topology in ODL Controller 55

42 Looped topology in controller after send some

traffic

55

43 connectivity testing for looped topology 56

44 Testing bandwidth between h1 and h2 for looped 56

XIV

topology

45 Testing bandwidth between h1 and h4 for looped

topology

56

46 large number of nodes topology in ODL

controller

57

47 bandwidth between h1 and h5 for large number of

nodes

57

48 bandwidth between h1 and h7 for large number of

nodes

58

49 The node connector statistics in controller in large

node topology

58

50 Open flow in Wireshark for large node topology 58

51 The details of open flow for large node topology 59

52 starting the code in mininet software 60

53 Testing connectivity between h1 and h4 60

54 bandwidth between hosts in utilization topology 61

XV

Abbreviations

SDN Software Define Network

API Application Programming Interface

COTS Commercial of the Shelf

CPE Customer Premises Equipment

DDoS Distributed Denial-of-Service (attack)

GUI Graphical User Interface

IETF Internet Engineering Task Force

IP Internet Protocol

IPTV Internet Protocol Television

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISP Internet Service Provider

L2 Layer 2 (of The OSI model)

L3 Layer 3 (of The OSI model)

LLDP Link Layer Discovery Protocol

MPLS Multiprotocol Label Switching

NaaS Network as a Service

NAT Network Address Translation

NFV Network Functions Virtualization

ONF Open Networking Foundation

OSI Open Systems Interconnection

XVI

OSS Operations Support System

QoS Quality of Service

RAM Random Access Memory

REST Representational State Transfer

SDAN Software Defined Access Network

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VM Virtual Machine

WLAN Wireless Local Area Network

Chapter One:

Introduction

2

Chapter One Introduction

1. Introduction
1.1 Preface

Software-defined networking continues to be one of the most hyped

technology evolutions in information and communication technology.

Software-defined networking (SDN) centralizes network control,

moving it from switches and routers to SDN controllers. This allows

network traffic to be managed in the context of an entire network rather

than from interconnected but locally controlled devices. SDN controllers

use a standard interface, often Open Flow, to program tables in controlled

network elements. These tables, called flow tables, allow very granular

control of network traffic, much more so than Ethernet based switching or

IP based routing.

 Finally, SDN allows network operators to programmatically

interface with controllers. See Figure 1 [1].

Figure 1: Open Network Foundation’s software-defined network architecture

3

Chapter One Introduction

SDN is widely seen as a sign can’t step forward towards a completely

re-envisioned paradigm for modern packet-switched networks, current

incarnations (most notably, openflow) appear to fall short on these

promises.

In these days, network providers want to simplify a network

management. This is done by decoupling the legacy network system that is

composed of a control plane and a data plane.

Software Defined Networking (SDN) divides a network system into a

decision plane (control plane) and a forwarding plane (data plane) and it is

an approach to computer networking that allows network administrators to

manage network services through abstraction of higher-level functionality.

It has attracted attentions for even transport networks [2].

The purpose of a transport network is to provide a reliable

aggregation and transport infrastructure for any client traffic type. With the

growth of packet-based services, operators are transforming their network

infrastructures while looking at reducing capital and operational

expenditures.

1.2 Problem Statement
Most of companies have been using old technologies in smart grid

networks and are clearly in need of new communication techniques. Most

companies are still relying on point-to-point radio wave links and leased

lines for communication. These technologies do not provide adequate

performance, security, and cost-effectiveness for the time critical control

signals from the substation.

4

Chapter One Introduction

There are limitations associated with traditional networkingtime-

consuming, Multi-vendor environments require a high level of expertise

and complicate network segmentation and also the inconvenience and

difficulty of learning to manage such a huge systems and devices.

In conclusion, to overcome these and other traditional networking

limitations, the time has come to introduce a new perspective on network

management.

1.3 Proposed Solutions

Software Defined Networking (SDN) is rapidly becoming the new

buzzword in the networking business. Expectations are that this emerging

technology will play an important role in overcoming the limitations

associated with traditional networking.

This study in SDN was conducted to help devise alternatives for the

future development of the network. Not to necessarily offer a ready solution

but to see what the state of the art is and if it would be a viable option for

such a network in the future; can it do what is required in the traditional

network’s current state and how could it make it better. The format and

style of the thesis have been chosen to provide some clarity between the

promises of SDN, what it currently is and how it works technically

speaking.

1.4 Methodology
Our goal is to bring and test the SDN Basic Function compare to the

Traditional networkand evaluate it. To achieve this goal, we need in order

to examine if SDN network can be utilized in traditional network

environment, can support the existing legacy applications and co-exist with

5

Chapter One Introduction

the traditional network, we implemented a network using open-source is

used as SDN controller, and the network is emulated using Mininet

software to implement the basic function of the traditional networks and

evaluate the performance, Bandwidth and packet loss of the new technology

in different scenarios.

1.5 Thesis Outlines
The reminder of the document is organized in the following manner:

Chapter Two provides technical background research relevant to SDN

networks in Traditional networks. Chapter Three describes the methodology

and emulation tool that used in the research. Chapter Four presents the

results and discussion of the data collected. Chapter Five describes the

conclusions and areas for recommendations.

Chapter Two:

Literature Review

7

Chapter Two Literature Review

2. Literature Review

2.1 Overview

This chapter describe briefly traditional network, MPLS network, the

architecture of SDN network and Previous Research in SDN with technical

background.

2.2 Traditional IP Networks

In traditional IP networks, routing protocols are used to distribute

Layer 3 routing information. Regardless of the routing protocol, packet

forwarding is based on the destination address alone. Therefore, when a

packet is received by the router, it determines the next-hop address using

the packet's destination IP address along with the information from its own

forwarding/routing table. This process of determining the next hop is

repeated at each hop (router) from the source to the destination [11].

Figure 2: difference between traditional networking and software defined networking [11]

8

Chapter Two Literature Review

In Figure 2,it consists of control plane, management plane and data

plane. This are referred as static kind of networks and also depicts layers

within software defined networks. It consists of one layer of data plane

along with open flow API. This is interfaced with controller housing both

the control and management plane. Above which on both there exists

application layer [11].

2.3 MPLS Networks
MPLS is a latest technology before SDN technology that optimizes

the traffic forwarding in a network by avoiding complex lookups in the

routing table. The traffic is directed based on labels contained in an MPLS

packet header. The labels define only the local node to node communication

and are swapped on every node. This process allows very fast switching

through the MPLS core. MPLS relies on traditional IP routing protocols to

determine the best routes and to receive topology updates and

predetermines the path the packet will take through the network. This

process is performed by the MPLS edge router and thus reduces the

processing requirements for the core switching routers. These paths are

called Label-Switched Paths (LSPs).

9

Chapter Two Literature Review

Most of MPLS networks using in ISP environment as presented in

Figure 3.

Figure 3: MPLS in ISP environment

2.4 SDN Network
Software-defined networking (SDN) is a new networking

architecture that comes after MPLS Technology is proposed as a facilitating

technology for network evolution and network virtualization. It has

attracted significant attention from both academic researchers and industry.

One the main organizations that contribute to the development of SDN is

the Open Network Foundation (ONF) which is a non-profit industry

consortium of network operators, service providers and vendors that

promotes the SDN architecture and drives the standardization process of its

major elements [16].

ONF defines SDN as a technology where “network control is

decoupled from forwarding and is directly programmable”. It concentrates

10

Chapter Two Literature Review

the network intelligence in software-based central controllers, which aims

to bring better and more efficient control, customizability and adaptability.

The main benefits that the SDN technology might offer are listed below:

 Centralized unified control of network devices from different vendors

 Better automation and control, as an abstraction of the real network is

created

 Simplified and quicker implementation of innovations, as the

network control is centralized and there is no need every individual

device to be reconfigured

 Improved network reliability and security, because of fewer

configuration errors and unified policy enforcement, provided by the

automated management and the centralized control

 Ability to easily adapt the network operation to changing user needs,

as centralized network state information is available and can be

exploited

2.4.1SDN Architecture

Software-defined networking (SDN) has been primarily discussed as

network architecture where Layer2 technologies implemented. However,

the network, like the economy, is global and the enterprise wide area

network (WAN) becomes an essential component of that global network.

SDN programmability within the datacenter will only solve one aspect of

the larger issue. That programmability needs to extend all the way across

the WAN to realize true benefits of software defined networks. As they say,

you are as good as your weakest link [15].

11

Chapter Two Literature Review

Let us first try and peel back the layers of SDN and how it impacts

networking. Networking typically involves a collection of switches and

routers that work in harmony to achieve end to end communication. The

key functions of these network elements can be segmented into layers of

management, data plane and control plane. The traditional way of making

these nodes work with each other is by implementing protocols running at

each of these nodes to exchange information. This creates a distributed

architecture, where every node across the network needs to be at a similar

state to get the desired end result. In addition, these protocols are very rigid

in what they can and cannot do. The result is a very static network

architecture that is not adaptive to change as presented in Figure 4 [15].

Figure 4: Traditional Architecture [15].

Now consider what would happen if we remove the protocols and instead

open up a standard set of APIs. Then, build a centralized control plane that

uses these APIs to program the network elements. This control plane will

have a global view of the network and can make smart decisions. For

12

Chapter Two Literature Review

example, how can one carve out a dedicated path between 2 servers? If we

had switches opening up APIs indicating the flow to the output port

mapping it is a matter of programming all the elements with that

information. Imagine trying to do that with the spanning tree protocol

instead! This is just a very high level concept, but the fundamental idea is

that network elements need to be programmable and cannot be static within

a fluid environment like the Cloud, where provisioning needs to happen on

demand and elasticity is a key requirementas presented in Figure 5[15].

Figure 5: SDN Architecture [15]

Moving the same concept into enterprise networking, Firewalls, VPN,

WAN optimization solutions and, QoS are some of the aspects of WAN

technologies built on a foundation of L3 routing. L3 routing is destination

based and is not flow aware. It does have significant benefits over L2

13

Chapter Two Literature Review

networks, like support for multi pathing, VPNs but is built on protocols

running in a distributed manner and lacking programmability [15].

SDN has been designed to simplify network configuration and

facilitate innovation. SDN paradigm decouples the control plane and the

data plane and concentrates the data forwarding decisions into a centralized

software controller. As a result, the underlying network devices’ functions

are reduced to simple data forwarding. Instead of programming thousands

of devices the network configuration is performed on simplified network

abstraction. This allows the implementation of various software modules

that can exert dynamic control on the network functions [15], also The

centralized control function of the SDN architecture allows consistent

policies to be enforced with ease. Common networking functionalities can

also be configured via the supported APIs. The deployment of services,

such as routing, security, access control, bandwidth management, traffic

engineering, quality of service, energy optimization can be configured

much easily. The goal of the SDN developers is to ensure multi-vendor

support [15].

2.4.1.1Open FlowProtocol

Open Flow is currently the only open standard for implementing

SDN and it is a standardized protocol that defines the communication

between the control and the data forwarding plane in the SDN architecture.

It moves the control out of the networking devices (routers, switches, etc.)

into the centralized controller. The protocol uses the concept of flows that

use match rules to determine how the packets will be handled. The protocol

14

Chapter Two Literature Review

is configured on both sides – the device and the controller. The forwarding

device in an Open Flow scenario is an Open Flow switch that contains one

or more flow tables and an abstraction layer that communicates with the

controller. The flow tables are filled with flow entries which define how the

packet will be forwarded, depending on the particular flow they are part of

[14].

The flow entries have the following fields:

 match fields – might contain information from the packet headers,

ingress port or metadata and matches the packets to a certain flow

 counters – collect statistic about the particular flow

 actions – define how the incoming packets to be handled

An example of the Open Flow instruction set is presented on Figure 6.

Figure 6: Open Flow instruction set [14]

SDN is possible without using the Open Flow standard, but proprietary

15

Chapter Two Literature Review

alternatives would lock an operator into vendor-defined solutions,

capabilities and pricing. This would greatly reduce the value of SDN as it

would result in the loss of both device interoperability and multi-network

interoperability [14].

An Open Flow switch essentially receives data packets, extracts the

packet header and matches the value to the entries in the flow table. If the

value is found the packet is forwarded according to the instructions in the

actions fields. In case the value does not match any of the entries, the

packet is handled according to the instructions defined in the table-miss

entry. The packet can be either dropped, forwarded to the next flow table or

send to the Open Flow controller via the control channel. Another

possibility, employed in switches that have both Open Flow and non-Open

Flow ports, is to forward the packet using standard IP-forwarding schemes.

The Open Flow switch communicates with the controller over a secure

channel. The controller adds, removes or updates the entries in the flow

table [14].

2.4.1.2 SDN Concept

Software-defined networking (SDN) is an architecture purporting to

be dynamic, manageable, cost-effective, and adaptable, seeking to be

suitable for the high-bandwidth, dynamic nature of today's applications.

SDN architectures decouple network control and forwarding functions,

enabling network control to become directly programmable and the

underlying infrastructure to be abstracted from applications and network

services [13].

16

Chapter Two Literature Review

The Open Flow protocol can be used in SDN technologies. The SDN

architecture is:

 Directly programmable: Network control is directly programmable

because it is decoupled from forwarding functions.

 Agile: Abstracting control from forwarding lets administrators

dynamically adjust network-wide traffic flow to meet changing needs.

 Centrally managed: Network intelligence is (logically) centralized in

software-based SDN controllers that maintain a global view of the network,

which appears to applications and policy engines as a single, logical switch.

 Programmatically configured: SDN lets network managers configure,

manage, secure, and optimize network resources very quickly via dynamic,

automated SDN programs, which they can write themselves because the

programs do not depend on proprietary software.

 Open standards-based and vendor-neutral: When implemented

through open standards, SDN simplifies network design and operation

because instructions are provided by SDN controllers instead of multiple,

vendor-specific devices and protocols.

2.4.1.3SDN Applications

The SDN architecture is claimed to greatly simplify network management

and provide an immense number of new services via the programmable

software modules. A summary of the application scenario that will benefit

from employing the Open Flow architecture are described in and briefly

summarized as following [13].

17

Chapter Two Literature Review

 Enterprise networks – the centralized control function of SDN can be

particularly beneficial for enterprise networks in different ways. For

example, network complexity can be reduced by removing middle boxes

and configuring their functionality within the network controller. Different

network functions implemented via SDN include NAT, firewalls, load

balancers and network access control. An approach for realizing consistent

network upgrade, using high-level abstractions is described in [13].

 Data centers – power consumption management is a major issue in

data centers, as they often operate below capacity in order to be able to

meet peak demands. a network power manager is described that turns off a

subset of switches in a way to minimize power consumption while ensuring

the required traffic conditions. A real life example of SDN application in

the context of data centers is presented. They describe SDN-based network

connecting Google data centers worldwide. The deployment was motivated

by the need of customized routing and traffic engineering, as well as

scalability, fault tolerance and control that could not be achieved with

traditional WAN networks [13].

 Infrastructure-based wireless access networks – an SDN solution for

enterprise wireless LAN networks is proposed. The solution builds an

abstraction of the access point infrastructure that separates the association

state from the physical access point. The purpose is to ensure proactive

mobility management and load balancing [13].

18

Chapter Two Literature Review

2.4.1.4SDN Controller

The controller is the core of an SDN network. It lies between

network devices at one end and applications at the other end. Any

communications between applications and devices have to go through the

controller [17].

 SDN controllers are based on protocols, such as OpenFlow to

configure network devices and choose the optimal network path for

application traffic and to allow servers to tell switches where to

send packets as presented in Figure 7.

Figure 7: SDN Controller

2.4.1.4.1 Two Sets Of SDN Controllers

1. SDN controllers for the NFV Infrastructure of a datacentre,

2. Historical SDN controllers for managing the programmable switches

of the network [17].

19

Chapter Two Literature Review

In case of SDN controllers for the NFV Infrastructure of a datacentre,

they are mostly designed to provide some policy and centralized

managements for the Open stack Neutron networking layer that shall

provide inter-working between the virtual ports created by Nova. The

defacto technology of the SDN controllers is to manage the Linux kernel

features made of L3 IP routing, Linux bridges, iptables or ebtables, network

namespaces and Open vSwitch [17].

2.4.1.4.2 Open and Community Driven Initiatives

Open Daylight controller baseline project upon which many other

controllers are built [17].

 ONOS

 Project Calico

 The Fast Data Project

 Project Floodlight

 Beacon

 NOX/POX

 Open vSwitch

 vneio/sdnc (SDN Controller from vne.io)

 Ryu Controller (supported by NTT Labs)

 Cherry

 Faucet (Python based on Ryu for production networks)

20

Chapter Two Literature Review

2.4.1.5SDN Data Path

The SDN Data path is a logical network device that exposes visibility

and uncontested control over its advertised forwarding and data processing

capabilities [13].

2.4.1.6SDN Control to Data-Plane Interface (CDPI)

The SDN CDPI is the interface defined between an SDN Controller

and an SDN data path, which provides at least (i) programmatic control of

all forwarding operations, (ii) capabilities advertisement, (iii) statistics

reporting, and (iv) event notification. One value of SDN lies in the

expectation that the CDPI is implemented in an open, vendor-neutral and

interoperable way [13].

2.4.1.7SDN Northbound Interfaces (NBI)

SDN NBIs are interfaces between SDN Applications and SDN

Controllers and typically provide abstract network views and enable direct

expression of network behavior and requirements [13].

2.4.1.8SDN Southbound Interfaces (SBI)

In the architecture of software-defined network, Southbound

APIs (application program interface) that is used to communicate between

the controller and the SDN network switches and routers [13].

21

Chapter Two Literature Review

2.5Traditional Networking to SDN

The research paper “Opportunities and Research Challenges of

Hybrid SoftwareDefined Networks” (Vissicchio et al., 2014) proposes four

different models toimplement hybrid SDN each with its own strengths and

use cases [18].

Figure 8: Transitional Models from Traditional Networking to SDN [18].

(a) Topology-based.

Traditional and SDN exist as physically and logically isolated zones within

the network and converse with each other as they would with any remote

network [18].

This model would fit any network that has already been divided into

smaller, also the parts can be independently switched to SDN while the

other parts keep operating normally [18].

(b) Service-based.

Traditional and SDN overlap at least partially physically. Network services

provided originally by the logical traditional network are gradually moved

on to the SDN side so that both networks can still access them. This method

22

Chapter Two Literature Review

allows forfirst implementing SDN nodes into the key points of the network

to for exampleenable SDN’s ability to utilize a looped topology [18].

(c) Class-based.

Traditional and SDN overlap completely physically. Network traffic is

divide into classes and then class-by-class moved from the logical

traditional to the SDN sideof the network. Retaining the traditional network

would allow the traffic to bemoved back if for some reason some kind of

traffic wouldn’t behave correctlywithin the SDN network [18].

(d) Integrated.

In the integrated model at first the SDN controller controls the traditional

network nodes and then over time the nodes are changed to SDN nodes.

This allowsimplementing SDN quickly to an existing network. However,

this kind of interfacebetween the SDN controller and the traditional nodes

does not exist yet [18].

2.6Related Works in SDN

In 2015, FarisKeti and ShavanAskar[3] publish the paper “Emulation of

Software Defined Networks Using Mininet in Different Simulation

Environments” in this paper they describe the performance of Mininet tool

for emulating SDN networks was evaluated. During this study many

capabilities of Mininet emulator in the SDN paradigm evaluation was

covered, from the creation of basic topologies with reference controller to

the ability of connection with remote controllers (in this case POX

controller). In addition, this paper took into consideration the following

scenarios; changing the topologies, increasing the number of nodes,

23

Chapter Two Literature Review

controlling the behavior of forwarding hardware (switches). The effect of

simulation environment limited resources was studied and a comparison

between results for two different environments.

In 2015, Wenfeng Xia and Yonggang Wen, Senior Member, IEEE,

ChuanHengFoh,[4] publish the paper “A Survey on Software-Defined

Networking” this paper describe the concept of SDN and highlighted

benefits of SDN in offering enhanced configuration, improved

performance, and encouraged innovation. Moreover, we have provided a

literature survey of recent SDN researches in the infrastructure layer, the

control layer, and the application layer, as summarized in Table VI. Finally,

we have introduced OpenFlow, the de facto SDN implementation.

In 2014, Foukas et al,[5] publish the paper “Software Defined

Networking” it is a bout detailing the components of SDN and as such

clarifies what a SDN system consists of. To understand what SDN does it is

good to understand the components that do it. As is common SDN

discussed in the paper is SDN implemented by using Open Flow. Some

real-life scenarios of SDN are mentioned, for example how SDN might be

used in data center and cellular networks where it is at its best.

In 2014, Jammal et al,[6] publish the paper “Software Defined

Networking: State of the Art and Research Challenges” The applications

and challenges of SDN are discussed in this paper the application detailed

most is the data center network, how SDN is able to improve the

performance and reliability over a traditional network. The relationship of

SDN and NFV (Network Functions Virtualization) is discussed. The

24

Chapter Two Literature Review

challenges of SDN when implementing the concept to a real-life use case

are made apparent and how some of them have been solved. The case they

make is that SDN works really well in some scenarios but not in all of

them. Caution should be exercised when trying to implement SDN in

enterprise networks.

In 2014, De Oliveira et al,[7]publish the paper“Using Mininet for

Emulation and Prototyping Software-Defined Networks.” for testing SDN

and most research has been using the Mininet SDN network simulator. go

through basic use and test the scalability of it in the paper Mininet is a

simple but powerful tool for simulating a SDN network. When used as a

supporting document to the official documentation this paper helps getting

used to using Mininet. Mininet’s usability for simulation is evaluated and

alternative simulation programs presented. In the paper, there is also a

performance test of Mininet using a tree topology that supports the success

of Mininet as the simulator of choice for SDN.

25

Chapter Two Literature Review

2.7difference between traditional and SDN types
In Table 1 we describe the difference between the traditional network

and SDN networks according to the Previous Research.

Table 1: difference between traditional and software defined networking types [12].

NM Traditional Networking Software Defined Networking

1.

They are Static and

inflexible networks. They

are not useful for new

business ventures. They

possess little agility and

flexibility

They are programmable networks during

deployment time as well as at later stage

based on change in the requirements.

They help new business ventures

through flexibility, agility and

virtualization.

2. They are Hardware

appliances.

They are configured using open

software.

3. They have distributed

control plane.

They have logically centralized control

plane.

4. They use custom ASICs and

FPGAs. They use merchant silicon.

5. They work using protocols. They use APIs to configure as per need.

Chapter Three:

Methodology

27

Chapter Three Methodology

3. Methodology

3.1 Overview

In this chapter, we discuss about SDN controllers, software that we

used in simulations and finally the implementations of SDN networks

compare of traditional networks.

3.2SDN Evaluation

To test SDN in practice is not straight forward as the technology is

still veryyoung. There are actual physical devices available but not widely

and nor cheaply.

The main component of a SDN network, the controller (software), on

the otherhand has many alternatives readily available for download for free.

3.3The SDN Controllers Considered for the Experiment

We use two types of controller:

3.3.1 Open Daylight Helium

Open Daylight is a Linux foundation project supported by many of the

big names in networking such as Cisco, HP, Juniper and VMWare. It is

expected to be one of the most popular controller platforms, Heliumopen

Flow 1.3 natively. The applications for Open Daylight are written in Java

[19].

28

Chapter Three Methodology

3.3.1.1 Operation ODL

Helium is run as a Karaf distribution and any additional parts can be

installed within the running distribution.

3.3.1.2 Available Applications

Basic SDN and switching functionality is included. Of the more

advanced applications included Defense4All, a DDoS (Distributed Denial-

of-Service (attack)) detection and protection app, and SNMP4SDN, SNMP

(Simple Network Management Protocol) monitoring, can be mentioned.

3.3.2 Pox SDN Controller

POX is a platform for the rapid development and prototyping of

network control software using Python. It’s one of a growing number of

frameworks (including NOX, Floodlight, Trema, etc.,) for helping to write

OpenFlow.

POX as well as being a framework for interacting with OpenFlow switches,

it can be used as the basis for some of our ongoing work to help build the

emerging discipline of Software Defined Networking. It can be used to

explore and prototype distribution, SDN debugging, network virtualization,

controller design, and programming models [8].

3.3.2.1 General Information about POX

POX provides a framework for communicating with SDN switches

using either the OpenFlow or OVSDB protocol. Developers can use POX to

create an SDN controller using the Python programming language. It is a

29

Chapter Three Methodology

popular tool for teaching about and researching software defined networks

and network applications programming [8].

3.3.2.2 POX Components

POX components are additional Python programs that can be

invoked when POX is started from the command line. These components

implement the network functionality in the software defined network. POX

comes with some stock components already available [8].

3.4 The Simulation Software used for the Experiment

We use Mininet simulation as following

3.4.1 Mininet Basic Operation

Mininet is a network emulator, or perhaps more precisely a network

emulation orchestration system. It runs a collection of end-hosts, switches,

routers, and links on a single Linux kernel. It uses lightweight virtualization

to make a single system look like a complete network, running the same

kernel, system, and user code. A Mininet host behaves just like a real

machine; you can ssh into it (if you start up sshd and bridge the network to

your host) and run arbitrary programs (including anything that is installed

on the underlying Linux system) [20].

In short, Mininet's virtual hosts, switches, links, and controllers are

the real thing they are just created using software rather than hardware and

for the most part their behaviour is similar to discrete hardware

30

Chapter Three Methodology

elements[21]. Mininet can be used to define a SDN enabled topology using

a relatively simple python script.

3.4.1.1Build SDN Networks

There are two methods for building the topology of SDN network

3.4.1.2Start MiniEdit

We will use MiniEdit, the Mininet graphical user interface, to set up

an emulated network made up of OpenFlow switches and Linux hosts [21].

To start Mininet, run the following command on a terminal window

connected to the Mininet VM:

mininet@mininet-vm: ~$ sudo ~/mininet/topology/miniedit.py

Now the Mininet window will appear on your computer’s desktop [21].

Then we Build the network consisting of a tree to switches with a central

core switch connected to two other switches that are connected to two hosts,

each. Connect a controller to all the switches as in Figure7.

Figure 9: Simple tree with three switches

31

Chapter Three Methodology

Ensure that the MiniEdit preferences are set so that we can use the

MiniEdit command line after starting the simulation as presented in Figure8

[21].

Figure 10: enable CLI in miniedit

Set up the controller as a remote controller. Then select Remote

Controller in the controller properties window as in Figure 9 [21].

Figure 11: configure the controller as a remote controller

When default settings are used, MiniEdit configures OpenFlow switches to

try to communicate with a remote controller using the host system’s

loopback IP address and the default OpenFlow port number [21].

Then we Start the MiniEdit simulation and we should:

32

Chapter Three Methodology

a) save the MiniEdit topology for future use.

b) start the simulation by clicking on the Run icon in the MiniEdit

tool bar.

c) The MiniEdit console window will show information about the

simulation starting and then will display the Mininet CLI prompt.

3.4.1.3Alternative Method: Mininet Command Line

As an alternative to using MiniEdit, the same network can be set up

using the Mininet topology commands [21].

mininet@mininet-vm: ~$ sudo mn --topo Name --controller remote

3.4.1.4Mininet Features

 It's fast - starting up a simple network takes just a few seconds. This

means that your run-edit-debug loop can be very quick [23].

 You can create custom topologies: a single switch, larger Internet-like

topologies, the Stanford backbone, a data centre, or anything else [23].

 You can run real programs: anything that runs on Linux is available for

you to run, from web servers to TCP window monitoring tools to

Wireshark [23].

 You can customize packet forwarding: Mininet's switches are

programmable using the open Flow protocol. Custom Software-Defined

Network designs that run in Mininet can easily be transferred to

hardware open Flow switches for line-rate packet forwarding [23].

33

Chapter Three Methodology

 You can run Mininet on your laptop, on a server, in a VM, on a native

Linux box (Mininet is included with Ubuntu 12.10+!), or in the cloud

(e.g. Amazon EC2.) [23].

 You can share and replicate results: anyone with a computer can run

your code once you've packaged it up [23].

 You can use it easily: you can create and run Mininet experiments by

writing simple (or complex if necessary) Python scripts [23].

 Mininet is an open source project, so you are encouraged to examine its

source code on https://github.com/mininet, modify it, fix bugs, file

issues/feature requests, and submit patches/pull requests. You may also

edit this documentation to fix any errors or add clarifications or

additional information [23].

3.4.1.5There isSome Limitations in Mininet

Mininet based networks cannot (currently) exceed the CPU or bandwidth

available on a single server.Mininet cannot (currently) run non-Linux-

compatible OpenFlow switches or applications; this has not been a major

issue in practice [22].

3.4.2Packet Sniffer (Wireshark)

 Wireshark is a free and open-source packet analyser. It is used for

network troubleshooting, analysis, software and communications protocol

development, originally named Ethereal. It lets you capture and

interactively browse the traffic running on a computer network. It is the de

34

Chapter Three Methodology

facto (and often de jure) standard across many industries and educational

institutions. [9]

3.4.2.1 Features

Wireshark has a rich feature set which includes the following:

 Live capture and offline analysis.

 Data display can be refined using a display filter.

 Multi-platform: Runs on Windows, Linux, OS X, Solaris,

FreeBSD, NetBSD, and many others.

 Captured network data can be browsed via a GUI, or via the

TTY-mode TShark utility.

 The most powerful display filters in the industry.

3.4.2.2 Live Capture and Offline Analysis

Capturing live network data is one of the major features of

Wireshark. The Wireshark capture engine provides the following features:

 Capture from different kinds of network hardware (SIP,

Ethernet, Token Ring, ATM).

 Stop the capture on different triggers like: amount of captured

data, captured time, captured number of packets.

 Simultaneously show decoded packets while Wireshark keeps

on capturing.

 Filter packets, reducing the amount of data to be captured.

35

Chapter Three Methodology

3.5 Description of the Experiment

First all the controllers were tested with Mininet to see how they are

installed and how their basic operation has been handled.

Keeping in mind the requirements for the operation of the current

network, basic switching and routing, that the controller should be able to

handle.

Then when a controller was chosen its abilitieswere tested with more

complex topologies. In order to get more familiar with thesimulation

software testing was begun with a very simple topology that was

thengradually extended to a bigger network, to see if the basic functions of

the current network could be met.

As in Figure 12,describe the flow chare from beginning at the experiment

until we reach our goal that SDN can meet the Functional of traditional

network.

Figure 12: flow chart

36

Chapter Three Methodology

3.6The Setup of the Experiment

Mininet emulation software comes as a pre-built virtual machine

(VM) image, The VM was allocated two 1.7 GHz Intel Core 7 processors

and 4 gigabytes of RAM (Random Access Memory). The different

controllers were then installed on the Ubuntu 14.0.

IPv4 was used, however in the simulations conducted difference

between IPv4 and IPv6 wouldnot have made a difference; Mininet uses

hostnames, as is almost mandatory withIPv6, so the under-laying IP version

does not matter, however only controllersrunning Open Flow 1.2 or greater

have IPv6 support.

3.6.1Setting upODL Helium

Setting up Open Daylight Helium is straightforward. Download the

package, extract the package, run it. Open Daylight Helium requires the

installation ofsome additional components to function.

3.7The Experiment

To begin with the Mininet 2.2.0 VM was downloaded and using

Virtual Machine to install the image of Mininet as in Figure 13.

37

Chapter Three Methodology

Figure 13: install the image of Mininet

After we install mininet in VMware we install Ubuntu 14.04 64-

bitoperating system to install the controller on it as in Figure 14.

Figure 14: After installing Ubuntu 14.04 64-bit in VMware

After that we use xterm to access to mininet machine and we can use

it to simulate an SDN network as in Figure 15.

38

Chapter Three Methodology

Figure 15: Xterm to access to mininet

3.8The Topologies Used in the Experiment

Topologies of different sizes and complexities were constructed to

simulate basic functions found in the current network and to make use of

some SDN specificfunctions.

3.8.1First Scenario Connectivity Test

To begin the testing a very simple Linear topology consisting of two

SDN switches and two hosts were used just to see how Mininet works in

Connecting the nodes together as seen in Figure 16. The functionality

simulated hereis basic switching capability in traditional networks. Mininet

allows for topology definition via command line parameters.

We use command topo=Linear,2spawns two switches connected to each

other with a link and has one host on each switch as presented in Figure 16.

39

Chapter Three Methodology

Figure 16: one controller and two switches

$ sudo mn --topo linear --switch ovsk --controller remote

In the above command, there are some important keywords worth paying

attention to:

 mac: Auto set MAC addresses

 arp: Populate static ARP entries of each host in each other

 switch: ovsk refers to kernel mode OVS

 controller: remote controller can take IP address and port

number as options.

We use command line as in Figure 17 to start linear topology that consist of

two switches, two hosts and one controller as in Figure 16.

40

Chapter Three Methodology

Figure 17: start the Linear topology

This what the topology looks like in Open daylight controller, after sending

some traffic in network as presented in Figure 18.

Figure 18: Linear topology looks like in Open daylight controller

3.8.2Second Scenario using Looped Topology

One of the most important features in SDN is the possibility of using

a partially (or fully) meshed network without having any loops; because the

controller can utilize all links automatically. The topology displayed in

41

Chapter Three Methodology

Figure 19,consists of four switches with links to all adjacent switches and a

host behindeach of the switches for testing connectivity. This topology

simulates notonly switching but also a new feature that could be

implemented to make thecurrent network better; more links between nodes

makes for a faster, more reliable network. To make the topology work the

controller was also added and then usedto test the basic functionality of the

network.

Figure 19: Looped Topology

3.8.3 Third Scenario using A Larger Number of Nodes

More switches and hosts added and connected to gather to increase

complexity to see how the SDN controller is able to sort out the loops in its

favour and if thereis any effect on the performance of the network. The

purpose of this simulation isto see that the controller can handle the

topology when it is a bitmore complex as in Figure 20.

42

Chapter Three Methodology

Figure 20: Larger Number of Nodes

If a larger network needs to be simulated this is better doneusing a Python

script that automatically generates more nodes.

3.8.4 Fourth Scenario using Utilizing Flows [Appendix I]

SDN controller in this scenario using POX controller with [Appendix

I], the idea that we can also be used as a router when defined by proper

flows like in the topology in Figure 21, This simulates what routing does in

a traditional network.

Defining a whole routing table this way would be extremely

laborious but for the scope of this thesis this is enough to see that the

functionality is there.

43

Chapter Three Methodology

Figure 21: SDN controller works as router

3.8.4.1Running the POX

Start POX by running the pox.py program, and specifying the POX

components to use. For example, to run POX so it makes the switches it

controls emulate the behaviour of Ethernet learning switches, run the

command:

mininet@mininet-vm: ~$ sudo ~/pox/pox.py forwarding.l2_learning

3.8.4.2Script Explanation (ImportantParts)

c1 = net.addController('c1', controller=RemoteController,

ip="192.168.45.142", port=6633)

A remote controller c1 is defined to be found at IP address

192.168.45.142 port 6633 that is the VM NIC’s IP address.

44

Chapter Three Methodology

s1 = net.addSwitch('s1', cls=OVSKernelSwitch)

Switch 1 named s1 is defined as an OVSKernelSwitch, Open

VSwitch type ofSDN switch.

h1 = net.addHost('h1', cls=Host, ip='10.0.0.1',

mac='10:00:00:01:00:00', defaultRoute=None)

Host 1 named h1 is added and given the IP 10.0.0.1 and the MAC

10:00:00:01:00:00 to make easier to manage.

s1.linkTo(h1)

A link between h1 and s1 is created. If no other parameters are

defined it will be a “perfect” link with no delay or loss and with bandwidth

only limited by thehardware. the simulation is running on

net.build()

 c1.start()

The switch s1 is set to be controlled by the controller c1. Note that in

Mininet the switches are connected to the controller this way and not via

“physical” links.

45

Chapter Three Methodology

3.8.4.3First StepInstall POX Controller

By these two commands as in Figure 22.

Figure 22: install POX controller in ubuntu

git clone http://github.com/noxrepo/pox

cd pox

3.8.4.4SecondStepRun the Script [Appendix I]

As in Figure 23, we run the python code that describe the topology

Figure 23: run the python script

46

Chapter Three Methodology

The subnets 10.0.0.0/8 (h1,h2 and h3) and 11.0.0.0/8 (h4) are not able to

ping each other because these IP addresses in different LANs as in Figure

24.

Figure 24: testing the reachability

3.8.4.5ThirdStep add Feature to Learn Layer 3 Routing

By using command (Forwording.l3_learning)as in Figure 25, we can add

feature to makes hosts in different subnets reach each other’s and to prepare

the controller to receive layer 3 in another word make the controller works

as a router.

Figure 25: add feature to POX controller

47

Chapter Three Methodology

3.8.4.6FourthStep add Default Routing in Mininet Software

We need to add the command (h1 route add -net default h1-eth0) as default
routing to each host as in Figure 26.

Figure 26: add default routing

3.8.4.7FifthStepPing all Hosts

After that we ping to h4 and we can reach it as in Figure 27.

Figure 27: reach the h4 host

We use pingall command to be sure we can reach all hosts as presented in

Figure 28.

Figure 28: testing the network

Chapter Four:

Results and Discussions

49

Chapter Four Results and Discussions

`4. Results and Discussions

4.1 Overview

In this chapter, we testing the topologies that we mention it in chapter

3 and analysis it to see if we reach the goal of our thesis that we bring and

test the SDN Basic Function compare to the Traditional networksand the

way to transition to SDN network.

4.2 Simulation OneLinear network

Mininet is run from aMobaXterm_Personal_9.0 window and it needs to

be run as the root user.

ssh mininet@192.168.45.144

mininet@mininet-vm:~/mininet/topo$ sudo mn --

controller=remote,ip=192.168.45.142 --topo=linear,2

This command run the topology and the controller has not been started

yet,as we see there is no connectivity between thehosts.

mininet> h1 ping h2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

From 10.0.0.1 icmp_seq=1 Destination Host Unreachable

From 10.0.0.1 icmp_seq=2 Destination Host Unreachable

From 10.0.0.1 icmp_seq=3 Destination Host Unreachable

50

Chapter Four Results and Discussions

OpenDayLight controller is run from Ubuntu terminal as in Figure 29.

mohamed@ubuntu:~$ cd odl/bin

mohamed@ubuntu:~/odl/bin$./karaf -of13

opendaylight-user@root>feature:install

Figure 29: start Open daylight controller

From the Open DaylightGUI, the topology does not yet include anything

elseexcept the switches as in Figure 30.

Figure 30: two switches in ODL controller

51

Chapter Four Results and Discussions

4.2.1ConnectivityBetween Hosts

We use pingall command to ping to all host, or ping from host 1 to host 2 as

presented in Figure 31.

Figure 31: Test connectivity

After the hosts have send some traffic into the network the controller is able

to seethem as in Figure 32.

Figure 32: topology in ODL controller after ping

52

Chapter Four Results and Discussions

By running the Wireshark by using command (sudo wireshark &) in

mininet software to see and capture the traffic details as in Figure 33.

Figure 33: start Wireshark

Capture the traffic using Wireshark reveals how the controller first

connectswith the switches and inquiries about their capabilities as seen in

the capture inFigure34.

Figure 34: start Wireshark capture

53

Chapter Four Results and Discussions

When the hosts start communicating at first the controller transmits the

packetswithin Open Flow packets and ARP packets as seen in the

Wireshark capture in Figure 35 and Figure 36.

Figure 35: ARP within Open flow

Figure 36: ICMP within open flow

Later on, the hosts can ping each other without the need for the controller to

Interfere by using OpenFlow protocol as seen in the Wireshark capture in

Figure 37

Figure 37: open flow 1.3

From the GUI,we notice that how much traffic has gone through a node as

in Figure 38, also as we saw the node traffic statistics sending packets,

receiving packets and Drops packs.

54

Chapter Four Results and Discussions

Figure 38: Node Traffic statistics

4.2.2 Performance and Bandwidth

Performance of the network between two hosts can be measured

using iperf.

Connectivity between the hosts has been established using the switches

controlled by Open Daylight andthe bandwidth between h1 and h2 is

234Mbits/sec as in Figure 39.

Figure 39: Bandwidth with host 1 and host 2

4.3Simulation Two Looped Topology

The switches send LLDP (Link LayerDiscovery Protocol) packets over

Open Flow to sort the topology out as in Figure 40.

Figure 40: wireshark with looped topology

55

Chapter Four Results and Discussions

After the topology is sorted there is connectivity between all hosts before

starting sending any traffic, The GUItopology viewer shows the

connections between the nodes as in Figure 41.

Figure 41: Looped topology in ODL Controller

After sending some traffic the topology is looks like Figure 42.

Figure 42: Looped topology in controller after send some traffic

56

Chapter Four Results and Discussions

4.3.1 Connectivity Between Hosts

Testing the connectivity between h1 and h4 as showing in Figure 43.

Figure 43: connectivity testing for looped topology

4.3.2 Performance and Bandwidth

The bandwidth between h1 and h2 is 193Mbits/sec as in Figure 44.

Figure 44: Testing bandwidth between h1 and h2 for looped topology

And Between h1 and h4 is 185Mbits/sec as in Figure 45.

Figure 45: Testing bandwidth between h1 and h4 for looped topology

4.4Simulation Three A Larger Number of Nodes

Starting the version 3 topology with OpenDayLight Helium resulted

in the systemusing 100% CPU with large number of switches and hosts.

57

Chapter Four Results and Discussions

4.4.1 Connectivity Between Hosts

By using pingall command to test the connectivity between all hosts as in

Figure 46.

Figure 46: large number of nodes topology in ODL controller

4.4.2 Performance and Bandwidth

By Testing the bandwidth and performance using iperf between h1 h5 we

presented results as 117Mbits/sec as in Figure 47.

Figure 47: bandwidth between h1 and h5 for large number of nodes

58

Chapter Four Results and Discussions

And between h1 and h7 as in Figure 48.

Figure 48: bandwidth between h1 and h7 for large number of nodes

The node connector statistics for node id in open daylight as in Figure 49.

Figure 49: The node connector statistics in controller in large node topology

The open flow captureWiresharkas in Figure 50,

Figure 50: Open flow in Wireshark for large node topology

As we using version 1.3 this is the latest version of open flow as showing

the details in figure 51.

59

Chapter Four Results and Discussions

Figure 51: The details of open flow for large node topology

Switching back to Open DaylightHelium allowed the use of this topology.

Asthe features required of the controller for these simulations are the same

in bothHydrogen, Helium and POX controllers.

4.5Simulation Four Utilizing Flows [Appendix I]

The subnets 10.0.0.0/8 and 11.0.0.0/8 are not able to ping each other.

To make the switch s1 route traffic between h1 and h4 the controller will

installflows on it. These flows will do the following:

Flood ARP packets in the network to allow the hosts to find the router IP.

Using manually defined flows on the controller routing between hosts in

differentsubnets were achieved. Doing it by using POX controller this way

on any greater scale would be very labourintensive.

60

Chapter Four Results and Discussions

However, this shows some of the capabilities of the SDN controller

byutilizing flows to do something that is done by more intelligent devices

intraditional networks.

4.5.1 Connectivity Between Hosts

First, we run the code by using scriptas in Figure 52 and then we add the

default route as mention in chapter 3, after that we test the connectivity by

ping to the host 4 (in different subnet hot) as showing in figure 54, so this

mean that the controller is work as router in traditional network.

Figure 52: starting the code in mininet software

As in Figure 53 the controller is work as a router in traditional networks.

Figure 53: Testing connectivity between h1 and h4

4.5.2 Performance and Bandwidth

After testing the connectivity and be sure that the functionality is

working fine, then we testing the performance and bandwidth between hosts

61

Chapter Four Results and Discussions

by using iperf command as in Figure 54,in our testing we make unlimited

bandwidth to test the maximum bandwidth.

Figure 54: bandwidth between hosts in utilization topology

4.6Analysis The Results

The requirements for the functionalities of the current network are

not complex,only basic switching and routing are required. These were

simulated with thedifferent topologies.

The Open daylight controller was able to perform switching with the

included L2 switch module with good performance in the first three

simulations.

However, the controller, Pox, was implemented routing with the use

of flows in the fourth simulation.Compared to traditional networking this

required more configuration the way it isnow implemented on the

controller, almost like manual packet handling.

62

Chapter Four Results and Discussions

Of course, this cannot be the way to do it in real life applications but

it shows thatinstead of routing defining flows can be used to manipulate the

traffic.

4.7Transitioning to SDN

Software-Defined Networking (SDN) has become one of the hottest

topics in the industry, and for good reason, given the transformative

changes that it can bring to many segments across IT, datacentre, and

carrier markets.

First of all, it should be determined whether there is any particular reason to

Transform the current network to a SDN network in any timespan. The

value of SDN resides in its powerful abstractions.

The main problem of the current network is the complicated

management spreadin many places and done in many ways. For this SDN

can, at the moment, onlyhelp by centralizing the control of the core

network. For the access network SDNis not a viable alternative yet, the

focus of the technology has not been inprovisioning customer lines.

Chapter Five:

Conclusion and Recommendations

64

Chapter five Conclusion and Recommendations

5. Conclusion and Recommendations

5.1 Conclusion
SDN begin implementing is not straight forward as the preparation

for the simulations proved. The huge amount of available SDN controller

software and the little amount available SDN switch hardware makes it

difficult to do testing.

The simulations run showed that the basic functionality needed is

there and the SDN concept works, but real-life performance testing could

not beconducted in the scope of this thesis. The control of the whole

network iscentralized to the controller but learning to configure the

controller is another challenge for the users.

The practical side of doing an actual transition to SDN should be

documented. The idea of the transition is fairly simple but in practice how

does one go aboutdoing it, what needs to be taken in consideration so the

network remains stableand available through the process.

5.2 Recommendations
In future work, next points explain briefly what are planned:

The first suggestion is to introduce reality into the scenarios. In this

research, all the simulations have been run in static scenarios with one, two,

three and four designs. It would be interesting to study the performance of

the same parameters varying the reality of dynamic networks.

The second suggestion is to really get SDN into the networking community

the interoperability of all SDN components must be assured by figuring out

the inconsistencies between different developers; vendor locked SDN is not

65

Chapter five Conclusion and Recommendations

true SDN asthe requirements of basic switching and routing were fulfilled

with the additional functionality of resolving loops. The current network

could be carried out using Open Daylight controller, but a more developed

way to define flows would allow for a more user-friendly way to manage a

larger number of nodes in a network.

66

Chapter five Conclusion and Recommendations

References

[1] Steve Goeringer ,“Software-Defined Networking: The New Norm for

Networks,” Open Networking Foundation White paper, retrieved on 2015

Polar Star Consulting, LLC.

[2] Chang-Gyu LIM, Soo-Myung PAHK, Young-Hwa KIM “Model of

Transport SDN and MPLS-TP for T-SDN Controller” ETRI (Electronics

and Telecommunications Research Institute), Daejeon, Korea Jan. 31 ~ Feb.

3, 2016 ICACT2016

[3] FarisKeti andShavanAskar"Emulation of Software Defined Networks

Using Mininet in Different Simulation Environments "2015 6th

International Conference on Intelligent Systems, Modelling and Simulation

Electrical and Computer Engineering Department Faculty of Engineering

Duhok-Kurdistan Region,Iraq.

[4] Wenfeng Xia, Yonggang Wen, ChuanHengFoh, DusitNiyato, and

HaiyongXie,“A Survey on Software-Defined Networking” IEEE

COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1,

FIRST QUARTER 2015.

[5] Foukas, X., Marina, M.K. &Kontovasilis, K. 2014. Software Defined

Networks Concepts. Liyanage, M., Gurtov, A. &Ylianttila, M. Software

Defined Mobile Networks (SDMN): Beyond LTE Network Architecture.

Wiley.

[6] Jammal, M. et al. Software defined networking: State of the art and

research challenges. Computer Networks2014.

[7] de Oliveira, R.L.S., Schweitzer, C.M., Shinoda, A.A. &Prete, L.R.

2014. Using Mininet for Emulation and Prototyping Software-Defined

67

Chapter five Conclusion and Recommendations

Networks. 2014 IEEE Colombian Conference on Communications and

Computing (COLCOM).

[8] Brianlink, 2015. [Online].Refrencehttp://www.brianlinkletter.com/using-

the-pox-sdn-controller/https://iperf.fr/

[9] In May 2006https://en.wikipedia.org/wiki/Wireshark

[10]Opennetwork,2015.[Online].https://www.opennetworking.org/?p=1492&op
tion=com_wordpress&Itemid=316

[11]Foster, N., Guha, A., Reitblatt, M., Story, A., Freedman, M., Katta, N.,
Monsanto, C., Reich, J,Rexford, J., Schlesinger, C., Walker, D., Harrison,
R.: Languages for software-defined networks. Communications Magazine,
IEEE 51(2), 128–134 (2013)

[12]Rfwireless,2013.[Online]http://www.rfwirelessworld.com/Terminology/tra

ditional-networking-vs-software-defined-networking.html

[13] Foundation, O.N.: Openflow switch specification version 1.3.1. Tech. rep., Open
Networking Foundation (September 2012)

[14]OpenSDN,2015.[Online]https://www.opennetworking.org/sdn

resources/sdn-definition

[15] Aryaka, 2014. [Online]http://www.aryaka.com/blog/why-sdn-concepts-

need-to-extend-into-the-wan/

[16]Marist,C.: What is Avior? (2012), http://openflow.marist.edu/avior.html

[17]Muntaner, G.: Evaluation of OpenFlow Controllers. Master’s thesis (October 2012)

[18]Stefano Vissicchio_ Laurent Vanbever Olivier Bonaventure

Universitecatholique de Louvain Princeton University Universitecatholique

de Louvain stefano.April 2014. Present paper about “Opportunities and

Research Challenges of Hybrid Software Defined Networks”

[19]OpenDaylight,2015.[Online]https://www.opendaylight.org/software/downl

oads/helium

[20]D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-

68

Chapter five Conclusion and Recommendations

molky, and S. Uhlig, \Software-de_ned networking: A comprehensive
survey," proceedings of the IEEE, vol. 103, no. 1, pp. 14{76, 2015.

[21]Brian,2014. [Online]http://www.brianlinkletter.com/how-to-use-miniedit-

mininets graphical-user-interface/

[22]Mininet, 2015. [Online]http://mininet.org/overview/

[23]Github,2014.[Online]https://github.com/mininet/mininet/wiki/Introduction

-to-Mininet

Appendix I

#!/usr/bin/python

from mininet.net import Mininet

from mininet.node import Controller, OVSKernelSwitch, RemoteController

from mininet.cli import CLI

from mininet.log import setLogLevel, info

def emptyNet():

 net = Mininet(controller=RemoteController, switch=OVSKernelSwitch)

 c1 = net.addController('c1', controller=RemoteController, ip="127.0.0.1",

port=6633)

 h1 = net.addHost('h1', ip='10.0.0.1')

 h2 = net.addHost('h2', ip='10.0.0.2')

 h3 = net.addHost('h3', ip='10.0.0.3')

 h4 = net.addHost('h4', ip='11.0.0.4')

 s1 = net.addSwitch('s1')

 s2 = net.addSwitch('s2')

 s1.linkTo(h1)

 s1.linkTo(h2)

 s2.linkTo(h3)

 s2.linkTo(h4)

Appendix I

 s1.linkTo(s2)

 net.build()

 c1.start()

 s1.start([c1])

 s2.start([c1])

 CLI(net)

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 emptyNet()

