Dedication:

I dedicate this project to my father- **Mohamed Ahmed Elhag** -God rest his soul, to my mother- **Om Al-Kram Mohamed Ali** -God rest her soul, and to my sister- **AwatifMohamed Ahmed Elhag** -God rest her soulwho supported, sustained and inspired with tireless encouragement and everlasting love

To my, sisters and brothers

Acknowledgements

First of all I thank god for great blessing and for inspiring me the way to finish my project. I am very much appreciating the role of my educators at the University of Sudan in Faculty Medical Laboratory. On head of them

Dr.KhaldaMirghaniHamza for her continuous support and guidance.

My Sincere thanks goes to **Dr. Munsoor Mohammed Munsoor** my supervisor for his remarkable encouragement, support and advice, who set me on the right track, and spent countless hours to help me.

Special thanks for all the staff of the **Blood Bank in Khartoum,Khartoum north andOmdurman**, for all support and help to get the right and accurate information.

Also, I would like to thank Dr. Mohamed Al-Taib (International laboratory Health of Khartoum State) for his support, advice and encouragmrnt.

Also, I would like to thank Dr. Mohamed Shubair for his support, advice and encouragment.

I would like to thank all those who supported and helped me throughout this study.

LIST OF ABBREVIATIONS

ELISA: Enzyme Linked Immune Sorbent Assay

IgG:Immunglubin G

IgM: Immunglubin M

T.gondii : Toxoplasma gondii

Abstract

The study was a descriptive cross sectional, that was conducted at theInternational laboratory Health of Khartoum State. Following informed consent, samples were collected at voluntary counseling and testing centers blood bank in Khartoum, Omdurman and Khartoum North teaching Hospitals. The study was done during 2011-2013. The study involved 534 samples taken from the blood donors; the study has investigated *Toxaplasmagonadii* by latex agglutination test, in addition to assessment of levels of IgG and IgM using the ELISA test. The area from which study samples were collected included Khartoum with 299(56%) samples, Omdurman with 118(22.1%) samples and Khartoum North with 117(21.9%) samples. Positive results were detected in 235(44%), 218(40.8%), 187(35%) by using latex agglutination test, ELISA for IgG and IgM levels respectively.

All samples were examined by latex agglutination, ELISA IgG and IgM test for the presence of anti-*Toxoplasma* antibodies. The study population was divided in to7 age group (18-25), (26-30), (31-35), (36-40), (41-45), (46-50), (51-56) age distribution of the study groups with the latex agglutination test, ELISAIgG and IgM test. The highest rate (36%) was reported amang the age group18-25 years, but the lowest rate1.3% was reported amang the age group 51-56 years.

The latex test, IgG and IgM tests were significant.

The study showed that drinking non boiling milk found to be statistically significant in latex test and ELISA. IgM(P = 0.002),(P = 0.049) and not significant in ELISA IgG (P = 0.09).

Contact with domestic animals was found to be non-significant in the transmission cycle.

Eating uncooked or partially cooked meat has been shown to be of great importance in the transmission cycle.

المستخلص للدراسة

أجريت هذه الدراسة ببنوك الدم فى مستشفى الخرطوم و مستشفى ام درمان و مستشفى الخرطوم بحرى التعليمي حيث جمعت عينات مصل من 534 من المتبر عين بالدم، كما أجريت هذه الدراسة فى الفترة من 2011-2013. تراوحت أعمار المتبرعين بالدم قيد الدراسة ما بين18 – 56 سنة. وذلك لتشخيص الإصابة بداء القطط.

كانت نسبة المناطق التي جمعت منها العيناتكالتالي: الخرطوم ، (%56)929 ام درمان (%22.1) 118 والخرطوم بحرى (%21.9) 117 تم أختبار هذه العينات لمعرفة الأجسام المضادة لطفيل المقوسات المعوية كانت النتائج بإختبار التلازن(%44)235 و الإليزاgG إ&40.8) 218 و , 187(35%

قسمت الاعمار الى سبعة فئات عمرية (18-25),(25-36),(30-36),(40-40),(40-45),(40-50) قسمت الاعمار الى سبعة فئات عمرية (18-56) أوضحت النتائج أن أعلى معدل لإنتشار الطفيل قد تم تسجيله في المتبرعين في الفئة العمرية 18-55 سنة، حيث بلغت 36% وأقل معدل انتشار للطفيل قد تم تسجيله في المتبرعين في الفئة العمرية 56-55 سنة حيث بلغت 1.3%.

اوضحت الدراسة التعامل مع الحيوانات الاليفة ليس له دور واضح في الاصابه بداء القطط.

أوضحت الدراسة ان تناول الحليب الغير مقلي بلنسبة لاختبار التلازن و الإليزا (IgM) له دور في دورة إنتقال الطفيل ، بينما وجدت نسب متفاوتة عند الذين يتناولون اللحوم النية او غير المطهوة جيدا له دور واضح في الاصابه بداء القطط.

List of Contents

Contents	Page N
Dedication	ı
Acknowledgements	II
List of abbreviations	III
English abstract	IV
Arabic abstract	V
List of contents	VI
List of tables	VIII
CHAPTER ONE	
1. Literature review	1
1.1Introduction	1
1.2 Historical background of <i>Toxoplasma gondii</i> infection	2
1.3 Classification of <i>Toxoplasma gondii</i>	3
1.4 Life cycle	3
1.4.1 Direct stage (entero epithelial)	4
1.4.2 Indirect stage (extra intestinal)	4
1.5 Pathology and symptomatology of <i>Toxoplasma gondii</i> infection	5
1.5.1 Infection in human	5
1.5.1.1 Congenital toxoplasmosis	5
1.5.1.2 Acquired adult toxoplasmosis	8
1.5.1.3 Toxoplasmosis as an opportunistic infection	9
1.5.1.4 Occular toxoplasmosis	10

1.5.2 Anaimal toxoplasmosis	11
1.5.2.1 <i>Toxoplasma</i> infection in cats	11
1.5.2.2 <i>Toxoplasma</i> infection in sheep	12
1.5.2.3 <i>Toxoplasma</i> infection in Cattie	12
1.5.2.4 <i>Toxoplasma</i> infection in Goats	12
1.5.2.5 <i>Toxoplasma</i> infection in Camels	13
1.6 Epidemiology	13
1.6.1 Factors influencing the epidemiology of <i>Toxoplasma gondii</i> infection	1/
1.611.0	16
1.6.1.1 Sex	16
1.6.1.2 Age	17
1.7 Toxoplasmosis in prgnant women and HIV patient	17
1.8 Toxoplasmosis in blood donors	19
1.9 Toxoplasmosis in Sudan	20
1.10 Diagnosis of <i>Toxoplasma gondii</i> in human	22
1.10.2 Direct methods	22
1.10.2 Indirect methods	22
1.10.2.1 Complement fixation test	23
1.10.2.2 Indirect fluorescent antibody test	23
1.10.2.3 Indirect haemagglutination test	23
1.10.2.4 Latex slide agglutination test	23
1.10.2.5 Immuno sorbent agglutination assay	24
1.10.2.6 Enzyme-linked immune sorbent assay "ELISA"	24
1.10.2.7 The role of IgM and IgG <i>Toxoplasma</i> antibodies in the diagnosis	
of toxoplasmosis	24
1.11 Treatment and prevention	25
1 11 1Treatment	25

1.11.2 Prevention and control	25
1.12 Rationale	27
1.13 Objectives	28
1.13.1 General objective	28
1.13.2 Specific objective	28
CHAPTER TWO	
2. MATERIALS AND METHODS	29
2.1. Ethical consideration.	29
2.2. Study design.	29
2.3. Target population	29
2.4. Sample size	29
2.5. Data collection.	29
2.7 Collection of specimens	29
2.8 Sample preparation and preservation	30
2.9 Laboratory examination	30
2.9.1 Direct agglutination test	30
2.9.2 Enzyme linked immune sorbent assay (ELISA)	30
2.9.2ToxoplasmaIgM ELISA	30
Kit	31
2.9.2.2 Reagents	31
2.9.2.3 Storage and precautions	32
2.9.2.4 Precautions.	32
2.9.2.5 Calculation and interpretation of result	33
2.9.3 Toxoplasma IgG ELISA Kit	33
2.9.3.1Principle	33
2.9.3.2 Reagents	33

2.9.3.3 Storage and precautions.		
2.9.3.4 Precautions	34	
2.9.3.5 Calculation and interpretation of result	35	
2.10. Statistical analyses	35	
CHAPTER THREE		
3. RESULTS	36	
CHAPTER FOUR		
4. DISCUSSION	48	
5.1. Conclusion	50	
5.2. Recommendations	51	
REFERENCES	52	
APPENDEXE	65	

List of Tables

Table: 3.1	Detection of toxoplasmosis among different age groups using latex test, IgG test and IgM test	38
Table: 3.2	Distribution of toxoplasmosis according to occupation using the latex test, IgG test and IgM test	39
Table: 3.3	Distribution of toxoplasmosis in association of study area using the latex test, IgG test and IgM test	40
Table: 3.4	Distribution of toxoplasmosis in regard to contact with domestic animals using the latex test	40
Table: 3.5	Distribution of toxoplasmosis in regard to contact with domestic animals using the IgG test	41
Table: 3.6	Distribution of toxoplasmosis in regard to contact with domestic animals using the IgM test	41
Table: 3.7	Distribution of toxoplasmosis in relation to consumption of uncooked-meat using the latex test	42
Table: 3.8	Distribution of toxoplasmosis in relation to consumption of uncooked-meat using the IgG test	42
Table: 3.9	Distribution of toxoplasmosis in relation to consumption of uncooked-meat using the IgM test	43
Table: 3.10	Distribution of toxoplasmosis according to origin of milk using the latex test	43
Table: 3.11	Distribution of toxoplasmosis according to origin of milk using the IgG test	44
Table: 3.12	Distribution of toxoplasmosis according to origin of milk using the IgM test	44
Table: 3.13	Distribution of toxoplasmosis due to drinking of non-boiling milk using the latex test	45
Table: 3.14	Table: 3:14 Distribution of toxoplasmosis due to drinking of non-boiled milk using the IgG test	45

Table: 3.15	Distribution of toxoplasmosis due to drinking of non-boiled milk using the IgM test	46
Table: 3.16	Distribution of toxoplasmosis in different samples using the latex tst and IgG test	46
Table: 3.17	Distribution of toxoplasmosis in different samples using the latex test and IgM test	47
Table: 3.18	Distribution of toxoplasmosis in different samples using the IgG test and IgM test	47