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ABSTRACT: 

One of the most important characteristics of file compression is to 

preserve memory with all its temporary and permanent images, in 

addition to maintaining the speed of performance in the process of 

compression and decompression and increase the frequency range in the 

transmission and reception from long distances. 

The examined the performance of Variable-Byte compression scheme 

over sequences of integers. Variable-Byte algorithm which has high 

compression speed and decompression speed while the algorithm's 

compression ratio is weak in the case of small integers. 

Has been designed enhanced compression algorithm (Variable-5bits) 

based on Variable-Byte algorithm, evaluated the performance of 

Variable-5bits thorough experiments on synthetic data sets with random 

integers in the range 0 – 2^31 ,the ratio of compression is improved from 4 

to 6.4 in the case of small integers. In the case of large integers, the 

variable-5bits algorithm is roughly equal in the compression ratio with 

the Variable-Byte algorithm. 

A number of experiments were performed to test the compression ratio in 

the variable-5bits in different and varied samples when the range is small 

between integers, the compression ratio is high and when the range is 

large between the integers we get a low compression ratio.  
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  :المستخلص 

من أهم خصائص ضغط الملفات الحفاظ علي الذاكرة بكافة صورها المؤقته والدائمة، 

داء في عملیة الضغط وفك الضغط ویزید من نطاق التردد بالإضافه إلي الحفاظ علي سرعة الآ

  .في عملیات الإرسال والإستقبال من مسافات بعیدة 

أن  تعلي سلسة الأعداد الصحیحة فوجد Variable-Byteدراسة آداء الضغط لخوارزمیة  تم

الخوارزمیة ضعیفه في حالة بینما نسبة أو معامل ضغط سرعة الضغط وفك الضغط لدیها عالیة 

  . الأعداد الصحیحة الصغیرة

ه  َ ن سِ حَ ُ ، تم  Variable-Byteلخوارزمیة )  Variable-5bits(تم تصمیم خوارزمیة ضغط م

تقییم الآداء للخوارزمیة المحسنه من خلال إجراء التجارب على مجموعة بیانات تجمیعیة مولدة 

 6.4 – 4، تحسن فیها معامل الضغط من  231 - 0عشوائیاً في مدى الأعداد الصحیحة من 

في حالة الأعداد الصحیحه الصغیرة ، وفي حالة الأعداد الصحیحة الكبیرة نجد أن خوارزمیة 

Variable-5bits  متساویة تقریباً في معامل الضغط مع خوارزمیةVariable-Byte .  

ه في عینات مختلفة أجریت عدد من التجارب لإختبار معامل الضغط في الخوارزمیة المحسن

ومتنوعة فعندما یكون المدى صغیر بین الأعداد الصحیحة یكون معامل الضغط عالي وعندما 

  .یكون المدى كبیر بین الأعداد الصحیحة نحصل علي معامل ضغط منخفض 
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1- INTRODUCTION 

1.1- Introduction: 

Information retrieval systems deal with a huge amount of data that 

needs to be organized as inverted index [1]. The use of inverted indexes 

and compression techniques is partially accountable for the current 

performance achievement of web search engines [2]. Large amount of 

data their performance becomes constrained by the speed at which data 

can be read or written and need it more storage to store. Compression 

reduces the physical size of the inverted index, saving storage cost and 

improves the performance [3], [4]. Keeping data in a compressed format 

can preserve memory and allow the transfer of data to and from memory 

in a shorter time with lower processing cost and enhance I/O bandwidth. 

Fast compression can reduce query response times [5]. 

While the performance of an information retrieval (IR) system can be 

enhanced through the compression of its posting lists, proposed many 

compression techniques deal with different types of posting information 

(document ids, frequencies, positions) [6].  

There are some factors which influence compression performance like the 

number of integers and range of this integer in index. 

In our study, we focus on the performance of compression applied over 

sequence of integers. Indexes are mapped to such sequences of integers. 

1.2- Inverted Index Structure: 

An inverted index is a data structure that stores a list of distinct 

terms which are found in the collection, this list is called a dictionary, 

lexicon or a term index. For each term a list of all documents that contain 

this term is attached, and it is known as the posting list.  
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For each unique indexed term, the inverted index contains a posting list, 

where each posting contains the occurrences information (e.g. 

frequencies, and positions) for documents that contain the term [7]. 

Inverted index construction is done by collecting the documents that form 

the corpus. 

Afterwards the preprocessing operation is done on the documents to 

obtain the vocabulary terms; this term is used to build the forward index 

(document-term index) by creating a list of the words that are in each 

document [8]. 

 

Postings in inverted lists are usually ordered by increasing See Fig 1.1. 

 
Fig 1.1 Inverted Index 

1.3- Techniques for Inverted List Compression 

An inverted index is composed of inverted lists, each one being an 

ordered list of integers. The main idea of index compression is to encode 

the list of integers using as few bits as possible. Instead of storing the raw 
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integer in a 32 bit machine word, the goal is to store each integer using 

the smallest number of bits possible See Fig 1.2. 

 

For each term t, we store a list of all documents that contain t. 

 
     dictionary       postings 

Fig 1.2 Construct the Inverted Index 

 

1.4- Problem statement: 

Many applications, such as search engines and information 

retrieval systems, deal with large amounts of data and these data are often 

stored in the form of arrays of integers. The large amount of database, 

their store required more space, and performance becomes constrained by 

the speed at which data can be sent, read or written. 

Variable-Byte algorithm is used to compression the integers and known 

faster than traditional bit oriented methods, the main drawback of this 

algorithm inefficient in term of compression ratio.  

1.5- Research Question: 

How we can enhance the compression ratio of Variable-Byte 

scheme? 
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1.6- Objective of the Research: 

The goal of this research is to enhance VByte scheme with respect 

to compression ratio in inverted index. 

The study should meet the following objectives: 

 Examining and comparing the performance of proposed scheme 

with respect to compression ratio and speed of compression and 

decompression. 

 Evaluate the effect of different factors such as integer variant, fixed 

number of integers, variable number of integers. 

1.7- Research Scope: 

The scope of this research is in the Information Retrieval area. 

Within the field of information retrieval we focus on compression 

integers of inverted index. 

1.8- Research Organization: 

The present research is organized into five chapters entitled: 

introduction; background and related work; analysis and design; 

experiment and discussion the results and finally conclusions and future 

work. 

Chapter One of the research is mainly an introduction to the 

research which, problem statement and the aims of the research, in 

addition to the scope of the research, and finally an organization of the 

chapters. 

Chapter Two include compression definition and type of 

compression, background relating to the research. The background gives 

an overview of compression used in inverted index of information 

retrieval (IR). It is then followed by the related works. 

Chapter Three include explain the old method of compression 

algorithm and then show weaknesses. After this we will explain the new 

algorithm (improving the old algorithm). 
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Chapter Four include generating synthetic data and discussion and 

evaluation the results. 

Chapter Five include conclusion and future work. 

 

1.9- Summary: 

In this chapter we introduction to the research and explain problem 

statement and the aims of the research, in addition to the scope of the 

research, and finally an organization of the chapters. 

In the next chapter we definition the compression and type of 

compression, background relating to the research and related work.
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2. BACKGROUND 

2.1- Introduction: 

 In this chapter, we describe the basic concepts that are required to 

conduct this research. We first describe the basic concepts about 

compression, second, we show Comparison Characteristics (factors), 

third, we show compression techniques, Final, for related works. 

 

2.2- Compression Definition: 

In signal processing, data compression, source coding, or bit-rate 

reduction involves encoding information using fewer bits than the 

original representation. 

There are some factors which influence compression performance like the 

distribution of integers and different between it. 

 

2.3- Light-weight Compression: 

Poor storage performance of disk and memory storage becomes a 

limiting factor for many applications such as information retrieval 

systems. Compression will allow storing more data in cache during query 

processing, which can result in faster operation. Compression techniques 

must have both high compression ratio and decompression speed to 

enhance the performance of information retrievals. Also, lossless 

compression is needed for most IR operations. Indeed, the compression 

scheme should permit recovery of the original data from its compressed 

form. To achieve this, light-weight compression methods are used. These 

methods aim to compress while minimizing CPU usage. 
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Some of the most common light-weight compression methods over 

include Binary Packing/Frame Of Reference (FOR), Delta coding, 

Variable-Byte Coding, Simple9, and Simple16. These coding techniques 

are often used in inverted index compression for IR. 

Recently, patched versions of FOR and Delta coding known as PFOR and 

PForDelta have been used for inverted list compression. Patched 

compression schemes use the super-scalar facility of a modern CPU. As a 

result, these techniques provide aggressive compression and 

decompression speed as well as a modest compression ratio. 

This research aims to enhance one of these techniques that (Variable-

Byte) with respect to compression ratio and decompression speed in 

inverted index. 

2.4- Types of Compression: 

According to the characteristics of compressed data and data 

recovery from compressed form, compression techniques can be divided 

into two categories. 

2.4.1- Lossy Compression: 

In lossy compression schemes, some information has been 

discarded while compressing the original data. The main objective 

of this approach is to reduce the size by keeping the overall 

structure of the file and eliminating some detail or redundant or 

unnecessary information of the original data. Therefore, it 

generates an approximation of original data in exchange for a 

smaller size. Lossy compression techniques are generally used in 

audio, video or image compression. 

2.4.2- Lossless Compression: 

Lossless compression allows recovering the original data 

from its compressed form without any information loss. Lossless 

compression reduces the size as well as preserving all information 
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of the original file. Lossless compression techniques are often used 

with text documents. 

 

2.5 - Comparison Characteristics: 

Comparing the compression schemes is not an easy task. There are 

many characteristics including compression ratio, compression speed and 

decompression speed. In order to get better performance, we need to 

preserve disk and also minimize processing so, we evaluate enhanced 

compression scheme mainly by compression ratio, compression speed 

and decompression speed. 

 

2.6- Compression Techniques 

Compression can be done on various types of posting list like 

document ids, frequencies, positions. In our study, we mainly concerned 

with compression of document ids. 

In recent years, several compression schemes have been developed which 

have fast decompression speed with moderate compression ratio. Our 

goal is to achieve significant benefit from compression in inverted index. 

We can classify integer compression into two primary types depending on 

the nature of the output of encoding: schemes that use a variable number 

of bytes or bits to compress every integer and those that use a fixed 

number of bytes or bits to compress a variable number of integers. 

 

Variable Length Output: 

It takes a fixed input length such as a single integer and 

processes it into variable length output depending on the input 

value. This can be classified into three sub-categories: 

1- Byte-oriented compression:  
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Integers are coded in units of bytes. A variable number of 

bytes are used to encode a single integer. Variable-Byte, discussed 

in Section 2.6.3 is an example of this category. 

 2- Per-integer bit-oriented compression:  

This kind of compression schemes uses a variable number of 

bits to encode a single integer. Golomb-Rice coding, discussed in 

Section 2.6.4 is an ideal example of this kind of coding. Bit 

oriented compression schemes result in low decompression speed 

since bit by bit look up imposes a high processing burden on 

computer architecture [9]. 

 3 - Block-based compression:  

 These schemes use a fixed number of input integers and 

output a variable number of bytes. Frame Of Reference and 

PForDelta are examples of this kind of scheme. These schemes are 

discussed in Sections 2.6.6. 

 

Fixed Length Output: 

In this compression scheme, each step takes a variable 

number of integers and produces a compressed form of those 

integers using a fixed number of bits as a unit. The basic strategy is 

to pack as many integers as possible from input into a fixed length 

codeword. The number of input sequences can be identified by 

using a flag which can be placed in front of every codeword. 

Simple9 (S9) coding is example discussed in Sections 2.6.5.  

We will briefly discuss a few of the compression techniques that founded 

useful in order to enhance the compression ratio and performance of 

information retrieval in the following sections. 
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2.6.1- Block Coding: 

Data of any posting list is typically organized in blocks 

consisting of a few rows every block will contain a number of 

rows. It is also called a page, though some authors might consider a 

page to be larger than a block. The size of the block varies 

according to the policy used in the disk. Compression allows us to 

store more rows in a single block. Block size may influence the 

compression since large block size may have negative effects like 

high memory usage and more time for decompression.  

 

2.6.2- Difference Coding: 

This coding mechanism (sometimes called deltas,gaps) 

[6]encodes a set of integers by deducting successive values. This 

sort of coding has been used in the field of data compression for 

years. 

The main idea is to code the first value as it is and the remaining 

values will be coded as the difference between successive values. It 

achieves a good compression ratio if the differences between 

successive values are small. 

Delta coding is one of the popular techniques for integer coding. It 

codes integer values by subtracting successive values using simple 

arithmetic,훿 = 푋푖 − (푋푖 − 1). The integers must be sorted. If the 

difference between two consecutive integers is small then we can 

code the difference with few bits, but one large difference can 

adversely affect the total compression ratio. Consider a sequence of 

integers like 24, 25, 32, 43, 55, 77. According to difference, we 

will store the first value as it is 24. I will store the differences of 

successive values rather than storing the original values. As a 
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result, the coded sequence will be 24, 1, 7, 11, 12, 22. I can revert 

back to the original sequence by computing the prefix sum. 

 

 
Fig 2.1 Difference Coding (Deltas) 

 

2.6.3- Variable-Byte Coding 

An integer can be compressed as a sequence of bytes using 

Variable-Byte coding. Different authors referred it variously such 

as v-byte, variable byte [10], VB [11]. This is a byte oriented 

coding technique. For every byte, the first 7 bits are used to store 

part of the binary representation of the integer, and the last bit is 

used for a status bit which indicates whether the next byte is part of 

this integer [12]. For example, an integer k = 312 and its binary 

representation is 100111000. Using variable byte coding k can be 

represented by two bytes: 10000010 00111000. The status bit 0 in 

the first byte (00111000) indicates that the next byte is also part of 

the integer [17]. (More in Chapter 3). 
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2.6.4- Golomb-Rice Coding 

In Golomb coding, we code an integer (i), by the quotient (q) 

and remainder (r) of division by the divisor (d). We write the 

quotient bi=dc in unary notation and the reminder i mod d in binary 

notation [12]. We need a stop bit after the quotient. We can use 1 

as stop bit if the quotient is written as 0 to represent the unary 

form. In case of Rice coding, we use the divisor as a power of 2. 

For example if we are coding a number 15 with divisor 4, the code 

will be 000111. Golomb-Rice coding will achieve good 

compression ratio. However, the decompression speed is quite 

slow due to the leading unary values as we need to check a single 

bit at a time during decompression [13]. 

 

2.6.5- Simple9 (S9) Coding 

The basic idea of this coding technique is to pack as many 

integers as possible within 32 bit words. Simple9 divides each 

block into 4 status bits and 28 data bits. These 28 bits actually store 

the binary representation on input blocks. These data bits can be 

divided in 9 different ways: 28 1-bit numbers, 14 2-bit numbers,7 

4-bit numbers, 4 7-bit numbers, 2 14-bit numbers, 1 28-bit number, 

9 3-bit numbers(1 bit unused), 5 5-bit numbers(3 bits unused), 3 9-

bit numbers(1 bit unused). The 4 status bits of a 32-bit word stores 

which of the 9 cases is used. During decompression, switch cases 

will be used on status bits to identify each of the 9 cases and apply 

a bit-mask to exact the desired bits from 32 bit word. Thus, we can 

recover the original integers [13]. 
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2.6.6-Frame of Reference 

Frame Of Reference (FOR) maps a set of large integers to 

relatively small integers. The basic approach is to identify the 

range (maximum m and minimum value M) from the set of 

integers. The smallest number will be coded as 0 and we will store 

the difference between the smallest number and the original 

number rather than storing the original set [14]. 

Each integer can be stored using [log2 (M - m + 1] bits. 

Alternatively, if the integers are small, we may simply store the 

number of bits [log2 (M – m + 1] required to store each integer: we 

call this variation Binary Packing. Different authors have called 

FOR by different names: Anh and Moffat called it PackedBinary 

[13]. 

The first step of implementing this scheme is to partition the array 

of values into blocks (e.g., 128 integers). We have to compute the 

range of any particular partition and code the range accordingly. 

Afterwards, all values in a certain block are coded in reference to 

the range values. Consider a sequence of integers: 67, 78, 85, 96, 

98. We can find that the numbers range from 67 to 98. Using FOR, 

instead of storing the original sequence we can subtract 67 from 

each of the values and code the difference only. It transforms the 

sequence into 0, 11, 18, 29, 31. We can now code each of the offset 

values using a maximum of 5 bits. We still need to store the 

minimum value 67 in full and we need 3 bits to store the fact that 5 

bits have been used to store differences. 

The main drawback of this approach is that a single outlier value 

might have a significant adverse effect on compression. 
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2.7- Related Works: 

Some work has been proposed to compression of inverted index in 

IR. To compression the inverted index the researchers have used different 

compression techniques. We show some of this that related with 

compression inverted index. 

 

(Matteo Catena, Craig Macdonald, and Iadh Ounis, 2014) [7] They 

show the little recent work in the literature that thoroughly compares and 

analyses the performance of modern integer compression schemes across 

different types of posting information (document ids, frequencies, 

positions).they experiment with different modern integer compression 

algorithms, Variable byte codec [10] is a byte-aligned, oblivious codec. It 

uses the 7 lower bits of any byte to store a partial binary representation of 

the integer x. It then marks the highest bit as 0 if another byte is needed to 

complete the representation or as 1 if the representation is complete. For 

example, 201 is 10000001 01001001. Their finding while this codec may 

lead to larger representations, it is usually faster than Gamma in term of 

decompression speed.  

 

(Veluchamy Glory, Sandanam Domnic, 2014) [15] Also carried out an 

extensive experimental evaluation on synthetic data.They have studied 

and analyzed various compression techniques for 32-bit integer sequence. 

They propose a new compression technique called Optimal FastPFOR, 

based on FastPFOR. FastPFOR technique is a recent fast decoding 

technique, but compression performance is not as high compared to 

OptPFD technique .OptPFD technique give the better compression rate, 

but it does not decompress fast. They technique achieves better 

compression performance and decompression performance compared to 

FastPFOR, OptPFD and other techniques. They found that Variable-Byte 



15 
 

compared to bitwise technique like Rice code, Variable Byte code 

required a single branching condition for each byte which is more cost-

effective in terms of CPU cycles. Moreover, VByte has a poor 

compression ratio since it requires one full byte to encode small integers. 

 

(Renaud Delbru, Stephane Campinas, Krystian Samp, Giovanni 

Tummarello, 2010) [16] They introduce a new class of compression 

techniques for inverted indexes, the Adaptive Frame of Reference 

(AFOR) that provides fast query response time, good compression ratio 

and also fast indexing time. They show that significant performance 

improvements can be achieved. 

AFOR is specifically designed to increase update and query throughput of 

web search engines. They compare AFOR to alternative approaches, and 

show experimental evidences that AFOR provides well balanced 

performance over three factors: indexing time, querying time and 

compression ratio. In addition, AFOR is simple to implement and could 

become a new compression method of reference. 

AFOR is a straightforward extension of FOR, and they admit that the 

technique is rather simple. However, they stress that this was the design 

requirement for our extension since we believe that simplicity over 

complexity is crucial for achieving high performance in compression 

algorithms. 

 

2.8- summary: 

 In this chapter we describe the basic concepts that are required to 

conduct this research and related work. 

In next chapter we explain the old scheme of compression (Variable-

Byte) and introduce and explain to enhance scheme (Variable-5bits).
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3- Analysis and Design 

3.1- Introduction: 

As knew that this research was based on the idea of integers 

compression. In this section we will explain the old method of 

compression algorithm and then show weaknesses. After this we will 

explain the new algorithm (improving the old algorithm). 

3.2- Previous Scheme: 

Variable-Byte Coding: 

An integer can be compressed as a sequence of bytes using 

Variable-Byte coding. Different authors referred it variously such 

as v-byte, variable byte [10]. This is a byte oriented coding 

technique. For every byte, the first 7 bits are used to store part of 

the binary representation of the integer, and the last bit is used for a 

status bit which indicates whether the next byte is part of this 

integer [12]. For example, an integer k = 312 and its binary 

representation is 100111000. Using variable byte coding k can be 

represented by two bytes: 10000010 00111000. The status bit 0 in 

the first byte (00111000) indicates that the next byte is also part of 

the integer [17] See Fig 3.1. 

In total, it took 16 bits to encode the number 312. While 

decoding, we read byte by byte. We discard the eighth bit if it is 0 

and continue reading the next bytes till we get 1 in the eighth bit 

for any byte to record any integer. Variable-Byte coding is easy to 

implement and known to be significantly faster than traditional bit 

oriented methods [12]. 

The main drawback of this method is that it will take at least 

1 byte to store even a small integer. In the case of encoding an 
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integer of a single bit such as 1, we have to store it using one byte 

and the byte looks like 10000001. As a result, we waste 7 bits. 

Thus, it can make Variable-Byte coding inefficient in terms of 

compression ratio. 

 

docIDs 200 205 214782 

gaps 200 5 214577 

VB code 1000001  01001000 10000101 10001101  0001100  00110001 

Fig 3.1 Variable-Byte Scheme 

 

3.3- Enhanced Scheme (Variable-5bits): 

Namely enhanced scheme, we proposed scheme which we 

called V5bits it enhanced to VByte scheme. An integer can be 

compressed as a sequence of 5 bits using Variable-5bits coding. 

This is a 5bits oriented coding technique. For every 5bits, the first 

4 bits are used to store part of the binary representation of the 

integer, and the last bit is used for a status bit which indicates 

whether the next byte is part of this integer. For example, an 

integer k = 200 and its binary representation is 11001000. Using 

V5bits coding k can be represented by 10 bits:  1110001000. The 

status bit 0 in the first 5 bits (01000) indicates that the next 5 bits is 

also part of the integer. 

 In total, it took 10 bits to encode the number 200. While 

decoding, we read 5 bits by 5 bits. We discard the 5 bits if it is 0 

and continue reading the next 5 bits till we get 1 in the 5 bit for any 
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5 bits to record any integer See Fig 3.2. Variable-5bits coding is 

easy to implement. 

 

docIDs 200 205 214782 

gaps 200 5 214577 

VB code 11100  01000 10101 10011  00100  00110  00011  00001 

Fig 3.2 V5bits 

To quantify the trade-offs among between two algorithms, we have 

to implement apply them to randomly generated data sets. We use 

some code for compression and decompression of integers written 

in Java which is available as open source under the Apache License 

2.0 (https://github.com/lemire/JavaFastPFOR). Along with the 

implementation of the core compression algorithm, we need to 

develop I own testing strategy to test and verify. All the 

implementations have been written in Java using SDK version 

1.8.0  

In our experiment we focus on compression of integer values. The 

main objective of this study is to examine and compare the 

performance of enhanced V5bits scheme over VByte method. 

Mainly, we comparing between them based on compression ratio 

and decompression speed. We conducted our experiment based on 

synthetic data sets which will be discussed in Chapter 4. We can 

reproduce synthetic data at any time and perform testing on those 

data. We run different trials by varying different parameters such 

as number of integers, integer size, etc. 
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In order to run all of our experiments on synthetic datasets we use a 

machine equipped with Intel(R) Pentium(R) CPU B960 @ 2.20 

GHz 2.20 GHz processor and 2 GB of RAM. 

 

3.4- Summary: 

In this chapter we explain the variable-byte algorithm and then 

show weaknesses. After this we will explain the variable-5bits algorithm. 

In the next chapter, we discuss experiment on synthetic data. We describe 

the nature of synthetic dataset and discussion and assess the results.



 
 

 

 

 

 

 

 

 

CHAPTER FOUR 
EXPERIMENT AND DISCUSSION AND 

EVALUATION
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4.1-Synthetic Data 
To evaluate the performance of two compression schemes we 

performed thorough experiments on synthetic data. We varied different 

parameters such as integer size, number of integers, etc. We analyzed the 

effect of different aspects of datasets on compression. 

Again, size of integers may influence the performance of compression. 

Will take more bits to compress one large integer. 

We can save space by compressing small integers into smaller memory 

space compared to larger integers. Moreover, the difference between the 

consecutive integers also influences the compression ratio when we use 

delta coding or differential coding. The cardinality of the data may 

influence the compression rate. 

We have identified different factors that can influence the compression 

size. Our final goal is to examine and compare the performance of two 

compression schemes on integer’s numbers. In Our experiment we 

examined not only compressed size but also compression and 

decompression speed. We examined how different factors can influence 

the time to compress and decompress data. 

To evaluate the performance we ran several identical trials varying 

characteristics such as the number of integers and the maximum length of 

each integer. In the case of delta coding, the cardinality of data can 

influence the compression speed. In the case of low cardinality and sorted 

sequence, delta values will be smaller. So, we can examine the 

compression speed by varying the cardinality of data. 

In this chapter, we discuss the generation of our synthetic data. 

Afterwards, we describe our experiment varying different characteristics 

of data. Finally, we analyze and discussion the result. 
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4.2 Generation of Data and Discussion the Result: 

To perform the experiment, we generated data with two different 

parameters. 

 Fixed number of integers 

 Variable number of integers  

After generate integers by two different parameters we applied concept of 

Delta coding or differential coding between integers on two parameters. 

However, these synthetic tests provide us with a reference. We can only 

measure the performance of two compression algorithm based on the 

comparison characteristics (See Section 2.5). 

As discussed in the previous section we varied different characteristics of 

data. Therefore, our first approach was to generate generating consecutive 

integers from zero to a certain limit. We gave two parameters N and Max. 

Our program generated consecutive integers N distinct integers from 0 to 

Max and stored it to an array of integers in sorted order. We used 

differential coding (See Section 2.6.2) on the input values and stored the 

delta values in an array of integers. This set of delta values was used as an 

input to evaluate different between two compression schemes. 

In our implementation we took a delta coded integer array as an input and 

ran two compression schemes and recorded the compression ratio, 

compression speed and decompressing speed for every scheme. 

In the case of differential coding, we storing the difference between 

successive integers together with initial value: (x1, x2 = x2 - x1, x3 = x3 

– x2 , ….) instead of storing the original array of integers in sorted order 

such as x1, x2, … where xi+1 >= xi. This will result in non-negative 

integers that are typically much smaller than the original integers. 

Thus, we will be getting benefit for compressing a sequence of smaller 

numbers rather than the original one. 
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In all of our experiments, we measured the timing based on CPU time. In 

the case of compression and decompression, we ran every trial for 10 

times and took the average of the recorded time for every trial. While 

measuring the timing we consider all the encoding and decoding 

operations including delta coding and prefix sum. 

 

4.2.1 Varying Integer Size 

We generated our synthetic data sets with random integers in the 

range [0 – 2^31) for both V5bits and VByte schemes. We generated 

integers from zero to the integer with the specified number of bits, i.e., 

the range will be from 0 to a maximum 31 bit integer which means the 

interval is from 0 to 2147483648. Our test includes the integer range [0 – 

2^16] [0 – 2^17], [0 – 2^18) and so on. We generated 32768 numbers of 

distinct integers for every interval in sorted order and stored them into an 

array for further processing. Finally, we stored the delta values. We will 

get larger delta values with increase of the range, since us generating 

fixed number (32768) of distinct integers in a particular interval. We 

analyze the effect of integer size on compression. If we have all very 

small integers we can fit those into small memory space. We have listed 

the test result for both V5bits and VByte schemes. In our experiment with 

synthetic data 

Since us trying to evaluate the performance of two compression schemes, 

we tried to measure the compression ratio, compression speed and 

decompression speed for two compression schemes. 

We have plotted the test results in Fig. 4.1. , Fig. 4.1 shows the result of 

V5bits and VByte scheme. We found the V5bits is more compressible 

compared to VByte in small integers and equal in large integers. In this 

test we changed the size of integer to some certain limit. When we 

generate integers within small range such as [0 – 2^16], it is obvious that 
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we will get small delta values compared to larger range like [0 – 2^31]. 

Therefore, when we have lot of small integers, we can compress them 

into smaller memory space. For both V5bits and VByte data in Fig. 4.1, 

we found small integers can be compressed into fewer bits compared to 

large numbers. In the case of maximum 16 bit integers, we can compress 

every integer within 5 bits or 10 bits there is an exception for Variable-

Byte, since it compresses in a byte oriented manner. Therefore, Variable-

Byte needs at least 8 bit to compress any integer. 

 

 

Figure 4.1 Compression Ratio 

 

Size of integers has some effect on compression speed as well. 

Compression speed decreases with increase of size of integer. In Fig. 4.2, 

we found compression speed is higher for small integers. Compression 

speed decreases with increment of integers size. We measure our 

compression speed in million of integers per second (mls). The V5bits 
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scheme has the lowest compressing speed compared to VByte, because 

the V5bits after convert the integer into binary reading 4 bits per reading 

compared with VByte reading 8 bits. To evaluate the applicability of 

using any compression algorithm, we are mostly concerned about the 

compressed size and decompression speed of the scheme. As a result, 

most of the algorithms we used have lower compression speed compared 

to decompression speed. 

 

 

Figure 4.2 Compression Speed 

 

Decompression speed was also influenced by integer size see Fig 4.3. We 

used the same number of integers in every trial. We found the integer size 

influenced the performance of compression in every trial. In the case of 

the first trial, we have maximum number of bits is 16. Therefore, the 

range of random generated integer is in between [0 – 2^16]. The 

difference between consecutive integers is small for a small range of 

integers. 
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In the case of a large range such as [0 – 2^31], the difference between 

consecutive integers is large and we found it takes more bits to compress. 

We can compress the integers into a smaller number of bits when we 

have small integers and also compression and decompression time will be 

significantly high for small integers compared to large integers. 

 

 

Figure 4.3 Decompression Speed 

 

 

4.2.2 Varying the Number of Integers 

Our next approach to testing was to vary the number of integers 

within the same (total) range of integers (0 – 2^31) and evaluate the 

performance. In this case, we generated data sets of random integers for 

both V5bits and VByte. Rather than generating a fixed number of integers 

like 32768 we generated a variable number of integers in each run. In 

every trial, we generated 10 integer arrays. Each of them containing same 
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number of integers in a certain pass and in every pass we changed the size 

of the array by changing the number of input integers. In our experiments 

we generated random integers within the same range of (0 – 2^31) but 

varying the number of integers i.e., we generated 2^11 integers for each 

input array in the first pass. We continued our trial by generating more 

integers than in the previous trial by a power of 2. We generated 2^12 to 

2^22 integers in our test. Since the range is fixed, the average difference 

among random generated numbers will be higher when we generate a 

small number of integers and reverse in the case of generate a higher 

number of integers. 

In our test, we generated data for both V5bits and VByte. We record 

average of compression size, compression speed and decompression 

speed. In this scenario, we ran the first 6 integers identical trials and 

generated 2^11, 2^12, … 2^16 integers. In every trial, we generated random 

numbers in the range (0 – 2^31). The difference among consecutive 

numbers is large, since we generating fewer of integers on a fixed large 

range (0 – 2^31). The differences between consecutive integers are known 

as delta values. In Fig.4.4 we found that to compress integers with large 

delta values takes more bits. Moreover, it takes more time to decompress. 

In the case of ran the last 6 integers, we generated 2^17, 2^18, … 2^22 

integers in the same range (0 – 2^31). Delta values will be lower in high 

integers. As a result, we can achieve very good compression ratio and 

also good decompression speed. 

In Fig. 4.4, we can see the effect of number of integers on compression 

size to both V5bits and VByte schemes. Compression size is increasing 

whenever we generating more integers on a fixed range (0 – 2^31). We 

will get small delta values when we have more integers. As a result we 

can compress integers with fewer bits. 
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Figure 4.4 Compression Ratio 

 

Fig. 4.5 shows the compression speed. We Compression speed increases 

with the increment of number of integers, since delta value decreases as 

the number of integers increases. We can see the effect of the number of 

integers on compression speed in Fig.4.5. VByte compression speed 

faster than V5bits. 
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Figure 4.5 Compression Speed 

We can see in Fig. 4.6, decompression speed increases with the increase 

in number of integers.  

VByte faster in terms of decompression speed than V5bits. 

 
Figure 4.6 Decompression Speed 
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In our synthetic data test, we generated a fixed number of integers and 

also a variable number of integers, but in both of our cases we have seen 

the size of integers influences the compression ratio and speed of 

compression and decompression. 

However, V5bits is clearly the winner for compression size when 

generated small integers in case of fixed number of integers, and we 

generated more integers in case of variable number of integers. 

VByte is clearly the winner for speed of compression and decompression 

but it does not compress. 

 

4.3- Summary: 

In this chapter we generating synthetic dataset and worked it for 

show the results and discussion and evaluation this results. 

Next chapter include conclusion and future work. 



 
 

 

 

 

 

 

 

 

 

 

CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK
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5- Conclusions and Future Work 

In this Chapter, summarized our work and review our experimental 

results and the contribution of our study. Moreover, explore the possible 

extension of our work. 

Interested in measuring the performance of variable byte integer 

compression over randomly indexes. We main criteria to evaluate 

compression scheme is compression ratio, compression speed and 

decompression speed. We mostly concerned about the compression ratio 

and decompression speed. 

 

Contributions 

Enhanced Variable-5bits algorithm provides the best compression 

ratio for small integers compare with Variable-Byte scheme in case of 

fixed number of integers, and we generated more integers in case of 

variable number of integers in addition to introduce trade-off between 

compression ratio, compression speed and decompression speed. 

 

Future Work 

The performance of Variable-5bits compression schemes tested in 

the case of synthetic data. In future we can evaluate the outcome of these 

schemes by real dataset to assess real performance. Observe in the results 

of experiments that did not get a high compression ratio for large 

numbers, we will work to improving compression ratio for large numbers. 
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