

 الرحیم الرحمن االله بسم

Sudan University of Science and Technology

Collage of Graduate Studies

Collage of Computer Science and Information Technology

Enhancing Compression Ratio of Variable-Byte Scheme

for Inverted File Index

تحسین معدل الضغط لطریقة الثمانیة المتغیرة لمفهرس الملف المعكوس لخوارزمیة

Variable-Byte

A Thesis Submitted in Partial Fulfillment of the requirements of

M.Sc. in computer science

By

Aljaily Mamoun Hassan Altybe

Supervisor:

Dr. Eng. Faiz Yousif Mohammed Yousif

July, 2017

ii

DEDICATION:

This thesis is dedicated to my mother and my father; it is also

dedicated to my brothers and sisters and my colleagues and friends.

And to each of the lit up with his knowledge other's mind or solve the

correct answer puzzled questioners he showed morals humility scientists

and the beauty of those who know.

iii

ACKNOWLEDGEMENT:

Praise to Allah, Lord of the Worlds, peace and prayers be on

human teacher Prophet Muhammad and his family and friends and who

had followed them in a good way to the last day of the human's life.

My thanks to all who contributed in the output of this research, and to all

those who were the cause of education and guiding and helping me.

And many thanks to supervisors Dr. Faiz Yousif Mohammed Yousif who

make full effort in guiding and steering while working in the research.

May Allah reward you and guide your steps.

iv

ABSTRACT:

One of the most important characteristics of file compression is to

preserve memory with all its temporary and permanent images, in

addition to maintaining the speed of performance in the process of

compression and decompression and increase the frequency range in the

transmission and reception from long distances.

The examined the performance of Variable-Byte compression scheme

over sequences of integers. Variable-Byte algorithm which has high

compression speed and decompression speed while the algorithm's

compression ratio is weak in the case of small integers.

Has been designed enhanced compression algorithm (Variable-5bits)

based on Variable-Byte algorithm, evaluated the performance of

Variable-5bits thorough experiments on synthetic data sets with random

integers in the range 0 – 2^31 ,the ratio of compression is improved from 4

to 6.4 in the case of small integers. In the case of large integers, the

variable-5bits algorithm is roughly equal in the compression ratio with

the Variable-Byte algorithm.

A number of experiments were performed to test the compression ratio in

the variable-5bits in different and varied samples when the range is small

between integers, the compression ratio is high and when the range is

large between the integers we get a low compression ratio.

v

 :المستخلص

من أهم خصائص ضغط الملفات الحفاظ علي الذاكرة بكافة صورها المؤقته والدائمة،

داء في عملیة الضغط وفك الضغط ویزید من نطاق التردد بالإضافه إلي الحفاظ علي سرعة الآ

 .في عملیات الإرسال والإستقبال من مسافات بعیدة

أن تعلي سلسة الأعداد الصحیحة فوجد Variable-Byteدراسة آداء الضغط لخوارزمیة تم

الخوارزمیة ضعیفه في حالة بینما نسبة أو معامل ضغط سرعة الضغط وفك الضغط لدیها عالیة

 . الأعداد الصحیحة الصغیرة

ه َ ن سِ حَ ُ ، تم Variable-Byteلخوارزمیة) Variable-5bits(تم تصمیم خوارزمیة ضغط م

تقییم الآداء للخوارزمیة المحسنه من خلال إجراء التجارب على مجموعة بیانات تجمیعیة مولدة

 6.4 – 4، تحسن فیها معامل الضغط من 231 - 0عشوائیاً في مدى الأعداد الصحیحة من

في حالة الأعداد الصحیحه الصغیرة ، وفي حالة الأعداد الصحیحة الكبیرة نجد أن خوارزمیة

Variable-5bits متساویة تقریباً في معامل الضغط مع خوارزمیةVariable-Byte .

ه في عینات مختلفة أجریت عدد من التجارب لإختبار معامل الضغط في الخوارزمیة المحسن

ومتنوعة فعندما یكون المدى صغیر بین الأعداد الصحیحة یكون معامل الضغط عالي وعندما

 .یكون المدى كبیر بین الأعداد الصحیحة نحصل علي معامل ضغط منخفض

vi

Table of Contents:

DEDICATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

LIST OF FIGURES viii

CHAPTER ONE

1. INTRODUCTION 1

1.1- Introduction 1

1.2- Inverted Index Structure 1

1.3- Techniques for Inverted List Compression 3

1.4- Problem statement 3

1.5- Research Question 3

1.6- Objective of the Research 4

1.7- Research Scope 4

1.8- Research Organization 4

1.9- Summary 5

CHAPTER TWO

2. BACKGROUND 6

2.1- Introduction 6

2.2- compression definition 6

2.3- Light-weight compression 6

2.4- Types of compression 7

2.4.1- Lossy Compression 7

2.4.2- Lossless Compression 7

2.5 - Comparison Characteristics 8

vii

2.6- Compression Techniques 8

2.6.1- Block coding 10

2.6.2- Difference coding 10

2.6.3- Variable-Byte coding 11

2.6.4- Golomb-Rice coding 12

2.6.5- Simple9 (S9) coding 12

2.6.6-Frame Of Reference 13

2.7- Related works 14

2.8- Summary 15

CHAPTER THREE

3. ANALYSIS AND DESIGN 16

3.1- Introduction 16

3.2- Variable-byte scheme 16

3.3- Variable-5bits scheme 17

3.4- Summary 19

CHAPTER FOUR

4. EXPERIMENTS AND EVALUATION 20

4.1- Synthetic Data 20

4.2- Generation of data and discussion the results 21

4.2.1- Varying integer size 22

4.2.2- Varying the number of integers 25

4.3- Summary 29

CHAPTER FIVE

6. CONCLUSION AND FUTURE WORK 30

viii

LIST OF FIGURES:

Figure 1.1 Inverted Index 2

Figure 1.2 Construct the Inverted Index 3

Figure 2.1 Difference Coding (Deltas) 11

Figure 3.1 Variable-Byte Scheme 17

Figure 3.2 V5bits 18

Figure 4.1 Compression Ratio 23

Figure 4.2 Compression Speed 24

Figure 4.3 Decompression Speed 25

Figure 4.4 Compression Ratio 27

Figure 4.5 Compression Speed 28

Figure 4.6 Decompression Speed 28

CHAPTER ONE

INTRODUCTION

1

1- INTRODUCTION

1.1- Introduction:

Information retrieval systems deal with a huge amount of data that

needs to be organized as inverted index [1]. The use of inverted indexes

and compression techniques is partially accountable for the current

performance achievement of web search engines [2]. Large amount of

data their performance becomes constrained by the speed at which data

can be read or written and need it more storage to store. Compression

reduces the physical size of the inverted index, saving storage cost and

improves the performance [3], [4]. Keeping data in a compressed format

can preserve memory and allow the transfer of data to and from memory

in a shorter time with lower processing cost and enhance I/O bandwidth.

Fast compression can reduce query response times [5].

While the performance of an information retrieval (IR) system can be

enhanced through the compression of its posting lists, proposed many

compression techniques deal with different types of posting information

(document ids, frequencies, positions) [6].

There are some factors which influence compression performance like the

number of integers and range of this integer in index.

In our study, we focus on the performance of compression applied over

sequence of integers. Indexes are mapped to such sequences of integers.

1.2- Inverted Index Structure:

An inverted index is a data structure that stores a list of distinct

terms which are found in the collection, this list is called a dictionary,

lexicon or a term index. For each term a list of all documents that contain

this term is attached, and it is known as the posting list.

2

For each unique indexed term, the inverted index contains a posting list,

where each posting contains the occurrences information (e.g.

frequencies, and positions) for documents that contain the term [7].

Inverted index construction is done by collecting the documents that form

the corpus.

Afterwards the preprocessing operation is done on the documents to

obtain the vocabulary terms; this term is used to build the forward index

(document-term index) by creating a list of the words that are in each

document [8].

Postings in inverted lists are usually ordered by increasing See Fig 1.1.

Fig 1.1 Inverted Index

1.3- Techniques for Inverted List Compression

An inverted index is composed of inverted lists, each one being an

ordered list of integers. The main idea of index compression is to encode

the list of integers using as few bits as possible. Instead of storing the raw

3

integer in a 32 bit machine word, the goal is to store each integer using

the smallest number of bits possible See Fig 1.2.

For each term t, we store a list of all documents that contain t.

 dictionary postings

Fig 1.2 Construct the Inverted Index

1.4- Problem statement:

Many applications, such as search engines and information

retrieval systems, deal with large amounts of data and these data are often

stored in the form of arrays of integers. The large amount of database,

their store required more space, and performance becomes constrained by

the speed at which data can be sent, read or written.

Variable-Byte algorithm is used to compression the integers and known

faster than traditional bit oriented methods, the main drawback of this

algorithm inefficient in term of compression ratio.

1.5- Research Question:

How we can enhance the compression ratio of Variable-Byte

scheme?

4

1.6- Objective of the Research:

The goal of this research is to enhance VByte scheme with respect

to compression ratio in inverted index.

The study should meet the following objectives:

 Examining and comparing the performance of proposed scheme

with respect to compression ratio and speed of compression and

decompression.

 Evaluate the effect of different factors such as integer variant, fixed

number of integers, variable number of integers.

1.7- Research Scope:

The scope of this research is in the Information Retrieval area.

Within the field of information retrieval we focus on compression

integers of inverted index.

1.8- Research Organization:

The present research is organized into five chapters entitled:

introduction; background and related work; analysis and design;

experiment and discussion the results and finally conclusions and future

work.

Chapter One of the research is mainly an introduction to the

research which, problem statement and the aims of the research, in

addition to the scope of the research, and finally an organization of the

chapters.

Chapter Two include compression definition and type of

compression, background relating to the research. The background gives

an overview of compression used in inverted index of information

retrieval (IR). It is then followed by the related works.

Chapter Three include explain the old method of compression

algorithm and then show weaknesses. After this we will explain the new

algorithm (improving the old algorithm).

5

Chapter Four include generating synthetic data and discussion and

evaluation the results.

Chapter Five include conclusion and future work.

1.9- Summary:

In this chapter we introduction to the research and explain problem

statement and the aims of the research, in addition to the scope of the

research, and finally an organization of the chapters.

In the next chapter we definition the compression and type of

compression, background relating to the research and related work.

CHAPTER TWO

BACKGROUND & RELATED WORK

6

2. BACKGROUND

2.1- Introduction:

 In this chapter, we describe the basic concepts that are required to

conduct this research. We first describe the basic concepts about

compression, second, we show Comparison Characteristics (factors),

third, we show compression techniques, Final, for related works.

2.2- Compression Definition:

In signal processing, data compression, source coding, or bit-rate

reduction involves encoding information using fewer bits than the

original representation.

There are some factors which influence compression performance like the

distribution of integers and different between it.

2.3- Light-weight Compression:

Poor storage performance of disk and memory storage becomes a

limiting factor for many applications such as information retrieval

systems. Compression will allow storing more data in cache during query

processing, which can result in faster operation. Compression techniques

must have both high compression ratio and decompression speed to

enhance the performance of information retrievals. Also, lossless

compression is needed for most IR operations. Indeed, the compression

scheme should permit recovery of the original data from its compressed

form. To achieve this, light-weight compression methods are used. These

methods aim to compress while minimizing CPU usage.

7

Some of the most common light-weight compression methods over

include Binary Packing/Frame Of Reference (FOR), Delta coding,

Variable-Byte Coding, Simple9, and Simple16. These coding techniques

are often used in inverted index compression for IR.

Recently, patched versions of FOR and Delta coding known as PFOR and

PForDelta have been used for inverted list compression. Patched

compression schemes use the super-scalar facility of a modern CPU. As a

result, these techniques provide aggressive compression and

decompression speed as well as a modest compression ratio.

This research aims to enhance one of these techniques that (Variable-

Byte) with respect to compression ratio and decompression speed in

inverted index.

2.4- Types of Compression:

According to the characteristics of compressed data and data

recovery from compressed form, compression techniques can be divided

into two categories.

2.4.1- Lossy Compression:

In lossy compression schemes, some information has been

discarded while compressing the original data. The main objective

of this approach is to reduce the size by keeping the overall

structure of the file and eliminating some detail or redundant or

unnecessary information of the original data. Therefore, it

generates an approximation of original data in exchange for a

smaller size. Lossy compression techniques are generally used in

audio, video or image compression.

2.4.2- Lossless Compression:

Lossless compression allows recovering the original data

from its compressed form without any information loss. Lossless

compression reduces the size as well as preserving all information

8

of the original file. Lossless compression techniques are often used

with text documents.

2.5 - Comparison Characteristics:

Comparing the compression schemes is not an easy task. There are

many characteristics including compression ratio, compression speed and

decompression speed. In order to get better performance, we need to

preserve disk and also minimize processing so, we evaluate enhanced

compression scheme mainly by compression ratio, compression speed

and decompression speed.

2.6- Compression Techniques

Compression can be done on various types of posting list like

document ids, frequencies, positions. In our study, we mainly concerned

with compression of document ids.

In recent years, several compression schemes have been developed which

have fast decompression speed with moderate compression ratio. Our

goal is to achieve significant benefit from compression in inverted index.

We can classify integer compression into two primary types depending on

the nature of the output of encoding: schemes that use a variable number

of bytes or bits to compress every integer and those that use a fixed

number of bytes or bits to compress a variable number of integers.

Variable Length Output:

It takes a fixed input length such as a single integer and

processes it into variable length output depending on the input

value. This can be classified into three sub-categories:

1- Byte-oriented compression:

9

Integers are coded in units of bytes. A variable number of

bytes are used to encode a single integer. Variable-Byte, discussed

in Section 2.6.3 is an example of this category.

 2- Per-integer bit-oriented compression:

This kind of compression schemes uses a variable number of

bits to encode a single integer. Golomb-Rice coding, discussed in

Section 2.6.4 is an ideal example of this kind of coding. Bit

oriented compression schemes result in low decompression speed

since bit by bit look up imposes a high processing burden on

computer architecture [9].

 3 - Block-based compression:

 These schemes use a fixed number of input integers and

output a variable number of bytes. Frame Of Reference and

PForDelta are examples of this kind of scheme. These schemes are

discussed in Sections 2.6.6.

Fixed Length Output:

In this compression scheme, each step takes a variable

number of integers and produces a compressed form of those

integers using a fixed number of bits as a unit. The basic strategy is

to pack as many integers as possible from input into a fixed length

codeword. The number of input sequences can be identified by

using a flag which can be placed in front of every codeword.

Simple9 (S9) coding is example discussed in Sections 2.6.5.

We will briefly discuss a few of the compression techniques that founded

useful in order to enhance the compression ratio and performance of

information retrieval in the following sections.

10

2.6.1- Block Coding:

Data of any posting list is typically organized in blocks

consisting of a few rows every block will contain a number of

rows. It is also called a page, though some authors might consider a

page to be larger than a block. The size of the block varies

according to the policy used in the disk. Compression allows us to

store more rows in a single block. Block size may influence the

compression since large block size may have negative effects like

high memory usage and more time for decompression.

2.6.2- Difference Coding:

This coding mechanism (sometimes called deltas,gaps)

[6]encodes a set of integers by deducting successive values. This

sort of coding has been used in the field of data compression for

years.

The main idea is to code the first value as it is and the remaining

values will be coded as the difference between successive values. It

achieves a good compression ratio if the differences between

successive values are small.

Delta coding is one of the popular techniques for integer coding. It

codes integer values by subtracting successive values using simple

arithmetic,훿 = 푋푖 − (푋푖 − 1). The integers must be sorted. If the

difference between two consecutive integers is small then we can

code the difference with few bits, but one large difference can

adversely affect the total compression ratio. Consider a sequence of

integers like 24, 25, 32, 43, 55, 77. According to difference, we

will store the first value as it is 24. I will store the differences of

successive values rather than storing the original values. As a

11

result, the coded sequence will be 24, 1, 7, 11, 12, 22. I can revert

back to the original sequence by computing the prefix sum.

Fig 2.1 Difference Coding (Deltas)

2.6.3- Variable-Byte Coding

An integer can be compressed as a sequence of bytes using

Variable-Byte coding. Different authors referred it variously such

as v-byte, variable byte [10], VB [11]. This is a byte oriented

coding technique. For every byte, the first 7 bits are used to store

part of the binary representation of the integer, and the last bit is

used for a status bit which indicates whether the next byte is part of

this integer [12]. For example, an integer k = 312 and its binary

representation is 100111000. Using variable byte coding k can be

represented by two bytes: 10000010 00111000. The status bit 0 in

the first byte (00111000) indicates that the next byte is also part of

the integer [17]. (More in Chapter 3).

12

2.6.4- Golomb-Rice Coding

In Golomb coding, we code an integer (i), by the quotient (q)

and remainder (r) of division by the divisor (d). We write the

quotient bi=dc in unary notation and the reminder i mod d in binary

notation [12]. We need a stop bit after the quotient. We can use 1

as stop bit if the quotient is written as 0 to represent the unary

form. In case of Rice coding, we use the divisor as a power of 2.

For example if we are coding a number 15 with divisor 4, the code

will be 000111. Golomb-Rice coding will achieve good

compression ratio. However, the decompression speed is quite

slow due to the leading unary values as we need to check a single

bit at a time during decompression [13].

2.6.5- Simple9 (S9) Coding

The basic idea of this coding technique is to pack as many

integers as possible within 32 bit words. Simple9 divides each

block into 4 status bits and 28 data bits. These 28 bits actually store

the binary representation on input blocks. These data bits can be

divided in 9 different ways: 28 1-bit numbers, 14 2-bit numbers,7

4-bit numbers, 4 7-bit numbers, 2 14-bit numbers, 1 28-bit number,

9 3-bit numbers(1 bit unused), 5 5-bit numbers(3 bits unused), 3 9-

bit numbers(1 bit unused). The 4 status bits of a 32-bit word stores

which of the 9 cases is used. During decompression, switch cases

will be used on status bits to identify each of the 9 cases and apply

a bit-mask to exact the desired bits from 32 bit word. Thus, we can

recover the original integers [13].

13

2.6.6-Frame of Reference

Frame Of Reference (FOR) maps a set of large integers to

relatively small integers. The basic approach is to identify the

range (maximum m and minimum value M) from the set of

integers. The smallest number will be coded as 0 and we will store

the difference between the smallest number and the original

number rather than storing the original set [14].

Each integer can be stored using [log2 (M - m + 1] bits.

Alternatively, if the integers are small, we may simply store the

number of bits [log2 (M – m + 1] required to store each integer: we

call this variation Binary Packing. Different authors have called

FOR by different names: Anh and Moffat called it PackedBinary

[13].

The first step of implementing this scheme is to partition the array

of values into blocks (e.g., 128 integers). We have to compute the

range of any particular partition and code the range accordingly.

Afterwards, all values in a certain block are coded in reference to

the range values. Consider a sequence of integers: 67, 78, 85, 96,

98. We can find that the numbers range from 67 to 98. Using FOR,

instead of storing the original sequence we can subtract 67 from

each of the values and code the difference only. It transforms the

sequence into 0, 11, 18, 29, 31. We can now code each of the offset

values using a maximum of 5 bits. We still need to store the

minimum value 67 in full and we need 3 bits to store the fact that 5

bits have been used to store differences.

The main drawback of this approach is that a single outlier value

might have a significant adverse effect on compression.

14

2.7- Related Works:

Some work has been proposed to compression of inverted index in

IR. To compression the inverted index the researchers have used different

compression techniques. We show some of this that related with

compression inverted index.

(Matteo Catena, Craig Macdonald, and Iadh Ounis, 2014) [7] They

show the little recent work in the literature that thoroughly compares and

analyses the performance of modern integer compression schemes across

different types of posting information (document ids, frequencies,

positions).they experiment with different modern integer compression

algorithms, Variable byte codec [10] is a byte-aligned, oblivious codec. It

uses the 7 lower bits of any byte to store a partial binary representation of

the integer x. It then marks the highest bit as 0 if another byte is needed to

complete the representation or as 1 if the representation is complete. For

example, 201 is 10000001 01001001. Their finding while this codec may

lead to larger representations, it is usually faster than Gamma in term of

decompression speed.

(Veluchamy Glory, Sandanam Domnic, 2014) [15] Also carried out an

extensive experimental evaluation on synthetic data.They have studied

and analyzed various compression techniques for 32-bit integer sequence.

They propose a new compression technique called Optimal FastPFOR,

based on FastPFOR. FastPFOR technique is a recent fast decoding

technique, but compression performance is not as high compared to

OptPFD technique .OptPFD technique give the better compression rate,

but it does not decompress fast. They technique achieves better

compression performance and decompression performance compared to

FastPFOR, OptPFD and other techniques. They found that Variable-Byte

15

compared to bitwise technique like Rice code, Variable Byte code

required a single branching condition for each byte which is more cost-

effective in terms of CPU cycles. Moreover, VByte has a poor

compression ratio since it requires one full byte to encode small integers.

(Renaud Delbru, Stephane Campinas, Krystian Samp, Giovanni

Tummarello, 2010) [16] They introduce a new class of compression

techniques for inverted indexes, the Adaptive Frame of Reference

(AFOR) that provides fast query response time, good compression ratio

and also fast indexing time. They show that significant performance

improvements can be achieved.

AFOR is specifically designed to increase update and query throughput of

web search engines. They compare AFOR to alternative approaches, and

show experimental evidences that AFOR provides well balanced

performance over three factors: indexing time, querying time and

compression ratio. In addition, AFOR is simple to implement and could

become a new compression method of reference.

AFOR is a straightforward extension of FOR, and they admit that the

technique is rather simple. However, they stress that this was the design

requirement for our extension since we believe that simplicity over

complexity is crucial for achieving high performance in compression

algorithms.

2.8- summary:

 In this chapter we describe the basic concepts that are required to

conduct this research and related work.

In next chapter we explain the old scheme of compression (Variable-

Byte) and introduce and explain to enhance scheme (Variable-5bits).

ChAPTER THREE

ANALYSIS AND DESIGN

16

3- Analysis and Design

3.1- Introduction:

As knew that this research was based on the idea of integers

compression. In this section we will explain the old method of

compression algorithm and then show weaknesses. After this we will

explain the new algorithm (improving the old algorithm).

3.2- Previous Scheme:

Variable-Byte Coding:

An integer can be compressed as a sequence of bytes using

Variable-Byte coding. Different authors referred it variously such

as v-byte, variable byte [10]. This is a byte oriented coding

technique. For every byte, the first 7 bits are used to store part of

the binary representation of the integer, and the last bit is used for a

status bit which indicates whether the next byte is part of this

integer [12]. For example, an integer k = 312 and its binary

representation is 100111000. Using variable byte coding k can be

represented by two bytes: 10000010 00111000. The status bit 0 in

the first byte (00111000) indicates that the next byte is also part of

the integer [17] See Fig 3.1.

In total, it took 16 bits to encode the number 312. While

decoding, we read byte by byte. We discard the eighth bit if it is 0

and continue reading the next bytes till we get 1 in the eighth bit

for any byte to record any integer. Variable-Byte coding is easy to

implement and known to be significantly faster than traditional bit

oriented methods [12].

The main drawback of this method is that it will take at least

1 byte to store even a small integer. In the case of encoding an

17

integer of a single bit such as 1, we have to store it using one byte

and the byte looks like 10000001. As a result, we waste 7 bits.

Thus, it can make Variable-Byte coding inefficient in terms of

compression ratio.

docIDs 200 205 214782

gaps 200 5 214577

VB code 1000001 01001000 10000101 10001101 0001100 00110001

Fig 3.1 Variable-Byte Scheme

3.3- Enhanced Scheme (Variable-5bits):

Namely enhanced scheme, we proposed scheme which we

called V5bits it enhanced to VByte scheme. An integer can be

compressed as a sequence of 5 bits using Variable-5bits coding.

This is a 5bits oriented coding technique. For every 5bits, the first

4 bits are used to store part of the binary representation of the

integer, and the last bit is used for a status bit which indicates

whether the next byte is part of this integer. For example, an

integer k = 200 and its binary representation is 11001000. Using

V5bits coding k can be represented by 10 bits: 1110001000. The

status bit 0 in the first 5 bits (01000) indicates that the next 5 bits is

also part of the integer.

 In total, it took 10 bits to encode the number 200. While

decoding, we read 5 bits by 5 bits. We discard the 5 bits if it is 0

and continue reading the next 5 bits till we get 1 in the 5 bit for any

18

5 bits to record any integer See Fig 3.2. Variable-5bits coding is

easy to implement.

docIDs 200 205 214782

gaps 200 5 214577

VB code 11100 01000 10101 10011 00100 00110 00011 00001

Fig 3.2 V5bits

To quantify the trade-offs among between two algorithms, we have

to implement apply them to randomly generated data sets. We use

some code for compression and decompression of integers written

in Java which is available as open source under the Apache License

2.0 (https://github.com/lemire/JavaFastPFOR). Along with the

implementation of the core compression algorithm, we need to

develop I own testing strategy to test and verify. All the

implementations have been written in Java using SDK version

1.8.0

In our experiment we focus on compression of integer values. The

main objective of this study is to examine and compare the

performance of enhanced V5bits scheme over VByte method.

Mainly, we comparing between them based on compression ratio

and decompression speed. We conducted our experiment based on

synthetic data sets which will be discussed in Chapter 4. We can

reproduce synthetic data at any time and perform testing on those

data. We run different trials by varying different parameters such

as number of integers, integer size, etc.

19

In order to run all of our experiments on synthetic datasets we use a

machine equipped with Intel(R) Pentium(R) CPU B960 @ 2.20

GHz 2.20 GHz processor and 2 GB of RAM.

3.4- Summary:

In this chapter we explain the variable-byte algorithm and then

show weaknesses. After this we will explain the variable-5bits algorithm.

In the next chapter, we discuss experiment on synthetic data. We describe

the nature of synthetic dataset and discussion and assess the results.

CHAPTER FOUR
EXPERIMENT AND DISCUSSION AND

EVALUATION

20

4.1-Synthetic Data
To evaluate the performance of two compression schemes we

performed thorough experiments on synthetic data. We varied different

parameters such as integer size, number of integers, etc. We analyzed the

effect of different aspects of datasets on compression.

Again, size of integers may influence the performance of compression.

Will take more bits to compress one large integer.

We can save space by compressing small integers into smaller memory

space compared to larger integers. Moreover, the difference between the

consecutive integers also influences the compression ratio when we use

delta coding or differential coding. The cardinality of the data may

influence the compression rate.

We have identified different factors that can influence the compression

size. Our final goal is to examine and compare the performance of two

compression schemes on integer’s numbers. In Our experiment we

examined not only compressed size but also compression and

decompression speed. We examined how different factors can influence

the time to compress and decompress data.

To evaluate the performance we ran several identical trials varying

characteristics such as the number of integers and the maximum length of

each integer. In the case of delta coding, the cardinality of data can

influence the compression speed. In the case of low cardinality and sorted

sequence, delta values will be smaller. So, we can examine the

compression speed by varying the cardinality of data.

In this chapter, we discuss the generation of our synthetic data.

Afterwards, we describe our experiment varying different characteristics

of data. Finally, we analyze and discussion the result.

21

4.2 Generation of Data and Discussion the Result:

To perform the experiment, we generated data with two different

parameters.

 Fixed number of integers

 Variable number of integers

After generate integers by two different parameters we applied concept of

Delta coding or differential coding between integers on two parameters.

However, these synthetic tests provide us with a reference. We can only

measure the performance of two compression algorithm based on the

comparison characteristics (See Section 2.5).

As discussed in the previous section we varied different characteristics of

data. Therefore, our first approach was to generate generating consecutive

integers from zero to a certain limit. We gave two parameters N and Max.

Our program generated consecutive integers N distinct integers from 0 to

Max and stored it to an array of integers in sorted order. We used

differential coding (See Section 2.6.2) on the input values and stored the

delta values in an array of integers. This set of delta values was used as an

input to evaluate different between two compression schemes.

In our implementation we took a delta coded integer array as an input and

ran two compression schemes and recorded the compression ratio,

compression speed and decompressing speed for every scheme.

In the case of differential coding, we storing the difference between

successive integers together with initial value: (x1, x2 = x2 - x1, x3 = x3

– x2 , ….) instead of storing the original array of integers in sorted order

such as x1, x2, … where xi+1 >= xi. This will result in non-negative

integers that are typically much smaller than the original integers.

Thus, we will be getting benefit for compressing a sequence of smaller

numbers rather than the original one.

22

In all of our experiments, we measured the timing based on CPU time. In

the case of compression and decompression, we ran every trial for 10

times and took the average of the recorded time for every trial. While

measuring the timing we consider all the encoding and decoding

operations including delta coding and prefix sum.

4.2.1 Varying Integer Size

We generated our synthetic data sets with random integers in the

range [0 – 2^31) for both V5bits and VByte schemes. We generated

integers from zero to the integer with the specified number of bits, i.e.,

the range will be from 0 to a maximum 31 bit integer which means the

interval is from 0 to 2147483648. Our test includes the integer range [0 –

2^16] [0 – 2^17], [0 – 2^18) and so on. We generated 32768 numbers of

distinct integers for every interval in sorted order and stored them into an

array for further processing. Finally, we stored the delta values. We will

get larger delta values with increase of the range, since us generating

fixed number (32768) of distinct integers in a particular interval. We

analyze the effect of integer size on compression. If we have all very

small integers we can fit those into small memory space. We have listed

the test result for both V5bits and VByte schemes. In our experiment with

synthetic data

Since us trying to evaluate the performance of two compression schemes,

we tried to measure the compression ratio, compression speed and

decompression speed for two compression schemes.

We have plotted the test results in Fig. 4.1. , Fig. 4.1 shows the result of

V5bits and VByte scheme. We found the V5bits is more compressible

compared to VByte in small integers and equal in large integers. In this

test we changed the size of integer to some certain limit. When we

generate integers within small range such as [0 – 2^16], it is obvious that

23

we will get small delta values compared to larger range like [0 – 2^31].

Therefore, when we have lot of small integers, we can compress them

into smaller memory space. For both V5bits and VByte data in Fig. 4.1,

we found small integers can be compressed into fewer bits compared to

large numbers. In the case of maximum 16 bit integers, we can compress

every integer within 5 bits or 10 bits there is an exception for Variable-

Byte, since it compresses in a byte oriented manner. Therefore, Variable-

Byte needs at least 8 bit to compress any integer.

Figure 4.1 Compression Ratio

Size of integers has some effect on compression speed as well.

Compression speed decreases with increase of size of integer. In Fig. 4.2,

we found compression speed is higher for small integers. Compression

speed decreases with increment of integers size. We measure our

compression speed in million of integers per second (mls). The V5bits

24

scheme has the lowest compressing speed compared to VByte, because

the V5bits after convert the integer into binary reading 4 bits per reading

compared with VByte reading 8 bits. To evaluate the applicability of

using any compression algorithm, we are mostly concerned about the

compressed size and decompression speed of the scheme. As a result,

most of the algorithms we used have lower compression speed compared

to decompression speed.

Figure 4.2 Compression Speed

Decompression speed was also influenced by integer size see Fig 4.3. We

used the same number of integers in every trial. We found the integer size

influenced the performance of compression in every trial. In the case of

the first trial, we have maximum number of bits is 16. Therefore, the

range of random generated integer is in between [0 – 2^16]. The

difference between consecutive integers is small for a small range of

integers.

25

In the case of a large range such as [0 – 2^31], the difference between

consecutive integers is large and we found it takes more bits to compress.

We can compress the integers into a smaller number of bits when we

have small integers and also compression and decompression time will be

significantly high for small integers compared to large integers.

Figure 4.3 Decompression Speed

4.2.2 Varying the Number of Integers

Our next approach to testing was to vary the number of integers

within the same (total) range of integers (0 – 2^31) and evaluate the

performance. In this case, we generated data sets of random integers for

both V5bits and VByte. Rather than generating a fixed number of integers

like 32768 we generated a variable number of integers in each run. In

every trial, we generated 10 integer arrays. Each of them containing same

26

number of integers in a certain pass and in every pass we changed the size

of the array by changing the number of input integers. In our experiments

we generated random integers within the same range of (0 – 2^31) but

varying the number of integers i.e., we generated 2^11 integers for each

input array in the first pass. We continued our trial by generating more

integers than in the previous trial by a power of 2. We generated 2^12 to

2^22 integers in our test. Since the range is fixed, the average difference

among random generated numbers will be higher when we generate a

small number of integers and reverse in the case of generate a higher

number of integers.

In our test, we generated data for both V5bits and VByte. We record

average of compression size, compression speed and decompression

speed. In this scenario, we ran the first 6 integers identical trials and

generated 2^11, 2^12, … 2^16 integers. In every trial, we generated random

numbers in the range (0 – 2^31). The difference among consecutive

numbers is large, since we generating fewer of integers on a fixed large

range (0 – 2^31). The differences between consecutive integers are known

as delta values. In Fig.4.4 we found that to compress integers with large

delta values takes more bits. Moreover, it takes more time to decompress.

In the case of ran the last 6 integers, we generated 2^17, 2^18, … 2^22

integers in the same range (0 – 2^31). Delta values will be lower in high

integers. As a result, we can achieve very good compression ratio and

also good decompression speed.

In Fig. 4.4, we can see the effect of number of integers on compression

size to both V5bits and VByte schemes. Compression size is increasing

whenever we generating more integers on a fixed range (0 – 2^31). We

will get small delta values when we have more integers. As a result we

can compress integers with fewer bits.

27

Figure 4.4 Compression Ratio

Fig. 4.5 shows the compression speed. We Compression speed increases

with the increment of number of integers, since delta value decreases as

the number of integers increases. We can see the effect of the number of

integers on compression speed in Fig.4.5. VByte compression speed

faster than V5bits.

28

Figure 4.5 Compression Speed

We can see in Fig. 4.6, decompression speed increases with the increase

in number of integers.

VByte faster in terms of decompression speed than V5bits.

Figure 4.6 Decompression Speed

29

In our synthetic data test, we generated a fixed number of integers and

also a variable number of integers, but in both of our cases we have seen

the size of integers influences the compression ratio and speed of

compression and decompression.

However, V5bits is clearly the winner for compression size when

generated small integers in case of fixed number of integers, and we

generated more integers in case of variable number of integers.

VByte is clearly the winner for speed of compression and decompression

but it does not compress.

4.3- Summary:

In this chapter we generating synthetic dataset and worked it for

show the results and discussion and evaluation this results.

Next chapter include conclusion and future work.

CHAPTER FIVE

CONCLUSIONS AND FUTURE WORK

30

5- Conclusions and Future Work

In this Chapter, summarized our work and review our experimental

results and the contribution of our study. Moreover, explore the possible

extension of our work.

Interested in measuring the performance of variable byte integer

compression over randomly indexes. We main criteria to evaluate

compression scheme is compression ratio, compression speed and

decompression speed. We mostly concerned about the compression ratio

and decompression speed.

Contributions

Enhanced Variable-5bits algorithm provides the best compression

ratio for small integers compare with Variable-Byte scheme in case of

fixed number of integers, and we generated more integers in case of

variable number of integers in addition to introduce trade-off between

compression ratio, compression speed and decompression speed.

Future Work

The performance of Variable-5bits compression schemes tested in

the case of synthetic data. In future we can evaluate the outcome of these

schemes by real dataset to assess real performance. Observe in the results

of experiments that did not get a high compression ratio for large

numbers, we will work to improving compression ratio for large numbers.

31

References:

[1] Kobayashi, M. and Takeda, K.:Information retrieval on the web,
ACM Computing Surveys, Vol.2, No.2, pp.144-173(2000)

[2] Dean, J.: Challenges in building large-scale information retrieval
systems: invited talk. In: Proc. WSDM ’09. (2009)

[3] Anh, V.N. and Moffat, A.: Inverted index compression using word-
aligned binary codes, Information Retrieval, Vol.8, No.1, pp.151-166
(2005)

[4] Tortman, A.: Compressing inverted files, Information Retrieval,
Vol.6, No.1, pp.5-19 (2003)

[5] Buttcher S, Clarke CLA. Index compression is good, especially for
random access. Proceedings of the 16th ACM conference on Information
and Knowledge Management, CIKM ’07, ACM: New York, NY, USA,
2007; 761–770, doi:10.1145/1321440.1321546.

[6] Witten, I.H., Bell, T.C., Moffat, A.: Managing Gigabytes:
Compressing and Indexing Documents and Images. 1st edn. (1994)

[7] On Inverted Index Compression for Search Engine Efficiency,
Catena, Matteo, Macdonald, Craig, and Ounis, Iadh – 2014, Publisher:
Springer.com.

[8] Manning, C.D., P. Raghavan, and H. Schütze, Introduction to
information retrieval, Cambridge University press Cambridge, Vol.1.
2008.

[9] F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Compression of
inverted indexes for fast query evaluation. In SIGIR’02, pages 222–229,
New York, NY, USA, 2002. ACM.

[10] Williams, H.E., Zobel, J.: Compressing integers for fast file access.
The Computer Journal 42 (1999).

[11] A. Stepanov, A. Gangolli, D. Rose, R. Ernst, and P. Oberoi. Simd-
based decoding of posting lists. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management,
CIKM ’11, pages 317–326, New York, NY, USA, 2011. ACM.

32

[12] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted
list caching in search engines. In WWW ’08, pages 387–396, 2008.

[13] V. N. Anh and A. Moffat. Inverted index compression using word-
aligned binary codes. Information Retrieval, 8(1):151–166, 2005.

[14] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations
and indexes. In ICDE ’98, pages 370–379, Washington, DC, USA, 1998.
IEEE Computer Society.

[15] Compression Inverted Index Using Optimal FastPFOR V Glory, S
Domnic - Journal of information processing, 2014 jlc.jst.go.jp.

[16] Adaptive Frame Of Reference For Compressing Inverted Lists.
Renaud Delbru, Stephane Campinas, Krystian Samp, Giovanni
Tummarello. DERI TECHNICAL REPORT 2010-12-16 DECEMBER
2010.

[17] Performance Evaluation of Fast Integer Compression Techniques
Over Tables, Ikhtear Md. Sharif Bhuyan, Dean of Graduate Studies, The
University of New Brunswick, November 2013.

