

1

CCHHAAPPTTEERR OONNEE

IINNTTRROODDUUCCTTIIOONN

1.1: Background

 It was not until the end of eighteenth century that instruments and methods

attained a degree of refinement sufficient for the needs of figure

determination. Since then, much geodetic work has been accomplished in

Europe, America, Australia, India and Africa, and knowledge of the

dimensions of the earth has steadily grown.

What is this subject of geodesy? Is it just an esoteric area of science with

little modern practical application, or does it function quietly to the benefit

of all but receive little public attention? Is it a product of the age of

electronics, or does have a much longer history? In brief, what is it, how

has it developed, what areas of live does it impinge upon, and how it put to

the practical use? (Smith, J.R., 1997)

Definitions vary from the inevitable one line (Science of measuring the

earth, or surveying any large part to it).

Geodesy, literally, means dividing the earth, and as a first objective of the

practice of geodesy should provide an accurate framework for the control

of national topographical surveys (Mertikas, 2011). Thus geodesy is the

science that determines the figure of the earth and the interrelation of

selected points on its surface by either direct or indirect techniques. (Torge,

1996)

These characteristics further makes it a branch of applied mathematics, one

that must include observations that can be used to determine the size and

shape of the earth and the definition of coordinate systems for three

dimensional positioning, the variation of phenomena near to or on the

surface, such as gravity, tides, earth rotation, crustal movement, and

deflection of the plumb line (vertical); together with units of measurement,

and methods of representing the curved earth surface on a flat sheet of

paper.

Nowadays there is a trend today for the term geodesy to be applied in an

umbrella manner particularly in the European community, to describe all

2

activities from valuation, land management, soil testing, cartography,

boundary surveys, land information systems, and in fact every activity

except geodesy in its traditional definition! In addition we now are pressed

to use the term Geomatics to cover almost as wide a selection as the above

list. May be it will soon be possible to refer to geomatic and geodesy as

covering everything that is understood to be under the authority of a

surveying engineer. (Smith, 1997)

It is good to see that geodesy is one of the important subjects for endless

applications, by the wide range of uses now being found for the global

positioning system (GPS). It is an earth - centered system, relying on earth

– orbiting satellites, but it has recreational uses in addition to survey

applications and acceptable requirements from a few millimeters to many

meters depending on the use.

However, before venturing into the realms of artificial satellites it will be

instructive to trace the origins of geodesy from the first few centuries B.C.

up to the present day. From the times of a flat earth concept, through the

sphere and spheroid to the geoid; from the knotted rope for measurement to

suspended wires, electromagnetic systems, laser ranging to the moon, and

the use of orbiting satellites.

The results of geodetic measurements show that the earth very close

lyapproximates to an oblate spheroid, which is the solid generated by

rotation of an ellipse about its minor axis. The actual figure, considered as a

gravitational equipotential surface at mean sea level, deviates slightly and

irregularly from a true spheroid, and this is recognized by giving it the

name "geoid" since, however, geodetic computations can be made with

sufficient precision on the assumption of a spheroidal form; figure

determinations are directed to ascertaining the dimensions of the spheroid

which most nearly coincides with the actual figure. (Smith, 1997)

11..22 OObbjjeeccttiivveess ooff tthhee TThheessiiss

1. To establish an optimum model for the densification of orthometric

heights.

2. To establish an adequate model for densification of geoidal heights.

3. To enable topographic maps of different scales and contour intervals

to be prepared using GPS / GIS techniques.

3

11..33 TThheessiiss llaayyoouutt

The thesis consists of seven Chapters, including this introductory Chapter,

in addition to two appendices. The other Chapters are summarized as

below:-

Chapter two contains the different types of reference ellipsoids with

various types of vertical datum, and mean sea level presented.

In Chapter three details the digital terrain modeling, data collection,

measurements pattern, and modeling technique are presented.

Chapter four discusses the least squares collocation, the covariance

matrices, the signal, the noise, and the solution of parameters.

Chapter five details the modeling program, study area, data collection for

control work. It is also includes Instruments used and methodology, the

programming language, back ground, design goals, and applications.

Chapter six outlines the results of the tests carried out using the developed

program.

Chapter seven summarizes the conclusions and recommendations for future

work.

4

CHAPTER TWO

REFERENCE ELLIPSOIDS AND VERTICAL DATUMS

 2.1 Background

Mapping involves determining geographic locations of features on the

earth, transforming these locations on flat maps through selected map

projections and graphically symbolizing these features. Geographic

locations are specified by geographic coordinates called latitude and

longitude. To establish a system of geographic coordinates, we first must

know the shape and size of the earth.

The earth is a very smooth geometrical figure. Much of the earth surface

appears rugged and rough to us, but even the heights peaks and deepest

ocean trenches are barely noticeable irregularities on the smoothly

curving surfaces. (Robinson, Arthur Howard, 1995)

We have to examine three ever more accurate approximations to the earth’s

shape: the sphere, the ellipsoid, and the geoid.

 2.1.1 Spherical earth

More than 2000 years ago most educated people knew that, if we disregard

such features as hills and valleys, the earth is spherical in shape. This

understanding was due in part to the teaching of Pythagoras (6
th

 century

B.C.) that human must live on a body of the ― perfect shape ‖- a perfect

sphere. More compelling, however, were Aristotle’s (4th century B.C.)

arguments for spherical earth. He noted that sailing ships always disappear

from view hull first, mast last, rather than becoming ever smaller dots on

the horizon of a flat earth. And the earth’s spherical shape becomes widely

accepted in ancient Greece and later civilizations with access to Greek

writings. (Martin, 2005)

Determining the spherical earth’s size was another matter. Again, the first

calculation was made by a Greek Scholar. About 250 B.C. Eratosthenes,

head of a great Egyptian library in Alexandria, came close to the figures for

the earth’s circumference we now accept.

5

 2.1.2 Ellipsoidal earth

Until the late 1600s, the earth was thought to be perfectly spherical in

shape. The change came around 1670, when Isaac Newton proposed , as a

consequence of his theory of gravity, that there is a slight bulging of the

earth at the equator due to the greater centrifugal force generated by the

earth’s rotation. This equatorial bulging would produce a slight flattening at

the poles, predicted by Newton to be about 1/300
th
 of the equatorial radius.

Newton’s prediction was confirmed by measurements taken from 1735 to

1743 by expeditions sent to Ecuador and Finland to measure the ground

distance for one degree of angular change (one degree of latitude) in

equatorial and Polar Regions. The polar distance was found to be slightly

greater due to flattening.

From 1800 to the present date, at least 20 determinations of the earth’s radii

and flattening (oblateness) have been made from measurements taken at

widely different locations.

 2.1.3 Geoidal Earth

An even more faithful figure of the earth, called the geoid (meaning earth

like), deviates, ever so slightly, from the ellipsoid in an irregular manner.

The geoid is the three dimensional shape that would be approximated by

mean sea level in the oceans and the surface of a series of hypothetical sea

level canals criss-crossing the continents. In more special terms, it is a sea

level equipotential surface, the surface on which gravity is everywhere

equal to its strength at mean sea level. If the earth were of uniform

geological composition and devoid of mountain ranges, ocean basins, and

other vertical irregularities, the geoid surface would match the ellipsoid

exactly. However, due primarily to variations in rock density and

topographic relief, the geoid surface deviates from the ellipsoid by up to

100m in certain locations. (Maximenko and Niiler, 2005).

Note that the ―hills and valleys‖ on the geoid do not correspond with

continents and oceans.

Indeed the highest point on the geoid is 75 meters above the ellipsoid in

New Guinea and the lowest point is 104 meters below at the Southern tip of

India.

6

 2.1.4 The World Geoidetic System

The World Geodetic System of 72 and 84 ellipsoids, determined from

satellite orbital data, are considered more accurate than the earlier ground

measurement determinations, but may not give the best fit for a particular

part of the earth. The Clarke 1866 ellipsoid, based on measurements taken

in Europe, India, Peru, Russia, and South Africa, is of special interest in the

United States, since it has been used for mapping in North America until

recently. North America cartographers are now rapidly switching to the

WGS 84 ellipsoid, which is a global standard.

2.2 Reference Ellipsoids

A reference ellipsoid, also called spheroid, is a simple mathematical model

of the Earth’s shape. An ellipsoid of revolution, or simply an ―ellipsoid,‖ is

the shape that results from rotating an ellipse about one of its axes.

Oblate ellipsoids are used for geodetic purposes because the Earth’s polar

axis is shorter than its equatorial axis.

2.3 Local Reference Ellipsoids

Datums and cartographic coordinate systems depend on a mathematical

model of the Earth’s shape upon which to perform trigonometric

computations to calculate the coordinates of places on the Earth and in

order to transform between geocentric, geodetic, and cartographic

coordinates. The transformation between geodetic and cartographic

coordinates requires knowledge of the ellipsoid being used, (Bugayevskiy

& Snyder 1995, Qihe, Snyder & Tobler 2000, Snyder 1987).

The transformation from geodetic to geocentric Cartesian coordinates is

accomplished by Helmert’s projection, which also depends on an ellipsoid

(Heiskanen & Moritz (1967)) as does the inverse relationship; Meyer

(2002).

Measurements taken must be reduced to a common surface for geodetic

surveying, and a reference ellipsoid provides that surface. Therefore, all

geodetic horizontal datums depend on the availability of a suitable

reference ellipsoid.

7

Until recently, the shape and size of reference ellipsoids were established

from extensive, continentalsized triangulation networks and Gore, (1889),

Crandall (1914), Shalowitz,(1938), Schwarz (1989), Dracup (1995), Keay

(2000), although there were at least two different methods used to finally

arrive at an ellipsoid

• The ―arc‖ method for Airy 1830, Everest 1830, Bessel 1841 and Clarke

1866.

• The ―area‖ method for Hayford (1909).

The lengths of (at least) one starting and ending baseline were measured

with instruments such as rods, chains, wires, or tapes and the lengths of the

edges of the triangles were subsequently propagated through the network

mathematically by triangulation.

For early triangulation networks, vertical distances were used for

reductions and typically came from trigonometric heights or barometric

measurements the result of this was that each region in the world thus

measured had its own ellipsoid, and this gave rise to a large number of

them; (DMA (1995) and Meyer (2002)). It was impossible to create a

single, globally applicable reference ellipsoid with triangulation networks

due to the inability to observe stations separated by large bodies of water.

Local ellipsoids did not provide a vertical datum in the ordinary sense, nor

were they used as such.

Before GPS, all high-accuracy heights were measured with some form of

leveling, and determining an ellipsoid height from an orthometric height

requires knowledge of the deflection of the vertical, which is obtained

through gravity and astronomical measurements (Heiskanen & Moritz

(1967).

Deflections of the vertical, or high-accuracy estimations thereof, were not

widely available prior to the advent of high-accuracy geoid models.

Second, the location of a local ellipsoid was arbitrary in the sense that the

center of the ellipsoid need not coincide with the center of the Earth

(geometric or center of mass), so local ellipsoids did not necessarily

conform to mean sea level in any obvious way.

8

In summary, local ellipsoids are essential in geodetic coordinates

computation, geoidal determination, satellite orbit determination, and

cartographic coordinate systems .As reported by Fischer (2004).

2.4 Equipotential Ellipsoids

Global reference ellipsoids have been created using Very Long Baseline

Interferometry (VLBI) for GRS 80 (Moritz 2000)), satellite geodesy for the

World Geodetic System 1984 (WGS 84) (DMA 1995), along with various

astronomical and gravitational measurements. Very long baseline

interferometry and satellite geodesy permit high-accuracy baseline

measurement between stations separated by oceans. As a result, these

ellipsoids model the Earth globally; they are not fitted to a particular local

region.

Both WGS 84 and GRS 80 have size and shape such that they are a best-fit

model of the geoid in a least-squares sense. Quoting Moritz (2000), The

Geodetic Reference System 1980 has been adopted at the XVII General

Assembly of the International Union of Geodesy and Geophysics (IUGG)

in Canberra, December 1979, by declaring the following (recognizing that

the Geodetic Reference System 1967 , no longer represents the size, shape,

and gravity field of the Earth to an accuracy adequate for many geodetic,

geophysical, astronomical and hydrographic applications and considering

that more appropriate values are now available, recommends that the

Geodetic Reference System 1967 be replaced by a new Geodetic Reference

System 1980, also based on the theory of the geocentric equipotential

ellipsoid, defined by the following constants)

• Equatorial radius of the Earth: a = 6378137 m;

• Geocentric gravitational constant of the Earth (including the

atmosphere):

 GM = 3, 986, 005 × 10³m³s−²

• Dynamical form factor of the Earth, excluding the permanent tidal

 deformation:

 J2 = 108, 263 × ; and

• Angular velocity of the Earth:

9

 ω = 7292115 × rad .

Equipotential ellipsoid models of the Earth constitute local ellipsoids,

which are purely geometric, whereas equipotential ellipsoids include the

geometric but also concern with gravity. Indeed, GRS 80 is called an

―equipotential ellipsoid‖ (Moritz 2000) and, using equipotential theory

together with the aforementioned listed above, one derives the flattening of

the ellipsoid rather than measuring it geometrically.

Datums that employ GRS 80 and WGS 84 (e.g., (North American Datum

(NAD) 83, International Terrestrial Reference System (ITRS), and WGS

84) are intended to be geocentric, meaning that they intend to place the

center of their ellipsoid at the Earth’s center of gravity. It is important to

note, however, that NAD 83 currently places the center of GRS 80 roughly

two meters away from the center of ITRS and that WGS 84 is currently

essentially identical to ITRS.

Equipotential ellipsoids are both models of the Earth’s shape and first-order

models of its gravity field. Somiglinana (1929) developed the first rigorous

formula for normal gravity (Heiskanen & Moritz (1967)) and the first

internationally accepted equipotential ellipsoid was established in 1930. It

had the form: (Blakely 1995)

g0 = 9.78046(1 + 0.0052884 sin
2
 φ − 0.0000059 sin

2
 2 φ) (2.1)

Where

g0 = acceleration due to gravity at a distance 6,378,137 m from the center

of the idealized Earth; and

φ = geodetic latitude

The value g0 is called theoretical gravity or normal gravity. The

dependence of this formula on geodetic latitude will have consequences

when closure errors arise in long leveling lines that run mostly north-south

compared to those that run mostly east-west.

The most modern reference ellipsoids are GRS 80 and WGS 84. As given

by (Blakely, 1995).The closed-form formula for WGS 84 normal gravity is:

g0=9.7803267714*(1+0.00193185138639sin
2)/(1−0.00669437999013

sin
2
 φ)

 ½
 (2.2)

10

2.5 Equipotential Ellipsoids as Vertical Datums

Equipotential ellipsoids are more suitable to be used as vertical datums in

the ordinary sense than local ellipsoids and, in fact, they are used as such.

In particular, GPS-derived coordinates expressed as geodetic latitude and

longitude presents the third dimension as an ellipsoid height.

Equipotential ellipsoids are models of the gravity that would result from a

highly idealized model of the Earth; one whose mass is distributed

homogeneously but includes the Earth’s oblate shape, and spinning like the

Earth. The geoid is not a simple surface compared to an equipotential

ellipsoid, which can be completely described by just the four parameters

listed before. The geoid’s shape is strongly influenced by the topographic

surface of the Earth. The geoid is a convex surface by virtue of satisfying

the Laplace equation, and its apparent concavity is a consequence of how

the geoid is portrayed on a flat surface (Van´ıˇcek & Krakiwsky 1986).

Equipotential ellipsoids are useful as vertical datums, they are usually

unsuitable as a surrogate for the geoid when measuring orthometric heights.

Equipotential ellipsoids are ―best fit‖ over the entire Earth and,

consequently, they typically do not match the geoid particularly well in any

specific place. (Meyer, T.H., Roman, D.R. and Zilkoski, D.B., 2006)

2.6 The World Geodetic System 1984 (WGS 84)

It is the reference frame used by the U.S. Department of Defense and is

defined by the National Geospatial-Intelligence Agency (NGA) to cover

the entire world in its scope. This is a great advantage over NAD 27 and

NAD 83, even though it is set up similarly to NAD 83. WGS 84 is used by

the Department of Defense for its mapping needs, including its GPS

"broadcast" and "precise" orbits.

In January 1987, it became the default standard datum for coordinates

stored in recreational and commercial GPS units. Since its inception, WGS

84 has been updated twice, most recently in 2008, to increase its operability

with GPS systems.

file:///H:/wiki/index.php/GPS

11

 2.6.1 Adindan Sudan local Datum

Adindan datum is the historical local datum of Sudan that all triangulation

and traverse network observations has subsequently been reduced to it, also

it has been used as Geodetic Datum in A Eritrea , Ethiopia Burkina Faso,

Cameroon, Mali and Senegal.

Adindan references the Clarke 1880 (RGS) ellipsoid of a semi major axis

of 6378249.145 m, and 293.465 reciprocal of the flattening (1/f), and the

Greenwich prime meridian.

Adindan base terminal ZY was chosen as the origin of 22º 10' 7.1098"

latitude (North) and 31º 29' 21.6079" longitude (East), with azimuth of 58º

14' 28.45" from the north to YY.ZY is now about 10 meters below the

surface of Lake Nasser.

Adindan is a geodetic datum. The 12th parallel traverse of 1966-70 (Point

58 datum, code 6620) is connected to the Adindan network in western

Sudan. This has given rise to misconceptions that the Adindan network is

used in west Africa.

Since all existing maps and old survey information in Sudan are reduced to

adindan national datum. Informations about Adindan network is needed.

Relationship between the world geodetic system 1984 (WGS84) and the

local geodetic datum need to be established.

2.7 Mean Sea Level

Mean sea level was long considered a satisfactory approximation to the

geoid and therefore suitable for use as a reference surface. It is now known

that mean sea level can differ from the geoid by up to a meter or more, but

the exact difference is difficult to determine.

For heights, the most common datum is mean sea level. Using mean sea

level for a height datum is perfectly natural because most human activity

occurs at or above sea level. The NGS Glossary definition of mean sea

level is ―The average location of the interface between ocean and

atmosphere, over a period of time sufficiently long so that all random and

periodic variations of short duration average to zero.‖

12

The National Oceanic and Atmospheric Administration’s (NOAA)

National Ocean Service (NOS) Center for Operational Oceanographic

Products and Services (CO-OPS) has set 19 years as the period suitable for

measurement of mean sea level at tide gauges (National Geodetic Survey

Reports 1986). The choice of 19 years was chosen because it is the smallest

integer number of years larger than the first major cycle of the moon’s orbit

around the Earth. This accounts for the largest of the periodic effects

mentioned in the definition. Bomford (1980) and Zilkoski (2001). Local

mean sea level is often measured using a tide gauge.

Figure 2.1 depicts a tide house, ―a structure that houses instruments needed

to measure and record the instantaneous water level inside the tide gauge

and built at the edge of the body of water whose local mean level is to be

determined.‖

By this time it was a known fact that not all mean sea-level stations have

the same height.

To begin with, all mean sea-level stations are at an elevation of zero by

definition. Second, water seeks its own level, and the oceans have no

visible constraints preventing free flow between the stations (apart from the

continents).

According to differences in temperature, chemistry, ocean currents, and the

water in the oceans is constantly moving at all depths. Seawater at different

temperatures contains different amounts of salt and, consequently, ocean

eddies, mean sea level is not at the same height everywhere.

13

Figure 2.1: The design of a NOAA tide house and tide gauge used for

measuring mean sea level. Source: (NOAA 2007).

has density gradients. These density gradients give rise to immense deep-

ocean cataracts that constantly transport massive quantities of water from

the poles to the tropics and back (Broecker 1983, Ingle 2000, Whitehead

1989). The sun’s warming of surface waters causes the global-scale

currents that are well-known to mariners in addition to other more subtle

effects (Chelton, et al 2004). Geostrophic effects cause large scale,

persistent ocean eddies that push water against or away from the

continents, depending on the direction of the eddy’s circulation. These

effects can create sea surface topographic variations of more than 50

centimeters (Srinivasan 2004). As described by Zilkoski (2001), the

differences are due to currents, prevailing winds and barometric pressures,

water temperature and salinity differentials, topographic configuration of

the bottom in the area of the gauge site, and other Physical causes (Tide is

the major).

In essence, these factors push the water and hold it up shore or away-from-

shore further than would be the case under the influence of gravity alone.

 2.7.1 Sudan Mean Sea Levels (MSL) Height

There are two Datum's for mean sea level in Sudan namely irrigation datum

14

and Sudan survey authority datum.

 2.7.1.1 Irrigation Datum

The survey of bench-mark referred to this datum is made by survey of

Egypt and it is divided into two sections:

(1) North of Khartoum which is referred to Alexandria mean sea level,

and running a line of a precise leveling from Alexandria to

wadi Halfa. in 1906-and 1907 a second order leveling was run from Wadi

Halfa to a polt Bench-mark in Sudan ministry of irrigation.

(2) South of Khartoum assuming gauge height of 360. 000 meters as Zero

of Khartoum Gauge.

The bench mark monument referred to this datum (bolt and Pile) is similar

to that of the Sudan survey authority.

 2.7.1.2 Sudan Survey Authority Datum

This is the official Sudan Mean Sea Level datum (M.S.L), it's refereed to

mean sea level at Alexandria Port. A precise leveling has been carried out

from Alexandria and the Bench mark is of permanent nature, either a pile

or a bolt. The bolt benchmark is the one chiseled into a wall, or that are

permanently attached to a stable foundation, such as concrete posts, bridge,

buildings, or a specifically constructed concrete block. These markers are

then used as starting control points by subsequent surveyors and other users

to establish the elevation of nearby points. Most of the Sudan survey

authority's benchmarks still exist but others are damaged. The description

of those Benchmarks is now misleading and needs to be updated to easily

be found.

2.8 Tidal Datums

 2.8.1 Principal Tidal Datums

A vertical datum is called a tidal datum when it is defined by a certain

phase of the tide. Tidal datums are local datums and are referenced to

nearby monuments. Since a tidal datum is defined by a certain phase of the

tide there are many different types of tidal datums. Mean Higher High

Water (MHHW), Mean High Water (MHW), Mean Sea Level (MSL),

Mean Low Water (MLW), and Mean Lower Low Water (MLLW).

15

A determination of the principal tidal datums is based on the average of

observations over a 19-year period,. A specific 19-year metonic cycle is

denoted as a National Tidal Datum Epoch (NTDE). Users need to know

which NTDE their data refer to.

• Mean Higher High Water (MHHW): MHHW is defined as the arithmetic

mean of the higher high water heights of the tide observed over a specific

19-year metonic cycle denoted as the NTDE. Only the higher high water of

each pair of high waters of a tidal day is included in the mean. For stations

with shorter series, a comparison of simultaneous observations is made

with a primary control tide station in order to derive the equivalent of the

19-year value (Marmer 1951).

• Mean High Water (MHW) is defined as the arithmetic mean of the high

water heights observed over a specific 19-year metonic cycle. For stations

with shorter series, a computation of simultaneous observations is made

with a primary control station in order to derive the equivalent of a 19-year

value. The survey carried out in 1958 to connect the two datum's show

there're three meters difference between the two systems. (Marmer 1951).

• Mean Sea Level (MSL) is defined as the arithmetic mean of hourly

heights observed over a specific 19-year metonic cycle. Shorter series are

specified in the name, such as monthly mean sea level or yearly mean sea

level (Marmer, 1951, Hicks, 1985).

• Mean Low Water (MLW) is defined as the arithmetic mean of the low

water heights observed over a specific 19-year metonic cycle. For stations

with shorter series, a comparison of simultaneous observations is made

with a primary control tide station in order to derive the equivalent of a 19-

year value (Marmer 1951).

• Mean Lower Low Water (MLLW) is defined as the arithmetic mean of

the lower low water heights of the tide observed over a specific 19-year

16

Metonic cycle. Only the lower low water of each pair of low waters of a

tidal day is included in the mean.

 2.8.2 Other Tidal Datums

Other tidal values typically computed include the Mean Tide Level (MTL),

Diurnal Tide Level (DTL), Mean Range (MR), Diurnal High Water

Inequality (DHQ), Diurnal Low Water Inequality (DLQ), and Great

Diurnal Range (GDR).

• Mean Tide Level (MTL) is a tidal datum which is the average of Mean

High Water and Mean Low Water.

• Diurnal Tide Level (DTL) is a tidal datum which is the average of Mean

Higher High Water and Mean Lower Low Water.

• Mean Range (MR) is the difference between Mean High Water and Mean

Low Water.

• Diurnal High Water Inequality (DHQ) is the difference between Mean

Higher High Water and Mean High Water.

• Diurnal Low Water Inequality (DLQ) is the difference between Mean

Low Water and Mean Lower Low Water.

• Great Diurnal Range (GDR) is the difference between Mean Higher High

Water and Mean Lower Low Water.

All of these tidal datums and differences have users that need a specific

datum or difference for their particular use. The important point for users is

to know which tidal datum their data are referred to. Like geodetic vertical

datums, local tidal datums are all different from one another, but they can

be related to each other.

17

CHAPTER THREE

DIGITAL TERRAIN MODELING

3.1 Introduction

Digital terrain modeling is a particular form of computer surface modelling

that numerically represent the surface of the Earth. The initial concept of a

digital terrain model (DTM) originated in the USA during the late 1950s

(Miller and La Flarnme, 1958).

The term DTM originally referred to the use of cross-sectional height data

to describe the terrain. Other terms are Digital Elevation Model (DEM),

Digital Height Model (DHM), Digital Ground Model (DGM), and Digital

Terrain Elevation Model (DTEM), are also used to describe the same

process.

3.2 Sources of data:

The three main methods which can be used to acquire elevation data are:

(i) Ground survey methods.

(ii) Photogrammetric methods.

(iii) Graphics digitizing methods.

 3.2.1 Ground survey methods

In ground survey method, elevation data can be acquired by using the total

stations , Global Positioning System (GPS), and digital levels.

 3.2.2 Photogrammetric methods

In photogrammetric methods elevation data can be acquired by using

digital plotters.

 3.2.3 Graphics digitizing methods

In this method the actual DTM spot height or elevation data is derived by

interpolation from the digitized contour lines contained in existing

topographic maps.

18

3.3 Measurement patterns

The required terrain elevation information may be obtained in any one of

several sampling patterns.

 3.3.1 Systematic sampling

The spot heights may be measured in a regular geometric (square,

rectangular, triangular) pattern (Fig. 3.1).

 3.3.2 Progressive sampling

Originally proposed by Makarovic of the I.T.C., of the Netherlands

(Makarovic, 1973, 1975).The measurement of grid points is varied in

different parts of the grid, to matched the local roughness of the terrain

surface (Fig. 3.2), to automatically or semi automatically optimize the

relationship between specified accuracy, sampling density and terrain

characteristics.

 Hexagonal Square

19

Figure 3.1 Regular grid patterns

Figure 3.2 Progressive sampling

 3.3.3 Random sampling

It is widely used by field surveyors and photogrammetrists, to measure

heights selectively at significant points only-at the tops of hills, in hollows

and along breaks of slope, ridge lines and streams. The measured points

will be randomly located, that is, an irregular network of points during the

reconnaissance and interpretation of the terrain features.

 3.3.4 Composite sampling

It combines the elements of both of the above approaches (Makarovic,

1977).The basic grid-measuring pattern will be supplemented by the

Rectangular
Triangular

20

measurements made at significant points in the terrain, e.g. on hill tops,

along break lines and streams, as, mentioned in 3.3.3.

 3.3.5 Measured contours

To have the measurements in the form of digital coordinate data, contours

are measured in a stereo model or from an existing topographic map over

the whole area to be modeled.

3.4 Modelling techniques

Programs written for terrain modelling applications in surveying

engineering, basically follow one or another of two main approaches:

(i) They make use of height data which has been collected or

arranged in the form of a regular (rectangular or square) grid

(ii) They are based on a triangular network of irregular size, shape

and orientation, based on randomly-located height data,

As Fig. 3.3 shows, these two approaches can be conducted either wholly

independent of one another or they can be combined to give a composite or

hybrid approach to terrain modeling and contouring.

 3.4.1 Grid-based terrain modelling

The data comprising the terrain model is measured or collected in the form

of a regular grid. Direct modelling of the grid can take place. A digital

terrain data will often have been collected at specific locations, either in the

field using GPS, or by photogrammetric methods. A preliminary random-

to-grid interpolation must be carried out which converts this measured data

to a suitably dimensioned regular grid.

Usually the following interpolation methods are distinguished:

(i) Point wise methods

(ii) Global methods

(iii) Patch wise methods

21

Figure 3.3 Overall relationships between measured point data, networks

and contours in terrain modeling

 3.4.1.1 Point wise methods

These involve the interpolation of the values of the terrain elevation at each

specific grid node from its neighboring randomly-located measured height

points. The determination of the height of each individual point are based

on a search for the set of nearest neighbors, followed by the averaging of

their heights weighted inversely by some function of their respective

distances d from the position of the grid node. This weight w= 1/d
m
 where

m

is the power used, typically in the range 0.5 to 4.

If the measured terrain model data takes the form of contours,

another form of search may be implemented via the so-called

sequential steepest slope algorithm described by Leberl and Olsen

(1982) (Fig. 3.4). In this procedure, a search is made along each of the

four lines passing through the required grid node and oriented along the

grid directions (VV and HH) and their bisectors (U U and GG). The

intersection of each of the eight directions with the nearest contours is

established and the slope of each of the four lines calculated. The line with

the steepest slope is then selected, and the value of the elevation of the grid

node established by linear interpolation along this line-for instance, in the

example shown in Fig. 3.4, search line GG is the steepest, and the height of

the grid node P is derived from

Measured Regular Grid

point Data

Measured Randomly

Located Point Data

Triangular Network Regular Grid Network

Contours

(Angular or curved)

22

Hp= [H1- H 5]/(1, 5)[(P, 5) + H 5

 3.4.1.2 Global methods

These involve the fitting of a single three-dimensional surface defined by a

high-order polynomial through all of the measured randomly-located

terrain height points existing within the model points. (Fig. 3.5).

 3.4.1.3 Patch wise methods

These lie in an intermediate position between the point wise method and

the global method. The whole area to be modeled is divided into a series of

equal-sized patches of identical shape.

The shape of each patch is in form, typically square or rectangular. The

elevation of all the grid points falling within each individual patch can be

interpolated using these parameters.

(i) Exact-fit patches (Fig. 3.6a) may be defined in which each patch

abuts exactly on to its neighbors. The difficulty that may result

from the use of such patches is that they may result in sharp

discontinuities along their junctions, which show up markedly

when the isoclines or contours are finally produced.

(ii) The alternative is to use an arrangement of overlapping patches

(Fig. 3.6b), in which case there will be common points lying

within the overlap which will be used in the computation of the

parameters for each patch and, indeed, can be used to ensure a

smooth continuity or transition between adjacent patches.

The advantages of using patch wise methods over global methods are that

quite low order terms (parameters) can be used to satisfactorily describe

each patch. So only few unknowns need to be solved, via simultaneous

equations using least-squares method for each patch. Also, once the

unknown parameters have been solved for, it is easy to calculate the derived

points, that is, the grid nodes, by back-substitution in the functions or

equations describing the patch. However, there are also some disadvantages

of the patch wise method. In the first place, it needs much more

organization of its data and of its processing than point wise or global

23

methods. Also, the subdivision of the model surface into patches needs to

be carried out with care.

Figure 3.4 Sequential steepest slope algorithm showing cross-sections HH,

VV, UU and GG. And the intersection points in the contours (Leberl and

Olsen, 1982).

24

Figure 3.5 Global Interpolation

 3.4.1.4 Polynomials used for surface representation

Polynomial equations are used to represent the terrain surfaces in the global

and patch wise methods of interpolation. The basic general polynomial

equation used is

Zi = ao+ a1Xi + a2Yi + .,.

as shown in Table 5.1

where Zi is the height value of an individual point i

Xi , Yi are the rectangular coordinates of the point i

ao, a1, a2, etc., are the coefficients or parameters of the polynomial.

25

Figure (3.6a) Patch wise Interpolation (Exact Fit Patches)

Figure (3.6b) Patch wise Interpolation(overlapping patches)

26

Individual terms Order of

term

Descriptive

term

No. of

terms

ao Zero Planar 1

+a1X+a2Y First Linear 2

+ a3X
2
+ a4y

2
+ a5XY Second Quadratic 3

+ a6X
3
+ a7y

3
 + a8X

2
y + a9Xy

2
 Third Cubic 4

+ a10X
4
+ a11y

4
 + a12X

3
 Y + a13X

2
y

2
+ a14Xy3 Fourth Quadratic 5

+ a1SX
s
+ ...etc Fifth Quintic 6

Table 3.1 Polynomial equation used for surface representation

One such equation will be generated for each individual point i with

coordinates Xi, Yi, Zi, occurring in the terrain model. In the first step, the

values of X, Y and Z are known for each measured point present in the

overall data set or patch. Thus the values of the coefficients a1, a2, a3··· can

be determined from the set of simultaneous equations which have been set

up, one for each data point. Once the values of the coefficientsa1, a2, a3…

have been determined, then for any given grid node point with known

coordinates X, Y, the corresponding height value Z can be calculated.

To make a correct selection of the terms which will best represent or model

the terrain surface, the surveying engineer must keep in mind the shape

produced by each term in the polynomial equation (Fig. 3.7). Typical of the

simpler types of surface used to model individual grid cells or Patches are:

(i) The 4-term bilinear polynomial

Z = ao+ a1X+ a2Y+a3XY (3.2)

(ii) The I0-term cubic polynomial

Z = ao+ a1X+a2Y+ a3XY+a4X
2
+ a5Y

2
+ a6X

2
Y+ a7XY

2
 +a8X

3
+ a9Y

3
 (3.3)

(iii) The 16-term bicubic polynomial

Z = ao+ a1X+a2Y+ a3XY+a4X
2
+ a5Y

2
+ a6X

2
Y+ a7XY

2
 +a8X

2
Y

2
+ a9X

3
+ a10Y

3

+ a11X
3
Y+ a12XY

3
+ a13X

3
Y

3
+ a14X

3
Y

2
+ a15X

2
Y

3
 (3.4)

27

 3.4.1.5 Contouring from grid data

For a single grid cell (Fig. 3.8), a simple linear interpolation is carried out

along each of the four sides in turn, based on the values at the nodes. The

positions of all the contour values are determined for each side.

Fig (3.7) Surface shapes produced by individual terms in the general

polynomial equation.

Taking the data points given in (Fig. 3.9), there are four possible solutions

which give quite different positions for the contour and also a fifth

(impossible) alternative.

28

.

Figure 3.8 Grid contouring: linear contour interpolation in a single cell.

 3.4.2 Triangle-based terrain modelling

Is being used to an ever-increasing extent in terrain modeling,when every

measured data point (vertices of the triangles) is used and honored directly,

to model the terrain, from which the height of additional points may be

determined by interpolation and the construction of contours undertaken.

Entry pt.

29

Figure 3.9 Grid contouring: ambiguity in contour threading in a single cell.

 3.4.2.1 Contouring from triangulated data

As with contouring of regular gridded height points, so with randomly

located triangulated height data, there are two main options for the contour

threading.

(i) Simple linear interpolation of the contours.

(ii) Generation of curved smoothed contours using some type of function.

When the terrain model is based on triangulated data the use of direct linear

interpolation for the contour generation gives a simple and robust solution.

Ambiguities of directions can be resolved.

30

Digital terrain modeling is now a commonly used technique both in

topographic mapping and civil engineering design. It is also used widely in

other fields such as landscape planning, flight simulation and

geological/geophysical exploration where generally the accuracy

requirements of the elevation data are lower than for surveying and

engineering applications .

31

CHAPTER FOUR

LEAST SQUARES COLLOCATION

4.1 Introduction:

The classical least squares adjustment theory of Gauss has been generalized

and modified to include the theory of prediction and filtering of stochastic

processes with stationary covariance signals. The generalized theory has

been given the name ―least squares collocation‖. The mathematical

definition of collocation is given by Noritz (1980) as ―the determination of

a function by fitting an analytical approximation to a given number of

linear functions.

Historically least squares collocation is developed from least squares

prediction of gravity anomalies . The technique is mainly used in surveying

and geodesy to determine the values of quantities at points other than those

at which measurements have been made (or at which information is not

known).

An essential feature of the method is that quantities which are by nature

deterministic are described in a statistical manner, particularly by the use of

covariance matrices. we would need to establish a function (known as a

covariance function) from which it would be possible to compute the

covariance of the heights at any two points, to predict the unknown height

of a point surrounded by a number of points of known height. This function

would be in terms of quantities such as position and distance between the

points.

4.2 Covariance matrices

Consider n points (Fig 4.1) at which we know the coordinate values of a

quantity (X, Y, and H) u, i.e. we know u1, u2... un. To determine a

covariance function. Assume that the correlation of the quantity between

any two points i and j is a function only of the distance, dij, between them.

Then using all n1 pairs of points separated by a distance of up to r1 meters

we compute their covariance from

∑

32

Fig 4.1 points with known heights

The process is then repeated using all n2 pairs of points separated by a

distance greater than r1 and less than r2 meters etc. Generally we can write,

for the nk pairs of points separated by a distance greater than rk-l and less

than rk meters.

∑

The covariance matrix for the n points is now written as

 [

]

Alternatively a mathematical function, e.g.

Where a and b are constants, could be fitted to the data and subsequently

used to compute each element of Cu.

33

We now extend the concept of the covariance matrix to cover the situation

shown in Fig 4.2 where we have a quantity, u, known at points 1,2,3, etc.

Fig 4.2 points for prediction of the unknown height

but unknown at points a, b, c. In this case we find it convenient to partition

the complete vector u into two parts u1 and u2

 ⟨ | ⟩

Where contains the values of the quantity at points 1,2,3, etc. (called

data points) and contains the values at points a,b,c, etc. (called

computation points). Then the covariance matrix of u is correspondingly

partitioned

 [

]

where the generally non—square matrices C12 and C21 (note that C12 =
)

are often termed the Cross covariance matrices between the data and

computation points.

34

4.3 Least squares prediction

As a preliminary to least squares collocation we will consider the simple

case of least squares prediction. Referring to 4.1 and Fig.4.2, let u1 be a

vector of known quantities at points 1,2,3, etc. and let u2 be the unknown

values of the quantities at a, b, c, etc. Again it is emphasized that we are not

here concerned with measurement errors, i.e. u1 is perfectly known, but it is

required to estimate u2. Any linear estimates of u2, say
 , must be of the

form

 (PA Cross - 1983)

where Q is a linear transformation to be determined.

Let e* be the true error of the estimate
 , then

and substituting 4.7 in 4.8 we have

which can be rewritten as

 ⟨ | ⟩ *

+

Then applying Gauss error propagation law

 (4.11)

 to 4.10 and using 4.6 we obtain the covariance matrix of e
*

 ⟨ | ⟩ [

] *

+

35

and reorders to

Now
 is subtracted and added to 4.13 to yield

Since
 (4.14) can be written in the following expanded form

which, after putting
 , becomes

We can write (4.16) as a sum of two matrices viz.

Where

and

36

In fact any choice of Q will yield a matrix G with none—negative diagonal

elements.

This is because the ith diagonal element of C in (4.19) is given by the

quadratic form

where g is the ith row of
 and C11 is positive—definite. Hence

any choice of Q will make the variances of the error in each element of

equal to or larger than the diagonal elements of F. The minimum variance

estimate will therefore be obtained when G is a null matrix, i.e.

or

Substituting (4.22) in (4.7) gives the best (in the sense of minimum

variance) linear estimate of as

 ̂

Which, because of its minimum variance property, is also termed the least

squares estimate. (4.23) is often written in the following manner for the

prediction of u at any particular computation point p:

 ̂ [] [

]

[

]

37

Where cpi represents the vector of covariance between point p and the ith

data point and all other symbols are as previously defined, i.e. u1, u2, ..., un

are the values of the quantity at the data points and the square matrix to be

inverted is the covariance matrix of the quantities at the data points.

4.4 Collocation Mathematical Model

The model associated with ordinary least squares adjustment by parameters

is the general collocation model. This model is able to take into account

measurement errors at the data points and the possible requirement to

compute certain parameters during the prediction process.

Consider a set of data points at which we have made n observations. Let

there also be q computation points and m parameters to be recovered. As

usual we will denote the true values of the modeled observed quantities and

the parameters by the vectors ̅ and ̅ respectively. We can write down n,

generally non—linear, observation equations of the form.

 ̅ ̅

and

 ̅

where e is the total ―error‖ in the observations (i.e. the difference between

the observed and modeled quantities). In collocation this total error is

considered to be the sum of two independent errors usually called the

signal and noise, and denoted by the symbols S1 and n respectively. Hence

(4.26) is written as

 ̅

38

After linearising (4.25) using (4.27) we obtain

 —

 4.4.1: The Signal

The signal represents the inability of the model to describe the exact

relationship between the measurements and the unknown parameters ̅. In

addition, the signal may be considered to be external to the instrument and

related to the behavior of the observable in a particular medium

(Krakiwsky, 1975).

The signal may vary continuously and exists at points other than the

measuring points, thus interpolation is possible (Moritz, 1972). Another

property of the signal is that any one of its values is of an unpredictable,

arbitrary nature. Thus the signal may be considered to be stochastic

(Za’voti, 1977).

The signal quantities are statistically dependent by nature; that is the signal

is characterized by a full covariance matrix in the domain defined by the

observation and computation points. Thus; in collocation it is essential that

the signal has known second moments (variance—covariance matrix),

although the first moments (values of the signal) remain as unknowns to be

 e

 ̅

 ̅+

 ̅+ +n

Figure Fig 4.3

concept of collocation (afterseeber,1973)

39

determined. The vector is a random vector whose expectation or mean

value, is zero

 4.4.2: The Noise

In collocation terms, the measurement consists of a systematic part, ̅, and

two random parts, and n. The noise is likely to resemble a measuring

error, and is internal to the instrument. The elements of the noise vector n

are considered discrete values for each observation while the elements of S

must be regarded as realizations of a continuous random quantity at the

measuring points. Moreover, the measurement errors are assumed to be

statistically independent from S and as they are peculiar to the

measuring instrument (Krakiwsky, 1975).

The vector n is random vector whose expectation or mean value, is zero

The problem of collocation is now to estimate simultaneously the

following:

(i) the parameters x

(ii) The signal s1 and noise n at the data points.

(iii) The signal s2 at the computation points. To apply the least squares

collocation we have to know the covariance matrices of both the

signal and the noise. The covariance matrix for the noise, c1 is

obtained in the usual way (equivalent to) and Cs, the signal

covariance matrix for both the data and computation points, by a

study (equation (4.1)) of the variation of the signal where it is

known or can be estimated. Cn will often be diagonal but Cs will

invariably be a full matrix as the whole point of differentiating

between the signal and the noise is that the signal is highly

spatially (or possibly temporally) correlated and has completely

40

different statistical properties to the noise. The derivation of the

collocation equations now proceeds as follows (PA Cross-1983).

Let s be a vector containing the signal at both the data and

computation points, i.e.

 [|]

Then (4.28) can be rewritten as

 —

with

 [|]

Note that if we have q computation points then, B will have dimensions (n

+ q) x n with I, a unit matrix, being n x n and 0, a null matrix, being q×n.

We now wish to estimate x, s and n in (4.32) using the method of least

squares,i.e. minimizing

Hence, using Lagrange’s method of undetermined multipliers as in the

following equation

 (4.34)

we have

which is minimized by differentiating with respect to the unknowns and

equation to zero as follows

 ̂

41

 ̂ ̂

 ̂ ̂ (4.38)

Also the least squares estimates must satisfy (4.32),i.e.

 ̂ ̂ ̂ (4.39)

Now after dividing (4.36) to (4.38) by 2 and combining then with (4.39)

obtain the following least squares through hyper matrix.

 [

] [

 ̂
 ̂
 ̂
 ̂

] [

] (4.40)

which, can be written as

 ̂ ̂ 0

 ̂ ̂ ̂ ̂ (4.41)

 ̂ ̂

 ̂

The first two equations can be used to eliminate ̂ as follows:-

 ̂ ̂

which when substituted in the second equation yields

 ̂ ̂ ̂

This equation and the last two equations of (4.41) can be written

as

42

 [

] [
 ̂
 ̂
 ̂
] [

] (4.42)

from (4.42) we can write the following equations

 ̂

 ̂ ̂ ̂

 ̂

From the first of the above three equations it is not difficult to see that

 ̂
 ̂

Which when substituted in the second equation yields

 ̂ ̂ ̂

And when combined with the third equation, the result could be written as:-

 [

] [̂

 ̂
] *

+ (4.43)

 Substituting equation (4.33) into (4.43) gives

[
[[]] [

] *

+

] [̂
 ̂
] *

+ (4.44)

[[]] [

] *

+ (4.45)

43

where and are the variance covariance matrices of the signal at the

data computation points respectively and and are their cross-

covariance matrices.

or

 [

] [̂

 ̂
] *

+

 4.4.3: Solution for the Parameters

From (4.46) we can write:

 ̂ ̂ and

 ̂ = 0

From the first equation we obtain

 ̂ = ()

 ̂ (4.47)

 Substituting this expression for ̂ into the second equation we obtain

 ()

 ̂ ()

 = 0

from which

 ̂ (()

)

 ()

Substituting (4.48) into (4.47) results in

 ̂ ()

 ̂

Then substituting (4.49) and rearranging leads to

From

 ̂
 ̂

44

developed, and substituting in (4.49) we get

 ̂
 ()

 ̂

which is the least squares collocation expression for the signal at both the

data and computation points. The noise at the data points is obtained by

substituting 4.49 yield

from equation (4.41) ,

 ̂ ̂

And when equation ̂ from (4.49) is substituted, we get

 ̂ ()

 ̂

To derive the corresponding covariance matrices we need an expression for

the covariance matrix of the vector b.

From

[

]

 (4.52)

 in the special case of observation equations

45

substituting 4.27 gives

 ̅

Then applying (4.11) to (4.54), whilst noting that F(x°) and ̅ are not

stochastic and that we have already assumed n and s1 to be independent, we

have

substitute (4.55) in (4.48) to have

 ̂ [

]

Application of (4.11) to (4.56) gives the following expression for the

covariance matrix of the parameters:

 ̂ [

] [

]

which can be simplified to

 ̂

 * ()

 +

46

For the covariance matrix of the least squares estimates of the signal, at

both the computation and data points, substitute (4.55) and (4.56) in (4.50)

to obtain

 ̂ {

 [

]}

Then substituting (4.58) and applying (4.11) to (4.60) leads to

 ̂ {

 [

 ̅

]} {

 [

 ̂

]}

which can be simplified to

 ̂

 ̂

For the signal covariance matrix substitute (4.55) and (4.58) in (4.62) to

obtain

 ̂
 ()

 ()

 * ()

 +

 (

)

A similar treatment of (4.51) leads to the covariance matrix for the least

squares estimates of the noise at the data points

47

 ̂ ()

 ()

 * ()

 +

 (

)

Equations (4.48), (4.50), (4.51), (4.59), (4.63) and (4.64) are the working

formulae for least squares collocation.

 4.4.4 Special cases

The following three special cases can be identified.

(i) Collocation without parameters

In cases when the elements of the matrix confidents are equal to zero. A =

0 and 4.50, 4.63, 4.51 and 4.64 simplify to

 ̂
 ()

with

 ̂
 ()

and

 ̂ ()

with

 ̂ ()

(ii) Collocation without parameters and without noise

 When random errors are insignificant or the statistics of the observations

are unknown, the least squares collocation equations for the signal (4.50)

and (4.63) can be simplified to

 ̂

with

48

 ̂

(iii) Least squares prediction

When the observed (without noise) quantities and the signal are the same,

using the notation of (4.2), we have

 [|]

and

 [

] [

]

and, using (4.33) and (4.74), gives

 [

] *

+

 [

] [|]

Substituting (4.76) in (4.69) to obtain

 ̂ [|]

 [

]

Finally, substituting (4.71) and (4.72) in the left and right hand sides

respectively of (4.78), we have

[
 ̂

 ̂
] [

]

i.e.

 ̂

and

49

 ̂

with (4.81) being identical to (4.23). Hence we have shown least squares

prediction to be a special case of least squares collocation.

50

CHAPTER FIVE

THE MODELING PROGRAM

5.1 Study area (Sudan)
In river Nile state, on the left bank of the River Nile and to the north west

of Shandi Town. The study area is bounded by the following coordinates

shown in table (5.1)

Between Latitude N16˚ 35' 49" Latitude N17˚ 00' 14"
And Longitude E32˚ 45' 55" Longitude E33˚ 14' 06"

Approximate

area
100000 hectares

Table 5.1-Study area coordinates

The maps below show the borders of the study area produced on the basis

of the above given coordinates (See figures 5.1&5.2).

Figure 5.1(Study area location By Google)

51

Figure 5.2 (Study area location - Map of Sudan (National Surveying

Authority(NSA)))

 5.2 Data collection for control work

 Establishing and observing new control points to be distributed with

maximum distance of 4 kilometers between each two points within the

study area, and observed by GPS and an Automatic level.

 RTK technique (Real Time Kinematic GPS) to carry out the detail

survey and spot heights in grid lines which shall be at approximately

200X50m interval with more dense measurements on topographic

changes (e.g. water courses, mountains etc...) for the study area and

create a contour with the appropriate software. This is to be used later

to check the developed mathematical modeling programs.

 5.3 Instruments used and methodology

The filed surveying activities were carried out according to the

following procedure and methodology:

The field work was started, by carrying out reconnaissance surveying

within the study area in order for the surveying engineers to be

acquainted with the study area environment and its physical and man-

made surroundings (villages, roads, land cover, reference control points)

52

Loop 1 Loop 2

Loop 3 Loop 4

L
o
o
p
 5

 A cross check for the study area boundaries before commencing the

topographical survey works was made.

The surveying works commenced by establishing 66 new control points {K1,

K2, …, K66} in grid of 4Km×4Km covering 5 loops of 12KmX12K as shown

in the diagram 1(Fig.5.3).

 The new control points (K1-K66) coordinates, were determined using GPS

receivers in static mode with a minimum 1 hour observations for control

points within 12Km distance apart and other control points were measured by

Figure 5.3(Loops Diagram)

53

observation points technique in RTK mode. These GPS observations were

tied to the given reference control point S2080 {Second order geodetic,

point, established by the National Surveying, Authority}.

 The coordinates determined by GPS methods, were in the World Geodetic

System 1984 (WGS84), and were transformed to the Universal Transverse

Mercator (UTM) coordinates system. Also, the ellipsoid height was

converted to orthometric height {relative to mean sea level} by Earth

Gravitational Model 2008 {EGM 2008}. The site calibration method was

accomplished by using points having heights determined by automatic

levels.

Double run leveling was carried out between any two consecutive points as

shown in (Figure 5.3); thus the major leveling loop (5 in number) have

dimensions 12Km×12 Km. and the dimensions of the other smaller ones

are not precisely measured. Therefore, the loop closures were checked by

two techniques:

1- Double Run Method.

2- Close to Known points.

5.4 The programming language

A program was written in C# (pronounced ―See Sharp‖) is a simple,

modern, object-oriented, and type-safe programming language.

Figure 5.4-Program main menu screen

54

 5.4.1 Back ground

 During the .NET Framework development, a managed code compiler

system called Simple Managed C (SMC) used to write the original class

libraries. In January 1999, Anders Hejlsberg formed a team to build a

new language at the time called C-like Object Oriented Language

(COOl).

 The .NET project was publicly announced in July 2000 and during the

Professional Developers Conference, the language had been renamed

C#, and the class libraries and ASP.NET runtime had been ported to C#.

Figure 5.5 –The main menu and file pull-down menu.

C#'s designer is Anders Hejlsberg, who was previously involved with the

design of Turbo Pascal, Embarcadero Delphi (formerly Code Gear Delphi,

Inprise Delphi and Borland Delphi), and Visual J++.

C# makes use of reification to provide "first-class" generic objects that can

be used like any other class, with code generation performed at class-load

time. ((C-sharp-(Programming-language)# Cite-note-25)

55

Furthermore, C# has added several major features to accommodate

functional-style programming, culminating in the Language integrated

Query (LINQ) extensions released with C# 3.0 and its supporting

framework of lambda expressions, extension methods, and anonymous

types. These features enable C# programmers to use functional

programming techniques, such as closures, when it is advantageous to their

application.

The LINQ extensions and the functional imports help developers reduce

the amount of "boilerplate" code that is included in common tasks like

querying a database, parsing an xml file, or searching through a data

structure, shifting the emphasis onto the actual program logic to help

improve readability and maintainability.((C-sharp-(Programming-

language)# Cite-note-28)

Figure 5.6 Drive and Geoid –Ellipsoid File selection

56

 5.4.2 Design goals

The ECMA standard lists these design goals for C#

 The C# language is intended to be a simple, modern, general-purpose,

object-oriented programming language.

 The language, and implementations thereof, should provide support for

software engineering principles such as strong type checking, array

bounds checking, detection of attempts to use uninitialized variables, and

automatic garbage collection. Software robustness, durability, and

programmer productivity are important.

 The language is intended for use in developing software components

suitable for deployment in distributed environments.

 Source code portability is very important, as is programmer portability,

especially for those programmers already familiar with C and C++.

 Support for internationalization is very important.

 C# is intended to be suitable for writing applications for both hosted and

embedded systems, ranging from the very large that use sophisticated

operating systems, down to the very small having dedicated functions.

 Although C# applications are intended to be economical with regard to

memory and processing power requirements, the language was not

intended to compete directly on performance and size with C or

assembly language.

An exciting way to create versatile distributed applications. Using the same

simple syntax regardless of the language used to create a Web service or

the system on which it resides. For more advanced capabilities, you can

also create Windows Communication Foundation (WCF) services.

Any of these types may also require some form of database access, which

can be achieved using the Active Data Objects .NET (ADO.NET) section

of the .NET Framework, through the ADO.NET Entity Framework, or

through the Language Integrated Query (LINQ) capabilities of C#. Many

other resources can be drawn on, such as tools for creating networking

components, outputting graphics, performing complex mathematical tasks,

and so on

http://en.wikipedia.org/wiki/Uninitialized_variable
http://en.wikipedia.org/wiki/C_(programming_language)

57

5.5 About the Program

In this program, a worksheet is the file in which you work and store your

data .The work sheet is used to list and analyze the data which can be

entered, edited and perform required calculations needed to the entered

data.

A worksheet consists of cells organized into columns and rows.

Save a group of workbooks in a worksheet :you open a worksheet file by

using the Open command (File menu), and you must continue to save

changes you make to the worksheet using Save command (File menu).

Enter numbers, text in the cells:

1. Click the cell where you want to enter data.

2. Type the data and press ENTER or TAB.

Figure 5.7 open Geoids – Ellipsoid data file

58

delete an entry :

To delete a completed entry select the cells , rows, or columns you want to

delete , press del key

Copy and paste cells :

You can display, change, find, rearrange, analyze, relate, copy, paste and

print any data in your file.

 The examples used here are based on field observations from real

established field points in two states (Khartoum State & River Nile State).

The program main menu:

A menu is a list of options from which you select the operation you want.

(Figure 5.5).

In this program the main menu contains the following:-

 File. (figure 5.6).

 Matrices. (Figure 5.8), (Figure 5.9).

Figure 5.8 Select matrices operations form

59

Figure 5.9 Matrices pull-down menu screen

 Least Squares. (Figure 5.10), (Figure 5.11), (Figure 5.12), (Figure

5.13),(Figure 5.14).

 Help.

 About the Author.

 The assistant menu itself contains other, more specialized menus,

whose names appear across the top of your screen. In reality, only

one menu at a time can be opened.

 Opening Menus:-

 Right now, one of these menus, the file menu, is currently open . Its

options appear in a pull– down menu.

 ○ Press → once.

 Now the Matrices menu opens, revealing its pull-down menu.

 Select operation:-

 ▪ Addition.

 ▪ Subtraction.

60

 ▪ Multiplication.

 ▪ Inverse.

 ▪ Transpose.

 See Figure (Figure 5.9).

 ○ Press → once.

 Now the Least Squares menu opens, revealing its pull-down menu.

(Figure 5.10).

 ▪ Ordinary Least Squares. (Figure 5.11).

 ▪ Weighted Last Squares. (Figure 5.12).

 ▪ Collocated Least Squares→ Undulations. (Figure 5.13).

 ▪ Orthometric Height. (Figure 5.14).

 Selecting menu options :-

 The current menu is highlighted on your screen. To select a menu

option, use ↑ and ↓ or mouse to position the highlight over that

option and then press ┘enter or click the mouse.

 A drive selection sub menu appears.

 ○ Press → once.

 For Help.

 ○ Press → once.

 For Author C.V.

○ Use → and ← or a mouse to back or forth across the menu bar,

opening

 Menus as you go.

○ Reopen the file menu.

61

Figure 5.10 Least Squares pull- down menu

Figure 5.11 Blank Ordinary Least Squares Entry form

62

Figure 5.12 Blank Weighted Least Squares Entry form

Figure 5.13 Blank Geoidal Separation Entry form

63

Figure 5.14 Blank Densification of Orthometric Heights Entry form

Figure 5.15 Completed Geoidal Separation Entry form before pressing OK

64

Figure 5.16 Geoidal Separation Result after pressing OK

Figure 5.17 Geoidal Separation Prediction Form

65

Figure 5.18 Predicted Geoidal Separation

Figure 5.19 ANOVA Table (Geoidal Separation)

66

Figure 5.20 The Linear Correlation (Geoidal Separation)

Figure 5.21 Graph for Minimum And Maximum (Geoidal Separation)

67

 Figure 5.22 Drive and Densification of Orthometric Heights File selection

Figure 5.23 Densification of Orthometric Heights Open Data File

68

Figure 5.24 Completed Densification of Orthometric Heights Entry form

before pressing OK

Figure 5.25 Densification of Orthometric Heights Results after pressing

OK

69

Figure 5.26 Predicted Orthometric Heights

Figure 5.27 ANOVA Table (Orthometric Heights)

70

Figure 5.28 The Linear correlation coefficients (Orthometric Heights)

Figure 5.29 Graph for Minimum And Maximum (Orthometric Heights)

71

CHAPTER SIX
TESTS AND RESULTS

6.1 Introduction

This chapter discusses the results of various tests that were carried out with

different selected real leveling networks.

The objectives of these tests are:-

(i) To investigate a mathematical model for densification of

orthometric heights.

(ii) To find out the parameters of the following polynomials:-

 Hi = a1+ a2X+ a3Y 6.1

 Hi = a1+ a2X+ a3Y+a4XY 6.2

 Hi = a1+ a2X+a3Y+ a4XY+a5X
2
 6.3

 Hi = a1+ a2X+a3Y+ a4XY+ a5Y
2

6.4

Using the three dimensions of known existing points.

(iii) Re compute the height (Hi) of the points using the parameters (a1,

a2, a3, a4, a5), and the two dimensions of points.

(iv) To obtain the residuals from the difference of (ii) and (iii) heights.

(v) To find out the height (Hi) of the same points using the

mathematical least squares collocation model.

(vi) Compute the residuals of model predicted points.

(vii) Compare the residuals of (iv) and (vi).

(viii) To obtain the least number of height points.

(ix) To find the optimum distribution of height points.

Using the polynomials 6.1, 6.2, 6.3and

6.4

In each case the parameters of the above polynomials were obtained fitting

the polynomials to the observed data (The three dimensions of known

existing points).

(x) Re compute the height (Hi) of the points using the parameters (a1,

a2, a3, a4, a5), and the two dimensions of the same existing points.

72

(xi) Obtain the residuals from the difference of existing and computed

(predicted) heights.

(xii) The results are as in table 6.3

6.2 Computation and Methodology

The Trimble Business Center (TBC) software was used for computing the

coordinates of the newly established control points observed by RTK

technique. The surveying teams adhered to the following steps in their

computation methodology:

 GPS base line processing.

 Survey network adjustment.

 Quality assurance and quality control of data (QA/QC).

 Survey data import and export.

 Digital terrain modeling and contouring.

 Datum transformation and projection.

 Survey project management.

6.3 Mapping methodology

The following softwares were used as appropriate for producing the

deliverable products:

 Arc GIS 10.

 Land Development 2009.

 Civil 3D 2012.

 Trimble Business Center.

6.4 Map Datum

Coordinate System UTM

Zone 36N

Study area Datum Spheroid WGS84

Geoid Model EGM 2008

Coordinate Units Meters

Distance Units Meters

Height Units Meters

Origin North 500000

Origin East 0000

Table 6.1-Map Datum

73

6.5 Adjustment report for GPS observations and leveling

6.5.1 Quality Assurance and Quality Control (QA/QC) of data and

 result achievements

 6.5.1.1 Quality Assurance

Quality Assurance aims to assure that quality survey and quality results

will be built in before survey is done.

 6.5.1.2 Quality control

Quality control aims to determine that quality survey and quality results did

occur after survey was done.

In surveying the quality of a network is considered to be made up of three

factors: Economy, Precision, and Reliability (Teunissen, P.J.G. (1985).

Economy declares the total cost of designing, measuring, adjusting and

validating the survey network. Network precision, as described by the a

posteriori covariance matrix of the network coordinates (network’s

characteristics in propagating random errors). And reliability, as described

by the minimal detectable biases, expresses the ability of the redundant

observations to detect and identify specific modeling errors (internal

reliability, together with the networks characteristics in propagating these

modeling errors (external reliability).

From the given reference geodetic point S2080 to the first established

control point K01, for a distance of 50km for GPS observation and 100km

for double leveling method.(50km from S2080 to K01 + 50km from K01

to S2080).

For acceptance or rejection, a comparison was made between the obtained

GPS and the double leveling height .The difference between the two

heights is 6cm.

In addition to that the topographic surveying data (detail survey and spot

heights in grid lines) were within the following parameters:

HZ: + 10cm

V: + 5cm

Where HZ is the horizontal error and V is the vertical error.

74

And the control point’s data were within the following parameters:

HZ: + 3cm

 V: + 10 K

Where HZ is the horizontal control misclosure , V is the allowable vertical

control misclosure and K is the length in km.

Finally all field survey works and results where within the required

accuracy tolerance (acceptance).

6.6 Least Squares surface fitting

To check my prediction model program and compare it with least squares

fitting I select the South West corner of loop 3, 4X4 KM controlled by

K46, K47, and K49&K50.

Four suggested cases were used to investigate the optimum distribution and

suitable location of data points (4, 5, 6 E and 6N). See table 6.2 and figures

(6.2a to 6.8d).

Test

Area

Figure

Block

Size

(Km)

Grid Cell

(M)

No. of

observed

points

Observed Heights

Maximum

Height(m)

Minimum

Height(m)

Difference

in

Height(m)

Fig 6.2 1X1 200X100 66 458.985 457.524 1.461

Fig 6.3 1X2 200X100 126 460.253 457.524 2.729

Fig 6.4 2X1 200X100 121 459.581 457.524 2.057

Fig 6.5 2X2 200X100 231 460.253 457.524 2.729

Fig 6.6 2X4 200X100 451 463.398 457.524 5.874

Fig 6.7 4X2 200X100 441 462.200 457.524 4.676

Fig 6.8 4X4 200X100 861 463.398 455.033 8.365

Table 6.2-Gridded observed height

75

6.7 Data points configuration:-

 Fig 6.1 Master Fig 6.2a-1X1 4pts

 Fig 6.2b- 1X1 5pts Fig 6.2c- 1X1 6pts1 Fig 6.2d- 1X1 6pts2

Fig 6.3a 1X2 4pts Fig 6.3b 1X2 5pts Fig 6.3c 1X2 6pts1

76

 Fig 6.4a 2X1 4pts Fig 6.4b 2X1 5pts

 Fig 6.4c 2X1 6pts2 Fig 6.5a 2X2 4pts

Fig 6.5b 2X2 5pts Fig 6.5c 2X2 6pts1 Fig 6.5d 2X2 6pts2

Fig 6.6a 2X4 4pts Fig 6.6b 2X4 5pts Fig 6.6c 2X4 6pts1

77

 Fig 6.6d 2X4 6pts2 Fig 6.7a 4X2 4pts

 Fig 6.7b 4X2 5pts Fig 6.7c 4X2 6pts1

 Fig 6.7d 4X2 6pts2 Fig 6.8 a 4X4 4pts

 Fig 6.8b 4X4 5pts Fig 6.8c 4X4 6pts1 Fig 6.8d 4X4 6ptsS2

78

Area

Size

(km)

Grid

Figure

No. of

data

points

Polynomial

Hi = a1+

a2X+ a3Y

Hi = a1+

a2X+

a3Y+a4XY

Hi = a1+

a2X+a3Y+

a4XY+a5X
2

Hi = a1+

a2X+a3Y+

a4XY+ a6Y
2

Residual

(m)

Residual

(m)

Residual

(m)

Residual

(m)

1X1

6.2a

6.2b

6.2c

6.2d

4 0.11553 0.1153

5 0.16423 0.16423 0.16423 0.16423

6 0.12344 0.12344 0.12344 0.12344

6 0.18440 0.18440 0.18440 0.18440

1X2

6.3a

6.3b

6.3c

4 0.37347 0.37347

5 0.39807 0.39807 0.39807 0.39807

6 0.38730 0.38730 0.38730 0.38730

6 0.38730 0.38730 0.38730 0.38730

2X1

6.4a

6.4b

6.4c

4 0.47000 0.47000

5 0.52843 0.52843 0.52843 0.52843

6 0.51705 0.51705 0.51705

6

2X2

6.5a

6.5b

6.5c

6.5d

4 2.05057 2.05057

5 2.08791 2.08791 2.08791 2.08791

6 2.05310 2.05310 2.05310 2.05310

6 2.07506 2.07506 2.07506 2.07506

2X4

6.6a

6.6b

6.6c

4 3.08087 3.08087

5 3.08356 3.08356 3.08356 3.08356

6 3.09067 3.09067 3.09067 3.09067

4X2

6.7a

6.7b

6.7c

4 3.21617 3.21617 3.21617 3.21617

5 3.22300 3.22300 3.22300 3.22300

6 3.23397 3.23397 3.23397 3.23397

4X4

6.8a

6.8b

6.8c

6.8d

4 5.31513 5.31513

5 5.31597 5.31597

6 5.31957 5.31957 5.31957

6 5.32382 5.32382 5.32382

Table 6.3-Application of Polynomials in different areas

79

6.8 The mathematical modeling program surface fitting

To find out the height (Hi) of the same points using the mathematical

least squares collocation.

 Compute the residuals of predicted points using the program (fig 6.9)

Fig 6.9 Enter the dependent by shading the height column.

Enter the dependent by shading the height column.

Enter the independent by shading the coordinates (E and N) columns.

Enter the signal columns.

Enter the noise column.

Press OK.

80

Area

Size

(km)

Grid

Figure

ANOVA

Figure

No. of

data

points

Computer

Mathematical

Model

 Residual(m)

1X1

6.2a 6.12a

6.12b

6.12c

4 0.000159

6.2b 5 0.069757

 6 0.036254

6.2d 6 0.034233

1X2

6.3a 6.13a

6.13b

6.13c

4 0.027454

6.3b 5 0.440888

6.3c 6 0.486649

 6 0.490078

2X1

6.4a 6.14a

6.14b

6.14c

4 0.02525

6.4b 5 0.276836

6.4c 6 0.425709

 6

2X2

6.5a 6.15a

6.15b

6.15c

6.15d

4 0.317741

6.5b 5 0.883924

6.5c 6 1.471481

6.5d 6 1.363111

2X4

6.6a 6.16a

6.16b

6.16c

6.16d

4 1.325778

6.6b 5 3.153142

6.6c 6 3.567449

6.6d 6 2.814597

4X2

6.7a 6.17a

6.17b

6.17c

6.17d

4 0.089396

6.7b 5 2.543554

6.7c 6 1.981809

6.7d 6 1.607955

4X4

6.8a 6.18a

6.18b

6.18c

6.18d

4 0.656096

6.8b 5 1.725409

6.8c 6 5.608839

6.8d 6 5.402513

 Table 6.4-Comparison of residual according to no. of data points

81

Area

Size

(km)

Grid

Figure

ANOVA

Figure

No. of

data

points

Polynomial

Computer

Mathematical

Model

 Residual(m) Residual(m)

1X1

6.2a

6.2b

6.2c

6.2d

6.12a 4 0.12 0.00

6.12b 5 0.16 0.07

6.12c 6 0.12 0.04

6.12d 6 0.18 0.03

1X2

6.3a

6.3b

6.3c

6.3d

6.13a 4 0.37 0.03

6.13b 5 0.40 0.44

6.13c 6 0.39 0.49

6.13d 6 0.39 0.49

2X1

6.4a

6.4b

6.4c

6.14a 4 0.47 0.03

6.14b 5 0.53 0.28

6.14c 6 0.52 0.43

6.14d 6

2X2

6.5a

6.5b

6.5c

6.5d

6.15a 4 2.05 0.32

6.15b 5 2.09 0.88

6.15c 6 2.05 1.47

6.15d 6 2.08 1.36

2X4

6.6a

6.6b

6.6c

6.16a 4 3.08 1.33

6.16b 5 3.08 3.15

6.16c 6 3.09 3.57

6.16d 6 2.81

4X2

6.7a

6.7b

6.7c

6.17a 4 3.22 0.09

6.17b 5 3.22 2.54

6.17c 6 3.23 1.98

6.17d 6 1.61

4X4

6.8a

6.8b

6.8c

6.8d

6.18a 4 5.32 0.66

6.18b 5 5.32 1.73

6.18c 6 5.32 5.61

6.18d 6 5.32 5.40
Table 6.5-Comparison of residuals between polynomial and mathematical model.

82

6.9 Comparison of Results

To compare between Least Squares surface fitting and the mathematical

modeling program surface fitting see Table 6.5

From Table (6.3), identical residuals were obtained by applying the

polynomials given by equations (6.1…6.4) for all test areas, which means

that there is no difference between the terms.

An area 1kmx1km of Figure 6.2a (4points) and Figure 6.2c (6points) is

suitable for prediction of heights and it gives reasonably accurate results.

For an area 1x2 km (extending North - South), 4points located at the

corners is the better configuration.

For an area 2x1 km (extending east - west), 4points located at corners is

preferred.

For area 2x2 2km towards east and 2km towards north 4points located at

corners and 5points (four points located at the corners and one point on the

middle of the area) 4 points is better than 5 points.

For an area 2x4 km (2km towards east and 4km towards north) all points

give bad results and so also for an area 4x4 km (4km towards east and 4km

towards west).

For an area 4x2 (4km towards east and 2km towards north) 4points located

at the corners is better to be used.

From the above results and for precise works, an area of 1x1km is the best.

83

CCHHAAPPTTEERR SSEEVVEENN

CCoonncclluussiioonnss aanndd rreeccoommmmeennddaattiioonnss

77..11 CCoonncclluussiioonnss

For the future, the use of terrain modeling methods will undoubtedly

continue to develop and expand, particularly with continued improvements

in the price performance ratio of computer systems. National and regional

terrain databases based on (existing topographic maps, are now being

developed in many parts of the world, and these will play an increasingly

important role in terrain visualization during the preliminary planning

stages of engineering projects. For small site, however, the primary source

of terrain data is likely to continue to be directly measured spot heights.

FFoorr eengineering work contouring is very important. To draw contour you

need a corrected orthometric height referenced to local main sea level

(Geoid).

I found that orthometric height costs more by direct leveling methods. To

avoid that costing and time consuming job, Global Positioning System

(GPS) ellipsoidal height should be done.

To convert the ellipsoidal height to orthometric height, we need many three

dimensional control points with corrected height and known datum.

Sometimes in the office work surveyors need height points and discover

that they have to go back field.

Till then Surveyors solve the problem in the field, when they come to the

office and need more points they have no choice without going to the field

again.

This mathematical model solved this problem, by picking out the height of

points, when entering the horizontal coordinates (X, Y) of the desired

point.

The surface fitting equation

Hi = a1+ a2X+ a3Y

is adequate for production of heights in area 1kmX1km .

84

The least squares prediction model, using a covariance matrix developed

from an empirical function, gives the best results (minimum errors at check

points).

The method predicts heights for drawing contour plans with acceptable

contour intervals.

From the test it was found that the least number of data points required to

model the area is four points located at the corners.

It was found that the shape of the area and the direction of the slope are

very important.

The east - west direction and vice versa is the better direction for running

the level line.

It gave results for control point’s data within the allowable error.

The final result is that the degree of perfection used with the field data is

equal to the degree of perfection obtained by the modeling program and

both are satisfying the solution in least squares surface fitting sense.

Finally the developed program satisfies the factors of quality, Economic,

accuracy, reliability (internal and external).

7.2 Recommendations:-

1- Information about the surface topography should be accounted for, in

addition to the distance and direction of the lines.

2- For GPS (RTK) it is important to build redundancy into a survey by, for

example, occupying stations more than once.

3- The starting coordinates used in processing should be very accurate,

avoiding the errors in the ephemeris that can affect the overall quality of

the base line stations.

4- Information such as, starting time, navigated position, point number,

antenna height are useful in processing.

85

RREEFFEERREENNCCEESS

Ambrus Kenyeres, "Technology Development for GPS Heighting in

Hungary", Paper presented at the 5th International Seminar on GPS in

Central Europe 5-7 May, I 999, Penc, Hugary.

 Anonym, 1999. Golden Software, Surfer8, and User's Guide:

Contouring and 3D surface mapping for scientist and engineers,

Colorado, USA.

 Baarda, W.(1973), S-transformaions and Criterion Matrices, Neth.

Geoid. Com on Geodesy. Delft.

 Bomford, G. (1980) Geodesy, Fourth Edition, Oxford University Press,

Oxford, United Kingdom, 855 pp.

Bugayevskiy & Snyder 1995, Qihe, Snyder & Tobler 2000, Snyder 1987.

Cooper,M.A.R (1974), Fundamentals of survey measurement and

Analysis,Crosby Lockwood Staples.

Cooper MAR, Cross P.A. (1988), Statistical Concepts and their

Application in Photogrammetry and Surveying, paper published in the

photogrammetric record vol XII no. 71.

Cross PA (1983), Advanced Least Squares as Applied to The position

Fixing, Working Paper no 6, North East London Polytechnic,

department of land surveying.

Defense Mapping Agency. Datums, Ellipsoids, Grids , and Reference

Systems , DMA TM 8358.1.

Ellmann A. (2005a), Computation of three stochastic modifications of

Stokes's formula for regional geoid determination. Computers and

Geosciences, 31/6, pp. 742-755.

86

 Fagir, AH. (1984), Covariance Matrices: their structure and application

to the optimal design of geodetic networks, PhD thesis, Department

of Land Surveying, North East London Polytechnic, London,

England.

 Fotopoulos, G. (2003), An Analysis on the Optimal combination of

Geoid, Orthometric and Ellipsoidal Height Data. PhD Thesis,

Department of Geomatics Engineering, University of Calgary, Alberta,

Canada, UCGE Reports Number 201 85.

 Fuad, Kassim.A (1986), An Evaluation of Three Prediction

Techniques for the prediction of Gravity Anomalies in Canada,

University of New Brunswick ,Fredericton.

 Gulsen, Taskin ,Hasan Saygin,Multin Demiralp,Mustafa

Yanalak(2002), Least Squares Curve Fitting via High Dimensional

Model Representation for Digital elevation Model, paper presented at

Informatics Institute, Istanbul Technical University.

 Heiskanen, W.A. and Moritz, H. (1967), Physical Geodesy, W.H.

Freeman and Company, San Francisco, USA, 364 pp.

 Ibrahim A (1993), Interpretation of Gravity and magnetic data from the

Central African Rift system [Sudan]: (Ph.D. Thesis), University of

Leeds.

 Ibrahim A.A.(2009),Structure & Application of Covariance Functions

in Geodesy, Ph.D. Thesis, Department of Surveying Engineering,

Sudan University of Science & Technology,Khartoum, Sudan.

 Ibrahim A.M. (1984), The use of Eigen Values in the Analysis of

Geodetic Networks, University of London.

 Kotsakis C, Sideris MG (1999), On the adjustment of combined

GPS/levelling/geoid networks. Journal of Geodesy, Vol 73(8), 412-421.

87

 Krakiwsky, E.J. (1965), Heights, Master of Science Thesis, Department of

Geodetic Science and Surveying, Ohio State University, Columbus, USA,

157 pp.

 Leick, Alfred (1990), GPS Satellite Surveying, John Wei1y & sons.

Marmer, H. (1951), Tidal datum planes, Technical Report Special

Publication No. 135, NOAA National Ocean Service, U.S. Coast and

Geodetic Survey.

Martin, G.J., 2005. All possible worlds: A history of geographical ideas.

OUP Catalogue.

Maximenko, N.A. and Niiler, P.P., 2005. Hybrid decade-mean global sea

level with mesoscale resolution. Recent advances in marine science and

technology, pp.55-59.

Mertikas, S.P., 2011. Geodesy, Ground Positioning and Leveling. In

Encyclopedia of Solid Earth Geophysics (pp. 316-323). Springer

Netherlands.

Meyer, T.H., Roman, D.R. and Zilkoski, D.B., 2006. What does height

really mean? Part I: Introduction. Surveying and Land Information Science,

66(2), pp.127-137.

 Moritz, H. (1976) ,Covariance Functions in Least Squares Collocation,

Technical Report, Ohio University

 Niethammer, T. (1932), Levelling and weight as means for the computation

of true sea level heights, Schweizersche Geodatische Kommission, Berne,

76 pp.

 Paul (1973), A method of evaluating the truncation error coefficients for

geoidal height, Bulletin Geodesique, Vol. 47, No.4, pp. 413-425, doi:

10.1007/BF0252l951.

 Paul MK (1973), A method for evaluating the truncation error coefficients

for geoid heights. Bull Geo 110: 413-425.

88

Robinson, Arthur Howard, 1995. Early Thematic Mapping in the History of

Cartography .University of Chicago Press, 266pp

Smith, J.R., 1997. Introduction to geodesy: the history and concepts of

modern geodesy (Vol. 1). John Wiley & Sons.

 Strang, G. (1980), Linear Algebra and Applications, Academic Press ,414

pp. Oliver Schabenberger, Carol A-Gotway (2005), Statistical Methods for

"Spatial Analysis, Champman & CRC press.

 Taha F. M.(2008), Determination of Orthometric Height Using Differential

GPS Positioning,M.Sc.Thesis,Department of surveying, Sudan university

of Science & Technology,Khartoum,Sudan.

 Tenzer, R., Vani_ek, P., Santos, M., Featherstone, W.E. and Kuhn, M.

(2005) ,The rigorous determination of orthometric heights, Journal of

Geodesy, Vol. 78,No. 1-3, pp. 82-92, doi: 10.1007/s00190-005-0445-2.

 Teunissen, P.J.G. (1985): Quality Control in Geodetic Networks. In:

Optimization and Design of Geodetic Networks, Springer Verlag, pp.526-

547.

 The International Centre for Global Earth Models, ttp://icgem.gfz- potsdam

.dell/ICGEM/ evaluation/evaluation.html).

 Thomas H. Meyer, Daniel R. Roman, What Does Height Really Mean?

Part IV: GPS Heighting Paper motivated by the National Geodetic Survey's

(NGS).

 T.J.M. Kennie and G. Petrie, Engineering Surveying Technology, John

Wiley & Sons, Inc. New York.

 Torge, H.W., 1996. The International Association of Geodesy (IAG)-More

than 130 years of international cooperation. Journal of Geodesy, 70(12),

pp.840-845.

89

 Wilson, C., 1996, Assessment of Two Interpolation Methods, Inverse

Distance Weighting and Geostatistical Kriging, University of Ottawa,

course # geg-5306, Canada.

 Wolf R, Charles, D, Ghilani (1996), Adjustment Computations, John Wiley

&sons New York.

 Zhilin Li, Qing Zhu (2005), Digital Terrain Model; Principles and

Methodology, Champman & CRC press.

90

APPENDIX A

THE PROGRAM CODE

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace IbrahimPHD.Matrices

{

 public class NzMatrix

 {

 private double[,] _matrix;

 private int rowCount = 0;

 private int columnCount = 0;

 public Double this[int row, int column]

 {

 get { return _matrix[row,column]; }

 set { _matrix[row,column] = value; }

 }

 public NzMatrix(double[,] values)

 {

 _matrix = values;

 rowCount = _matrix.GetLength(0);

 columnCount = _matrix.GetLength(1);

91

 }

 public NzMatrix(int rows, int columns)

 {

 double[,] values = new Double[rows,columns] ;

 _matrix = values;

 rowCount = rows;

 columnCount = columns;

 }

 public int ColumnCount { get { return columnCount ; } }

 public int RowCount { get { return rowCount ; } }

 public static implicit operator NzMatrix(Double[,] dataArray)

 {

 return new NzMatrix(dataArray);

 }

 public static NzMatrix operator +(NzMatrix matrix1, NzMatrix matrix2)

 {

 return NzMatrix.Addition(matrix1, matrix2);

 }

 protected static NzMatrix Addition(NzMatrix matrix1, NzMatrix

matrix2)

 {

 if ((matrix1.ColumnCount != matrix2.ColumnCount) ||

(matrix1.RowCount != matrix2.RowCount))

 {

 throw new System.Exception("IbrMatrix dimensions donot

agree");

 }

 NzMatrix result = new

NzMatrix(matrix1.RowCount,matrix1.ColumnCount) ;

92

 for (int i = 0; i < matrix1.RowCount ; i++)

 for (int j = 0; j < matrix1.ColumnCount; j++)

 result[i, j] = matrix1[i, j] + matrix2[i, j];

 return result;

 }

 public static NzMatrix operator -(NzMatrix matrix1, NzMatrix matrix2)

 {

 return NzMatrix.Subtraction(matrix1, matrix2);

 }

 protected static NzMatrix Subtraction(NzMatrix matrix1, NzMatrix

matrix2)

 {

 if ((matrix1.ColumnCount != matrix2.ColumnCount) ||

(matrix1.RowCount != matrix2.RowCount))

 {

 throw new System.Exception("IbrMatrix dimensions donot

agree");

 }

 NzMatrix result = new NzMatrix(matrix1.RowCount,

matrix1.ColumnCount);

 for (int i = 0; i < matrix1.RowCount; i++)

 for (int j = 0; j < matrix1.ColumnCount; j++)

 result[i, j] = matrix1[i, j] - matrix2[i, j];

 return result;

 }

 public static NzMatrix operator /(NzMatrix matrix, Double scalar)

 {

93

 return NzMatrix.Division(matrix, scalar);

 }

 protected static NzMatrix Division(NzMatrix matrix, Double scalar)

 {

 NzMatrix result = new NzMatrix(matrix.RowCount,

matrix.ColumnCount);

 for (int i = 0; i < matrix.RowCount; i++)

 for (int j = 0; j < matrix.ColumnCount; j++)

 result[i, j] = matrix[i, j] / scalar;

 return result;

 }

 public virtual NzMatrix StdDeviation { get { return

NzMatrix.StdDv(this); } }

 protected static NzMatrix StdDv(NzMatrix matrix)

 {

 int n = matrix.RowCount;

 int k = matrix.ColumnCount;

 Double[,] columnSum = new Double[1, k];

 Double[,] columnMean = new Double[1, k];

 Double[,] StD = new Double[1, k];

 Double[,] sumOf_OminusM = new Double[1, k];

 for (int j = 0; j < k; j++)

 {

 columnSum[0, j] = 0;

 for (int i = 0; i < n; i++)

 {

 columnSum[0, j] = columnSum[0, j] + matrix[i, j];

94

 }

 columnMean[0, j] = columnSum[0, j] / n;

 sumOf_OminusM[0, j] = 0;

 for (int i = 0; i < n; i++)

 {

 sumOf_OminusM[0, j] = sumOf_OminusM[0, j] +

Math.Pow(matrix[i, j] - columnMean[0, j], 2);

 }

 StD[0, j] = Math.Sqrt(sumOf_OminusM[0, j] / (n - 1));

 }

 NzMatrix result = new NzMatrix(matrix.RowCount, 0);

 result = StD;

 return result;

 }

 public virtual NzMatrix Mean { get { return NzMatrix.mean(this); } }

 protected static NzMatrix mean(NzMatrix matrix)

 {

 int n = matrix.RowCount;

 int k = matrix.ColumnCount;

 Double[,] columnSum = new Double[1, k];

 Double[,] columnMean = new Double[1, k];

 for (int j = 0; j < k; j++)

 {

 columnSum[0, j] = 0;

 for (int i = 0; i < n; i++)

 {

 columnSum[0, j] = columnSum[0, j] + matrix[i, j];

 }

 columnMean[0, j] = columnSum[0, j] / n;

95

 }

 NzMatrix result = new NzMatrix(matrix.RowCount, 0);

 result = columnMean;

 return result;

 }

 public virtual NzMatrix CM { get { return NzMatrix.cm(this); } }

 protected static NzMatrix cm(NzMatrix matrix)

 {

 NzMatrix result = new NzMatrix(matrix.RowCount, 0);

 /*

 int n = matrix.RowCount;

 int k = matrix.ColumnCount;

 Double[,] columnSum = new Double[1, k];

 Double[,] columnMean = new Double[1, k];

 for (int j = 0; j < k; j++)

 {

 columnSum[0, j] = 0;

 for (int i = 0; i < n; i++)

 {

 columnSum[0, j] = columnSum[0, j] + matrix[i, j];

 }

 columnMean[0, j] = columnSum[0, j] / n;

 }

 result = columnMean;

 */

 //////// CMArrayyy = VarYYY * (XX.Transposed * WW * XX).Inverse;

 return result;

 }

96

 public static double[,] Weight(NzMatrix weight)

 {

 double[,] result = new double[weight.RowCount, weight.RowCount];

 Double sumW = 0;

 for (int i = 0; i < weight.RowCount; i++)

 {

 sumW = sumW + weight[i, 0];

 }

 for (int i = 0; i < weight.RowCount; i++)

 {

 for (int j = 0; j < weight.RowCount; j++)

 {

 result[i, j] = 0;

 }

 result[i, i] = weight[i, 0] * weight.RowCount / sumW;

 }

 return result;

 }

 public static Double[,] GetLinearCorCof(NzMatrix cm)

 {

 Double[,] lccArray = new Double[cm.ColumnCount, cm.ColumnCount];

// Linear correlation coefficients

 for (int i = 0; i < cm.ColumnCount; i++)

 {

 for (int j = 0; j < cm.ColumnCount; j++)

 {

 lccArray[i, j] = cm[i, j] / Math.Sqrt(cm[i, i] * cm[j,

j]);

97

 }

 }

 return lccArray;

 }

 public static NzMatrix operator *(NzMatrix matrix1, NzMatrix matrix2)

 {

 return NzMatrix.Multiplication(matrix1, matrix2);

 }

 public static NzMatrix operator *(double scalar, NzMatrix matrix)

 {

 return NzMatrix.Multiplication(matrix, scalar);

 }

 public static NzMatrix operator *(NzMatrix matrix, double scalar)

 {

 return NzMatrix.Multiplication(matrix, scalar);

 }

 protected static NzMatrix Multiplication(NzMatrix matrix1, NzMatrix

matrix2)

 {

 if (matrix1.ColumnCount != matrix2.RowCount)

 throw new ArithmeticException("Number of columns in first

matrix does not equal number of rows in second matrix.");

 NzMatrix result = new NzMatrix(matrix1.RowCount,

matrix2.ColumnCount);

 for (int j = 0; j < result.RowCount; j++)

 for (int i = 0; i < result.ColumnCount; i++)

98

 {

 Double value = 0;

 for (int k = 0; k < matrix2.RowCount; k++)

 value += matrix1[j, k] * matrix2[k, i];

 result[j, i] = value;

 }

 return result;

 }

 protected static NzMatrix Multiplication(NzMatrix matrix, Double

scalar)

 {

 NzMatrix result = new NzMatrix(matrix.RowCount,

matrix.ColumnCount);

 for (int i = 0; i < matrix.RowCount; i++)

 for (int j = 0; j < matrix.ColumnCount; j++)

 result[i, j] = matrix[i, j] * scalar;

 return result;

 }

 public virtual NzMatrix Transposed { get { return

NzMatrix.Transpose(this); } }

 protected static NzMatrix Transpose(NzMatrix matrix)

 {

 NzMatrix result = new NzMatrix(matrix.ColumnCount,

matrix.RowCount);

 for (Int32 i = 0; i < matrix.RowCount; i++)

 {

 for (Int32 j = 0; j < matrix.ColumnCount; j++)

 {

 result[j, i] = matrix[i, j];

 }

99

 }

 return result;

 }

 public NzMatrix Inverse { get { return NzMatrix.Invert(this); } }

 protected static NzMatrix Invert(NzMatrix matrix)

 {

 double[,] a = matrix._matrix;

 int ro = a.GetLength(0);

 int co = a.GetLength(1);

 try

 {

 if (ro != co) { throw new System.Exception(); }

 }

 catch { Console.WriteLine("Cannot find inverse for an non square

matrix"); }

 int q; double[,] b = new double[ro, co]; double[,] I = eyes(ro);

 for (int p = 0; p < ro; p++) { for (q = 0; q < co; q++) { b[p, q]

= a[p, q]; } }

 int i; double det = 1;

 if (a[0, 0] == 0)

 {

 i = 1;

 while (i < ro)

 {

 if (a[i, 0] != 0)

 {

 NzMatrix.interrow(a, 0, i);

 NzMatrix.interrow(I, 0, i);

100

 det *= -1;

 break;

 }

 i++;

 }

 }

 det *= a[0, 0];

 NzMatrix.rowdiv(I, 0, a[0, 0]);

 NzMatrix.rowdiv(a, 0, a[0, 0]);

 for (int p = 1; p < ro; p++)

 {

 q = 0;

 while (q < p)

 {

 NzMatrix.rowsub(I, p, q, a[p, q]);

 NzMatrix.rowsub(a, p, q, a[p, q]);

 q++;

 }

 if (a[p, p] != 0)

 {

 det *= a[p, p];

 NzMatrix.rowdiv(I, p, a[p, p]);

 NzMatrix.rowdiv(a, p, a[p, p]);

 }

 if (a[p, p] == 0)

 {

 for (int j = p + 1; j < co; j++)

 {

 if (a[p, j] != 0)

 {

101

 throw new System.Exception("Unable to deteremine

the Inverse");

 }

 }

 }

 }

 for (int p = ro - 1; p > 0; p--)

 {

 for (q = p - 1; q >= 0; q--)

 {

 NzMatrix.rowsub(I, q, p, a[q, p]);

 NzMatrix.rowsub(a, q, p, a[q, p]);

 }

 }

 for (int p = 0; p < ro; p++)

 {

 for (q = 0; q < co; q++)

 {

 a[p, q] = b[p, q];

 }

 }

 return (I);

 }

 static void rowdiv(double[,] a, int r, double s)

 {

 int co = a.GetLength(1);

 for (int q = 0; q < co; q++)

 {

102

 a[r, q] = a[r, q] / s;

 }

 }

 static void rowsub(double[,] a, int i, int j, double s)

 {

 int co = a.GetLength(1);

 for (int q = 0; q < co; q++)

 {

 a[i, q] = a[i, q] - (s * a[j, q]);

 }

 }

 static double[,] interrow(double[,] a, int i, int j)

 {

 int ro = a.GetLength(0);

 int co = a.GetLength(1);

 double temp = 0;

 for (int q = 0; q < co; q++)

 {

 temp = a[i, q];

 a[i, q] = a[j, q];

 a[j, q] = temp;

 }

 return (a);

 }

 static double[,] eyes(int n)

 {

 double[,] a = new double[n, n];

 for (int p = 0; p < n; p++)

 {

 for (int q = 0; q < n; q++)

103

 {

 if (p == q)

 {

 a[p, q] = 1;

 }

 else

 {

 a[p, q] = 0;

 }

 }

 }

 return (a);

 }

 public override String ToString()

 {

 double[,] matrix = this._matrix;

 int row = matrix.GetLength(0);

 int col = matrix.GetLength(1);

 String result = String.Empty;

 if (matrix.Length == 0) return "[empty]";

 result += String.Format("{0} Rows x {1} Columns\n", row, col);

 for (int i = 0; i < row; i++)

 {

 String rowStr = String.Empty;

 for (int j = 0; j < col; j++)

104

 {

 rowStr += String.Format(" {0} ", matrix[i,

j].ToString());

 }

 result += String.Format("[{0}]\n", rowStr);

 }

 return result;

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Reflection;

using System.Windows.Forms;

using System.Runtime.CompilerServices;

using System.IO;

using IbrahimPHD.Matrices;

namespace IbrahimPHD

{

 public static class General

 {

 private static bool fileChanged = false;

105

 private static string fullFileName = string.Empty;

 public static NzMatrix Beta { get; set; }

 public static NzMatrix XAxis { get; set; }

 public static NzMatrix YAxis { get; set; }

 public static bool FileChanged

 {

 get

 {

 return fileChanged;

 }

 set

 {

 fileChanged = value;

 }

 }

 public static string FullFileName

 {

 get

 {

 return fullFileName;

 }

 set

 {

 fullFileName = value;

 }

 }

 public static string FileName

 {

 get

106

 {

 FileInfo file = new FileInfo(General.FullFileName);

 return file.Name;

 }

 }

 public static int GridRows

 {

 get

 {

 return 99;

 }

 }

 public static int GridColumns

 {

 get

 {

 return 26;

 }

 }

/***/

 public static void CopyToClipboard(DataGridView dGView)

 {

 //Copy to clipboard

 DataObject dataObj = dGView.GetClipboardContent();

 if (dataObj != null)

 Clipboard.SetDataObject(dataObj);

 }

107

 public static void PasteClipboardValue(DataGridView dGView)

 {

 //Show Error if no cell is selected

 if (dGView.SelectedCells.Count == 0)

 {

 MessageBox.Show("Please select a cell", "Paste",

 MessageBoxButtons.OK, MessageBoxIcon.Warning);

 return;

 }

 //Get the starting Cell

 DataGridViewCell startCell = GetStartCell(dGView);

 //Get the clipboard value in a dictionary

 Dictionary<int, Dictionary<int, string>> cbValue =

 ClipBoardValues(Clipboard.GetText());

 int iRowIndex = startCell.RowIndex;

 foreach (int rowKey in cbValue.Keys)

 {

 int iColIndex = startCell.ColumnIndex;

 foreach (int cellKey in cbValue[rowKey].Keys)

 {

 //Check if the index is within the limit

 if (iColIndex <= dGView.Columns.Count - 1

 && iRowIndex <= dGView.Rows.Count - 1)

 {

 DataGridViewCell cell = dGView[iColIndex, iRowIndex];

 //Copy to selected cells if 'chkPasteToSelectedCells'

is checked

108

 /////////// if

((chkPasteToSelectedCells.Checked && cell.Selected) ||

(!chkPasteToSelectedCells.Checked))

 cell.Value = cbValue[rowKey][cellKey];

 }

 iColIndex++;

 }

 iRowIndex++;

 }

 }

 private static DataGridViewCell GetStartCell(DataGridView dgView)

 {

 //get the smallest row,column index

 if (dgView.SelectedCells.Count == 0)

 return null;

 int rowIndex = dgView.Rows.Count - 1;

 int colIndex = dgView.Columns.Count - 1;

 foreach (DataGridViewCell dgvCell in dgView.SelectedCells)

 {

 if (dgvCell.RowIndex < rowIndex)

 rowIndex = dgvCell.RowIndex;

 if (dgvCell.ColumnIndex < colIndex)

 colIndex = dgvCell.ColumnIndex;

 }

 return dgView[colIndex, rowIndex];

 }

109

 private static Dictionary<int, Dictionary<int, string>>

ClipBoardValues(string clipboardValue)

 {

 Dictionary<int, Dictionary<int, string>>

 copyValues = new Dictionary<int, Dictionary<int, string>>();

 String[] lines = clipboardValue.Split('\n');

 for (int i = 0; i <= lines.Length - 1; i++)

 {

 copyValues[i] = new Dictionary<int, string>();

 String[] lineContent = lines[i].Split('\t');

 //if an empty cell value copied, then set the dictionary with

an empty string

 //else Set value to dictionary

 if (lineContent.Length == 0)

 copyValues[i][0] = string.Empty;

 else

 {

 for (int j = 0; j <= lineContent.Length - 1; j++)

 copyValues[i][j] = lineContent[j];

 }

 }

 return copyValues;

 }

/***/

 }

 public static class ExtensionMethods

 {

110

 public static void DoubleBuffered(this DataGridView dgv, bool

setting)

 {

 Type dgvType = dgv.GetType();

 PropertyInfo pi = dgvType.GetProperty("DoubleBuffered",

BindingFlags.Instance | BindingFlags.NonPublic);

 pi.SetValue(dgv, setting, null);

 }

 }

 public class Range

 {

 int firstRow;

 int firstColumn;

 int lastRow;

 int lastColumn;

 public int FirstRow

 {

 get { return firstRow; }

 set { firstRow = value; }

 }

 public int LastRow

 {

 get { return lastRow; }

 set { lastRow = value; }

 }

 public int FirstColumn

 {

 get { return firstColumn; }

 set { firstColumn = value; }

111

 }

 public int LastColumn

 {

 get { return lastColumn; }

 set { lastColumn = value; }

 }

 public int RowCount

 {

 get { return lastRow - firstRow + 1; ; }

 }

 public int ColumnCont

 {

 get { return lastColumn - firstColumn + 1; ; }

 }

 public Range(string txtRange)

 {

 string[] str;

 string[] topLeftCell;

 string[] buttomRightCell;

 if (txtRange.Contains(':'))

 {

 str = txtRange.Split(':');

 topLeftCell = str[0].Split(',');

 buttomRightCell = str[1].Split(',');

 }

 else

 {

 topLeftCell = txtRange.Split(',');

 buttomRightCell = txtRange.Split(',');

112

 }

 firstRow = int.Parse(topLeftCell[1]) - 1;

 firstColumn = (int)char.Parse(topLeftCell[0]) - 65;

 lastRow = int.Parse(buttomRightCell[1]) - 1;

 lastColumn = (int)char.Parse(buttomRightCell[0]) - 65;

 }

 }

}

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using IbrahimPHD.Matrices;

namespace IbrahimPHD

{

 public partial class FrmInput : Form

 {

113

 FrmGrid frmGrid;

 Boolean validatedData = true;

 public FrmInput(FrmGrid _frmGrid)

 {

 frmGrid = _frmGrid;

 InitializeComponent();

 }

 private void FrmInput_Load(object sender, EventArgs e)

 {

 frmGrid.matrixToolStripMenuItem.Enabled = false;

 }

 private void FrmInput_FormClosed(object sender, FormClosedEventArgs

e)

 {

 //NZ.IsVisibleFrmInput = false;

 frmGrid.matrixToolStripMenuItem.Enabled = true;

 }

 private void txtBox_Enter(object sender, EventArgs e)

 {

 frmGrid.dGInput.ClearSelection();

 txtDependent.Tag = string.Empty;

 txtIndependent.Tag = string.Empty;

 txtWeight.Tag = string.Empty;

 txtNoise.Tag = string.Empty;

 txtSignal.Tag = string.Empty;

114

 TextBox txtBox = (TextBox)sender;

 txtBox.BackColor = SystemColors.HotTrack;

 txtBox.ForeColor = SystemColors.Window;

 txtBox.Tag = "Focused";

 string txtRange = txtBox.Text;

 if (txtRange != string.Empty)

 {

 Range selectionRange = new Range(txtRange);

 frmGrid.dGInput.ClearSelection();

 for (int i = selectionRange.FirstRow; i <=

selectionRange.LastRow; i++)

 {

 for (int j = selectionRange.FirstColumn; j <=

selectionRange.LastColumn; j++)

 {

 frmGrid.dGInput.Rows[i].Cells[j].Selected = true;

 }

 }

 }

 }

 private double[,] selection(string txtRange)

 {

 double[,] dblArray = null ;

 if (txtRange != string.Empty)

 {

 Range selectionRange = new Range(txtRange);

 dblArray = new double[selectionRange.RowCount,

selectionRange.ColumnCont];

 frmGrid.dGInput.ClearSelection();

115

 int row = 0;

 int column = 0;

 double number;

 for (int i = selectionRange.FirstRow; i <=

selectionRange.LastRow; i++)

 {

 for (int j = selectionRange.FirstColumn; j <=

selectionRange.LastColumn; j++)

 {

 //frmGrid.dGInput.Rows[i].Cells[j].Selected = true;

 //if

(double.TryParse(frmGrid.dGInput.Rows[i].Cells[j].Value.ToString())

 //if

(Double.TryParse(string.IsNullOrEmpty(frmGrid.dGInput.Rows[i].Cells[j].Value.

ToString()).ToString(), out number))

 if

(Double.TryParse(frmGrid.dGInput.Rows[i].Cells[j].Value.ToString(), out

number))

 {

 dblArray[row, column] = number;

 }

 else

 {

 frmGrid.dGInput.Rows[i].Cells[j].Style.BackColor

= Color.Red ;

 validatedData = false;

 }

 column = column + 1;

 }

 column = 0;

 row = row + 1;

 }

116

 }

 return dblArray;

 }

 private void txtBox_Leave(object sender, EventArgs e)

 {

 frmGrid.dGInput.ClearSelection();

 txtDependent.Tag = string.Empty;

 txtIndependent.Tag = string.Empty;

 txtWeight.Tag = string.Empty;

 txtNoise.Tag = string.Empty;

 txtSignal.Tag = string.Empty;

 TextBox txtBox = (TextBox)sender;

 txtBox.BackColor = SystemColors.Window;

 txtBox.ForeColor = SystemColors.WindowText;

 }

 private void btnOk_Click(object sender, EventArgs e)

 {

 if (txtDependent.Text == string.Empty) { txtDependent.Focus();

return; }

 if (txtIndependent.Text == string.Empty) {

txtIndependent.Focus(); return; }

 switch(this.Tag.ToString())

 {

 case "OLS" :

 break;

 case "WLS" :

117

 if (txtWeight.Text == string.Empty) { txtWeight.Focus();

return; }

 break;

 case "WLSC" :

 if (txtNoise.Text == string.Empty) { txtNoise.Focus();

return; }

 if (txtSignal.Text == string.Empty) { txtSignal.Focus();

return; }

 break;

 }

 NzMatrix Dependent = null;

 NzMatrix Independent = null;

 NzMatrix Weight = null;

 double[,] weight = null;

 double[,] dependent = selection(txtDependent.Text);

 Dependent = dependent;

 double[,] _independent = selection(txtIndependent.Text);

 int rMax = _independent.GetLength(0);

 int cMax = _independent.GetLength(1);

 double[,] independent = new double[rMax, cMax + 1];

 // Fill the first column of independent with zeroes (for p = 0)

or ones (for p = 1), the rest with the data in the x-column(s)

 for (int i = 0 ; i < rMax ; i++)

 {

 independent[i, 0] = 1; // p;

 }

 for (int j = 1 ; j <= cMax ; j++)

 {

118

 for (int i = 0 ; i < rMax ; i++)

 {

 independent[i, j] = _independent[i, j - 1];

 }

 }

 Independent = independent;

 if (txtWeight.Enabled == false)

 {

 if (txtSignal.Enabled == true && txtNoise.Enabled == true)

 {

 double[,] noise = null;

 double[,] signal = null;

 noise = selection(txtNoise.Text);

 signal = selection(txtSignal.Text);

 NzMatrix Noise = noise;

 NzMatrix Signal = signal;

 Weight = Noise + Signal;

 weight = selection(txtWeight.Text);

 }

 else

 {

 weight = new double[rMax, 1];

 for (int i = 0; i < rMax; i++)

 {

 weight[i, 0] = 1; // p;

 }

 Weight = weight;

 }

119

 }

 else

 {

 weight = selection(txtWeight.Text);

 Weight = weight;

 }

 if (validatedData == true)

 {

 //Regress(dependent, independent, weight);

 Regress(Dependent, Independent, Weight);

 frmGrid.splitContainer.Panel2Collapsed = false;

 frmGrid.splitContainer1.Panel2Collapsed = false;

 }

 else

 {

 frmGrid.splitContainer.Panel2Collapsed = true;

 frmGrid.splitContainer1.Panel2Collapsed = false;

 MessageBox.Show("Input values not corrected!");

 }

 this.Close();

 }

 //public void Regress(Double[,] Dependent, Double[,] Independent,

Double[,] Weight)

 public void Regress(NzMatrix Dependent, NzMatrix Independent,

NzMatrix Weight)

 {

 NzMatrix Y = Dependent;

120

 NzMatrix X = Independent;

 NzMatrix W = NzMatrix.Weight(Weight);

 General.XAxis = X;

 General.YAxis = Y;

 //int n = Dependent.Length;

 //int k = Independent.Length / n;

 int n = Dependent.RowCount;

 int k = Independent.ColumnCount;

 NzMatrix XtWX = X.Transposed * W * X;

 NzMatrix XtWXi = XtWX.Inverse;

 NzMatrix XtWY = X.Transposed * W * Y;

 NzMatrix YtWY = Y.Transposed * W * Y;

 General.Beta = null;

 NzMatrix B = XtWXi * XtWY; // B = (X' W X)" X' W Y -------

Var(b) = (X_WX)−1(X_WΣ0WX)(X_WX)−1

 General.Beta = B;

 ///Calculate The Regression

Equation///////////////////////////////////

 string RegressionEquation = string.Empty ;

 for (int i = 0; i < B.RowCount; i++)

 {

 if (i == 0)

 {

 RegressionEquation = "y i = " + Math.Round(B[0, 0],

6).ToString();

 }

 else

121

 {

 RegressionEquation = RegressionEquation + " + " +

Math.Round(B[i, 0], 6).ToString() + " x" + i.ToString();

 }

 }

///

///////////////////////////////

 double SSRnz = Math.Round((Y.Transposed * W * Y)[0, 0] -

(B.Transposed * X.Transposed * W * Y)[0,0], 6);

 double varY = SSRnz / (n - k); // The variance of y

 NzMatrix CMArray = XtWXi * varY ; // The Covariance Matrix

 NzMatrix LCC = NzMatrix.GetLinearCorCof(CMArray); // Linear

correlation coefficients

///

///////////////////////////////

 //ANOVA

Table///

 double sumDependent = 0 ;

 for (int i = 0; i < n; i++)

 {

 sumDependent = sumDependent + Dependent[i,0];

 }

 double Ybar = Math.Pow(sumDependent, 2) / n;

 double SSE = Math.Round(YtWY[0, 0] - (B.Transposed * XtWY)[0, 0],

6); // SSE = Y' Y - B'X'Y -- Sum of squares due to error

 double SSR = Math.Round((B.Transposed * XtWY)[0, 0] - Ybar,6);

// SSR = B' X' Y - sum(Y)^2 / N -- Sum of squares to due regression

 double SST = Math.Round(YtWY[0, 0] - Ybar,6) ; // Y' Y -

sum(Y)^2 / N -- Total sum of squares of dependent variable.

122

 double DF_Residuals = k - 1;

 double DF_Error = n - k ;

 double DF_Total = n - 1 ;

 double MSR = Math.Round(SSR / (k - 1) , 6) ;

 double MSE = Math.Round(SSE / (n - k),6) ;

 double Fstat = Math.Round(MSR / MSE , 6); // F statistics

 double R2 = Math.Round (SSR / SST , 6); // Coefficient of

determination

 double R2adj = Math.Round (1 - (1 - R2) * (n - 1) / (n - k) ,

6); // Adjusted value of R2

////////////////////////////////////OutPut///////////////////////////////////

///

 string cMArray = string.Empty;

 for (int i = 0; i < CMArray.RowCount; i++)

 {

 for (int j = 0; j < CMArray.ColumnCount; j++)

 {

 cMArray = cMArray + "\t" + Math.Round(CMArray[i, j], 6);

 }

 cMArray = cMArray + "\r\n";

 }

 string lcc = string.Empty;

 for (int i = 0; i < LCC.RowCount; i++)

 {

 for (int j = 0; j < LCC.ColumnCount; j++)

123

 {

 lcc = lcc + "\t" + Math.Round(LCC[i, j], 6);

 }

 lcc = lcc + "\r\n";

 }

 String result = string.Empty;

 result = "Results:\r\n\r\nThe Fitted Model is: \r\n" +

RegressionEquation +

 "\r\n\r\n\r\n\r\nThe coefficient of determination for the

above model is : " + R2 +

 "\r\n\r\n\r\nThe Adjusted value of The coefficient of

determination is : " + R2adj +

 "\r\n\r\n\r\n\r\nThe Covariance Matrix : \r\n" + cMArray

+ "\r\n\r\n" ;

 String ANOVA = "\r\n\r\nANOVA Table\r\nModel\tSum of Squares\tdf

Mean Square\tF\tSig\r\n" +

 "--

----------------------------\r\n" +

 "Regression\t" + SSR + "\t\t" + DF_Residuals + " " + MSR + "\t"

+ Fstat + "\r\n" +

 "Residual\t" + SSE + "\t\t" + DF_Error + " " + MSE + "\r\n" +

 "Total\t" + SST + "\t\t" + DF_Total + "\r\n" +

 "--

----------------------------\r\n";

 frmGrid.txtModel.Text = RegressionEquation;

 //frmGrid.txtResult.Text = result + ANOVA;

 frmGrid.txtResult.Text = result ;

 frmGrid.btnANOVA.Tag = ANOVA;

 frmGrid.btnLCC.Tag = lcc;

 frmGrid.dGModel.Columns.Clear();

124

 frmGrid.dGModel.DoubleBuffered(true);

 //frmGrid.dGModel.BackgroundColor =

System.Drawing.Color.Aquamarine;

 //frmGrid.dGModel.Dock = System.Windows.Forms.DockStyle.Fill;

 for (int i = 0; i < B.RowCount; i++)

 {

 //char c = (char)(i + 65);

 frmGrid.dGModel.Columns.Add("x" + i, "x" + i);

 frmGrid.dGModel.Columns[i].Tag = Math.Round(B[i, 0],

6).ToString();

 }

 frmGrid.dGModel.Rows.Add(1);

 frmGrid.dGModel.Columns[0].Visible = false;

 frmGrid.dGModel.RowHeadersVisible = false;

 frmGrid.dGModel.Rows[0].Cells[0].Value = 1;

///

///

 /*

 ANOVAa,b

 Model Sum of Squares df Mean Square F

 Sig.

 1 Regression 545.885 2 272.943

3477.072 .000c

 Residual .628 8 .078

 Total 546.513 10

 a Dependent Variable: y

125

 b Weighted Least Squares Regression - Weighted by weight

 c Predictors: (Constant), x2, x1

 */

 }

 private void txtDependent_TextChanged(object sender, EventArgs e)

 {

 }

 private void btnCancel_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 }

}

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

126

using System.Threading.Tasks;

using System.Windows.Forms;

using System.Xml;

using System.IO;

using IbrahimPHD;

namespace IbrahimPHD

{

 public partial class FrmGrid : Form

 {

 FrmInput frmInput = null;

 FrmMatricesOperations frmMatricesOperations = null ;

 private int sRow = -1;

 private int sColumn = -1;

 private int eRow = -1;

 private int eColumn = -1;

 private int startrow = -1;

 private int startcolumn = -1;

 private int endrow = -1;

 private int endcolumn = -1;

 public FrmGrid()

 {

 InitializeComponent();

 this.StartPosition = FormStartPosition.CenterScreen;

 //tStripStatusLabelSelection.Text = string.Empty;

 }

 private void FrmGrid_Load(object sender, EventArgs e)

 {

 lblTitle.BackColor = toolStrip1.BackColor;

127

 lblTitle.Left = this.Width / 2 - lblTitle.Width / 2;

 lblOwner.BackColor = toolStrip1.BackColor;

 lblSupervisor.BackColor = toolStrip1.BackColor;

 lblOwner.Left = this.Left - lblOwner.Width;

 lblSupervisor.Left = this.Width ;

 dGInput.DoubleBuffered(true);

 //dGModel.DoubleBuffered(true);

 dGInput.BackgroundColor = System.Drawing.Color.White;

 dGInput.Dock = System.Windows.Forms.DockStyle.Fill;

 //dGModel.BackgroundColor = System.Drawing.Color.Aquamarine;

 //dGModel.Dock = System.Windows.Forms.DockStyle.Fill;

 for (int i = 0; i < General.GridColumns; i++)

 {

 char c = (char)(i + 65);

 dGInput.Columns.Add(c.ToString(), c.ToString());

 dGInput.Columns[c.ToString()].SortMode =

DataGridViewColumnSortMode.NotSortable;

 //dGModel.Columns.Add(c.ToString(), c.ToString());

 }

 dGInput.SelectionMode =

DataGridViewSelectionMode.ColumnHeaderSelect;

 dGInput.Rows.Add(General.GridRows);

 //dGModel.Rows.Add(3);

 //dGModel.ColumnHeadersVisible = false;

 //dGModel.RowHeadersVisible = false;

 for (int row = 1; row <= General.GridRows ; row++)

128

 {

 dGInput.Rows[row - 1].HeaderCell.Value = row.ToString();

 }

 startNewFile();

 }

 private void startNewFile()

 {

 splitContainer.Panel2Collapsed = true;

 splitContainer1.Panel2Collapsed = true;

 this.Text = "Least Squares - Untitled";

 General.FullFileName = string.Empty;

 dGInput.EndEdit() ;

 for (int i = 0; i < General.GridRows; i++)

 for (int j = 0; j < General.GridColumns; j++)

 {

 dGInput.Rows[i].Cells[j].Value = string.Empty;

 dGInput.Rows[i].Cells[j].Style.BackColor = Color.White;

 }

 dGInput.ClearSelection();

 General.FileChanged = false;

 txtResult.Text = string.Empty;

 }

 private void newfile(object sender, EventArgs e)

 {

 dGInput.EndEdit();

 if (General.FileChanged == true)

 {

129

 DialogResult result = MessageBox.Show("Do you want to save

the changes you made to file?","", MessageBoxButtons.YesNoCancel,

MessageBoxIcon.Exclamation);

 switch (result)

 {

 case DialogResult.Yes :

 if (saveOperation(General.FullFileName) == true)

 {

 startNewFile();

 }

 else

 {

 return;

 }

 break;

 case DialogResult.No:

 startNewFile();

 break;

 case DialogResult.Cancel :

 break;

 }

 }

 else

 {

 startNewFile();

 }

 }

 private void savefile(object sender, EventArgs e)

 {

 dGInput.EndEdit();

 saveOperation(General.FullFileName);

130

 }

 private bool saveOperation(string fullFileName)

 {

 General.FullFileName = fullFileName;

 if (fullFileName == string.Empty)

 {

 SaveFileDialog saveFileDialog = new SaveFileDialog();

 saveFileDialog.Filter = "ibr files (*.ibr)|*.ibr";

 saveFileDialog.FilterIndex = 2;

 saveFileDialog.RestoreDirectory = true;

 DialogResult result = saveFileDialog.ShowDialog();

 if (DialogResult.OK == result)

 {

 General.FullFileName = saveFileDialog.FileName;

 }

 else if (DialogResult.Cancel == result)

 {

 return false;

 }

 }

 using (BinaryWriter bw = new

BinaryWriter(File.Open(General.FullFileName, FileMode.Create)))

 {

 bw.Write(dGInput.Columns.Count);

 bw.Write(dGInput.Rows.Count);

 foreach (DataGridViewRow dgvR in dGInput.Rows)

 {

 for (int j = 0; j < dGInput.Columns.Count; ++j)

131

 {

 object val = dgvR.Cells[j].Value;

 if (val == null)

 {

 bw.Write(false);

 bw.Write(false);

 }

 else

 {

 bw.Write(true);

 bw.Write(val.ToString());

 }

 }

 }

 }

 this.Text = General.FileName;

 General.FileChanged = false;

 return true;

 }

 private void openfile(object sender, EventArgs e)

 {

 dGInput.EndEdit();

 if (General.FileChanged == true)

 {

 DialogResult result = MessageBox.Show("Do you want to save

the changes you made to file?", "", MessageBoxButtons.YesNoCancel,

MessageBoxIcon.Exclamation);

 switch (result)

 {

 case DialogResult.Yes:

 if (saveOperation(General.FullFileName) == true)

132

 {

 openOperation();

 //splitContainer.Panel2Collapsed = true;

 }

 else

 {

 return;

 }

 break;

 case DialogResult.No:

 openOperation();

 break;

 case DialogResult.Cancel:

 break;

 }

 }

 else

 {

 openOperation();

 }

 }

 private void openOperation()

 {

 OpenFileDialog openFileDialog = new OpenFileDialog();

 openFileDialog.Filter = "ibr files (*.ibr)|*.ibr";

 openFileDialog.FilterIndex = 2;

 openFileDialog.RestoreDirectory = true;

 if (openFileDialog.ShowDialog() == DialogResult.OK)

 {

 string fullFileName = openFileDialog.FileName;

133

 try

 {

 using (BinaryReader bw = new

BinaryReader(File.Open(fullFileName, FileMode.Open)))

 {

 int n = bw.ReadInt32();

 int m = bw.ReadInt32();

 for (int i = 0; i < m; ++i)

 {

 for (int j = 0; j < n; ++j)

 {

 dGInput.Rows[i].Cells[j].Value = null;

 if (bw.ReadBoolean())

 {

 dGInput.Rows[i].Cells[j].Style.BackColor

= Color.White;

 dGInput.Rows[i].Cells[j].Value =

bw.ReadString();

 }

 else bw.ReadBoolean();

 }

 }

 }

 General.FullFileName = fullFileName;

 this.Text = General.FileName;

 General.FileChanged = false;

 dGInput.ClearSelection();

 splitContainer.Panel2Collapsed = true;

 splitContainer1.Panel2Collapsed = true;

 txtResult.Text = string.Empty;

134

 //this.Text = "Least Squares - Untitled";

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 }

 }

 private void exitproject(object sender, EventArgs e)

 {

 this.Close();

 }

 private void dGInput_CellEnter(object sender,

DataGridViewCellEventArgs e)

 {

 if (dGInput.SelectedCells.Count == 1)

 {

 startrow = e.RowIndex;

 startcolumn = e.ColumnIndex;

 endrow = e.RowIndex;

 endcolumn = e.ColumnIndex;

 }

 else

 {

 endrow = e.RowIndex;

 endcolumn = e.ColumnIndex;

 }

135

 sRow = Math.Min(startrow, endrow);

 sColumn = Math.Min(startcolumn, endcolumn);

 eRow = Math.Max(startrow, endrow);

 eColumn = Math.Max(startcolumn, endcolumn);

 string range = string.Empty;

 ////////////////////////////

 // if (frmInput != null && frmInput.Visible ||

frmMatricesOperations != null && frmMatricesOperations.Visible)

 if (frmInput != null && frmInput.Visible)

 {

 if (sRow == eRow && sColumn == eColumn)

 {

 //C4:D6

 range = dGInput.Columns[sColumn].HeaderText + "," +

dGInput.Rows[sRow].HeaderCell.Value;

 }

 else

 {

 range = dGInput.Columns[sColumn].HeaderText + "," +

dGInput.Rows[sRow].HeaderCell.Value + ":" + dGInput.Columns[eColumn].Name +

"," + dGInput.Rows[eRow].HeaderCell.Value;

 }

 if ((string)frmInput.txtDependent.Tag == "Focused")

 frmInput.txtDependent.Text = range;

 if ((string)frmInput.txtIndependent.Tag == "Focused")

 frmInput.txtIndependent.Text = (string)range;

136

 if ((string)frmInput.txtWeight.Tag == "Focused")

 frmInput.txtWeight.Text = range;

 if ((string)frmInput.txtSignal.Tag == "Focused")

 frmInput.txtSignal.Text = range;

 if ((string)frmInput.txtNoise.Tag == "Focused")

 frmInput.txtNoise.Text = range;

 }

 if (frmMatricesOperations != null &&

frmMatricesOperations.Visible)

 {

 if (sRow == eRow && sColumn == eColumn)

 {

 //C4:D6

 range = dGInput.Columns[sColumn].HeaderText + "," +

dGInput.Rows[sRow].HeaderCell.Value;

 }

 else

 {

 range = dGInput.Columns[sColumn].HeaderText + "," +

dGInput.Rows[sRow].HeaderCell.Value + ":" + dGInput.Columns[eColumn].Name +

"," + dGInput.Rows[eRow].HeaderCell.Value;

 }

 if ((string)frmMatricesOperations.txtMatrix1.Tag ==

"Focused")

 frmMatricesOperations.txtMatrix1.Text = range;

 if ((string)frmMatricesOperations.txtMatrix2.Tag ==

"Focused")

 frmMatricesOperations.txtMatrix2.Text = (string)range;

 }

137

 //tStripStatusLabelSelection.Text = range;

 }

 private void FrmGrid_SizeChanged(object sender, EventArgs e)

 {

 switch (this.WindowState)

 {

 case FormWindowState.Maximized:

 foreach (Form frm in Application.OpenForms)

 {

 if (frm.TopMost == true)

 {

 frm.Visible = true;

 }

 }

 break;

 case FormWindowState.Minimized:

 foreach (Form frm in Application.OpenForms)

 {

 if (frm.TopMost == true)

 {

 frm.Visible = false;

 }

 }

 break;

 case FormWindowState.Normal:

 break;

 default:

138

 break;

 }

 }

 private void dGInput_CellBeginEdit(object sender,

DataGridViewCellCancelEventArgs e)

 {

 General.FileChanged = true;

 }

 private void FrmGrid_FormClosing(object sender, FormClosingEventArgs

e)

 {

 if (General.FileChanged == true)

 {

 DialogResult result = MessageBox.Show("Do you want to save

the changes you made to file?", "", MessageBoxButtons.YesNoCancel,

MessageBoxIcon.Exclamation);

 switch (result)

 {

 case DialogResult.Yes:

 if (saveOperation(General.FullFileName) == true)

 {

 startNewFile();

 }

 else

 {

 return;

 }

 break;

 case DialogResult.No:

 break;

139

 case DialogResult.Cancel:

 e.Cancel = true;

 break;

 }

 }

 }

 private void dGInput_CellEndEdit(object sender,

DataGridViewCellEventArgs e)

 {

 if (dGInput.Rows[e.RowIndex].Cells[e.ColumnIndex].Style.BackColor

== Color.Red)

 {

 dGInput.Rows[e.RowIndex].Cells[e.ColumnIndex].Style.BackColor

= Color.White;

 }

 }

 private void timerOwner_Tick(object sender, EventArgs e)

 {

 if (lblOwner.Left + lblOwner.Width == lblTitle.Left)

 {

 lblTitle.Visible = false;

 }

 else if (lblOwner.Left == lblTitle.Left + lblTitle.Width)

 {

 lblTitle.Visible = true;

 }

140

 if (lblOwner.Left > this.Width)

 {

 lblOwner.Left = this.Left - lblOwner.Width;

 }

 if (lblSupervisor.Left == this.Left - lblSupervisor.Width)

 {

 lblSupervisor.Left = this.Width;

 }

 lblOwner.Left = lblOwner.Left + 1;

 lblSupervisor.Left = lblSupervisor.Left - 1;

 }

 private void helpToolStripButton1_Click(object sender, EventArgs e)

 {

 }

 private void OLStsm_Click(object sender, EventArgs e)

 {

 splitContainer.Panel2Collapsed = true;

 splitContainer1.Panel2Collapsed = true;

 txtResult.Text = string.Empty;

 if (((Form)Application.OpenForms["frmInput"] == null))

 {

 frmInput = new FrmInput(this);

 frmInput.TopMost = true;

 frmInput.Tag = "OLS";

141

 frmInput.Text = "Ordinary Least Squares";

 frmInput.txtNoise.Enabled = false;

 frmInput.txtSignal.Enabled = false;

 frmInput.txtWeight.Enabled = false;

 frmInput.Show();

 }

 else

 {

 frmInput.BringToFront();

 }

 }

 private void WLStsm_Click(object sender, EventArgs e)

 {

 splitContainer.Panel2Collapsed = true;

 splitContainer1.Panel2Collapsed = true;

 txtResult.Text = string.Empty;

 if (((Form)Application.OpenForms["frmInput"] == null))

 {

 frmInput = new FrmInput(this);

 frmInput.TopMost = true;

 frmInput.Tag = "WLS";

 frmInput.Text = "Weighted Least Squares";

 frmInput.txtNoise.Enabled = false;

 frmInput.txtSignal.Enabled = false;

 frmInput.txtWeight.Enabled = true;

 frmInput.Show();

 }

 else

 {

142

 frmInput.BringToFront();

 }

 }

 private void CLStsm_Click(object sender, EventArgs e)

 {

 splitContainer.Panel2Collapsed = true;

 splitContainer1.Panel2Collapsed = true;

 txtResult.Text = string.Empty;

 if (((Form)Application.OpenForms["frmInput"] == null))

 {

 frmInput = new FrmInput(this);

 frmInput.Tag = "WLSC";

 frmInput.Text = "Geoidal Separation : N = h - H";

 frmInput.TopMost = true;

 frmInput.txtNoise.Enabled = true;

 frmInput.txtSignal.Enabled = true;

 frmInput.txtWeight.Enabled = false;

 frmInput.Show();

 }

 else

 {

 frmInput.BringToFront();

 }

 }

 private void aboutTheAuthorToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 AboutAuthor aboutAuthor = new AboutAuthor();

143

 aboutAuthor.ShowDialog();

 }

 private void FrmGrid_Resize(object sender, EventArgs e)

 {

 lblTitle.Left = this.Width / 2 - lblTitle.Width / 2;

 lblOwner.Left = this.Left - lblOwner.Width;

 lblSupervisor.Left = this.Width;

 }

 private void btnCalculateYi_Click(object sender, EventArgs e)

 {

 double number;

 double summation = 0 ;

 Boolean validatedData = true;

 for (int i = 0 ; i < dGModel.Columns.Count ; i++)

 {

 if (dGModel.Rows[0].Cells[i].Value == null)

 {

 dGModel.Rows[0].Cells[i].Value = 0 ;

 }

 if

(Double.TryParse(dGModel.Rows[0].Cells[i].Value.ToString(), out number))

 {

 //dblArray[row, column] = number;

 summation = summation + (number *

double.Parse(dGModel.Columns[i].Tag.ToString()));

 }

 else

144

 {

 dGModel.Rows[0].Cells[i].Style.BackColor = Color.Red;

 validatedData = false;

 }

 }

 if (validatedData == true)

 {

 txtYi.Text = summation.ToString();

 }

 else

 {

 txtYi.Text = "Correct the input data";

 }

 dGModel.ClearSelection();

 }

 private void dGModel_CellEndEdit(object sender,

DataGridViewCellEventArgs e)

 {

 if (dGModel.Rows[e.RowIndex].Cells[e.ColumnIndex].Style.BackColor

== Color.Red)

 {

 dGModel.Rows[e.RowIndex].Cells[e.ColumnIndex].Style.BackColor

= Color.White;

 }

 }

 private void matrixToolStripMenuItem_Click(object sender, EventArgs

e)

 {

 /*

 splitContainer.Panel2Collapsed = true;

145

 splitContainer1.Panel2Collapsed = true;

 txtResult.Text = string.Empty;

 */

 if (((Form)Application.OpenForms["frmInput"] == null))

 {

 frmMatricesOperations = new FrmMatricesOperations(this);

 frmMatricesOperations.TopMost = true;

 frmMatricesOperations.Text = "Matrices Operations";

 frmMatricesOperations.Show();

 }

 else

 {

 frmMatricesOperations.BringToFront();

 }

 }

 private void aNOVATableToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 FrmANOVA frmANOVA = new FrmANOVA();

 frmANOVA.ShowDialog();

 }

 private void btnANOVA_Click(object sender, EventArgs e)

 {

 FrmANOVA frmANOVA = new FrmANOVA();

 frmANOVA.Text = "ANOVA Table";

 frmANOVA.txtANOVA.Text = btnANOVA.Tag.ToString();

 frmANOVA.ShowDialog();

 }

146

 private void btnLCC_Click(object sender, EventArgs e)

 {

 FrmANOVA frmANOVA = new FrmANOVA();

 frmANOVA.Text = "The Linear Correlation Coefficients";

 frmANOVA.txtANOVA.Text = "\r\n\r\n\r\n" + btnLCC.Tag.ToString();

 frmANOVA.ShowDialog();

 }

 private void orthometricHeightToolStripMenuItem1_Click(object sender,

EventArgs e)

 {

 //FrmOrthometric frmOrthometric = new FrmOrthometric();

 //frmOrthometric.ShowDialog();

 splitContainer.Panel2Collapsed = true;

 splitContainer1.Panel2Collapsed = true;

 txtResult.Text = string.Empty;

 if (((Form)Application.OpenForms["frmInput"] == null))

 {

 frmInput = new FrmInput(this);

 frmInput.Tag = "WLSC";

 frmInput.Text = "DENSIFICATION OF ORTHOMETRIC HEIGHTS";

 frmInput.TopMost = true;

 frmInput.txtNoise.Enabled = true;

 frmInput.txtSignal.Enabled = true;

 frmInput.txtWeight.Enabled = false;

 frmInput.Show();

 }

 else

 {

147

 frmInput.BringToFront();

 }

 }

 private void btnYi_Click(object sender, EventArgs e)

 {

 FrmCalculateTable frmCalculateTable = new FrmCalculateTable();

 frmCalculateTable.txtModel.Text = txtModel.Text;

 frmCalculateTable.ShowDialog();

 }

 private void btnChart_Click(object sender, EventArgs e)

 {

 FrmChart frmChart = new FrmChart();

 frmChart.ShowDialog();

 }

 private void cutToolStripMenuItem_Click(object sender, EventArgs e)

 {

 //Copy to clipboard

 General.CopyToClipboard(dGInput);

 //Clear selected cells

 foreach (DataGridViewCell dgvCell in dGInput.SelectedCells)

 dgvCell.Value = string.Empty;

 }

 private void copyToolStripMenuItem_Click(object sender, EventArgs e)

 {

 General.CopyToClipboard(dGInput);

148

 }

 private void pasteToolStripMenuItem_Click(object sender, EventArgs e)

 {

 //Perform paste Operation

 General.PasteClipboardValue(dGInput);

 General.FileChanged = true;

 }

 private void dGInput_CellMouseClick(object sender,

DataGridViewCellMouseEventArgs e)

 {

 if (dGInput.SelectedCells.Count > 0)

 dGInput.ContextMenuStrip = contextMenuStrip1;

 }

 private void tsStandard_ItemClicked(object sender,

ToolStripItemClickedEventArgs e)

 {

 }

 }

}

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

149

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace IbrahimPHD

{

 public partial class FrmCalculateTable : Form

 {

 public FrmCalculateTable()

 {

 InitializeComponent();

 }

 private void FrmCalculateTable_Load(object sender, EventArgs e)

 {

 dGModel.Columns.Clear();

 dGModel.DoubleBuffered(true);

 dGModel.Columns.Add("y" , "Y");

 dGModel.Columns[0].DefaultCellStyle.BackColor = Color.LightGreen;

 for (int i = 1; i < General.Beta.RowCount; i++)

 {

 dGModel.Columns.Add("x" + i, "x" + i);

 dGModel.Columns[i].Width = 90 ;

 }

 dGModel.Rows.Add(1);

 dGModel.Columns[0].ReadOnly = true;

 //dGModel.RowHeadersVisible = false;

150

 }

 private void btnClose_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 private void dGModel_CellEndEdit(object sender,

DataGridViewCellEventArgs e)

 {

 double number;

 double summation = General.Beta[0, 0];

 Boolean validatedData = true;

 for (int i = 1; i < dGModel.Columns.Count; i++)

 {

 if (dGModel.Rows[e.RowIndex].Cells[i].Value == null)

 {

 dGModel.Rows[e.RowIndex].Cells[i].Value = 0;

 }

 if

(Double.TryParse(dGModel.Rows[e.RowIndex].Cells[i].Value.ToString(), out

number))

 {

 //MessageBox.Show(General.Beta[i, 0].ToString());

 summation = summation + (number * General.Beta[i, 0]);

 }

 else

 {

 dGModel.Rows[e.RowIndex].Cells[i].Style.BackColor =

Color.Red;

 validatedData = false;

151

 }

 }

 if (validatedData == true)

 {

 dGModel.Rows[e.RowIndex].Cells[0].Value =

Math.Round(summation, 6);

 }

 else

 {

 dGModel.Rows[e.RowIndex].Cells[0].Value = "X";

 }

 //dGModel.ClearSelection();

 }

 private void dGModel_CellMouseClick(object sender,

DataGridViewCellMouseEventArgs e)

 {

 if (dGModel.SelectedCells.Count > 0)

 dGModel.ContextMenuStrip = contextMenuStrip1;

 }

 private void cutToolStripMenuItem_Click(object sender, EventArgs e)

 {

 //Copy to clipboard

 General.CopyToClipboard(dGModel);

 //Clear selected cells

 foreach (DataGridViewCell dgvCell in dGModel.SelectedCells)

 dgvCell.Value = string.Empty;

 }

152

 private void copyToolStripMenuItem_Click(object sender, EventArgs e)

 {

 General.CopyToClipboard(dGModel);

 }

 private void pasteToolStripMenuItem_Click(object sender, EventArgs e)

 {

 //Perform paste Operation

 General.PasteClipboardValue(dGModel);

 }

 //////////////////////////////

 }

}

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace IbrahimPHD

153

{

 public partial class FrmANOVA : Form

 {

 public FrmANOVA()

 {

 InitializeComponent();

 }

 private void FrmANOVA_Load(object sender, EventArgs e)

 {

 txtANOVA.SelectionStart = 0 ;

 }

 private void button1_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 }

}

154

APPENDIX B

ANALYSES OF VARIANCE

Press ANOVA to obtain the analyses of variance for fitting regression see

fig (AppB.1a to AppB.7d) and table 6.4.

The table summarizes the sum of squares, regression, residuals, the degree

of freedom (d.f.) and the mean squares which are sums of squares divided

by degrees of freedom.

The analysis of variance table is simply a convenient summary of the steps

involved in calculating an F-statistic.

Fig AppB.1a-1X1 4Pts-ANOVA Table (see fig 6.2a)

Fig AppB.1b-1X1 5Pts ANOVA Table (see fig 6.2b)

155

Fig AppB.1c-1X1 6Pts1 ANOVA Table (see fig 6.2c)

Fig AppB.1d-1X1 6Pts2 ANOVA Table (see fig 6.2d)

Fig AppB.2a-1X2 4ptS ANOVA Table

156

Fig AppB.2.b-1X2 5Pts ANOVA Table

Fig AppB.2c-1X2 6Pts1 ANOVA Table

Fig AppB.2d-1X2 6Pts2 ANOVA Table

157

Fig AppB.3a-2X1 4Pts ANOVA Table

Fig AppB.3b-2X1 5Pts ANOVA Table

Fig AppB.3c-2X1 6Pts1 ANOVA Table

158

Fig AppB.4a-2X2 4Pts ANOVA Table

Fig AppB.4b-2X2 5Pts ANOVA Table

Fig AppB.4c-2X2 6Pts1 ANOVA Table

159

Fig AppB.4d-2X2 6Pts2 ANOVA Table

Fig AppB.5a-2X4 4Pts ANOVA Table

Fig AppB.5b-2X4 5Pts ANOVA Table

160

Fig AppB.5c-2X4 6Pts1 ANOVA Table

Fig AppB.5d-2X4 6Pts2 ANOVA Table

Fig AppB.6a-4X2 4Pts ANOVA Table

161

Fig AppB.6b-4X2 5Pts ANOVA Table

Fig AppB.6c-4X2 6Pts1 ANOVA Table

162

Fig AppB.6d-4X2 6Pts2 ANOVA Table

Fig AppB.7a-4X4 4Pts ANOVA Table

Fig AppB.7b-4X4 5Pts ANOVA Table

163

Fig AppB.7c-4X4 6Pts1 ANOVA Table

Fig AppB.7d-4X4 6Pts2 ANOVA Table

