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Abstract 

   Magnetic properties of matter play an important role in human life. This 

requires developing the physical theories that describe magnetic phenomena. 

One of these important fields is the magnetic properties of superconductors. Till 

now there is no satisfactory theory that fully explains these magnetic properties 

of superconductors. 

  This set back encourages constructing a model based on temperature dependent 

Schrodinger equation to explain superconductivity destroy by external magnetic 

field. By using quantum resistance relation and treating resistance as consisting 

of real superconducting and imaginary part in one approach and positive 

superconducting beside negative part, it was shown that superconductivity is 

destroyed when the external magnetic field exceeds a certain critical value. This 

result agrees with observations. The magnetic field is shown also to be 

associated with the energy gap which depends on critical temperature. This 

relation also agrees with the empirical relation. 
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 مستخلصال

                                                                         تلعب خواص المادة المغنطيسية دورا  مهما  في حياة الإنسان. وهذا يتطلب تطوير 
النظريات الفيزيائية التي تصف الظواهر المغنطيسية. أحد أهم المجالات المهمة مجال 

المغنطيسي للموصلات الفائقة التوصيل الفائق. وحتى الآن لاتوجد نظرية تصف السلوك 
 بصورة كاملة.

هذا العيب شجع لعمل نموذج يعتمد علي معادلة شوردينجر الحرارية لتفسير تلاش 
التوصيل الفائق عبر تسليط مجال مغنطيسي خارجي. بإستخدام علاقة المقاومة الكمية 

في نمودخ وفصلها لجزء حقيقي فائق وجزء تخيلي في نمودج وجزء موجب فائق وآخر سالب 
 ،عند تجاوز المجال الغنطيسي الخارجي لقيمة حرجة ىآخر ثبت أن التوصيل الفائق يتلاش

وهذه النتيجة تتفق مع التجربة. وتم التوصل لوجود فجوة طاقة مصاحبة للمجال المغنطيسي 
                                                                          بصيغة تعتمد علي درجة الحرارة الحرجة مماثلة للصيغة المتحصل عليها تجريبيا .
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CHAPTER ONE 

Introduction 

1.1Magnetic properties of Matter 

     The history of magnetic field dates from the discovery of the peculiar of the 

peculiar property of some stones in attracting iron pieces. 

These stones are called later as magnetic. The development of physical theories 

later on proposed that magnetic fields are generated by electrically moving like 

electrons [1, 2, and 3]. The electric by charges can also generate magnetic 𝛽 

current. The electric charges are also surrounded by an electric field. This means 

that the electric field and magnetic field are related to each other these relations 

are formulated mathematically by Maxwell, who propose the so called 

Maxwell’s equations [4, 5, and 6]. It is well know that this relation is used 

widely in generating electric field by allowing wire coils to revolve in a magnetic 

field. The magnetic properties of matter are used widely in storing information in 

computers beside fabrication of the so called super conductors which are used in 

medical diagnosis by observing magnetic activities of organs like heart and brain 

[7, 8, 9]. 

    One of these medical techniques known, use the so called SQUID which is 

abbreviation of the word (super conductor Quantum inter faience device).  This 

device is very sensitive to very work magnetic field variation. Like that produced 

by brain and some vital organs [10]. This device is a super conductor device 

where its working principle is based on the physical properties, namely the 

magnetic properties of Super-conductors [11, 12, 13, and 14]. The other 

technique is based on magnetic resonance property, by using the so called 

magnetic resonance imaging (MRI) technique which is better than other physical 

imaging techniques especially for soft tissues [15, 16, and 17]. 
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These important applications of magnetic properties of matter motivates 

researchers to construct theoretical models so as to know the physical parameter 

that control super-conducting properties [18, 19, 20,21] and the nature of 

magnetic resonance process [22.23,24,25]. 

1.2 Research Problem 

     The increasing need to use magnetic properties of matter requires developing 

the theoretical models that are concerned with the magnetic properties of matter. 

1.3 Literature Review 

     Different attempts were made to study magnetic properties of matter [26, 27, 

28, 29]. Like magnetic properties of super-conducting [30, 31, 32, 33]. In some 

of these attempts the magnetic flux and current in super-conducting ring is 

shown to be quantized [A51] [34]. The magnetic flux produced by cold atoms is 

also shown to be quantized when it is cooled [35]. These attempts [36, 37, 38, 

39], however dose not study the reason why super-conducting is destroyed when 

an external magnetic field exceeding certain critical value is applied. 

1.4 Aim of the Work 

     The aim of work is to construct a useful theoretical model that can explain 

some magnetic properties of super-conducting like the relation between super-

conducting existence and magnetic field beside magnetic resonance phenomena. 

1.5 Thesis Layout 

     The thesis consists of five chapters. Chapter one and two are devoted for 

introduction and theoretical back ground on magnetic properties of super-

conducting. Chapters three, four and five are concerned with literature review 

and contribution.             
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CHAPTER TWO 

Physical and Magnetic Properties of Conductors and 

Super-Conductors 

2.1 Introduction 

     The physical properties of matter play an important role in physics and 

technology. This chapter is devoted for magnetic properties of matter in general 

and for super conductors. 

2.2 Magnetic Moment of Atoms 

     The magnetic moment 𝑃0is defined, in terms of the current 𝑖 and the area 𝐴 

enclosed by it, to be in the form [04, 41, 42]. 

𝑃0 = 𝑖𝐴                                                    (2.2.1) 

But the current generated by the electron of charge −𝑒 moving around a nucleus 

in a circular orbit of radius is given by 

𝑖 = −𝑒𝑓 =
𝑒𝜔

2𝜋
                                                     (2.2.2) 

𝑓 ≡ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

Where the area is given by 

𝐴 = 𝜋𝑟2                                                    (2.2.3) 

On the other hand the orbital angular 𝐿 is given by [25] 

𝐿𝑚𝑣𝑟 = 𝑚𝜔𝑟2                                                    (2.2.4) 

Inserting (2.2.2), (2.2.3) and (2.2.4) in (2.2.1) yields the magnetic moment in the 

form 

𝑃0 = 𝑖𝐴 =
𝑒𝜔

2𝜋
(𝜋𝑟2) = −

𝑒𝜔𝑟2

2
 

𝑃0 =
−𝑒𝑚𝜔𝑟2

2𝑚
= −

𝑒

2𝑚
𝐿⃗                                                     (2.2.5) 

Similarly the spin magnetic moment 𝑃𝑠is related to the spin angular momentum 

according to the relation 
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𝑃⃗ 𝑠 =
−𝑒

𝑚
𝑆                                                          (2.2.6) 

The total magnetic moment 𝑃𝑚resulting from spin and orbital motion is given by 

[25] 

𝑃⃗ 𝑚 =
𝑒ℏ

2𝑚
𝑔𝑗𝐽  

𝑃⃗ 𝑚 = −𝜇𝑔𝑔𝐽𝐽                                                     (2.2.7) 

𝐽  is the quantum number, 𝑔𝑗 is the 𝑔factor and 𝜇𝑔 is the susceptibility hence 

𝑃⃗ 𝑚 = −𝜇𝛽〈𝐿⃗ + 2𝑆 〉                                                    (2.2.8) 

Where  

𝑔𝐽𝐽 = 〈𝐿⃗ + 2𝑆 〉                                                    (2.2.9) 

𝜇𝛽 =
𝑒ℏ

2𝑚
                                                    (2.2.10) 

 

The parameter 𝑔𝐽can simply be given by 

𝑔𝐽 =

3
2
𝐽 2 + (

1
2) 𝑆 2 −

1
2
𝐿⃗ 2

𝐽 2
 

=
3

2
+

𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
                                                    (2.2.11) 

𝐽 = ℏ√𝐽(𝐽 + 1)                                                         (2.2.12) 

This relation can be found by setting 

𝐽 = 𝐿⃗ + 𝑆                                                            (2.2.13) 

𝐽2 = 𝐿2 + 𝑆2 + 2𝐿⃗ . 𝑆                                                     (2.2.14) 

〈𝐿⃗ + 2𝑆 〉 = 𝐿⃗ + 2𝑆                                                     (2.2.15) 

To get 

𝑔𝐽𝐽 . 𝐽 = (𝐿⃗ + 2𝑆 ). (𝐿⃗ + 𝑆 ) = 𝐿2 + 2𝑆2 + 3𝐿⃗ . 𝑆                                              (2.2.16) 

Then 

𝑔𝐽𝐽
2 = 𝐿2 + 2𝑆2 + 3𝐿. 𝑆                                                    (22.17) 
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From (2.2.14) 

𝐿. 𝑆 =
𝐽2 − 𝐿2 − 𝑆2

2
 

=
1

2
𝐽2 −

1

2
𝐿2 −

1

2
𝑆2 

𝑔𝐽𝐽
2 = 𝐿2 + 2𝑆2 +

3

2
𝐽2 +

3

2
𝐿2 =

3

2
𝑆2 

=
3

2
𝐽2 +

1

2
𝐿2 =

1

2
𝑆2 

𝑔𝐽 =

3
2
𝐽2 +

1
2
𝑆2 −

1
2
𝐿2

𝐽2
                                         (2.2.18) 

If 𝑛 atoms per unit volume align themselves along the x-axis thus the component 

of 𝑥is given by 

𝑀𝑥 = 𝑛𝑃𝑚 = −𝑛𝜇𝛽𝑔𝐽𝐽                                        (2.2.19) 

Where 𝑀𝑥changes from 0 to max value during a time𝑇. 

The electron revolving around nucleus can produce a magnetic field of flux 

density𝐵. If the electron revolves with frequency 𝑓in circular orbit of radius𝑟, 

then according to Bio-savart law it produces a magnetic field of flux density 

[26]. 

𝐵𝑒 =
𝜇0𝑖

2𝑟
                                                       (2.2.20) 

𝐵𝑒 =
𝜇0𝑓𝑒

2𝑟
                                                      (2.2.21) 

Hence 

𝑖 = 𝑓𝑒 

The magnetic moment produced by such an electron is given by 

𝑃𝑚 = 𝑖𝐴 = 𝑖(𝜋𝑟2) = 𝜋𝑖𝑟2                                                    (2.2.22) 

Where 𝐴 is the area enclosed by the current 𝑖 

𝐴 = 𝜋𝑟2                                                    (2.2.23) 
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For 𝑧 electrons with mean radius𝑟, the magnetic flux density of the atom 𝐵𝑎 is 

given by 

𝐵𝑎 =
𝜇0𝑧𝑓𝑒

2𝑟
                                                      (2.2.24) 

Thus the internal field generated by one electron is𝐵𝑖 =
𝜇0𝑓𝑒

2𝑟
, and is related to 

magnetic moment through the relation 

𝐵𝑎 =
𝜇0𝑃𝑚

2𝜋𝑟3
                                                    (2.2.25) 

Since the current for the whole atom [27] is 

𝑖 = 𝑧𝑓𝑒 

Hence the field of the atoms is related to the magnetic moment also as follows 

𝐵𝑎 =
𝜇0𝑃𝑚

2𝜋𝑟3
                                                      (2.2.26) 

But the magnetic moment 𝑀 is defined in terms of the number of dipoles 𝑁 

divided by the volume 𝑉 to be 

𝑀 =
𝑁𝑃𝑚

𝑉
                                                    (2.2.27) 

IF the atomic radius𝑟, thus one atom exists in a volume 𝑉𝑎 is given by 

𝑁

𝑉
=

1

𝑉𝑎
=

1

4
3𝜋𝑟3

=
3

4𝜋𝑟3
                                          (2.2.28) 

This: 

𝑀 =
3𝑃𝑚

𝜋𝑟3
                                                      (2.2.29) 

Using (2.2.25), (2.2.27) and (2.2.28) in (2.2.29) yields: 

𝑀 =
3

𝜋𝑟3

𝐵𝑎

𝜇0

(2𝜋𝑟3) =
3𝑃𝑚

2𝜇0
                                         (2.2.30) 

2.3 Energy Splitting and Zeeman Effect 

     The Zeeman Effect is the name for the splitting of atomic energy levels or 

spectral lines due to the action of an external magnetic field. The effect was first 
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predicted by𝐻. 𝐴. Lorenz in 1895 as part of his classic theory of the electron, and 

experimentally confirmed some years later by𝑃. Zeeman.  

Zeeman observed [27]. 

A line triplet instead of a single spectral line at right angles to a magnetic field, 

and a line doublet parallel to the magnetic field. Later more complex splitting of 

spectral lines were observed, which became known as the anomalous Zeeman 

Effect. To explain this phenomenon, Goudsmit and Uhlenbeck first introduced 

the hypothesis of electron spin in 1925. Ultimately, it became apparent that the 

anomalous Zeeman Effect was actually the rule and the normal Zeeman Effect 

the exception [28]. 

The normal Zeeman Effect only occurs at the transitions between atomic states 

with the total spin𝑆 = 0. The total angular momentum 𝐽 = 𝐿 + 𝑆of a state is then 

a pure orbital angular momentum𝐽 = 𝐿. For the corresponding magnetic 

moment, we can simply say that 

𝜇 =
𝜇𝐵

ℏ
𝑗                                                    (2.3.1) 

Where 

𝜇𝐵 =
ℏ𝑒

−2𝑚𝑒
                                                    (2.3.2) 

𝜇𝐵 = 𝐵𝑜ℎ𝑒𝑟′𝑠𝑚𝑎𝑔𝑛𝑡𝑜𝑛 

𝑚𝑒 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 

𝑒 = 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑐ℎ𝑎𝑟𝑎𝑔𝑒 

ℏ = ℎ/2𝜋 

ℎ = 𝑃𝑙𝑎𝑛𝑘′𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

In an external magnetic field𝐵, the magnetic moment has the energy  

𝐸 = −𝜇. 𝐵                                                    (2.3.3) 

The angular-momentum component in the direction of the magnetic field can 

have the values𝐽𝑧 = 𝑀𝐽. ℏ 𝑤𝑖𝑡ℎ 𝑀𝐽 = 𝐽, 𝐽 − 1,…… ,−𝐽. 
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Therefore, the term with the angular momentum 𝐽 is split in to 2𝐽 + 1 equidistant 

Zeeman components which differ by the value of𝑀𝐽. The energy interval of the 

adjacent components 𝑀𝐽, 𝑀𝐽+1is 

∆𝐸 = 𝜇𝐵 . 𝐵                                                    (2.3.4) 

Where an electron travelling in a circular orbital perpendicular to the 𝑍 axis has 

magnetic moment 𝜇𝐿𝑍to the orbital angular momentum 𝐿 by relation [29].  

𝜇𝐿𝑍 =
𝑒

2𝑚𝑒
𝐿𝑧                                                      (2.3.5)  

On the other hand for electron spin it is experimentally observed that 

𝜇𝑠𝑍 = 𝑔
𝑒

2𝑚𝑒
𝑆𝑧                                                    (2.3.6) 

Where 𝑔is lande factor 

For an electron has both spin angular momentum, orbital angular momentum and 

total angular momentum we can write 

𝜇𝐽𝑍 = 𝑔𝐿

𝑒

2𝑚𝑒
𝐽𝑧                                                    (2.3.7) 

Where 𝑍 component of the total angular momentum if the magnetic field is in 

the 𝑍 direction 

∆𝐸 = −𝑔𝐿

𝑒

2𝑚𝑒
𝐽𝑧𝐵                                                    (2.3.8) 

Thus  

∆𝐸 = −𝑔𝐿

𝑒ℎ

4𝜋𝑚𝑒
𝑚𝑗𝐵 

= −𝑔𝐿𝜇𝐵𝑚𝑗𝐵                                                    (2.3.9) 

𝜇𝐵 = 9.274 × 10−24𝐽/𝑇 is called Bohr magneton. 

Then the change in photon energy is  

∆𝐸 = 𝑔𝑒𝑓𝑓𝜇𝐵𝐵                                                    (2.3.10) 

𝑔𝑒𝑓𝑓is the effective 𝑔 factor for the transition. 
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We can observe the normal Zeeman Effect e.g. in the red spectral line of 

cadmium(𝜆0 = 643.8𝑛𝑚, 𝑓0 = 465.7𝑇𝐻𝑧). It corresponds to the transition 1D2 

(𝐽 = 2, 𝑠 = 0) →1P1 (𝐽 = 1, 𝑆 = 0) of an electron of the fifth shell. In the 

magnetic field, the 1D2 level splits into five Zeeman components having the 

spacing calculated using equating (2.3.4). 

     Optical transitions between these levels are only possible in the form of 

electrical dipole radiation. The following selection rules apply for the magnetic 

quantum numbers 𝑀𝐽of the ststes involved: 

∆𝑀𝐽 = ±1 For 𝜎components 

∆𝑀𝐽 = ±0for 𝜋components                                          (2.3.11) 

Thus, we observe a total three spectral lines; the 𝜋 component is not shifted and 

the two 𝜎 components are shifted by [46, 47]. 

∆𝑓 = ±
∆𝐸

ℎ
                                                    (2.3.12) 

∆𝐸 = 𝑉𝑚 ≡ 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 

With respect to the original frequency. In this equation, ∆𝐸 is the equidistant 

energy split calculated in (2.3.4). 

Depending on the angular momentum component ∆𝑀𝐽 in the direction of the 

magnetic field, the emitted photons exhibit different angular distributions. The 

angular distributions in the form of two-dimensional polar diagrams. The can be 

observed experimentally, as the magnetic field is characterized by a common 

axis for all cadmium atoms [68]. 

In classical terms, the case ∆𝑀𝐽 = 0 corresponds to an infinitesimal dipole 

oscillating parallel to the magnetic field. No quanta are emitted in the direction 

of the magnetic field, i.e. 

The 𝜋 component cannot be observed parallel to the magnetic field. The light 

emitted perpendicular to the magnetic field is linearly polarized, where by the 
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𝐸 − 𝑣𝑒𝑐𝑡𝑜𝑟 oscillates in the direction of the dipole and parallel to the magnetic 

field. 

Conversely, in the case ∆𝑀𝐽 = ±1 most of the quanta travel in the direction of 

the magnetic field. In classical terms, this case corresponds to two parallel 

dipoles oscillating with a phase difference of90°. The superposition of the two 

dipoles produces a circulating current. Thus in the direction of the magnetic 

field, circularly polarized light is emitted in the positive direction it is clockwise 

for ∆𝑀𝐽 = +1 and anticlockwise-circular for∆𝑀𝐽 = −1. 

The Zeeman Effect enables spectroscopic separation of the differently polarized 

components. To demonstrate the shift, however we require a spectral apparatus 

with extremely high resolution, as the two 𝜋 components of the red cadmium 

line are shifted e.g. at magnetic flux density 𝐵 = 1 𝑇 by only 𝑓 = 14𝐺𝐻𝑧, 

respectively ∆𝜆 = 0.02𝑛𝑚. 

2.4 Super-Conductors 

      A super-conductor is the material that has zero resistance beyond critical 

temperature. A super conductor has also very interesting [30, 31]. 

Magnetic properties. For instance super-conductor can expel weak magnetic 

field out of it completely. Thus super-conductor is a perfect diamagnetic. 

These properties are exhibited in details in the sections below.  

2.5 Electrical Properties of Super-conductor 

     Every super-conductor has zero resistivity i.e., infinite conductivity for a 

small amplitude DC current any temperature below𝑇𝑐. This property of the 

super-conducting state was demonstrated by inducing a small-amplitude DC 

current around a closed ring of a conventional super-conductor. The experiment 

continued over two and a half years there was no measurable decay of the 

current [32]. 
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Figure (2.1) Resistivity of typical metal as a function of temperature 

Temperature while for a super-conductor all sings of resistance disappears 

suddenly below a certain temperature 𝑇𝑐[33]. 

2.6 The Meissner-Ochsenfeld Effect 

     Super-conductivity can flourish only if the external magnetic field is smaller 

than critical value critical magnetic field 𝐻𝑐, a quantity which varies from a 

maximum value 𝐻0 at 𝑇 = 0 to zero field at the critical temperature. For many 

Super-conductors the temperature dependence of the form [34, 35, 36]. 

 

Figure (2.2) Temperature dependence of the magnetic field necessary to 

quench super-conductivity in lead. 

Hc = H0 [1 − (
T

TC
)
2

]                                          (2.6.1) 
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Super-conductivity in lead (TC = 7.19k, B0 = 0.0803 tesla)[37] 

Nowadays the fact that the resistivity zero, ρ = 0, is not taken as true definition 

of super-conductivity. The fundamental proof that super-conductivity occurs in a 

given material is demonstration of the Meissner-ochsenfeld effect [38]. 

In 1933 Mesissner and ochsenfeld discovered another distinct property of the 

super-conductivity state perfect diamagnetism. They noticed that the magnetic 

flux is expelled in weak external magnetic field in the figure (2.3). 

 

Figure (2.3) Meissner Effect 

The explosion of weak external magnetic field from the interior of a super-

conductor [39]. 

We noticed in the normal state, at temperatures above TC the field lines pass 

through the metallic specimen. Upon cooling below TC, a phase transition into 

the super-conducting state takes place and the magnetic flux gets expelled out of 

the interior of the metallic sample [40]. Due to electric currents known as 

screening currents flowing on the surface of the super-conductor in such a way 

as to generate a field equal and opposite to the applied field [41]. Meissner-

ochsenfeld cannot be deduced from the infinite conductivity of a super-

conductor. 

From ohm’s law 
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E = ρJ                                                (2.6.2) 

Where E represented the electric field, ρ the resistivity and J the electric current 

density in the sample. Zero resistivity implies zero electric field. So, if we take 

the Maxwell equation 

∇ × E = −
∂B

∂t
                                            (2.6.3) 

    We have 

∂B

∂t
= 0                                              (2.3.4) 

We see that the magnetic induction in the interior of the sample has to be 

constant as a function of time. Then the super-conducting metal always expels 

the field from its interior, and has B = 0 in its interior. So the expulsion of the 

magnetic field ensures that super-conducting state is a true thermodynamic state 

[42]. 

Perfect Diamagnetism 

      In order to maintain B = 0 inside the sample whatever (small) external fields 

are imposed as required by the Meissner-ochsenfeld effect there obviously must 

be screening currents flowing around the edges of the sample. These produce a 

magnetic field which is equal and opposite the applied external field, leaving 

zero field in total [43, 44]. 

The total current is separated into the external applied currents (e.g. in the coils 

producing the external field), Jext. And the internal screening currents, Jext. 

J = Jext + Jint                                           (2.6.5) 

The screening currents produce a magnetization in the sample. M per unit 

volume defined by 

∇ × H = Jext                                            (2.6.6) 

The three vectors M, H and B are related by 

B = μ0(H + M)                                            (2.6.7) 

Maxwell’s equation also tell us that 
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∇. B = 0                                                (2.6.8) 

Equation (2.6.8) shows that the component of B perpendicular to the surface 

must remain constant; while from condition equation (2.6.6) one can prove that 

components of H parallel to the surface remain constant. The two boundary 

conditions are therefore. 

∆B⊥ = 0                                              (2.6.9) 

∆B∥ = 0                                            (2.6.10) 

Imposing the Meisser condition B = 0 in equation (2.6.7) we find the 

magnetization is 

M = −H                                            (2.6.11) 

The magnetic susceptibility is defined by 

χ =
dM

dH
|
H=0

                                            (2.6.12) 

And so we find that for Super-conductors 

χ = −1                                            (2.6.13) 

Solids with negative value of χ are called diamagnetism (in contrast positive χ 

are paramagnets). Diamagents screen out part of the external magnetic field, and 

they become magnetized oppositely to the external field. In Super-conductors the 

external field is completely screened out, therefore we can say that Super-

conductors are perfect diamagnetism [45]. 

2.7 Types of Super-conductors 

     Super-conductors divide into two classes according to behavior in a magnetic 

field. All pure samples of super-conducting elements, exceptNb, exhibit type −

1 behavior and their super-conductivity destroyed by a modest applied magnetic 

field Bc, known as the critical field [46,47]. 

2.7.1 𝐓𝐲𝐩𝐞 − 𝟏 Super-conductor 

     The behavior of type − 1 and super-conductor, at a given temperature T and 

in a uniform external magnetic field H, can be described as follows. If H is 
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smaller than a critical value Hc(T), the super-conductor completely expels the 

magnetic flux from its interior (Meissner effect); as the external field is increased 

above the critical value Hc(T), the entire specimen reverts from the super-

conducting to the normal state. 

A plot of the magnetization M versus the applied magnetic His shown in fig (2.3) 

for H ≺ Hc(T) we have B = H + 4πm = 0 and thus −4πm = H  

 

 

Figure (2.4) Magnetization versus applied field for type-1 super-conductor 

2.7.2 𝐓𝐲𝐩𝐞 − 𝟐 Super-conductor 

     Although Nb is the only element that is Type − 2 is pure state, other elements 

generally become Type − 2 when the electron mean free path is reduced 

sufficiently by alloying [48]. In Type − 2 Super-conductors, the transition a 

normal state is quite gradual. This is shown in fig (2.3) where super-conductivity 

is only partially destroyed for Hc1 ≤ H ≤ Hc2. The region between Hc1and Hc2 

is known as intermediate state as it contains partially both normal and the super-

conducting states. Hc1 is called the lower critical field, whereas Hc2 is known as 

upper critical field. At Hc1 the field begins to penetrate the sample, and the 

penetration increases until Hc2, the magnetization vanishes and the sample 

reaches the normal. Type − 2 Super-conductors exhibit imperfect diamagnetism 
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[49]. Type − 2 Super-conductors are known in which Hc2 is large as 2.8 ×

107A/m at absolute zero. Such materials are used now for practical super-

conducting magnet coils, and are anticipated for use in the generation and 

distribution of electrical power. 

 

Figure (2.5) Magnetization curve for type-2 super-conductor 

2.8 Energy Gap in the Excitation Spectrum 

     AtT = 0, the elementary excitation spectrum of a super-conductor has an 

energy gap. In conventional Super-conductors, however, however at some 

special conditions there may exist gapless super-conductivity, since conventional 

Super-conductors have only one energy gap the pairing one. The energy gap in a 

super-conductor is carried by the Fermi surface and occurs on either side of the 

Fermi level EF, as shown in Fig (2.6). Theory and experiment both concluded 

that energy gap (∆) in a super-conductor is of the order of kBTc. Nevertheless it 

is found to be a function of temperature such as [50]. 
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Figure (2.6) Fermi level in normal state (a) and super-conductor state (b) 

𝐸𝑔 = 2∆(𝑇) = 2𝑏𝑘𝐵𝑇𝑐 

2𝑏𝑖𝑠 𝑎𝑏𝑜𝑢𝑡 2.3 

     The variation of energy gap with temperature is shown in Fig (2.7). The gap 

is found to decrease with the increase of temperature and vanishes entirely at 

T = Tc. 

 

Figure (2.7) Variation of energy gap with tempreature 

2.9 Isotope Effect 

     It has been confirmed that the critical temperature for different isotopes of 

super-conductor metal is different other. Maxwell and Reynolds they observed 

that for mercury isotope the critical temperature, Tc varies from 4.185K to 

4.146K as the isotopic mass M varies from 199.5amu to 203.4amu.The 
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experimental results on lead, tin and isotopes of other metal suggest isotope 

effect may be well fitted by relation of the form 

MαTc = Constant                                      (2.9.1) 

Where α is the isotope effect coefficient. 

In the early years of development of BCS theory it was observed that for most the 

metals 

TcαM−
1
2                                          (2.9.2) 

Science the phone processes depend onM−
1

2, the isotope effect suggests that the 

super-conductivity include a large electron-phonon interaction, and hence Tc 

depends on isotopic mass [51]. 

2.10 Thermodynamic Properties 

     The transition from the normal state to the super-conducting is the second-

order phase transition. At a second-order phase transition, the first derivatives of 

the Gibbs discontinuities. The Gibbs free energy G for a system in thermal 

equilibrium is defined (in CGS units) as [52]. 

G ≡ U − TS −
BH

4π
+ pV ≡ −B.

H

4π
+ pV                    (2.10.1) 

Where U is the total internal energy or the system; T is the temperature of the 

system; S is the entropy per unit volume; p in the pressure in the system; V is the 

volume of the system, H and B are the applied magnetic field and flux, 

respectively. The function F ≡ U − TS is the Helmholtz free energy. The 

Helmholtz free energy of super-conducting state Fs is lower than that of the 

normal state Fn by the value called the condensation energy. 

Fn − Fs =
Hc

2

8π
                                          (2.10.2) 
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Figure (2.8) Temperature dependences of the specific heat 𝐂𝐬 

The free energy Fs of a super-conductor in H = 0 with respect to their values in 

the normal state, Cn, Sn and Fn. 

In the normal state thus aboveTc, the specific Cn linearly decreases as the 

temperature decreases, Cn = γT as shown in Fig (2.9) such a linear dependence 

of specific heat is typical for normal metals and represents the electronic specific 

heat. In the super-conducting state thus below Tc, the specific heat falls 

exponentially, as the temperature decreases as schematically shown in Fig (2.9). 

Csαe
(−

∆(T)
kBT

)
                                          (2.10.3) 

 

Figure (2.9) Temperature dependences of the specific heat of a super-

conductor 
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2.11 London Equations 

     The London brothers proposed a simple theory to explain the Meissner effect. 

The London equations provided an early simple model for describing 

experimental results. 

The 1935 theory of London brothers provides the first and second London 

equations, which relate the electric and magnetic fieldsE and B, respectively 

inside a super-conductor to the current density. 

2.11.1 Derivation of First London Equation 

     A potential difference applied along a conducing wire produces an electric 

filed E on any electron is given by [53]. 

F = −eE = m
dv

dt
 

Where e is the electron charge, m represents its mass, while v stands for its 

velocity. Electrons undergo successive periods of acceleration interrupted by 

collision, and during the average time [relaxation time (scattering on defects)] τ 

between collisions. The velocity is given by 

v =
eE

m
τ                                                 (2.11.1) 

Which called the drift velocity the negative sing means that the electrons move 

in direction opposite to that of the electric field? 

When the electron is assumed to move in a resistive medium which have 

frictional force proportional to the velocity the electron equation of motion is 

given by 

m
dv

dt
= eE − m

v

τ
                                              (2.11.2) 

Where the frictional force is given by: 

F = ma, v = v0 + aτ = 0 + aτ ⟹ F =
mv

τ
 

For steady state in normal metal, no acceleration exists. i.e. 
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dv

dt
= 0 

Therefore 

v =
eE

m
τ                                          (2.11.3) 

Hence the current density given by 

J = nev =
neτ

m
E = σE                                   (2.11.4) 

Where n the density of electrons is σ is electrical conductivity. 

In the two fluid models we have the temperature dependent expression for the 

super nn electrons densities respectively 

ns(T) + nn(T) = n                                       (2.11.5) 

Where the total electron density n is independent of temperature and at T = 0 we 

havenn(0) = 0 and ns(0) = n, and the simple theory predicts the following 

temperature dependences: 

ns(T) = ns (
T

Tc
)
4

                                        (2.11.6) 

Where Tc is the critical temperature. 

 

Figure (2.10) Temperature dependence of density of super-conducting 

For super-conductor below. Tc The resistivity is zero we obtain equation (2.11.2) 

become: 
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dv

dt
=

eE

m
                                          (2.11.7) 

Taking the derivative of J in equation (2.11.7) with respect to time 

dJ

dt
= nse

dv

dt
=

nse
2

m
E                              (2.11.8) 

The term 
m

nse
2
= A is a phenomenological parameter 

Equation (2.11.8) can be rewrite as 

E =
d

dt
(AJ) = A

dJ

dt
                             (2.11.9) 

This equation is known as the first London equation 

2.11.2 Second London Equation 

     This equation relates to time dependent fields and important for Meissner 

effect. 

The electric current density is given quite by [54]. 

J = nqv                                     (2.11.10) 

Where n is concentration of carriers of chargeq. In the presence of a magnetic 

field described by the vector potentialA, the velocity v is related to the total the 

momentum p by 

p = mv +
q

c
A    v =

1

m
(p −

q

c
A)                (2.11.11) 

Where m is the mass, c the speed of light in vacuum. 

Thus equation (2.11.10) can write as 

J =
nq

m
p −

nq2

mc
A                                  (2.11.12) 

In the super-conducting state, the total momentum p is zero although it not equal 

to zero in normal state. i.e. 

p = 0, and equation (2.11.12) reduces to 

J =
nq2

mc
A                               (2.11.13) 
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For electrons q = e, n = ns 

J −
nse

2

mc
A                             (2.11.14) 

The vector potential is related to the magnetic field by 

B = ∇ × A                             (2.11.15) 

Equation (2.11.14) can be rewritten as 

J −
c

4πλL
2 A                             (2.11.16) 

This equation is known as the second London equation where  

λ2
2 =

mc2

4πnse
2
 (Where λs is known as London penetration depth) equation (2.11.16) 

can be expressed in another way by taking the curl of both sides and using 

equation (2.11.15) to obtains 

∇ × J = −
c

4πλL
2
(∇ × A) = −

c

4πλL
2 B                (2.11.17) 

B = −cA∇ × J                             (2.11.18) 

Where A =
m

nse
2
=

4πλL
2

c2
 is a phenomenological parameter. Equation (2.11.18) is 

other form of the second equation of London. 

2.12 London Penetration Depth in Super-conductors 

 

Figure (2.11) Exponentially damped magnetic field in semi-infinite super-

conductor 

     One of the theoretical approaches for the description of the super-conducting 

state is the London equation. It relates the curl of the current density J to the 

magnetic field according to equation (2.11.17) as [55]. 



24 
 

∇ × J = −
c

4πλL
2
(∇ × A) =

c

4πλL
2 B                        (2.12.1) 

However form Maxwell equation under static conditions  

∇ × B =
4πJ

c
= μ0J                             (2.12.2) 

Where 

μ0 =
4π

c
 

This equation can be expressed in terms of the magnetic flux density by taking 

the curl of both sides of equation (2.12.2) one obtains 

∇ × ∇ × B = ∇(∇. B) − ∇2B =
4π

c
(∇ × J) 

Where ∇. B = 0 ⟹ ∇(∇. B) = 0 according to Maxwell equation. 

∇2B = −
4π

c
(∇ × J) 

With equation (2.12.1) one gets 

∇2B = +
4π

c
B                             (2.12.3) 

If B = Ba = constant. Then ∇2Ba is always zero, but 
Ba

λL
2  is not zero unless Ba is 

zero. This result shows that if the magnetic flux density is constant inside a 

super-conductor in must be identically zero everywhere inside a super-

conductor. 

In the pure super-conducting state, the only allowed solution is the damped 

exponentially one. This can be shown from the above equation. To solve this 

equation let a semi-infinite super-conductor occupy the space on the positive side 

of the X-axis in figure (2.11.2) at the top. If Ba is the field outside the super-

conductor and at the plane boundary, then the field inside the super-conductor is 

given according to equation (2.12.3) as 

B(×) = B(0) exp (−
x

λL
)                             (2.12.4) 
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WhereB(×= 0) = Ba, i.e Bais the field outside the super-conductor and at the 

boundary therefore substituting in equation (2.12.4) yields: 

B(×) = Ba exp (−
x

λL
)                             (2.12.5) 

Where λL is known as London penetration depth 

λL = (
m

μ0nse
2
)

1
2
                                  (2.12.6) 

λL = (
mc

1
2ε0

nse
2

)

1
2

                                     (2.12.7) 

Where μ0 permeability of vacuum ε0 permittivity (Dielectric constant of vacuum 

the above equations show that the nature of decay depends upon the super-

conducting electron density ns. 

2.13 Coherence Length 

     The coherence length is a measure of the distance with in which the gap 

parameter cannot change drastically varying magnetic field. The London 

equation is a local equation: it relates the current density at a point r to the vector 

potential at the same point. As long as J(r) is given as a constant timesA(r), the 

current is required to follow exactly any variation in vector potential. However 

the coherence length is a measure of the range over which we should average A 

to obtainJ. 

Any spatial variation in the state of an electronic system requires extra kinetic 

energy. It is reasonable to restrict the spatial variation of J(r) in such a way that 

the extra energy is less than the stabilization energy of the super-conducting 

state. A suggestive argument (based on the uncertainty principle) for coherence 

length at absolute zero follows [56]. 

The electron motion can be described by the plane wave  

ψ(x) = eikx 
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Considering that the electron have two state one characterized by k, and the other 

is characterized by k + q. Then the wave function of the electron in the 

superposition of the two states is as follows 

ψ(x) = 2−
1
2(ei(k+q)x + eikx)                                  (2.13.1) 

The probability density as associated with single plane wave is uniform in space.  

Where 

ψ∗ψ = e−ikxeikx = 1                                   (2.13.2) 

Where the probability φ∗φ is modulated by the wave vectorq. 

Probability |φ|2 of two states = φ∗φ 

=
1

2
(e−i(k+q)x + e−ikx)(ei(k+q)x + eikx) 

=
1

2
(2 + e−iqx + e−iqx) = 1 + cos(qx)                     (2.13.3) 

The kinetic energy of the wave ψ(x) at a single state k is 

H =
P2

2m
+ v                                         (2.13.4) 

For free electrons 

v = 0, p =
ℏ

i

d

dx
, Hψ = Eψ ψ(x) = eikx                        (2.13.5) 

E =
ℏ2

2m
k2                                              (2.13.6) 

 

The kinetic energy of the wave function φ is 

〈E〉 = ∫φ∗Hφdx                                  (2.13.7) 

 

For  

v = 0   H =
P2

2m
=

ℏ2

2m

d2

dx2
 

Then 
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〈E〉 = ∫φ∗ (
ℏ2

2m

d2

dx2
)φdx 

1

2

ℏ2

2m
[(k + q)2 + +k2] 

=
1

2

ℏ2

2m
(k2 + 2kq + k2)∫ϕ∗ϕdx 

ℏ2

2m
(k2 + kq)                                          (2.13.8) 

Where we neglect q2on the assumption that q ≪ k comparing (2.13.6) and 

(2.13.7) 

The increase of energy required for modulation is
ℏ2q

2m
. If this increase exceeds the 

energy gapEg, super-conductivity will destroyed. The critical value q0 of 

modulation wave vector is defined by 

ℏ2q0

2m
kF = Eg                                   (2.13.9) 

We define an intrinsic coherence length λ0related to the critical modulation by. 

λ0 =
2π

q0
 

 Since 

ℏk = p = mv 

Then from (2.13.9) one obtains 

λ0 =
2πℏ2

2mEg
kF 

=
πℏ

Eg
vF                                        (2.13.10) 

Where  

vF =
ℏkF

m
 

The electron velocity at the Fermi surface. 

On the BCS theory a similar result can be obtained. i.e.  
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λ0 =
2ℏvF

πEg
                                  (2.13.11) 

The intrinsic coherence length λ0 is characteristic of a pure super-conductor. In 

impure materials and in allays the coherence length λc is shorter thanλ0. This 

maybe understood qualitatively in impure material the electron Eigen functions 

already have wiggles in them. We can construct a given localized variation of 

current density with less energy from functions with wiggles than from smooth 

wave function. 

Arising in the theoretical and experimental investigations of super-conductivity 

are two characteristic lengths, the London penetration depth and the coherence 

length. 

The London penetration depth refers to the exponentially decaying magnetic 

field at the surface of a super-conductor. It is related to the density of super-

conducting electrons in the material. The fact of exclusion of magnetic field from 

the interior of the super-conductor is called the Meissner effect. An independent 

characteristic length is called the coherence length. It is related to the Fermi 

velocity for the material and the energy gap associated with the super-conducting 

electron density cannot change quickly there is a minimum length over which a 

given charge can be made, lest it destroy the super-conducting state. For example 

a transition layer of finite thickness which is related to the coherence length. 

Experimental studies of various Super-conductors have led to the following 

calculated values for these two types of characteristic lengths.  

2.14 The Meissner Effect 

    The super-conductor has the important property of having zero resistance 

accordingly; the electric field in its interior must be zero. According to Faraday’s 

law of induction of the line integral of the electric fieldEaround any close loop is 

equal to the negative rate of change in the magnetic flux through the loop. Since 

Eis zero everywhere inside the super-conductor the integral over any closed path 
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in the super-conductor is zero. Hence the rate of change of magnetic flux in the 

super-conductor is constant. Therefore, if we transport a super-conducting 

cylinder, e.g. in to a magnetic field it will push the magnetic lines a side so that 

none of these penetrate the cylinder. As the super-conductor touches the 

magnetic field of these currents are induced on the surface and the magnetic 

field, the current are induced on the surface and the magnetic field of these 

currents produces just the rich deformation of the magnetic field lines to prevent 

their penetration in to the cylinder. The super-conductor also expels any 

magnetic field lines that are initially inside the material before it becomes super-

conducting. When a material makes the transition from the normal to super-

conducting state, it actively excludes magnetic field form its interior; this 

phenomena is called the Meissner effect [57]. 

This constraint of zero magnetic fields inside a super-conductor is distinct from 

the perfect diamagnetism, which would arise from its zero electrical resistance. 

Zero resistance would imply that if you tried to magnetize a super-conductor, 

current loops would be generated to exactly cancel the imposed field (Lenz’s 

Law). However if the material already had a steady magnetic field through it 

when it was cooled trough the super-conducting transition the magnetic field 

would be expected to remain. If there were no change in the applied would be 

expected to remain. If there were no change in the applied magnetic field, there 

would be no generated voltage (Faraday’s Law) to drive current even in a perfect 

conductor. Hence the active exclusion of magnetic field must be considered an 

effect distinct from just zero resistance. 

One of the theoretical explanations of the Meissner effect comes from the 

London equation. It shows that the magnetic field decays exponentially inside 

the super-conductor over a distance20 − 40nm. It is described in terms of a 

parameter called the London penetration depth [58, 59]. 



30 
 

In type-II super-conductors the magnetic field is not excluded completely, but is 

constrained in filaments within the material. These filaments are in the normal 

state, surrounded by super currents in what is called a vortex state. Such 

materials can be subjected to much higher external magnetic fields and remain 

super-conducting [60]. 

2.15 Flux Quantization 

     When a type − II super-conductor is immersed in an intermediate magnetic 

field to transfer it in to a mixed state the bulk of the material is super-conducting, 

but it is thread by thin filaments of normal material. The vortex lines are oriented 

parallel to the external magnetic field and they serve as paths for the magnetic 

flux lines of the external field. 

A current circulates around the perimeter of each vortex line. This current shields 

the bulk of the super-conductor from the magnetic field in the filaments. The 

flow of this current has the character of a vortex and that is why that the 

filaments were calling as vortex lines. 

Increasing the magnetic field would not cause an increase of the flux associated 

with each vortex line instead it will cause an increase in the number of vortex 

line threading the super-conductor. The stronger the external field he more 

densely will pack the vortex line. The ends of the vortex lines at surface of a 

super-conducting (Type − II) metrical in the mixed state have been made visible 

by dusting the surface with powdered iron. The vortex line is packed in the form 

of heaps having regular pattern on the surface. Knowing the magnetic field 

intensity and the number of vortex lines per square cm, it was found that the a 

mount of flux associated with each vortex line has a fixed value related to 

Plank’s constant h, and the electric charge of the electron e. 

The quantum of flux [61]. 

ϕ0 =
h

2e
= 2. o7 × 10−7Tm2                             (2.15.1) 
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In general the 

ϕ = nϕ0 

Where n is integer = 1,2,3,…. 

This result confirms the significance of electron pairs in the composition of the 

super-conducting state. Flux quantization is a beautiful example of a long-range 

quantum effect; in the instance of a ring the coherence of super-conducting state 

extends over the ring [62, 63]. 

The electromagnetic field is an example of a boson field. The electric field 

intensity E(r) acts qualitatively as field amplitude. The energy density may be 

written as, in a semi classical approximation. 

E∗(r)E(r)

4π
≈ n(r)ℏω                                (2.15.2) 

Where n(r) is the number of photons of frequency ω per unit volume. 

We assume that the total number of photons in the volume is large in comparison 

with unity. 

Then: 

E(r) ≈ (4πℏω)
1
2(n)r

1
2eiθ(r)                             (2.15.3) 

E∗(r) ≈ (4πℏω)
1
2(n)r

1
2e−iθ(r)                        (2.15.4) 

Where is θ(r) the phase of the field. 

We now introduce similar particle probability amplitudes in to the description of 

particle bosons, where a particle is an electron pair (the analogy with photons is 

not exact but it is helpful). 
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The ground state of cooer pairs. An electron pair will act as a boson although a 

single electron is fermions. The arguments that follow apply specifically to 

boson gas with a very large number of bosons in the same orbital. We then can 

treat the boson probability amplitude as a classical quantity, just as the 

electromagnetic field is used for photons. The arguments do not apply to a metal 

in the normal state because an electron in normal state acts as single unpaired 

fermions. 

We first show that a charged boson gas obeys the London equation in the form: 

∇ × J = −
c2

4πλL
2 B = −

1

μ0λL
2 B                             (2.15.5) 

Let ψ(r) be the particle probability amplitude. We suppose that the 

concentration. 

n = ψ∗(r)ψ(r) = const                             (2.15.6) 

At absolute zero n is one-half of the concentration of electrons in the conduction 

band for n refers to pairs. Then we can write: 

ψ(r) = n
1
2eiθ(r), ψ∗(r) = n

1
2e−iθ(r)                       (2.15.7) 

The phase θ(r) is important for what follows 

We make the good approximation that ψ(r) is classical amplitude rather than a 

quantum field operator. The velocity of a particle is 

v =
1

m
(p −

q

c
A) =

1

m
(−iℏ∇ −

q

c
A)                  (2.15.8) 

The particle flux is given by: 
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nv = ψ∗(r)ψ(r)v = ψ∗(r)vψ(r) = ψ∗(r) (−iℏ∇ −
q

c
A)

ψ(r)

m
  

= ψ∗(r) (−iℏ∇ −
q

c
A)

n
1
2eiθ(r)

m
  

ψ∗(r)

m
(−iℏn

1
2eiθ(r)∇θ(r) −

q

c
An

1
2eiθ(r)) 

n
1
2e−iθ(r)

m
(−iℏn

1
2eiθ(r)∇θ(r) −

q

c
An

1
2eiθ(r)) 

n

m
(ℏ∇θ −

q

c
A)                                  (2.15.9) 

So that the electric density in the ring (which is a multiply- connected region). 

Is 

J = nqv = ψ∗(r)ψ(r)qv = nq (ℏ∇θ −
q

c
A)

1

m
              (2.15.10)   

Taking the curl of both sides one obtains 

∇ × J =
nq

m
(ℏ∇ × ∇θ(r) −

q

c
× ∇A) 

For equation (2.11.15) B = ∇ × A, with use of the fact that the curl of the 

gradient of a scalar is identically zero, i.e. 

∇ × ∇θ = 0 

The above equation is one form of the London equation. 

∇ × J = −
nq2

m
B                                    (2.15.11) 
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The quantization of the magnetic flux through a ring is a dramatic consequence 

of the equation of the electric current density j above. Let use take a close path C 

through the interior of the super-conducting material well away from the surface 

[64]. 

 

Figure (2.12) Path of integration C through the interior of super-conducting 

The Meissner effect tells us that B and Jare zero in the interior. Now from 

equation (2.15.10)  

j = 0 

If  

ℏ∇θc = qA                                       (2.15.12) 

However, we have 

∮∇θ. dl

 

c

= θ2 − θ1                               (2.15.13) 

Hence 



35 
 

cℏ∮∇θ. dl =

 

c

q∮A. dl

 

c

                             (2.15.14) 

For the change of phase on going once around the ring, the boson probability 

amplitude is measurable in the classical approximation, so that ψ must be single 

valued and we must have [65]. 

θ2 − θ1 = 2πs                                (2.15.15) 

Where s is an integer 

ψ(θ) = √n eiθ 

ψ(θ1) = √n eiθ1    ψ(θ2) = √n eiθ2 

ψ(θ1) = ψ(θ2) 

= ei(θ2−θ1) = 1 

cosθ + isinθ = 1 

cosθ = 1    sinθ = 0 

θ = θ2 − θ1 = 2πs 

s = 1,2,3,… 

We also have by the stocks theorem and the fact that curlA = B 

∮A. dl

 

c

= ∮(curlA). dσ

 

c

= ∮B. dσ

 

c

                   (2.15.16) 
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Where dσ is an element of area on a surface bounded by the curve C, and ϕ is 

the magnetic flux through C. From equation (2.15.12), (2.15.15) and (2.15.16). 

We have 

2πℏsc = qϕ                                  (2.15.17) 

Alternatively 

ϕ = (
2πℏc

q
) s                               (2.15.18) 

Thus, the flux through the ring is quantized as an integral multiples of 
2πℏc

q
. By 

experiment q = −2e as appropriate for electron pairs, so that the quantum of 

flux in a super-conductor is [66]. 

2πℏc

q
≈ 2.07 × 10−7Gauss/cm2 

This unit of flux is calling a fluoride. It is important to note that the simple result 

(2.15.18) does not hold if the flux penetrates the ring itself as the material of the 

ring is thin. 

The flux through the ring is the sum of the flux ϕExt from external sources and 

the ϕSc from the super-conducting currents, which flow in the surface of the 

ring: 

ϕ = ϕExt + ϕSc 

The flux ϕ is quantized [1, 2, 8, and 13]. 
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CHAPTER THREE 

Literature Review 

3.1 Introduction 

     Different attempts were made to account for the magnetic properties of matter 

these include magnetic resonance and magnetic properties of super-conductor 

[70, 71, 72 and73]. There one tries to exhibit some of these attempts. 

3.2 Quantum Explanation of Conductivity at Resonance 

     The work is done by Asma. M to explain the conductivity frequency relation 

theoretically [74]. 

3.2.1 Experimental Change of Conductivity with Frequency 

     In the experiment a transmitter coil emits electromagnetic waves. This 

electromagnetic wave is allowed to incident on certain materials. The re emitted 

electromagnetic wave are receipted by a receiver. 

Apparatus 

10Resistors(10Ω,2.2GΩ,39kΩ),12capacitor(0.1μF,0.01μF,220μF), 6 Transistors 

(NPN), 2 transmitter and receptor coils (400,500,600,700,1000 turns), wire 

connection, Speakers, cathode Ray oscillator, Board connection, battery (9V), 

signal generator. 

Samples: 

Pieces of metal(𝐶𝑢, 𝐴𝑙, 𝐹𝑒, 𝐴𝑢, 𝐴𝑔, 𝑆𝑛). 
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Method: 

The transmitter coil current is varied by using signal generator. The emitted 

photons are allowed to incident on the sample. The sample absorbs photons and 

reemits them. The metal detector design is the circuit which connected as shown 

in fig (3.1). The signals appearing at oscilloscope were taken before mounting 

the sample, and after photon emission. The frequency and the corresponding 

conductivity of sample are recorded and determined from signal generator, 

current voltage, the length and cross sectional area of samples. The current and 

voltage gives resistance, which allows conductivity determination from the 

dimensions of the sample. 

Table (3.1) Relation between frequency (f) and Conductivity (𝝈) without 

applied magnetic field for Cu, AI, Fe, Au, Ag, Sn 

Frequency(Hz) 
Conductivity(106𝑐𝑚.Ω) 

24 
0.425 

27 
0.596 

29 
0.0993 

34 
0.0917 

50 
0.143 

56 
0.337 
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Table (3.2) Relation between frequency (f) and Conductivity (𝝈) for 

different magnetic flux densities for gold 

Frequency(Hz) 
Conductivity 

(106𝑐𝑚.Ω) 

In97.3𝜇𝑇 

Conductivity 

(106𝑐𝑚.Ω) 

In77𝜇𝑇 

Conductivity 

(106𝑐𝑚.Ω) 

In116.7𝜇𝑇 

Conductivity 

(106𝑐𝑚.Ω) 

In136.2𝜇𝑇 

Conductivity 

(107𝑐𝑚.Ω) 

In194.53𝜇𝑇 

55.25746 
0.50026 0.12637 0.04739 0.15165 0.06824 

47.48594 
0.26365 0.03724 0.01396 0.04468 0.02011 

40.49329 
0.16368 0.03439 0.0129 0.04126 0.01857 

35.4219 
0.24726 0.03562 0.02011 0.06435 0.02896 

26.8109 
0.39107 0.1695 0.06356 0.2034 0.09153 

24.81177 
0.58753 0.2235 0.08381 0.2682 0.12069 

3.2.2 Quantum Theoretical Model 

     Klein-Gordon equation reads 

ℏ2
𝜕2𝜓

𝜕𝑡2
= −𝑐2. ℏ2∇2 + 𝑚0

2𝑐4𝜓                                (3.1.1) 

Using separation of variable method 

𝜓 = 𝑢(𝑟)𝑓(𝑡) 

In (3.2.1) yields 

−𝑢ℏ2
𝜕2𝑓

𝜕𝑡2
= −𝑓𝑐2. ℏ2∇2𝑢 + 𝑚0

2𝑐4𝑓𝑢                            (3.1.2) 

1

𝑓
ℏ2

𝜕2𝑓

𝜕𝑡2
= −

1

𝑢
𝑐2. ℏ2∇2𝑢 + 𝑚0

2𝑐4 = 𝐸2                        (3.1.3) 

Where 
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−
1

𝑓
ℏ2

𝜕2𝑓

𝜕𝑡2
= 𝐸2                                   (3.1.4) 

∴ −ℏ2
𝜕2𝑓

𝜕𝑡2
= 𝐸2𝑓                                  (3.1.5) 

Where  

ℏ𝜔0 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑠𝑡𝑎𝑡𝑒. 

ℏ𝜔 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑖𝑣𝑒𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛.  

𝐸 = ℏ𝜔 − ℏ𝜔0 = 𝑒𝑥𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦. 

Consider solution 

𝑓 = 𝑠𝑖𝑛𝛼𝑡                                            (3.1.6) 

ℏ2𝛼2𝑓 = 𝐸2𝑓                                          (3.1.7) 

ℏ𝛼 = 𝐸 

𝛼 =
𝐸

ℏ
= 𝜔 − 𝜔0                                 (3.1.8) 

∴ 𝜎 =
𝑛𝑒2𝜏

𝑚
=

|𝜓2|𝑒2𝜏

𝑚
=

𝑒2𝜏

𝑚
|sin(𝜔 − 𝜔0)𝑡|

2                (3.1.9) 

3.2.3 Classical Absorption Conductivity Resonance Curve 

     Consider an electron of mass 𝑚 oscillate with natural frequency 𝜔0. If and 

electric field of strength  

𝐸 = 𝐸0𝑒
𝑖𝜔𝑡                                          (3.2.1) 

Was applied, then the equation of motion of the electron, in a frictional medium 

of friction coefficient𝛾, is given by 

𝑚𝑥̈ = 𝑒𝐸 − 𝑚𝜔0
2𝑥 − 𝛾𝑥̇                                 (3.2.2) 
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Consider the solution 

𝑥 = 𝑥0𝑒
𝑖𝜔𝑡                                               (3.2.3) 

Thus 

𝑣 = 𝑥̇ = 𝑖𝜔𝑥     𝑥̈ = −𝜔2𝑥                                  (3.2.4) 

Interesting (14). (15) And (12) in (13) yields 

−𝜔2𝑥 = 𝑒
𝐸0

𝑥0
𝑥 − 𝑚𝜔0

2𝑥 − 𝛾𝑣 

Thus  

𝑣 = −𝑚
(𝜔 − 𝜔0)

𝛾
𝑥 + 𝑒

𝐸0

𝛾𝑥0
𝑥                               (3.2.5) 

For simplicity consider large displacement amplitude𝑥0 compared to the 

electrical one 𝐸0.  

Thus the last term in (4.5) can be neglected to get 

𝑣 = −𝑚
(𝜔 − 𝜔0)

𝛾
𝑥                               (3.2.6) 

But the conductivity is given by 

𝜎 =
𝑒𝜏

𝑚
𝑛 =

𝑒𝜏

𝑚
𝑛0𝑒

−𝛽𝑚𝑣𝑒
2

2                             (3.2.7) 

Where the effective value 𝑣𝑒 is related to the maximum value through the 

relation 

𝑣𝑒 =
𝑣0

√2
                                  (3.2.8) 
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For small value of the power of𝑒, one can expand exponential term to be  

𝑒−𝑥 = 1 − 𝑥                                     (3.2.9) 

Therefore equation (3.2.9) 

𝜎 =
𝑒𝜏

𝑚
𝑛0 [1 +

𝛽𝑚𝑣𝑒
2

4
]                           (3.2.10) 

Inserting (3.2.5) in (3.2.4) yields 

𝜎 =
𝑒𝜏

𝑚
𝑛0 [1 +

𝛽𝑚2𝑥0
2(𝜔 − 𝜔0)

2(𝜔 + 𝜔0)
2

4𝛾
] 

 

𝜎 =
𝑒𝜏

𝑚
𝑛0 [1 +

𝛽𝑚2𝜔0
2𝑥0

2(𝜔 − 𝜔0)
2

4𝛾
]                (3.2.11) 

Where near resonance 

𝜔 ≈ 𝜔0       𝜔 + 𝜔0 ≈ 2𝜔0                          (3.2.12) 

The relation between conductivity and frequency resembles that of (2.2.1) in its 

dependence on𝜔. This relation is displayed graphically in fig (3.2.12) 

3.2.4 Discussion 

     The experimental work which was done shows variation of gold according to 

figs (2.4.2.1) and (2.4.2.2). The conductivity decreases then attains a minimum 

value in the range of (40-05Hz), then increases a gain. 

The theoretical expression (3.1.11) which is displayed graphically in fig (3.1.1) 

is based on the ordinary expression for the conductivity. The electrons density 𝑛 

is found by solving Klein-Gordon equation for free particle. This is obvious as 

far as conduction electrons are free. The electron density is found from the 
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square of the wave function, which is a sin function. Since at resonance 𝜔 is very 

near to 𝜔0, thus one can replace sin 𝑥by𝑥. The theoretical relation for 𝑓and 𝜎 

obtained by this model resembles the experimental one in fig (3.1.1). 

Another classical approach based on Maxwell-Boltzmann distribution in section 

(3) shows a relation between 𝜎 and 𝑓in fig (3.2.1) similar to experimental 

relations between 𝜎 and 𝑓 resembles that of resonance, with minimum 

conductivity. 

It is very interesting to note that each element has its own resonance conductivity 

at which conductivity is minimum. 

In this model the ordinary expression for 𝜎 in equation (3.1.19) is used. But 𝑛 

here is found from Maxwell statistical distribution. 

3.3 Relation between Matter Density, Atomic number, Magnetic 

field and resonance Frequency on the basis of Non Equilibrium 

Statistical Law and Zeeman Effect 

     Asma A.M. also tries to relate matter density and atomic number to the 

magnetic flux at resonance [75]. 

3.3.1 Experimental Relation of Matter Density and Magnetic Field 

with Resonance Frequency 

     In this experiment a transmitter coil emits electromagnetic waves. 

These electromagnetic waves are allowed to incident on certain materials. The re 

emitted electromagnetic waves are receipted by a receiver. 

-Apparatus 

 10 Resistors (10Ω, 2.2GΩ, 39kΩ), 12 capacitors 0.1μF, 0.01μF, 220μF), 

6Transistors (NPN). 2Coils400, 500.600, 700 100 turns), wire connection, 

Speakers, cathode Ray oscillator, Board connection, battery (9V), signal 

generator. 

Samples: 



44 
 

Pieces of metal(𝐶𝑢, 𝐴𝑙, 𝐹𝑒, 𝐴𝑢, 𝐴𝑔, 𝑆𝑛). 

Method: 

The transmitter coil current is varied by using signal generator. The emitted 

photons are allowed to incident on the sample. The sample absorbs photons and 

re emits them. The metal detector design is the circuit which connected as shown 

in fig (3.1). The signals appearing at oscilloscope were taken before mounting 

the sample, and after photon emission. The frequency and the corresponding 

conductivity of sample are recorded and determined from signal generator, 

current voltage, the length and cross sectional area of samples. The current and 

voltage gives resistance, which allows conductivity determination from the 

dimensions of the sample. The current and voltage gives resistance, which allows 

conductivity determination from the dimensions of the sample. 

Table (3.3) Relation between frequency (f) and magnetic field in different 

voltages 

Frequency(Hz) Magnetic field 

(𝝁𝑻)In 400mV 

Magnetic field 

(𝝁𝑻)In 200mV 

Magnetic field 

(𝝁𝑻)In 180mV 

55.25746 194.53 96.73 90.94 

47.48594 136.2 68.06 63.66 

40.49329 116.7 58.33 54.6 

35.4219 97.3 48.6 45 

26.8109 77.8 38.9 36.4 
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Table (3.4) Relation between frequency (f) and Electron Affinity Atomic 

number and Density 

elements 
Frequenc

y (Hz) 

Electron 

Affinity 

(KJ/mole) 

Electron 

number 

(KJ/mole) 

Density 

(kg/𝒎𝟐) 

AI 
56 44.2 13 2700 

Fe 
29 16 26 7870 

Sn 
34 116 50 7300 

Ag 
50 112 47 8900 

Au 
24 223 79 19300 

Cu 
27 118 29 8960 

3.3.2 Zeeman Effect and Statistical Theoretical Model 

     The Zeeman Effect is the name given to the splitting of the energy levels of 

an atom when it is placed in an externally applied magnetic field. The occurs 

because of the interaction of the magnetic moment 𝜇 of the atom with magnetic 

field B slightly shifts the energy of the atomic levels an amount. 

∆𝐸 = −𝜇𝐵                                      (3.3.1) 

This energy shift depends on the relative orientation of the magnetic moment and 

the magnetic field. Nuclear magnetic resonance (NMR) and electron spin 

resonance (ESR) both depend on the Zeeman Splitting of a single energy level 

within the atom. 

The first order perturbation theory gives a corresponding energy shift by 
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∆𝐸 = 𝜇𝐵𝑔𝑠𝑀𝐽𝐻                                    (3.3.2) 

Where  

𝑀𝐽 ≡ 𝑖𝑠 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

𝑔𝑠 ≡ 𝑖𝑠 𝑔 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 (𝐿𝑎𝑛𝑑𝑒) 

In the optical Zeeman Effect atoms are excited to level above the ground state by 

collisions with electrons in an electrical discharge. When they return to the 

ground state, they emit by extra energy as a visible photon whose energy 

corresponds to the difference in energy between the excited and ground state. 

According to Maxwell distribution the density of is given by: 

𝑛 = 𝑛0𝑒
𝐸
𝐸̅                                         (3.3.3) 

Where 

𝐸̅ ≡ 𝑆𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑒𝑛𝑒𝑟𝑔𝑦. 

Assuming the oscillating frequency is uniform, then 

𝐸̅ = ℎ𝑓 

Therefore equation (4.3) becomes 

𝑛 = 𝑛0𝑒
−𝐸
ℎ𝑓                                     (3.3.4) 

It is quite too natural to assume that the density of photons is proportional to the 

exited atoms or electrons density i.e. 

𝑛𝑃 = 𝐶0𝑛 = 𝐶0𝑛0𝑒
−𝐸
ℎ𝑓                              (3.3.5) 

By neglecting kinetic term, when the potential is very high in this case 

𝐸 = −𝑉0                                   (3.3.6) 

Therefore equation becomes (3.3.2) 

𝑛𝑃 = 𝐶0𝑛0𝑒
𝑉0
ℎ𝑓                               (3.3.7) 
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𝑉0

ℎ
~

10−5

𝑟0
 

For 

𝑟0~10−5𝑚
𝑉0

ℎ
~1                                  (3.3.8) 

The light intensity of emitted photons is given by 

𝐼 = 𝐶𝑛𝑃 = 𝐶𝐶0𝑛0𝑒
−𝑉0
ℎ𝑓 = 𝐼0𝑒

𝑉0
ℎ𝑓                      (3.3.9) 

By a suitable choice of (3.3.8) and using (3.3.9) parameters one can choose 

𝐼 = 𝐼0𝑒
1
𝑓 

𝐼0 = 10                                                   (3.3.10) 

3.3.3 Discussion 

     The metrical relation between applied magnetic field and resonance 

frequency resembles the theoretical one which shows exponential decay in fig 

(2.4.1.1). This confirms the readability of work done.  

The empirical relation between resonance frequency on one hand with matter 

density, atomic number and electron affinity on the other hand which shows 

exponential decay. Can be explained also on the basis of the statistical equation 

for non-equilibrium state as which shows relation between density and frequency 

theoretically. 

The relation for atomic number 𝑍 is related to the fact that the number of free 

electrons 𝑛𝑓 is proportional to the atomic number 𝑍where 

𝑛𝑓 ∝ 𝑍 − 𝑛𝑏 

Where 

𝑛𝑏𝑎𝑟𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠. 
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3.4 Using the Tight Binding Approximation in Deriving the 

Quantum Critical Temperature Super-conductivity Equation 

     R.A.ELhai was plasma equation and quantum Laws to derive condition for 

critical temperature resistance [76]. 

3.4.1 Plasma Equation 

     According to plasma equation, a fluid of particles of mass 𝑚, number density 

𝑛, velocity 𝑣, force 𝐹 and pressure 𝑃 is given by 

𝑚𝑛 [
𝜕𝑣

𝜕𝑡
+ 𝑣. ∇𝑣] = 𝐹 − ∇𝑃                                  (3.4.1) 

If 𝐹 is a field force then  

𝐹 = −𝑛∇V 

Where 𝑉is the potential of one particle in one dimension. 

𝑚𝑛 [
𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
] = 𝑛∇V − ∇𝑃 = −

𝑑𝑉

𝑑𝑥
−

𝑑𝑝

𝑑𝑥
                     (3.4.1) 

𝑑𝑣 =
𝜕𝑣

𝜕𝑡
𝑑𝑡 +

𝜕𝑣

𝜕𝑥
𝑑𝑥 

𝑑𝑣

𝑑𝑡
=

𝜕𝑣

𝜕𝑡
+

𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝑡
=

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
                              (3.4.2) 

Thus according to equation (3.4.1) in one dimension 

𝑚𝑛
𝑑𝑣

𝑑𝑡
= −𝑛

𝑑𝑣

𝑑𝑥
−

𝑑𝑝

𝑑𝑥
 

3.4.2 Schrodinger Temperature Dependent Equation 

     Schrodinger equation can be derived by using new expression of energy 

obtained from the plasma equation to do this one can use (3.4.2) to get 

𝑚𝑛
𝑑𝑣

𝑑𝑥

𝑑𝑥

𝑑𝑡
 = −𝑛

𝑑𝑉

𝑑𝑥
−

𝑑𝑃

𝑑𝑥
 

Multiplying both sides by 𝑑𝑥 and integrating yields 

𝑚𝑛∫𝑣𝑑𝑣 = −𝑛∫𝑑𝑉 − ∫𝑑𝑃 

Considering the pressure to be 𝑝 = 𝛾𝑛𝑘𝑇 in general thus 



49 
 

𝑚𝑛
𝑣2

2
= −𝑛𝑣 − 𝑃 = −𝑛𝑉 − 𝛾𝑛𝑘𝑇 

Hence 

𝑚𝑛
𝑣2

2
+ 𝑉 + 𝛾𝑘𝑇 = 𝑐𝑜𝑛𝑠𝑡 

This constant conserved quantity looks the ordinary energy beside the ordinary 

thermal energy term𝛾𝑘𝑇. 

𝐸 =
𝑝2

2𝑚
+ 𝛾𝑘𝑇                                        (3.4.3) 

To find Schrodinger equation for it, consider ordinary wave function 

𝜓 = 𝐴𝑒𝑖/ℏ(𝑝𝑥−𝐸𝑡) 

Differentiating both sides by 𝑡and 𝑥 yields 

𝜕𝜓

𝜕𝑡
= −

𝑖

ℏ
𝐸𝜓 ⟹ 𝑖ℏ

𝜕𝜓

𝜕𝑡
= 𝐸𝜓 

𝜕2𝜓

𝜕𝑡2
= −

𝑝2

ℏ2
𝜓 ⟹ −ℏ2∇2𝜓 = 𝑝2𝜓                            (3.4.4) 

 

Multiplying both sides of equation (3.4.3) by 𝜓yields 

𝐸𝜓 =
𝑝2

2𝑚
𝜓 + 𝑉𝜓 + 𝛾𝑘𝑇𝜓 

Substituting equation (3.4.4) one gets 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 + 𝛾𝑘𝑇𝜓 

This equation represents Schrödinger equation when thermal motion is 

considered. The solution for time free potential can be 

𝜓 = 𝐴𝑒𝑖/ℏ(𝐸𝑡)𝑢 ⟹
𝜕𝜓

𝜕𝑡
= −

𝑖

ℏ
𝐸𝜓 

𝐸𝜓 = −
ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 + 𝛾𝑘𝑇𝜓 

The time independent Schrodinger equation thus takes the form 
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𝐸𝑢 = −
ℏ2

2𝑚
∇2𝑢 + 𝑉𝑢 + 𝛾𝑘𝑇𝑢                           (3.4.5) 

For constant potential, the solution can be  

𝑢 = 𝑒𝑖𝑘𝑥       𝑉 = 𝑉0 

Inserting this solution in equation (3.4.5) yields 

𝐸𝑢 =
ℏ2𝑘2

2𝑚
𝑢 + 𝑉0𝑢 + 𝛾𝑘𝑇𝑢 

𝐸 =
ℏ2𝑘2

2𝑚
+ 𝑉0 + 𝛾𝑘𝑇 

If one set the kinetic term to be 𝐸0 =
ℏ2𝑘2

2𝑚
, one can thus writ the energy in the 

form 

𝐸 = 𝐸0 + 𝑉0 + 𝛾𝑘𝑇                                      (3.4.6) 

This quantum energy expression involves a thermal term beside kinetic and 

potential term. 

3.4.3 Quantum Resistance 

     The resistance, 𝑧 per unit length (𝐿 = 1) per unit area (𝐴 = 1)can be found 

from the ordinary definition of 𝑧. The resistance 𝑧 is defined to be the ratio of the 

potential𝑢, to the current per unit area, 𝐽,i.e. 

𝑧 =
𝑢

𝐼
=

𝑢

𝐽𝐴
=

𝑢

𝐽
=

𝑢

𝑛𝑒𝑣
=

𝑚𝑢

𝑛𝑒𝑝
                                      (3.4.7) 

With 𝑛and 𝑒 standing for the free bole or electron density and charge 

respectively, while 𝑝 represents the momentum of electron of mass 𝑚, where  

𝑃 = 𝑚𝑣 

This resistance (it actually stands for resistivity) can be found by using the laws 

of quantum mechanics for a free charge which are responsible for generating the 

electric current, where the wave function takes the form. 

𝜓 = 𝐴𝑒𝑖𝑘𝑥                                      (3.4.8) 
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This selection of 𝜓 comes from the fact that the resistance property comes from 

the motion of the free charges the potential 𝑢 is related to the Hamiltonian 𝐻 

through the relation 

𝐻 = 𝑒𝑢 

Thus for freely moving charge one gets 

𝐻̂ = 𝑒𝑢 =
1

2
𝑚𝑣2 =

𝑝̂2

2𝑚
= −

ℏ2

2𝑚
∇2 

In view of equation (3.4.8) and according to the correspondence principle 𝑉 

takes the form 

𝑢 =
〈𝐻̂〉

𝑒
=

∫ 𝜓̅𝐻̂𝜓𝑑𝑥

𝑒
=

∫ 𝜓̅𝑝̂2𝜓𝑑𝑥

2𝑚𝑒
                            (3.4.9) 

=
ℏ2𝑘2

2𝑚𝑒
∫ 𝜓̅𝜓𝑑𝑥 =

ℏ2𝑘2

2𝑚𝑒
 

While 𝑃 becomes 

𝑝 = 〈𝑝̂〉 = ∫ 𝜓̅𝑝̂2𝜓𝑑𝑥 = ℏ𝑘 ∫ 𝜓̅𝜓𝑑𝑟 = ℏ𝑘                       (3.4.10) 

Thus inserting equation (3.4.9), (3.4.10) one obtains 

𝑍 =
𝑚ℏ2𝑘2

2𝑚𝑒2ℏ𝑘𝑛
=

ℏ𝑘

2𝑒2𝑛
= (

ℎ

2𝜋
) (

2𝜋

𝜆
)

1

2𝑒2𝑛
 

𝑧 =
ℎ

2𝜆𝑒2𝑛
=

ℎ𝑓

2𝑓𝜆𝑒2𝑛
=

ℎ𝑓

2𝑒2𝑛𝑣
=

ℎ𝑓√𝜇𝜀

2𝑒2𝑛
=

ℏ𝜔√𝜇𝜀

2𝑒2𝑛
                         (3.4.11) 

Where the expression 𝑓𝜆 for velocity is found by assuming charges to be waves, 

then following the electromagnetic theory (EMT), the speed of the waves is 

affected by electric permittivity 𝜀 and magnetic permeability through the relation 

𝑣 = 𝑓𝜆 =
1

√𝜇𝜀
                                       (3.4.12) 

Where the effect of medium changes the wave length 𝜆, while the frequency𝑓, is 

unchanged. Thus assuming the charge density 𝑛, to be constant the only change 

of 𝑧 can be caused by 𝜇 and 𝜀. 
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It is also important to note that in Super-conductors, the current can flow without 

the aid of deriving potential 𝑢. The role of 𝑢 is confined only in enabling 

electrons to gain kinetic energy through the relations. 

𝑒𝑢 =
1

2
𝑚𝑣2 = 𝑘                            (3.4.13) 

Where this potential can be applied between any two arbitrary points in the 

super-conductor then remove it. The role of resistive force is neglected here as 

done as done in deriving London equations. 

The expression for 𝑍 can also be found by inserting equation (3.4.13) in to get 

𝑧 =
𝑢

𝐽
=

𝑢

𝑛𝑒𝑣
=

𝑚𝑣2

2𝑛𝑒2𝑣
=

𝑚𝑣

2𝑛𝑒2
=

𝑝

2𝑛𝑒2
=

ℎ

2𝜆𝑛𝑒2
 

𝑧 =
ℎ𝑓

2𝜆𝑓𝑒2𝑛
=

ℎ𝑓

2𝑒2𝑛𝑣
=

ℎ𝑓

2𝑒2𝑛
=

ℏ𝜔√𝜇𝜀0(1 + 𝑥)

2𝑒2𝑛
                   (3.4.14) 

It is important to note that this quantum resistance expression resembles the ones 

found by Tsui[3] where one uses De Broglie hypothesis [4], i.e. 

𝑝 =
ℎ

𝜆
 

3.4.4 Calculation HTSC by Electric Susceptibility 

     Consider holes in a conductor having resistive force 𝐹𝑟, magnetic force 𝐹𝑚 

and pressure force 𝐹𝑝, beside the electric force 𝐹𝑒, the equation motion then 

becomes [3] 

𝐹 = 𝐹𝑟 + 𝐹𝑚 + 𝐹𝑒 + 𝐹𝑝 

Where 

𝐹𝑝 = −∇𝑃    𝐹𝑟 = −
𝑚𝑣

𝜏
   𝐹𝑚 = 𝐵𝑒𝑣   𝐹𝑒 = 𝑒𝐸 = 𝑒𝐸0𝑒

𝑖𝑎𝑥 

𝑃, 𝑥,𝑚, 𝑣, 𝜏, 𝐵, 𝑒 𝑎𝑛𝑑 𝐸 stands for the pressure, displacement, mass, velocity, 

relaxation time, magnetic flux density, electron charge and electric field intensity 

respectively. Thus the equation of motion takes the form 

𝑚𝑥̈ = −
𝑚𝑣

𝜏
+ 𝐵𝑒𝑣 + 𝑒𝐸 − ∇𝑃                             (3.4.15) 
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The solution of this equation can be suggested to be 

𝑥 = 𝑥0𝑒
𝑖𝑎𝑥 

𝑣 = 𝑣0𝑒
𝑖𝑎𝑥 

𝐸 = 𝐸0𝑒
𝑖𝑎𝑥                                      (3.4.16) 

Inserting (16) in (15) yields 

−𝑚𝜔2𝑥 = [−
𝑚𝑣0

𝐸0𝜏
+

𝐵𝑒𝑣0

𝐸0
−

𝑘𝑇∇𝑛

𝐸0
+ 𝑒]𝐸                    (3.4.17) 

𝑥 =
[
𝑚𝑣0

𝐸0𝜏
+

𝐵𝑒𝑣0

𝐸0
−

𝑘𝑇∇𝑛
𝐸0

+ 𝑒]𝐸

𝑚𝜔2
 

This expression of 𝑥 can be utilized in the formula which relates the electric 

polarization vector 𝑃to the susceptibility 𝜒on one hand and to the number of 

atoms 𝑁 via the following relation 

𝑃 = 𝜀0𝜒𝐸 = +𝑒𝑁𝑥                                (3.4.18) 

Motivated by the important role of holes in HTSC, displacement can be assumed 

to result from the motion of holes or positive nuclear charges, thus inserting 

equation (3.4.17) in (3.4.18) yields 

𝜀0𝜒𝐸 = 𝑒𝑁
[
𝑚𝑣0

𝐸0𝜏
+

𝐵𝑒𝑣0

𝐸0
−

𝑘𝑇∇𝑛
𝐸0

+ 𝑒]𝐸

𝑚𝜔2
 

𝜒 =
𝑒𝑁

𝑚𝜔2𝜀0𝐸0
[
𝑚𝑣0

𝐸0𝜏
− 𝐵𝑒𝑣0 + 𝑘𝑇∇𝑛 − 𝑒𝐸0]                           (3.4.19) 

The electric flux density assumes the following relation 

𝐷 = 𝜀𝐸 = 𝜀0𝐸 + 𝜀0𝜒𝐸 = 𝜀0(1 + 𝜒)𝐸 = 𝑃 + 𝜀0𝐸 

The electric permittivity is given by 

𝜀 = 𝜀0(1 + 𝜒)                                      (3.4.20) 

The electric permittivity is thus given according to equation (3.4.20) to be 
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𝜀 = 𝜀0(1 + 𝜒) 

[1 +
𝑒𝑁

𝑚𝜔2𝐸0
(
𝑚𝑣0

𝐸0𝜏
− 𝐵𝑒𝑣0 + 𝑘𝑇∇𝑛 − 𝑒𝐸0)]                     (3.4.21) 

The resistance 𝑍 can be found by inserting (3.4.21) in (3.4.14) 

𝑚𝜔2𝜀0𝐸0 + 𝑒𝑁 [𝑘𝑇∇𝑛 +
𝑚𝑣0

𝜏
− 𝐵𝑒𝑣0 − 𝑒𝐸0] < 0 

𝑘𝑇∇𝑛 < 𝐵𝑒𝑣0 + 𝑒𝐸0 −
𝑚𝑣0

𝜏
 

𝑇 < +
𝐵𝑒𝑣0

𝑘∇𝑛
+

(𝑒 − 𝑚𝜔2𝜀0)𝐸0

𝑒𝑁𝑘∇𝑛
−

𝑚𝑣0

𝜏𝑘∇𝑛
 

The resistance 𝑍 can be found by inserting (3.4.21) in (3.4.14) to get 

𝑧 =
ℏ𝜔

2𝑛𝑒2
√𝜇𝜀0√1 +

𝑒𝑁

𝑚𝜔2𝜀0𝐸0
(
𝑚𝑣0

𝐸0𝜏
− 𝐵𝑒𝑣0 + 𝑘𝑇∇𝑛 − 𝑒𝐸0)          (3.4.22) 

𝑧 =
ℏ𝜔

2𝑛𝑒2
√𝜇𝜀0

√
𝑚𝜔2𝜀0𝐸0 + 𝑒𝑁 (𝑘𝑇∇𝑛 +

𝑚𝑣0

𝜏
− 𝐵𝑒𝑣0 − 𝑒𝐸0)

𝑚𝜔2𝜀0𝐸0
 

𝑇𝑐 < +
𝐵𝑒𝑣0

𝑘∇𝑛
+

(𝑒 − 𝑚𝜔2𝜀0)𝐸0

𝑒𝑁𝑘∇𝑛
                     (3.4.23) 

If the internal field 𝐵 results from 𝑁0 atoms each having a verge flux density 𝜇𝐵 

then [5]. 

𝐵 = 𝜇𝐵𝑁0                                      (3.4.24) 
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Therefore 𝑇𝑐 can be take the form 

𝑇𝑐 =
(𝜇𝐵𝑁0𝑒𝜏 − 𝑚)𝑣0

𝜏𝑘∇𝑛
+

(𝑒 − 𝑚𝜔2𝜀0)𝐸0

𝑒𝑁𝑘∇𝑛
                       (3.4.25) 

3.4.5 Tight Binding Critical Temperature and Energy Gap 

     In tight binding model [5] the energy of electrons in the crystal is given by 

𝜀 = 𝜀0 + 𝛼1 + 2𝛾𝑐𝑜𝑠𝑘𝑎                                      (3.4.26) 

Where 𝜀0 is the energy in the absence of energy field. While the other terms 

describe the effect of the crystal field. The energy 𝜀0 can split in to two terms the 

kinetic 

Part which can describe the thermal motion in the form 
𝑓0

2
𝑘𝑇 beside the potential 

term −𝑉0 for attractive farce or bounded particle. 

Thus or bounded particle. Thus one write 

𝜀0 =
ℏ2𝑘0

2

2𝑚
+

𝑓0
2

𝑘𝑇 − 𝑉0                             (3.4.27) 

𝐸 =
ℏ2𝑘0

2

2𝑚
+ 𝛾𝑘𝑇 + 𝑉 

𝜀0 =
𝑓0
2

𝑘𝑇 − 𝑉0 − 𝛼0 

𝛼0 =
ℏ2𝑘2

2𝑚
 

𝑓0 Represents the degrees of freedom. The terms describing the effect of the 

crystal force are  
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𝛼1 = 〈𝜙𝑚|𝐻̂𝑐𝑟𝑦|𝜙𝑚〉 

𝛾 = 〈𝜙𝐽|𝐻̂𝑐𝑟𝑦|𝜙𝑚〉                                      (3.4.28) 

𝛼 = 𝛼0 + 𝛼1 

In view of equation (3.4.26) and (3.4.27)  

𝜀 =
𝑓0
2

𝑘𝑇 − 𝑉0 + 𝛼 + 2𝛾𝑐𝑜𝑠𝑘𝑎                              (3.4.29) 

Here 𝐻𝑐𝑟𝑦 stands for the crystal force Hamiltonian part, while 𝜙𝑚 and 𝜙𝐽are the 

states of particles located at the site 𝑚 and 𝐽 respectively. The super-conductor is 

characterized by the existence of energy gap. This gap can be under stood here in 

two ways. If the electrons or holes are not free. This requires 𝐸 to negative. Thus 

equation (3.4.27) and (3.4.26) needs 

𝜀 =
𝑓0
2

𝑘𝑇 − 𝑉0 + 𝛼 + 2𝛾𝑐𝑜𝑠𝑘𝑎 < 0                            (3.4.30) 

Or the max value of 𝜀 where 𝑐𝑜𝑠𝑘𝑎 = −1 is less than zero, i.e. 

𝜀𝑚𝑎𝑥 =
𝑓0
2

𝑘𝑇 − 𝑉0 + 𝛼 + 2𝛾𝑐𝑜𝑠𝑘𝑎 < 0(3.4.31) 

For constant attractive crystal force 

𝐻𝑐𝑟𝑦 = −𝑉𝑐𝑟𝑦 

𝛼1 = 〈𝜙𝑚|𝐻𝑐𝑟𝑦|𝜙𝑚〉 = −〈𝜙𝑚|𝑉𝑐𝑟𝑦|𝜙𝑚〉 = −𝑉𝑐𝑟𝑦𝛿𝑚𝑚 

𝛾 = 〈𝜙𝐽|−𝑉𝑐𝑟𝑦|𝜙𝑚〉 = −𝑉𝑐𝑟𝑦⟨𝜙𝐽|𝜙𝑚⟩ = −𝑉𝑐𝑟𝑦𝛿𝐽𝑚=0                 (3.4.32) 

Thus  
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𝑓0
2

𝑘𝑇 ≤ 𝑉0 − 𝛼 

Thus the critical temperature is given by 

𝑓0
2

𝑘𝑇𝑐 = 𝑉0 − 𝛼                                      (3.4.33) 

 Substituted equation (3.4.33) beside equation (3.4.32) in equation (3.4.30) one 

gets  

𝜀 =
𝑓0
2

𝑘𝑇 −
𝑓0
2

𝑘𝑇𝑐                                 (3.4.34) 

The energy gap ∆ equal to the difference between zero energy in conduction 

band and the negative energy in the valence band. Thus 

∆= 0 − 𝜀 =
𝑓0
2

𝑘𝑇𝑐 −
𝑓0
2

𝑘𝑇 

Since this relation holds for 𝑇 < 𝑇𝑐 one can neglect 𝑇 since it is small to get 

∆=
𝑓0
2

𝑘𝑇𝑐 

Equation (3.4.30) can also be utilized to get the forbidden energy states which 

characterizes Super-conductors, where 

𝑐𝑜𝑠𝑘𝑎 =
𝜀 −

𝑓0
2

𝑘𝑇 + 𝑉0 − 𝛼

2𝛾
 

The energy is forbidden when 𝑐𝑜𝑠𝑘𝑎 ≥ 1 

𝑐𝑜𝑠𝑘𝑎 =
𝜀 −

𝑓0
2

𝑘𝑇 + 𝑉0 − 𝛼

2𝛾
≥ 1 
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𝜀 −
𝑓0
2

𝑘𝑇 + 𝑉0 − 𝛼 ≥ 2𝛾 

𝑓0
2

𝑘𝑇 + 𝛼 − 𝜀 − 𝑉0 ≤ −2𝛾 

𝑓0
2

𝑘𝑇 ≤ +𝑉0 − 2𝛾 − 𝛼 

Thus the critical temperature 

𝑓0
2

𝑘𝑇𝑐 = 𝜀 + 𝑉0 − 2𝛾 − 𝛼                              (3.4.35) 

 

The forbidden energy is thus related to the critical temperature through the 

relation 

𝜀 =
𝑓0
2

𝑘𝑇𝑐 − 𝑉0 + 2𝛾 + 𝛼                        (3.4.36) 

3.5 Complex Quantum Resistance Model 

M. Dirar uses quantum Laws based on plasma equation to explain the SC 

resistance vanishing [77]. 

     Plasma equation describes ionized particles in a gaseous or liquid form. This 

equation can thus describe the electron motion easily. This is since the electrons 

be behaves as ionized particles in side matter for pressure exerted by the gas 

plasma equation becomes: 

𝑚𝑛
𝑑𝑣

𝑑𝑡
= −∇𝑃 + 𝐹                                      (3.5.1) 
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But for pressure exerted by the medium on the electron gas. The equation 

become 

𝑚𝑛
𝑑𝑣

𝑑𝑡
= −∇𝑃 + 𝐹 = ∇𝑃 − ∇𝑉                            (3.5.2) 

In one dimensions, the equation becomes 

𝑚𝑛
𝑑𝑣

𝑑𝑡

𝑑𝑥

𝑑𝑡
=

𝑑(𝑛𝑘𝑇)

𝑑𝑋
−

𝑑𝑛𝑣

𝑑𝑥
 

𝑚𝑛
𝑣𝑑𝑣

𝑑𝑥
=

𝑑

𝑑𝑥
[𝑛𝑘𝑇 − 𝑛𝑣] 

 Where 𝑉 is the potential for one particle 

𝑚𝑛
𝑑1/2 𝑣2

𝑑𝑥
=

𝑑

𝑑𝑥
[𝑛𝑘𝑇 − 𝑛𝑉] 

 Thus in integrating both sides by assuming n to be constant, or in-dependent of 

𝐾, yields 

𝑛

2
𝑚𝑣2 = 𝑛𝑘𝑇 − 𝑛𝑣 + 𝑐 

1

2
𝑚𝑣2 + 𝑣 − 𝑘𝑇 =

𝑐

𝑛
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐸 

  This constant of motion stands for energy, thus 

𝐸 =
𝑃2

2𝑚
+ 𝑣 − 𝑘𝑇                                      (3.5.3) 

Multiplying by 𝜓, yields 

𝐸𝜓 =
𝑃2

2𝑚
𝜓 + 𝑣𝜓 − 𝑘𝑇𝜓                            (3.5.4) 
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According to the wave nature of particles 

𝜓 = 𝐴𝑒
𝑖
ℏ
(𝑝𝑥−𝐸𝑡)  

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐸𝜓 

ℏ2∇2𝜓 = 𝑃2𝜓                                              (3.5.5) 

𝑖ℏ
𝜕𝜓

𝜕𝑡
=

−ℏ2

2𝑚
∇2𝜓 + 𝑣𝜓 − 𝑘𝑇𝜓                              (3.5.6) 

  The time in dependent equation becomes 

−ℏ2

2𝑚
∇2𝜓 + 𝑣𝜓 − 𝑘𝑇𝜓 = 𝐸𝜓                               (3.5.7) 

Consider the case when these electrons wave subjected to constant crystal field. 

This assumption is quite natural as far as particles are distributed homogenously. 

Thus equation (3.5.7) becomes 

−ℏ2

2𝑚
∇2𝜓 + 𝑣0𝜓 − 𝑘𝑇𝜓 = 𝐸𝜓                               (3.5.8) 

One can suggest the solution to be 

𝜓 = 𝐴𝑒𝑘𝑥                                                 (3.5.9)  

 

A direct substitution yields 

(
ℏ2

2𝑚
k2 + 𝑣0 − 𝑘𝑇)𝜓 = 𝐸𝜓 

Therefore 
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𝑘 =
√2𝑚(𝐸 + 𝑘𝑇 − 𝑉0)

ℏ
                                      (3.5.10) 

This wave number K, is related to the momentum according to the relation 

𝑃 = 𝑚𝑣 = 𝑘ℏ√2𝑚(𝐸 + 𝑘𝑇 − 𝑉0)                               (3.5.11) 

This relation can be used to find the quantum resistance R of a certain material. 

According to classical laws 

𝑅 =
𝑉

𝐼
                                          (3.5.12) 

For electrons accelerated by the potential. The wave done is related to the 

potential V and kinetic energy K according to the relation 

𝑊 = 𝑉 =
12

𝑚𝑣2
                                      (3.5.13) 

 

But since the current 𝐼 is given by 

𝐼 = 𝑛𝑒𝑣𝐴                                       (3.5.14) 

𝑅 =
𝑚𝑣2

2𝑛𝑒𝑣𝐴
=

𝑚𝑣

2𝑛𝑒𝑣𝐴
=

𝑃

2𝑛𝑣𝑒𝐴
(3.5.15) 

 

From (3.5.12) and (3.5.13): 

𝑅 =
√2𝑚(𝐸 + 𝑘𝑇 − 𝑉0)

2𝑛𝑒𝑣
                                      (3.5.16) 
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Splitting R to real part R, and imaginary, when 

𝑅 = 𝑅𝑠 + 𝑅𝑖                                       (3.5.17) 

According to equation (3.5.16) R becomes pure imaginary, when 

𝐸 + 𝑘𝑇 − 𝑉0 < 0 

𝑘𝑇 < 𝑉0 − 𝐸 

𝑇 <
(𝑉0 − 𝐸)

𝐾
                                        (3.5.18) 

Thus the critical temperature is given by 

𝑇𝑐 =
𝑉0 − 𝐸

𝐾
 

This requires 

𝑣0 > 𝐸                                                    (3.5.19) 

In this case (see equation (3.5.17)) 

𝑅 = 𝑗𝑅𝑖 

𝑅𝑠 = 0                                                    (3.5.20) 

Thus the super-conductivity resistance 𝑅𝑠 becomes zero beyond a certain critical 

temperature given by equation (3.5.17). Which requires binding energy to 

dominate. 

Another direct approach can also be found by considering the pressure exerted 

by the electrons. In this case [6] the Hamiltonian becomes: 

𝐻̂ =
𝑃̂2

2𝑚
+ 𝑘𝑇 + 𝑉                                      (3.5.21) 
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For spin repulsive force 

𝑉 = −𝑉0 

Thus 

𝐻̂ =
𝑃̂2

2𝑚
+ 𝑘𝑇 − 𝑉0                                      (3.5.22) 

 Thus the average energy which is equal to the classical energy is given by 

〈𝐻̂〉 = 〈
𝑃̂2

2𝑚
〉 + 𝑘𝑇 − 𝑉0 = 𝐸0 + 𝑘𝑇 − 𝑉0                          (3.5.23) 

Using the quantum definition of K[6] 

𝑅 =
〈𝐻̂〉

𝐼
=

𝐸0 + 𝑘𝑇 − 𝑉0

𝐼
 

𝑅 = 𝑅+ + 𝑅−                                             (3.5.24) 

Where one splits R to positive and negative one. When 

𝐸0 + 𝑘𝑇 − 𝑉0 < 0                                      (3.5.24) 

𝑅− =
𝐸0 + 𝑘𝑇 − 𝑉0

𝐼
   𝑅+ = 0                           (3.5.26)  

   From equations (3.5.25) and (3.5.26) the super conductivity resistance 𝑅𝑠 

vanishes i.e. 

𝑅+ + 𝑅𝑆 = 0 

  When 

𝑘𝑇 < 𝑉0 − 𝐸0 
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𝑇 <
𝑉0 − 𝐸0

𝑘
                                              (3.5.27) 

  Thus the critical temperature is given by 

𝑇𝑐 =
𝑉0 − 𝐸0

𝑘
                                         (3.5.28) 

Again for 𝑇𝑐 to be positive 𝑉0 > 𝐸0 

Thus for: 

𝑇 < 𝑇𝑐 

𝑅𝑠𝑐 = 𝑅+ = 0 

     Using plasma equation (3.5.1) a useful energy expression containing thermal 

energy is found in equation (3.5.3). Assuming electrons are free. Free wave 

solution is given by equation (3.5.9). This gives quantum momentum relation in 

equation (3.5.11). This relation is used in quantum resistance R. expression 

(3.5.15) which splits R to real and imaginary part. Thus one gets condition for 

zero resistance in equation (3.5.18) and (3.5.19). This happens beyond a critical 

temperature given by equation (3.5.19). This critical temperature 𝑇𝑐 requires 

binding energy domination, which means that condition takes place by hopping. 

Anther quantum resistance expression, which splits R to positive and negative 

terms, is also proposed in equation (3.5.24). The super-conductivity positive 

resistance vanishes beyond critical temperature given by equation (3.5.27). 

Again this 𝑇𝑐 requires binding energy domination and hopping mechanism. 
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3.6 New Derivation of Simple Josephson Effect Relation using New 

Quantum Mechanical Equation 

     Rashida.I uses modified Schrodinger equation to derive Josephson Effect 

[78]. 

3.6.1 New Quantum Equation 

     The Newtonian energy 𝐸 is a sum of kinetic and potential energy 𝑣, i.e. 

𝐸 =
1

2
𝑚𝑣2 + 𝑉 =

𝑃2

2𝑚
+ 𝑉                            (3.6.1) 

  Where 𝑚, 𝑣, 𝑝 are the mass, velocity and momentum respectively. According to 

a theorem of Bloch’s [7], in such Super-conductors the momentum 𝑝 is zero. 

𝑝 =
𝑚𝑣2

2
+

𝑞𝐴

𝑐
 

Thus (3.6.1) becomes 

𝐸 = 𝑉                                                    (3.6.2) 

This is related to the fact that in Josephson Effect the tunneling potential is 

considered to be larger then kinetic term squaring both sides’ yields 

𝐸2 = 𝑉2                                             (3.6.3) 

Multiplying both sides by𝜓, one gets 

𝐸2𝜓 = 𝑉2𝜓                                       (3.6.4) 

The wave function of a free particle is given by 

𝜓 = 𝐴𝑒
𝑖
ℏ
(𝑃𝑥−𝐸𝑡)                                (3.6.5) 
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Differentiating both sides with respect 𝑥and 𝑡twee 

𝜕𝜓

𝜕𝑡
= −

𝑖

ℏ
𝐸𝜓 

𝜕2𝜓

𝜕𝑡2
= −

𝑖

ℏ
𝐸

𝜕𝜓

𝜕𝑡
=

𝑖2

ℏ2
𝐸2𝜓 =

𝐸2

ℏ2
𝜓  

−ℏ2
𝜕2𝜓

𝜕𝑡2
= 𝐸2𝜓                                            (3.6.6) 

Similarly 

𝜕𝜓

𝜕𝑡
=

𝑖

ℏ
𝑃𝜓 

∇2𝜓 =
𝜕2𝜓

𝜕𝑥2
=

𝑖𝑃

ℏ

𝜕𝜓

𝜕𝑥
=

𝑖𝑃

ℏ
[
𝑖𝑃

ℏ
]𝜓 =

𝑖2𝑃2

ℏ2
 

−ℏ2∇2𝜓 = 𝑃2𝜓                                         (3.6.7) 

Substitute (3.6.6) in (3.6.4) to get 

−ℏ2
𝜕2𝜓

𝜕𝑡2
= 𝑉2𝜓                                       (3.6.8) 

3.6.2 Josephson Effect Equation 

     In Josephson Effect are considered as having small kinetic energy compared 

to the potential. Thus Schrodinger equation (3.6.8), in which kinetic term is 

neglected is suitable for describing the Josephson Effect. To derive Josephson 

Effect equation, consider the solution 

𝜓 = 𝐷𝑠𝑖𝑛(𝛼𝑡 + 𝜙)                                  (3.6.9) 

The tunneling potential is constant inside a super-conductor, thus 
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𝑉 = 𝑉0                                      (3.6.10) 

From (3.6.9) one can differentiate 𝜓 with respect to time twice to get 

𝜕𝜓

𝜕𝑡
= −𝛼𝐷𝑐𝑜𝑠(𝛼𝑡 + 𝜙) 

𝜕2𝜓

𝜕𝑡2
= −𝛼2𝐷𝑠𝑖𝑛(𝛼𝑡 + 𝜙) = −𝛼2𝜓                         (3.6.11) 

  Substitute (3.6.10) and (3.6.11) in (3.6.8) to obtain 

+ℏ2𝛼2𝜓 = 𝑉0
2𝜓 

𝛼2 =
𝑉0

2

ℏ2
 

𝛼 = ±
𝑉0

ℏ
                                           (3.6.12) 

By substituting (3.6.12) in (3.6.9) and choosing a negative sing, that is in dealing 

with the change in potential energy one gets 

𝜓 = 𝐷𝑠𝑖𝑛 [−
𝑒𝑉0

ℏ
𝑡 + 𝜙]                               (3.6.13) 

  But the energy density 𝐽 is given by: 

𝐽 = 𝑒
𝜕𝑛

𝜕𝑡
= 𝑒

𝜕|𝜓|2

𝜕𝑡
= 2𝑒|𝜓|

𝑑|𝜓|

𝑑𝑡
 

= 2𝑒𝐷𝑠𝑖𝑛(𝛼𝑡 + 𝜙) [−
𝑒

ℏ
𝑉0] cos(𝛼𝑡 + 𝜙)                 (3.6.14)  

= 2
𝑒2𝐷𝑉0

ℏ
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 
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𝜃 = 𝜙 −
𝑒𝑉0𝑡

ℏ
 

Bu using mathematical identity 

𝑠𝑖𝑛2𝜃 = 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

 One can rewrite equation (3.7.14) to be 

𝐽 = −
𝑒2𝐷𝑉0

ℏ
sin [2𝜙 −

2𝑒𝑉0

ℏ
𝑡] = 𝐴𝑠𝑖𝑛 [2𝜙 −

2𝑒𝑉0

ℏ
𝑡]                  (3.6.15) 

Setting: 

2𝜙 = 𝛿 

The current density is given by: 

𝐽 = 𝐽0 sin [𝛿(0) −
2𝑒𝑉0

ℏ
𝑡]                            (3.6.16) 

3.6.3 Discussion 

     Equation (3.6.2) shows a new energy equation based on Newtonian 

mechanics, with the neglected kinetic term. This equation is used a new quantum 

equation in (3.6.8). This new equation is based on Newtonian energy with no 

kinetic term to beside the wave equation of a free particle. His derivation 

resembles simple derivations of Schrodinger equation except the fact that the 

kinetic term is neglected. 

This equation is used to derive simple Josephson current density equation. This 

(3.6.16) is the same as the old one, but derived using simple arguments. 

3.7 Generalized Special Relativity Quantum Theory and 

Josephson Super-conducting Effect 

     M.Dirar utilizes GSR quantum equation to derive Josephson Effect. 
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3.7.1 New Version of GSR Energy Formula and GSR Quantum 

Theory: 

     The mass expression given according to energy momentum conservation is 

given by [79]. 

𝑚 = 𝛾𝑚0 =
𝑚0

√𝑔00 −
𝑣2

𝑐2

                                      (3.7.1) 

This appears to be in direct conflict with the expression derived by [7] 

𝑚 = 𝑔00𝛾𝑚0                                        (3.7.2) 

But this conflict can remove by re deriving the expression of energy [8]. 

Where  

𝑇00 = 𝛾𝑚0𝑐
2                                      (3.7.3) 

𝐸 = 𝑇00 = 𝑔00𝑇
00 = 𝑔00𝛾𝑚0𝑐

2                                (3.7.3) 

This conflict can be removed by lowering the insides in flat space by taking 

𝐸 = 𝑇00 = 𝜇00𝑇
00 = 1𝑋𝛾𝑚0𝑐

2 =
𝑚0

√𝑔00 −
𝑣2

𝑐2

                        (3.7.5) 

Therefore expression (3.7.1) and (3.7.5) are the same. Thus the energy is given 

by 

𝐸 = 𝑚0𝑐
2 (𝑔00 −

𝑣2

𝑐2
)

−
1
2

= (1 +
2𝜙

𝑐2
−

𝑣2

𝑐2
)

−
1
2

𝑚0𝑐
2 
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= (
𝑚2𝑐4 + 2(𝑚𝑐2)(𝑚𝜙)

𝑚2𝑐4
−

𝑚2𝑣2𝑐2

𝑚2𝑐4
)

−
1
2

𝑚0𝑐
2 

= (𝐸−2)−
1
2(𝐸2 + 2𝑉𝐸 − 𝑃2𝑐2)−

1
2𝑚0𝑐

2 

Therefore  

(𝐸2 + 2𝑉𝐸 − 𝑃2𝑐2)−
1
2 = 𝑚0𝑐

2 

𝐸2 + 2𝑉𝐸 − 𝑃2𝑐2 + 𝑚0𝑐
2(3.7.6) 

It is very interesting to note that when the potential vanishes, i.e. 

𝑣 = 0 

Equation (3.7.6) reduces to 

𝐸2 = 𝑃2𝑐2 + 𝑚0𝑐
2                                       (3.7.7) 

This is the ordinary Einstein energy-momentum relation. The quantum new GSR 

equation can by using the free particle wave equation 

𝜓 = 𝑒
𝑖
ℏ
(𝑝𝑥+𝐸𝑡)

 

Where 

−ℏ2
𝜕2𝜓

𝜕𝑡
= 𝐸2𝜓      𝑖ℏ

𝜕𝜓

𝜕𝑡
= 𝐸𝜓 

−ℏ2∇2𝜓 = 𝑃2𝜓                                      (3.7.8) 

Then by multiplying (3.7.6) by 𝜓 and substituting (3.7.8) 

𝐸2𝜓 + 2𝑉𝐸𝜓 = 𝑃2𝑐2𝜓 + 𝑚0
2𝑐4𝜓                           (3.7.9) 



71 
 

−ℏ2
𝜕2𝜓

𝜕𝑡
+ 2𝑖ℏ𝑉

𝜕𝜓

𝜕𝑡
= −𝑐2ℏ2∇2𝜓 + 𝑚0

2𝑐4𝜓                              (3.7.10) 

This is the new quantum GSR equation. 

3.7.2 Josephson Effect Current Expression According to New 𝐆𝐒𝐑 

     Consider solution of (5.10.10) in the form 

𝜓(𝑟, 𝑡) = 𝑓0(𝑡)𝐶 = 𝑓0𝑒
𝑖𝑘𝑟                                       (3.7.11) 

 A direct substitution of (3.9.11) in (3.9.10) yields 

[ℏ2
𝜕2𝑓0
𝜕𝑡2

+ 2𝑖ℏ𝑉
𝜕𝑓0
𝜕𝑡

] 𝑒𝑖𝑘𝑟 = 𝑐2ℏ2𝑘2𝑓0𝑒
𝑖𝑘𝑟 + 𝑚0

2𝑐4𝑓0𝑒
𝑖𝑘𝑟 

Cancelling exponential terms on both sides yields 

ℏ2
𝜕2𝑓0
𝜕𝑡2

+ 2𝑖ℏ𝑉
𝜕𝑓0
𝜕𝑡

= 𝑃2𝑐2𝑓0 + 𝑚0
2𝑐4𝑓0                                  (3.7.12) 

Consider very small mass and momentum such that 

𝑃2𝑐2 → 0      𝑚0
2𝑐4 → 0 

In this case equation (3. 7.12) reads 

ℏ2
𝜕2𝑓0
𝜕𝑡2

+ 2𝑖ℏ𝑉
𝜕𝑓0
𝜕𝑡

= 0                                      (3.7.13) 

Where 𝑣𝑒 is the potential affecting one electron consider the solution 

𝑓0 = 𝐷𝑒±(𝛼𝑡+𝑐)𝑖
𝜕𝑓0
𝜕𝑡

= ±𝑖𝛼𝑓0 

𝜕2𝑓0
𝜕𝑡2

= −𝛼2𝑓                                      (3.7.14) 
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Substituting (3.7.14) in (3.7.13) yields 

[ℏ2𝛼2 ± 2𝛼𝑉𝑒]𝑓0 = 0ℏ2𝛼2 = ±2𝛼𝑉𝑒 

𝛼 = ±
2𝑉𝑒
ℏ

 

  Where 

𝜃 = 𝜙 − 𝛼𝑡                                      (3.7.15) 

 According to equation (3.7.14) the general solution is in the form 

𝑓 = 𝐷1𝑒
𝑖𝜃 + 𝐷2𝑒

−𝑖𝜃                                      (3.7.16) 

The current is given by 

𝐼 =
𝜕𝑄

𝜕𝑡
= 𝑒

𝜕|𝜓|2

𝜕𝑡
= 𝑒 

𝜕𝜓𝜓̅

𝜕𝑡
 

𝐼 = 𝑒 
𝜕𝑓𝑓̅

𝜕𝑡
                                          (3.7.17) 

When no potential applied and when no separation is made by insulator between 

the super conductor sides. 

𝐼 = 0        𝑉0 = 0      𝛼 = 0                               (3.7.18) 

One of the possible solutions is to set 

𝑓 = 0 

In view of (3.7.18) and (3.7.14) one gets 

0 = (𝐷1 + 𝐷2)𝑒
𝑖𝜃 

 Thus 
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𝐷1 + 𝐷2 = 𝐷                                      (3.7.19) 

Hence the solution will be according to equation (3.7.14), (3.7.16) and (3.7.19) 

in the form 

𝑓 = 𝐷[𝑒+𝑖𝜃 − 𝑒−𝑖𝜃] 

𝐷[𝑐𝑜𝑠𝜃 + 𝑖𝐷𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃] 

In view of equation (3.7.15) one gets 

𝑓 = 2𝑖𝐷𝑠𝑖𝑛𝜃 = 2𝑖𝐷𝑐𝑜𝑠(𝜙 − 𝛼𝑡)                                (3.7.20) 

 According to cooper theory on have two electron pairs, if the total electric 

potential on both pairs is𝑉0. Thus the potential for each is
1

2
𝑉0. Thus the total 

potential energy on the pair is 

𝑉 = 2𝑒 (
1

2
𝑉0) = 𝑒𝑉0                                      (3.7.21) 

The total potential of the cooper electron pair is also double that of a single 

electron. Thus  

𝑉 = 2𝑉𝑒                                       (3.7.22) 

Thus 𝛼 in equation (5.11.5) is given by 

𝛼 =
∀

ℏ
=

𝑒𝑉0

ℏ
                                      (3.7.23) 

The electric current can be obtained by inserting (3.7.19) in (3.7.17) to get 

𝐼 = 𝑒
𝜕

𝜕𝑡
[4(𝑖)(−𝑖)𝐷2 sin2(𝜙 − 𝛼𝑡)] 
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8𝑒𝐷2𝑠𝑖𝑛(𝜙 − 𝛼𝑡)[−𝛼𝑐𝑜𝑠(𝜙 − 𝛼𝑡)] 

𝐼 = −8𝑒2𝛼𝐷2𝑠𝑖𝑛2(𝜙 − 𝛼𝑡)𝑐𝑜𝑠(𝜙 − 𝛼𝑡) 

= −4𝑒2𝛼𝐷2𝑠𝑖𝑛2(𝜙 − 𝛼𝑡) 

𝐼 = 𝐷0𝑠𝑖𝑛(𝜙0 − 2𝛼𝑡)                                      (3.7.24) 

Where 

𝐷0 = 4𝑒2𝛼𝐷2𝜙0 = 2𝜙                                      (3.7.25) 

According to equation (3.7.14), (3.7.24) and (3.7.25) the super current is given 

by 

𝐼 = 𝐷0𝑠𝑖𝑛 (𝜙0 −
2𝑒𝑉0𝑡

ℏ
)                                      (3.7.26) 

The periodicity of current requires 

𝐼(𝑡 + 𝑇) = 𝐼(𝑡)                                      (3.7.27) 

According to equation (3.7.26) 

sin[𝜙0 − 2𝛼𝑡(𝑡 + 𝑇)] = sin[𝜙0 − 2𝛼𝑡] 

sin[𝜙0 − 2𝛼𝑡] 𝑐𝑜𝑠2𝛼𝑇 − 𝑐𝑜𝑠[𝜙0 − 2𝛼𝑡]𝑠𝑖𝑛2𝛼𝑇 = 0 

This requires 

𝑐𝑜𝑠2𝛼𝑇 = 1       𝑠𝑖𝑛2𝛼𝑇 = 0 

2𝛼𝑇 = 2𝑛𝜋 

𝛼 =
𝑛𝜋

𝑇
= 𝑛𝜋𝑓                                      (3.7.28) 
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If one choose 𝑛 to by unity then 

𝑛 = 1      𝛼 = 𝜋𝑓                                      (3.9.29) 

Thus equation (3.7.24) becomes 

𝐼 = 𝐷0 sin(𝜙0 − 2𝜋𝑓𝑡)                              (3.7.30) 

Comparing equation (3.7.26) and (3.7.30) yields 

2𝜋𝑓 =
2𝑒𝑉0

ℏ
 

Hence  

𝑓 =
2𝑒𝑉0

ℏ
                                          (3.7.31) 

It is interesting to one that expression (3.7.26), (3.7.30) and (3.7.31) for super 

current and frequency are completely consistent with Josephson super current 

formula or expression. 

3.7.3 Discussion 

     Generalized special relativity energy relation (2.7) beside the wave equation 

(2.8) for free particle is used to derive new relativistic equation as shown by 

equation (2.10). t is very interesting to observe that this equation reduces to 

Klein-Gordon equation in the absence of potential. This new equation is more 

advanced than Klein-Gordon one since it contains an expression of potential 

energy for any field. In Klein-Gordon the potential energy for each field requires 

deriving the quantum equation for each case which is very complex and time 

consuming. 
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3.8 Summery and Critique 

     The exhibited models describe successfully some of the important physical 

properties of SC like zero resistance beyond 𝑇𝑐, Josephson effect and energy gap.  

Many papers are also proposed to solve some of these problems [80, 81, 82], but 

none of them take care of the magnetic properties take care of the magnetic 

properties [83, 84, 85].   
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CHAPTER FOUR 

Effect of Magnetic Field on Energy Gap and Super-conductor 

Resistance 

4.1 Introduction 

     Super conductors have very interesting magnetic properties. These properties 

include effect of magnetic field on 𝑆𝐶 resistance and the energy gap. Anew 

simple theoretical explanation based on quantum plasma equation is exhibited 

here. 

4.2 Complex Quantum Resistance Model 

     Plasma equation describes ionized particles in a gaseous or liquid form. This 

equation can thus describe the electron motion easily. This is since the electrons 

be behaves as ionized particle in side matter. For pressure exerted by the gas 

plasma equation becomes: 

𝑚𝑛
𝑑𝑣

𝑑𝑡
= −∇𝑃 + 𝐹                                       (4.2.1) 

But for pressure exerted by the medium on the electron gas, the equation become 

𝑚𝑛
𝑑𝑣

𝑑𝑡
= ∇𝑃 + 𝐹 = ∇𝑃 − ∇𝑉                               (4.2.2) 

In one dimensions, the equation become 

𝑚𝑛
𝑑𝑣

𝑑𝑥

𝑑𝑥

𝑑𝑡
=

𝑑(𝑛𝑘𝑇)

𝑑𝑥
−

𝑑𝑛𝑣

𝑑𝑥
−

𝑑𝑛𝑣

𝑑𝑥
 

𝑚𝑛
𝑣𝑑𝑣

𝑑𝑥
=

𝑑

𝑑𝑥
[𝑛𝑘𝑇 − 𝑛𝑣] 
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Where 𝑉is the potential for one particle 

𝑚𝑛
𝑑1/2𝑣2

𝑑𝑥
=

𝑑

𝑑𝑥
[𝑛𝑘𝑇 − 𝑛𝑉] 

Thus in integrating both sides by assuming 𝑛 to be constant, or in-dependent of 

𝑘, yields 

𝑛

2
𝑚𝑣2 = 𝑛𝑘𝑇 − 𝑛𝑉 + 𝑐 

𝑛

2
𝑚𝑣2 + 𝑉 − 𝑘𝑇 =

𝑐

𝑛
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐸 

This constant of motion stands for energy, thus 

𝐸 =
𝑃2

2𝑚
+ 𝑉 − 𝑘𝑇                                     (4.2.3) 

Multiplying by 𝜓, yields 

𝐸𝜓 =
𝑃2𝜓

2𝑚
+ 𝑉𝜓 − 𝑘𝑇𝜓                                   (4.2.4) 

According to the wave nature of particles 

𝜓 = 𝐴𝑒
𝑖
ℏ
(𝑝𝑥−𝐸𝑥)

 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐸𝜓 

−ℏ2∇2𝜓 = 𝑃2𝜓                                        (4.2.5) 

𝑖ℏ
𝜕𝜓

𝜕𝑡
=

−ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 − 𝑘𝑇𝜓                         (4.2.6) 

The time in dependent equation becomes 
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−ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 − 𝑘𝑇𝜓 = 𝐸𝜓                      (4.2.7) 

Consider the case when these electrons wave subjected to constant crystal filed 

𝑣0. This assumption is quite natural as for as particles are distributed 

homogenously. Thus equation (4.2.7) becomes 

−ℏ2

2𝑚
∇2𝜓 + 𝑉0𝜓 − 𝑘𝑇𝜓 = 𝐸𝜓                            (4.2.8) 

One can suggest the solution to be 

𝜓 = 𝑒𝑖𝑘𝑥                                               (4.2.9) 

A direct substitution yields 

(
ℏ2

2𝑚
k2 + 𝑉0 − 𝑘𝑇)𝜓 = 𝐸𝜓 

Therefore  

𝑘 =
√2𝑚(𝐸 + 𝑘𝑇 − 𝑉0)

ℏ
                             (4.2.10) 

This wave number 𝑘 is related to the momentum according to the relation 

𝑃 = 𝑚𝑣 = ℏ𝑘 = √2𝑚(𝐸 + 𝑘𝑇 − 𝑉0)                     (4.2.11) 

This relation can be used to find the quantum resistance𝑅 of a certain. According 

classical laws 

𝑅 =
𝑉

𝐼
                                      (4.2.12) 
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For electrons accelerated by the potential. The wave done is related to the 

potential 𝑉 and kinetic energy 𝐾according to the relation 

𝑤 = 𝑉 =
1

2
𝑚𝑣2                                     (4.2.13) 

But since the current 𝐼is gives by 

𝐼 = 𝑛𝑒𝑣𝐴                                        (4.2.14) 

𝑅 =
𝑚𝑣2

2𝑛𝑒𝑣𝐴
=

𝑚𝑣

2𝑛𝑒𝐴
=

𝑃

2𝑛𝑒𝐴
                           (4.2.15) 

From (4.2.12) and (4.2.13) 

𝑅 =
√2𝑚(𝐸 + 𝑘𝑇 − 𝑉0)

2𝑛𝑒𝐴
                               (4.2.16) 

Splitting 𝑅 real part 𝑅𝑠and imaginary part 𝑅𝑖 

𝑅 = 𝑅𝑠 + 𝑅𝑖                                       (4.2.17) 

According to equation (4.2.16) 𝑅 becomes pure imaginary, when 

𝐸 = 𝐾𝑇 − 𝑉0 < 0 

𝐾𝑇 < 𝑉0 − 𝐸 

𝑇 <
(𝑉0 − 𝐸)

𝐾
                                     (4.2.18) 

Thus the critical temperature is given by 

𝑇𝑐 =
(𝑉0 − 𝐸)

𝐾
                                       (4.2.19) 

 

This requires 
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𝑉0 > 𝐸 

In this case (see equation (4.2.17)) 

𝑅 = 𝑗𝑅𝑖 

𝑅𝑠 = 0                                                   (4.2.20) 

Thus the super-conductivity resistance 𝑅𝑠 becomes zero beyond a certain critical 

temperature given by equation (4.2.17). Which requires binding energy to 

dominate. 

4.3 Energy Gap and Photon Absorption 

     It is known that in some Super-conductors, the materials behave as an anti-

ferromagnetic this means that it is possible to consider electrons in the atoms as 

having spin up and down atoms with number 𝑁𝑢 and 𝑁𝑑 respectively, in the 

ground lower and excited states respectively, such that the magnetic flux density 

inside the medium is given by 

𝐵𝑚 = 𝐵𝑒(𝑁𝑢 − 𝑁𝑑)                                     (4.3.1) 

Where 𝐵𝑒is the magnetic flux density of one electron. If a photon beams was 

absorbed this will change 𝐵𝑚 by the transition of electrons from ground state to 

the excited state. If the number of incident photons is 𝑁𝑝 the new internal flux 

density is given by 

𝐵𝑚 = 𝐵𝑒(𝑁𝑢 − 𝑁𝑑 + 2𝑁𝑝)                           (4.3.2) 

This changes the potential of electrons to 𝑉𝑚 and split the energy levels to be  

𝑉𝑚 = 𝑚𝐿 (
𝑒ℏ

2𝑚
)𝐵𝑚                                     (4.3.3) 

Thus the energy gap is given by 

𝐸𝑔 =
𝑒ℏ

2𝑚
𝐵𝑚                                       (4.3.4) 

Here one assumes that any electron is affected by the magnetic field of the 

spinning electron gap. When electrons are affected by internal magnetic field the 
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resistance in equation (4.2.16) and by the definition of 𝑇𝑐 in equation (4.2.19) is 

given by 

𝑅 =
√2𝑚𝑘(𝑇 + 𝑇𝑚 − 𝑇𝑐)

2𝑛𝑒𝜆
= 𝑅𝑠 + 𝑗𝑅𝑖                         (4.3.5) 

Where 

𝑘𝑇𝑚 = 𝑉𝑚                                           (4.3.6) 

The super-conductivity is destroyed when 

𝑇𝑚 ≥ 𝑇𝑐                                              (4.3.7) 

Thus 

𝑉𝑚 ≥ 𝑘𝑇𝑐                                         (4.3.8) 

Since 𝑉𝑚 is proportional to 𝐵𝑚 according to equation (4.3.4) the energy gap 

corresponds to the minimum voltage that destroy super-conductivity. Thus 

𝐸𝑔 = 𝑐𝑚𝑉𝑚𝑔                                     (4.3.9) 

But according to equation (4.3.8) the minimum magnetic energy that can destroy 

super-conductivity is 

𝑉𝑚𝑔 = 𝑘𝑇𝑐                                      (4.3.10) 

 

Thus equation (4.3.9) indicates that the energy gap takes the form 

𝐸𝑔 = 𝑐𝑚𝑘𝑇𝑐                                      (4.3.11) 

It is very interesting to note that this expression for 𝐸𝑔conforms to the well-

known ordinary relation. In this model the photon plays a double role. When it is 

incident and absorbed by the super-conductivity it increases the internal field by 

causing more electrons with spin down to be in an excited state. This increase in 

the internal field 𝐵𝑚 causes splitting of energy levels by the amount. 

∆𝐸 = 𝑔𝑚𝑠𝜇𝐵𝐻𝑚                                     (4.3.12) 

Thus the super-conductivity resistance vanishes for all 𝑇 less than the critical 

value. 
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When an external magnetic field of flux density 𝐵is applied, the total the 

medium filed is given by: 

𝐵𝑚 = 𝐵 − 𝐵𝑖                                      (4.4.23) 

Where 𝐵𝑖 is the internal flux density. The corresponding potential applied on 

electrons or charges is given by 𝑉𝑚 thus the total potential in equation (4.4.7) 

becomes 

𝑉 = 𝑉0 ± 𝑉𝑚                                     (4.4.24) 

𝑉𝑚 = 𝑉𝑚 (
𝑒ℏ

2𝑚
)𝐵𝑚 = 𝐶0

−1𝐵𝑚 

When the net magnetic potential opposes the crystal field 

𝑉 = 𝑉0 − 𝑉𝑚 = 𝑉0 − 𝐶0
−1𝐵𝑚                                     (4.4.25) 

In this case one can rewrite the expression of 𝑅 in equation (4.4.16) to be 

𝑅 =
√2𝑚𝑘(𝐸 + 𝑘𝑇 − 𝑉0 + 𝑉𝑚)

2𝑒𝑛𝐴
=

√2𝑚𝑘(𝑇 − 𝑇𝑐 + 𝑇𝑚)

2𝑒𝑛𝐴
 

Where 

2𝑚𝑇𝑚 = 𝑉𝑚 

𝑅 =
√2𝑚𝑘(𝑇 − 𝑇𝑐 + 𝑇𝑚)

2𝑒𝑛𝐴
                                     (4.4.26) 

Consider now the case when 𝑇𝑚 is greater 𝑇𝑐, i.e. when 

𝑇𝑚 ≥ 𝑇𝑐                                      (4.4.27) 

According to equation (4.4.23) and (4.4.25) and (4.4.27) this critical value is 

given by  

𝐵𝑐 = 𝐶0(2𝑚𝐾𝑇𝑐) + 𝐵𝑖𝑐                                      (4.4.28) 

In this case the term under the square root is positive always. This means that, it  

𝑅 = 𝑅𝑠 + 𝑗𝑅𝑖                                      (4.4.29) 

𝑅𝑖 = 0         𝑅𝑠 ≠ 0                                 (4.4.30) 

This means that the super-conductivity is destroyed when applying an external 

magnetic filed having strength exceeding the critical valve (4.4.28). 



84 
 

4.4 Quantum Plasma Based on Negative Resistance Model and 

String Mode 

     Another direct approach can also be found by considering the pressure 

exerted by the electrons. In this case [9]. The Hamiltonian becomes: 

𝐻̂ =
𝑃̂2

2𝑚
+ 𝐾𝑇 − 𝑉0                                     (4.5.1) 

For spin repulsive force 

𝑉 = −𝑉0 

Thus 

𝐻̂ =
𝑃̂2

2𝑚
+ 𝐾𝑇 − 𝑉0                                     (4.5.2) 

Thus the average energy which is equal to the classical energy is given by: 

𝐻 <
𝑃̂2

2𝑚
> +𝐾𝑇 − 𝑉0 = 𝐸0 + 𝐾𝑇 − 𝑉0                       (4.5.3) 

Resistance for harmonic oscillator where 

𝑥 = 𝑥0𝑒
𝑖𝑤𝑡      𝑣 = 𝑖𝜔𝑡        𝑇 =

1

2
𝑚|𝑣|2 = 1/2𝑚𝜔2𝑥2 

𝑉 =
1

2
𝐾𝑥2 =

1

2𝑚𝜔2𝑥2
= 𝑇    𝐻 = 𝑇 + 𝑉 = 2𝑉     𝑒𝑉𝑒 = 𝑉 =

𝐻

2
 

Where 𝑉𝑒is the potential, thus 

𝑉𝑒 =
𝐻

2𝑒
 

Using the quantum definition of [10]: 

𝑅 =
𝑉𝑒
𝐼

 

𝑅 =
〈𝐻̂〉

2𝑒𝐼
=

𝐸0 + 𝐾𝑇 − 𝑉0

2𝑒𝐼
 

𝑅 = 𝑅+ + 𝑅−                                         (4.5.4) 

Where one splits 𝑅to positive and negative one.  

When 



85 
 

𝐸0 + 𝐾𝑇 − 𝑉0 < 0                                     (4.5.5) 

𝑅− =
𝐸0 + 𝐾𝑇 − 𝑉0

2𝑒𝐼
        𝑅+ = 0                          (4.5.6) 

From equation (4.5.5) and (4.5.6) the super conductivity resistance 𝑅𝑠 vanishes 

i.e.: 

𝑅+ = 𝑅𝑠 = 0                                             (4.5.7) 

When 

𝐾𝑇 < 𝑉0 − 𝐸0 

𝑇 <
𝑉0 − 𝐸0

𝑘
                                            (4.5.8) 

Thus the critical temperature is given by 

𝑇𝐶 <
𝑉0 − 𝐸0

𝑘
                                         (4.5.9) 

Again for 𝑇𝐶 to be positive 𝑉0 > 𝐸0 

Thus for 

𝑇 < 𝑇𝐶                                          (4.5.10) 

𝑅𝑠𝑐 = 𝑅+ = 0                                     (4.5.11) 

In the case when external magnetic field of flux density 𝐵 is applied on the 

super-conductivity, the total magnetic field 𝐵𝑚 and potential 𝑉𝑚 resulting from 

both external and internal to magnetic fields are given by: 

𝐵𝑚 = 𝐵 − 𝐵𝑖                                      (4.5.12) 

𝑉𝑚 = 𝑉 − 𝑉𝑖                                      (4.5.13) 

Where 𝐵𝑖 and 𝑉𝑖 stands for the internal magnetic density and potential 

respectively. When the magnetic field attracts electrons, the Hamiltonian and the 

average energy in equations (4.5.1), (4.5.2) and (4.5.3) are given 

𝐻̂ =
𝑝̂2

2𝑚
+ 𝐾𝑇 + 𝑉𝑚 − 𝑉0 
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〈𝐻̂〉 = 𝐸0 + 𝐾𝑇 + 𝑉𝑚 − 𝑉0                                 (4.5.14) 

Thus according to equation (4.5.4) the quantum resistance is given by 

𝑅 =
𝐾𝑇 + 𝐸0 − 𝑉0 + 𝑉𝑚

2𝑒𝐼
= 𝑅+ + 𝑅−                           (4.5.15) 

In view of equation (4.5.9) and by denoting 𝑉𝑚 to be 

𝑉𝑚 = 𝐾𝑇𝑚 = 𝑚𝑙 (
𝑒ℏ

2𝑚
)𝐵𝑚 = 𝐶𝑚

−1𝐵𝑚                           (4.5.16) 

Equation (4.5.15) reads 

𝑅 =
𝐾(𝑇 + 𝑇𝑚 − 𝑇𝑐)

2𝑒𝐼
                                       (4.5.17) 

When 

𝑇 < 𝑇𝐶                                              (4.5.18) 

Thus the critical 𝑉𝑚and 𝐵 are given by (4.5.18), (4.5.12) to be 

𝐵𝑐 = 𝐵𝑚𝑐 + 𝐵𝑖𝑐 = 𝐶𝑚𝑉𝑚𝑐 + 𝐵𝑖𝑐 = 𝐶𝑚𝐾𝑇𝑐 + 𝐵𝑖𝑐               (4.5.19) 

In this case 𝑅 is positive always, no matter what the value of 𝑇 is therefore 

𝑅 = 𝑅+ + 𝑅− =
𝐾(𝑇 + 𝑇𝑚 − 𝑇𝑐)

2𝑒𝐼
                               (4.5.20) 

Thus 

𝑅+ ≠ 0 

Always, when condition (4.5.18) is satisfied, i.e. when the external field 𝐵 

exceeds the critical valve 𝐵𝑐 given by (4.5.19). 

4.5 Discussion 

     In view of plasma equation (4.2.1) a useful time dependent energy equation 

(4.2.3) and corresponding Schrodinger equations (4.2.6), (4.2.7) were found. 
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Using equation (4.2.11) and (4.2.12) a useful temperature quantum resistance 

expression (4.2.16) was found. By splitting resistance to real super conducting 

part and imaginary part [see (4.2.17)], equation (4.2.18) and (4.2.19) shows that 

R is imaginary, thus the SC real part vanishes when T is Less than a critical 

value given by equation (4.2.19), which requires very Large binding energy. 

This suggests conducting by hopping. 

When a magnetic field was induced by photon absorption this induces internal 

magnetic flux density given by (4.3.2). 

This leads to energy splitting and existence of energy gap given by (4.3.4). This 

Leads to destroy of SC, since R, given by (4.3.5) become real when the magnetic 

potential exceeds certain critical value given by (4.3.8). This critical value 

corresponds to critical existence of energy gap given by (4.3.11). 

Surprisingly this expression of energy gap is typical to that well known relation. 

The effect of external magnetic field is discussed section (4.4). The total medium 

field is assumed to result from external one B and internal local field 𝐵𝑖 [see 

(4.4.23)]. According to equation (4.4.28) the SC is destroyed when the external 

field exceeds this critical value. This result agrees with experimental 

observations. 

Using quantum plasma Schrodinger equation, but treating charge carriers as 

strings a useful quantum resistance relation was found [see 4.5.4], where we split 

R into positive SC part and negative part. The Sc positive part is destroyed when 

R is negative [see 4.5.5, 6] The SC takes place when T is less than 𝑇𝑐   [see 

(4.5.9.10.11)]. In this case 𝑅𝑠 vanishes  

 One can discuss what happens when external magnetic field B is applied, by 

considering medium field to result from local internal and external field [see 

(4.5.12)]. Again the SC is destroyed when B exceeds a critical value given by 

(4.5.19), in agreement with experiments. 
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CHAPTER FIVE 

Hyper Fine Rubidium 

5.1 Introduction 

     Hyper fine interaction Leads to energy splitting due to spin interaction with 

magnetic field. This experiment was designed to examine the hyperfine structure 

of atomic states. 

5.2 Theoretical Background 

             (Zeeman Splitting of Hyperfine Structure) 

     The relation between Zeeman energy splitting and magnetic fields, measure 

the Landed g-factor, also known as the gyro magnetic ratio. The g-factor relates 

the magnetic dipole moment to the angular momentum of a quantum state. With 

angular momentum in units of ħ, one has the equation relating magnetic dipole 

moment to angular momentum in the form 

𝜇𝑆 = −𝑔𝑠𝜇𝐵𝑆                                     (5.2.1) 

𝜇𝐿 = −𝑔𝐿𝜇𝐵𝐿                                     (5.2.2) 

𝜇𝐽 = −𝑔𝐽𝜇𝐵𝐽                                      (5.2.3) 

𝜇𝐼 = −𝑔𝐼𝜇𝑁𝐼                                       (5.2.4) 

𝜇𝐹 = −𝑔𝐹𝜇𝐵𝐹                                     (5.2.5) 

Where 𝜇𝐵 and 𝜇𝑁 are the Bohr and nuclear magneton, respectively. Given the 

relations (5.2.1), (5.2.3) and 𝐽~  =  𝐿~ + 𝑆~, and using the properties of the dot 

product, one obtains 

𝑔𝐽𝐽 = 𝑔𝐿𝐿𝑐𝑜𝑠𝜃𝐽𝐿 + 𝑔𝑠𝑆𝑐𝑜𝑠𝜃𝐽𝑆                            (5.2.6) 

With 𝜃 AB representing the angle between the vectors A and B. Similarly, one 

can use the equation for the total angular momentum of the electron 𝐽 to get 

𝐿~2 = 𝑆~2 + 𝐽~2 − 2𝑆𝐽𝑐𝑜𝑠𝐽𝑆                            (52.7) 

𝑆~2 = 𝐿~2 + 𝐽~2 − 2𝐿𝐽𝑐𝑜𝑠𝐽𝐿                            (52.8) 
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Quantum mechanically, the expectation value for the angular momentum of A 2 

is 𝐴 (𝐴 + 1). In the end, solving equation (5.2.7) and equation (5.2.8) for the 

cosine of the angles and substituting the result into (5.2.6) yields   

   𝑔𝐽 = 𝑔𝑠 
 𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)

+ 𝑔𝐿
𝐽(𝐽 + 1) + 𝐿(𝐿 + 1) − 𝑆(𝑆 + 1)

2𝐽(𝐽 + 1)
                             (5.2.9) 

For this experiment, we are studying the Zeeman splitting of the ground state. 

Here 𝐿 =  0 and  𝐽 =   𝑆 =
1

2
. 

Therefore, 𝑔𝐽 = 𝑔𝑆. Similarly, one can use the exact same procedure for the total 

angular momentum of the atom to find that it has a g-factor 

𝑔𝑓 = 𝑔𝑠
 𝐹(𝐹 + 1) + 𝐽(𝐽 + 1) − 𝐼(𝐼 + 1)

2𝐹(𝐹 + 1)
 

− 𝑔𝑖
𝐹(𝐹 + 1) + 𝐼(𝐼 + 1) − 𝐽(𝐽 + 1)

2𝐹(𝐹 + 1)
                            (5.2.10) 

We are interested in the case where 𝐹 =  2 𝑎𝑛𝑑 𝐽 =  1/2.Substituting these 

values and g𝑔𝐽 = 𝑔𝑆 into equation (5.2.10) for85𝑅𝑏 (𝐼 =
5

2
), we find  

𝑔𝐹 = −
1

6
(𝑔𝑆 + 7𝑔𝑡)                                            (5.2.11) 

And for 87𝑅𝑏 (𝐼 =
3

2
), we find 

𝑔𝐹 = −
1

4
(𝑔𝑆 − 3𝑔𝑡)                                            (5.2.12)  

The negative sign on equation (5.2.11) indicates that decreasing values of mF 

yield higher energy levels. Using the method of optical pumping, we will be 

determining the absolute value of 𝑔𝐹. Thus, we will only be quoting positive 

values of 𝑔𝐹. 

Experimentally, the gyro magnetic ratio of the electron has been measured, 

yielding a value 𝑔𝑆 = 2.002319304 [5]. In addition, the nuclear to electronic g-

factor ratio, 𝑔𝐼/𝑔𝐽, for 85Rb has been determined to be 1.46649093 equation 
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(5.2.11) × 10−4, independent of magnetic field [6]. Assuming that 87Rb has a 

similarly small g-factor ratio, then equation (5.2.11) and equation (5.12) provide 

theoretical predictions (to 3 significant figures) of𝑔𝐹 = 0.334  and 𝑔𝐹 = 0.500  

for 85Rb and 87 Rb, respectively. The number of significant figures was chosen to 

correspond with the precision to which this experiment was performed and to 

emphasize the fact that calculations are valid only to first order. 

Finally, the Zeeman energy splitting of mF sublevels in a weak magnetic field is 

(to first order) given by [1]  

𝐸 = 𝑔𝐹

𝑐ℏ

2𝑚𝑒
𝐵𝑚𝐹 = 𝑔𝐹𝜇𝐵𝐵𝑚𝐹                                           (5.2.13) 

5.3 Establishing Steady State Polarization 

     After the rubidium atoms have been subjected to a radio frequency (𝑟. 𝑓. ) 

field of the right energy to induce a transition, the intensity of the D1 radiation 

passing through the rubidium vapor will drop sharply. Once this 𝑟. 𝑓. field is 

removed, the atoms will be pumped on again until a steady state polarization is 

established. There is a characteristic time associated with this phase. Following 

Benumb of [4], we can determine the change in population of the 𝑚𝐹 =  3 

ground state of 87Rb relative to the other sublevels. This can be written as: 

𝑑𝑛

𝑑𝑡
= −𝑛𝑊𝑑 + 𝑁𝑊𝑢                                          (5.3.1) 

Where 𝑛 is the population of the 𝑚𝐹 = 3sublevel and 𝑁 is the population of 

every other sublevel. The rate of transitioning down out of the pumped state is 

given by 𝑊𝑑, and 𝑊𝑢 is the rate of transitioning into 𝑚𝐹 = 3. The characteristic 

time to establish steady state polarization is found from equation (5.3.1). 

Do we expect this time to depend on the intensity of the light Clearly, the 

relaxation processes causing the transition out of the pumped state, 𝑊𝑑, should 

not depend on the light intensity. 𝑊𝑑 is a result of the atoms colliding with the 

glass walls. Next, we can break up 𝑊𝑢  into two different steps. This rate depends 



91 
 

both on the rate of transition into the 2𝑃 1/2 excited state, 𝛤 ↑, and the rate of 

transition back down into the 𝑚𝐹 = 3 ground state, Γ ↓. The longer rate, 𝛤 ↑

𝑜𝑟Γ ↓, will determine 𝑊𝑢. The intensity of the light is a measure of rate that 

optical photons are incident on the sample. Since these photons are responsible 

for excitation of the ground state, 𝛤 ↑ will depend directly on the intensity. 

However, the transition back to the ground state is caused by the spontaneous 

emission of the optical photon. From the Fermi’s Golden Rule [2], the 

spontaneous emission should depend on the frequency of the emitted photon and 

not the intensity of the light. We expect timescales of spontaneous emission to be 

much longer than those of photon absorption from the light. Therefore, the 

characteristic time should not depend on intensity. 

5.4 Dynamic Response of Spins to Time Varying Magnetic Fields 

     We wish to first discuss passage through zero field (applied field canceling 

the Earth’s Field) in the absence of any 𝑟. 𝑓. field. In a static coordinate system, 

the nuclear spins obey the classical equation of motion [7] 

𝑑𝐼 

𝑑𝑡
= 𝛾(𝐼 × 𝐵⃗ )                                          (5.4.1) 

Due to the variation of B~ with time, this is a difficult problem to solve. For 

instructive purposes, we examine limiting cases. The magnetic field vector can 

be separated into components perpendicular and parallel to the axis of the 

primary Helmholtz coils. The two cases [8] are adiabatic passage through zero 

field given by 

𝐼

𝐵⊥

𝑑𝐵∥

𝑑𝑡
≪ 𝛾𝐵⊥                                          (5.4.2) 

And sudden passage given by 

𝐼

𝐵⊥

𝑑𝐵∥

𝑑𝑡
≫ 𝛾𝐵⊥                                          (5.4.3) 

If the magnetic field is varying slowly, then equation (5.4.2) is satisfied, and I~ 

will stay nearly parallel with 𝐵~. As 𝐵~ is swept through zero, so is 𝐼~, and the 
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𝑧 −component of 𝐼~ will reverse sign. This will be as if the pumping light was 

reversed  Light that was right-circularly polarized and resulted in raising 𝑚𝐹 by 

one unit will now remove one unit of angular momentum. The pumping process 

will begin again, pumping atoms in the opposite way as before, and absorption of 

𝐷1 light will increase dramatically. When this happens, there will be a large 

optical signal. 

On the other hand, it might be the case that the sweep rate of the magnetic field 

is too fast for the magnetization to follow. In this situation, equation (5.4.3) is 

satisfied. Now, magnetization remains always pointed in the same direction. So, 

when the field changes sign, it did so quickly enough to not affect the spins. 

Therefore, right-circularly polarized light will still increase mF by one unit. The 

net result is that pumping remains unchanged, so the optical signal is relatively 

steady. 

When considering a resonance in the presence of a 𝑟. 𝑓. magnetic field, it is 

useful to transform into a rotating coordinate system. Here, we wish to transform 

into a coordinate frame that rotates at the frequency of the 𝑟. 𝑓. field. The rate of 

change for any vector in a fixed reference frame is given by 

(
𝑑𝐼 

𝑑𝑡
)

𝑓𝑖𝑥𝑒𝑑

= 𝜔⃗⃗ × 𝐼 + (
𝑑𝐼 

𝑑𝑡
)

𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔

                           (5.4.4) 

Using this translation along with equation (5.4.1), it can be shown [8] that 𝐵⊥ 

become replaced by B𝑟. 𝑓. If we define the quantity 

𝑋 ≡
𝜇𝐵

Υ

1

𝐵
 
𝑑𝐵

𝑑𝑡
                                                    (5.19) 

Then the adiabatic and sudden conditions can be written as 𝑋 ≪  1 𝑎𝑛𝑑 𝑋 ≫  1, 

respectively. Although the argument above was based on classical mechanics, 

the result holds quantum mechanically. 
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5.5 Experimental Setup 

     The layout for this experiment is shown in Figure (5.1). Two sets of 

Helmholtz coils were used to provide the weak external magnetic field. The 

primary coils (shown in the figure) were aligned so that they would produce a 

magnetic field either parallel or anti-parallel to the Earth’s magnetic field. 

Secondary coils were placed at right angles to these fields in an effort to 

minimize the transverse field and it’s in homogeneities. Current through the 

primary coils was controlled with a trapezoidal sweep by using a function 

generator and control circuit. 

Production of circularly polarized waves was achieved by using a linear polarizer 

and a quarter-wave plate. The two were aligned to obtain maximum circular 

polarization of optical light from a lamp. 

The 𝐷1  radiation was removed from the light for the previously mentioned 

reasons. A converging lens focused the light going through a resonance bulb full 

of rubidium vapor. Due to the low melting point of rubidium(38.5𝐶°), the 

resonance bulb was heated by blowing hot air onto it to achieve optimum vapor 

pressures. 

A signal generator supplied the radio frequency field necessary to induce 

transitions out of the pumped state. The magnitude of the 𝑟. 𝑓. field was 

determined by measuring the 𝑒𝑚𝑓 induced in a small pickup coil. For each 

frequency, the magnetic field from the primary Helmholtz coils was swept 

through a range of values. When the magnetic field passed through resonance for 

a given isotope satisfying equation (5.2.12), absorption of the 𝐷1 radiation 

increased sharply. Since the sweep of the primary coils was trapezoidal, there 

were two peaks for each isotope during one period of the sweep. Figure (5.2) 

shows both the sweep and the resonant peaks for each isotope at a fixed 

frequency. For all measurements, the oscilloscope was run in Average 256 mode 

to reduce the amount of noise in the signal. 
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In order to determine the effect of light intensity on the characteristic time to 

establish steady state polarization, it was necessary to vary the amount of 

incident light. This was achieved by placing a second linear polarizer between 

the lamp and the first linear polarizer. By varying the angle between the two 

polarizer’s, it was possible to control the intensity of light shining on the sample. 

 

Figure (5.1) Diagram of optical pumping setup. Only the primary Helmholtz 

coils are shown in this diagram. The secondary coils used to trim the 

transverse fields to zero are not shown 

5.6 Results  

 

Figure (5.2) Oscilloscope trace of resonant peaks at a frequency of 1.005 

MHz Ch. 1- Trapezoidal sweep for the primary Helmholtz coils. CH 
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2 - Signal from the photodiode. Peaks (1) and (1’) correspond to 85Rb, and peaks 

(2) and (2) correspond to 87Rb. Note the appearance of an extra pair of peaks (3) 

and (3) corresponding to zero applied field 

Table (5.1) G-factor measurements for two rubidium isotopes. Also included 

is the magnitude of the Earth’s magnetic field determined using each isotope 

R  biotopes 𝒈𝑭      B Earth(G)a   

85 0.335 ± 0.008 0.488 ± 0.046 

87 0.505 ± 0.006 0.501 ± 0.050 

 

Table (5.2) Characteristic time to establish steady state polarization at 0.900 

𝑴𝑯𝒛. 

∆θ (deg) I/Io τ( ms ) 

0 1.00 12.6 ± 1.0 

25 0.82 12.3 ± 1.1 

43 0.53 12.9 ± 1.4 

60 0.25 13.4 ± 2.8 

 

Table (5.3) Characteristic time and its variation per degree separation 

between linear polarizer’s for three frequencies 

frequency (MHz) τ (ms)a  (ms/deg) 

1.005 11.5 ± 0.4 -0.002 ± 0.026 

0.900 12.6 ± 0.6 0.016 ± 0.034 

0.800 12.8 ± 0.6 0.018 ± 0.033 
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TABLE (5.4) Measurements of the peak voltage for different r.f. field 

strengths. Included is the defined variable X which provides a measure of 

sudden passage (X ≫ 1) and adiabatic passage (X ≪ 1) 

Peak (mV) a B 𝒓. 𝒇.× 𝟏𝟎−𝟕(𝑻) 𝒙𝑩 

12 0.12 216 

25 0.26 54 

42 0.37 27.5 

59 0.48 16.7 

76 0.7 7.98 

91 0.97 4.16 

93 1.19 2.79 

101 1.47 1.85 

101 1.69 1.4 

105 1.96 1.04 

107 2.46 0.67 

108 3.01 0.45 

108 3.45 0.34 

108 3.84 0.28 

110 4.39 0.21 

111 4.94 0.17 
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Figure (5.3) Finding the gF values for 85Rb and 87Rb.  

The slope of these lines represent the (gF µB) −1. The y-intercept of each line 

(not shown) was used to infer the magnitude of the Earth’s magnetic field. 

Resonance measurements for twenty different frequencies were used. 

 

 

Figure (5.4) Dependence of T on light intensity at 0.900MHz. The different 

lines indicate different intensities 

It was assumed that the decay of the voltage reading from the photodiode was 

exponential. Therefore, the slope of each line is τ−1. The fact that these lines are 

roughly parallel suggests that τ is insensitive to changes in intensity. 
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Figure (5.5) Sudden vs. adiabatic passage through resonance 

 Above a certain𝑟. 𝑓. field strength, the peak voltages were roughly equal 

(adiabatic passage). However, decreasing the 𝑟. 𝑓. field eventually led to 

attenuation of the peak voltages (sudden passage). 

5.7 Discussion 

     The magnetic field due to the primary Helmholtz coils was determined from 

the geometry of the coils and the amount of current flowing through them. These 

coils were designed to provide as uniform of a field as possible. To that end, the 

separation between the coils was measured to be the same (up to uncertainty) as 

the radius of each coil. Therefore, the magnetic field (in Tesla) in between and 

on the axis the coils is given by [10]. 

𝐵 = (
4

5
)

3
2 𝜇0𝑁𝐼

𝑟
                                                (5.7.1) 

Where 𝑁the number of turns in the coil and r is is the radius of the coils. The 

energy level splitting was determined by measuring the frequency of the 𝑟. 𝑓. 

field and using𝐸 =  ℎ𝜈. The relationship between the Zeeman energy splitting 

and applied magnetic field for both isotopes of rubidium is shown in Figure 

(5.3). The two lines were found using a least-squares weighted fit [11]. The 

magnetic field B was graphed vs. the energy E, instead of the reverse, due to the 
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larger error in measurements of B. The slope of each line determined the value 

of(𝑔𝐹𝜇𝐵)−1, from which the g-factor could be obtained. In addition, the y-

intercept of each line is a measure of the Earth’s magnetic field. According to 

equation (13), one would expect the zero of energy splitting to occur in the 

presence of zero applied magnetic fields. The fact that the y-intercept is not zero 

indicates that there is an additional magnetic field other than the one produced by 

the Helmholtz coils. This extra field is attributed solely to field of the Earth. 

From the intercepts of both lines, we obtain a weighted average for the Earth’s 

magnetic field of 0.496 ± 0.029 G. Table (5.I) summarizes the results. The 

characteristic time, τ, to establish steady state polarization was measured for 

different frequencies and intensities. Assuming an exponential decay of 

photodiode signal, the logarithm of the voltage was graphed versus time so that 

the points would fit a straight line with slope τ−1. Again, each line was created 

using a least-squares weighted fit. Figure 5 displays the results at a fixed 

frequency of 0.900 𝑀𝐻𝑧. Notice that each line has approximately the same 

slope. Table (5.2) provides the characteristic time for different polarizations. 

These characteristic times are all in good agreement, indicating that τ does not 

depend upon the light intensity, as hypothesized. The measured values of τ and 

their uncertainties for each intensity and for three different frequencies are 

detailed in Table (5.3). Note that each of the variations of τ over the range of 

intensities agree with zero, suggesting that there is no dependence of τ on light 

intensity. In addition to the peaks corresponding to the two rubidium isotopes, it 

was observed that there was another apparent resonance when the field was 

swept through zero (applied field canceling the earth’s field) in the absence of an 

𝑟. 𝑓. field. See the Theory section for explanation. Figure (5.4) shows the 

dependence of the peak voltage on the magnitude of the 𝑟. 𝑓. 
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5.8 Conclusion 

     The hyperfine structure of Rubidium shows the g factors for 85Rb and 87Rb to 

be 0.335   ± 0.008 and 0.505 ± 0.006, respectively, in agreement with theoretical 

predictions of 0.334 and 0.500. The Earth’s magnetic field is found to be 0.496 ± 

0.029G. 
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