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ABSTRACT 

The Imbalance Multi-class learning problem is one of the challenging 
problems in supervised machine learning. The imbalance nature of the data – 
which is owning skewed distribution of samples in different classes –as well 
as being multiclass – where an instance could be assigned to more than one 
class - lead to many vital problems in both learning and performance 
evaluation processes. 

The research problem could be epitomized in finding more accurate 
classification results for such kind of data. So, its methodology is based on 
proposing new classification hierarchical method based on Multi-Class 
Support Vector Machine (Multi-Class SVM). The model rebalances the data 
via grouping small classes in bigger classes (artificial classes). Then it 
classifies the compound classes into its constituent classes at later stage. 
Experiments were applied on nine different Multiclass imbalanced datasets 
from U.C.I. repository.  

The experiments show that the new hierarchical model enhances the 
classification results comparing with the classification results of some state-
of-the-art solution, even when empowered with weight for minority 
instances, considering four different performance metrics. They also exhibit 
that the model is not only successful in treating the imbalance problem 
simply without computational efforts or algorithmic modification, but also it 
does not require any data pre-processing step as many other solutions need. 
So, there is no additional adaptation neither on the data level, nor on the 
algorithmic level. Moreover, the experiments showed that the model 
performs well even when the ratio between minority and majority samples is 
high. They also demonstrate that the model works better with large number 
of classes of a dataset and perform poorly with the dataset that owns little 
number of classes that could not be combined into artificial classes of nearly 
balanced numbers of examples. 
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  :ستخلص الدراسةم

 –متعددة الفئات  -من ناحية عدد عينات فئاتها  –إن مشكلة التعلم من البيانات الغير متوازنة 

هي  –مجموعتين) وهي التي تضم عينات يجب تصنيفها لواحدة من مجموعة من الفئات (أكثر من 

إحدى المهام المعقدة من مهام تعلم الآلة ذي الأسلوب المراقب، حيث أن طبيعتي البيانات تؤثران 

  سلبا على أداء عدد من خوارزميات التعلم التقليدية وعلى خوارزميات تقييم أدائها.

ورة دقيقة ، تتلخص مشكلة هذه الدراسة في كيفية  التوصل إلى تصنيف هذا النوع من البيانات بص

وبالتالي فقد إستندت منهجية الدراسة على تصميم نموذجا هرميا جديدا للتصنيف يرتكزعلى 

خوارزميتي آلة المتجهات الداعمة و آلة المتجهات الداعمة للفئات المتعددة، يقوم بـإعادة التوازن 

عملية تصنيف  للعينات عبر تجميع الفئات الصغيرة داخل فئات (افتراضية) أكبر، ومن ثم يجري

  الفئات المركبة الجديدة للفئات المكونة لها في مرحلة لاحقة.

تم تطبيق هذا النموذج على تسع مجموعات من مجموعات البيانات المختلفة المستوردة من 

  لمجموعات البيانات المخصصة للأبحاث. U.C.Iمستودع 

خوارزميات تصنيف أُخرى  أظهرت التجارب تحسن نتائج تصنيف النموذج المقترح بمقارنته مع

اعتمدت من دراسات سابقة، حتى عند تزويد هذه الخوارزميات بأوزان لتصنيف العينات الأقل ، وذلك 

وفقا لأربعة معايير لتقييم أداء الخوارزميات. كما أوضحت التجارب أن النموذج المقترح لم ينجح فقط 

دون أعباء معالجة اضافية، أو تعديلات في التعامل مع مشكلة عدم توازن عدد العينات بسهولة وب

في صميم الخوارزميات المستخدمة في النموذج، ولكنه أيضا لا يتطلب أيً نوع من المعالجة المسبقة 

للعينات كما تتطلب بعض التقنيات السابقة لتصنيف مثل هذه البيانات، وبالتالي لا تغييرات على 
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ضافة إلى ما سبق، فالنموذج يظهر نتائجا جيدة مستوى الخوارزميات ولا على مستوى العينات. إ

حتى عندما يكون معدل عدم التوازن بين عينات مجموعات البيانات عاليا، وأثبتت التجارب أن 

النموذج المقترح له القدرة على العمل بشكل أفضل كلما كبرعدد فئات مجموعة البيانات، ويسوء أداؤه 

  عه اعادة تجميعها في فئات إفتراضية متوازنة تقريبا.إذا قل عدد الفئات للحد الذي لا يمكن م
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1. CHAPTER ONE: INTRODUCTION 

1.1. Overview  

Learning from imbalanced datasets is a challengeable problem. It exists in 

a wide variety of real-world applications, where the class of interest is 

generally a small fraction of the total instances meanwhile misclassification 

of such instances is much expensive. The challenge becomes more 

complicated when the imbalanced data has also multiclass nature. While 

there is a significant focus on the class imbalance problem for binary class 

datasets, multi-class datasets haves received less attention. The Imbalanced 

Multiclass problem belongs to the supervised machine learning tasks, where 

each instance should be assigned to one of N different classes that have 

unequal sample sizes. It owns more complex characteristics that introduces 

more obstacles and issues to be considered during learning process and 

requires new understandings, principles, algorithms, and tools. Going a step 

further, many of the evaluation metrics deployed in practice vary 

significantly across the class imbalance and Multiclass data literatures, so 

far, no single measure can assess the performance of each learning machine 

and could be applied over such data because of the existence of undesirable 

properties and the implementation complexity. 

The rest of this chapter is structured as follows: the subsection 1.2 

addresses the research question, followed by subsection 1.3 in which 

problem goal and objectives are pointed out. The importance of this research 

is highlighted in subsection 1.4.  The research contribution is clarified in 

subsection 1.5. Some terminologies that are used in this research are 
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illustrated in subsection 1.6. Finally, a general description of thesis 

organization is presented in section 1.7. 

1.2.  Research question:  

Can we be able to provide more accurate classification results for the 

multiclass imbalanced data in such a way that is simple to be implemented, 

since the previous introduced solutions required some tuning either on data 

or on the utilized algorithms?  

    

1.3. Research Goal and Objectives: 

The main aim of this study is at getting more precise assignment of the few 

or the rare examples to their minority classes, and to enhance the 

predictability of the SVM classifier in the unseen data, hence we're looking 

for better overall performance when data is imbalanced and Multi-classed as 

well. 

This aim could be accomplished by carrying out the following objectives: 

 Review the different strategies for dealing with imbalanced data 
and those dedicated for Multiclass data as well concentrating on 
imbalanced multiclass datasets solutions and methods. Then 
address their pons and cons to develop a suitable method to refine 
the dataset flaws then get better performance of the classifier. 

 Investigate the data format and characteristics and test its imbalance 
limits. 

 Develop a model for the classification process basing on Support 
Vector Machine (SVM) and Multi-Class SVM to figure out how 
deploying multiclass SVM is effective to build a classification 
model that can classify the minority over majority instances in the 
presence of Multiclass imbalanced data accurately. Beside deciding 
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whether it is better to use it alone in one stage learning model, or in 
a hierarchical one?  

 Investigate the overall performance through suitable assessment 
metrics empirically. 

1.4. Research Significance: 

The importance of this research rises from the fact that imbalanced 

multiclass data is produced from many real sensitive applications and fields 

in our life, such as the medical diagnosis, fraud detection, risk management 

in telecommunications, intrusion detection...etc. Another fact is that most 

efforts that have been proposed for solving the Multiclass issue so far are 

focused on two-class imbalance problems, meanwhile learning from 

multiclass imbalanced is more challenging and problematic and need more 

and more investigations.  

1.5. Research Contribution:  

 This study contributes pointing out some unsolved questions and 
complications caused by imbalanced multiclass data, and examines 
the generalization ability of strong classic pattern recognition tool, 
that have been widely used (Support Vector Machine). 

 It presents a novel hierarchical model based on SVM and MultiSVM.  

 It introduces a new Grouping algorithm for the dataset classes that 
don't depend on the similarities between instances such as the way the 
clustering technique works, instead, it originates new balanced 
artificial groups from the original imbalanced classes. So, this model 
does not use any fixed hierarchy based on features and/or classes.  

 The new model gets the benefit of the black box of the nature of the 
Support Vector Machine to group the heterogeneous different classes.  

 The classification process is divided into levels in such a way that 
does not utilizes any fixed hierarchy based on features and/or classes.  
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 By being based on this Grouping algorithm, it provides no 
computational complexity or algorithmic modification or even data 
distribution adjustment, so, it is different from common hierarchical 
methods which use supervised learning.  

 The new model performs well even when increasing the number of 
classes. 

 Results show that the proposed method is more successful than 
utilizing a Support Vector Machine even with support of using weight 
during the classification process. It performs well when the class 
imbalanced ratio (the number of minority class samples over majority 
class samples) is not extremely high. 

1.6. Research Terminologies 

• Learning from Imbalanced Data 

It is learning process from a dataset that exhibits a significant unequal 

distribution of examples between its classes or within a single class. 

• Learning from Multiclass Data 

It is a learning process where each data point belongs to one of N different 

classes, so its aim is at constructing a function that will correctly assign each 

new data point to one of N classes that it is belongs to. 

• Learning from Multiclass Imbalanced Data 

It is a learning task from data where each instance should be assigned to 

one of N different classes that suffer unequal samples sizes.  

• SVM (Support Vector Machine): 

It is a learning algorithm that tries to find the optimal separating 

hyperplane that effectively separates these data points into two classes.  It 

can provide relatively robust classification results when applied to 
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imbalanced data sets. While Multiclass SVM is the extended modified 

version deals with Multiclass data.   

1.7. Research Outline 

Chapter one includes a Background, Problem definition, Research goal and 

objectives, and Research importance and contribution. While Chapter two 

contains the literature review and the related work that discusses: 

Imbalanced data, Multiclass data, class Imbalance learning methods for 

Support Vector Machines, Chapter three highlights the research 

methodology and implementation. Chapter four points out the performance 

evaluation process and its different metrics. Chapter five discusses the 

research Results, and Chapter six indicates the conclusions, 

recommendations and future work. 
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2. CHAPTER TWO: LITERATURE REVIEW 
AND RELATED WORK 

2.1.  Introduction 

This chapter focuses on providing a critical analysis of the problem nature, 

the state-of-the-art approaches, of the Imbalanced, Multi-class and 

Multiclass Imbalanced learning algorithms. Furthermore, it highlights the 

major opportunities, challenges and solutions introduced in this field. 

2.2. Imbalance Data 

 What is an Imbalanced Dataset? 

It’s a data set that exhibits a significant unequal distribution of examples 

between its classes or within a single class [1]. 

 What is Imbalance Learning? 

(Haibo He) had defined the imbalance learning as follows: “The learning 

process for data representation and information extraction with severe data 

distribution skews to develop effective decision boundaries to support the 

decision-making process”. The learning process could involve supervised 

learning, unsupervised learning, semi-supervised learning, or a combination 

[1]. Classification of Imbalanced data in general refers to assignment of the 

skewed distributed instances to one of two possible classes, which is called – 

in more accurate words - Binary Imbalanced Classification or Two classes 

scenario. 

 What are the problems of learning from imbalanced 
data? 
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There many obstacles appear when dealing with imbalanced data: firstly, 

standard classification algorithms are often biased towards the majority 

class, because they target decreasing global quantities such as the error rate, 

increasing the classifier accuracy regardless the data distribution, so 

examples from the majority class are classified accurately, while the 

minority examples is probably misclassified or overlooked. Secondly, the 

induction rules of the minority examples are weak, since they depend on 

finding the similarities between the examples which are less represented 

considering the minority ones. Thirdly, when deploying the learning 

algorithms that are based on greedy search algorithms and/or divide and 

conquer approach such as decision trees, the imbalanced data sets exploit 

insufficiencies in electing the best feature as the splitting criterion (e.g., 

information gain) at each node of the decision tree. Also, the more 

partitioning the instance space (and the examples that belong to these 

spaces) into smaller and smaller pieces, the more obtaining fewer leaves that 

describe minority examples from which the rare patterns must be identified. 

In other words, the more fragment data, the more get fewer existence of 

minority class examples. This issue is related to the problems of relative and 

absolute imbalances. So, in both cases, the effects of imbalanced data on 

decision tree classification performance are damaging [1]. 

 Imbalance Types  

An imbalanced dataset may suffer from one of the following problems, two 

or many of them. Imbalance could be either: Binary (Two-class) Imbalance 

(exist between the two classes) or Multiclass Imbalance (exist between 

more than two classes). It could also be considered Between-Class 

Imbalance (where the data sets revealing significant, and in some cases 
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extreme, imbalances of its distribution between the different classes) or 

Within-Class Imbalance (which concerns itself with the distribution of 

representative data for sub-concepts within a single class, i.e. in this case, a 

class is composed of many sub-clusters and some sub-clusters have much 

fewer examples than other sub-clusters. Although underrepresented sub-

clusters can occur to both minority and majority classes, they are more likely 

to exist in the minority class, since it is often much easier to collect 

examples for the majority class). Imbalance may be Intrinsic (the imbalance 

is a direct outcome of the nature of the dataspace) or Extrinsic (the 

imbalance is not directly related to the nature of the dataspace. Variable 

factors such as time and storage causes the data imbalance [2]. For instance, 

suppose a data set is obtained from a continuous data stream of balanced 

data over an interval of time, and if during this interval, the transmission has 

irregular interruptions where data are not transmitted, then it is possible that 

the acquired data set can be imbalanced in which case the data set would be 

an extrinsic imbalanced data set attained from a balanced dataspace) [2]. 

Imbalance of data could be due to either Relative Rarity (Since class labels 

are essential to conclude the degree of class imbalance, class imbalance is 

typically assessed according to the training distribution. If the training 

distribution is representative of the underlying distribution, as it is often 

assumed, then there is no problem; but if this is not the case, then we cannot 

conclude that the underlying distribution is imbalanced, and we can say that 

its suffers from relative rarity ) or Absolute Rarity (rare instances) (while 

class imbalance literally refers to the relative proportions of examples 

belonging to each class, the absolute number of examples available for 

learning is clearly very important. Thus, the class imbalance problem for a 

dataset with 10,000 positive examples and 1,000,000 negative examples is 
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clearly quite different from a dataset with 10 positive examples and 1000 

negative examples, even though the class proportions are identical) [1]. 

 Levels of Imbalance Solutions: 

The solutions deal with the binary imbalanced learning problem can be 

divided into three major categories/levels: problem definition issues, data 

issues, and algorithm issues. Problem definition issues are very common. It 

takes place when having no enough information to accurately define the 

learning problem to solve it, or not owning the suitable metrics to evaluate 

the utility of the mined knowledge. The solution is easy but often not 

reachable: Redefine the problem in a simpler way for which more exact 

evaluation information is available and generate the suitable metrics to 

properly asses the mined knowledge after attaining the required knowledge 

or even suboptimal but good solutions. Data issues attend the actual data 

that is considerable for learning, and involves the problem of absolute rarity, 

where there are insufficient instances belong to one or more classes, to learn 

the decision boundaries associated with that class. The direct solution is to 

obtain additional training examples via Sampling techniques or Active 

Learning methods or other information acquisition strategies. Finally, 

Algorithm issues occur due to deploy an inadequate learning algorithm that 

performs poorly for imbalanced data such as applying an algorithm designed 

to optimize accuracy to an imbalanced learning problem, or the inability to 

discover indirect patterns – such as those belong to very rare classes- in data 

that may be hidden because of the data imbalance and the class imbalance 

(relative rarity). They also involve the incapability of handling data 

fragmentation issue. These issues could be handled by having an appropriate 

non-greedy search algorithm and not repeatedly partition the search space, 
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use a suitable evaluation metric to guide the heuristic search process as well 

as an appropriate inductive bias for imbalanced learning and deploy 

algorithms that explicitly or implicitly focus on the rare classes or rare cases 

or only learn the rare class [1]. 

 Methods and strategies for dealing with imbalanced data 

In the recent years, extensive efforts have been developed to handle the 

imbalanced data problem. They operate in the three levels (problem, data 

and algorithm levels) whether individually or cooperatively as hybrid 

approaches to better tackle the problem deploying diverse ways and 

strategies. This subsection review majority of rebalancing approaches and 

details their strategies [1]. Figure 2-1 summarizes them.  

 

 Sampling methods 

Sampling methods employ many various approaches to modify the training 

set in such a way to generate more balanced amenable class distribution. 

One challenge with sampling strategies is deciding how much to sample, 

which is obviously conditioned on the sampling strategy that is deployed 

[1].The basic work in this area includes, Random Undersampling [3] where 

the majority class instances were discarded randomly until more balanced 

Fig. 2-1:Summary of Balancing Techniques Fig. 2-1: Summary of Balancing Techniques 
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distribution was reached. Here, vast quantities of majority data could be 

discarded making the decision boundary between minority and majority 

instances harder to learn, resulting in a loss in classification performance. 

So, in order to overcome these limitations, more sophisticated sampling 

techniques which were called Data Cleaning techniques had been developed 

to retain all useful information present in the majority class while removing 

redundant noisy, and/or borderline instances from the dataset such as Tomek 

Links that utilized by  Kubat and Matwin et al. [4] and a modified version of 

the Condensed Nearest Neighbor (CNN) rule [5] to create a directed 

Undersampling Method. Another method for undersampling was proposed 

by Laurikkala et al. [6] which he called the Neighborhood Cleaning Rule 

(NCR). But there was a rudimentary old work was the Random 

Oversampling where minority class instances were copied and repeated in 

the dataset until a more balanced distribution was reached. Here, instances 

were repeated, (sometimes to very high degrees) in such a way that could 

cause drastic overfitting to occur in the classifier- cause the learned model 

might fit the training data too closely- resulting in declining the 

generalization ability of the classifier for the unseen data. In order to 

overcome this issue, Chawla et al. [7] developed a method of creating 

synthetic instances instead of just copying existing instances in the dataset. 

This technique was known as The Synthetic Minority Over-Sampling 

Technique (SMOTE). Basing on the feature space similarities between 

existing minority examples, it created artificial data altering the training set 

distribution by adding synthetically generated minority class instances, so 

the minority class became more balanced. Depending on its effectiveness, 

many extensions for it had been developed such as Adaptive Sampling 

methods like: Borderline-SMOTE, Adaptive Synthetic Sampling 
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(ADASYN) [8] algorithms, as well as Focused Resampling which was 

developed by Japkowicz et al. [9]. Some researchers performed a type of 

combination of the different previous methods. For instance, they included 

SMOTE+Tomek and SMOTE+ENN [10] where SMOTE was used to 

oversample the minority class, while Tomek and ENN, respectively, were 

used to under-sample the majority class. 

  Ensemble learning  

It is an important paradigm in machine learning, it uses a set of classifiers 

to make predictions. The generalization ability of ensemble classifiers is 

generally much stronger than individual ensemble members. Basing on its 

simplicity, several ensemble methods had been integrated with sample 

methods in several ways that could be categorized into: Bagging-style 

methods such as UnderBagging [11] , OverBagging [11], SMOTEBagging 

[11], Boosting-based methods such as SMOTEBoost [12], RUSBoost [13], 

and DataBoost-IM [14], and Hybrid ensemble methods such as 

EasyEnsemble [15]  and BalanceCascade [15]. It should be noted that many 

of the ensemble methods devoted for class imbalance learning were 

significantly better than standard ensemble methods and sampling-based 

class imbalance learning methods such as EasyEnsemble, and 

BalanceCascade [1]. 

 Cost-sensitive Learning Methods  

 They use different cost matrices that describe the costs for misclassifying 

any specific data example instead of creating balanced data distributions as 

the sampling approaches strategy. Their methodology is grounded on the 

cost matrix concept which represents the numerical representation of the 

penalty of classifying examples from one class to another. They assign no 
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cost for correct classification of either the minority or the majority class 

considering the standard matrices. The cost of misclassifying minority 

examples should be higher than the contrary case. So, the objective of cost-

sensitive learning is to generate a hypothesis that minimizes the overall cost 

on the training data set, which is usually the Bayes conditional risk.  

Generally, there are three categories of approaches to implement cost-

sensitive learning for imbalanced data. The first class of techniques applies 

misclassification costs to the dataset as a form of dataspace weighting 

(translation theorem [16]; these techniques are basically cost-sensitive 

bootstrap sampling approaches where misclassification costs are used to 

select the best training distribution. The second class applies cost-

minimizing techniques to the combination schemes of ensemble methods 

grounding on (Metacost framework [17]; this class consists of various meta 

techniques, where standard learning algorithms are integrated with ensemble 

methods to develop cost-sensitive classifiers - especially boosting-based 

methods- many of the existing research works in this area integrated the 

Metacost framework with dataspace weighting and adaptive boosting to get 

stronger classification results such as CBS1, CBS2 [18], and AsymBoost 

[19] which modified the weight-distribution-updating rule, so that the 

weights of expensive examples were higher. Some methods, such as linear 

asymmetric classifier (LAC) [20], changed the weights of the base learners 

when forming the ensemble. Some methods, such as AdaC1, AdaC2, AdaC3 

[21], and AdaCost [22], not only changed the weight-updating rule, but also 

changed the weights of base learners when forming ensemble, by associating 

the cost with the weighted error rate of each class. Moreover, some methods 

directly minimized a cost-sensitive loss function, such as Asymmetric 

Boosting [23]. The third class of techniques incorporates cost sensitive 
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functions or features directly into classification paradigms to essentially “fit” 

the cost-sensitive framework into these classifiers such as the cost-sensitive 

decision trees [24], [25], cost-sensitive neural networks [26], [27], cost-

sensitive Bayesian classifiers [28], and cost-sensitive support vector 

machines (SVMs) [29], [30], [31]. There is no unifying framework for this 

class of cost-sensitive learning because many of these techniques are 

specific to a particular paradigm, but in many cases, solutions that work for 

one paradigm can often be abstracted to work for others [1]. 

 Kernel-based Learning Methods 

The principles of kernel-based learning are based on the theories of 

statistical learning and Vapnik-hervonenkis (VC) dimensions [32]. The 

representative kernel-based learning paradigm, Support Vector Machines 

(SVMs), can provide relatively robust classification results when applied to 

imbalanced data sets [33]. SVMs enable learning by using specific examples 

near concept boundaries (support vectors) to maximize the separation 

margin (soft-margin maximization) between the support vectors and the 

hypothesized concept boundary (hyperplane), meanwhile minimizing the 

total classification error [32]. The effects of imbalanced data on SVMs 

exploit inadequacies of the soft-margin maximization paradigm [34], [35]. 

SVMs are inherently biased toward the majority concept, since they target 

minimizing the total error. There have been many studies that integrated 

kernel-based learning methods with general sampling, ensemble, cost-

sensitive, active learning and standard classification techniques for 

imbalanced learning [2]. In addition, too many efforts tried to modify the 

SVMs kernel function in numerous ways as it will be detailed in section 2.5. 

 Active Learning Methods  
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Traditionally, Active Learning methods were used to solve problems 

related to unlabeled training data, then they had also been investigated in the 

community for imbalanced learning problems. Many studies integrated them 

with other approaches. They have been incorporated with sampling 

techniques by Zhu and Huang et al. [36] who analyzed the effect of 

undersampling and oversampling techniques with active learning for the 

word sense disambiguation (WSD) imbalanced learning problem. Also, 

Ertekin et al. [37], [38] suggested an efficient SVM-based active learning 

method that queries a small pool of data at each iterative step of active 

learning instead of querying the entire dataset [1]. 

 The One-Class Learning Methods 

Contrary to the standard classification methods that try to differentiate 

between instances of both positive and negative classes following 

discrimination-based inductive methodology, these methods aims at 

recognizing instances of a concept by using mainly, or only, a single class of 

examples (i.e., recognition-based methodology). Representative work in this 

area includes the one-class SVMs [39], [40]  and [41]. 

2.3. Multiclass Classification 

 What Is Multiclass Classification? 

 It is a supervised multiclass classification algorithm where each training 

point belongs to one of N different classes, so the aim is at constructing a 

function that will correctly assign each new data point to the class it is 

belongs to. In other words, given a training data set of the form (xi, yi), 

where xi є Rn is the ith example and yi є {1. . . K} is the ith class label, Find a 

learning model H such that: H (xi) = yi for new unseen examples [42].  
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Multiclass classification assumes that each sample is assigned to one and 

only one label: a fruit can be either an apple or a pear but not both at the 

same time. 

 Problems of Learning from Multi-Class Data 

There are many problems appear when learning from this kind of data: In 

multiclass classification, several boundaries should be determined and 

constructed, this may lead to increase the probability of error. Moreover, 

Zhou and Liu [43] stated that most of the techniques developed for two-class 

problems become ineffective when dealing with multiclass learning 

problems and some methods are not applicable directly such as random 

oversampling and undersampling techniques. In addition, the performance 

evaluation metrics that dedicated for two class scenarios are not suitable for 

assessing the results of classification algorithms considering multiclass data 

accurately. These facts reveal the need for more sophisticated evaluation 

metrics. 

 

 Methods of Handling Multi-Class Data: 

Initially, let us consider two traditional types of classification methods for 

Multiclass data: Flat Classification and Hierarchical one, The Flat 

Classification indicates to a single level of classes that examples should be 

assigned to one or more of them. On the other hand, The Hierarchical 

classification we intend refers to the existence of number of levels of classes 

where each example could be assigned to some at any level, meanwhile a 

hierarchical classification problem originally refers to a problem that 

involves a large number of classes, where some subsets of classes are more 
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closely related than others or where each node is the sub-class of its parent’s 

node. Therefore, these methods – Hierarchical methods for classification- 

are subdivided into Hierarchical Classifiers and hierarchical Decomposition 

methods regarding the relations between classes [44] as it will be detailed 

latter in this section.   

Hierarchical models for classification suffer from the difficulty of making 

many decisions prior to obtain the final classification result. This 

intermediate decision making leads to the error propagation phenomenon 

causing a decrease in accuracy. On the other hand, although flat classifiers 

are based on a single decision including all the final classification results, it 

is difficult to make a single decision as it involves many results, which is 

probably unbalanced. [45] 

There are three methods of modeling a multi-class pattern classification 

problem that could be kinds of flat classification- noticing that they could be 

utilized also in a level or more of the levels of the hierarchical models-: 

Extensible algorithms, Class Decomposition methods and Error-Correcting 

Output-Coding (ECOC), meanwhile, there are three types of hierarchical 

structures that belong to the hierarchical models for classification of 

Multiclass data, as clarified in Figure 2-2. 

In this section, we will review these techniques and solutions introduced in 

this area because they form main parts of the solutions of tackling the 

multiclass imbalanced learning problem. 
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Fig. 2-2:Summary of Multiclass techniques 

 

 Extensible algorithms 

They are problem adaption techniques, rely on extending binary 

classification problems to manipulate multiclass data directly by adapting 
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some specific algorithm without any class decomposition. They include 

Decision Trees, Neural Networks, k-Nearest Neighbor, Naive Bayes 

classifiers, and Support Vector Machines [46] which will be detailed in this 

chapter later.  

 Class Decomposition Approaches: 

They are called (Binarization techniques) as well [47].They are problem 

transformation techniques that solve a problem by breaking it up into smaller 

ones and solving each of the smaller subproblems separately utilizing an 

independent binary classifier for each sub problem [48]. Then, the results of 

the binary classifiers are combined to get the classification result [49] . 

However, this is not necessarily the best approach for certain application 

problems. Decomposing a big problem has several advantages: firstly, 

individual classifiers are likely to be simpler than a classifier learns from the 

whole data set and exchanging one of them will not conflict the others. 

Secondly, they can be trained independently to allow various feature spaces, 

feature dimensions and architectures instantaneously for less modeling time. 

A possible drawback could be existed when each individual classifier is 

trained without full data knowledge, causing classification ambiguity or 

uncovered data regions with respect to each type of decomposition [50]. 

Here are the main schemes that majority of the state-of- art solutions are 

based on:   

 One-Against-All (OAA) scheme:  

It is also called One-vs-All (OVA) decomposition method. Given a c-class 

decomposition task (c > 2): OAA constructs c binary classifiers, a classifier 

is constructed for each class. So, each problem is faced up by a binary 

classifier which is responsible of distinguishing one of the classes from all 
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other classes. To train the classifiers the whole training data is used, 

considering the patterns from the single class as positives and all other 

examples as negative (this can cause imbalanced training data, and if the 

original data is imbalanced already or includes a large number of classes, so 

the problem will be worse). In other words, a classifier Fi is trained using the 

samples of class Ci against all the samples of the other classes. In testing 

phase, a pattern is presented to each one of the binary classifiers, the 

classifier which gives a positive output indicates the output class. In many 

cases, the positive output is not unique so, some tiebreaking technique must 

be applied, a decision function that assigns the test sample to the class with 

the highest output value among all [51] can be utilized.  

In addition to its computational efficiency (only N classifiers are needed), 

another advantage of this approach is its interpretability. Since each class is 

represented by one and one classifier only, it is possible to gain knowledge 

about the class by inspecting its corresponding classifier. This is the most 

commonly used strategy and is a fair default choice. But uncovered and 

overlapped regions in the data space could be found because the 

classification boundary produced by each individual classifier is independent 

from those of other classifiers [50]. 

 One-Against-One (OAO) scheme: 

This approach constructs one classifier per pair of classes, each of the c 

classes is trained against every one of the other classes. It results in ࢉ	ሺܿ െ

	1ሻ	/2	 binary classifiers. The training of the classifiers is done using as 

training data only the instances from the original dataset which output class 

is one of both classes, instances with different output classes are ignored. In 

validation phase, a pattern is presented to each one of the binary classifiers. 



21 
 

A combining strategy of their outputs is necessary for a final decision. The 

simplest way is a majority vote, so the test sample is assigned to the class 

with the highest number of votes [52].  Also, Classification by Pairwise 

Coupling (PC) is utilized as combination strategy and it enhance some 

shortcoming of the former strategy [53]. Major advantages of OAO is that it 

consolidates the prediction of each class, as well as generalization 

performance. If one classifier makes a classification mistake, others still 

have chance to make it up. Also, it has not to produce imbalanced training 

data while owning the ability of incremental learning. When a new class 

joins to the current data, we just need to build another c new classifiers 

without affecting the existing ones. However, this approach suffers from 

some disadvantages [54]:  The number of individual classifiers grows fast in 

a quadratic rate of c.  When c is large, the training time can be very long. In 

addition, this method is usually slower than one-vs-the-rest due to its 

complexity. In terms of the imbalanced learning, the performance of OAA 

and OAO s are highly hindered by the imbalance presence despite the 

popularity and the successful utilization in different domains of them [50]. 

 Error-Correcting Output-Coding (ECOC): 

This approach incorporates the idea of error-correcting codes [55], which 

was designed originally to correct errors during data transmission for 

communication tasks by exploring data redundancy.  This approach 

represents the machine learning task as a kind of communications problem 

in which the identity of the correct output class for a new example is being 

transmitted over a channel. The channel consists of the input features, the 

training examples, and the learning algorithm. The class information is 

corrupted due to errors caused by the poor choice of input features, the finite 



22 
 

training sample, and flaws in the learning process. The system may mend 

from these errors by encoding the class in an error-correcting code and 

transmitting each bit separately (i.e., via a separate run of the learning 

algorithm). So, N binary classifiers are trained to distinguish between the K 

different classes where each class is given a codeword of length N according 

to a binary matrix M. Each row of M corresponds to a certain class. Each 

class is given a row of the matrix. Each column is used to train a distinct 

binary classifier. When testing an unseen example, the output codeword 

from the N classifiers is compared to the given K codewords, and the one 

with the minimum hamming distance is considered the class label for that 

example. Diettrich and Bakiri [55] reported improved generalization ability 

of this method over the above two techniques.  

A measure of the quality of an error-correcting code is the minimum 

Hamming distance between any pair of code words which is the different 

bits between two codewords. For instance; if a 7-bit codewords are 

associated with classes C1…C4. Given unknown tuple X, supposing the 7-

trained classifiers output is 0001010. This will mean that:  

H (X, C1) = 5, by checking # of bits between [1111111] & [0001010] 

H (X, C2) = 3, H (X, C3) = 3, H (X, C4) = 1, thus C4 is as the label for X 

Error-correcting codes can correct up to ((h-1)/h) 1-bit error, where h is the 

minimum Hamming distance between any two codewords and If we use 1-

bit per class, this indicates to its equivalence to one - vs.-all approach which 

leads to the fact that the codes are insufficient to self-correct, so when 

selecting error-correcting codes, there should be good row-wise and column 
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wise separation between the codewords, or another method to construct error 

–correcting output could to be utilized.  

There are four methods for constructing good error-correcting output codes 

were deployed in the state of art solutions for Multiclass learning 

considering the ECOC method: (a) an exhaustive technique, (b) a method 

that selects columns from an exhaustive code, (c) a method based on a 

randomized hill-climbing algorithm, and (d) BCH codes. The choice of 

which method to use is based on the number of classes k. Finding a single 

method suitable for all values of k is an open research problem [55]. 

 Hierarchical Classification 

Regarding the previously mentioned study of Beyan & Fisher et al. [44], 

the Hierarchical methods for classification could be one of two categories:  

 Hierarchical Classifiers where the classes were organized in a pre-

defined hierarchy like a tree. The tree is created such that the classes 

at each parent node are divided into many clusters, one for each 

child node. The process continues until the leaf nodes contain only a 

single class. At each node of the tree, a simple classifier, usually a 

binary classifier, makes the discrimination between the different 

child class clusters. Following a path from the root node to a leaf 

node leads to a classification of a new pattern.  

   Hierarchical Decomposition where the factors like similarity of 

data form the class hierarchy [56]. Here, there is no pre-defined class 

hierarchy. Instead, this approach is based on placing the classes in a 

tree, usually a binary tree, utilizes a hierarchical division of the 

output space [46]. The most generic form of hierarchical 
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decomposition is dividing a multiclass problem in a hierarchical way 

to obtain binary hierarchical classifier.  

Considering the first type, two methods follow its principle: 

 Direct Multiclass: 

It’s the Decision-tree algorithms that can be easily generalized to treat 

these multiclass learning tasks. Labeling each of the decision tree leaf can be 

done using one of the k classes, and the classification process of these 

classes can be carried out by selecting the internal nodes [55]. 

  

 The Decision Directed Acyclic Graph (DDAG) 

The Decision Directed Acyclic Graph constructs a rooted binary acyclic 

graph where each node is associated to a list of classes and a binary 

classifier. The root node considers all classes in the list and one classifier 

distinguishing between two of the classes (generally, the first and the last). 

According to the prediction of the classifier, the class which has not been 

predicted by the classifier is removed from the list and a new node is 

reached (the node associated to the new list, which also has another binary 

classifier discriminating between the first and the last classes from the new 

list). The last class remaining on the list is the final output class [57]   

Regarding the second type of the hierarchical methods which is 

Hierarchical Decomposition, the following trees is an interesting example 

for approaches that follow its principle:   

Binary Tree of Classifiers (BTC) or Binary Tree of SVM (BTS), easily can 

be extended to any type of binary classifiers that decreases the number of 
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classifiers and increases the global accuracy using some of the binary 

classifiers which distinguish between two classes to simultaneously 

discriminate other classes. The tree is constructed recursively and in 

equivalent way to DDAG approach, each node has associated with a binary 

classifier and a list of classes, but in this case, the decision of the classifier 

can distinguish other classes as well as the pair of classes used for training. 

So, in each node, when the decision is done, more than one class can be 

removed from the list. In order to avoid false assumptions, a probability is 

used when the examples from a class are near the boundary so the class 

cannot be removed from the lists in the following level. 

 In this technique, a hierarchy can be created using the similarity of classes, 

for instance, Kumar et al. [58] organized classes in a hierarchy collecting 

similar classes together to transform the multi-class classification problem 

into a binary classification problem. For text mining, SVM based 

hierarchical clustering was used utilizing the similarities between features 

[59].  

Chen et al. [60] use a similar approach of clustering the classes into a 

binary tree called Hierarchical SVM (HSVM). However, the clustering is 

performed via arranging classes into an undirected graph, with edge weights 

representing the Kullback-Leibler distances between the classes, and split 

the classes into two sub-clusters that are most distant from each other. SVMs 

are used as the binary classifier at each node of the tree. They reported 

improved performance versus bagged classifiers using remote sensing data. 
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2.4. Imbalance Multi-Class  

 What is Multi-Class Imbalance Problem? 

The imbalanced multiclass problem belongs to supervised machine 

learning tasks where each instance should be assigned to one of N different 

classes with unequal sample sizes.  

It's obvious that the effect of the presence of both problems in the data – 

being imbalance and multiclass - is more severe and rises the need for more 

analysis and investigation, since some techniques that are applicable for 

balanced multiclass data are not if they applied over imbalanced multiclass 

data. 

 Methods of Handling Multiclass Imbalanced Data: 

These solutions naturally were emanated from those which dedicated for 

treating the binary imbalanced data and those for the multiclass ones. So, 

they also could be subjoined to the traditional types of classification methods 

for Multiclass data: Flat and Hierarchical Classification methods. 

 Regarding Flat classification, there are two main methods – Figure 2-3 - 

followed in the research community to deal with such data: 
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Fig. 2-3Methods of Handling Multiclass Imbalanced Data 
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ensemble methods based on the correlation analysis and performance pattern 

analysis ensemble methods. AdaBoost.NC was better at recognizing 

minority class examples and balancing the performance among classes in 

terms of G-mean without using any class decomposition, meanwhile, using 

class decomposition (the one-against-all scheme in their experiments – 

OAA) did not provide any advantages in multi-class imbalance learning in 

their experiments.  On other hand, Chen & Lu et al. [60] proposed an 

algorithm that used OAA, then they depended on sampling methods to 

further decompose each binary problem and rebalance the training set. Zhao 

& Li et al [63] used OAA in addition to undersampling and SMOTE 

techniques to remedy the imbalanced distribution in their protein data. 

Similarly, to Wang study, Choon & Gilbert et al. [64] proposed utilizing 

ensemble methods for classification as well. They combined the eKISS 

Method rules of base classifiers to generate new classifiers. They had 

applied the PART rule-based machine learning technique to generate the 

base classifiers for their ensemble learning system to improve the coverage 

of examples from small protein classes. Then they deployed both OAA and 

OAO schemes to generate one new classifier per class, called the ensemble 

classifiers. Ghanem & Venkatesh et al. [65] suggested a method called 

Multi-IM which derived its fundamentals from the probabilistic relational 

technique (PRMs- IM) that was designed for learning from imbalanced 

relational data for the two-class problem, in addition to All-and-One (A&O) 

approach to treat the imbalanced problem. Then an independent classifier 

was trained on each balanced subset.  They used the weighted voting 

strategy as applied in PRMs-IM to combine classifiers to get the result for 

the parent classifier. Liao et al. [66] investigated variety of oversampling and 

undersampling techniques used with OAA for a weld flaw classification 
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problem in addition to three algorithms including minimum distance, nearest 

neighbors, and fuzzy nearest neighbors that were utilized as the classifiers. 

Abdi & Hashemi et al. [67] combined over-sampling (Mahalanobis distance-

based over-sampling technique -MDO in short-) into boosting algorithm and 

called it MDOBoost. They over-sampled the minority classes via MDO 

considering the original minority class characteristics. MDO generated more 

similar minority class examples to original class samples more than 

SMOTE. The study of Platt & Cristianini et al. (57) didn't consider the 

Binarization technique for handling the Multiclass situation, instead, they 

deployed a balancing technique (Dynamic sampling method (DyS)) for 

multilayer perceptrons (MLP) to deal with the multiclass nature of the data, 

then combined the outputs of the ensemble as multi-class classifier.  This 

study utilized the idea of using Codewords beside OAA. Jeatrakul et al. [68] 

suggested the One-Against-All technique with Data Balancing (OAA-DB) 

algorithm which was an extension of OAA and aimed at improving the 

weakness of OAA. It balanced the data utilizing combination of SMOTE 

and CMTNN and combined it with OAA. CMTNN worked as an under-

sampling technique while SMOTE was applied as an over-sampling 

technique. The multi-binary classifier generated K outputs of K classes, each 

K output was converted to a binary bit to produce binary codewords of each 

testing example. A binary codeword was represented by the K bits class 

output of each testing instance to utilize it in the classification process. Alejo 

et al. [69] algorithm made the error function of neural networks cost-

sensitive by incorporating the proportion of classes within the data set to 

confirm minority classes, after OAA was applied.  
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 Adjust the Extensible Algorithms:  

The second approach followed in the research community to handle 

imbalanced multiclass data is adjusting the Extensible Algorithms [46]  to 

consider both imbalance and multiclass problems. Here, the modification 

introduces costs into classification process or moving decision threshold. 

This can be applied by utilizing cost sensitive methods to find an appropriate 

cost matrix with multiple classes and suit its imbalance nature such as these 

following studies:  

Langford et al [70] combined two ideas; firstly, to enhance the 

performance of neural network on multiclass imbalanced data, he deployed 

diverse random subspace ensemble learning with evolutionary search. In 

order to increase the performance of the learning and optimization of neural 

network, he exploited the minimum overlapping mechanism to provide 

diversity. Secondly, to optimize the misclassification, an evolutionary search 

technique was utilized cost under the guidance of imbalanced data measures. 

Some studies assigned different misclassification costs through using SVMs 

classifier. The misclassification cost of the minority classes must be higher 

than the majority class’s. So, SVMs could handle all imbalanced multiclass 

data in one optimization formulation. For instance, the study of Landgrebe 

and Duin et al [71] who proposed a multi-class Weighted Support Vector 

Machines (WSVM) method to perform automatic recognition of activities in 

a smart home environment. This method supported analytic parameter 

selection of the + C and − C regularization parameters with a new criterion 

from the training data directly, based on the proportion of class data. In 

empirical study Wei & Lin [72] compared the performance of MultiSVM 

that considered all classes at once with three methods based on binary 
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classifications: “one-against-all,” “one-against-one,” and directed acyclic 

graph SVM (DAGSVM). They concluded that the “one-against-one” and 

DAG methods are more suitable for practical use.  

Ensemble algorithms and Boosting techniques that modify the weight 

updating rule and/or loss function such that the minority examples were 

emphasized with higher weights, or high scores for most interested and 

confident instances were deployed as well. 

 There were other studies that utilized the cost sensitive method to 

rebalance the multiclass data. They generally categorized the costs into two 

types: Example-dependent cost which assumed that each example had its 

own misclassification cost, and Class-dependent cost which assumed that 

each class had its own misclassification cost [27]. According to Zhou [27] , 

he recommended investigating the consistency of the costs to utilize the 

rescaling approach firstly. He suggested that applying rescaling after 

decomposing the multi-class problem into a series of two-class problems is 

better if the cost is not consistent. Wang et al. [50] introduced a typical study 

to utilize the misclassification cost with ensemble classifiers as well. 

 Hierarchical Classification: 

Generally, the hierarchical classification techniques which are dedicated 

for treating data that suffers from both problems- Imbalance and Multiclass- 

handle the imbalance nature initially, then lever the multiclass situation by 

turning the classification process into stages of levels.  

Regarding Hierarchical Classifiers, One-Against-Higher-Order (OAHO) 

method [73] stood on a hierarchy of classifiers based on the data 

distribution. OAHO constructed K-1 classifiers for K classes in a list of {C1, 
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C2… CK}. The first classifier was trained using the samples of the first class 

C1 against all the samples of all the other classes. Then, the second classifier 

was trained using the samples of the second class in the list C2 against the 

samples of the higher ordered classes {C3...CK} and so on until the last 

classifier was trained for CK-1 against CK. To diminish the imbalanced 

situation, the classes were organized descendly according to the number of 

the samples in each class, in which the small classes were grouped together 

against the majority class. The problems were that misclassifications made 

by the top classifiers couldn't be improved by the lower classifiers and 

OAHO performance was sensitive to the classifier order. Li et al. [74] 

suggested automatic music genre classification approach where the 

taxonomy gave the relationship between the genres and the similarity matrix 

from linear discrimination was utilized to construct automatic taxonomies. 

Wu et al. [75] constructed a tree for handling the multi class nature of the 

data and a multiclass classifier at each parent node.  

Considering Hierarchical Decomposition, it splits the multiclass problem 

in a hierarchical way such that binary hierarchical classifiers could be used. 

For instance, Cesa-Bianchi et al [56] utilized the similarity of classes to 

construct a hierarchy. Also, considering the study of Ramanan et al. [76] in 

which they proposed the learning architecture (Unbalanced Decision Tree 

(UDT)) standing on Directed Acyclic Graph (DAG) and One-versus-All 

(OVA) approaches. At each decision node, The OVA based concept was 

implemented. Each decision node of UDT was considered an optimal 

classification model. The based classifier of the OVA which resulted the 

maximum performance measure was considered the optimal model for each 

decision node. Beginning with the root node, the optimal model evaluated 
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one selected class against the rest. Then, from the level of the decision tree, 

the UDT removed the selected class moving to the next level. When the 

algorithm yields an output pattern it terminated at a level of the decision 

node. Also, hierarchical SVM was proposed by Chen, Crawford and Ghosh 

et al. [77]. Basing on class similarities the classes were partitioned into two 

subsets until one class label was found at a leaf node.  Moreover, in the 

previously mentioned study of Beyan & Fisher et al. [44], they presented a 

hierarchical decomposition method which based on clustering and they 

deployed outlier detection for classification. The hierarchy grounded on the 

similarities of data (i.e. clusters). Different data and feature subsets where 

employed to construct the hierarchy levels. Supposing that the minority class 

samples in each class were outliers by cardinality, or by their distance to 

class, Classification of minority class samples was done via Outlier detection 

center. Hoens, Chawla and Zhou et al. [78] suggested using Hellinger 

distance decision trees (HDDTs) to solve the class imbalance problem for 

decision trees without sampling. They compared different methods of 

building C4.4 and Hellinger distance decision trees for multi-class 

imbalanced datasets. Luo et al. [79] proposed a hierarchical classification 

method which was a simple bi-classifier with less features input made out 

most normal samples with an allowable low error rate for minority samples, 

then a complicated multi-classifier with more features input was constructed 

by learning the rest less imbalanced samples. To get accurate output for 

every class, they deployed complicated classifier of ANN ensembles. For 

classification process, two classifiers operated in parallel. When normal-

class result had been acquired the simple classifier of the first layer was able 

to end the second one.   
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  An Abstract comparison between Multiclass Imbalanced 
Solutions 

 ADVANTAGES: 

Naturally, the Pros and cons of each method are originated from the 

characteristics of each techniques that forms a part of the whole strategy of 

treating the Multiclass imbalanced problem. For instance, SVMs is a very 

strong algorithm that has big generalization capability and strong 

mathematical background, so it works very well, even with very small 

training sample sizes comparing with Binarization techniques, but according 

to Wei & Lin [72] the later techniques are more suitable for practical use, 

specifically when dealing with large scale problems and they are more 

accurate for rule learning algorithms. 

Considering the hierarchical decomposition, dividing the problem into 

smaller problems by the hierarchy results in selecting a smaller set of 

features (a more specific domain term features) to a sub-problem which 

increases the accuracy and efficiency. 

Many Studies such as [59], [80], [81], [82] agreed that comparing 

hierarchical methods to Flat classification techniques, the former can have 

better classification results.  

 DISADVANTAGES: 

The Binarization approach suffers from excessive testing time because of 

the need of combing the results of k (k-1)/2 binary classifiers. 

Adding weights or scores modifying the kernel functions of the extensible 

algorithms faces the difficulty of constructing direct connections between 

the parameters. Moreover, during training time, a matrix of kernel values for 
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every pair of examples must be computed noticing that SVM is slow and 

owns computational complexity in training according to its nature - the 

hyperplane it deals with and its kernel function -, so regarding large-scale 

problems, learning can take a very long time when dealing with MultiSVM 

with scores.  

Using the hierarchical approaches rises the need to proceed until a leaf 

node is reached to decide on any input pattern, so it also consumes time 

depending on the path. 

Digging deeper, the characteristics of the dataset affects directly on how to 

decide the most suitable solution to handle each part of the problem of the 

data nature - Multiclass or imbalance- for any considering learning problem: 

The number of instance whether its large scale or small one, the number of 

its classes and number of attributes, the degree of the imbalance in instances 

distribution and other data complexity if exists.  

2.5. Kernel-Based Learning Methods (Support Vector 
Machines) for Class Imbalance Learning  

Since the proposed hierarchical model will be build utilizing the Support 

Vector Machine (SVM) and Multi SVMs, it's important to stand on their 

structure and details. 

 Background  

Support Vector Machine is a tool for machine learning to solve the 

problem reorganization problem. It also has been effectively applied to many 

real-world classification problems from various domains due to its 

theoretical and practical properties, such as solid mathematical background, 

high generalization capability, the ability to obtain global and nonlinear 
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classification solutions using different kernel functions and good 

performance comparing to other classifiers. SVMs can manage many 

dimensions as well as providing good classification results in case of small 

sizes of training samples. Moreover, it has ability to process many thousand 

different inputs which is very critical aspect in some real-life application 

such as text classification, because it opens the opportunity to use all words 

in a text directly as features regardless to how long is it [83].   

 Introduction to the basic Support Vector Machines  

 We briefly review the learning algorithm of SVMs, which has been 

initially proposed in [32], [84] and [85]. In a binary classification problem 

represented by a dataset {(x1, y1), (x2, y2) . . . (xl, yl)}, where xi ∈ Rn 

represents an n-dimensional data point, and yi {−1, 1} represents the label of 

the class of that data point, for i = 1. . . l. The goal of the SVM learning 

algorithm is to find the optimal separating hyperplane that effectively 

separates these data points into two classes. In order to find a better 

separation of the classes, the data points are first considered to be 

transformed into a higher dimensional feature space by a nonlinear mapping 

function	ƒ. A possible separating hyperplane residing in this transformed 

higher dimensional feature space can be represented by:  

	࢝  	ƒሺ࢞ሻ 	 	࢈	 ൌ 																					ሺ. ሻ	

where w is the weight vector normal to the hyperplane. If the dataset is 

completely linearly separable, the separating hyperplane with the maximum 

margin (for a higher generalization capability) can be found by solving the 

following maximal margin optimization problem: 

                                       min ( ½ w · w)  
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                            S.t.          yi (ݓ	  	ƒሺݔሻ 	 	ܾ) ≥ 1                          (2.2) 

                                       i = 1, . . . , l 

However, in most real-world problems, the datasets are not completely 

linearly separable even though they are mapped into a higher dimensional 

feature space. Therefore, constrains in the optimization problem mentioned 

in Equation (2.2) are relaxed by introducing a set of slack variables, ξi ≥ 0. 

Then, the soft margin optimization problem can be reformulated as follows: 

	ሺ	
1
2
ݓ.ݓ  	݅ߦܥ



ୀଵ

ሻ 

                                               S.t.       yi (w ·ƒ (xi) + b) ≥ 1 − ξi         (2.3)                                                        

                                                   ξi ≥ 0,              i= 1, . . . , l  

The slack variables ξi > 0 hold for misclassified examples, and therefore 

the penalty term ∑ ξi	୪
୧ୀଵ  can be considered as a measure of the number of 

total misclassifications (training errors) of the model. This new objective 

function given in Equation (2.3) has two goals. One is to maximize the 

margin and the other one is to minimize the number of misclassifications 

(the penalty term). The parameter C controls the trade-off between these two 

goals. This quadratic optimization problem can be easily solved by 

representing it as a Lagrangian optimization problem, which has the 

following dual form: 

              

 Max αi 	ቄ∑ αi െ ଵ

ଶ

ୀଵ 	∑ .

ୀଵ ∑ .	݅ߙ .	݆ߙ .	݅ݕ .݆ݕ ƒ	ሺxiሻ. ƒ	ሺxjሻ
ୀଵ ቅ																			ሺ2.4ሻ 

     S.t. 					∑ ݅ݕ
ୀଵ ݅ߙ ൌ 0					.								0  αi  ݅											.ܥ ൌ 1.… ݈ 
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where αi are Lagrange multipliers, which should satisfy the following 

KarushKuhn–Tucker (KKT) conditions: 

.ݓሺ݅ݕሺ݅ߙ                            ƒ	ሺ݅ݔሻ  ܾሻ െ 1  ሻ	݅ߦ ൌ 0.				݅ ൌ 1.… ݈												ሺ2.5ሻ  

                          (C-	݅ߙ)	݅ߦ ൌ 0.						݅ ൌ 1.… ݈                                   (2.6) 

An important property of SVMs is that it is not necessary to know the 

mapping function ƒ (x) explicitly. By applying a kernel function, such that 

K(xi , xj) = ƒ (xi) , ƒ (xj), we would be able to transform the dual optimization 

problem given in Equation (2.1)  into Equation (2.4)  

              Max αi 	ቄ∑ αi െ
ଵ

ଶ

ୀଵ 	∑ .

ୀଵ ∑ .	݅ߙ .	݆ߙ .	݅ݕ .݆ݕ Kሺxi	. xj	ሻሻ
ୀଵ ቅ						ሺ2.7ሻ 

               S.t. 			∑ ݅ݕ
ୀଵ ݅ߙ ൌ 0		.											0  αi  ݅											.ܥ ൌ 1.… ݈					 

By solving Equation (2.7) and finding the optimal values for	αi, w can be 

recovered as in the following equation:  

w ൌαi.wi. fሺxiሻ

୪

୧ୀଵ

											ሺ2.8ሻ 

b can be determined from the KKT conditions given in Equation (2.5). The 

data points having nonzero αi  values are called Support Vectors. Finally, 

the SVM decision function can be given by: 

								fሺxሻ ൌ sinሺw. fሺxሻ  bሻ ൌ sin	ሺαi. yi. Kሺxi. xሻ  b

୪

୧ୀଵ

ሻ																					ሺ2.9ሻ	 

 Multiclass Support Vector Machine: 

Support Vector Machines (SVMs) were originally designed for binary 

classification. But currently, they are extended to deal with multiclass 
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problems and known as Multiclass Support Vector Machine (Multiclass 

SVM). Multi-SVMs are still an ongoing research issue.  

Many strategies were introduced to utilize Multiclass SVMs, the most 

known are the following: The first traditional method utilized the concept of 

solving several binary classifications problems via one of three 

Decomposition techniques.  It Started by constructing several OAA Support 

Vector Machine classifiers, then picking the class which classifies the test 

datum with greatest margin, or by building a set of OAO classifiers, then 

choose the class that is selected by the most classifiers, or deploying the 

Directed Acyclic Graph Support Vector Machines (DAGSVM) which 

proposed in [86], where the training phase proceeds in the same way as the 

one against-one method by solving k (k − 1)/2 binary SVMs. However, in 

the testing phase, it uses a rooted binary directed acyclic graph which has k 

(k − 1)/2 internal nodes and k leaves. Each node is a binary SVM of ith and 

jth classes. Given a test instance x, beginning from the root node, an 

evaluation for the binary decision function is c. so, depending on the output 

value depending on the output value it moves to either left or right. 

Therefore, to obtain the predicted class we go through a path before reaching 

a leaf node which indicates it. An advantage of using a DAG is that [86] 

some analysis of generalization can be established [72]. 

The second strategy was introduced by Kindermann et al. [83] . He 

investigated the influences of multiclass error correcting codes on the 

performance of the SVM over a wide variety of frequency code such as 

relative frequencies and logarithmic frequencies deploying many SVM 

kernel combinations.   
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The third strategy works more directly than the former. To be constructed, 

a larger optimization problem is needed, because it considers all data in one 

optimization formulation which make it computationally more expensive for 

multiclass problem to be solved than a binary problem due to its complexity 

for practical implementations Moreover, up to now experiments are limited 

to small data sets. Here, the SVM must own a different algorithm from the 

original SVM. So, many studies proposed different families of All-together 

Multiclass SVM, that vary in their kernel functions or its different 

parameters [72] such as [87], [88], [89] and [90] 

Chih-Chung Chang and Chih-Jen Lin et al [91] introduced a library for 

SVM which they called LIBSVM. It is utilized by Rapidminer software that 

we depended on to carry out our experiments in this study.  It does not 

support one-versus-one multi-classification, instead it deploys one-versus-all 

method. So, it if k is the number of classes, we generate k(k-1)/2 models, 

each of which involves only two classes of training data. According too 

them, inspite of the huge space needed to store k(k-1)/2 models thier 

implementation stores models in a sparse form and can effectively handle 

some large-scale data. 

2.6. Summary: 

This chapter analyzed the considered problem notion which is originated 

from other two problematic notions. It detailed each and reviewed the 

related literature, regarding their effects, challenges, the state-of art solutions 

– to our knowledge – and possible opportunities to stand on a good base to 

evaluate them and find the gaps, then conduct our own solution. In general, 

we had noticed that the introduced techniques suffer from being complex, 

from the perspective of consuming time in training or testing or even both. 
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The implementation of each solution is subject to many factors such as the 

utilized algorithm for classification, the data characteristics. Some solutions 

were successful when deployed in certain circumstances, but they failed in 

others.  So, there is no one ideal algorithm for all cases.    
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3. CHAPTER THREE: Research Methodology 

3.1.  Introduction 

This chapter discusses the research methodology and activities carried out 

to accomplish the research objectives. It details the steps followed to 

develop the hierarchical proposed SVM model of classification of our 

considering data as well.  

3.2. The Research Phases: 

Figure 3-1 explains the proposed phases towards achieving the research 

aim and objectives. 

 

Fig. 3-1: Research Phases 

 Phase 1: Problem Identification 

It was mentioned previously, that this research is concerning in building 

an optimal classification model for imbalanced multiclass data that 

generates precise classification results for the minority instances. 

 Phase Two: Literature Survey 

Assess the Performance

Apply the Model 

Select Benchmark

Develop a Model

Literature Survey

Problem Identification
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In this phase, we read and analyzed more than hundred scientific papers 

and good related references to develop a solid background of 

classification of Imbalanced Multiclass task.  The solutions introduced to 

tackle this problem were integrated ones. They are combination 

techniques based on the methods that were dedicated to handle the binary 

imbalanced data and those used to treat the multiclass cases. In other 

words, no direct dedicated solutions for treating our considering data. So, 

the second phase passed through three stages: the first one was reviewing 

the binary imbalance classification state- of – art solutions.  The second 

one was exploring the multiclass classification ones and the third stage 

was investigating the methods that treat both situations. Finally, the SVM 

and MultiSVM machine structures were detailed. As a result of the 

literature survey, a summary of different solutions was conducted and 

compared to find a gap they didn't fill and better build the classification 

model. 

Therefore, the first two objectives were accomplished through the 

previous two chapters. 

 Phase three: Develop the Model  

Regarding the third objective, the following sub-section illustrates the 

structure of the proposed hierarchical model. Figure 3-2 shows an example 

for a dataset that is consists of six imbalanced classes and clarifies the steps 

that it passes through when applying the model over it. 
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Fig. 3-2:How Does the proposed multi-stages model work? 

 How does the model work? 

The model goes through two main stages: 

STAGE ONE: Treat the Imbalance situation:  

We decompose the classification stages into a series of sub-decisions 

stages. The dataset classes will be reorganized in new groups such that the 

differences between the number of the instances in the groups is almost or 

nearly balanced, regardless to the number of the classes in each group. So, 

a group may include just a class or more. 

We achieve the previous step through Grouping algorithm that originates 

new artificial balanced groups. The algorithm goes through the following 

procedures: 
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1. Reorder the classes decently according to the number of the 
instances in each class, i.e. the classes' sizes {C1, C2, C3…CL}.  

2. Starting from the last class CL in the ordered list of the classes, add 
the number of its instances (#ExCL) to those belong to the former 
classes in the ordered classes list {#ExCL+#ExCL-1+…. = SUM} till 
the accumulated summation becomes bigger than the number of the 
instances of class C1 (the class at the top of the ordered list that 
contains the biggest number of instances). 

3. If the difference between the accumulated summation (SUM) and 
the number of the instances of the class at the top of the ordered 
class (C1) is less than the difference between the number of the 
instance of that corresponding class (CN) and C1 then join all the 
classes starting from the last class C1 up to CN in one group G1 and 
the each one of the rest of the classes {CN-1…C1} will be in an 
independent group.   

4. Start new level in the hierarchy. 
5. Repeat the previous procedure to the classes in G1, noticing that the 

class CN will be the top of its ordered classes. Then repeat them in 
every new formed group till regroup all the dataset classes 
following the same way. 

STAGE TWO: The Mutli-stages of Classification: 

After reorganizing the original dataset in new sub datasets, each one will be 

examined by an independent SVM machine. 

At each level in the hierarchy, if the SVM decides to assign some tested 

example to an internal group that contains two classes or more, a new SVM 

will be applied to that group to assign the example for one of the classes it 

contains.  

 Classes Grouping Algorithm  

For better explain the way the algorithm works, it was written in pseudo-

code as Figure 3-3 illustrates.   
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Classes Grouping Algorithm   

Input:  n: Number of class; x [n]: Array of Number of samples for each class 

Output: New balanced Groups   

1: repeat  

2:        Let j=0 

3:        Let y[0] =x[0] 

4:        repeat  

5:              Let j=j+1 

6:              Let y[j]=y[j-1] +x[j]; 

7:              Let t=j 

8:        until y[j]<x[n-1] 

9:        if ((y[t]-x[n-1])>(x[n-1]-x[t])) then 

10:      return a new group including the considering class only and    another 

group contains the rest of the classes 

11:      Let n=t 

12:      else  

13       return a new group including the considering class as well as the rest of 

the classes 

14:      n=t+1; 

15:      end if 

16: until t>1 

Fig. 3-3:Classes Grouping Algorithm 

The algorithm is built using C++ programming language, the output of the 

program will be the input of the classification process; the next part of the 

model. 

 Phase Four: Select Benchmark Datasets 

  This phase aims at electing Multiclass imbalanced datasets from U.C.I 

Repository from different fields, with distinctive characteristics to test the 

model. 
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 Phase Five: Apply the model over the selected Benchmark 
datasets 

Each dataset will be examined by four machines: 

 SVM without weight 
 SVM with weight 
 The proposed model without weight. 
 The proposed model with weight. 

The previous two phases will be discussed in the next chapter in detail. 

 Phase Six: Performance Evaluation 

The main objective of this phase is to identify evaluation criteria for the 

proposed model. This can be achieved through two steps: firstly, review the 

evaluation performance metrics for the performance of the classifiers of 

binary imbalanced data that can be extended to the multiclass situation as 

well as the metrics of hierarchical classification, to better choose the most 

suitable. This step will be done through two steps: firstly, reviewing the 

most important interesting metrics in chapter five. Secondly, investigating 

the overall performance of our model empirically in terms of some selected 

measures. This will be done in chapter six. 

3.3. Summary 

This chapter presented the research phases, how each phase is conducted, 

and how these phases are related. It detailed the design of the proposed 

classification model, as well as its techniques to treat the imbalance and 

Multiclass nature of the data. 
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4. CHAPTER FOUR: Experiments 

4.1. Introduction:  

This chapter describes the implementation phase of this research. This 

phase consists of selecting benchmark datasets from U.C.I Repository for 

setting up the experiments.  They are chosen from different disciplines such 

as medicine, physics and biology, considering varieties in their properties to 

better test the model. Their description is detailed in this chapter as well as 

illustrating the first part of the proposed model, which is implementing the 

Grouping Algorithm to rebalance the data. 

4.2.  The Experiments Setup: 

For the experimental setup, we ran 10 iterations of 10-fold cross-

validation. Nine popular imbalanced data sets were selected from U.C.I. 

Repository. The original webpage where the data set can be found 

is: http://archive.ics.uci.edu/ml/datasets. The data sets are from different 

fields such as biology, physics, medicine, etc. While choosing these data 

sets, we tried to cover the range of variety in the data sets properties. The 

selection was based on: 

 A range of Imbalance Ratio (IR) measure values. 

 Variation in number of Classes (#Class), 

 A varying number of total examples (#Examples) and number 
of attributes (#Attributes). 

 Each dataset will be examined by four machines: 

 SVM without weight. 

 SVM with weight. 

 The proposed model without weight. 
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 The proposed model with weight. 

The following table shows the selected benchmark datasets with their 

characteristics: 

Table 4-1:The Benchmark Datasets & their Statistics 

  Name #Attributes  #Examples in each Class  #Total 

Examples 

IR 

1 Yeast 8         244/429/463/44/35/51/163/30/20

/5 

1484 23.15

2 New-Thyroid 5         150/35/30 215 4.84 

3 Dermatology 34         112/61/72/52/49/20 366 5.55 

4 Balance 4         49/288/288 625 5.88 

5 Glass 

Identification 

9         70/76/17/13/9/29 214 8.44 

6 Thyroid 21         666/17/37 720 36.94

7 Ecoli 7         143/77/2/2/35/20/5/52 336 71.5 

8 Page Blocks 10         492/33/12/8/3 548 164 

9 Shuttle 9         1706/338/123/6/2 2175 853 

 
4.3. Datasets Details Description:    

The following tables present the different characteristics of the nine 

selected datasets:  

 Dataset 1: YEAST 
It aims at predicting the Cellular Localization Sites of Proteins. Its 
source is Kenta Nakai, Institue of Molecular and Cellular Biology, 
Osaka University.  

Table 4-2 describes main characteristics of the Yeast dataset  
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Table 4-2: Yeast Imbalanced Multi-class data set 

Type Imbalanced 
Multiclass 

Origin Real 
world 

Features 8 (Real / Integer / 
Nominal)

(8 / 0 / 0) 

Instances 1484 IR 23.15 

% Positive 
instances 

4.14 % Negative instances 95.86 

Missing values? No   

 

Table 4-3 describes the attributes of the Yeast dataset  

Table 4-3: Yeast Dataset Attributes 

Attribute Domain 

mcg [0.11, 1.0] 

gvh [0.13, 1.0] 

alm [0.21, 1.0] 

mit [0.0, 1.0] 

erl [0.5, 1.0] 

pox [0.0, 0.83] 

vac [0.0, 0.73] 

nuc [0.0, 1.0] 

Class {MIT, NUC, CYT, ME1, ME2, ME3, EXC, VAC, 

POX, ERL} 

 

In order to describe the Grouping algorithm details, a number of 

abbreviations and colored cells are used. Table 4-4 illustrates the meaning 

of each: 

Table 4-4: Abbreviations & colored cells 

HS: Highest number of sample 
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i: The class number in the descendly ordered list 

S(i): Summation of the classes {C1, C2…Ci} 

S(t): Summation of the classes {C1, C2…Ct} 

The yellow cell: indicates to the biggest number of examples 

The dark blue cell (t): 

 

Indicates to the examples number of the corresponding class 

which will be tested either to be included alone in a group 

or to be joined to the rest of the classes in a group 

The light blue cells 
The Summation of the samples of the descendly ordered 

classes 

The green cell: 
Indicates that the corresponding class cell will be separated 

in a new group 

The red cell: 
Indicates that the corresponding class cell will be included 

with its following classes in a new group 

 

Table 4-5, Table 4-6, Table 4-7, Table 4-8, and Table 4-9 clarify the steps 

of applying the Grouping Algorithm of the model over the YEAST dataset. 

It will be applied over the rest of the selected datasets in the same way.  

Table 4-2:Classification of Applying the Grouping Algorithm over YEAST dataset 
classes: STEP1 

i Class Samples Summation HS-S(i) HS-S(t) 

10 CYT 463 1484 -1021 

9 NUC 429 1021 -558 

t 8 MIT 244 592 -129 219 

7 ME3 163 348 115 

6 ME2 51 185 278 

5 ME1 44 134 329 

4 EXC 35 90 373 

3 VAC 30 55 408 

2 POX 20 25 438 



52 
 

1 ERL 5 5 458 

 

Table 4-3:Classification of Applying the Grouping Algorithm over YEAST dataset 
classes: STEP2 

 i Class Samples Summation HS-S(i) HS-S(t) 

 8 MIT 244 592 -348 

t 7 ME3 163 348 -104 81 

 6 ME2 51 185 59 

 5 ME1 44 134 110 

 4 EXC 35 90 154 

 3 VAC 30 55 189 

 2 POX 20 25 219 

 1 ERL 5 5 239 

 

Table 4-4:Classification of Applying the Grouping Algorithm over YEAST dataset 
classes: STEP3 

  i Class Samples Summation HS-S(i) HS-S(t) 

6 ME2 51 185 -134 

5 ME1 44 134 -83 

4 EXC 35 90 -39 

t 3 VAC 30 55 -4 21 

2 POX 20 25 26 

1 ERL 5 5 46 

 

Table 4-5:Classification of Applying the Grouping Algorithm over YEAST dataset 
classes: STEP4 

  i Class Samples Summation HS-S(i) HS-S(t) 

3 VAC 30 55 -25 0 

2 POX 20 25 5 

1 ERL 5 5 25 
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Table 4-6:Classification of Applying the Grouping Algorithm over YEAST dataset 
classes: STEP5 

  i Class Samples Summation HS-S(i) HS-S(t) 

2 POX 20 25 -5 0 

1 ERL 5 5 15 

 

Figure 4-1 shows how the dataset 1 (YEAST) classes will be formed in 

multiple stages by the model: 

 

Fig. 4-1:Applying the Grouping Algorithm over Dataset 1 

 Dataset 2: New- Thyroid 

Thyroid Diseases is a medical condition harming the function of 

the thyroid. There are different thyroid diseases that have a broad 

range of symptoms and affect all ages. [92] Its source is Ross Quinlan 

From Garavan Institute. 

Table 4-10 describes main characteristics of the New-Thyroid 

dataset: 

Table 4-7: Thyroid Dataset Characteristics 

Type  Imbalanced 

Multiclass 

Origin Real 

world 

CYT NUC G1

MIT ME3 G2

ME2 ME1 EXC G3

VAC POX ERL
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Features 5 (Real / Integer / 

Nominal) 

(4 / 1 / 0) 

Instances 215 IR 4.84 

% Positive 

instances 

17.12 % Negative instances 82.88 

Missing values? No   

 

Table 4-11 describes the Thyroid Disease dataset attributes 

Table 4-8:Thyroid Dataset Attributes 

Attribute Domain 

T3resin [65, 144] 

thyroxin [0.5, 25.3] 

triiodothyronine [0.2, 10.0] 

thyroidstimulating [0.1, 56.4] 

TSH_value [-0.7, 56.3] 

class {normal, hyper, hypo} 

 

Figure 4-2 shows how the dataset 2 classes will be formed in multiple 

stages by the model: 

 

Fig. 4-2:Applying the Grouping Algorithm over Dataset 2 

  

 Data set 3: Dermatology 

normal  G1

hyper hypo
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Dermatology is the branch of medicine dealing with the skin, nails, hair 

and its diseases. It is a specialty with both medical and surgical aspects. [93] 

Its aim is at determining the type of Eryhemato-Squamous Disease. Table 4-

12 describes main characteristics of the Dermatology dataset: 

Table 4-9:Dermatology Dataset Characteristics 

Type Imbalanced 

Multiclass 

Origin Real 

world 

Features 34 (Real / Integer / 

Nominal) 

(0 / 34 / 

0) 

Instances 366 IR 5.55 

% Positive instances 15.27 % Negative 

instances 

84.73 

Missing values? Yes   

 

Table 4-13 describes the Dermatology dataset attributes: 

Table 4-10:Dermatology Dataset Attributes 

Attribute Domain Attribute Domain Attribute Domain 

a1 [0,3] a13 [0,2] a24 [0,3] 

a2 [0,3] a14 [0,3] a25 [0,3] 

a3 [0,3] a15 [0,3] a26 [0,3] 

a4 [0,3] a16 [0,3] a27 [0,3] 

a5 [0,3] a17 [0,3] a28 [0,3] 

a6 [0,3] a18 [0,3] a29 [0,3] 

a7 [0,3] a19 [0,3] a30 [0,3] 

a8 [0,3] a20 [0,3] a31 [0,3] 

a9 [0,3] a21 [0,3] a32 [0,3] 

a10 [0,3] a22 [0,3] a33 [0,3] 

a11 [0,1] a23 [0,3] a34 [0,75] 
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a12 [0,3] class [1,6]   

 

Figure 4-3 shows how the dataset 3 classes will be formed in multiple 

stages by the model 

 

Fig. 4-3:Applying the Grouping Algorithm over Dataset 3 

 Dataset 4: Balance Scale Dataset 

This data set was generated to model psychological experimental results by 

Siegler, R. S. (1976). Each example is classified as having the balance scale 

tip to the right, tip to the left, or be balanced. The attributes are the left 

weight, the left distance, the right weight, and the right distance. The correct 

way to find the class is the greater of (left-distance * left-weight) and (right-

distance * right-weight). If they are equal, it is balanced. 

Table 4-14 describes main characteristics of the Balance dataset: 

Table 4-11:Balance Scale Dataset Characteristics 

Type Imbalanced 

Multiclass 

Origin Real 

world 

Features 4 (Real / Integer / 

Nominal) 

(4 / 0 / 0) 

Instances 625 IR 5.88 

% Positive instances 14.53 % Negative instances 85.47 

Missing values? No   

 

Table 4-15 describes the Balance data set attributes: 

1 3 2 G1

5 4 6



57 
 

Table 4-12:Balance Scale Dataset attributes 

Attribute Domain 

left-weight [1.0, 5.0] 

left-distance [1.0, 5.0] 

right-weight [1.0, 5.0] 

right-distance [1.0, 5.0] 

class {L, B, R} 

 

When applying the Grouping algorithm over the Balance dataset whose 

classes contain these number of examples: 4, 288,288, the algorithm decides 

to include the third class as a one group as well as each one of the other 

classes according to its measure in forming the new groups that depends on 

the least difference between the classes sizes. So, it changes nothing in the 

class and their instances distribution. In other words, the new formed groups 

are identical to the original classes. Therefore, the model is not applicable 

considering this dataset.  

 

 Dataset 5: Glass Identification  

From USA Forensic Science Service, six types of glass have been defined 

in terms of their oxide content (i.e. Na, Fe, K, etc). Its source is B. German, 

Central Research Establishment. 

The study of classification of types of glass was motivated by 

criminological investigation. At the scene of the crime, the glass left can be 

used as evidence...if it is correctly identified.  

Table 4-16 describes main characteristics of the Glass Identification data 

set: 
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Table 4-13:Glass Identification Dataset Characteristics 

Type Imbalanced 

Multiclass 

Origin Real world 

Features 9 (Real / Integer / 

Nominal) 

(9 / 0 / 0) 

Instances 214 IR 8.44 

% Positive 

instances 

10.59 % Negative instances 89.41 

Missing values? No   

 

Table 4-17 describes the Glass Identification data set attributes: 

Table 4-14:Glass Identification Dataset Attributes 

Attribute Domain 

RI [1.51115, 1.53393] 

Na [10.73, 17.38] 

Mg [0.0, 4.49] 

Al [0.29, 3.5] 

Si [69.81, 75.41] 

K [0.0, 6.21] 

Ca [5.43, 16.19] 

Ba [0.0, 3.15] 

Fe [0.0, 0.51] 

type Glass {1, 2, 3, 4, 5, 6, 7} 

  

Figure 4-4 shows how the dataset 5 classes will be formed in multiple 

stages by the model: 
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Fig. 4-4:Applying the Grouping Algorithm over Dataset 5 

 Dataset 6: Thyroid Disease (Thyroid0387) 

Table 4-18 describes main characteristics of the Thyroid dataset: 

Table 4-15:Thyroid Disease (thyroid0387)  Dataset Attributes 

Type Imbalanced 

Multiclass 

Origin Real world 

Features 21 (Real / Integer / Nominal) (6 / 0 / 15) 

Instances 720 IR 36.94 

% Positive instances 2.64 % Negative instances 97.36 

Missing values? No   

 

Table 4-19 describes the attributes of the Thyroid dataset: 

Table 4-16:Thyroid Disease (thyroid0387)  Dataset Attributes 

Attribute Domain Attribute Domain Attribute Domain 

Sintoma1 [0.01, 

0.97] 

Sintoma8 [0, 1] Sintoma15 [0, 1] 

Sintoma2 [0, 1] Sintoma9 [0, 1] Sintoma16 [0, 1] 

Sintoma3 [0, 1] Sintoma1

0 

[0, 1] Sintoma17 [0.0, 0.53] 

Sintoma4 [0, 1] Sintoma1

1 

[0, 1] Sintoma18 [0.0005, 0.18]

Sintoma5 [0, 1] Sintoma1

2 

[0, 1] Sintoma19 [0.0020, 0.6] 

Sintoma6 [0, 1] Sintoma1

3 

[0, 1] Sintoma20 [0.017, 0.233]

2 1 G1

7 3 5 6
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Sintoma7 [0, 1] Sintoma1

4 

[0, 1] Sintoma21 [0.0020, 

0.642] 

class {1,2,3}     

 
 

Figure 4-5 shows how the dataset 6 classes will be formed in multiple 

stages by the model  

 

Fig. 4-5:Applying the Grouping Algorithm over Dataset 6 

 

 Dataset 7: Ecoli Imbalanced Multi-class dataset 

This data contains protein localization sites. Its source is Kenta Nakai , 

Institue of Molecular and Cellular Biology,  Osaka, University.  

Table 4-20 describes main characteristics of the Ecoli dataset: 

Table 4-17:Ecoli Dataset Attributes 

Type Imbalanced 

Multiclass 

Origin Real 

world 

 Features 7 (Real / Integer / 

Nominal) 

(7 / 0 / 0) 

Instances 336 IR 71.5 

% Positive instances 1.38 % Negative instances 98.62 

Missing values? No   

 

Table 4-21 describes attributes of the Ecoli dataset: 

3 G1

1 2



61 
 

Table 4-18:Ecoli Dataset Attributes 

Attribute Domain 

mcg [0.0, 0.89] 

gvh [0.16, 1.0] 

lip [0.48, 1.0] 

chg [0.5, 1.0] 

aac [0.0, 0.88] 

alm1 [0.03, 1.0] 

alm2 [0.0, 0.99] 

class {cp, im, pp, imU, om, omL, imL, imS} 

 

Figure 4-6 shows how the dataset7 classes will be formed in multiple 

stages by the model  

 

Fig. 4-6:Applying the Grouping Algorithm over Dataset 7 

 

 Dataset 8: Page Blocks Imbalanced Multi-class dataset 

The problem consists of classifying all the blocks of the page layout of a 

document that has been detected by a segmentation process. The 5473 

examples come from 54 distinct documents. Each observation concerns one 

cp G1

im G2

pp G3

imU 
 G4

om G5

omL imS iml
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block. Its source is Donato Malerba, Dipartimento di Informatica, University 

of Bari.   

Table 4-23 describes main characteristics of the Page blocks dataset:  

Table 4-19:Page Blocks Dataset Characteristics 

Type Imbalanced Origin Real world 

Features 10 (Real / Integer / Nominal) (10 / 0 / 0) 

Instances 548 IR 164 

% Positive instances 0.61 % Negative instances 99.39 

Missing values? No   

 

Table 4-24 describes attributes of the Page Blocks dataset: 

Table 4-20:Page Blocks Dataset Attributes 

Attribute Domain 

height [1.0, 804.0] 

lenght [1.0, 553.0] 

area [7.0, 143993.0] 

eccen [0.0070, 537.0] 

p_black [0.052, 1.0] 

p_and [0.062, 1.0] 

mean_tr [1.0, 4955.0] 

blackpix [1.0, 33017.0] 

blackand [7.0, 46133.0] 

wb_trans [1.0, 3212.0] 

class {1, 2, 4, 5, 3} 

 

Figure 4-7 shows how the dataset 8 classes will be formed in multiple 

stages by the model: 
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Fig. 4-7:Applying the Grouping Algorithm over Dataset 8 

 

 Dataset 9: Statlog (Shuttle) Imbalanced Multi-class Dataset 

Approximately 80% of this dataset belongs to class1. Table 4-25 describes 

the main characteristics of the Shuttle dataset: 

Table 4-21:Statlog (Shuttle)  Dataset Characteristics 

Type Imbalanced 

Multiclass 

Origin Real 

world 

Features 9 (Real / Integer / 

Nominal) 

(0 / 9 / 

0) 

Instances 2175 IR 853 

% Positive instances 0.12 % Negative instances 99.88 

Missing values? No   

 

Table 4-26 describes the attributes of the Shuttle   

Table 4-22:Statlog (Shuttle)  Dataset Attributes 

Attribute Domain 

a1 [27, 126] 

a2 [-4821, 5075] 

a3 [21, 149] 

a4 [-3939, 3830] 

a5 [-188, 436] 

a6 [-13839, 13148] 

a7 [-48, 105] 

a8 [-353, 270] 

1 G1

2 5 4 3
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a9 [-356, 266] 

class {1,2,3,4,5,6,7} 

 

Figure 4-8 shows how the dataset 9 classes will be formed in multiple 

stages by the model: 

 

Fig. 4-8:Applying the Grouping Algorithm over Dataset 9 

After applying the grouping algorithm – the first part of the model to 

rebalance the data, the output will be the input of the Support Vector 

Machine or/and Multi-Support Vector Machine utilizing the environment of 

the RapidMiner 5.3.007 software package. It is open-source Java-based DM 

software. It is free software. It can be downloaded and installed from 

RapidMiner home page http://rapid-i.com. 

For each one of the considering classification method the same training, 

validation and testing sets were used. Initially, a brief identification of X-

Validation method is introduced:  

4.4.  X-Validation 

The X-Validation is Rapid Miner name for the K-fold cross-validation. To 

estimate the statistical performance of a learning operator, the X-Validation 

operator in RapidMiner executes a cross-validation. This operator partitions 

the input dataset into k subsets of equal size. From the k subsets, a single 

subset is retained as the testing dataset (i.e. input of the testing), and the 

remaining k − 1 subsets are used as training dataset. The cross-validation 

1 G1

4 5 3 2
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process is then repeated k times, with each of the k subsets used exactly once 

as the testing data. The k results from the k iterations can then be averaged 

(or otherwise combined) to produce a single estimation. The value k was 

chosen to be 10 in these experiments 

4.5. Sampling type 

RapidMiner provides several types of sampling for building the training 

and testing subsets. 

 Linear sampling: It simply splits the dataset into partitions 
(training and testing according to specified splitting ratio) without 
changing the order of the instances (tuples), this means; many 
subsets with consecutive instances are produced.  

 Shuffled sampling: It builds random subsets of a dataset. 
Instances are elected randomly for building subsets.  

 Stratified sampling: Stratified sampling forms random subsets 
and confirms that the class distribution in the subsets is the same as 
in the whole dataset. For example, in the case of a binominal 
classification, stratified sampling forms random subsets such that 
each subset includes roughly the same proportions of the two 
values of class labels.  

In all experiments, the last types were used due to its suitability to the 

chosen datasets.  

4.6. Summary: 

This chapter illustrated applying the suggested hierarchical model and 

explored each dataset characteristics.   
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5. CHAPTER FIVE: Performance Evaluation 
Metrics 

5.1. Introduction 

This chapter highlights the evaluation metrics for binary imbalanced 

classifiers which was extended to assess the performance of the classifiers of 

the multiclass and multiclass imbalanced data. It details the first type of 

these metrics since it’s the most used, so we have considered it in this study 

for the performance evaluation process.  

5.2. Evaluation Metrics for Binary Imbalanced Data: 

There are three families of evaluation metrics used in the context of 

classification [94], [95]. These are: The Threshold Metrics (e.g., accuracy 

and F-measure), The Ranking Metrics ( e.g., Receiver Operating 

Characteristics (ROC) analysis and AUC), and The Probabilistic Metrics 

(e.g., Root-Mean-Squared Error (RMSE)). When handling imbalanced 

learning problems, traditional evaluation techniques may not be capable of 

providing a sensible and comprehensive assessment of the imbalanced 

learning algorithms. Studies showed that an individual evaluation metric, 

such as overall classification error rate, and overall accuracy are not 

satisfactory. A combination of threshold metrics (e.g., precision, recall, F-

measure, and G-mean) together with ranking assessment metrics [e.g., 

receiver operating characteristic (ROC) curve, precision–recall (PR) curve, 

and cost curve) will achieve more complete assessment of imbalanced 

learning. A review of the main evaluation metrics and their advantages and 

disadvantages with respect to the class imbalance problem will be 

highlighted in this chapter.  



67 
 

 THRESHOLD METRICS: Singular Assessment Metrics  

Threshold metrics can have a multiple - or a single - class focus [96]. The 

multiple-class focus metrics consider the overall performance of the learning 

algorithm on all the classes in the dataset. Some take class ratios into 

consideration of them like accuracy, error rate which will be discussed in 

this subsection as well as the single - class focus measures such as 

sensitivity/specificity, precision/recall, Geometric mean (G-mean), and F-

measure. All the metrics discussed in this section are based on the concept of 

the confusion matrix. 

 Considering a basic two-class classification problem, let {p, n} be the true 

positive and negative class label and {Y, N} be the predicted positive and 

negative class labels. Then, a representation of classification performance 

can be formulated by a Confusion Matrix (contingency table), as illustrated 

in Figure 5-1. 

 

Fig. 5-1:Confusion Matrix for Performance Evaluation for two classes 

The true positive and true negative entries indicate the number of examples 

correctly classified by classifier f as positive and negative, respectively. The 

false negative entry indicates the number of positive examples wrongly 

classified as negative. Conversely, the false positive entry indicates the 
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number of negative examples wrongly classified as positive. If we consider 

the minority class as the positive class and the majority class as the negative 

class. Accuracy and Error Rate are defined as: 

	ܡ܋܉ܚܝ܋܋ۯ                   ൌ ۼ܂	ା	۾܂

۱ۼ	۱ା۾
         ;                Error Rate =1 ̶ Accuracy …..   (5.1) 

These metrics provide a straightforward way of describing a classifier’s 

performance on a given data set. As previously mentioned, they are highly 

sensitive to changes in data, but they can be misleading in such a situation 

where a given data set includes five percent of minority class examples and 

95 percent of majority examples, then classifying every example to be a 

majority class example would provide an accuracy of 95 percent which is 

very great when assessing the classifier, but this assessment fails to reflect 

the fact that 0 percent of minority examples are identified. Many studies had 

agreed with the ineffectiveness of accuracy in the imbalanced learning 

scenario [14], [97], [98], [99] , so, other evaluation metrics were adopted to 

provide assessments of imbalanced binary learning problems. These metrics 

are defined as: 

Sensitivity          = ۾܂
۾܂  ۼ۴

 
(5.2) 

Specificity          = ۼ܂
۾۴  ۼ܂

 
(5.3) 

Precision            = ۾܂

۾܂  ۾۴
 

(5.4) 

Recall                 = ۾܂

۾܂  ۼ۴
 

(5.5) 

F-measure          = ሺ  ሻ. ܔܔ܉܋܍܀ . ܖܗܑܛܑ܋܍ܚ۾

 . ܔܔ܉܋܍܀ . ܖܗܑܛܑ܋܍ܚ۾
 

(5.6) 
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where β is a coefficient to adjust the relative importance of precision 

versus recall (usually β = 1). 

G-mean   = 
ඨ

۾܂

۾܂  ۼ۴
ൈ

ۼ܂

ۼ܂  ۾۴
 

(5.7.1) 

 

 OR  

G-mean   = ඥܡܜܑܞܑܜܑܛܖ܍܁ൈܡܜܑ܋ܑܑ܋܍ܘ܁  

G-mean   = ඥܡܜܑܞܑܜܑܛܖ܍܁ൈ(5.7.2) ܖܗܑܛܑ܋܍ܚ۾ 

MMA       = ܡܜܑܞܑܜܑܛܖ܍܁  ܡܜܑ܋ܑܑ܋܍ܘ܁


 
  (5.8) 

 

MCWA = w × sensitivity + (1 − w) × specificity   (5.9) 

where w is a value between 0 and 1, which represents the weight 

assigned to the positive class. 

AGm = ۵	ି	ܖ܉܍ܕ	ା	ܡܜܑ܋ܑܑ܋܍ܘܛ ൈ ܖۼ

 ା ܖۼ
  ,   if Specificity > 0 (5.10.1) 

AGm =               0                     ,           if  Sensitivity = 0 (5.10.2) 

Optimized 

Precision = 

Specificity ×Nn + Sensitivity ×Np − 

|ܡܜܑܞܑܜܑܛܖ܍܁	ି	ܡܜܑ܋ܑܑ܋܍ܘ܁|

ܡܜܑ܋ܑܑ܋܍ܘ܁ ା ܡܜܑܞܑܜܑܛܖ܍܁
 

 

(5.11) 

 

where Nn represents the number of negative examples in the dataset, 

and Np represents the number of positive examples in the dataset. 

IBAα(M) = (1 + α × Dom) ×M                   (5.12) 
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where dominance (Dom) is defined as: Sensitivity – Specificity, M is 

any metric, and α is a weighting factor designed to reduce the influence 

of the dominance on the result of a particular metric M. 

 Sensitivity and Specificity:  

The Sensitivity of a classifier f refer to its true positive rate or the 

proportion of positive examples actually assigned as positive by f, while the 

complement metric to it is called the Specificity of classifier f. It 

corresponds to the proportion of negative examples that are discovered. It is 

the same quantity, only it is measured over the negative class. They are 

defined as equation (5.2).  They identify together the proportions of the two 

classes correctly classified, but separately in the context of each individual 

class of instances unlike accuracy, so, the class imbalance does not affect 

these measures. Also, the cost of using these metrics appears in the form of a 

metric for each single class, which is more difficult to process than a single 

measure. This pair of metrics misses the measure of the proportion of 

examples assigned to a given class by classifier f that actually belongs to this 

class. Instead they, together, identify the proportions of the two classes 

correctly classified.  

 Precision & Recall:  

The precision of a classifier f measures how precise f is when identifying 

the examples of a class, i.e. it assesses the proportion of examples assigned a 

positive classification that are truly positive. This quantity together with 

sensitivity, which is commonly called Recall when considered together with 

precision, is typically used in the information retrieval context where 

researchers are interested in the proportion of relevant information identified 



71 
 

along with the amount of actually relevant information from the information 

assessed as relevant by f. [1] 

 

Fig. 5-2:Precision & Recall                      

In a classification task, Precision (5.4) for a class is a measure of exactness 

or true positives (i.e. the number of items correctly labeled as belonging to 

the positive class) divided by the total number of elements labeled as 

belonging to the positive class (i.e. the sum of true positives and false 

positives, which are items incorrectly labeled as belonging to the class), 

whereas Recall (5.5) in this context is defined as a measure of completeness 

(i.e. the number of true positives divided by the total number of elements 

that actually belong to the positive class (i.e. the sum of true positives and 
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false negatives, Figure 5-2 (which are items which were not labeled as 

belonging to the positive class but should have been)). These two metrics, 

share an inverse relationship between each other much like accuracy and 

error rate, but Precision is sensitive to data distributions while Recall is not. 

Since Recall provides no insight to how many examples are incorrectly 

labeled as positive, it can be equivocal evaluation if consider it solely. 

Similarly, Precision cannot assert how many positive examples are labeled 

incorrectly.  The focus is on the positive class only, meaning that the 

problems encountered by multi-class focus metrics in the case of the class 

imbalance problem are, once more, avoided. As for sensitivity and 

specificity, however, the cost of using precision and recall is that two 

measures must be considered and that absolutely no information is given on 

the performance of f on the negative class. This information did appear in 

the form of specificity in the previous pair of metrics. Nevertheless, they can 

effectively evaluate classification performance in imbalanced learning 

scenarios. 

 The F-Measure:  

It combines precision and recall as a measure of the effectiveness of 

classification in terms of a ratio of the weighted importance on either recall 

or precision as determined by the β coefficient that set by the user. However, 

being sensitive to data distributions, F-Measure provides deep view into the 

functionality of a classifier than the accuracy metric. Its formulation was 

defined in equation (5.6).  

 Geometric Mean (G-Mean): 

  It was introduced by Kubat et al. [100] as a response to the class 

imbalance problem and as a response to the fact that a single metric is easier 
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to deploy than a pair of metrics. It considers the relative balance of the 

classifier’s performance on both the positive and the negative classes. So, it 

is defined as a function of both the sensitivity and the specificity of the 

classifier as in equation (5.1). While being more sensitive to class 

imbalances than accuracy - because the two classes are given equal 

importance -, it remains close to the multi-class focus category of metrics. 

So, another version of the G-mean was introduced to focus solely on the 

positive class. It replaces the specificity term by the precision term, yielding 

equation (5.2) and evaluates the degree of inductive bias in terms of a ratio 

of positive accuracy and negative accuracy. Though, F-Measure and G-

Mean are great improvements over accuracy, they are still ineffective in 

answering more generic questions about classification evaluations, like how 

can we compare the performance of different classifiers over a range of 

sample distributions? 

 An important disadvantage of all the threshold metrics is that they assume 

full knowledge of the conditions under which the classifier will be deployed. 

Particularly, they assume that the class imbalance present in the training set 

is the one that will be encountered throughout the operating life of the 

classifier. If that is truly the case, then the previously discussed metrics are 

appropriate; however, it has been suggested that information related to skew 

(as well as cost and other prior probabilities) of the data is generally not 

known. In such cases, it is more useful to use evaluation methods that enable 

visualization or summarization performance over the full operating range of 

the classifier. Particularly, such methods perform the assessment of a 

classifier’s performance over all possible imbalance or cost ratios, For 

instance, ranking methods: ROC curves, cost curves, precision–recall (PR) 
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curves, AUC or AUROC (Area under the ROC curve). But they are far from 

the scope of this study since we consider the extensions of the previous 

discussed metrics that can evaluate the performance of classifiers of the 

multiclass imbalanced data. [1]  

5.3. Evaluation Metrics for Multiclass & Multiclass 
Imbalanced Data: 

Many performance evaluation metrics of binary classifiers have been 

extended to suit the multiclass and they also utilized for imbalanced 

multiclass situation. They include all previously mentioned ones as well as 

those dedicated for hierarchical classification. These metrics can be 

classified into: distance-based, depth-dependent, semantics-based and 

hierarchy-based [101]. In addition, there are Multi-criteria Measures, such as 

interestingness and comprehensibility [96].   

The threshold-metrics frontia based on the concept of the Confusion 

Matrix which extended for multi-class data as Figure 5-3 illustrates.  

Class 0 1 2 … j 

0 TP FN FN FN FN 

1 FP TN FN FN FN 

2 FP FN TN FN FN 

: FP FN FN TN FN 

j FP FN FN FN TN 

Fig. 5-3 :Confusion Matrix for Multi-class 
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As same as the binary situation, many other metrics were concluded basing 

on the extended Multiclass confusion metric: 

Sensitivity (True Positive Rate) or Recall of minority class is known as the 

ratio of correctly classified examples from the minority class, meanwhile 

Specificity is known as the ratio of correctly excluded examples from the 

majority classes). 

 Mosley et al. [102] designed new performance measure specifically for 

model validation in the presence of multi-class imbalance that called Class 

Balance Accuracy or Recall (j) or Acc (j). It was defined as:   

For any Ck confusion matrix:   

ܣܤܥ ൌ
∑ ܿ

max	ሺܿ., ܿ.ሻ



݇
																																		ሺ5.13ሻ 

Where Ck denote a k×k confusion matrix or contingency table of actual 

class labels aligned by their model predictions, with cij representing the 

number of cases with true label i  classified into group j and  ܿ. ൌ ∑ ܿ

ୀଵ 	. 

  

G-mean adapted by Sun & Kamel et al [103] to multi-class scenarios. It is 

defined as the geometric mean of the Recall values of all classes. Given a j-

class problem:  

ࡳ െࢇࢋ ൌ ቌෑܿܿܣሺ݅ሻ



ୀଵ

ቍ

ଵ ⁄

																			ሺ5.14ሻ												 

 ݎ

۵ െܖ܉܍ܕ ൌ
∑ ሺ݅ሻܿܿܣ
ୀଵ

J
																															ሺ5.14ሻ 
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It can offer the balanced performance among minority and majority classes 

effectively, as the recognition rate of every class or the accuracies are 

balanced.  

Considering cost-sensitive learning, it is natural to utilize misclassification 

costs for performance evaluation for multiclass imbalanced problems [104], 

[43], [70].  

For the evaluation of learning algorithms based on class decomposition, 

some works chose to take the average of any two-class performance measure 

for produced binary classifiers [105], [86], [2]. 

 

Mean Fെmeasure (MFM): this measure aggregates both 

the Precision  and the Recall  of the minority class. So, it can be illustrated 

as the weighted average of the Precision and Recall [71].  

 
 

۴ െ܍ܚܝܛ܉܍ܕሺܒሻ ൌ
2. ܴ݈݈݁ܿܽሺ݆ሻ. ሺ݆ሻ݊݅ݏ݅ܿ݁ݎܲ
ܴ݈݈݁ܿܽሺ݆ሻ  ሺ݆ሻ݊݅ݏ݅ܿ݁ݎܲ

 

 
 
(5.15) 

 
 

ۻ۴ۻ ൌ
∑ ܨ െ݉݁ܽ݁ݎݑݏሺ݆ሻ
ୀଵ

ܭ
 

 

 
 
(5.16) 

 

Kappa Statistic: It is a measure that compares the accuracy of the system 

to the accuracy of a random system [106].  

            

܉ܘܘ܉۹ ൌ
Total	Accuracy െ RandomAccuracy

1 െ RandomAccuracy
							ሺ5.17ሻ 

Total accuracy is simply the sum of true positive and true negatives, 

divided by the total number of items. 
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ܡ܋܉ܚܝ܋܋ۯ	ܔ܉ܜܗ܂ ൌ
∑ܶܲ  ∑ܶܰ

ݏ݁ܿ݊ܽݐݏ݊݅	݂	݈ܽݐܶ
				ሺ5.18ሻ	

 

where 

Random Accuracy is defined as the sum of the products of reference 

likelihood and result likelihood for each class. That is, 

 
ܡ܋܉ܚܝ܋܋ۯܕܗ܌ܖ܉܀

ൌ
ሺܶܰ  ሻܲܨ ∗ ሺܶܰ  ሻܰܨ  ሺܰܨ  ܶܲሻ ∗ ሺܲܨ  ܶܲሻ

݈ܽݐܶ ∗ ݈ܽݐܶ
						ሺ5.19ሻ	

 
 

Considering Ranking Methods for evaluation the scoring classifiers, 

Multi-class ROC graphs was proposed by Thomas and Robert et al. [71], it 

generates as many ROC curves as there are classes, where ROC curve 

originally is a graphical plot that illustrates the performance of a binary 

classifier system as its discrimination threshold is varied. The curve is 

created by plotting the true positive rate (TPR) against the false positive rate 

(FPR) at various threshold settings. The true-positive rate is 

the sensitivity  or recall. The false-positive rate is (1 - specificity) [23]. But 

the multiclass ROC graphs are sensitive to the class skew according to T. 

Fawcett et al.  [107] and [108]. So, a pairwise approach is utilized by 

discounting some interactions, it approximates the multidimensional 

operating characteristic to obtain a tractable algorithm and can be extended 

to large numbers of classes to produce the multiclass ROC by pairwise 

analysis [71]. A ROC surface is defined for the Q-class problem as well, in 

terms of a multi-objective optimization problem utilizing evolutionary 

algorithm [109]. 
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Another Ranking measure is Multi-class AUC which has been proposed to 

compute the weighted average of all the AUCs produced by the Multi-class 

ROC graph and a skew-sensitive version of this Multi-class AUC [70] where 

the Area Under the Curve is equal to the probability that a classifier will 

rank a randomly chosen positive instance higher than a randomly chosen 

negative one.  But under the multiclass imbalanced learning scenario, the 

AUC values for two-class problems become multiple pairwise 

discriminability values [110]. To calculate such multiclass AUCs, a 

probability estimation-based approach: First, the ROC curve for each 

reference class wi is generated and their respective AUCs are measured. 

Second, all of the AUCs are combined by a weight coefficient according to 

the reference class’s prevalence in the data. It was also sensitive to the class 

[111]. Moreover, M-measure or (MAUC) is a generalization approach that 

aggregates all pairs of classes based on the inherent characteristics of the 

AUC [23]. It is the average of AUC of all pairs of classes, and defined as:  

ܯ ൌ
2

ܿሺܿ െ 1ሻ
ܣሺ݅, ݆ሻ
ழ

																							ሺ5.20ሻ																												

Where A (i, j) = [A (i|j) + A (j|i)] =2 for class pair (i, j). A (i, j) measures 

the separability between classes. A (i|j) is the probability that a randomly 

drawn example of class j will have a lower estimated probability of 

belonging to class i than a randomly drawn example of class i. It should be 

noted that AUC = A (i|j) = A (j|i) in the two-class scenario, but the equality 

does not hold when more than two classes exist. Another extension of the 

AUC measure to the multiclass case tended the volume under the ROC 

hypersurface that evaluates the VUS over the C-dimensional ROC surface 

[112]. 



79 
 

 The third sort of evaluation metrics used with the Probabilistic Classifiers, 

such as RMSE or RMSD which is used to measure the differences between 

values (sample and population values) predicted by the classifier and the 

values actually observed or estimated [113]. The RMSD of predicted 

values  for times t of the variable  is computed for n different predictions [114]: 

         (5.21) 

Additionally, Cosine Similarity measures the similarity between two 

output categories as well as using The Ranking Loss which tends the order 

of the predicted score among C categories. They can also be deployed for 

probabilistic performance evaluation for multiclass [113]. A Bayesian 

framework is proposed for inferring on the posterior balanced accuracy 

[115]. The Balanced accuracy, i.e., by the arithmetic mean of class-specific 

accuracies is given by:  

  
1 ݈⁄ . ∑ iߠ

ୀଵ                     (5.22) 

Where θi is the (latent) accuracy of the classifier on class i. 

 

5.4. Evaluation Metrics for Hierarchies of Multiclass 
Imbalanced Data: 

The hierarchical F-measure is a popular performance measure in 

hierarchical classification. It is defined as, 

ܨ݄ ൌ
2 ∗ ݄ܲ ∗ ݄ܴ	
݄ܲ  ݄ܴ

														ሺ5.23ሻ 
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݄ܲ ൌ
∑ ห పܲ ∩ పܶห

∑ ห పܲห
																ሺ5.24ሻ 

݄ܴ ൌ
∑ ห పܲ ∩ పܶห

∑ ห పܶห
															ሺ5.25ሻ 

Where hP is the hierarchical precision and hR is the hierarchical recall. ˆPi 

is the hierarchical categories predicted for test example xi while Tˆi is the 

true categories of xi.  This way to calculate the hierarchical was presented by 

Ipeirotis et al. [116] who utilized the concept of descendant classes in their 

performance evaluation by considering the subtrees rooted in the predicted 

class and in the true class. Each subtree is formed by the class itself and its 

descendants. The intersection of these subtrees is then used to calculate 

extended precision and recall measures [117].  

To calculate the precision, the number of classes belonging to the 

intersection is divided by the number of classes belonging to the subtree 

rooted at the predicted class as defined by equation (5.24). 

To calculate the recall, the number of classes belonging to the intersection 

is divided by the number of classes in the subtree rooted at the true class as 

defined by equation (5.25). To calculate a hierarchical extension of the F-

measure, the hierarchical prediction and recall measures have to be obtained 

firstly [117].  

The problem with this measure is that it assumes that the predicted class is 

either a subclass or a superclass of the true class. When these classes are in 

the same level, for example, their intersection is an empty set [117]. 

There are many other hierarchical performance metrics that differ in their 

way of work, but we concentrate on those used in this study. 
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5.5. Summary: 

This chapter reviewed different metrics for evaluation the performance of 

binary imbalanced classifiers and their extensions to adopt assessing the 

performance of classifiers of imbalanced multiclass problems.  
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6. CHARTER SIX: Results Discussion 

6.1.  Introduction: 

This chapter presents the conclusive results of the learning from 

Imbalanced Multiclass data. The results of each experiment will be 

illustrated in terms of the RECALL and the PRECISION and F-measure for 

each dataset, in addition to concluding remarks.  

A comparison of the four classification machines in terms of OVERALL 

ACCURACY, G-mean, MFM and Kappa are also presented. As the result of 

these comparisons best technique(s) is (are) identified for each dataset. 

Finally, the conclusions of the all experimental results for this research are 

illustrated. 

6.2. The elected Dataset. 

 Yeast Imbalanced Multiclass Dataset 

Figure 6-1, Figure 6-2 and Figure 6-3 present the results of applying the 

four classification machines (Support Vector Machine without/with weight 

and the suggested Multi-stages model without/ with weight) considering the 

Recall, Precision and F-measure respectively for Yeast dataset respectively. 
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Fig. 6-1:RECALL of Yeast Dataset 

 

 

Fig. 6-2:PRECISION of Yeast Dataset 
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Fig. 6-3:F-measure of Yeast Dataset 

 

 New-Thyroid Imbalanced Multiclass Dataset 

Figure 6-4, Figure 6-5 and Figure 6-6 present the results of applying the 

four classification machines (Support Vector Machine without/with weight 

and the suggested Multi-stages model without/ with weight) considering the 

Recall, Precision and F-measure respectively for New-Thyroid dataset 

respectively. 
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Fig. 6-4:RECALL of  NEW-Thyroid Dataset 

 

 

Fig. 6-5:PRECISION of NEW-Thyroid Dataset 
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Fig. 6-6:F-measure of NEW-Thyroid Disease Dataset 

 

 Dermatology Imbalanced Multiclass Dataset 

Figure 6-7, Figure 6-8 and Figure 6-9 present the results of applying the 

four classification machines (Support Vector Machine without/with weight 

and the suggested Multi-stages model without/ with weight) considering the 

Recall, Precision and F-measure respectively for Dermatology dataset 

respectively. 
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Fig. 6-7:RECALL of Dermatology Dataset 

 

 

Fig. 6-8:PRECISION of Dermatology Dataset 
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Fig. 6-9:F-measure of Dermatology Dataset 

 Balance Scale Imbalanced Multiclass Dataset 

As it mentioned previously, the model is not applicable to this kind of 

dataset due to the nature of the data that cannot be rebalanced utilizing the 

suggested Grouping Algorithm because the number of the classes that 

include the rare examples is only one. So, it failed to reorganize the 

examples in such a way that differs from its original distribution in their 

classes.  

 Glass Identification Imbalanced Multiclass Dataset 

Figure 6-10, Figure 6-11 and Figure 6-12 present the results of applying 

the four classification machines (Support Vector Machine without/with 

weight and the suggested Multi-stages model without/ with weight) 

considering the Recall, Precision and F-measure respectively for Glass 

Identification dataset respectively. 
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Fig. 6-10:RECALL of Glass Identification Dataset 

 

Fig. 6-11:PRECISION of Glass Identification Dataset 
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Fig. 6-12:F-measure of Glass Identification Dataset 

 Thyroid0387 Disease Imbalanced Multiclass Dataset 

Figure 6-13, Figure 6-14 and Figure 6-15 present the results of applying 

the four classification machines (Support Vector Machine without/with 

weight and the suggested Multi-stages model without/ with weight) 

considering the Recall, Precision and F-measure respectively for 

Thyroid0387 dataset respectively. 
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Fig. 6-13:RECALL of Thyroid0387 Disease Dataset 

 

Fig. 6-14:PRECISION of Thyroid0387 Disease Dataset 
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Fig. 6-15:F-measure of Thyroid0387 Disease Dataset 

 Ecoli Imbalanced Multi-class Dataset 

Figure 6-16, Figure 6-17 and Figure 6-18 present the results of applying 

the four classification machines (Support Vector Machine without/with 

weight and the suggested Multi-stages model without/ with weight) 

considering the Recall, Precision and F-measure respectively for Ecoli 

dataset respectively. 
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Fig. 6-16:RECALL of Ecoli Disease Dataset 

 

 

Fig. 6-17:Precision of Ecoli Dataset 
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Fig. 6-18:: F-measure of Ecoli Dataset 

 

 Page Blocks Multi-class Imbalanced Dataset 

Figure 6-19, Figure 6-20 and Figure 6-21 present the results of applying 

the four classification machines (Support Vector Machine without/with 

weight and the suggested Multi-stages model without/ with weight) 

considering the Recall, Precision and F-measure respectively for Page 

Blocks dataset respectively 
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Fig. 6-19:F-measure of Page Blocks Dataset 

 

 

Fig. 6-20:F-measure of Page Blocks Dataset 
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Fig. 6-21:F-measure of Ecoli Dataset 

 Statlog (Shuttle) 

Figure 6-22, Figure 6-23 and Figure 6-24 present the results of applying 

the four classification machines (Support Vector Machine without/with 

weight and the suggested Multi-stages model without/ with weight) 

considering the Recall, Precision and F-measure respectively for Statlog 

(Shuttle) dataset respectively. 
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Fig. 6-22:F-measure of Shuttle Dataset 

 
 

 

Fig. 6-23:F-measure of Shuttle Dataset 
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Fig. 6-24:F-measure of Shuttle Dataset 

Table 6-1, Table 6-2 and Table 6-3 demonstrate the results of applying the 

four classification methods (SVM, SVM with weight, the new model 

without weight and the proposed model with weight) considering (Overall 

Accuracy, G-mean, MFM and Kappa) respectively. The highlighted cells in 

the tables refer to the best results obtained. 

Table 6-1:Overall Accuracy of the Four Methods 
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 SVM SVM with 

weight 

New model New model 

with weight 

# 

Class  

IR 

new-thyroid 0.9444 0.9448 0.90751445 0.936962751 3 4.84 

dermatology 0.2074 0.2074 0.35684987 0.356849877 6 5.55 

balance 0.8735 0.4671 NA NA 3 5.88 

glass 0.4578 0.3918 0.53057199 0.520231214 6 8.44 

yeast 0.312 0.0101 0.36966926 0.199704724 10 23.15 

thyroid 0.925 0.3833 0.84903381 0.285365854 3 36.94 

ecoli 0.4257 0 0.49383949 0.311157311 8 71.5 

pageblocks 0.9161 0.9197 0.76092545 0.765447667 5 164 

shuttle 0.9936 0.9807 0.98568254 0.978011239 5 853 
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Table 6-2:G-mean of the Four Methods 

 SVM SVM with 

weight 

New model New model with 
weight 

new-thyroid 0.8762 0.930466667 0.8951461 0.943216374 

dermatology 0.34263 0.3426333 0.4524731 0.452473186 

balance 0.63193 0.614566667 NA NA 

glass 0.29665 0.4288 0.5408611 0.556551428 

yeast 0.1 0.04286 0.6266989 0.284639661 

thyroid 0.33333 0.2720333 0.4688644 0.484863907 

ecoli 0.125 0 0.6530398 0.429618259 

pageblocks 0.29084 0.43158 0.4762204 0.532703933 

shuttle 0.69054 0.75558 0.9789389 0.985885813 

 

Table 6-3:MFM for the Four Methods 

  SVM SVM with weight New model New model with weight 

new-thyroid 0.918893 0.926225555 0.896449491 0.935491518 

dermatology NA NA NA NA 

balance NA 0.471393749 NA NA 

glass NA 0.396901073 NA NA 

yeast NA NA NA 0.114735118 

thyroid NA 0.216810724 NA 0.291046706 

ecoli NA NA NA 0.436091687 

pageblocks NA NA 0.569918667 0.611539252 

shuttle NA NA 0.987340155 0.9813908 

 

Table 6-4:kappa for the Four Methods 

  SVM SVM with weight New model New model with weight 

new-thyroid 0.868 0.88 0.855 0.902 

dermatology 0.089 0.089 0.259 0.249 
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balance 0.765 0.311 NA NA 

glass 0.195 0.237 0.427 0.434 

yeast 0 0 0.329 0.128 

thyroid 0 0 0.373 0.022 

ecoli 0 0 0.441 0.204 

pageblocks 0.289 0.422 0.467 0.501 

shuttle 0.982 0.947 0.98 0.97 

 

Table 6-5: The highest Score 

 Overall Accuracy G-mean MFM kappa 

SVM 3 1 0 2 

with weight 2 0 2 0 

New model 4 3 1 4 

New model with weight 1 6 4 3 

 

 Figure 6-25, Figure 6-26 and Figure 6-27 demonstrate the results of 

applying the four methods (SVM, SVM with weight, the new model without 

weight and the proposed model with weight).  
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Fig. 6-25:Overall Accuracy of the four methods 

 

 

Fig. 6-26:G-mean of the four methods 
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Fig. 6-27:MFM for the four methods 

 

 

Fig. 6-28:Kappa for the four methods 
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When applying the proposed hierarchical model without weight, it 

achieves the best results in 4 out of 9 datasets in terms of Accuracy and 

kappa. When empowered with weight it presents the best on 6 of 9 datasets 

in terms of G-mean, 4 of 9 datasets considering MFM but they vary 

regarding the OVERALL ACCURACY.  

The high performance in terms of G-mean also shows that it is good at the 

classification of minority class while as good as other methods for 

classification of majority class (can be infer from G-mean and kappa 

results). Average results over the 9 datasets also show that the proposed 

method is the best method for the four metrics. 

Regarding the Overall Accuracy, we notice that the model works better as 

the number of the classes increases; considering the datasets Yeast, Ecoli, 

Glass Dermatology which have 10,8,6,6 classes respectively, the results are 

better when comparing with the datasets New-Thryroid, Thyroid, 

Pageblocks and Shuttle which have 3,3,5 classes respectively - less number 

of classes-. 

The results also demonstrate that using the suggested hierarchical model 

fails in imbalance multiclass learning in a certain situation. Considering 

dataset 3 (Balance), it is incapable of applying the Grouping algorithm to 

redistribute the instances in new artificial groups. Regarding the way the 

algorithm works, the new groups are identical with the original classes. So, 

in this case the model is not applicable for such dataset. The reason for this 

seems to be the extreme degree of the imbalance ratio of classes' number in 

this dataset.  
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To more consolidate the model performance, different weights are added to 

the minority classes during learning process, but we noticed that they do not 

provide very high advantages for its performance. For example, the Recall of 

Yeast dataset when applying the model without supporting it with weights is 

better from its value when supplying the model with them. The same 

situation we get considering Ecoli dataset in terms of Recall, Precision and 

F-measure. We also observe that the Recall and F-measure are very similar 

in Glass dataset –as another instance -. Conversely, the MultiSVM is 

improved significantly when adding the weights during learning.  

The optimal weights are in various ranges for different problems. They are 

decided by the proportion of the corresponding class examples within the 

whole data set. It can be given as: 

Weight of classi = total sample/ (number of class * sample of classi) 

In regard to another perspective, the model performance dose not affected 

by the increasing the number of the dataset features; the results of applying 

the model over the New-Thyroid and Thyroid datasets -which are similar in 

the classes number but differ in both imbalance ratio and the number of the 

features - show that using the suggested hierarchical model provides 

advantages in both datasets in spite of the difference in their features 

number.  
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7. CHAPTER SEVEN: Conclusions 

7.1. Conclusions  

 Summary of the Thesis  

This research introduces the concept of learning from Imbalanced 

Multiclass data which is produced by many sensitive real applications. The 

more we pay concern to develop the classification systems of this kind of 

data, the more we can utilize the machines in such effective way to assist in 

critical fields in our life and future. It can help – for instances - in detecting 

rare diseases or capturing infrequent kinds of networks attacks, or 

discovering uncommon weld flaw in the making a nuclear weapon 

effectively and more.   

The research problem was to find a method to deal with such data that is 

capable of supporting with accurate classification results, meanwhile it 

keeps the simplicity in its designing and implementation. So, the main aim 

of this research was identified in Chapter One which was getting more 

precise results of the classification process of such data.  

This aim led the researcher to conduct an extensive literature review on the 

most widely used techniques to deal with the considering problem 

(presented in Chapter Two), thereby identifying the challenges, solutions 

and possible opportunities in the literature (presented at the end of Chapter 

Two).  The vital fact from this survey is that, till now there is no best 

technique for problems for all situations and datasets. By the end of this 

survey, one of the objectives of this research was obtained. This objective 

was reviewing the different solutions of treating Imbalanced Multiclass data 

and address their advantages and shortcomings.  
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Chapter Three satisfied the next objective which was developing a multi-

stages model for the classification process using Binary and Multi-Class 

Support Vector Machines. It was chosen due to its solid mathematical 

background regarding Imbalanced Multi-Class data. 

For the experiments setup, nine popular imbalanced multi-class datasets 

were selected from U.C.I., they were from different fields such as physics, 

biology, and medicine. Their format, characteristics and imbalance limits 

were investigated in Chapter Four to be able to achieve the objective of 

applying the suggested model. So, in the same chapter, each dataset has been 

examined by four machines: SVM with and without weight and the proposed 

model with and without weight so as to compare the proposed model with 

the two of strong state-of-art solutions.  

In order to be able to investigate the overall performance a small review of 

the performance metrics dedicated for evaluating classifiers that learn from 

binary imbalanced, Multiclass and Multiclass imbalanced data was 

introduced in Chapter Five to stand on a solid base of knowledge to choose 

the most suitable metrics to be utilized so as to satisfy the objective of 

investigating the model performance.  

Chapter Six demonstrates the classification results and introduces a 

discussion about it involving some explanation, justifications and 

comparisons for different utilized methods and their performance regarding 

some selected metrics. 

 Findings of the Thesis  

 The experiments show that the new hierarchical model enhances the 

classification results comparing with the classification results of 
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mentioned state-of art solution, even when empowered with weight for 

minority instances, considering four different performance metrics. 

 The model Grouping Algorithm is successful in classifying imbalanced 

data sets. It performs well even when the ratio between minority and 

majority samples is high, but it failed when the minority classes number 

is little comparing with the majority classes number.  

 The Model Advantages are: 

 It does not require any data pre-processing step as many other solutions 

need. 

 Handle the imbalance nature of the data simply without computational 

efforts or algorithmic adjustment. It even does not need to be 

empowered with any cost function as results shows. 

 It does not use any fixed hierarchy based on features and/or classes. 

Unlike the common hierarchical methods which use supervised 

learning, the suggested hierarchical model is grounded on a Grouping 

Algorithm that redistributes the instances artificially basing on the least 

difference between the new created groups in their sizes. 

 For each multiclass SVM classifier at each stage, the number of classes 

is less than the overall number of the dataset classes, so the classifier 

offers satisfactory results than dealing with the dataset as all. 

 It performs well when dealing with large numbers of classes. 

 Although it groups various heterogeneous kinds of classes in one 

group, it exploits the black box nature of the Support Vector Machine 

which could be considered a benefit in our case. 

 The Model Disadvantages are: 
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 It also deals poorly with the dataset that owns little number of classes 

that could not be decomposed into groups of nearly balanced numbers 

of examples. 

 Naturally, it owns the flaws of hierarchical classification models that 

cannot produce their final classification result unless the path from the 

root to the final leaf is passed, which may consume more time. 

7.2. Future Suggested Works: 

 The results obtained in this research can be tested by using other 

distinct types of Multiclass Support Vector Machine or other data 

mining tools of classifications such as Neural Networks or ensemble 

techniques. 

 In order to better evaluate the proposed model in this research, it has to 

be implemented over real life data.  

 It also can be tested for large scale of data. 

 As well as test data with a very large number of classes. 

 A new strategy of grouping the classes instead of basing on the least 

difference between the created groups could be tried and tested.  
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