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Abstract 

Generalized special relativistic energy expression, beside Fermi momentum and 

ordinary Newtonian gravity potential were used for stars equilibrium conditions. The 

radius which makes the energy minimum shows that stability requires the mass to be 

less than certain critical mass which reflects quantum gravity behavior. This condition 

was similar to that of general relativity, where the radius should be greater than certain 

critical value. This critical value was typical to that of general relativity for black hole. 

The equilibrium condition show that pressure and centrifugal force should counter 

balance attractive gravity force. It also shows that kinetic energy balances potential 

energy at equilibrium. This agrees with previous models. The mathematical model was 

simple compared to general relativity model. 

Generalized special relativity energy-momentum relation beside the positivity or 

negativity of energy were used to construct star evolution model. In the first approach 

short range repulsive beside long range attractive gravity force were assumed to 

contribute to the total energy. This shows the existence of finite self energy of matter 

in the form of string. It shows that the star radius was that of general relativity black 

hole radius. The minimization of energy with respect to potential, radius and mass 

shows in all cases the string nature of matter building blocks. The star evolution to 

become supernova or black hole was shown to be related to the relation of thermal to 

attractive gravity force in the same sense shown by general relativity. 

The conditions of star equilibrium is discussed on the basis of the relation between 

pressure and gravity forces. The pressure expression was found first by using Gibbs 

and quantum laws. This leads to an equilibrium radius that depends on particle and 

mass density. The star explosion requires the energy to be positive. In this case, 

thermal energy exceeds gravity potential. When the generalized special relativistic 

energy is negative contraction takes place when gravity energy exceeds the thermal 

one. Star equilibrium requires the radius to have critical value typical to that of black 

hole and the critical mass to be less than a certain critical temperature dependent mass. 
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Using generalized special relativity together with Newton's laws of gravitation and 

treating particles as quantum strings, a useful expression for self energy was found. 

The critical radius of a star when particles are created is that of a black hole. The 

critical radius and mass are dependent on the speed of light and gravitational constant. 

For mass formation, the radius and mass should be small which agrees with the fact 

that elementary particles have very small mass and radius. The formation should also 

takes place at Planck time which also conforms with that proposed by big bang model.         
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Chapter One 

Introduction 

1.1 Cosmology and Stars: 

Einstein’s theory of general relativity (EGR) is one of biggest achievements in physics. 

This theory describes gravitation in a geometrical language by utilizing curved 

Riemann geometry [1]. EGR is found to be successful in describing a large number of 

astronomical observations [2]. Despite these successes, EGR suffers from noticeable 

setbacks. It is the most disastrous, and is the description of the radiation and pre-

radiation eras, where elementary particles are dominant [3]. The elementary particles 

description is done by using quantum theory. Thus one needs a quantum gravitational 

theory to describe the early universe [4, 5], from the start of the big bang, pre plank 

and blank quantum era [6], up to radiation era. Quantum gravity theory is also needed 

to describe the behavior of black holes, neutron stars and pulsars [7]. Many attempts 

were made to construct a quantum gravity model [8]. Some of them are based on super 

string or string theory [8]. Others, like the wave function of the universe are proposed 

by Dwelt [9] and Hawking [10]. 

These attempts, although they are promising, but they are still done for from giving a 

complete full consistent quantum gravity theory. This failure stems from the fact that 

EGR derivation is not inconformity with the conventional method used to derive the 

field equations. In this conventional method the equation of motion and the energy 

momentum equation are different. The first one results from the variation of the field 

variables, while the second one results from the space-time variation [11]. In EGR the 

equation of motion and the energy-momentum equation are the same. They stem from 

the replacements of the potential field term by a geometrical term, and the matter term 

by the energy-momentum term [12]. This situation makes EGR isolated from other 

field theories, including quantum field theory. This bizarre situation necessitates 

searching for a new version of EGR, by keeping its beautiful geometrical language and 

abandoning Newton Poisson equation. This new version is first proposed by Lanczos 

[13] and then by Ali Eltahir [14]. It is based on the conventional action approach [14]. 

This generalized EGGR reduces to EGR thus shares with it all their successes. 
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Moreover, GEGR is proved to be nonsingular [15] and capable of solving the gravity 

energy-momentum problem, horizon, entropy and flatness problem, beside galaxy 

formation problem.  

Stars play a central role in the universe. It is responsible for delivering energy to the 

surrounding astromical object [16, 17, 18]. In our solar system the sun which is a star, 

delivers energy to the earth. This energy is important for human life as well as plants 

and animal life. Without solar energy life cannot exist, including human life [19, 20]. 

The energy of the sun, which is now termed solar energy, is also utilized widely in 

generating electricity by using solar cells, and generating mechanical energy by using 

wind energy. The solar energy is also the main source of petroleum energy, vital 

energy and most of the energy sources in the world [21, 22, 23]. 

Gravitational fields are so weak that the practicing astrophysicist can usually ignore 

general relativity. This Thesis deals with various sorts of objects in which relativistic 

effects play an important. Or in some cases a dominant, role. One of these is the 

neutron star, a cold star composed primarily of neutrons and supported against collapse 

by neutron degeneracy pressure. Another is the supermassive star, a giant object 

supported by radiation pressure, in which general relativity effect can tip the balance 

between stability and instability. Most impressive of all is the black hole, a body 

caught in an inexorable gravitational collapse. The existence of neutron stars and black 

holes was suggested in the 1930’s on purely theoretical grounds, chiefly through the 

work of J. Robert Oppenheimer and his collaborators [24].  

In the last few years a new species of astronomical exotica was discovered the pulsars, 

radio sources that pulse at regular frequencies ranging from a few tenths Hz to 30 Hz. 

The pulsars are often associated with optical and even X-ray sources that pulse at the 

same rate. There appears now to be a general consensus that pulsars are the neutron 

stars discovered theoretically in the 1930’s, but with a rapid rate of rotation that 

somehow or other produces the observed pulses [25]. 

A main-sequence hydrogen-burning star, such as the Sun, is maintained in equilibrium 

via the balance of the gravitational attraction tending to make it collapse, and the 

thermal pressure tending to make it expand. of course, the thermal energy of the star is 
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generated by nuclear reactions occurring deep inside its core. Eventually, however, the 

star will run out of burnable fuel, and, therefore, start to collapse, as it radiates away its 

remaining thermal energy. What is the ultimate fate of such a star.  

As the star collapses, its density increases, so the mean separation between its 

constituent particles decreases. Eventually, the mean separation becomes of order 

wavelength of the electrons, and the electron gas becomes degenerate. Note, that the 

wavelength of the ions is much smaller than that of the electrons, so the ion gas 

remains non-degenerate. Now, even at zero temperature, a degenerate electron gas 

exerts a substantial pressure, because the Pauli exclusion principle prevents the mean 

electron separation from becoming significantly smaller than the typical wavelength of 

the electrons. Thus, it is possible for a burnt-out star to maintain itself against complete 

collapse under gravity via the degeneracy pressure of its constituent electrons. Such 

stars are termed white dwarfs [26]. 

At stellar densities which greatly exceed white dwarf densities, the extreme pressures 

cause electrons to combine with protons to form neutrons. Thus, any star which 

collapses to such an extent that its radius becomes significantly less than that 

characteristic of a white dwarf is effectively transformed into a gas of neutrons. 

Eventually, the mean separation between the neutrons becomes comparable with their 

wavelength. At this point, it is possible for the degeneracy pressure of the neutrons to 

halt the collapse of the star. A star which is maintained against gravity in this manner 

is called a neutron star.it is found that there is a critical mass and critical radius above 

which a neutron star cannot be maintained against gravity. This critical radius, which 

is known as the radius of Schwarzschild. A star whose radius exceeds the radius of 

Schwarzschild. cannot be maintained against gravity by degeneracy pressure, and must 

ultimately collapse to form a black hole [26]. 

General relativity theory is one of the most successful theory that describes the 

universe. The so called big bang model describes the evolution of the universe [27, 

28]. It states that the universe starts with singularity in space-time. It then expands, 

where matter, i.e. elementary particles is formed at early universe. These particles join 
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together to form light atoms. Later on these particles are assembled in a cloud forming 

galaxies, stars, planets and all other astronomical objects [29]. 

The formation of stars is one of most striking features of general relativity. These stars 

can be come white dwarfs or red giant stars, supernova or black holes [30]. However 

the evolution of stars suffers from noticeable set backs, for instance the so called black 

holes results from space-time singularity which means break down of the laws of 

physics [31]. This draw back can be cured in this Thesis by using generalized special 

relativity (GSR). 

1.2 Research Problem: 

The evolution of stars within the framework of general relativity needs to be promoted, 

especially the formation of black holes which is accompanied by the existence of space 

time singularity. 

1.3 Aims of the Work:   

Is to construct theoretical model based on the generalized special relativity to obtain 

nonsingular model explaining stars evolution and formation of black holes. 

1.4 Previous Studies: 

Different attempts were made to describe the nature of stars and their evolution [32, 

33]. Some of them are concerned with equilibrium of stars [34, 35, 36]. While others 

describe the behavior of black holes [37, 38, 39, 40, 41, 42]. In this section one caut 

some of them. In one of these papers: 

In the work of M. Dirar, a simple derivation of the generalized field equation with a 

source term is presented by restricting ourselves to a locally inertial frame. It reduces 

to Einstein's field equation when the lagrangian is linear. Assuming the metric to be 

Minkowskian, simple solutions for the scalar curvature show the existence of a short 

range field and the emission of gravitational waves by objects which have strong field. 

The fact that the generalized field equation with a source term reduces to general 

relativity in a weak field limit indicates that it shares with general relativity all its 

successes in this limit. The solutions of the generalized field equation differ from those 

of general relativity in many respects. First of all the scalar curvature does not vanish 

outside the source. Secondly the expression for the potential shows the existence of a 
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short range field or presumably a possible link with the strong nuclear force. On the 

other hand the travelling wave solution is in conformity with the recently observed 

declining in the orbit period of the binary pulsars [43, 44, 45, 46]. 

Also in the work of M. Dirar and others, the mass resulting from self energy is 

obtained by utilizing the generalized relativity. The expression for the mass which 

results from the gravitational field is finite. This expression is found by considering the 

mass first as small tiny string and second as small sphere. A useful equation for the 

propagation of graviton waves in space indicates that graviton propagates as travelling 

wave. By treating gravitation waves as wave packets a plank quantum expression for 

graviton energy dependent on the frequency is also found. The gravitational constant 

(parameter) is quantized also in this work. The capability of equation generalized 

general relativity to quantize the gravitational field and gravitational constant indicates 

that it can secure a good basis for a full quantum gravitational theory. The ability of 

this model to explain the origin of the mass in relation to the gravitational field, and to 

be an amenable to quantization, raises a hope of unifying all fundamental forces by 

bridging the gap between general relativity and quantum mechanics, beside finding a 

pathway to unify gravity with other forces by using Riemannian geometry as a 

common language [47]. 

In the work of Dong Lai, he describes what happens to a neutron star or white dwarf 

near its maximum mass limit when it is brought into a close binary orbit with a 

companion. Such situation may occur in the progenitors of Type IA supernovae and in 

coalescing neutron star binaries. Using an energy variational principle, we show that 

tidal field reduces the central density of the compact object, making it more stable 

against radial collapse. For a cold white dwarf, the tidal field increases the maximum 

stable mass only slightly, but can actually lower the maximum central density by as 

much as 30%. Thus a white dwarf in a close binary may be more susceptible to general 

relativistic instability than the instability associated with electron capture and 

pycronuclear reaction (depending on the white dwarf composition). We analyses the 

radial stability of neutron star using post-Newtonian approximation with an ideal 

degenerate neutron gas equation of state. The tidal stabilization effect implies that the 
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neutron star in coalescing neutron star-neutron star or neutron star-black hole binaries 

does not collapse prior to merger or tidal disruption [48]. 

In the work of G. Dillon, a definition of a Newtonian black hole is possible which 

incorporates the mass-energy equivalence from special relativity. However, exploiting 

a spherical double shell model, it will be shown that the ensuing gravitational self 

energy and mass renormalization prevent the formation of such an object [49]. 

In the work of Paolo Christillin, it was shown that space curvature can be disposed of 

by properly taking into account gravitational self energies. This leads to a parameter 

free modification of Newton's law, violating Gauss theorem, which accounts for the 

crucial tests of gravitation in a at space. Strong gravitational fields entail opposing big 

gravitational self energies. The negative gravitational self energy of a gravitational 

composite object, which results in a mass defect with respect to the sum of the 

constituents, thus cancels out the latter at the Schwarzschild radius. Hence a black 

hole, possible end result of the radiative shrinkage of a star, having zero total energy 

cannot any longer interact with other objects. Baryon number non conservation may 

result [50]. 

Finally the work of Abhay Ashtekar, shows a set of boundary conditions defining a 

non-rotating isolated horizon are given in Einstein-Maxwell theory. A space-time 

representing a black hole which itself is in equilibrium but whose exterior contains 

radiation admits such a horizon. Physically motivated, (quasi) local definitions of the 

mass and surface gravity of an isolated horizon are introduced. Although these 

definitions do not refer to infinity, the quantities assume their standard values in 

Reissner-Nordstrom solutions. Finally, using these definitions, the zeroth and first laws 

of black hole mechanics are established for isolated horizons [51]. 

1.5 Presentation of the Thesis: 

The thesis consists of five chapters. Chapters one and two are concerned with 

introduction and stars evolution. Chapters three and four are devoted for stars 

equilibrium and literature review. The contribution is in chapter five.  
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Chapter Two 

Stars Evolution within the Framework of General Relativity  

2.1 Introduction:  

Gravitational fields were so weak that the practicing astrophysicist can usually ignore 

general relativity. This chapter deals with various sorts of objects in which relativistic 

effects play an important. Or in some cases a dominant, role. One of these is the 

neutron star, a “cold” star composed primarily of neutrons and supported against 

collapse by neutron degeneracy pressure. Another is the supermassive star, a giant 

object supported by radiation pressure, in which general relativity effect can tip the 

balance between stability and instability. Most impressive of all is the black hole, a 

body caught in an inexorable gravitational collapse [30]. 

In preparing this chapter, I have tried to restrict myself to the simplest calculations, 

which can be carried out analytically without too much trouble. These simple 

calculations are not very useful for a detailed understanding of astronomical 

observations, but they provide a valuable insight into the possible roles that general 

relativity can play in astrophysical phenomena. 

2.2 The Equation of the Gravitation Field: 

Differently electromagnetic field which does not influence its source the charge and 

which is determined by linear partial differential equation. The gravitational field does 

not affect the mass producing it and therefore should be described by nonlinear 

equation to obtain these equation Einstein started from be life that they must 

generalized from of Newtonian gravitational equation where the scalar potential   can 

be component of the metric tensor by [52]. 

    
 

 
                                                     (     ) 

The corresponding Poisson equation reads [53]: 

                                                        (     ) 

Where   the Newtonian gravitation field potential,   matter density,   gravitational 

constant. 

We generalize equation (2.2.2):  
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Thus by equation (2.2.1) one obtains    

                                                     (     ) 

Where the mass density in this case equals the energy density     if one extends the 

right hand side of equation (2.2.3) so that          Then by tensor analysis the left 

hand side should be equal to some second rank spatial tensor    . This means 

             ,                                             (     ) 

    is a linear combination of     and its first and second derivatives. by the 

equivalence principle these equation can be further generalized to 

                                                                       (     ) 

To obtain the equation that govern he behavior of the gravitational field one need to 

find the form of     one therefore sets a number of requirements with regard to the 

properties of the gravitational field and which should be observed constructing the 

sought equation. Thus the     following requirements should be satisfied by [54]: 

1. By definition it is a tensor consisting of the matric and its derivation. 

2. This tensor should only contain terms that either quadratic in the first derivatives of 

the metric tensor or linear in its second derivatives    . 

3. It should be symmetric as. 

4. Since     is conserved it should be equally so and vice versa. 

5. It should be reducible to Newtonian limit.  

By the fulfillment of these requirement and employing certain properties of the 

curvature tensor and its contraction it can be seen that the right hand side of equation 

(2.5.5) should have the form 

    
 

 
                                                        (     ) 

This expression is called Einstein tensor. Thus equation (2.5.5) becomes 

    
 

 
                                                (     ) 

Contracting with     yield 

       
                                                        (     ) 
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Hence 

         (     
 

 
     

 )                                    (     ) 

Equations (2.2.7) and (2.2.9) are the Einstein field equation. That describe the 

gravitation field and summarize the theory of general relativity. These equation can be 

alternatively by exploiting the variation action principle. Where     is the general 

energy-momentum tensor, and     called the Einstein tensor which is a combination 

of possible derivative of     and their products. 

By criteria (1)   (5) the required equation yield   

     
 

 
                  

    
 

 
                                                                 (      ) 

Where   is called the cosmological constant. It should reduce to stationary weak field 

limit for,       . we should set,    . The Einstein's field equation reads 

     
 

 
                                                               (      ) 

2.3 The Field Equation for the Universe in A commoving Coordinate 

System: 

The large scale phenomena of universe are strongly affected by the gravitational 

interaction. Since gravity is the dominating interaction. General relativity should be 

able to give as it noted before a full description of the universe. Therefore what is 

needed is to find a model of the universe as a whole, which constitutes a solution of 

Einstein's equation. The solution of cosmological problem within the framework of 

general relativity consists of determining a large scale metric of the four-dimensional 

world and a corresponding large-scale matter distribution satisfying Einstein's equation 

theoretical cosmologists always make the idealizing assumption that, on sufficiently 

large scale, matter can be considered to homogeneously and isotropic ally distribute. 

This means that the energy-momentum tensor of matter in the universe is exemplified 

by that of a perfect fluid. on a sufficiently large scale the gross features of the universe, 

such as the mass density, indicate that the universe is homogeneous and isotropic. The 
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modern cosmological theory is built on the cosmological principle, i.e. the hypothesis 

that the universe is spatially homogeneous and isotropic. The space-time metric of 

such a universe is given by [55]: 

          ( ) (
   

     
                  )                 (     ) 

Where   ( ) is an unknown function of time called the cosmic scale factor and   is a 

constant known as the spatial curvature. Which by a suitable choice of units for   can 

be set to take only three values:  ,  , or    for a closed. Spatially flat and open 

universe respectively. The spatial polar coordinate  ,  ,  . Form co-moving system in 

the sense that typically galaxies have constant spatial coordinates   ,  ,  . 

Applying the cosmological principle to energy-momentum tensor that describes 

cosmic matter shows that it take the same form as for perfect fluid 

    (   )                                                   (     ) 

Where     mass density,     pressure. 

          ,           

     ( )              ,                                     (     ) 

Equation (2.3.1) is suitable matric for describing expanding universe, which is written 

by Roberson-Walker metric thus Einstein equation (2.2.7) gives 

(
 ̇

 
)
 

 
    

 
  

 

  
  

 

 
                                                (     ) 

 ̇

 
 

    

 
(    )  

 

 
                                            (     ) 

 The conservation of the energy also gives  

 ̇    (   )                                                      (     ) 

Where  

  
 ̇

 
                                                                    (     ) 

Is called Hubble parameter, to solve these equation a relationship between       is 

needed. This relation can be written in the form   

                                                                  (     ) 
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Where   is constant independent of time. Thus the conservation of energy equation 

(2.3.7) reads 

 ̇

 
   (   )

 ̇

 
                                                    (     ) 

This can be integrated to obtain 

     (   )                                                          (      ) 

Einstein equation for spatial component gives  

 ̇

 
  (

 ̇

 
)
 

  
 

  
    (   )                              (      ) 

Which by using equation (2.3.8) takes the following form 

 ̇

 
  (

 ̇

 
)
 

  
 

  
     (   )                            (      ) 

In this case (   ), and the energy density is independent of   since the energy 

density in matter. 

2.3.1 Vacuum Era: 

In vacuum matter does not exist. This needs introducing a cosmological constant is 

equivalent to existence of energy momentum tensor for the vacuum [56] i.e. 

                                                              (      ) 

   
    

  

   
                                                          (      ) 

This has the form a perfect fluid with 

     
 

   
          

                                   (      ) 

2.3.2 Radiation Era: 

During this era radiation dominates, i.e. most is in the form of radiation. may describe 

either actual electromagnetic radiation, or massive particles moving at relative 

velocities sufficiently close to the speed of light. Although radiation is perfect fluid 

and thus the energy momentum tensor. The equation of this state is [57]: 

  
 

 
                                                          (      ) 

 This energy density in radiation takes the form  
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                                                                (      ) 

At the universe expanse it cool down, thus some elementary particles combine to form 

atoms, which in turn accumulate to matter. The cosmological term   in Einstein 

general relativity can be considered as standing for vacuum energy [58]: 

   
 

   
                                                         (      ) 

Where general relativity takes the form 

    
 

 
          (    

 

   
   )                     (      ) 

Experimentally observation indicate that vacuum energy negligible small at present. 

On the hand, large vacuum energy at the early universe can produce inflation where 

       

This inflation can solve some of cosmological problems. The diversity between the 

present small value of the vacuum energy and the need of large vacuum energy at the 

early universe is known as cosmological constant problems [59]. 

2.3.3 Equation of Motion: 

In order to find the Einstein equation we approximate the matter, averaged over long 

distances, as an ideal fluid which is rest in the cosmic coordinate system of the 

Robertson-Walker metric, i.e. The energy-momentum tensor is given by [60]: 

    (     )                                         (      ) 

Where    is the four-velocity of the matter, the unite tangent vector field of the time 

like congruence. We have   
 

          for scale invariant case like EM 

radiation,     for matter at rest, like cosmic dust and          ,         in the 

vacuum.  

Notice that          in each case. The metric (2.3.1) is based on the time 

coordinate   therefore    (       ). 

The first two term in the divergence of a tensor    : 

   
      

      
        

 
                                (      ) 

Looks as the covariant divergence of a four-vector which can be written in a simpler 

manner according 
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    ⁄
  [    ⁄    ]     

 
                              (      ) 

Thus the expression (2.3.20) leads to the energy-momentum conservation law 

        
 

    ⁄
   [    ⁄ (     )    ]     

 (    )        (      ) 

Where the metric admissibility,     , was used,     . The rest frame condition, 

   (       ), renders the spatial components,         of this equation trivial and 

the temporal part      reads as 

   ̇  
 

  
[  (     )]                                           (      ) 

Or  

  ̇     ̇(     )                                           (      ) 

Giving 

 

  
(     )                                                    (      ) 

      ⁄  for dust. In the case of radiation we write 

 

 

 

  
(     )  

 

 
   ̇   

 

 

 

  
(     )                           (      ) 

Resulting in       ⁄ . The density drops faster in the latter case during the expansion 

of the universe (growing  ) than for dust. Though the radiation represents a negligible 

component in the actual universe, it was dominant in an earlier phase.  

The Einstein's equation read finally as  

    
 

 
      

 ̇   

  
                                       (      ) 

For the component  

 

  
(    

  

 
     )  

 ̈

 
 

  ̇ 

  
 

  

  
  (

 ̈

 
 

 ̇ 

  
 

 

  
)    

 
   ̈

 
 

 ̇ 

  
 

 

  
   

   

  
               (      ) 

We can express the acceleration  ̈ by making forming a suitable linear superposition of 

these two equations  

 ̈

 
  

 

 
 

 

 
   (      )                                        (      ) 
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The cosmological constant introduces a pressure in the absence of matter and leads to 

violation of the Newtonian gravitational law in the slow motion, weak gravitational 

field limit. We shall set     in the rest of the discussion for simplicity. The first 

remark is that there is no static solution,  ̈    for           The rate of change 

of spatial distances  

  
  

  
 

 

 
 ̇                                                       (      ) 

Where  

  
 ̇

 
                                                                         (      ) 

Called Hubble constant, though its value has slow time dependence on astrophysical 

time scale. The universe is expanding  at the present,  ̇    but in view of  ̈    the 

expansion rate must have been faster in the past. by assuming constant expansion 

rate     ⁄ . Time ago the universe would have been point-like. Due to the slowing 

expansion rate the big bang, the zero-side universe must have occurred lees time 

before and the inverse Hubble-constant gives only an order of magnitude estimate of 

the lifetime of universe. The zero size signals a singularity in the time evolution which 

prevents us to inquire about the state of the universe. Before the big bang. The so 

called singularity theorems of general relativity assures that the singularity at the big 

bang is present even without assuming homogeneity and isotropy. For the flat or open 

universe,     or     , respectively  ̇    according to equation (2.3.28) which 

can be written as 

 ̇  
   

 
                                                          (      ) 

And the expansion continues forever. In fact,      (   ) or      (   ) for dust 

or radiation dominated universe,         as     and  ̇ approaches zero from 

above. For closed universe,    , the matter contribution to equation (2.3.32) 

decreases compared to   during the expansion and there is a maximal value of  , 

    . But the maximal value cannot be approached asymptotically because  ̈ dose 

not tend to zero according to equation (2.3.30) but instead   big crunch occurs at some 

finite time where     is reached and the universe cease to exists. The component of 
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the Einstein equation (2.3.28) for     shows that the universe is closed or open if 

     or       respectively where 

   
  

   

   
                                                    (      ) 

The actual observational and theoretical background suggests that the cosmological 

constant   actually plays an important role in determining the age of the universe [60], 

in particular the choice.                 ,            ,             (is 

preferred). 

2.4 Generalization of Schwarzschild Metric: 

One will discuss in this section a generalized solution for Schwarzschild metric. This 

solution is considered as a general solution to describe the weak gravitational field and 

the strong. Schwarzschild metric is a good approximation to the gravitation field of a 

slowly rotating body like the Earth or Sun. but in the case of a strong gravitational 

field the general relativity will fail to describe what is happing inside. We can derive 

the Schwarzschild metric from my new metric, that is in the case of weak gravitational 

field where both of them give the same results. But in the case of strong gravitational 

field my new matric gives an accurate results which are different from the 

Schwarzschild metric. The Schwarzschild metric is given by [61]:    

              
        (            )                        (     ) 

Where  

      
   

   
 

Now if there is clock located in a gravitational field at distance   from the center of 

mass  , then the reading of this clock for an observed far away from the gravitational 

field is given as the equation  

    (  
   

   
)
  ⁄

                                             (     ) 

Where,    is the reading of the observer from his clock is far  away from the 

gravitational field and     is the reading of the same observer from the clock on the 

gravitational field. From the metric given in (2.4.1) the Schwarzschild radius    is 

given as 
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                                                        (     ) 

The Schwarzschild solution to Einstein's equations given exact solution in the case of 

weak gravitational field, but in the case of strong gravitational field the Schwarzschild 

solution disable to describe what happened accurately, where the laws of physics stop 

there according to his solution.  

General metric which is describing the space-time of the gravitational field (weak or 

strong) is given as [61]: 

              
         (            )             (     ) 

Where 

    (  
  

   
)
 

 

We get  

      
   

   
 

    

    
                                    (     ) 

Equation (2.4.5) illustrates the lost term in the Schwarzschild solution where it is 

        ⁄  this term has no effect in the case of the weak gravitational field where it 

is too small to be perceived. So in this case we can neglect it and the metric will take 

the Schwarzschild form. But in the case of the strong gravitation field we can't neglect 

this term. Now according to my solution we can generalize equation (2.4.2) to be [61]: 

    (  
  

   
)                                                           (     ) 

Equation (2.4.6) is a general formula that describes the time dilation in a strong and 

weak gravitational field. This equation is in agreement with equation (2.4.2). And it is 

easy to show that (2.4.6) takes the form of equation (2.4.2) in the case of weak 

gravitational field where the term         ⁄  is neglected. 

Now if we consider    , then we can compute the radius that the mass should be  

compressed to be transformed into a black hole. This is known as the Schwarzschild 

radius. Thus  

  
  

   
   

Thus 
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                                                               (     ) 

We see equation (2.4.7) is different from equation (2.4.3) by the factor of equation 

(2.4.7) is in agreement with equation when deriving the Schwarzschild radius. If we 

look carefully to my metric we'll see that it takes the form of flat Murkowski space 

             (             )                            (     ) 

That is when 

   

   
 

    

    
                                                       (     ) 

This happened when  

                                                                    (      ) 

Where 

   
  

   
                                                          (      ) 

From that we get 

   
 

 
                                                             (      ) 

   given in equation (2.4.7) and from equation (2.4.6) where :        Then        . 

2.5 The Singularity of Schwarzschild Solution: 

In this section we consider the irregular behavior of Schwarzschild solution. The 

Schwarzschild solution can be applied to the gravitational field of the sun, however, 

the Schwarzschild metric (2.4.1) is singular not only at      , but also at    . 

The existence of the singularity has been interpreted by Penrose and Hawking [62] as a 

manifestation of the collapse a massive star, the condition of its occurrence is 

determined by Chandrasekhar [63]. 

The distance from the source in the proximity of which the collapsed star may turn to 

be a neutron star with extremely high density, or otherwise, continue collapsing to 

infinite density is called singular horizon. Beyond this horizon, the continuous collapse 

of a certain star results the so called black hole, it implies that the star has disappeared 

by leaving a hole. 
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In other words, under the gigantic gravitational force the collapsing star is doomed to 

further collapse then the gravitational field by passing its Schwarzschild radius will be 

so large that any particles including photon will be captured inward. In spite of the 

afore-discussed behavior, the singularity at       , is not real since it can be 

removed by a certain transformation of coordinates.  

This was done by Kruskal-Szekeres [64, 65]. However, the singularity at     is 

independent of the choice of the coordinate system, hence it is a real singularity which 

cannot be removed by any kind of coordinate the transformation. On the other hand, 

regarding a real star as a point mass in Schwarzschild metric, looks only unreasonable, 

but also physically inapplicable. 

This may imply that despite the successes of Schwarzschild solution in describing 

weak field gravity, it looks inadequate to describe situations, where it predicts the 

collapse of a massive star. In other words, with this inherent singularity, general 

relativity is not capable of describing gravity at distances where the singularity takes 

place, i.e. when gravity is strong. Thus, this reflects the limitations of general 

relativity. This means, general relativity by predicting the singular behavior of the 

metric space it predicts its own inapplicably of that singularity. Thus it contradicts 

itself. 

This limitation of Einstein's model necessitates a search for an alternative model, 

which would share with general relativity its successes at weak field gravity, and will 

be hopefully capable of giving a rotational description of the strong gravitational field. 

We find that Schwarzschild solution is quite applicable to the gravitational field at 

finite distances from the sun. This ensures that the solution is the base for all weak 

field prediction of general relativity. Though, the solution has its limitation in the 

strong field domain, and hence, it predicts a singular behavior, which entails the 

existence of black hole due to the gravitational collapse. The Schwarzschild solution of 

Einstein's equations constitutes the exact solution for the symmetrized form of these 

equations. The symmetrizedation of  the solution doesn't affect the validity of the afore 

stated predictions of the theory in the case of non-symmetrized space (Birkhoff 
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Theorem) [66]. It is rather a man of simplification, which allows the obtaining of this 

solution. 

Thus, we conclude that the gravitational equation satisfied by Schwarzschild space 

time metric gives of the adequate description of gravity at weak field limit where 

predictions have been well verified by observation. As for the prediction of the theory, 

at the strong field areas the theory doesn't only contradict itself theoretically, but also 

has no experimental evidence. 

2.6 Differential Equations for Stellar Structure: 

We first set up the general relativistic machinery for computing the pressure, density, 

and gravitational fields within a spherically symmetric static star [30]. The metric 

     ( )                                        ( )       (     ) 

           for          

The energy-momentum tensor is assumed to be that that for a perfect fluid 

         (   )                                                        (     ) 

With   the proper pressure,   the proper total energy density, and    the velocity four-

vector, defined so that 

                                                                    (     ) 

Since the fluid is at rest, we take  

             ,      (    )   ⁄     √ ( )              (     ) 

Our assumptions of time independence and spherical symmetry imply that   and   are 

functions only of the radial coordinate  . By making use equations (2.6.1)-(2.6.4) and 

the Ricci tensor components. we find that the Einstein equation (2.2.9) read 

    
   

  
 

  

  
(
  

 
 

  

 
)  

  

  
     (   )               (     ) 

       
 

  
( 

  

 
 

  

 
)  

 

 
     (   )              (     ) 

     
   

  
 

  

  
(
  

 
 

  

 
)  

  

  
     (    )           (     ) 

A prime denotes    ⁄ . (we do not need to write down the equation for    , which is 

identical to that for    , or the equations for off-diagonal elements of    , which 
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simply say that zero equals zero) In addition, we may recall the equation for 

hydrostatic equilibrium 

  

 
  

   

   
                                                                  (     ) 

Our first step in solving these equations is to derive an equation for  ( ) alone, by 

forming the quantity 

   

  
 

   

  
 

   

  
  

  

   
 

 

  
 

 

   
                         (     ) 

This equation can by written 

(
 

 
)
 

                                                          (      ) 

The solution with  ( ) finite is 

 ( )  (  
   ( )

 
)

  

                                         (      ) 

Where 

 ( )  ∫       (  )   
 

 

                                            (     ) 

We can now use equations (2.6.11) and (2.6.8) to eliminate the gravitational fields 

 ( ),  ( ) from equation (2.6.6), which becomes 

   (  
   

 
)(  

   

   
)  

  

 
            (   )   

We rewrite this as 

     ( )    ( ) ( ) *  
 ( )

 ( )
+ *  

     ( )

 ( )
+ *  

   ( )

 
+

  

    (      ) 

The reader may recognize this differential equation as the fundamental equation of 

Newtonian astrophysics (see section 2.7), with general relativity corrections supplied 

by the last three factors. 

We are primarily concerned in this chapter with stars that are isentropic, that is, in 

which the entropy per nucleon   does not vary throughout the star. This is the case for 

two very different kinds of star [30]: 
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1. Stars at absolute zero: When a star exhausts its thermonuclear fuel it can become a 

white dwarf (section 2.7), or a neutron star (section 2.8), in which the temperature is 

essentially at absolute zero. According to Nernst's theorem, the entropy per nucleon 

will then be zero throughout the star. 

2. Stars in convective equilibrium: If the most efficient mechanism for entropy transfer 

within the star is convection, then in equilibrium the entropy per nucleon must be 

nearly constant throughout the star, because otherwise a small element of fluid 

containing A nucleons could gain or lose an energy     ⁄  when transported from one 

part of the star to another, and convection would therefore disturb the energy 

distribution. The supermassive stars discussed in (section 2.9) are generally presumed 

to be in convective equilibrium. We also assume that the stars we consider have a 

chemical composition that is constant throughout. 

The importance of the preceding assumptions lies in the fact that the pressure   may in 

general be expressed as a function of the density  , the entropy per nucleon  , and the 

chemical composition. Hence, with   and the chemical composition constant 

throughout the star,  ( ) may be regarded as a function of  ( ) alone, with no explicit 

dependence on radius  .     

Given  ( ) as a function  ( ( )), we now formulate our problem as a pair of first-

order differential equations for  ( ) and  ( ). one of these is equation (2.6.13), the 

other is the derivative of equation (2.6.12): 

  ( )       ( )                                                          (      ) 

In addition, equation (2.6.12) provides an initial condition 

 ( )                                                                            (      ) 

Equations (2.6.13), (2.6.14) and (2.6.15), together with an equation of state giving 

 ( ), serve to determine  ( ),  ( ), and   ( ), and so on, throughout the star, once 

we specify the other initial condition, that is, the value of  ( ). The differential 

equations (2.6.13) and (2.6.14) must be integrated out from the center of the star, until 

 ( ( )) drops to zero at some point    , Which we then interpret as radius of the 

particular star with central density  ( ). 
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Let us return to the problem of calculating the metric. Once we compute  ( ),  ( ), 

and   ( ) we can immediately obtain  ( ) from equation (2.6.11); to find  ( ) we use 

equation (2.6.13) to rewrite (2.6.8) as 

  

 
 

  

  
[       ] [  

   

 
]
  

 

The solution with  ( )     is  

 ( )     ( ∫
  

  

 

 

[ (  )        (  )] *  
   (  )

  
+

  

   )      (      ) 

Our solution is now complete. (incidentally, we did not need to use equations (2.6.5) 

and (2.6.7) for     and     separately, because these equations follow from (2.6.6), 

(2.6.8), and (2.6.9), which were used in our calculation. This should not be surprising, 

because equation (2.6.8), which is really just the equation for momentum conservation, 

follows from the Einstein equations (2.6.5), (2.6.6) and (2.6.7) via the Bianchi 

identities). Outside the star,  ( ) and  ( ) vanish, and  ( ) is the constant  ( ), so 

equations (2.6.11) and (2.6.16) give 

 ( )     ( )    
   ( )

 
                                         (      ) 

The gravitational field (2.6.17) must equal the mass   of the star, defined as the total 

energy of the star and its gravitational field, that is 

   ( )  ∫      ( )  
 

 

                                  (      ) 

Thus (2.6.17) is just the familiar exterior Schwarzschild solution. It may appear 

paradoxical that  , which must include the energy of the gravitational field, is given in 

(2.6.18) as the integral of the energy density  ( ) of matter (including radiation) alone. 

The resolution is that (2.6.18) does not say that   is the total energy of the matter. The 

total material energy is not really well defined, but it might be computed by splitting 

up the star into small volume elements and adding up the energies of each element as 

measured in a locally inertial reference frame; this would give the material energy as 

        ∫√             ∫     
 

 

√ ( )  ( )   ( )                (      ) 
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The difference between equations (2.6.18) and (2.6.19) can be regarded as the energy 

of the gravitational field. However, this decomposition is not particularly useful, and 

will not be employed here. It is more informative to compare (2.6.18) with the energy 

   that the matter of the star would have if dispersed to infinity. This is simply 

                                                                 (      ) 

Where               g is the rest-mass of a nucleon and   is the number of 

nucleons in the star. The nucleon number is given by 

  ∫√              ∫     
 

 

√ ( ) ( )      ( )             (      ) 

Where     is the conserved nucleon number current. It is convenient to express     in 

terms of the proper nucleon number density  , that is, the nucleon number density 

measured in a locally inertial reference frame at rest in the star, which is 

          √                                                     (      ) 

(see equation (2.6.4), and recall that in a locally inertial coordinate frame      ) 

equation (2.6.21) then becomes 

  ∫     
 

 

√ ( )  ( )     ∫     
 

 

(  
   ( )

 
)

   ⁄

 ( )       (      ) 

The proper number density  ( ) is in general a function of the proper density  ( ), the 

chemical composition, and the entropy per nucleon  , so  ( ) and   are fixed for a 

star with a given constant   and chemical composition, once we choose  ( ). The 

internal energy of the star is now given by 

                                                          (      ) 

We can also define a proper internal material energy density as 

 ( )   ( )     ( )                                         (      ) 

And write (2.6.24) as 

                                                               (      ) 

Where   and   are the thermal and gravitational energies, respectively, of the star 

  ∫     
 

 

 (   
   ( )

 
)

   ⁄

 ( )                              (      ) 
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  ∫     
 

 

 [  (   
   ( )

 
)

   ⁄

]  ( )                    (      ) 

Expanding the square roots gives 

  ∫     
 

 

 (   
  ( )

 
  ) ( )                                (      ) 

    ∫     
 

 

(
  ( )

 
   

     ( )

   
   ) ( )          (      ) 

The first terms in   and   are recognizable as the Newtonian values for the thermal 

and gravitational energies of the star; in particular, note that the first term in   may be 

written 

 

   ∫     ( ) ( )  
 

 

   
 

 
 ∫

 

 

 

 

 (  ( ))   
   

  
 

 

 
 ∫

  ( )

  
   

 

 

 

  
 ( ) ( )

 
  

 

 
 ∫  ( )  ( )

 

 

 
 

 
∫  ( )   ( )

 

 

     (      ) 

Where   is the Newtonian potential, given inside the star by 

 ( )   
  

 
  ∫

 (  )

   
    

 

 

                               (      ) 

The higher terms in   and   are discussed in section (2.9). To repeat out main 

conclusion: Once we specify that a star has a definite uniform entropy per nucleon and 

chemical composition, all properties of the star, including  ( ),  ( ),  ( ),  ( ),  , 

 , and  , are determined as function of the central density  ( ). This is not the case 

for ordinary stars like the sun, in which the entropy distribution is not uniform and has 

to be determined from the equations of radiative equilibrium. However, the 

considerations of this section do provide an adequate basis for the study of the exotic 

structures discussed in this chapter. 

2.7 Newtonian Stars, Polytropes and White Dwarfs: 

Most of the stars in the sky are adequately described by Newtonian physics, without 

taking account of general relativity. Such Newtonian stars deserve some attention here, 

both because they serve us limiting cases for the more exotic objects that interest the 
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general relativity, and because they can guide us in understanding the qualitative 

properties of these objects. In Newtonian astrophysics the internal energy and pressure 

are very much less than the rest-mass density 

       ,                                                         (     ) 

So that total density is dominated by the density of  rest mass 

                                                                                (     ) 

And also 

      ,             

In addition, the gravitational potential is everywhere small, so 

   

 
                                                                      (     ) 

The fundamental equation (2.6.13) thus simplifies to 

      ( )    ( ) ( )                                                 (     ) 

With  ( ) still defined by 

 ( )  ∫       (  )    
 

 

                                        (     ) 

Dividing (2.7.4) by  ( ) and differentiating allows us to combine both (2.7.4) and 

(2.7.5) in a single second-order differential equation: 

 

  

  

 ( )

  ( )

  
        ( )                                  (     ) 

In order that  ( ) be finite, it is necessary that   ( ) vanish. Thus, given an equation 

of state    ( ) (with      ⁄   ), we can obtain  ( ) by solving equation (2.7.6) 

with the initial conditions that  ( ) have some given value and that  

  ( )                                                                (     ) 

(equation (2.7.7) also follows from the requirement that  ( ) be an analytic function of 

   , and   at         ). We still need to prescribe an equation of state. It is 

often the case that the internal energy density is proportional to the pressure, that is 

         (   )                                      (     ) 

(here (   )   is jest a constant proportionality coefficient,   will not be the ratio of 

specific heats unless   and   are proportional to the temperature). The condition of 

uniform entropy per nucleon then reads 
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[  
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)  (

 

 
)
  

  
] 

And therefore 

     

Or, since 

       

                                                                 (     ) 

The proportionality constant   depends on the entropy per nucleon and chemical 

composition, but it does not depend on   or on  ( ). Any star for which the equation 

of state takes the form equation (2.7.9)  is called a polytrope. For Newtonian stars,   

is dominated by the total rest-mass    , so the nucleon number of the star is given to 

a good approximation by 

  
 

  
                                                                (      ) 

We also want to know the internal energy        . For general Newtonian 

stars this is given by equations (2.6. 26), (2.6.29) and (2.6.30) as 

                                                                    (      ) 

With the thermal energy   and the gravitational energy   given by 

  ∫      ( )   
 

 

                                                    (      ) 

   ∫      ( ) ( )   
 

 

                                       (      ) 

We now show that for polytropes,   and   are given by the remarkably simple 

formulas [67]: 

  
 

(    )

   

 
                                                     (      ) 

   
 (   )

(    )

   

 
                                                (      ) 

So the total internal energy is 
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(    )

(    )

    

 
                                            (      ) 

To prove the formula for  , we use equation (2.7.4) to rewrite (2.7.13) as  

    ∫   
  ( )

  
       ∫    ( )

 

 

                        (      )
 

 

 

Multiplying and diving in the integrand by  ( ), we have  

    ∫
 ( )

 ( )
   ( )   ∫  ( )  (

 ( )

 ( )
)

 

 

 

 

 

(we assume here that    , so that   ⁄  vanishes at  ) This can be evaluated by using 

the equation of state to calculate 
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So  

    (
   

 
)∫

   ( )

  

 

 

                                           (      ) 

Sine     ⁄    (  ⁄ ), we can integrate by parts once again, and find 

    [
   

 
] *

    

 
   ∫      ( ) ( )  

 

 

+   [
   

 
] *

   

 
   + 

Solving for   then gives the desired result (2.7.15), to calculate   we use equation 

(2.7.8) in (2.7.17), which gives 

    (   )                                                      (      ) 

Equations (2.7.15) and (2.7.19) then give the desired result (2.7.14). From equations 

(2.7.10), (2.7.12), (2.7.13) and (2.7.8) give 

  
  

   
                                                                 (      ) 

  
  

 
(   )                                                        (      ) 

   
    

  
                                                               (      ) 

So, eliminating   

                 
 

 ⁄                                         (      ) 

Where  
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                                                               (      ) 

  
 

 
(
  

 
)
  ⁄

    ⁄                                               (      ) 

For     ⁄ ,   has a minimum at 

  (
 

  (   )
)
 (    ⁄ )⁄

 (
   ⁄  (   ⁄ )  ⁄

  
)

 (    ⁄ )⁄

           (      ) 

Corresponding to a configuration of stable equilibrium. for     ⁄ ,   is stationary 

with respect to   only if it vanishes everywhere, which requires that    , or  

  (
  

 
)
  ⁄

(
  

 
)
   ⁄

                                        (      ) 

For     ⁄ ,   has a maximum at the point (2.7.26), corresponding to a state of 

unstable equilibrium. Incidentally, equation (2.7.26) gives an estimate for the mass 

  
  

 
 (    )  ⁄ (

   

   
)
  ⁄

 

The variational approach also provides a simple method for estimating the oscillation 

frequency for dilation and contraction of the star. Equations (2.7.20), (2.7.21) and 

(2.7.22) show that for fixed  , 

      (   )       ,                  

We can be use equations (2.7.14) and (2.7.15) to fix the correct values of   and   at 

the equilibrium radius (which we shall now write as    , to distinguish it from the 

instantaneous radius   of an oscillating configuration). This gives then 

  
 

(    )

   

   
(    )

  (   )  
 (   )

    
       

For     ⁄ , this has a minimum at      , as it should . for   near    ,   behaves 

like  

      
 (   )(    )

 (    )
 
   

   
 (     )

 
 

The uniform dilation of a sphere with uniform density will give it a kinetic energy  

  
 

  
  ̇  
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So the condition of energy conservation, that    , be constant, leads to modes with 

             

   *
 (   )(    )

    

   

   
 +

  ⁄

                                 (      ) 

Finally, we note that a uniform sphere rotating with angular velocity   will have 

kinetic energy 

  
 

 
    

     

This must be less than the binding energy – , so the maximum angular velocity with 

which a star can rotate is of order 

     *
 (    )

(    )

   

   
 +

  ⁄

 
  

√   
                         (      ) 

Of course a star rotating this fast will no longer be a sphere, and (2.7.29) only gives an 

order of magnitude estimate of the actual maximum rotation frequency. 

Now let us apply what we have learned to the stars known as white dwarfs. Imagine an 

aged star that exhausts its nucleon fuel and begins to cool and contract . when the 

temperature is sufficiently low (see below for just how low), the electrons will be 

frozen into the lowest available energy levels. The Pauli principle tells us that there 

will be tow electrons in each level (because of the tow spin states available) an there 

are     (   )       levels per unit volume with momenta between   and     , so 

the number of electrons per unit volume will be related to the maximum momentum 

   by 

  
  

(   ) 
∫   

  

 

   
  

 

     
                                     (      ) 

The mass density is 

                                                                    (      ) 

Where   is the number nucleons per electron,     for stars that have used up their 

hydrogen. This gives 

    (
    

   
)

  ⁄

                                                    (      ) 
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The condition that the temperature is negligible is 

   [  
    

 ]  ⁄     

The kinetic energy density and pressure of these electrons are 

  
  

(   ) 
∫ [(     

 )  ⁄    ] 
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∫

  

(     
 )  ⁄

                                     (      )
  

 

 

The equation of state here is not simple, but it reduces to a polytrope in two extreme 

cases, distinguished by the criteria      or      where    is the critical density at 

which    becomes equal to    (in e.g.s. units)  

   
      

    

     
                ⁄                             (      ) 

(A)       in this case      , so equations (2.7.33) and (2.7.34) give 
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This is a polytrope, with 
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                          (      ) 

(B)      in this case       , so equations (2.7.33) and (2.7.34) give 
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This is a polytrope, with 
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)

  ⁄

                               (      ) 

2.8 Neutron Stars: 

We saw in the last section that a white star supported by the pressure of cold 

degenerate electrons cannot be in equilibrium if its mass is greater than the 
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Chandrasekhar limit, about    ⁄   
    ⁄⁄ . Also, the gravitational potential at the 

surface of such a star cannot be greater than about     ⁄ , so general relativity plays 

no role in its structure.  

Continuing our search for astrophysical application of general relativity, let us ask 

what happens when a star whose mass is above the Chandrasekhar limit reaches the 

end of its thermonuclear evolution and grows cold. Its internal pressure then fails to 

the support it, and it collapses. On possibility is that the star will simply go on 

collapsing forever, in which case general relativity will certainly come into play. 

Another possibility is that the star will become so heated during its collapse that it will 

explode, becoming a supernova. It might then blow off enough matter so that its mass 

drops below the Chandrasekhar limit [68]. It is believed that in this case the highly 

compressed remnant does not find its quietus as a white dwarf, but rather becomes a 

super dense neutron star [68]. A neutron star is like a white dwarf, except that it 

consists almost entirely of “cold” degenerate neutrons, all electrons and protons having 

been converted into neutrons through the reaction    ̅     . The neutrinos 

escaping the star. Enough electrons and protons must remain so that the Pauli principle 

prevents neutron beta decay,      ̅   ̅, this sets a lower limit on the mass of 

stable neutron stars, to be evaluated below. Neutron stars of low mass are much like 

white dwarfs of the same mass, except that neutron degeneracy pressure replaces 

electron degeneracy pressure, and thus    should be replaced in all formulas with     

Thus, by noting how    enters in formulas equations (2.7.35), (2.7.36) and (2.7.37) 

for small white dwarfs, we can immediately conclude that a neutron star of small mass 

will have a central density higher than that of a white dwarf with the same mass and 

(   ) by a factor 
 

 
(    ⁄ )         , and will have a radius smaller by a 

factor,       ⁄     . 

Another difference that is even more interesting is that, whereas a white dwarf whose 

electrons are moderately relativistic will have a surface gravitational potential 

   ⁄  of order     ⁄  , a neutron star of equal mass will have a surface potential 

roughly of order unity. Thus general relativity will necessarily play a role in the theory 

of the more massive neutron stars. In order to formulate the quantitative theory of 
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neutron star, we begin by writing down expressions for the total energy density and 

pressure of an ideal Fermi gas of neutrons with maximum momentum   :                  

  
  

(   ) 
∫ (     

 )  ⁄   
  

 

      ∫ (    )  ⁄   
    ⁄

 

      (     ) 

  
  

 (   ) 
∫

  

(     
 )  ⁄

  

 

       ∫ (    )   ⁄   
    ⁄

 

     (     ) 

Where now (in c.g.s units) 

   
    

   

 (   ) 
               ⁄                                (     ) 

 By eliminating     ⁄  equations (2.8.1) and (2.8.2), we obtain the equation of state in 

the form 

 

  
  (

 

  
)                                                                   (     ) 

With   a definite transcendental function. The structure of a neutron star with given 

central density  ( ) is to be calculated by solving (      ) with   given as a function 

of   by equation (     ). Since the only dimensional quantities in these equations are 

 ( ),   , and  , the solution must give the mass and radius as functions of  ( ) of the 

form 

     (
 ( )

  
)                                                   (     ) 

      (
 ( )

  
)                                                    (     ) 

Where (in c.g.s units)  

    (     )
   ⁄                                       (     ) 

   
    

 
                                                        (     ) 

And   and   are unknown dimensionless functions. This problem, like that of the 

white dwarfs, is analytically tractable only for very large and very small central 

densities. With    now given by equation (2.8.3). For  ( )    , the neutrons near the 

center of the star have      , so (2.8.1) and (2.8.2) give 
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And therefore 

  
 

 
                                                                    (     ) 

As would be expected for a gas of highly relativistic particles. Using this equation of 

state in the fundamental differential equation (2.6.13) gives 

     ( )     ( ) ( ) *  
     ( )

  ( )
+ *  

   ( )

 
+

  

           (      ) 

Amazingly, we can find an exact solution of this equation [69]: 

 ( )  
 

      
                                                   (      ) 

Corresponding to the limit  ( )     However, even in the limit of infinite central 

density, this  ( ) will drop below    at a radius   of order   , so that the equation of 

state (2.8.9) is not valid for the outer layers of any neutron star. To deal with the crust 

of nonrelativistic neutron, it is necessary to solve the full equation (2.6.13) using the 

equation of state (2.8.4); the condition of infinite central density is imposed by (2.8.11) 

for     . We shall not do this here; the important points are that the solution has a 

finite radius   where    vanishes, and that the mass   within this radius is finite, 

because the singularity in equation (2.8.11) is integrable at    . Thus the mass and 

radius of a neutron star approach finite limits as  ( )   . Numerical solution of the 

fundamental equation (2.6.13) gives these limits as [68]. 

                                                                   (      ) 

This expectation is confirmed by detailed calculation [68] using equations (2.6.13) and 

(2.8.1)- (2.8.3). The mass   of a pure ideal-gas neutron star reaches a maximum 

                                                           (      )      

At a radius 

                                                            (      ) 

Since this a point where     ( )⁄  vanishes, we expect a transition here from 

stability to instability with respect to radial oscillation. Thus equations (2.8.13) and 

(2.8.14) characterize a neutron star with the greatest mass and central density allowed 



34 
 

by the requirement that the star be stable. The mass (2.8.13) is known as the 

Oppenheimer-Volkoff limit. Note that the fractional red shift of a spectral line emitted 

from the surface of such a neutron star is 

  
  

 
     ⁄ (  )    (  

    

  
)
   ⁄

                      (      ) 

(see equations (2.6.1) and (2.6.17)) evidently general relativity is just beginning to be 

important for the most massive stable neutron stars. of course, a neutron star cannot 

consist purely of neutrons, if only because we need a Fermi sea of electrons so that the 

Pauli exclusion principle can black the neutrons beta decay. In order to get a first taste 

of the chemical composition in a neutron star, let us consider the equilibrium among 

neutrons, protons and electrons. The energy density and number density of each one of 

these three Fermi gases are given (For         ) by 
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                                  (      ) 

At any given point in the star, the reactions        ̅ and         can 

convert neutrons into protons and vice versa. (the neutrons escape) these reactions 

preserve the total number density of baryons  

                                                              (      ) 

And preserve charge neutrality 

                                                              (      ) 

But with    fixed, the total energy density may be expressed in terms of     alone 
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Where                                                    (     )  ⁄  

Chemical equilibrium is reached when this function is minimum, that is, as 
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We can solve for          as a function of    , and find 
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The nucleon mass difference         and the electron mass me are of 

comparable magnitude and very much less than   , so this result can be written more 

simply as  
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Where      
   ⁄ is the critical density previously defined in equation (2.8..3). The 

condition for the neutrons to be stable against beta decay is that the electrons Fermi sea 

should be filled up to momentum greater than maximum momentum      of electron 

emitted in neutron beta decay. 
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The electron Fermi momentum is given by equations (2.8.17) and (2.8.19) as 
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This is smallest at     , where      barely equals the value     . Hence the 

condition (2.8.22) for neutron beta stability is indeed satisfied for any positive neutron 

density. The proton ratio (2.8.21) is large and decreasing for      equal to the 

transition density 

     (
 (     

 )

  
 

)

  ⁄

                                         (      ) 

Where 

(
  

  
)
   

 (
   

 
 

(     
 )  ⁄

  
)

  ⁄

                           (      ) 

2.9 Supermassive Stars: 

We now turn to a different kind of “star” [70] in which general relativity enters in quite 

a different way. Let us consider a Newtonian star that is supported by the pressure of 

radiation rather than of matter, the conditions under which this occurs will be 

discovered as we go along. Let us also assume that the star is in convective equilibrium 

(see section 2.6) and has uniform chemical composition. Radiation has an energy 

density     , so this star will be a polytrope with     ⁄ , that is 

      ⁄                                                               (     ) 

This radiation pressure is given by the Stefan-Boltzmann law 

   
  (  ) 

    
                                                         (     ) 

So with     , the temperature is given by 

   (
     

  
)

  ⁄

   ⁄                                                (     ) 

The pressure of matter here is given by the ideal-gas law 

    
  

 ̅
                                                              (     ) 

Where  ̅ is the mean mass of the gas particles. Thus the ratio of matter to radiation 

pressure is 
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                                   (     ) 

This is a constant throughout the star, so we can use   instead of   (or the entropy per 

nucleon, on which they both depend) to define the equation of state, writing  

  (
    

 ̅     
)

  ⁄

                                                          (     ) 

The value of  ( ) for which the internal energy   is stationary. To calculate  , we use 

equations (2.6.29), (2.6.30) and (2.6.31), which to first order in    ⁄  give 
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 ∫       ( ) ( )   
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The internal energy density   is  
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 ̅
     [  

 

 (   )
] 

Where,   is the specific heat ratio of the matter. (for ionized hydrogen,     ⁄ ) the 

total pressure is 

          (   ) 

Therefore, to first order in the small parameter  , the ratio of energy density to 

pressure is given by 

    *  
(    )

 (   )
   (  )+                              (     ) 

The small correction of order   can be ignored in the second term in (2.9.7), which is 

already smaller than the first term by a factor of order    ⁄ , but it must be kept in the 

large first term, and therefore 

  *  
(    )

 (   )
 +∫       ( )  
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 ∫       ( ) ( )   
 

 

         (     ) 

The first integral can be rewritten by integrating by parts: 
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To calculate   ( ), we expand the fundamental equation (2.6.13) to first order in 

   ⁄ : 
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The  -correction needs to be kept in only the first term, which is larger than the others 

by a factor of order    ⁄ , so to first order in   and    ⁄ , equation (2.9.9) reads 
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      (      ) 

Now every term is small, so they can all be evaluated using for  ,   and   the values 

obtained by solving the Newtonian equation 

     ( )    ( ) ( ) 

For a Newtonian polytrope with     ⁄ . In particular, the first integral in (2.9.10) is 

given by setting     ⁄  in equation (2.7.15) 
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Whereas an integration by parts lets us write the third term as 
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Equation (2.9.10) now reads 
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 ∫      ( ) ( )   

 

 

 ∫       ( ) ( )   
 

 

 

So, putting this all together, we have at last 
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                            (      ) 

The star is certainly stable when   is so large that general relativity can be neglected, 

for then the star behaves like a Newtonian polytrope with 

    
 

 
 

 

 
 

(    )

 (   )
  

 

 
  

(see equation (2.9.8)). The transition from stability will occur when   decreases to a 

value where 

  

  
 

  

  ( )

  ( )

  
   

The derivative must be taken with constant entropy per nucleon, and hence in this case 

with   fixed and   fixed. (see equation (2.9.6)). Thus the minimum radius for stability 

is 

     
    (   )

(    )
 
  

 
                                                (      ) 

The maximum energy that can be released by letting the star shrink slowly (through 

radiation at its surface) to this minimum stable radius is 

  (    )  
(    )    

     (   ) 
                                              (      ) 

For instance, a star with       will have           if     ⁄  then the 

minimum radius is            , and the fraction of its rest-mass that can be 

released by assembling the star is 0.03%. The maximum value of the surface potential 

   ⁄  for     ⁄ . 

2.10 Stars of Uniform Density: 

General relativity finds an interesting application to one other class of stable stars, 

those consisting of incompressible fluids, with equation of state constant 

                                                              (      ) 
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These stars are of interest, not because they actually exist (they don't), but because 

they are simple enough to allow an exact solution of Einstein's equation [71] and 

because they set an upper limit to the gravitational red shift of spectral lines from the 

surface of any star [72]. With   constant, the fundamental equation (2.6.13) may be 

writing 

   ( )

[   ( )] *
 
 

  ( )+
     *  

      

 
+

  

                      (      ) 

The pressure must now be determined by integrating inward from the surface where 

   , rather than outward, as for more realistic models. This gives 

 ( )   
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  ⁄

 

Solving for  ( ), and expressing   in terms of the stellar mass 
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We find 
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The metric component  ( ) is immediately given by equation (2.6.11) 

 ( )  *
       

  
 +

  

                                               (      ) 

Whereas  ( ) can be calculated by using (2.10.4) in the integral (2.6.16): 
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                           (      ) 

The most interesting feature of this solution is that it does not make sense for all values 

of   and  . The pressure given by equation (2.10.4) will become infinite at a point    

where 

  
      

   

  
                                                                (      ) 
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(Also, the metric becomes singular at    because  (  ) vanishes.) But the pressure is 

a scalar, and so an infinity in  ( ) cannot be blamed on an injudicious choice of 

coordinate system. We must see to it that  ( ) is not singular for any real  , and the 

only way to accomplish this is to have   
   negative, or 

  

 
 

 

 
                                                                (      ) 

Note that the Schwarzschild radius     is then less than 8/9 the actual radius  , so 

there is no singularity in either the exterior solution (2.10.17) or the interior solutions 

(2.10.5) and (2.10.6). 

This is not the first time that we have discovered an upper bound on the absolute value 

   ⁄  of the gravitational potential of a star. We learned in Section 2.8 that for a 

stable ideal-gas neutron star,    ⁄  is never greater than 0.36/3.2, or 0.11(see 

equations (2.8.13) and (2.8.14)). Is there then an absolute upper limit to    ⁄  

imposed by the structure of the Einstein equations, irrespective of the equation of state. 

To frame this question as a mathematical problem, we consider   as an arbitrary finite 

positive function, subject only to these general requirements   

(A) The radius   is fixed, with 

 ( )          for                                              (      ) 

(B) The mass   is fixed, with 

∫      ( )                                                 (       )
 

 

 

(C) The metric coefficient  ( ) given by (2.6.11) must not be singular, so  

 ( )  
 

  
                                                            (       ) 

Where 

 ( )  ∫       (  )    
 

 

 

 (D) The density  ( ) must not increase outward 

  ( )                                                         (       ) 

(It is difficult to imagine that a fluid sphere with a larger density near the surface than 

near the center could be stable). Given any function  ( ), satisfying these conditions, 
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we can calculate  ( ) from equation (2.6.11); we can determine  ( ) by integrating 

equation (2.6.13) inward from the surface (with the boundary condition that  ( )  

 ); and we can then calculate  ( ) from equation (2.6.16). Equation (2.10.11) 

guarantees that  ( ) is well behaved, and  as long as  ( ) is finite, equation (2.6.13) 

will give  ( )   , and equation (2.6.16) will give a finite positive-definite  ( ). 

Thus any absolute limitations on the input function  ( ) (such as an upper bound on 

   ⁄ ) can only come from the condition that equation (2.6.13) must yield a finite 

solution for the pressure  ( ). We shall exploit this condition rather indirectly, by 

concentrating on the metric coefficient  ( ) rather than on  ( ) itself. We first derive 

an equation that allows  ( ) to be calculated for a given density function  ( ), 

without having to solve for  ( ); from equations (2.6.5) and (2.6.7), we have 
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This equation can be linearized by defining  

                                                                      (       ) 

Introducing equation (2.6.11) for  ( ), and rearranging a bit, we find 

 

  
[
 

 
(  

   ( )

 
)

  ⁄
  ( )

  
]   *  

   ( )

 
+

   ⁄

*
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+

 

 ( )          (       ) 

The initial conditions at     can be determined directly from equation (2.6.16), or 

from the condition that  ( ) fit smoothly to the exterior solution (2.6.17), either way, 

we find that 

 ( )  [  
   

 
]
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                                            (       ) 

  ( )  
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]
   ⁄

                                   (       ) 
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The solution for  ( ) must be positive, because  ( ) can become negative only if it 

passes through the value zero, at which point   would vanish, and, according to 

equation (2.6.16),   can vanish only if the pressure  ( ) has a singularity. 

We next proceed to derive an upper bound for  ( )  If   is positive, then the right-hand 

side of (2.10.14) is negative, because   ( )     ⁄ is the mean density within the 

radius  , and the mean density cannot increase with   if the density does not. Thus 

equation (2.10.14) gives 

 

  
[
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   ( )

 
)

  ⁄
  ( )

  
]    

The equality being attained only for uniform density. Integrating this inequality from   

to   and using (2.10.16), we have 
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Integrating again from 0 to   and using (2.10.15) gives 
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∫

    

[  (   ( )  ⁄ )]  ⁄

 

 

 

The right-hand side is largest when  ( ) is as small as possible. For a given mass    

and radius  , the density distribution with   ( )    that gives an  ( ) that is 

everywhere as small as possible has  ( ) constant, in which case 

 ( )  
   

  
 

Using this in the integral, our inequality is  

 ( )  
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)
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                                   (       ) 

We have already noted that  ( ) must be positive-definite; hence (2.10.17) implies 

that 

  

 
 

 

 
                                                        (       ) 

This is just the upper limit found earlier for stars of uniform density, but now we know 

that (2.10.18) holds for all stars, uniform or not. 
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It can also be proved that for a given mass and radius, the stable stars with smallest 

central pressure are those with uniform density. Hence the central pressure of any star 

is not less than the value obtained by setting      in equation (2.10.4) that is  

 ( )  
  

    
[

(  
   
 )

  ⁄

  

   (  
   
 )

  ⁄
]                            (       ) 

This again shows that    ⁄  can never equal the forbidden value   ⁄ . Our result can 

be immediately translated into a statement about the red shift of spectral lines from the 

surface of any star. According to equations (2.6.1) and (2.6.17), this is 

  
  

 
     ⁄ ( )    (  

   

 
)
   ⁄

   

Equation (2.10.18) imposes on   the upper bound 

                                                                 (       ) 

However, we should not jump to the conclusion that these red shifts are necessarily 

due to strong gravitational field, for red shifts near     require the star to be 

composed of a nearly incompressible fluid, with     ⁄  very small. This would seem 

unphysical, since we do not want the speed of sound (    ⁄ )  ⁄  to become larger 

than the speed light [73] Bondi [74] has shown that for a stable star with     ⁄    

and with   ⁄     ⁄  . 

However, there is no theorem that limits the red shifts of light signals from the interior 

of static spherically symmetric bodies [75, 76]. For instance, a light signal from the 

center of a transparent uniform star would have a red shift given by equations (2.6.1) 

and (2.10.6):    

        ⁄ ( )  
 

 (  
   
 )

  ⁄

  

 

As    ⁄  approaches the maximum value 4/9, this red shift becomes infinite. Hoyle 

and Fowler [76] have suggested that a quasi-star object can consist of a cluster of small 

dense stars, with the red shifts arising from emission and absorption in a hot cloud of 

gas trapped near the cluster center. 
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2.11 Time-Dependent Spherically Symmetric Field: 

We now turn to the problems of star dynamics and begin by writing down the metric 

and Ricci tensor for a spherically symmetric but time-dependent system. spherical 

symmetry requires the proper time interval     to depend only on the rotational 

invariants   

                           (             ) 

So it can be written  

      (   )      (   )       (   )        (   )   (             ) 

The function   can be removed by defining a new radial variable  

        ⁄ (   ) 

The metric will then be of the same from, but with new functions   ,   ,    in place of 

 ,  ,  , and of course with    in place of   and no factor  . Dropping primes, we have 

then 

     (   )      (   )       (   )          (             ) 

We next remove  , by defining a new time 

      (   )[ (   )     (   )   ] 

Where   is an integrating factor defined to make the right-hand side a perfect 

differential, that is, so that  

 

 
[ (   )  (   )]   

 

  
 [ (   ) (   )] 

(this equation can be solved by treating it as an initial value problem; given  (    ) for 

all  , we can solve for   (   )   ⁄  at       and thus determine  (       )for all  ) 

the proper time is then 

                  (       )       (             ) 

Or, introducing new functions   and   in place of          and         and 

dropping the prime on  .  

     (   )      (   )        (             )           (      ) 

Thus we can use the metric in its familiar “standard” from, the only new feature being 

that   and   now depend on   as well as  .  

The non-vanishing elements of the metric tensor and its inverse are   
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It follows that the non-vanishing elements of the affine connection are  
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We obtain the independent nonzero components of the Ricci tensor: 
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Also, it follows from the spherical symmetry of the metric that   

                                                                                     (      ) 

                                                            (      ) 

As a simple but important application of these results, let us consider a spherically 

asymmetric but not necessarily static field in empty space, where the field equations 

read      . According to (2.11.7) the field equation       just tells us that   is 

time-independent 

 ̇     

Inspection of (2.11.4) – (2.11.6) then shows that all time derivatives drop out of the 

field equations, and they become identical with the equations for a static isotropic 

gravitational field in empty space. The vanishing of      and     gives 

(  )    

And the vanishing of     gives   
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(
 

 
)
 

   

Since   is time-independent, the general solution is   

  (  
  

 
)
  

            ( ) (  
   

 
) 

With    a time-independent integration constant, and  ( ) an unknown function of  . 

The function  ( ) can be made to equal unity by defining a new time coordinate 

   ∫    ⁄ ( )   
 

 

 

The metric is now entirely time-independent, and agrees with the Schwarzschild 

solution. We have thus proved the Birkhoff theorem [30], that a spherically symmetric 

gravitational field in empty space must be static, with a metric given by the 

Schwarzschild solution. 

The Birkhoff theorem is analogous to the result proved by Newton in his theory of the 

lunar motion, that the gravitational field outside a spherically symmetric body behaves 

as if the whole mass of the body were concentrated at the center. It is a little surprising 

that this result should apply in general relativity as well as in Newton's theory, for in 

general relativity a non-static body will usually radiate gravitational waves. the 

Birkhoff theorem tells us that, although a pulsating spherically symmetric body can of 

course produce non-static gravitational fields within its mass, no gravitational radiation 

can escape into empty space. in this sense, the Birkhoff theorem is analogous to the 

well-known result of atomic theory, that a photon cannot be emitted in a quantum 

transition between two states of zero spin.  

The Birkhoff theorem may be applied, not only to the gravitational field outside a 

body, but also to the field inside an empty spherical cavity at the center of a spherically 

symmetric (but not necessarily static) body. In this case the metric is again given by 

the Schwarzschild solution, but since the point     is here in empty space, there can 

be no singularity, so the integration constant    must vanish. The Birkhoff theorem 

thus has the corollary that the metric inside an empty spherical cavity at the center of a 

spherically symmetric system must be equivalent to the flat-space Minkowskian metric 

   . This corollary is analogous to another famous result of Newtonian theory, that the 
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gravitational field of a spherical shell vanishes inside the shell. Stars do not usually 

have holes at their centers, so this corollary will not be of much use to us in this 

chapter. Its importance arises from the fact that the Birkhoff theorem is a local 

theorem, not depending on any conditions on the metric for     (aside from 

spherical symmetry), so that space must be flat in a spherical cavity at the center of a 

spherically symmetric system, even if the system is infinite even, in fact, if the system 

is the whole universe. That the corollary to Birkhoff theorem can be used to justify a 

limited use of Newtonian mechanics in cosmological problems. 

2.12 Commoving Coordinates System: 

The metric     in commoving coordinates is characterized by certain specially simple 

features. First, we note that the clocks are in free fall and therefore tell proper time , so 

the proper time interval between two points ( ,  ) and ( ,     ) on a given particle's 

trajectory is just   , that is 

                        

And therefore 

                                                                 (      ) 

Also, we note that the particle trajectory   = constant,     satisfies the equation of 

free fall, so 

   
  

    

   
    

 
   

  

   

  
   

Using equation (2.12.1) this gives 

   
    

  
   

Or, since     is generally a nonsingular matrix 

    

  
                                                           (      ) 

We have kept open the option of setting the clocks attached to the different particles in 

an arbitrary fashion. Suppose that we reset these clocks by a transformation. 

      ( )                                                      (      ) 

The new metric will have the elements 

   
                                                              (      ) 



49 
 

   
      

  

   
                                                         (      ) 

   
         

  

   
    

  

   
 

  

   

  

   
                             (      ) 

It would be a great simplification if the function   could be chosen so that the to two 

terms in equation (2.12.5) cancel, giving    
   . there are two important cases where 

this is possible: 

(A) Suppose that we can reset all clocks so that all particles are at rest at a time    . 

This assumption can be given an absolute physical significance by interpreting it to 

mean that for each particle   at    , it is possible to find a locally inertial coordinate 

system  ̃  in which the separation between   and neighboring particles is purely 

spatial 

(
  ̃ 

   
)

         

    

And in which the movement of   in a time interval    is purely temporal 

*
  ̃ 

  
+
            

    

The metric in this locally inertial system is the Minkowskian metric    , so the space-

time components of the metric in the commoving system at     are      

   (    )  [   

  ̃ 

   

  ̃ 

  
]
        

   

With (2.12.2), it follows that     vanishes everywhere, so the metric is given by     

           (   )                                                      (      ) 

(B) If the metric is manifestly spherically symmetric, then the line element must have 

the general form with which we started in the last section, that is    

     (   )     (   )      (   )        (   )  (             ) 

The only non-vanishing time-space component     is       , and equation (2.12.2) 

then tells us that   is time-independent, so 

      ( ) 

          



51 
 

We can therefore eliminate the components    by resetting the clocks as in equation 

(2.12.3), with  

    ∫  ( )   
 

 

 

Using equation (2.12.4) and  dropping primes, the metric is now of the from 

         (   )     (   )(             )             (      ) 

With   and   new unknown functions that replace   and   . 

It is of course possible to construct coordinate systems of this sort even if the cloud of 

freely falling particles is purely imaginary. In differential geometry, coordinate 

systems satisfying (2.12.1) and (2.12.2) are called Gaussian, and if     vanishes, so 

that the line element takes the form equation (2.12.7), then we call the coordinates 

Gaussian normal. However, these coordinate systems find their most important 

applications to system That actually do consist of a freely falling fluid. In this case the 

fluid velocity four-vector by definition has zero space component           

                                                                        (      ) 

And since    is normalized so that 

    
                                                           (       ) 

The time component of    must be 

   (    )
   ⁄                                             (       ) 

We shall be working only with spherically symmetric commoving coordinate systems, 

with line element (2.12.8). The non-vanishing elements of the metric tensor are   

                                                            

                                      (      )                           (       ) 

The non-vanishing elements of the affine connection are readily calculated as  

   
  

  

  
               

   
  

  
             

   
  

  
                     

     
  

 ̇
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 ̇

 
                

   
 ̇

 
                      (       ) 

The Ricci tensor: 

    
   

 
 

   

   
 

    

   
 

 ̈

 
 

 ̇ 

  
 

 ̇ ̇

  
                             (       ) 

       
   

  
 

    

   
 

 ̈

 
 

 ̇ ̇

  
                                        (       ) 

    
 ̈

  
 

 ̈

 
 

 ̇ 

   
 

 ̇ 

   
                                                   (       ) 

    
  ̇

 
 

   ̇

   
 

 ̇  

   
                                                           (       ) 

Also, it again follows from the spherical symmetry of the metric that 

                                                              (       ) 

                                        (       ) 

2.13 Gravitational Collapse: 

We saw in sections (2.7) and (2.8) that a cooling star of mass greater than a few solar 

masses cannot reach equilibrium as white dwarf or a neutron star. It may be that a 

massive star will always eject enough matter by the time it reaches the end of its 

thermonuclear evolution so that its mass drops below the Chandrasekhar or the 

Oppenheimer-Volkoff limits. If not, then it will collapse. 

A proper treatment of gravitational collapse would be prohibitively complicated for 

this Research. In order to get some feeling for what can happen during collapse, we 

consider only the simples case, [76] the spherically symmetric collapse of “dust” with 

negligible pressure. Since the dust particles are acted on by purely gravitational forces, 

they fall freely, and we can use them as the physical basis of a commoving coordinate 

system of the sort discussed in the last section. The metric then given by equation 

(2.12.8): 

         (   )     (   )(             )                    (      ) 

The energy-momentum tensor for a fluid of negligible pressure is given 

                                                                      (      ) 
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Where  (   ) is the proper energy density and    is the velocity four-vector, given for 

a commoving coordinate system by equations (2.12.9) and (2.12.11): 

                ,                                             (      ) 

The equations of momentum conservation (  
 
)
  

  , are automatically satisfied, and 

the equation for energy conservation reads 

(  
 
)
  

  
  

  
     

   
  

  
  (

 ̇

  
 

 ̇

 
)    

Or in other words 

 

  
(  √ )                                                        (      ) 

The Einstein field equations can be written 

                                                                 (      ) 

Where 

        
 

 
     

   [
 

 
        ]                     (      ) 

This may be evaluated with the aid of equation (2.13.1) and (2.13.3); we find that the 

only non-vanishing components of     are 

     
 

 
             

 

 
                                

 

 
              (      ) 

In particular 

                                                                     (      ) 

Using equations (2.13.7), (2.13.8) and (2.12.14) - (2.12.17) in (2.13.5) yields four field 

equations 
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Let us simplify our model even further, and assume that   is independent of position 

[32]. We can now seek a separable solution, with 

    ( ) ( )              ( ) ( ) 

Then (2.13.12) requires that 
 ̇

 
 equal 

 ̇

 
, so we can normalize   and   so that  

 ( )   ( ) 

Also, we are still free to redefine the radial coordinate as an arbitrary function  ̅ of  , 

and in particular we can choose   √ ( ) , so   and   are replaced with 

 ̅  
    

  
       ̅   ̅     

Dropping the tildes, we have then 

    ( ) ( )                   ( )                            (       ) 

Equations (2.13.9) and (2.13.10) then read 

 
  ( )

   ( )
  ̈( ) ( )    ̇ ( )        ( ) ( )                (       ) 

*  
 

  
 

 

   ( )
   

  ( )

    ( )
 +   ̈( ) ( )    ̇ ( )        ( ) ( )  (       ) 

The first terms in (2.13.14) and (2.13.15) must evidently be equal constants, which we 

shall call-  : 

 
  ( )

   ( )
   

 

  
 

 

   ( )
   

  ( )

    ( )
     

The unique solution is 

 ( )  [     ]   

So the metric takes the form 

          ( ) *
   

     
                  +       (       ) 

Our remaining problem is to calculate the functions  ( ) and  ( ). Using equations 

(2.13.13) and (2.13.14) in the energy-conservation equation (2.13.4), we find that 

 ( )  ( ) is constant. We normalize the radial coordinate   so that 

 ( )                                                            (       ) 

And therefore  
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 ( )   ( )   ( )                                              (       ) 

The field equations (2.13.14) or (2.13.15) and (2.13.11) are now ordinary differential 

equations  

     ̈( ) ( )    ̇ ( )       ( )   ( )                         (       ) 

 ̈( ) ( )   
   

 
 ( )   ( )                                              (       ) 

We can eliminate  ̈( ) by adding these two equations, and find 

 ̇ ( )     
   

 
 ( )   ( )                                              (       ) 

Equations (2.13.19) and (2.13.20) can be recovered from (2.13.21) and its time 

derivative, so we can forget about them and simply use (2.13.21) to calculate  ( ). We 

shall now assume that the fluid is at rest (in standard coordinates) at    , so 

 ̇( )                                                           (       ) 

And therefore (2.13.21) and (2.13.17) give 

  
   

 
 ( )                                                 (       ) 

Thus equation (2.13.21) can be written 

 ̇ ( )   [   ( )   ]                                        (       ) 

The solution is given by the parametric equation of a cycloid 

  (
      

 √ 
) 

  
 

 
(      )                                              (       ) 

Note that  ( ) vanishes when    , and hence when    , where 

  
 

 √ 
 

 

 
(

 

    ( )
)
  ⁄

                                     (       ) 

Thus a fluid sphere of initial density  ( ) and zero pressure will collapse from rest to a 

state of infinite proper energy density in the finite time  . Although the collapse is 

complete at a finite coordinate time    , any light signal coming to us from the 

sphere's surface will be delayed by its gravitational field, so we on earth will not see 

the star suddenly vanish. To make this more specific, we have to complete our 

calculation by finding the metric outside the star. 
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The Birkhoff theorem proved in (section (2.11)) shows that it is always possible to find 

a “standard” coordinate system  ̅  ̅  ̅ , ̅ in which the metric outside the sphere takes 

the form 

    (  
   

 ̅
)  ̅  (  

   

 ̅
)
  

  ̅   ̅   ̅   ̅      ̅   ̅       (       ) 

But this metric is not in the Gaussian normal form (2.13.1), so in order to match 

solution at the surface we either have to convert the interior solution (2.13.16) into 

standard coordinates, or the exterior solution (2.13.27) into Gaussian normal 

coordinates. We choose the former course [77]. 

Inspection of equation(2.13.16) shows immediately that the standard spatial coordinate 

 ̅  ̅  ̅ must be chosen as 

 ̅     ( )  ,     ̅      ,      ̅                                  (       ) 

In order to define a standard time coordinate such that     does not contain a cross-

term   ̅   ,̅ we employ the “integrating factor” technique described in section (2.11), 

which gives 

 ̅  (
     

 
)

  ⁄

∫
  

(  
   

 )

 

 (   )

(
 

   
)
  ⁄

                  (       ) 

Where 

 (   )    (
     

     
)

  ⁄

(   ( ))                            (       ) 

The constant   is arbitrary, but may conveniently be chosen as the radius of the sphere 

in commoving coordinates. It is straightforward to check that the metric in the 

coordinate system  ̅  ̅  ̅,  ̅ takes the standard form 

     ( ̅  ̅)   ̅   ( ̅  ̅)   ̅   ̅ (   ̅         ̅   ̅  ) 

With  

  
 

 
(
     

     
)

  ⁄ (  
   

 )
 

(  
   

 )
                          (       ) 
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  (  
   

 
)

  

                                                 (       ) 

It now being understood that   is a function of  ̃ defined by equation (2.13.29) and that 

  and  ( ) are function of  ̅ and  , or  ̅ and  ̅, defined by solving equations (2.13.28) 

and (2.13.30). This is a mass, but at the radius     of the star (a constant, since   is a 

commoving coordinate) we have 

 ̅   ̅( )    ( )                                                         (       ) 

 ̅  (
     

 
)

  ⁄

∫
  

(  
   

 )

 

 ( )

(
 

   
)
  ⁄

                     (       ) 

 ( ̅  ̅)  (  
   

 ( )
)                                                     (       ) 

 ( ̅  ̅)  (  
   

 ( )
)

  

                                                 (       ) 

We see that the interior and exterior solutions fit continuously at  ̅    ( ) if 

  
   

  
                                                              (       ) 

With (2.13.23), this just says that 

  
  

 
 ( )                                                         (       ) 

not a surprising result. 

Now we return to the problem of calculating the behavior of light signals emitted from 

the surface of the collapsing sphere. A light signal emitted in a radial direction at a 

standard time  ̅ will have   ̅   ̅⁄  given by equation (2.13.27) and the condition     , 

so it will arrive at a distant point  ̅ at a time 

 ̅   ̅  ∫ (  
   

 
)
   ̅ 

  ( )

                                 (       ) 

The most striking consequence of equations (2.13.39) and (2.13.34) is that both  ̅ and 

  ̅ approach infinity when the radius (2.13.33) of the sphere approaches the 

Schwarzschild radius    , that is, when 

 ( )  
   

 
                                                 (       ) 
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The collapse to the Schwarzschild radius therefore appears to an outside observer to 

take an infinite time, and the collapse to     is utterly unobservable from outside. 

Although the collapsing sphere does not suddenly disappear, it does fade out of sight, 

because light from its surface is subject to an increasing red shift. The proper time for 

a light source on the sphere's surface is just the commoving time  , so the commoving 

time interval between emission of wave crests at the surface equals the natural 

wavelength    that would be emitted by the source in the absence of gravitation. The 

standard time interval   ̅  between arrivals of wave crests at  ̅  is the observed 

wavelength    thus the fractional change of wavelength is 

  
     

  
 

  ̅ 

  
    

  ̅

  
   ̇( ) (  

   

  ( )
)
  

   

   ̇( ) *  
   

 ( )
+

  

[(
     

 
)

  ⁄

(
 ( )

   ( )
)

  ⁄

  ]    

Using equation (2.13.24) to determine  ̇( ), this is 

  *  
   

 ( )
+

  

[(     )  ⁄   √ (
   ( )

 ( )
)

  ⁄

]                (       ) 

In order to see how the red shift   varies with  ̅, let us assume that the sphere is 

initially very much larger than its Schwarzschild radius 

    
   

 
                                                  (       ) 

And distinguish two periods in the history of the collapse:  

(A) Until   gets close to  , we have 

   

 ( )
                                                           (       ) 

Using equations (2.13.42) and (2.13.43) in (2.13.34), (2.13.39) and (2.13.41) gives 

(with  ̅    ) 

 ̅    

 ̅   ̅   ̅    ( )     ̅    ( )     ̅  

   √ (
   ( )

 ( )
)

  ⁄

  √ (
   ( ̅   ̅ )

 ( ̅   ̅ )
)

  ⁄

        (       ) 
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(B) Eventually we have 

   

 ( )
   

at a time    given by equation (2.13.25) as 

   
 

 √ 
[  

 

 
(   )  ⁄ ]                                     (       ) 

Now (2.13.34), (2.13.39), and (2.13.41) give 

 ̅        *  
   

 ( )
+   constant 

  ̅   ̅       *  
   

 ( )
+   constant 

          *  
   

 ( )
+   constant 

   (  
   

 ( )
)

  

     (
  

    
)                             (       ) 

Putting (A) and (B) together, we conclude that the red shift   seen by an observer at  ̅  

is zero when the collapse is observed to begin, increases gradually but remains of order 

 √    until a time very close to     √ ⁄  has passed, and then grows 

exponentially with a rate      ⁄ . for example; a collapsing sphere with a mass 

        and radius       light years will have a red shift   of order      for a 

period of order     years, after which the red shift suddenly begins growing 

exponentially with an  -folding time of order 1min. For practical purposes, the 

collapsing sphere is suddenly and completely cut off from communication with the rest 

of the universe. 

Completely cut off. Even if a collapsing body does fade out of sight, it still has a 

gravitational field, and, as shown in (section (2.10) and (2.11)), the measurement of 

this field at great distances can be used to determine the energy, momentum, and 

angular momentum of the body. If the body has a net electric charge, then 

measurement of the electric field at great distances will, via Gauss's theorem, also tell 

us the charge. It is interesting to ask whether measurements of the gravitational and/or 

electromagnetic fields outside a collapsing body can yield any information about the 

body beyond the energy, momentum, angular momentum, and charge. 
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In the case of a spherically symmetric electrically neutral body, which we have been 

considering in this chapter the answer is provided by Birkhoff theorem: the 

gravitational field outside a spherically symmetric body must be of the Schwarzschild 

form, so all we can ever learn about the body is its mass. (spherical symmetry, of 

course, implies zero momentum and zero angular momentum.) 

Carter [78] has shown that when the gravitational field of an axially symmetric 

collapsing body settles down to a stationary state, its exterior metric belongs to a two-

parameter family of solutions, such as the Kerr metrics (see section (2.11)) that are 

completely specified by the total mass and angular momentum. It is widely believed 

that the gravitational field of any electrically neutral collapsing body will eventually 

approach the Kerr form. 

An mentioned in the introduction to this chapter, interest in the phenomenon of 

gravitational collapse was rekindled in the last decade by the discovery of quasi-stellar 

sources, which appear to require some powerful new source of energy. The maximum 

energy available from fusion of hydrogen into the most stable nuclei,  say iron, is only 

     per nucleon, or less than 1% of the rest-mass. Matter-antimatter annihilation 

could have 100% efficiency (apart from neutrino energy losses), but this process can 

be important only if there is some abundant natural source of antinucleons. Otherwise 

the only likely mechanism for conversion of mass into energy with high efficiency is 

gravitational collapse [79]. 

A cloud of dust that is collapsing as in the Oppenheimer-Snyder model will obviously 

release no energy to the outside world. To extract the growing kinetic energy of the 

falling particles, something must slow them on the way down either a macroscopic 

“bounce” of the whole system, or particle-particle collisions that heat the collapsing 

gas. Detailed calculations reveal a discouragingly low efficiency for conversion of 

mass into available energy in the gravitational collapse of an isolated body [80]. 

However, particles falling into a Kerr metric can reemerge with a higher energy, 

acquired at the expense of the rotational energy of the collapsing body [81].                      

Whether or not gravitational collapse has anything to do with quasi-stellar sources, the 

question remains: what happens to a real cooling star whose mass is above the 
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Chandrasekhar and Oppenheimer-Volkoff limits. In recent years topological methods 

have been used by Penrose and Hawking to prove a number of powerful theorems 

[82], to the effect that under reasonable conditions (validity of general relativity, 

positivity of energy, ubiquity of matter, causality) collapse becomes inevitable once a 

trapped surface forms. A trapped surface is a closed space like two dimensional 

surface for which both the outgoing and the ingoing families of future-directed null 

geodesics orthogonal to the surface are converging. (for the Schwarzschild metric, the 

spheres with   and   constant are trapped surfaces for   within the Schwarzschild 

radius    ) However, it is not known whether a real massive star will actually 

develop a trapped surface, or merely explode into fragments with small enough mass 

to form stable neutron stars or white dwarfs.                 

If gravitational collapse is indeed the inevitable fate of massive bodies, then we must 

expect that the universe is full of black hole collapsing bodies whose presence is 

betrayed only through their gravitational fields or through the energy released when 

matter is drawn in [83]. Our best hope of observing gravitational collapse would be to 

find a binary star , one member an ordinary visible star, and the other member a black 

hole [84, 85].   
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Chapter Three 

Equilibrium of Stars By Equation of Motion to Relate Pressure 

and Gravity 

3.1 Introduction: 

One will discuss in this chapter the natural behavior of the stars through the stages of 

building them, and the terms of their equilibrium, based on the pressure and gravity, 

which keeps these stars in equilibrium through the gravitational equivalent attraction, 

which may lead to undermine it, and thermal stress may make them explode, it is 

possible to remain the star without happen to him undermine the final (an explosion in 

the opposite direction of time) if a condition related mass and radius. We shall see that 

stars are generally in a state of almost complete mechanical equilibrium. The same 

method can understand the behavior of the universe and the condition of its 

equilibrium across the different stages of his life. 

3.2 Coordinate Systems and the Mass Distribution: 

The assumption of spherical symmetry implies that all interior physical quantities 

(such as density  , pressure  , temperature  , etc)depend only on one radial 

coordinate. The obvious coordinate to use in a Eulerian coordinate system is the radius 

of a spherical shell,   (     ). In an evolving star, all quantities also depend on time 

 . When constructing the differential equations for star structure one should thus 

generally consider partial derivatives of physical quantities with respect to radius and 

time,    ⁄  and    ⁄ , taken at constant   and  , respectively. The principle of mass 

conservation applied to the mass    of a spherical shell of thickness    at radius   

gives [86]. 

  (   )                                                                 (     ) 

Where   is the radial velocity of the mass shell. Therefore one has 

  

  
             

  

  
                                                 (     ) 

The first of these partial differential equations relates the radial mass distribution in the 

star to the local density, it constitutes the first fundamental equation of star structure. 
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Note that    (   ) is not known a priori, and must follow from other conditions and 

equations. The second equation of (3.2.2) represents the change of mass inside a 

sphere of radius   due to the motion of matter through its surface; at the stellar surface 

this gives the ass-loss rate (if there is a star wind with    ) or mass-accretion rate (if 

there is inflow with    ). In a static situation, where the velocity is zero, the first 

equation of (3.2.2) becomes an ordinary differential equation  

  

  
                                                                     (     ) 

This is almost always a good approximation for star interiors, as we shall see. 

Integration yields the mass  ( ) inside a spherical shell of radius   

 ( )  ∫      
 

 

      

Since  ( ) increases monotonically outward, we can also use  ( ) as our radial 

coordinate, instead of  . This mass coordinate, often denoted as    or simply  , is a 

Lagrangian coordinate that moves with the mass shells 

     ∫      
 

 

             (     )             (     ) 

It is often more convenient to use a Lagrangian coordinate instead of a Eulerian 

coordinate. The mass coordinate is defined on a fixed interval,      , as long as 

the star does not lose mass. On the other hand   depends on the time-varying star 

radius  . Furthermore the mass  coordinate follows the mass elements in the star, 

which simplifies many of the time derivatives that appear in the star evolution 

equations (e.g. equations for the composition). We can thus write all quantities as 

functions of  , i.e.  

   ( )            ( )           ( )     etc. 

Using the coordinate transformation    , i.e. 

 

  
 

 

  

  

  
                                                     (     ) 

The first equation of star structure becomes in terms of the coordinate    

  

  
 

 

     
                                                         (     ) 



63 
 

Which again becomes an ordinary differential equation in a static situation. 

3.3 The Equations of Motion and Hydrostatic Equilibrium: 

We next consider conservation of momentum inside a star, i.e. Newton’s second law of 

mechanics. The net acceleration on a gas element is determined by the sum of all 

forces acting on it. In addition to the gravitational force considered above, forces result 

from the pressure exerted by the gas surrounding the element. Due to spherical 

symmetry, the pressure forces acting horizontally (perpendicular to the radial 

direction) balance each other and only the pressure forces acting along the radial 

direction need to be considered. By assumption we ignore other forces that might act 

inside a star. Hence the net acceleration of a cylindrical gas element with mass [86]: 

                                                                     (     ) 

Where    is its radial extent and    is its horizontal surface area, is given by, Pressure 

(net force due to difference in pressure between upper and lower faces) 

    ( )    (    )                                   

           ( )   [ ( )  
  

  
  ]     

  

  
     

We can write 

 (    )   ( )  (
  

  
)    

Mass of element          Applying Newton's second law 

 ̈         

 ̈          ( )    (    )                            (     ) 

Acceleration equal zero everywhere if star static, setting acceleration to zero, and 

substituting for     

 
         

  
 

  

  
                                           (     ) 

Equation of hydrostatic equilibrium 

  

  
  

  

  
                                                         (     ) 

Hence after substituting equations (3.2.1) and (3.3.1) we obtain the equation of motion 

for a gas element inside the star 
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                                                (     ) 

This is a simplified from of the Navier-Stokes equation of hydrodynamics, applied to 

spherical symmetry. Writing the pressure gradient     ⁄  in terms of the mass 

coordinate   by substituting equation (3.2.6), the equation of motion is 

   

   
  

  

  
     

  

  
                                           (     ) 

Hydrostatic equilibrium The great majority of stars are obviously in such long-lived 

phases of evolution that no change can be observed over human lifetimes. This means 

there is no noticeable acceleration, and all forces acting on a gas element inside the star 

almost exactly balance each other. Thus most stars are in a state of mechanical 

equilibrium which is more commonly called hydrostatic equilibrium. The state of 

hydrostatic equilibrium, setting Acceleration equal zero in equation (3.3.5), yields the 

second differential equation of star structure 

  

  
  

  

  
                                                                (     ) 

Or with equation (3.2.6): 

  

  
 

  

  
 
  

  
  

  

  
  

 

     
  

  

    
                       (     ) 

Alternate form of hydrostatic equilibrium equation. 

A direct consequence is that inside a star in hydrostatic equilibrium, the pressure 

always decreases outwards. Equations (3.2.6) and (3.3.8) together determine the 

mechanical structure of a star in hydrostatic equilibrium. These are two equations for 

three unknown functions of  ( ,   and  ), so they cannot be solved without a third 

condition. This condition is usually a relation between   and   called the equation of 

state. We integrate this equation 

  

  
  

  ( ) ( )

  
                                               (     ) 

Assuming the star has constant density    

 ( )  
 

 
      



65 
 

  

  
  

 

  
(  

 

 
     )     

     
  

 
 

∫    

 

  

 ∫  
     

 

 

 

 

      
     

 

 
∫     

 

 

 

   
    

  

 
 
  

 
 (

   

  
) (   

 

 
     )  

    

  
                (      ) 

3.4 Relativistic Electron Gas in Star: 

White dwarf stars, a main-sequence hydrogen burning star, such as the Sun, is 

maintained in equilibrium via the balance of the gravitational attraction tending to 

make it collapse, and the thermal pressure tending to make it expand of course, the 

thermal energy of the star is generated by nuclear reactions occurring deep inside its 

core. Eventually, however, the star will run out of burnable fuel, and, therefore, start to 

collapse, as it radiates away its remaining thermal energy. What is the ultimate fate of 

such a star. A burnt-out star is basically a gas of electrons and ions. As the star 

collapses, its density increases, so the mean separation between its constituent particles 

decreases. Eventually, the mean separation becomes of order the de Broglie 

wavelength of the electrons, and the electron gas becomes degenerate. Note, that the de 

Broglie wavelength of the ions is much smaller than that of the electrons, so the ion 

gas remains non-degenerate. Now, even at zero temperature, a degenerate electron gas 

exerts a substantial pressure, because the Pauli exclusion principle prevents the mean 

electron separation from becoming significantly smaller than the typical de Broglie 

wavelength. Thus, it is possible for a burnt-out star to maintain itself against complete 

collapse under gravity via the degeneracy pressure of its constituent electrons. Such 

stars are termed white dwarfs. Let us investigate the physics of white dwarfs in more 

detail [87, 88].  

The total energy of a white dwarf star can be written 

                                                                     (     ) 

Where   is the total kinetic energy of the degenerate electrons (the kinetic energy of 

the ion is negligible)   is the gravitational potential energy. Let us assume, for the 

sake of simplicity, that the density of the star is uniform. In this case, the gravitational 

potential energy takes the form 
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   ∫      
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Where 
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Hence  

   
  

 
     ∫      

 

 

  
  

  
        

  
  

    
 

gravitational potential energy 

   
 

 

   

 
                                                       (     ) 

Where,   is the gravitational constant,   is the stellar mass,   is the stellar radius.  

we employed classical mechanics to deal with the translational degrees of freedom of 

the constituent particles, and quantum mechanics to deal with the non-translational 

degrees of freedom. Let us now discuss ideal gases from a purely quantum mechanical 

standpoint. It turns out that this approach is necessary to deal with either low 

temperature or high density gases [89]. 

Consider a gas consisting of   identical, non-interacting, structure less particles 

enclosed within a container of volume  . Cell volume in a vacuum phase:   

∫         ∫    
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The number of cells = 
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Figure (3.1):  -space of the spherical shell between radii      
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Let us assume that the electron gas is highly degenerate, which is equivalent to taking 

the limit    . In this case, we know, from the previous section, that the Fermi 

momentum can be written 
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Where   the total number of electrons in the star.  

Λ  (   )  ⁄                                                          (     ) 

The volume of the star is equal to: 

  
 

 
                                                                     (     ) 

is the star volume, and   is the total number of electrons contained in the star. 

Furthermore, the number of electron states contained in an annular radius of  -space 

lying between radii   and      is 

                         
  (    
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                                                              (     ) 

Where  

         

The density of modes per unit volume when the magnitude of   lies in the range   to 

     is given by multiplying the density of modes per unit volume by the “volume” 

in  -space of the spherical shell between radii   and    . It follows that the number 

of allowed values of   (i.e., the number of allowed modes) when    lies in the range 
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   to        ,    lies in the range    to       , and    lies in the range    to 

      , is 
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   ) (

  

  
   )  

 

(  ) 
                      (     ) 

Let us calculate the Fermi energy of a Fermi Dirac gas at    . The energy of each 

electron is related to its momentum      via 

  
  

  
 

    

  
                                                  (     ) 

Where   is the de Broglie wave-vector. At     all quantum states whose energy is 

less than the Fermi energy    are filled. The Fermi energy corresponds to a Fermi 

momentum         is thus given by 

   
  

 

  
 

    
 

  
                                                  (     ) 

Thus, at     all quantum states with      are filled, and all those with      are 

empty [86]. Now, we know, by analogy with equation (3.4.7), that there are (  )     

allowable translational states per unit volume of k-space. The volume of the sphere of 

radius    in  -space is (  ⁄ )   
 . It follows that the Fermi sphere of radius    

contains (  ⁄ )   
 (  )    translational states. The number of quantum states inside 

the sphere is twice this, because electrons possess two possible spin states for every 

possible translational state. Since the total number of occupied states (i.e. the total 

number of quantum states inside the Fermi sphere) must equal the total number of 

particles in the gas, it follows that 
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The above expression can be rearranged to give 
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Hence  
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Which implies that the de Broglie wavelength    corresponding to the Fermi energy is 

of order the mean separation between particles (  ⁄ )  ⁄ , all quantum states with de 

Broglie wavelengths      are occupied at    , where as all those with      are 

empty. 

According to equation (3.4.9), the Fermi energy at     takes the form 
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It is easily demonstrated that        for conventional metals at room temperature. 

Hence, the total kinetic energy of the electron gas can be written 

  ∫
  

 

  
    

  
  

  
∫

  
 

  

  

 

  
     

 

 

 

  

  
 

  
                             (      ) 

Where   electron mass. Using two relations (3.4.14) and (3.4.13) becomes kinetic 

energy as follows 
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                                              (      ) 

The interior of a white dwarf star is composed of atoms like     and     Which 

contain equal numbers of protons, neutrons, and electrons. Thus, 

                                                   (      ) 

Where    proton mass, is equal to the mass of the proton and neutron mass   , and   

represents the total number of protons. 

Equations (3.4.1), (3.4.2), (3.4.4), (3.4.5), (3.4.15), and (3.4.16) can be combined to 

give model 
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Where   radius of star. 

Where 
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                                                   (      ) 

The radius of the star is a balance     that dimension which reduces the total energy   

and his can be found by using the minimization of energy with respect to radius  

  

  
   

 
  

  
 

 

  
          

The equilibrium radius of the star     is that which minimizes the total energy  . In 

fact, it is easily demonstrated that 
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which yields 
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The above formula can also be written 
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  ⁄

                                       (      ) 

Where          Km is the solar radius ,           Kg is the solar mass. It 

follows that the radius of a typical solar mass white dwarf is about 7000 Km: i.e., about 

the same as the radius of the Earth. The first white dwarf to be discovered (In 1862) 

was the companion of Sirius. Nowadays, thousands of white-dwarfs have been 

observed, all with properties similar to those described above [87, 88]. 

3.5 Stars Equilibrium: 

One curious feature of white dwarf stars is that their radius decreases as their mass 

increases (see equation (3.4.22)). It follows, from equation (3.4.14), that the mean 

energy of the degenerate electrons inside the star increases strongly as the star mass 

increases: in fact,      ⁄ . Hence, if   becomes sufficiently large the electrons 

become relativistic, and the above analysis needs to be modified. Strictly speaking, the 

non-relativistic analysis described in the previous section is only valid in the low mass 
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limit     . Let us, for the sake of simplicity, consider the ultra-relativistic limit in 

which        

The relativistic relation between the total energy  , momentum   and rest mass   : 

          
    

Which for 

      
  

You can also write the total electron energy using special relativity formula and using 

the relation (3.4.6) as follows 

  ∫     ∫(         )  ⁄                              (     ) 

The total electron energy (Including the rest mass energy) can be written 
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You can use the formula 

(   )       

When    , to simplify energy relativistic formula to get 
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Thus, electron energy as follows, by analogy with equation (3.4.14) Thus,  
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Using the two relations (3.4.3) and (3.4.5) that produces 
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And by reference to the equations (3.4.5) and (3.5.4) it is clear that 
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                                                      (     ) 

It follows, from the above, that the  total energy of an ultra-relativistic white dwarf star 

can be written, using equations (3.4.1), (3.4.2) and (3.4.19) can be combined to give 

model 
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Where   
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As already, the radius of the balance     is that dimension which reduces the total 

energy   of the star, of the equation (3.5.6) can be found radius equilibrium by makes 

the energy minimum  , that is 
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The permission 
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As before, the equilibrium radius     is that which minimizes the total energy  . 

However, in the ultra-relativistic case, a non-zero value of     only exists for     

  When       the energy decreases monotonically with decreasing star radius: in 

other words, the degeneracy pressure of the electrons is incapable of halting the 

collapse of the star under gravity. The criterion which must be satisfied for a 

relativistic white-dwarf star to be maintained against gravity is that  

 

 
                                                                 (      ) 

In any case, in the case benchtop relativism, it is no non-zero value for the amount of  

   , in order      . When you are      . decreasing energy with a decrease 
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of the radius of the star. or unable to pressure the electrons from the dissolved stop 

undermining the star under the pressure of gravity. The condition that must be 

achieved in order to dwarf relativistic to remain stable under the pressure of gravity its 

attractiveness is determined by the relation (3.5.11). 

This criterion can be rewritten   

                                                            (      ) 

Where 

   
  

  
(  )  ⁄  

(   ⁄ )  ⁄

  
 

                           (      ) 

(The Chandrasekhar limit) 

Is known as the Chandrasekhar limit, after Chandrasekhar who first derived it in 1931. 

A more realistic calculation, which does not assume constant density, yields 

                                                              (      ) 

Thus, if the star mass exceeds the Chandrasekhar limit then the star in question cannot 

become a white dwarf when its nuclear fuel is exhausted, but, instead, must continue to 

collapse.what is ultimate fate of such a star [90, 91, 92]. 

It follows that the radius of a typical solar mass white dwarf is about 7000 Km, i.e., 

about the same as the radius of Earth. At stellar densities which greatly exceed white 

dwarf densities, the extreme pressures cause electrons to combine with protons to form 

neutrons. Thus, any star which collapses to such an extent that its radius becomes 

significantly less than that characteristic of a white-dwarf is effectively transformed 

into a gas of neutrons. Eventually, the mean separation between the neutrons becomes 

comparable with their de Broglie wavelength. At this point, it is possible for the 

degeneracy pressure of the neutrons to halt the collapse of the star. A star which is 

maintained against gravity in this manner is called a neutron star [93, 94, 95, 96]. 

We see that the white dwarf has the maximum mass     , which it cannot exceed 

without collapsing to a neutron star or a black hole. This is called the Chandrasekhar 

limit, and even more detailed calculations give         . 
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Neutrons stars can be analyzed in a very similar manner to white-dwarf stars .In fact, 

the previous analysis can be simply modified by letting        ⁄  and     . 

Thus, we conclude that non-relativistic neutrons stars satisfy the mass-radius law [87]: 

   

  
         (

  

 
)
  ⁄

                                       (      ) 

It follows that the radius of a typical solar mass neutron star is a mere     . In 1967 

Antony Hewish and Jocelyn Bell discovered a class of com pact radio sources, called 

pulsars, which emit extremely regular pulses of radio waves. Pulsars have 

subsequently been identified as rotating neutron stars [97, 98, 99, 100]. To date, many 

hundreds of these objects have been observed. 

When relativistic effects are taken into account, it is found that there is a critical mass 

above which a neutron star cannot be maintained against gravity. According to our 

analysis, this critical mass, which is known as the Oppenheimer-Volkoff limit, is given 

by 

                                                             (      ) 

A more realistic calculation, which does not assume constant density, does not treat the 

neutrons as point particles, and takes general relativity is taken into account, gives a 

somewhat lower value of  

 (      )                                                        ــــ          

A star whose mass exceeds the Oppenheimer-Volkoff limit cannot be maintained 

against gravity by degeneracy pressure, and must ultimately collapse to form a black 

hole [101, 102, 103]. 
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Chapter Four  

Literature Review 

4.1 Introduction:  

General relativity is of one of the big achievement that describes cosmological and 

astronomical phenomena, successfully. However it fails in describing the behavior of 

some exotic objects like black holes and neutrons stars [104, 105, 106, 107, 108]. 

Different attempts were made to cure the defects of general relativity [109, 110]. In 

this chapter some of these attempts were presented here. 

4.2 Gravitational Self Energy Mass and A model Based on Generalized 

General Relativity:   

Was constructed by M. Dirar and others [47]. The attempt is based on a more 

generalized field equation which generalizes EGR. This generalized general relativity 

(GGR) was first obtained by Lanczos [13] and then Ali El-Tahir [14]. In the later 

derivation the principle of least action is utilized by taking the field variables to be the 

metric tensor    . This conventional approach leads to the generalized general 

relativity in the form:  

    [    
               ]     [    

         ]        
 

 
           (     ) 

   
  

  
 

Where the lagrangian   depends on  .This equation reduces to EGR by considering 

the linear Lagrangian 

                              
 

    
                               (     ) 

Equation (4.2.1) then reduces to 

    
 

 
     

    

  
                                       (     ) 

One can set  

        ( ) 
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Where,    ( ), stands for the matter energy momentum tensor. In this case equation 

(4.2.1) reduces to general relativity where  

    
 

 
            ( )                                      (     ) 

The fact that EGGR reduces to EGR indicates that this new Einstein’s version shares 

with GGR all its successes [111]. Motivated by the quadratic Lagrangian of the 

electro-magnetic field, a Lagrangian quadratic in   was utilized by some authors to 

construct a useful gravitational equation. This equation is used for static field to obtain 

nonsingular solution, and a solution reduced to Schwarzschild solution [15]. The 

EGGR cosmological model is also constructed and found to share with EGR all its 

successes. This model is free from the singularity, flatness, entropy and horizon 

problems [111]. Moreover, this model can also solve the galaxy formation problem 

[112]. Recently EGGR is utilized to express a quantum model using conventional 

quantum mechanics. This model is capable to predicting the universe  expanding at its 

early stage [113]. The EGGR model shows that Einstein’s general relativity can still be 

capable of rearranging and refurnishing itself to describe physical phenomena.   

4.3 Gravitational Self Energy Mass: 

Since the mass of anybody generates gravitational field thus one expects the inverse 

process to take place i.e. the gravitational field frozen out to generate masses. This 

resembles what happens in the pair production, where a photon generates a pair of a 

particle and the anti-particle annihilate to form a photon. To see how the gravitational 

field generates masses field generates masses one can utilize the contracted form of the 

generalized general relativity, i.e. equation (4.2.1) to get 
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Where the Lagrangian takes the form 
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Using the coordinate condition  
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                                                          (     ) 

Equation (4.3.1) reduces to 
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To describe the behavior of a certain star it is suitable to use static isotropic metric: 

     ( )                                       ( )       (     ) 

The scalar curvature   is a function of r only in this case, i.e. 

   ( )                                                           (     ) 

Thus the only no vanishing terms in this case are the     components. Thus equation 

(4.3.5) reduces to 
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To simplify this equation, it is convenient to define the variables 
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To get 
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One of the possible solutions of this equation is in the form 

     
√  

  
  
                                                    (      ) 

In view of equation (4.3.9): 

  
  

 
    

√  
  ∫√   
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√  

  ∫√   
 

  

 
                                        (      ) 

The relation between the scalar curvature and the matter density   can be found by 

using the contracted form of general relativity, equation (4.2.4) to get 

       
                                             (      ) 
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Thus (4.3.12) reads 

        
√  

  ∫√   
 

  

 
                                           (      )  

When the mass is considered to be generated by gravitational field only, the 

contribution of no gravitational field via the term   is ignored i.e.     Thus, 

equation (4.3.15) becomes 

  
  

   
  

√  
  ∫√   

                                                (      ) 

To simplify treatments one can consider flat space or nearly flat space metric, where 

 ( )                                                            (      ) 

In this case equation (4.3.16) becomes 
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The physical meaning of the   can be understood by resolving equation (4.3.10) i.e. 

                                                            (      ) 

In the form 

       (   )                                         (      ) 

This represents a wave number 

  
  

 
                                                  (      )  

Consider now a particle in the form of a small tiny string of the length   . The mass of 

this string can be found from equation (4.3.18) to be 
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For very small     
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If the particle is in the form of sphere of volume 

  
  

 
                              

The mass then taken form 
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If    is very small such that       ,         In this case,            . Hence 

the mass can be given to be 

      
 [     ]  

    
   

[     ]  
  

   
[   ] 

  
    

 

  
 

    
  

   
  

    
 

   
                                           (      ) 

Where, one neglects the terms   compared to   .Thus the mass is dependent on the 

radius  , gravitational coupling constant  , the wave number   beside the free 

parameter   . The mass of the string equation (4.3.23) is finite for very small radius 

which is true also for equation (4.3.24) when the particle considered as a sphere. If    

is positive then one expects the string to represent the particle while the  sphere 

representing an anti-particle. The mass in both versions is directly proportional to the 

radius, thus increasing with the radius. This in conformity with experiments where the 

larger the radius the large the mass as in case of protons and neutrons compared to 

electrons. The mass is also dependent on the gravitational constant   which is also 

quite natural as for as the mass general gravitational field and is also affected by it. 

However, the mass of spherical bodies depends on the wave number   unlike the string 

mass which is free from this term. The free parameter    provides as with freedom to 

adjust its value to give as the value of all elementary particles. 
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4.4 Short Range Gravitation Field Equation Solution: 

Let us now see how the field of a certain star looks like within the framework of the 

generalized field equation [114]. Contracting the generalized field equation (     ) by 

    yields  

    
                  

    
 

 

    
  ( )

 
 

 

    
                         (     ) 

The model is different from general relativity if we add to the lagrangian terms of 

higher order. The simplest lagrangian is the one which consists of a quadratic term 

beside the linear term 

            

The contracted equation (4.4.1) thus becomes 

    
 

  
  

    

   
 

  

  
                                       (     ) 

The field of any isolated star can be described by a static isotropic metric. We now use 

the static isotropic spherical coordinate (       ) in the invariant proper time interval 

[115]. 

               

     ( ( )                      ( )   )                   (     ) 

Where                                                                 

     ( )                                ( )           (     ) 

                                       

Then by using the relationship (4.4.4) in (4.4.2) we get 
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The scalar curvature   is a function of   only in this case i.e.    ( ). Thus the only 

no vanishing terms in this case are     components. In the case when      

        , equation (4.4.5) yields  

    (
   

  
 

   

 
)                                                    (     ) 
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This means that ( ) feed the existence of both matter and vacuum, and we can 

consider matter and vacuum here as frozen gravitational field in other words. The 

constant background gravitational field manifests itself in the form matter and vacuum 

[116].  

Equation (4.4.5) is very complex and highly non-liner, but it can be simplified by 

assuming the metric to be flat [117]. i.e. 

         ,              

Therefore, in the region out ide the source. equation (4.4.5) reduces to  
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If we are outside the source    , and by setting    , then equation (4.4.5) reduces 

to  
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Therefore 
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Integrating both sides yields 
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And hence 

   
 

 
    

When we are far away from the source the space is flat, i.e.     as     and as a 

result,     . The scalar curvature is thus given by 

   
 

 
 

Using equations 
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And  

            

And the expression for   in a weak field, i.e.  
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To solve this equation consider a solution of the form 
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Putting equation (4.4.8) in (4.4.7) yield 
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Where    with the plus sign is excluded by the condition     as    . To express 

  in terms of the potential   we use quasi Minkowskian approximation [118] where 
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In view of equations (4.4.9) and (4.4.10)  the poetical gravitational we get 
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This indicates again the existence of a short range force or a possible link with strong 

nuclear force. 

If we set 

        

Then the red shift becomes 
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When we are just outside the star     and one of the possible ways to do this is to 

set   ⁄    and for      [119].    . Thus the origin of a large red shift of 

quasars can be explained.  
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This expression for the potential resembles the Yukawa potential and therefore shows 

the existence of a short range gravitational field or a possible link between 

gravitational and strong nuclear force [120]. 

4.5 Gravitational Waves: 

General relativity predicts that large stars that move under the influence of 

gravitational waves broadcast. These gravitational waves, like electromagnetic waves, 

carrying energy away from the stars  broadcast, but the energy loss rate is usually very 

little, difficult to be seen. But in 1975 he discovered Contact Hals and Joseph Taylor 

bilateral pulsating (P SR 1913 +16), a system consisting of two stars rotating neutron 

compression about each other, and between them a distance of at maximum radius of 

the Sun. According to the general relativity, the rapid movement means that the 

session of the system time should be decreasing scale much shorter time frame, due to 

broadcast a strong signal of gravitational waves. And consistent change predicted by 

general relativity with careful monitoring conducted by the Contact Hals and Joseph 

Taylor [121, 122, 123]. Let us now see the possibility of emitting gravitational waves 

by a certain source in empty space [31]. When we are in free space, equation (4.4.2) 

becomes 

     
 

  
                                                              (     ) 

Taking into account the coordinate condition and if we are in empty space then 

equation (4.5.1) reads  
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And one of the possible solutions is 

       (     )                                                  (     ) 

Which leads to [31]: 

    (
 

   
)
  ⁄

                                                      (     ) 

The non-vanishing frequency mode shows the possibility of emitting gravitational 

waves by a certain star where the strong field presumably dominates via the 
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contribution of the quadratic lagrangian. From equations (4.4.10) and (4.5.3) the 

potential is given by 

  
 

    
 

 

 
      (     )                                (     ) 

The travelling wave solution agrees with the recently observed decline in the orbit 

period of binary pulsars which was assumed to occur because the system emitted 

gravitational waves. The fact that the generalized field equation with a source term 

reduces to general relativity in a weak field limit indicates that it shares with general 

relativity all its successes [32] in this limit. The solutions of the generalized field 

equation differ from those of general relativity in many respects. First of all the scalar 

curvature does not vanish outside the source. Secondly the expression for the potential 

shows the existence of a short range field or presumably a possible link with the strong 

nuclear force. On the other hand the travelling wave solution is in conformity with the 

recently observed declining in the orbit period of the binary pulsars. 

4.6 Graviton Equation of Motion: 

The graviton is the energy quantum which results from gravity quantization, which 

should be in the form of gravitational waves. Thus, one need to prove that the 

gravitational field can be propagated in the form of travelling waves. To do this 

consider the metric and scalar curvature to be dependent on   and    i.e. 

      (   )                  (   )                 (   )                    (     ) 

In view of equation (4.4.6) one gets 
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Define   and   to satisfy 

   √            ∫√                   √           ∫√             (     ) 

Thus, equation (4.2.10) reduces to 
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Outside a given star, one expects the matter density   to vanish, hence one can 

consider the solution  

        (     )                                           (     ) 

A direct substitution of equations (4.6.3) in (4.6.4) yields 

 (     )  
 

  
    (     )  

 

  
 

In the  ,   space the travelling wave equation becomes 

       (       )                                        (     ) 

In view of equations (4.6.7), (4.6.5) and (4.6.3), the angular frequency   , and the 

wave number    are given according to the relations 

         ∫√                       ∫√                 (     ) 

It is clear that the frequency and the wave are dependent on the gravitational field via 

the metric components   and  . equation (4.6.7) also indicates that the gravitational 

field can be propagated in the form of a travelling wave.  

4.7 Graviton Energy: 

In quantum mechanics the particle is thought to be associated with a wave packet 

(wave group). The graviton can be treated equally as a wave packet by integrating 

(4.3.18) in the k-space to get     
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Where, one can be neglected in equation (4.7.1) compare with exponential term. 

Therefore, equation (4.3.21) in which,     , is used. The radius at which,   is 

minimum can be found by differentiating   with respect to   to get 
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Hence the circular circumference is occupied by one complete wave. This relation 

resembles the Bohr radius. Thus, according to equations (4.7.1) and (4.7.2), the mass 

and the energy of the graviton are given to be 
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This expression resembles plank quantum photon energy this expression can also be 

obtained directly from expression (4.3.18) for very small radius     where the 

exponential term can be expanded by using Taylor series to get 
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The energy of the graviton is determined in equation (4.7.5) by treating the graviton as 

a wave packet. It is interesting to find that the graviton mass is a function of its 

frequency in complete agreement with the Plank energy for the photon but with new 

(Plank) gravitational constant, the graviton expression for the energy can also be 

obtained by utilizing the expression for the mass density, when the radius    is very 

small (see equation (4.7.5)). Again one gets Plank quantum gravity expression but with 

a background zero energy. This means that the vacuum    is a media in which 

graviton transmit it. It is also amazing to find in equation (4.7.5) and that the gravity 

plank constant    is dependent on the gravitational constant  . 

4.8 Spatial and Time Dependent Scalar Curvature and Gravitational 

Constant Quantization: 

In the previous sections one tries to find   with direct suggestion of solution for   as a 

function of   and   directly. In this section one needs to use the separation of variables 

to solve (4.6.4) without the source term i.e.      to get 
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Using the method of separation of variables now let   to be a produce of tow function, 

  which depends on time  , beside   which depends on  . 

              
 

  
   

Dividing both sides by    yields 
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This means that the first term and the second term on the left hand side are constants. 

Hence one can set the time dependent part to be 
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This equation can be solved  by suggesting   to be 
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The term   is found by some researchers to be negative strictly speaking in the Ph.D. 

work of M. Dirar [111]   was found to be 
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To take the source term   inconsideration one can define   as in (4.3.9) and substitute 

it in (4.6.4) to get 

          
 

  
                                                       (     ) 

By setting 

                                                                    (      ) 

And following the same procedures done for   in equation (4.8.1) up to (4.8.8) after 

comparing (4.8.9) with (4.8.1) to get 
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Recalling equation (4.3.9) yield 
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In this expression for,   is real when  

 

 √ √ 
                                                    (      ) 

One can quantize the gravitational field by bearing in mind that outside the universe 

both gravity   and matter   vanishes outside the universe near the boundaries, i.e. 

                          at                                       (      ) 

  Hence equation (4.8.13) becomes 

     
            

This can be satisfied if 
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Thus the gravitational coupling is constant is quantized. At the early universe    is 

small thus quantized takes place. However at present     , hence,        ⁄ . 

Thus no quantization is observed. 

Equation (4.8.16) shows that the gravitational constant   is quantized. at the early 

universe    is small and quantized term including the discrete number   dominates. 

Thus, the gravitational parameter “constant”   in equation (4.8.16) is quantized and is 

no longer a constant. But at present       and the quantized term is smeared out and 

  is a constant parameter and is no longer quantized. 
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Chapter Five 

Stars Evolution, String Self Energy And Nonsingular Black 

Hole on the Basis of Generalized Special Relativity 

5.1 Introduction: 

The theory of general relativity is a model of gravity, the prediction of which leads to a 

remarkable change in the concepts of nature. it is now understood that in spite of the 

successes of this theory, it suffers from main defects reflected in its singular behavior 

at strong field limit .they are flawed in two ways: firstly, abnormal behavior in the 

strong field makes it conducive to the demolition of the same law that the adoption of 

it, where predict a so called gravitational collapse, and the attendant emergence of 

black holes. Secondly, which causes its being isolated from other physical laws, and 

forbid its being neither quantization nor unified with the rest of physics. 

General relativity theory is one of the most successful theory that describes the 

universe. The big bang model describes the evolution of the universe. It states that the 

universe starts with singularity in space-time and then expands, where matter, i.e. 

elementary particles is formed at early universe. These particles join together to form 

light atoms. Later on these particles are assembled in a cloud forming galaxies, stars, 

planets and all other astronomical objects. 

The formation of stars is one of most striking features of general relativity. These stars 

can be come white dwarfs or red giant stars, supernova or black holes. However the 

evolution of stars suffers from noticeable set backs, for instance the so called black 

holes results from space-time singularity which means break down of the laws of  

physics. This draw back can be cured in this chapter by using generalized special 

relativity.  

5.2 Equilibrium Conditions: 

A main-sequence hydrogen-burning star, such as the Sun, is maintained in equilibrium 

via the balance of the gravitational attraction tending to make it collapse, and the 

thermal pressure tending to make it expand. of course, the thermal energy of the star is 

generated by nuclear reactions occurring deep inside its core. Eventually, however, the 
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star will run out of burnable fuel, and, therefore, start to collapse, as it radiates away its 

remaining thermal energy [124, 125, 126]. What is the ultimate fate of such a star. 

A burnt-out star is basically a gas of electrons and ions. As the star collapses, its 

density increases, so the mean separation between its constituent particles decreases. 

Eventually, the mean separation becomes of order wavelength of the electrons, and the 

electron gas becomes degenerate. Note, that the wavelength of the ions is much 

smaller than that of the electrons, so the ion gas remains non-degenerate. Now, even at 

zero temperature, a degenerate electron gas exerts a substantial pressure, because the 

Pauli exclusion principle prevents the mean electron separation from becoming 

significantly smaller than the typical wavelength of the electrons. Thus, it is possible 

for a burnt-out star to maintain itself against complete collapse under gravity via the 

degeneracy pressure of its constituent electrons. Such stars are termed white-dwarfs. 

At stellar densities which greatly exceed white-dwarf densities, the extreme pressures 

cause electrons to combine with protons to form neutrons [127, 128]. Thus, any star 

which collapses to such an extent that its radius becomes significantly less than that 

characteristic of a white-dwarf is effectively transformed into a gas of neutrons. 

Eventually, the mean separation between the neutrons becomes comparable with their 

wavelength. At this point, it is possible for the degeneracy pressure of the neutrons to 

halt the collapse of the star. A star which is maintained against gravity in this manner 

is called a neutron star.it is found that there is a critical mass and critical radius above 

which a neutron star cannot be maintained against gravity. this critical radius, which is 

known as the radius of Schwarzschild [129]. A star whose radius exceeds the radius of 

Schwarzschild. cannot be maintained against gravity by degeneracy pressure, and must 

ultimately collapse to form a black hole. One will discuss in this section the 

equilibrium of stars by pressure and gravity forces within the framework of 

generalized special relativity. 

Generalized special relativistic energy expression, beside Fermi momentum and 

ordinary Newtonian gravity potential are used for stars equilibrium conditions. 

Consider first the generalized special relativity (GSR) energy   equilibrium condition 

by minimizing   w.r.t    
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For simplicity consider the average momentum   is equal to the maximum momentum 
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Therefore, with the aid of equations (5.2.2) – (5.2.4), equation (5.2.1) reads   
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The radius   which makes the energy   minimum is given when 
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This is satisfied when 
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Thus the minimum radius is given by 
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Where  
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The equilibrium takes place when   is non negative, i.e. when 
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The critical mass is given by 
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Thus for star to be at equilibrium one requires  
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Thus the maximum mass for stable star is  
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This condition resembles Chandrasekhar limit for stable white dwarf. i.e. the star mass 

need to be less than the critical value in equation (5.2.11). The equilibrium condition 

can also be found by using generalized special relativity energy momentum relation  
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One can rewrite equation (5.2.14) to be  
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It is clear from equation (5.2.23) that stability requires   to be real. This can be 

satisfied when 

  
   

   
   

        

  
   

  
 

The critical radius is given by 
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Thus the radius should be greater than the black hole radius. Also 
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Thus the critical radius is given by 
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The equilibrium mass also satisfies  
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Hence the critical maximum mass is given by 
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The equilibrium condition can also be found by minimizing  , where   
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Assuming the mass to be equal to the rest mass, and the potential to be the Newtonian, 

one gets  
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For small   and velocity   compared to speed of light  , i.e. 
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The mass which make the energy minimum for constant radius is given by 
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Neglecting the kinetic term yields 

  

  
 

(   
   
 )(  

   
   )  

  
 

 
     

    

(  
  
    

 
 

  

  )
  ⁄

                (      ) 

This requires 

   
   

 
 

   

 
 

     

    
 

  

 
 

     

    
   

   
   

 
 

     

    
   

   

    
   

  

 
        

                     
   √      

  
  

  

  
 

 √(
  
 )

 

 
      

    

    

    

 
    

    
(
  

 
 √

  

  
  ) 

  
    

    
(
 

 
) (   )  

   

   
(   ) 

  
 

 

   

 
       

 

 

   

 
                                             (      ) 

For stars one have two forces, pressure force which counter balance the gravity force, 

thus 
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Thus the pressure force is given by 
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The gravity force is given by 
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At equilibrium the two forces counter balances them selves thus 
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If particles are considered as strings with   representing max speed. Thus the average 

value is given by  
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5.3 Conditions of Stars Evolution:  

Consider a short range repulsive gravity field derived by some others of the form 

[130]: 
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For small   or strictly speaking small     : 
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To make   finite, one needs 
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If one assumes that for     energy is minimum, i.e. 
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For particle at rest 
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For photon 
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Since the star is a particle at rest thus (see equation (5.3.8) ) 
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It is very interesting to note that for large star having very large mass, such that 
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Equation (5.3.15) yields 
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Thus the short range gravity potential reduces numerically to long range gravity 

potential beside zero point gravity potential corresponding to rest mass energy 
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It is very interesting to note that this is consistent with the zero point energy of 

harmonic oscillator  
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Since it means that  
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Which conforms with the Einstein and Planck expressions of energy. It also conforms 

with De Broglie hypothesis that 
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This also agrees with quantum hypothesis where 
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This means that at early stage of star evolution when 
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the particles constituting the star be as a string. 

It is also very interesting to note that for ordinary classical particle which is at rest 

equations (5.3.11) and (5.3.4) yields 
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While for a photon which obeys quantum laws equations (5.3.12) and (5.3.4) gives 
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This conforms with the fact that photons can produce particle pairs such that one can 

consider a star as consisting of photons gas. When minimizing   w.r.t    



112 
 

     
 (  

   

   
)(  

   

   
 

  

  
)

   ⁄

                   (      ) 

When the star particles speed are small compared to speed of light  
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Thus the radius which makes   minimum is given by 
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(This is the black hole radius) 

Thus the potential is given by 
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It is very striking to note that this value is typical to the value of   for  
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Where in classical limit equation (5.3.30) gives 
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Also when energy is minimum  
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The stability condition requires also minimization of   with respect to star mass. 

consider the star as a gas consisting of particles with rest mass   . By assuming that 

each particle is subjected to the effect of attractive gravitational potential   
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minimizing   w.r.t    yields 
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Thus the mass which makes   minimum is 
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The gravitational energy takes the form 
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According to general relativity (GR) and the standard big bang model the universe 

expand or contract when 

                                       expansion 

                                      contraction 

One can use the same argument for the star, on the basis of generalized special 

relativity expression for energy  , which is given by 

      
              

                                             (      ) 

The conditions of star evolution can be started by adopting classical limit, where 
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Neglecting higher order terms, yields 
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Assuming the kinetic energy is due to thermal motion  
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Assuming also the potential energy of mass    to be  
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Thus the energy   become 
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The star explode and expand when 
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i.e. when 
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This is quite obvious from the point of view of common since this equation indicates 

that expansion happen when thermal and rest mass energies exceeds attractive gravity 

energy. However it collapse and contract when     
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Thus the momentum takes the form 
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Therefore the star explodes when 
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Using equation (5.3.51) gives 
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With the aid of the approximation in equation (5.3.54), one gets 
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Thus explosion is expected when 
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i.e.  
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While contraction takes place when 
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5.4 Evolution of Stars By Kinetic Theory and Quantum Physics: 

We employed Gibbs distribution relation and quantum laws to deal with the 

translational degrees of freedom of the constituent particles, and quantum mechanics to 

deal with the non-translational degrees of freedom. Let us now discuss ideal gases 

from a purely quantum mechanical standpoint. It turns out that this approach is 

necessary to deal with either low temperature or high density gases. At stellar densities 

which greatly exceed white dwarf densities, the extreme pressures cause electrons to 

combine with protons to form neutrons. Thus, any star which collapses to such an 

extent that its radius becomes significantly less than that characteristic of a white 

dwarf is effectively transformed into a gas of neutrons [87, 88]. Eventually, the mean 

separation between the neutrons becomes comparable with their wavelength. At this 

point, it is possible for the degeneracy pressure of the neutrons to halt the collapse of 

the star [86]. A star which is maintained against gravity in this manner is called a 

neutron star [125, 128, 129]. it is found that there is a critical mass and critical radius it 

equivalent the radius of Schwarzschild. above which a neutron star cannot be 

maintained against gravity. And also cannot be maintained against gravity by 
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degeneracy pressure, and must ultimately collapse to form a black hole. One will 

discuss in this section the evolution of stars by kinetic theory and quantum physics the 

basis generalized special relativity. 

From the kinetic theory and quantum physics, we can get an equation of star evolution 

by the pressure force and the force of gravity. for stars one have tow forces, pressure 

force which counter balance the gravity force, thus 
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The number density can be assumed to satisfy Maxwell’s distribution     
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We first consider an ideal gas consisting of a single type of non-relativistic particles. 

The ideal-gas law for the gas contained in a volume   is commonly written as 
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 is the number of particles per unit volume. 

Thus the pressure force is given by  
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The gravity force is given by 
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Equation of hydrostatic equilibrium requires 
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Thus from equations (5.4.4), (5.4.5) and (5.4.6) one gets 
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The critical radius is thus given by  

   (
    

    
)
  ⁄

                                                         (     ) 

Expansion takes place    

                                                                        (     )   

While contraction is observed when   

                                                                         (     )  

But according to the laws of quantum mechanics for particle in box the energy is given 

by  

     
   ⁄                                                                 (      )  

At     all quantum states whose energy is less than the Fermi energy    are filled. 

The Fermi energy corresponds to a Fermi momentum        is thus given by 

   
  

 

  
 

    
 

  
                                                       (      ) 

The above expression can be rearranged to give 
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Where 

Λ  (   )  ⁄   

Hence  

   
  

  
 

  

(    )  ⁄
  

   

Λ
(
 

 
)
  ⁄

 

Which implies that the De-Broglie wavelength    corresponding to the Fermi energy 

is of order the mean separation between particles (  ⁄ )  ⁄ . All quantum states with 

De-Broglie wavelengths      are occupied at    , whereas all those with      

are empty.  

According to equation (5.4.11), the Fermi energy at     takes the form 

   
  

  
(    )  ⁄   
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)
  ⁄

    
   ⁄                       (      ) 

Where 
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  (   )  ⁄   

   

  
  

 

 
   

   ⁄                                              (      ) 

But for spherical body 

  
  

 
   

Thus   
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                   (      ) 

But according to canonical Gibbs’s distribution     

   
   

  
                                                            (      ) 

Hence the pressure takes the form 
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)
   ⁄

    
      

                                  (      ) 

Thus the pressure force is given by 

    (    ) 

    
 

 
(
  

 
)
   ⁄

    
  (    )       

   

      
                                                              (      ) 

But gravity force is given by 

   
   

  
 

       

   
 

Where   

  
  

 
   

Thus  

   
 

 
                                                      (      ) 

Equation of hydrostatic equilibrium requires  

                                                               (      ) 

i.e. 
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The critical radius    is thus given by 

  
  

  

  
 

   (
  

  
)
  ⁄

 (
 (  )   ⁄     (  )

      ( )   ⁄
)

  ⁄

                                 (      ) 

Expansion takes place 

                                                                       (      ) 

While contraction happens when 

                                                                      (      ) 

The conditions of star evolution can be started by adopting classical limit, of 

generalized special relativity (GSR) energy relation where 
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Considering Newtonian potential and thermal motion 
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If the gravitational potential and thermal energy are every where small, so 

   

   
                   

   

   
 

                                           (      ) 

Thus (5.4.25) reduces to 
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) (  

  

   
 

   

    
 
)                        (      ) 

Neglecting higher order terms, yields 

     
 (  

  

   
 

   

    
 
 

   

   
 

     

    
 

     

    
 
) 

Thus the energy   become 

     
  

 

 
   

    

 
                                      (      ) 

Assuming the kinetic energy is due to thermal motion  
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                                                                (      ) 

Assuming also the potential energy of mass    to be 

   
    

 
                                                          (      ) 

Thus equation (5.4.28) gives 

     
        

Thus the expression of energy includes the total kinetic energy of the degenerate 

electrons (the kinetic energy of the ion is negligible), the rest energy    
  and the 

gravitational potential energy  . Let us assume, for the sake of simplicity, that the 

density of the star is its uniform. The total energy of a star is its gravitational potential 

energy, its internal energy and its kinetic energy (due to bulk motions of gas inside the 

star, not the thermal motions of the gas particles). 

Using the hypothesis of universe expansion, the star explode and expand when the 

energy   is positive 

     
  

 

 
   

    

 
                                  (      ) 

i.e. 

   
  

 

 
   

    

 
                                        (      ) 

This is quite obvious from the point of view of common sense because this equation 

indicates that expansion happen when thermal and rest mass energies exceeds 

attractive gravity energy. However it collapse and contract when the energy   is 

negative, this requires     

   
  

 

 
   

    

 
                                          (      ) 

Thus collapse take place when gravity energy exceeds thermal one. 

Can be obtained the critical radius, using the following energy for generalized special 

relativity   
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Where 

   
   

  
 

The critical radius of the star requires minimizing the total energy   and can be found 

by using the conditions for minimum value, i.e.  
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When temperature is neglected, i.e. when 

    

One gets 

   
      

      
    

  
 

   

  
 

The critical radius is thus given by 
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                                                             (      ) 

(This is the black hole radius) 

Using the generalized special relativity energy relation 
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For star having spherical shape: 
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Where 

   
   

  
 

The radius of the star   that dimension which reduces the total energy   and his can be 

found by using the minimum energy condition that has to be less energy as soon as 

possible, i.e. 
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The minimum radius  
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For   to be real  

       
                                                    (      ) 

   
   

  
 

Thus the critical mass is given by 

   
 

   

  
 

Hence for equilibrium 

      
 

Using equation (5.4.37)  

   
  

 
   

The critical radius is thus given by 
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For maximum values 
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When temperature is neglected, i.e. when 
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While contraction takes place when 

     √   (    )   ⁄                                                (      ) 

For minimum values 
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Thus explosion is expected when 

  √   (    )   ⁄                                            (      ) 

Thus the critical radius is given by 

   √   (    )   ⁄                                           (      ) 
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5.5 Generation of Elementary Particles Inside Black Holes: 

Our vision for the beginning of universe is on the basis of the fundamental forces unify 

at the beginning of time. Unification forces leads to the answer to the most important 

questions in the cosmology: How did the creation and how space and time begin. A 

proper unification of all interactions should include the fundamental constants, 

representing the four basic Interactions, gravitational, electromagnetic beside nuclear 

interactions. An appropriate combinations of the physical constant that determine 

interaction nature provide a proper description of the anticipated unified interaction. 

We have found that these fundamental constants describe completely our universe, at 

all stages. One will discuss in this section generation of elementary particles inside 

black holes at Planck’s time. 

Generalized special relativistic energy (GSR) expression, beside ordinary Newtonian 

gravity potential are given by 
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Where the Newtonian potential takes the form  
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Minimizing   w.r.t   yields 
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If one consider  
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This requires 
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Thus the mass which makes   minimum is 

  
   

  
                                                          (     ) 

Consider also the generalized special relativity energy   equilibrium condition by 

minimizing   w.r.t  . From equation (5.5.3), when the star particles speed are small 

compared to speed of light  
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Thus the radius which makes   minimum is given by 

  
   

   
   

The critical radius is thus given by 

   
   

  
                                                             (     ) 

(This is the black hole radius) 

But the critical mass is given by equation (5.5.7), i.e. 
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                                                       (     ) 

Hence from (5.5.8)   

        
                                                          (     ) 

The condition governing the equilibrium of the universe, from (5.5.9) and (5.5.4) we 

get 

   

   
                                                               (      ) 

Where   and   are the mass and radius of the universe respectively. The mass of the 

universe (           g) and the radius (           cm).  

According to generalized general relativity (GGR) there is a short range repulsive 

gravitational force beside long range attractive gravity force given by [130]: 
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For small radius   or strictly speaking small 
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Hence  
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To secure finite self energy   at small  , one requires  

                                                               (      ) 

Thus the star self energy  is given by 

   
  

  
  

  

  
                                                (      ) 

Since the star is a particle at rest thus the minimization of   requires (see equations 

(5.5.2), (5.5.4) and (5.5.17)) 
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                                                 (      ) 

For photon (   ) thus one gets 

  
  

 
                                                                (      ) 

From equations (5.5.17) and (5.5.18)   

   
  

  
  

  

 
                                              (      ) 

Thus the critical radius is given by 

   
   

  
                                                             (      ) 

This is the black hole radius. 

Since    should be small as shown by equation (5.5.14). Thus requires 

     

 
   

  
   

  
  

  
                                                        (      ) 

Thus there is a critical mass  

   
  

  
                                                       (      ) 

Above it the particle rest mass energy cannot be formed form potential.  

We see from equation (5.5.4) that the present radius of the universe should be 

   
    

  
                                                                  (      ) 

Which conforms with observations. 

Consider a star as consisting of photons gas, such that the critical radius is related to 

the wave number according to the relation  
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For oscillating string the energy takes the form  

       
  

  

  
                                                         (      ) 
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Hence  

   
 

   
                                                                    (      ) 

The photon which obeys quantum laws equations (5.5.19) and (5.5.1) gives 

  
    

 

√   
     

                                                  (      ) 

This conforms with the fact that photons can produce particle pairs. 

Newton's law of potential gives 

     ( )    
    

 
                                              (      ) 

Gravity force is also given by 
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If  

         

Thus (5.5.26) and (5.5.29) given 
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Therefore  
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Hence   
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Where  

             erg. s    ,           cm.s
-1

   ,               erg. cm. g
-1

 

The critical mass    is equal 

   (
  

 
)
  ⁄

                                                 (      ) 

 (Equivalent Planck's mass) 

Which matches the proposed value. The same equation applies to Planck's length, 

namely 
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                                                (      ) 

  (Planck's length) 

At distances smaller than this scale the gravitational interaction should be stronger than 

the quantum effects [131]. 

Also the critical distance    is equal  
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)
  ⁄

                                         (      ) 

(Equivalent the length of Planck) 

One can calculate the critical density    of the material when the particles are 

considered as a hollow sphere surrounded by thin layer or membrane. In this case the 

surface density is given by   
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Where 
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Thus the critical density satisfies 
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Where   

       

According to this model the universe began at a time and specific place, at the critical 

point (       ), where all fundamental forces are unified into a single force. The Planck 

time is thus given by    
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(Equivalent Planck's time) 
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The value speed of light   at the critical point (        ). 

  
  
  

                                                      (      ) 

Began creation of the universe at the critical point (       ), and show the fundamental 

constants such as ( ,  ,  ) known values, since that time and keep as it is without any 

change, the structure of the our universe is sensitive to precise degree to less change in 

these fundamental constants. The status of the universe at different stages is shown to 

be described in terms of the constants ( ,  ,  ) only. This masterly organization of the 

universe is the result for precise tuning arbitrator. The acceleration was great, which is 

equal to 

      
 

  
                                                     (      ) 

Where    critical curvature (the maximal acceleration occurred at Planck’s time). 

From a purely dimensional argument one can constant a quantum acceleration from the 

set of fundamental constants ( ,  ,  ) to be valid at Planck’s time, and according to 

our hypothesis, an analogous acceleration of the form [132]: 
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  ⁄

                                       (      ) 

Getting limited value to a larger curvature or maximal acceleration in the relation 

(5.5.43) resolved the problem singular behavior. and the matching bending dimensions 

to pry acceleration are consistent with the principles of general relativity. Conform to 

the critical value of the acceleration    in this relation with the researches results [133, 

134].This acceleration on unwavering   constants, and associated critical point 

(       )  The existence of this greatest acceleration confirms the occurrence of stretch 

accelerator of the universe at the beginning of time [135]. The acceleration declining at 

critical value    generates  the force to attract at the beginning of time, when the 

universe takes its way to expansion, and this explains why the presence of the cosmic 

force of the overall attraction. 

The critical force    as follows 

        
  

 
                                               (      ) 
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We can find critical energy    that unites all fields be the rank of (            ): 

      
  (

   

 
)

  ⁄

                                          (      ) 

5.6 Discussion: 

In this work generalized special relativity energy relation (5.2.1) is used by assuming 

the average momentum   to be related to the maximum momentum   , beside the 

ordinary expression for Newton gravity potential (see equations (5.2.2), (2.5.3) and 

(5.2.4)) to get the expression for    The radius which make   minimum in (5.2.8) 

requires maximum mass given by (5.2.13). The condition for maximum mass 

resembles Chandrasekhar limit. However the expression does not depend on the 

gravitational constant  . 

Using the same steps used in the conventional general relativity theory,   is integrated 

over the momentum  . A useful expression for   was found in (5.2.23). The 

equilibrium condition requires, here,   to be real. This makes the critical radius to be 

dependent on   and   as shown by equations (5.2.27) and (5.2.9). equation (5.2.26) 

shows that this is the minimum radius which secures equilibrium. 

But according to equations (5.2.28) and (5.2.29) the maximum critical mass depends 

two on   and  . The pence of these tow parameters reflects the quantum gravitational 

nature of the Steller mass. 

The equilibrium condition is also studied by considering the effect of pressure force in 

relation to centrifugal force. Surprisingly equations (5.2.38) shows that the pressure 

force act as a centrifugal force which counter balance the gravity force. By treating 

particles as strings it was shown by equation (5.2.37) that equilibrium takes place 

when kinetic and potential energy balances each other. The mass which makes   

minimum also tackled in equations (5.2.34), (2.5.35) and (5.2.36). The mass at which 

  is minimum is given by equation conforms with that of black hole (see equation 

(5.2.50)).                

According to generalized general relativity theory there is a short range repulsive 

gravitational force given by equation (5.3.1). In this work one assumes the ordinary. 

Attractive gravity force beside the repulsive force (see equation (5.3.3)). To find mass 
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self energy, by assuming it resulting from gravity potential energy only, one considers 

the potential behavior when   approaches zero. The finiteness of   requires the 

constant parameter    to be given by (5.3.7). This makes   finite and constant as 

shown by equation (5.3.8). Since the matter self energy is the minimum energy, thus 

one needs minimization of  . Minimizing  , by using generalized special relativity 

expression in (5.3.9) required   to be related to the speed of light in vacuum. If one 

believes in Einstein energy-mass relation and Plank energy expressions for photon, 

equation (5.3.20). Shows that mass self energy expression resembles the zero point 

energy of harmonic oscillator (see equation (5.3.21)). This indicates that the matter 

building blocks are strings. It is also very interesting to note that the physical 

restrictions imposed on    and   , indicates, according to equation (5.3.15), that the 

field becomes string when the mass increases and the distance decreases. This 

conforms with common sense and physical intuition. 

Surprisingly the minimization of energy w.r.t radius and mass lead to the same radius 

of black hole and string nature of building blocks. This means that black holes are the 

state of matter where energy is minimum w.r.t to potential, mass and radius (see 

equations (5.3.29) – (5.3.40)). 

The star evolution to be came black hole or supernova is also tackled for slow speed 

and weak potential. Using different approximations. For weak field and slow speed 

(see (5.3.42)), high speed and large momentum compared to the rest mass (see 

(5.3.50)) and small momentum compared to the rest mass (see (5.3.60)), the star 

evolution gives the same scenario. For all approximation supernova is observed when 

rest mass energy and thermal energy exceeds attractive gravity energy as shown by 

equations (5.3.47), (5.3.57) and (5.3.67). In contrary the star became a black hole when 

thermal and mass energy exceeds attractive gravity force. This result conforms with 

common sense and general relativity approach. The incorporation of rest mass beside 

thermal energy may be related to the fact that in the vicinity of Centre of mass 

repulsive gravity act as a repulsive force against attractive force. 

The equilibrium radius can be found by using ordinary expression for thermal pressure 

(see equation (5.4.3)) and the ordinary Newtonian force relation for star having 
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constant density. Assuming pressure and attractive gravity force to balance each other, 

one can find temperature and density dependent critical radius   , where    increases as 

temp. increase and decreases as density increase. This conforms with the fact that 

thermal pressure force causes contraction. The same result can be found by using 

quantum mechanical relation for pressure (see equations (5.4.11) - (5.4.17)), but here 

the increase of density increases    as shown by equation (5.4.20). 

Using generalized special relativity energy relation the condition of expansion requires 

the thermal energy to exceed gravity energy, while contraction requires gravity energy 

to be more than thermal energy which agrees with previous models. By assuming 

gravity Newtonian potential relation and thermal energy for generalized special 

relativity energy relation (see equation (5.4.34)). The minimum energy requires the 

existence of critical temperature depend Ent mass similar to Chandrasekhar mass. 

where the star mass should be less than this mass to attain minimum energy.   

Generalized special relativity energy relation used to find the mass and radius at which 

the energy is minimum. The two conditions leads to relate critical mass and radius to 

the mass and universe radius. This relation is typical to that obtained by Ibrahim and 

others [136], (see equation (5.5.10)). 

It is also very interesting to note that according to equations (5.5.11) - (5.5.21) that the 

stars having short and long range gravity force have finite self energy that is formed 

when the radius is very small, provided that the mass should be less than a critical 

value. This means that only elementary particles having very small radius and very 

small mass can have self energy due to the transformation of potential field energy to 

rest mass energy, where equations (5.5.17), (5.5.19) and (5.5.20) gives:  

     
   

 
 

   

  
 

It is very interesting to note that the radius for self energy is that of black holes, which 

can be considered as a vent  producing elementary particle. It is also very interesting 

note that, using quantum oscillator and relativistic energy expressions (5.5.25) and 

(5.5.26) beside Newtonian potential relation a useful expressions for Planck’s mass, 
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length and time are obtained in equations (5.5.34), (5.5.36) and (5.5.42). the numerical 

values of these parameters agrees with standard values. 

5.7 Conclusion: 

The generalized special relativity can successfully describe stars equilibrium condition. 

It shows that the equilibrium conditions are related to certain critical mass and radius 

values, beside effects of pressure, centrifugal force and attractive gravity force, similar 

to that obtained by general relativity. 

generalized special relativity model is successful in describing the star evolution. It 

shows that the mass building blocks are strings. It also shows that black holes have 

minimum no zero radius. It also shows that stars became black holes when attractive 

force dominates, while it became supernova when thermal energy dominates. It also 

shows that the elementary particles have finite self energy when the radius becomes 

vanishingly small. 

Gibbs distribution relations, quantum laws beside generalized special relativity energy 

relations are used to study star equilibrium conditions. It was shown that equilibrium 

conditions requires certain critical value for the radius typical to that of the black hole. 

The critical mass is shown to depend on temperature. The equilibrium also requires 

rest and thermal energy to be equal to potential energy. The fact that the rest mass 

energy is joined with thermal energy comes from the fact that rest mass energy can be 

converted to thermal energy.           

Using generalized special relativity, quantum mechanics and Newton’s laws of 

gravitation it is shown that elementary particles are created inside black holes at 

Planck time. 
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