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Abstract 

The theory of direct integral decompositions of both bounded and unbounded 

operators is further developed. We study Banach and 𝐶∗-algebras generated by 

Toeplitz operators acting on weighted Bergman Spaces over the complex unit ball. 

We provide examples of ambient nuclear 𝐶∗-algebras of non–nuclear 𝐶∗-algebras 

with no proper intermediate 𝐶∗-algebras. We characterize the continuous quasi – 

states on 𝐶∗-algebras. 

  



V 

 الخلاصة

رسنا باناخ د ين معاً المحدود وغير المحدود.ية التفكيكات التكاملية المباشرة للمؤثرتم النموالأوسع لنظر

ة فوق كرة الوحدة الفاعلة على فضاءات بارجمان المرجحز المولدة بواسطة مؤثرات تبوليت ∗𝐶 -وجبريات
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 .∗𝐶-شبه الحالات المستمرة على جبريات التامة. شخصنا

  



VI 

The Contents 

Subject Page 

Dedication I 

Acknowledgements II 

Abstract III 

Abstract (Arabic) IV 

The Contents V 

Chapter 1 

Brown Measure for Closed Unbounded Operators 

 

1 

Section (1.1): Spectral Projections and Functional Calculus for Bounded 

Operators 

1 

Section (1.2): Affiliation for Unbounded Operators and Tracial von 

Neumann Algebras with Brown Measure 

6 

Chapter 2 

Toeplitz Operators and their Representations 

 

15 

Section (2.1): Bergman Space Representation and Action of Toeplitz 

Operators with Commutative Algebras Generated by Toeplitz Operators 

15 

Section (2.2): Non-Commutative 𝐶∗-Algebras  30 

Chapter 3 

Minimal Nuclear 𝐶∗-Algebras 

43 

Section (3.1): Some Generic Properties of Cantor Systems 43 

Section (3.2): Construction of Dynamical Systems and Further Examples 46 

Chapter 4 

Quasi-States on 𝐶∗-Algebras 

51 

Section (4.1): Decomposition of Quasi-States and 𝐶∗-Algebras Generated 

by two Projections 

51 

Section (4.2): 𝐶∗-Algebras Containing a Dense Set of Elements with 

Finite Spectrum 

58 

List of Symbols 65 

References 66 



1 

Chapter 1 

Brown Measure for Closed Unbounded Operators 

Results about spectral projections, functional calculus and affiliation to von Neumann 

algebras are shown. For operators belonging to or affiliated to a tracial von Neumann algebra 

that is a direct integral von Neumann algebra, the Brown measure is shown to be given by 

the corresponding integral of Brown measure. 

Section (1.1): Spectral Projections and Functional Calculus for Bounded Operators 

Reduction theory is a way of decomposing von Neumann algebras as direct integrals 

(a generalization of direct sums) of other von Neumann algebras. It is commonly employed, 

when the direct integral decomposition is done over the center of the von Neumann algebra, 

to see that an arbitrary von Neumann algebra is a direct integral of factors. However, the 

direct integral decomposition can be done over any von Neumann subalgebra of the center. 

We show that, tracial von Neumann algebras and certain unbounded operators 

affiliated to such von Neumann algebras, the Brown spectral distribution measure behaves 

well with respect to direct integral decompositions. This result finds immediate application 

that extends results about Schur upper-triangular forms to certain unbounded operators 

affiliated to finite von Neumann algebras. 

We will now describe some of the theory of Brown measure and the Fulgelde-Kadison 

determinant, on which it depends. Given a tracial von Neumann algebra (ℳ, 𝜏 ), by which 

we mean a von Neumann algebra ℳ and a normal, faithful, tracial state 𝜏 , the Fuglede-

Kadison determinant  is the map ∆ = ∆𝜏:ℳ → [0,∞) defined by 

∆(𝑇) = exp(𝜏 (𝑙𝑜𝑔 |𝑇|)) : = lim
𝜖→0+

 exp(𝜏 (𝑙𝑜𝑔 |𝑇| +  𝜖)) . 

Fulglede and Kadison proved that it is multiplicative: ∆(𝐴𝐵)  = ∆(𝐴)∆(𝐵). The 

Brown measure 휈𝑇 was introduced by L.G. Brown. It is a sort of spectral distribution 

measure for elements 𝑇 ∈  ℳ (and for certain unbounded operators affiliated to ℳ). It is 

defined to be the Laplacian (in the sense of distributions in ℂ) of the function 𝑓(휆)  =
1

2𝜋
 log∆(𝑇 −  휆); Brown proved, among other properties, that it is a probability measure 

whose support is contained in the spectrum of 𝑇. 

Later, Haagerup and Schultz proved that the Fuglede-Kadison determinant and Brown 

measure are defined and have nice properties for all closed, densely defined, possibly 

unbounded operators 𝑇 affiliated to ℳ such that 𝜏 (log+|𝑇|) < ∞, where log+(𝑥) =
max(log(𝑥), 0). We will use exp(ℒ1

 )(ℳ, 𝜏 ) for this set. It is easy to see that 

exp(ℒ1
 )(ℳ, 𝜏 ) is an ℳ-bimodule; it is, in fact, a ∗-algebra containing ℳ as a ∗-

subalgebra. A characterization of the Brown measure 휈𝑇 of 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏 ) is as the 

unique probability measure on ℂ satisfying 

∫ 
ℂ

log+  |𝑧| 𝑑휈𝑇 (𝑧)  <  ∞                                                    (1) 

and 

∫ 
ℂ

log |𝑧 −  휆|𝑑휈𝑇(𝑧) =  log∆(𝑇 −  휆)(휆 ∈ ℂ).                          (2) 

Brown measure is naturally defined on elements of exp(ℒ1); we will need reduction theory 

also for unbounded operators in Hilbert space. Nussbaum introduced this theory and 

developed several aspects of it. We will show and make use of some further results about 

direct integral decompositions of unbounded operators, for example, about (a) functional 
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calculus for decomposable unbounded self-adjoint operators, (b) polar decompositions and 

(c) affiliated operators. 

We will recall elements of the reduction theory for von Neumann algebras as 

expounded by Dixmier and some definitions and results from Nuss-baum on reduction 

theory for unbounded operators. We let 𝜔 be a fixed σ-finite positive measure on a standard 

Borel space Z, namely a Polish space endowed with the Borel 𝜎-algebra. 

(A) Direct integrals of Hilbert spaces: A measurable field of Hilbert spaces is a function 

휁 ⟼ ℋ(휁), (휁 ∈  𝑍), where each ℋ(휁) is a Hilbert space, together with a set 𝑆 of vector 

fields (namely, functions 휁 ⟼ 𝑥(휁)  ∈ ℋ(휁)) that are said to be measurable and that satisfy 

(i) that the function 휁 ⟼ 〈𝑥(휁), 𝑦(휁)〉 is measurable for all 𝑥, 𝑦 ∈  𝑆 and 

(ii) if 𝑣 is a vector field and the function 휁 ⟼ 〈𝑥(휁), 𝑣(휁)〉 is measurable for each 𝑥 ∈  𝑆, 

then 𝑣 ∈  𝑆. 

The direct integral Hilbert space 

ℋ = ∫  
⨁  

𝑍

ℋ(휁) 𝑑𝜔(휁) 

consists of all measurable vector fields 𝑥 ∈  𝑆 for which the function           휁 ⟼ ‖𝑥(휁)‖2 
is integrable with respect to 𝜔. The inner product on ℋ is given by 

〈𝑥, 𝑦〉 = ∫ 
𝑍

〈𝑥(휁), 𝑦(휁)〉 𝑑𝜔(휁). 

 (B) Fields of Bounded Operators: A field 휁 ⟼ 𝑇(휁)  ∈  𝐵(𝐻(휁)) (휁 ∈  𝑍) of bounded 

operators is said to be measurable if for every measurable vector field 𝑥 ∈  𝑆 (as in (A)) the 

field 휁 ⟼ 𝑇(휁)𝑥(휁) is measurable. In this case, the map 휁 ⟼ ‖𝑇(휁)‖ is measurable. 

(C) Decomposable and Diagonal Bounded Operators: If 𝑇 is a measurable field of bounded 

operators as in (B) and if the map 

휁 ⟼ ‖𝑇(휁)‖                                                             (3) 
is essentially bounded, where ‖·‖ is the operator norm, then 𝑇 describes a bounded linear 

operator, also denoted by 𝑇, on the direct integral Hilbert space ℋ, by (𝑇𝑥)(휁)  =
 𝑇(휁)𝑥(휁), and we write 

𝑇 = ∫  
⨁  

𝑍

𝑇(휁)𝑑𝜔(휁).                                                          (4) 

The norm of 𝑇 equals the essential supremum of the map (3). Such operators 𝑇 on ℋ 

are said to be decomposable. The set of decomposable operators, which we will denote ℰ, 

is a subalgebra of 𝐵(ℋ) and the ∗-algebra operations have the obvious almost-everywhere-

pointwise interpretation. In particular, 𝑇 is self-adjoint if and only if 𝑇(휁) is self-adjoint for 

almost every 휁 and 𝑇 ≥  0 if and only if 𝑇(휁)  ≥  0 for almost every 휁. The diagonal 

operators are the decomposable operators 𝑇 for which each 𝑇(휁) is a scalar multiple of the 

identity operator on ℋ(휁). 
The algebra of all diagonal operators, which we shall denote 𝒟, is a von Neumann algebra 

isomorphic to ℒ1(𝑍, 𝜔), and its commutant is the von Neumann algebra ℰ of decomposable 

operators. 

(D) Fields of von Neumann algebras: All of the von Neumann algebras considered will be 

assumed to be countably generated. If 𝒜 is a von Neumann algebra in 𝐵(ℋ) that is 

generated by the algebra 𝒟 of diagonalizable operators to-gether with a countable set 

{𝑇𝑖  | 𝑖 ≥  1} of decomposable operators, then 𝒜 is said to be decomposable. Letting 𝒜(휁) 
be the von Neumann algebra in 𝐵(ℋ(휁)) generated by {𝑇𝑖(휁) | 𝑖 ≥  1}, we have that 
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whenever 𝑇 is a decomposable operator, then 𝑇 ∈ 𝒜 if and only if 𝑇(휁)  ∈ 𝒜(휁) for almost 

every ζ. We write 

𝒜 = ∫  
⨁  

𝑍

𝒜(휁) 𝑑𝜔(휁). 

Note that the von Neumann algebra 𝒟 of diagonal operators is contained in the center of 𝒜. 

(E) Measurable fields of traces: Suppose 𝒜 = ∫  
⨁  

𝑍
𝒜(휁) 𝑑𝜔(휁) is a decomposable von 

Neumann algebra and 휁 ⟼ 𝜏  is a field of traces, each 𝜏  being a trace on 𝒜(휁)+ taking 

values in [0, +∞]. The field of traces is said to be measurable if for every 𝑇 =

∫  
⨁  

𝑍
𝑇(휁) 𝑑𝜔(휁)  ∈ 𝒜, the function               휁 ⟼ 𝜏 (𝑇(휁)) is measurable. In this case 

𝜏 = ∫  
⨁  

𝑍

𝜏  𝑑𝜔(휁) 

denotes the trace on 𝒜+ defined as follows. When 𝑇 ∈ 𝒜+, writing 𝑇 as in (4), we have 

𝜏 (𝑇)  = ∫ 
𝑍

𝜏 (𝑇(휁)) 𝑑𝜔(휁). 

(F) Direct integral decomposition of a finite von Neumann algebra and trace. If 𝒜 =

∫  
⨁  

𝑍
𝐴(휁) 𝑑𝜔(휁) is a decomposable von Neumann algebra and 𝜏 is a normal, faithful, tracial 

state on 𝒜, then there is a measurable field 휁 ⟼ 𝜏  of normal, faithful, finite traces 𝜏  on 

𝒜(휁), so that 

𝜏 = ∫  
⨁  

𝑍

𝜏  𝑑𝜔(휁). 

After redefining 𝜔, if necessary, we may without loss of generality assume each 𝜏  is a 

tracial state. 

(G) Measurable fields of unbounded operators: We will denote the domain of a closed 

(possibly unbounded) operator 𝑇 on a Hilbert space by dom(T). Let 휁 ⟼ 𝑇(휁) be a field of 

closed operators on ℋ(휁). Let 𝑃(휁)  =  (𝑃𝑖𝑗(휁))
1≤𝑖,𝑗≤2

∈  𝑀2(𝐵(ℋ(휁)) be the projection 

onto the graph of 𝑇(휁). Nussbaum introduced the following notion of measurability: the 

field of operators is measurable if for all 𝑖 and 𝑗, the field 𝑃𝑖𝑗(휁) of bounded operators is 

measurable, in the sense of (B). It shows that in the case of an essentially bounded field of 

bounded operators, measurablility in the above sense is equivalent to measurability as found 

in (B). The field 휁 ⟼ 𝑇(휁) is said to be weakly measurable if for every measurable vector 

field 휁 ⟼ 𝑥(휁) of vectors such that for all 휁, 𝑥(휁)  ∈  dom(𝑇(휁)), the vector field 휁 ⟼
𝑇(휁)𝑥(휁) is measurable. 

Nussbaum proves that every measurable field 휁 ⟼ 𝑇(휁) of closed operators is weakly 

measurable, while the converse statement was shown to be false. 

(H) Decomposable unbounded operators: Given a measurable field 휁 →  𝑇(휁) of closed 

operators as in (G) and letting ℋ = ∫  
⨁ 

𝑍
ℋ(휁) 𝑑𝜔(휁) be the direct integral Hilbert space, 

define the operator 𝑇 to have domain equal to the set of vectors 𝑥 ∈ ℋ defined by square 

integrable vector fields 휁 ⟼ 𝑥(휁) such that 𝑥(휁)  ∈  dom(𝑇(휁)) for all 휁 and such that the 

vector field 휁 ⟼ 𝑇(휁)𝑥(휁) is square integrable, and for such an 𝑥 to have value 𝑇𝑥 equal 

to the vector field  

(𝑇𝑥)(휁)  =  𝑇(휁)𝑥(휁). 
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𝑇 is a closed operator. A closed operator that arises in this way from a measurable field of 

closed operators is said to be decomposable. A closed operator in ℋ is decomposable if and 

only if it permutes with all the bounded diagonalizable operators, as described in (C).A 

closed operator in ℋ is decomposable if and only if it is affiliated with the von Neumann 

algebra ℰ of all bounded decomposable operators. 

Suppose 𝑇 = ∫  
⨁ 

𝑍
𝑇(휁) 𝑑𝜔(휁) is a decomposable closed operator. Hence 

(a) 𝑇(휁) is densely defined in ℋ(휁) for almost every 휁 if and only if 𝑇 is densely defined in 

ℋ; 

(b) 𝑇(휁) is self-adjoint for almost every 휁 if and only if 𝑇 is self-adjoint; 

     We treat spectral projections and functional calculus of bounded decomposable 

operators, with respect to a fixed direct integral decomposition of 

Hilbert space 

ℋ = ∫ ℋ(휁)𝑑𝜔(휁).

⊕

𝑍

 

We let 𝜎(∙) denote the spectrum of an operator.  

Lemma (1.1.1)[1]. Suppose 

𝑋 = ∫ 𝑋(휁)𝑑𝜔(휁)

⊕

𝑍

 

is a bounded, decomposable operator. Then for almost every 휁, we have 𝜎(𝑋(휁)) ⊆ 𝜎(𝑋). 
By appeal to the standard ∗-algebra operations, we have: 

Lemma (1.1.2)[1]. Let 𝑋 be a bounded, decomposable operator. Then 𝑋 is a normal operator 

if and only if 𝑋(휁) is normal for almost all 휁. 
We consider now the continuous functional calculus, which is quite straightforward to 

prove, and must be well known. 

Lemma (1.1.3)[1]. Let 𝑋 be a bounded, normal, decomposable operator. Using Lemmas 

(1.1.1) and (1.1.2), by redefining 𝑋(휁) for 휁 in a null set, if necessary, we may suppose 𝑋(휁) 
is normal and has spectrum contained in 𝜎(𝑋) for all 휁. Suppose 𝑓 ∶  𝜎(𝑋) → ℂ is a 

continuous function. Then in the continuous functional calculus, we have 

𝑓(𝑋) = ∫ 𝑓(𝑋(휁)) 𝑑𝜔(휁)

⊕

𝑍

. 

Proof. Take a sequence (𝑔𝑘)𝑘=1
∞  of polynomials in 𝓏 and �̅� such that 𝑔𝑘(𝓏,  �̅�) converges 

uniformly to 𝑓(𝓏) for all 𝓏 ∈ 𝜎(𝑋). Letting 𝜖𝑘 = max
𝓏∈𝜎(𝑋)

|𝑓(𝓏) − 𝑔𝑘(𝓏,  �̅�)|, we have 

lim
k→∞

𝜖𝑘 = 0. But ‖𝑓(𝑋) − 𝑔𝑘(𝑋, 𝑋
∗)‖ = 𝜖𝑘 and for each 휁, since 𝜎(𝑋(휁)) ⊆ 𝜎(𝑋), we have 

‖𝑓(𝑋(휁) − 𝑔𝑘(𝑋(휁), 𝑋(휁)
∗)‖ ≤ 𝜖𝑘 and from this we get (see (C)), 

‖∫ 𝑓(𝑋(휁)) 𝑑𝜔(휁)

⊕

𝑍

−∫ 𝑔𝑘(𝑋(휁), 𝑋(휁)
∗) 𝑑𝜔(휁)

⊕

𝑍

‖ ≤ 𝜖𝑘 . 

Since the 𝐶∗-algebra operations thread through decompositions, we have 
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𝑔𝑘(𝑋, 𝑋
∗) = ∫ 𝑔𝑘(𝑋(휁), 𝑋(휁)

∗) 𝑑𝜔(휁)

⊕

𝑍

. 

Taking k → ∞ finishes the proof. 

We next consider spectral projections. For a normal operator 𝑋 and a Borel subset 𝐵 of ℂ, 
we will denote by 𝐸𝑋(𝐵) the corresponding spectral projection. The following result is a 

special case. 

Proposition (1.1.4)[1]. Suppose 𝑋 = ∫ 𝑋(휁) 𝑑𝜔(휁)
⊕

𝑍
 is a bounded, normal, decomposable 

operator and, as above, assume without loss of generality 𝑋(휁) is normal and has spectrum 

contained in 𝜎(𝑋) for all 휁. Let 𝐵 be a Borel subset of ℂ. Then 

𝐸𝑋(𝐵) = ∫ 𝐸𝑋( )(𝐵) 𝑑𝜔(휁)

⊕

𝑍

.                                                (5) 

Proof. First suppose that 𝐵 is a nonempty open, bounded rectangle in ℂ. Let (𝑓𝑛)𝑛=1
∞  be an 

increasing sequence of continuous functions on ℂ, each taking values in [0, 1] and vanishing 

outside of 𝐵 and such that 𝑓𝑛 converges pointwise to 1𝐵 (the characteristic function of 𝐵) as 

𝑛 → ∞. By Lemma (1.1.3), we have 

𝑓𝑛(𝑋) = ∫ 𝑓𝑛(𝑋(휁)) 𝑑𝜔(휁)

⊕

𝑍

. 

Since 𝑓𝑛 is increasing to 1𝐵, by the spectral theorem, 𝑓𝑛(𝑋) converges in strong operator 

topology to 𝐸𝑋(𝐵). Similarly, for every 휁, 𝑓𝑛(𝑋(휁)) converges in strong operator topology 

to 𝐸𝑋( )(𝐵), for all 휁. Thus, 𝑓𝑛(𝑋) converges strongly to ∫ 𝐸𝑋( )(𝐵) 𝑑𝜔(휁)
⊕

𝑍
. This yields 

the equality (5) when 𝐵 is an open rectangle. 

We now show that the set 𝛽 of Borel sets 𝐵 with the property (5) is a 𝜎-algebra. 

First, if 𝐵 ∈ 𝛽, then 

𝐸𝑋(𝐵
𝑐) = 1 − 𝐸𝑋(𝐵) = 1 − ∫ 𝐸𝑋( )(𝐵)𝑑𝜔(휁)

⊕

𝑍

= ∫(1 − 𝐸𝑋( )(𝐵)) 𝑑𝜔(휁)

⊕

𝑍

= ∫ 𝐸𝑋( )(𝐵
𝑐) 𝑑𝜔(휁)

⊕

𝑍

, 

so 𝐵𝑐 ∈ 𝛽. Now let (𝐵𝑛)𝑛=1
∞  be a sequence of sets from 𝛽. For any 𝑖, 𝑗 ∈ ℕ we have 

𝐸𝑋(𝐵𝑖 ∪ 𝐵𝑗) = 𝐸𝑋(𝐵𝑖) + 𝐸𝑋(𝐵𝑗) − 𝐸𝑋(𝐵𝑖)𝐸𝑋(𝐵𝑗)

= ∫ (𝐸𝑋( )(𝐵𝑖) + 𝐸𝑋( )(𝐵𝑗) − 𝐸𝑋( )(𝐵𝑖)𝐸𝑋( )(𝐵𝑗)) 𝑑𝜔(휁)

⊕

𝑍

 

= ∫ 𝐸𝑋( )(𝐵𝑖 ∪ 𝐵𝑗) 𝑑𝜔(휁)

⊕

𝑍

,                                 

So 𝐵𝑖 ∪ 𝐵𝑗 ∈ 𝛽. Hence 𝛽 is closed under finite unions. Thus, for every 𝑛, we have 
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𝐸𝑋 (⋃𝐵𝑖

𝑛

𝑖=1

) = ∫ 𝐸𝑋( ) (⋃𝐵𝑖

𝑛

𝑖=1

)  𝑑𝜔(휁)

⊕

𝑍

. 

But 𝐸𝑋(⋃ 𝐵𝑖
𝑛
𝑖=1 ) converges in strong operator topology to 𝐸𝑋(⋃ 𝐵𝑖

∞
𝑖=1 ), and for each 휁, 

𝐸𝑋( )(⋃ 𝐵𝑖
𝑛
𝑖=1 ) converges in strong operator topology to 𝐸𝑋( )(⋃ 𝐵𝑖

∞
𝑖=1 ). We get 

𝐸𝑋 (⋃𝐵𝑖

∞

𝑖=1

) = ∫ 𝐸𝑋( ) (⋃𝐵𝑖

∞

𝑖=1

)  𝑑𝜔(휁)

⊕

𝑍

. 

Thus 𝛽 is a 𝜎-algebra. 

Since 𝛽 contains all of the bounded open rectangles, it is the whole Borel 𝜎-algebra of ℂ. 
From the above result, it is easy to show that an analogue of Lemma (1.1.3) holds for the 

Borel functional calculus. 

Proposition (1.1.5)[1]. Let 𝑋 = ∫ (𝑋(휁)) 𝑑𝜔(휁)
⊕

𝑍
 be a bounded, normal, decomposable 

operator. Using Lemmas (1.1.1) and (1.1.2), by redefining 𝑋(휁) for 휁 in a null set, if 

necessary, we may suppose 𝑋(휁) is normal and has spectrum contained in 𝜎(𝑋) for all 휁. 
Suppose 𝑓 ∶  𝜎(𝑋) → ℂ is a bounded Borel function. Then taking the Borel functional 

calculus, we have 

𝑓(𝑋) = ∫ 𝑓(𝑋(휁))𝑑𝜔(휁)

⊕

𝑍

. 

Proof. Let 𝜖 > 0 and let 𝑔 = ∑ 𝑎𝑗1𝐵𝑗
𝑛
𝑗=1  be a Borel measurable simple function such that 

sup
𝓏∈σ(X)

|𝑓(𝓏) − g(𝓏)| < 𝜖. By Proposition (1.1.4), we have 

𝑔(𝑋) = ∫ 𝑔(𝑋(휁))𝑑𝜔(휁)

⊕

𝑍

. 

But ‖𝑔(𝑋) − 𝑓(𝑋)‖ < 𝜖. Moreover, for all 휁 we have ‖𝑔(𝑋(휁) − 𝑓(𝑋(휁)‖ < 𝜖, so we get  

‖∫ 𝑔(𝑋(휁))𝑑𝜔(휁)

⊕

𝑍

−∫ 𝑓(𝑋(휁))𝑑𝜔(휁)

⊕

𝑍

‖ ≤ 𝜖. 

This yields  

‖𝑓(𝑋) − ∫ 𝑓(𝑋(휁))𝑑𝜔(휁)

⊕

𝑍

‖ < 2𝜖. 

Letting 𝜖 → 0 finishes the proof. 

Section (1.2): Affiliation for Unbounded Operators and Tracial von 

Neumann Algebras with Brown Measure 
We show a result about functional calculus for decomposable self-adjoint, possibly 

unbounded operators, as well as a result about the polar decomposition of decomposable 

unbounded operators and one about affiliation to decomposable von Neumann algebras. 

Lemma (1.2.1)[1]. Let 𝑇 = ∫ 𝑇(휁)𝑑𝜔(휁)
⊕

𝑍
 be a closed, (possibly unbounded), self-adjoint, 

decomposable operator. Then the Cayley transform (𝑇 + 𝑖)(𝑇 − 𝑖)−1 𝑜𝑓 𝑇 is equal to the 

direct integral  
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∫(𝑇(휁) + 𝑖)(𝑇(휁) − 𝑖)−1 𝑑𝜔(휁)

⊕

𝑍

                          (6) 

of Cayley transforms. 

Proof. Note that the operator (6) is unitary. By evaluating at measurable vector fields 휁 ↦
𝑥(𝑡) belonging to 𝑑𝑜𝑚(𝑇), we have 

(𝑇 − 𝑖)𝑥 = ∫(𝑇(휁) − 𝑖)𝑥(휁)𝑑𝜔(휁)

⊕

𝑍

 

and  

(∫(𝑇(휁) + 𝑖)(𝑇(휁) − 𝑖)−1 𝑑𝜔(휁)

⊕

𝑍

)(𝑇 − 𝑖)𝑥 

= ∫(𝑇(휁) + 𝑖)𝑥(휁)𝑑𝜔(휁)

⊕

𝑍

= (𝑇 + 𝑖)𝑥. 

Thus, the two unitary operators (𝑇 + 𝑖)(𝑇 − 𝑖)−1. and 

∫(𝑇(휁) + 𝑖)(𝑇(휁) − 𝑖)−1 𝑑𝜔(휁)

⊕

𝑍

, 

agree on a dense subset of ℋ, so they must be equal, as required. 

Now using the Cayley transform to go from unbounded self-adjoint operators to unitary 

operators, we easily get the following analogues of Propositions (1.1.4) and (1.1.5). Here, 

for a Borel set 𝐵, we denote the corresponding spectral projection of also an unbounded self-

adjoint operator T by 𝐸𝑇(𝐵). 

Proposition (1.2.2)[1]. Let 𝑇 = ∫ 𝑇(휁)𝑑𝜔(휁)
⊕

𝑍
 be a closed, (possibly unbounded), self-

adjoint, decomposable operator. For every Borel subset 𝐵 ⊂ ℝ, we have 

𝐸𝑇(𝐵) = ∫ 𝐸𝑇( )(𝐵)𝑑𝜔(휁)

⊕

𝑍

.                                      (7) 

Moreover, for every (possibly unbounded) Borel measurable function                 𝑓 ∶  ℝ → ℝ, 
we have 

𝑓(𝑇) = ∫ 𝑓(𝑇(휁))𝑑𝜔(휁)

⊕

𝑍

.                                             (8) 

Proof. Consider the map ℎ ∶  ℝ → 𝕋 given by ℎ(𝑡) =
𝑡+𝑖

𝑡−𝑖
. Let 𝑈 = (𝑇 + 𝑖)(𝑇 − 𝑖)−1 be the 

Cayley transform of 𝑇 and let 𝑈(휁) = (𝑇(휁) + 𝑖)(𝑇(휁) − 𝑖)−1. Then for all 휁 we have 

𝐸𝑇(𝐵) = 𝐸𝑈(ℎ(𝐵))       𝑎𝑛𝑑     𝐸𝑇( )(𝐵) = 𝐸𝑈( )(ℎ(𝐵)). 

Thus, applying Proposition (1.1.4) to 𝑈 and ℎ(𝐵) yields (7). Now, by approximating 𝑓 in 

norm with simple Borel measurable functions, as was done for bounded operators in the 

proof of Proposition (1.1.5), we obtain (8). 

Nussbaum proved that given a densely defined, decomposable, (possibly unbounded) closed 

operator 
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𝑇 = ∫ 𝑇(휁)𝑑𝜔(휁)

⊕

𝑍

, 

its absolute value is the direct integral of absolute values: 

|𝑇| = ∫|𝑇(휁)|𝑑𝜔(휁)

⊕

𝑍

.                                         (9) 

Proposition (1.2.3)[1]. With 𝑇 as above, let 𝑇 = 𝑉|𝑇| be the polar decomposition of 𝑇. 
Then the polar part 𝑉 is decomposable and we have 

𝑉 = ∫ 𝑉(휁)𝑑𝜔(휁)

⊕

𝑍

,                                          (10) 

where 𝑉(휁) is the polar part in the polar decomposition  

𝑇(휁) = 𝑉(휁)|𝑇(휁)| 𝑜𝑓 𝑇(휁). 
Proof. Let 𝑊 be the bounded, decomposable operator defined by the right-hand-side of (10). 

Then W is a partial isometry. By evaluating on vector fields 𝑥 ∈ ℋ in 𝑑𝑜𝑚(𝑇) = 𝑑𝑜𝑚(|𝑇|), 
and using (9), we find 

|𝑇|𝑥 = ∫|𝑇(휁)|𝑥(휁)𝑑𝜔(휁)

⊕

𝑍

 

and 

𝑊|𝑇|𝑥 = ∫ 𝑉(휁)|𝑇(휁)|𝑥(휁)𝑑𝜔(휁)

⊕

𝑍

= ∫ 𝑇(휁)𝑥(휁)𝑑𝜔(휁)

⊕

𝑍

= 𝑇𝑥. 

Thus we have 

𝑊|𝑇| = 𝑇.                                                   (11) 

Moreover, 𝑉(휁)∗𝑉(휁) is the range projection 𝐸|𝑇( )|((0,∞))𝑜𝑓 |𝑇(휁)|. Thus, 

𝑊∗𝑊 = ∫ 𝑉(휁)∗𝑉(휁)𝑑𝜔(휁)

⊕

𝑍

= ∫ 𝐸|𝑇( )|((0,∞))𝑑𝜔(휁)

⊕

𝑍

= 𝐸|𝑇|((0,∞)), 

where the last equality is provided by Proposition (1.2.2). This, together with (11), implies 

that 𝑇 = 𝑊|𝑇| is the polar decomposition of  𝑇. 
Recall that for a closed, densely defined operator 𝑇 in ℋ and a von Neumann algebra ℳ ⊆
𝐵(ℋ), we say that 𝑇 is affiliated to ℳ if, letting 𝑇 = 𝑉|𝑇| denote the polar decomposition 

of 𝑇, we have 𝑉 ∈ ℳ and 𝐸|𝑇|(𝐵) ∈ ℳ for every Borel subset 𝐵 of ℝ. 
The following is the analogue for unbounded operators of the fundamental fact about 

decompositions of von Neumann algebras stated in (D). 

Proposition (1.2.4)[1]. Suppose  

ℳ = ∫ ℳ(휁)𝑑𝜔(휁)

⊕

𝑍

 

is decomposable von Neumann algebra (see (D)). Let T be a closed (possibly unbounded) 

operator in H. Then T is affiliated to ℳ if and only if (𝑎)𝑇 is decomposable and (b) writing 

out the 8ecomposition as 
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𝑇 = ∫ 𝑇(휁)𝑑𝜔(휁)

⊕

𝑍

,                                              (12) 

we have that 𝑇(휁) is affiliated to ℳ(휁) for almost every 휁. 
Proof. First we show ⇐. Suppose 𝑇 is decomposable and is written as in (12). Let 𝑇 = 𝑉|𝑇| 
and 𝑇(휁) = 𝑉(휁)|𝑇(휁)| be the polar decompositions. For almost every 휁 we have 𝑉(휁) ∈
ℳ(휁); using Proposition (1.2.3), we have 𝑉 ∈ ℳ. Similarly, for every Borel subset 𝐵 ⊆ ℝ, 
we have 𝐸|𝑇( )|(𝐵) ∈ ℳ(휁) for almost every 휁, so using Proposition (1.2.2), we find 

𝐸|𝑇|(𝐵) ∈ ℳ. Thus, 𝑇 is affiliated to ℳ. 

To show ⇒, we suppose T is affiliated to ℳ. Let 𝑇 = 𝑉|𝑇| be the polar decom- position of 

T. Since 𝑉 ∈ ℳ and all spectral projections 𝐸|𝑇|(𝐵) are in ℳ, they all commute with all the 

diagonalizable operators; from this, we easily see that T permutes with all diagonalizable 

operators. By Nussbaum, T is decomposable; we write it as in (12). Let 𝑇(휁) = 𝑉(휁)|𝑇(휁)| 
be the polar decomposition. Since 𝑉 ∈ ℳ, using Proposition (1.2.3) we get 𝑉(휁) ∈ ℳ(휁) 
for almost every 휁. 
Similarly, but using Proposition (1.2.2), for every Borel set 𝐵, since 𝐸|𝑇|(𝐵) ∈ ℳ, there is 

a null set 𝑁𝐵 such that for all 휁 ∉ 𝑁𝐵 , we have 𝐸|𝑇( )|(𝐵) ∈ ℳ(휁). Let 𝑁 be the union of 

the sets 𝑁𝐵 as 𝐵 ranges over the open intervals with rational endpoints in ℝ. 
Then 𝑁 is a null set and for all 휁 ∉ 𝑁 we have 𝐸|𝑇( )|((𝑎, 𝑏)) ∈ ℳ(휁) for all rational 

numbers 𝑎 < 𝑏. From this, we deduce 𝐸|𝑇( )|(𝐵) ∈ ℳ(휁) for all Borel subsets 𝐵 ⊆ ℝ. 

Thus, we have that 𝑇(휁) is affiliated to ℳ(휁) for almost every 휁. 
We will specialize to the case of operators in or affiliated to tracial von Neumann 

algebras, by which we mean, pairs (ℳ, 𝜏) consisting of a von Neumann algebra ℳ and a 

fixed normal, faithful, tracial state 𝜏 on it. Recall that, given such a pair, we let exp 

(ℒ1)(ℳ, 𝜏) denote the bimodule of closed operators T affiliated to ℳ such that 

𝜏(𝑙𝑜𝑔+(|𝑇|)) < ∞. 
Here is a technical lemma that we will need later; it is convenient to prove it here. 

Lemma (1.2.5)[1]. Let 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏). Then the mapping 휆 ↦ ∆𝜏(|𝑇 − 휆|
2 + 1)(휆 ∈

ℂ) is continuous. 

Proof. By shifting T, it suffices to prove that our mapping is continuous at 0. To see this, 

note that 

∆(|𝑇 − 휆|2 + 1) = ∆(|𝑇|2 + 1)∆((1 + |𝑇|2)−
1
2(|𝑇 − 휆|2 + 1)(1 + |𝑇|2)−

1
2) 

                      = ∆(|𝑇|2 + 1)∆(1 + (1 + |𝑇|2)−
1
2(|𝑇 − 휆|2 − |𝑇|2)(1 + |𝑇|2)−

1
2). 

It will, thus, suffice to show 

               lim
𝜆→0

∆ (1 + (1 + |𝑇|2)−
1

2(|𝑇 − 휆|2 − |𝑇|2)(1 + |𝑇|2)−
1

2) = 1.       (13) 

It is immediate that 

|𝑇 − 휆|2 − |𝑇|2 = |휆|2 − 휆𝑇∗ − 휆̅𝑇 = |휆|2 − 휆|𝑇|𝑈∗ − 휆̅𝑈|𝑇|, 
where 𝑇 = 𝑈|𝑇| is the polar decomposition. Thus, 

(1 + |𝑇|2)−
1
2(|𝑇 − 휆|2 − |𝑇|2)(1 + |𝑇|2)−

1
2 = 

= |휆|2(1 + |𝑇|2)−1 − 휆(
|𝑇|

(1 + |𝑇|2)
1
2

)𝑈∗ (
1

(1 + |𝑇|2)
1
2

) 
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−휆̅ (
1

(1 + |𝑇|2)
1
2

)𝑈(
|𝑇|

(1 + |𝑇|2)
1
2

). 

Thus, we have the estimate of operator norm  

‖(1 + |𝑇|2)−
1
2(|𝑇 − 휆|2 − |𝑇|2)(1 + |𝑇|2)−

1
2‖ ≤ 2|휆| + |휆|2. 

So when |휆| ≤
1

3
, we have 

log(1 − 2|휆| − |휆|2) ≤ log ∆ (1 + (1 + |𝑇|2)−
1
2(|𝑇 − 휆|2 − |𝑇|2)(1 + |𝑇|2)−

1
2)

≤ log(1 + 2|휆| + |휆|2), 
which proves (13). This concludes the proof. 

We suppose ℳ ⊆ 𝐵(ℋ) is a von Neumann algebra equipped with a normal, faithful 

tracial state 𝜏 and that ℳ ⊆ ℰ consists of decomposable operators. Using Dixmier’s 

reduction theory (described in (F)), and by modifying the measure 𝜔 to be a probability 

measure, we may write 

ℳ = ∫ ℳ(휁)𝑑𝜔(휁)

⊕

𝑍

,   𝑎𝑛𝑑   𝜏 = ∫ 𝜏 𝑑𝜔(휁)

⊕

𝑍

, 

for tracial von Neumann algebras (ℳ(휁), 𝜏 ), with ℳ(휁) ⊆ 𝐵(ℋ(휁)). By Proposition 

(1.2.4) if T is affiliated to ℳ, then T is decomposable and may be written 

𝑇 = ∫ 𝑇(휁)𝑑𝜔(휁)

⊕

𝑍

,                                      (14) 

with 𝑇(휁) affiliated to ℳ(휁) for almost every 휁. 
For an element 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏), we let 𝑣𝑇 denote the Brown measure of T. For any self-

adjoint, closed operator T affiliated to ℳ, we let 휇𝑇 denote the distribution of T, namely, 𝜏 
composed with spectral measure of T. In fact, when 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏) is self-adjoint, we 

have 𝑣𝑇 = 휇𝑇 (this follows immediately from the characterization provided by Equations 

(1) and (2)) so there would be no conflict in using the same notation for both; but for clarity 

of meaning, we will distinguish them. 

Proposition (1.2.2) yields the following formula for spectral distribu-tions of self-adjoint 

(possibly unbounded) operators. 

Proposition (1.2.6)[1]. Let 𝑇 be self-adjoint and affiliated to ℳ. Then for every Borel subset 

𝐵 of ℝ, the function 휁 ↦ 휇𝑇( )(𝐵) is measurable and 

휇𝑇(𝐵) = ∫휇𝑇( )(𝐵) 𝑑𝜔(휁)

 

𝑍

. 

We let ℒ1(ℳ, 𝜏) denote the set of all closed operators affiliated to ℳ such that 

 𝜏(|𝑇|) < ∞. 
Lemma (1.2.7)[1]. Suppose 𝑇 ∈ ℒ1(ℳ, 𝜏) and 𝑇 ≥ 0; use the decomposition (14). Then 

𝑇(휁) ∈ ℒ1(ℳ(휁), 𝜏 ) for almost every 휁 and 

𝜏(𝑇) = ∫𝜏 (𝑇(휁)) 𝑑𝜔(휁)

 

𝑍

.                                          (15) 

Proof. We have 𝑇(휁) ≥ 0 for almost every 휁. Since the decompositions of 𝑇 and 𝜏 are 

measurable, the function 휁 ↦ 𝜏 (𝑇(휁)) is measurable. Let (𝑓𝑛)𝑛=1
∞  be an increasing 
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sequence of simple functions, each having finitely many values, that converges point-wise 

to the identity function 𝑡 ↦ 𝑡 on [0,∞). Then 𝜏(𝑓𝑛(𝑇)) is increasing in 𝑛 and converges to 

𝜏(𝑇) while for every 휁 such that 𝑇(휁) ≥ 0, the sequence 𝜏 (𝑓𝑛(𝑇(휁)) is increasing in 𝑛 and 

convergest to 𝜏 (𝑇(휁)). Now fixing 𝑛 and writing 𝑓𝑛 = ∑ 𝑎𝑘1𝐵𝑘 
𝑚
𝑘=1 for some 𝑎𝑘 ≥ 0 and 

some Borel sets 𝐵𝑘, using Proposition (1.2.6), we find 

𝜏(𝑓𝑛(𝑇)) =∑𝑎𝑘휇𝑇(𝐵𝑘)

𝑘

=∑𝑎𝑘
𝑘

∫휇𝑇( )(𝐵𝑘) 𝑑𝜔(휁)

 

𝑍

= ∫𝜏 (𝑓𝑛(𝑇(휁)) 𝑑𝜔(휁)

 

𝑍

. 

Letting 𝑛 → ∞, the Monotone Convergence Theorem implies the equality (15). This, in turn, 

impies 𝜏 (𝑇(휁)) < ∞ for almost every 휁. 

Now we turn to the exp (ℒ1) class and the Fuglede–Kadison determinant. 

Lemma (1.2.8)[1]. Let 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏) and use the decomposition (14). Then 𝑇(휁) ∈ 

exp(ℒ1)(ℳ(휁), 𝜏 ) for almost every 휁. Moreover, we have 

𝜏(𝑙𝑜𝑔+(|𝑇|) = ∫ 𝜏 (𝑙𝑜𝑔+(|𝑇(휁)|)𝑑𝜔(휁)

⊕

𝑍

                       (16) 

𝑙𝑜𝑔 ∆𝜏(𝑇) = ∫ 𝑙𝑜𝑔 ∆𝜏𝜁(𝑇(휁)) 𝑑𝜔(휁)

 

𝑍

.                               (17) 

Proof. Equation (9) — We may without loss of generality assume T ≥ 0, which entails 

𝑇(휁) ≥  0 for almost every 휁. Now using Proposition (1.2.2), we get 

𝑙𝑜𝑔+(𝑇) = ∫ 𝑙𝑜𝑔+(𝑇(휁))𝑑𝜔(휁)

⊕

𝑍

. 

Since 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏), we have 𝑙𝑜𝑔+(𝑇) ∈ ℒ1(ℳ, 𝜏). Now Lemma (1.2.7) yields (16) 

and we deduce 𝑙𝑜𝑔+𝑇(휁) ∈ ℒ1(ℳ(휁), 𝜏 ), namely, 𝑇(휁) ∈ exp(ℒ1)(ℳ(휁), 𝜏 ), for almost 

every 휁. 
Now we show (17). Let 𝜖 > 0. Using the function 𝑓𝜖(𝑡) = log(𝑡 + 𝜖) (𝑡 ≥ 0) and using 

Proposition (1.2.2) to apply the functional calculus to T, we get 

log(𝑇 + 𝜖) = ∫ 𝑙𝑜𝑔 (𝑇(휁) + 𝜖)𝑑𝜔(휁)

⊕

𝑍

.                         (18) 

Now Lemma (1.2.7) applies (if we first add −log ǫ to both sides of (18) to make the operators 

positive) and we have 

𝜏(log(𝑇 + 𝜖)) = ∫𝜏 (𝑙𝑜𝑔(𝑇(휁) + 𝜖)) 𝑑𝜔(휁)

 

𝑍

. 

Letting 𝜖 → 0 and using the Monotone Convergence Theorem, we get 

𝑙𝑜𝑔 ∆𝜏(𝑇) = 𝜏(log(𝑇)) = ∫𝜏 (𝑙𝑜𝑔(𝑇(휁))) 𝑑𝜔(휁)

 

𝑍

= ∫ 𝑙𝑜𝑔 ∆𝜏𝜁(𝑇(휁)) 𝑑𝜔(휁)

 

𝑍

, 

as required. 

Recall that, for 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏), we let 𝑣𝑇 denote the Brown measure of T. 

Lemma (1.2.9)[1]. Let 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏) and use the decomposition (14). Then for every 

Borel subset 𝐵 ⊆ ℂ the mapping 휁 ↦ 𝑣𝑇( )(𝐵) is measurable. 
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Proof. By Lemma (1.2.8), 𝑇(휁) ∈ exp(ℒ1)(ℳ(휁), 𝜏 ) for almost all 휁, and we will confine 

ourselves to such 휁. It will suffice to prove measurability when 𝐵 is an open, bounded 

rectangle in ℂ, for the collection of such sets generates the Borel 𝜎-algebra. Fix a sequence 

{𝑓𝑛}𝑛≥0 of Schwartz functions having support in 𝐵 and increasing pointwise to the 

characteristic function of 𝐵. Then by the Monotone Convergence Theorem, we have 

𝑣𝑇( )(𝐵) = lim
𝑛→∞

∫𝑓𝑛(휆)𝑑𝑣𝑇( )(휆)
 

ℂ

. 

By definition of the Brown measure, we have 

∫𝑓𝑛(휆)𝑑𝑣𝑇( )(휆)
 

ℂ

=
1

2휋
∫𝜏 (𝑙𝑜𝑔(|𝑇(휁) − 휆|))∇2𝑓𝑛(휆)𝑑휆
 

ℂ

, 

where 𝑑휆 means Lebesgue measure on ℂ. Note that 𝜏 (𝑙𝑜𝑔(|𝑇(휁) − 휆|) is bounded above 

for 휆 in compact subsets of ℂ. Fixing n for the moment and writing ∇2𝑓𝑛(휆) = ℎ1 − ℎ2, 
where ℎ1 and ℎ2 are positive Schwartz functions, it follows that both of the integrals 

∫𝜏 (𝑙𝑜𝑔(|𝑇(휁) − 휆|))ℎ1(휆)𝑑휆
 

ℂ

   𝑎𝑛𝑑   ∫ 𝜏 (𝑙𝑜𝑔(|𝑇(휁) − 휆|))ℎ2(휆)𝑑휆
 

ℂ

 

are finite. It follows from the Monotone Convergence Theorem that 

∫𝜏 (𝑙𝑜𝑔(|𝑇(휁) − 휆|))ℎ1(휆)𝑑휆
 

ℂ

=
1

2
lim
𝑚→∞

∫ 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +
1

𝑚2
))ℎ1(휆)𝑑휆

 

ℂ

, 

∫𝜏 (𝑙𝑜𝑔(|𝑇(휁) − 휆|))ℎ2(휆)𝑑휆
 

ℂ

=
1

2
lim
𝑚→∞

∫ 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +
1

𝑚2
))ℎ2(휆)𝑑휆

 

ℂ

. 

Thus, we have 

∫𝜏 (𝑙𝑜𝑔(|𝑇(휁) − 휆|))∇2𝑓𝑛(휆)𝑑휆
 

ℂ

=
1

2
lim
𝑚→∞

∫ 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +
1

𝑚2
))∇2𝑓𝑛(휆)𝑑휆

 

ℂ

 

and, since each ∇2𝑓𝑛 vanishes outside of the rectangle 𝐵, 

𝑣𝑇( )(𝐵) =
1

4휋
lim
𝑛→∞

lim
𝑚→∞

∫ 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +
1

𝑚2
))∇2𝑓𝑛(휆)𝑑휆

 

𝐵

. 

By Lemma (1.2.5), the mapping 

휆 ↦ 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +
1

𝑚2
))∇2𝑓𝑛(휆) 

is continuous and, therefore, is 𝑅iemann integrable over 𝐵. Thus, 

∫ 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +
1

𝑚2
))∇2𝑓𝑛(휆)𝑑휆

 

𝐵

= lim
𝑘→∞

1

𝑘2
∑ 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +

1

𝑚2
))∇2𝑓𝑛(휆)

𝜆∈
1
𝑘
(ℤ+𝑖ℤ)

, 

where the sum is actually finite. Thus, 

𝑣𝑇( )(𝐵) =
1

4휋
lim
𝑛→∞

lim
𝑚→∞

lim
𝑘→∞

1

𝑘2
∑ 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +

1

𝑚2
)) ∇2𝑓𝑛(휆)

𝜆∈
1
𝑘
(ℤ+𝑖ℤ)

. 

Because the decompositions of 𝑇 and of 𝜏 are measurable, for each fixed 휆 the mapping 

휁 → 𝜏 (𝑙𝑜𝑔 (|𝑇(휁) − 휆|2 +
1

𝑚2
)) 
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is measurable. Since the pointwise limit of the sequence of measurable functions is again a 

measurable function, the lemma is proved. 

Here is the main theorem about decomposition of Brown measure. 

Theorem (1.2.10)[1]. Let 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏) and write 

𝑇 = ∫ 𝑇(휁)𝑑𝜔(휁)

⊕

𝑍

. 

Then the Brown measure 𝑣𝑇 of 𝑇 is given by 

𝑣𝑇(𝐵) = ∫𝑣𝑇( )(𝐵) 𝑑𝜔(휁)

 

𝑍

                                 (19) 

for every Borel subset 𝐵 ⊆ ℂ. 
Proof. By Lemma (1.2.9), the right-hand-side of (19) defines a probability measure on ℂ, 
which we will denote by the symbol 휌. We will show that 휌 satisfies  

∫𝑙𝑜𝑔+|𝓏| 
 

ℂ

𝑑휌(𝓏) < ∞                                          (20) 

∫𝑙𝑜𝑔 |𝓏 − 휆| 
 

ℂ

𝑑휌(𝓏) = 𝑙𝑜𝑔 Δτ(T − λ)       (λ ∈ ℂ).                      (21) 

From the uniqueness property of Brown measure expressed with Equations (1) and (2), this 

will imply 휌 = 𝑣𝑇 . 
To prove (20), let 𝑓𝑛 be an increasing sequence of simple functions on ℂ, each taking only 

finitely many values, that converges pointwise to the function         𝑤 ↦ 𝑙𝑜𝑔+(𝑤). For each 

𝑛, we have  

∫𝑓𝑛(𝑤)
 

ℂ

𝑑휌(𝑤) = ∫∫𝑓𝑛(𝑤)𝑑𝑣𝑇( )(𝑤) 𝑑𝜔(휁)
 

ℂ

 

𝑍

.                   (22) 

Applying the Monotone Convergence Theorem, we get  

∫𝑙𝑜𝑔+|𝑤| 
 

ℂ

𝑑휌(𝑤) = ∫∫𝑙𝑜𝑔+(𝑤)𝑑𝑣𝑇( )(𝑤) 𝑑𝜔(휁)
 

ℂ

 

𝑍

. 

For each 휁, we have 

∫𝑙𝑜𝑔+(|𝑤|)𝑑𝑣𝑇( )(𝑤)
 

ℂ

≤ 𝜏 (𝑙𝑜𝑔+(|𝑇(휁)|)). 

Since 𝑇 ∈ exp(ℒ1)(ℳ, 𝜏), using Lemma (1.2.8), we have 

∫𝜏 (𝑙𝑜𝑔+(|𝑇(휁)|))
 

𝑍

 𝑑𝜔(휁) < ∞. 

This implies (20). 

Now fix 휆 ∈ ℂ and 𝜖 > 0 and let (𝑓𝑛)𝑛=1
∞  be an increasing sequence of simple Borel 

measurable functions on ℂ, each taking only finitely many values, that converges pointwise 

to the function 𝑤 ↦ 𝑙𝑜𝑔(|𝑤 − 휆| + 𝜖). Again we have (22). Using the Monotone 

Convergence Theorem and taking 𝑛 → ∞ we get  

∫𝑙𝑜𝑔(|𝑤 − 휆| + 𝜖) 
 

ℂ

𝑑휌(𝑤) = ∫∫𝑙𝑜𝑔(|𝑤 − 휆| + 𝜖) 𝑑𝑣𝑇( )(𝑤) 𝑑𝜔(휁)
 

ℂ

 

𝑍

. 

Using (20), we see that the left-hand-side above is not+∞ Thus, letting 𝜖 > 0 and using the 

Monotone Convergence Theorem, we get 
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∫𝑙𝑜𝑔(|𝑤 − 휆| + 𝜖) 
 

ℂ

𝑑휌(𝑤) = ∫∫𝑙𝑜𝑔(|𝑤 − 휆| + 𝜖) 𝑑𝑣𝑇( )(𝑤) 𝑑𝜔(휁)
 

ℂ

 

𝑍

= ∫ 𝑙𝑜𝑔 ∆𝜏𝜁(𝑇(휁) − 휆) 𝑑𝜔(휁)

 

𝑍

. 

From (17) of Lemma (1.2.8), we get (21). 

Definition (1.2.11)[5]. [The Fuglede-kadison determinant] 

 We denote by ℳ∆ the set of operators 𝑇 ∈ ℳ̅ fulfilling the condition: 

𝜏(log+|𝑇|) = ∫ log+(𝑡)𝑑ℳ|𝑇|(𝑡)
∞

0

< ∞ 

For 𝑇 ∈ ℳ∆, the integral 

∫ log 𝑡 𝑑ℳ|𝑇|(𝑡)
∞

0

∈ 𝑅 ∪ {−∞}. 

in well-define, and we define the Fuglede-kadison determinant of 𝑇, 

∆(𝑇) ∈ [0,∞), 𝑏𝑦: 

∆(𝑇) = exp(∫ log 𝑡 𝑑ℳ|𝑇|(𝑡)
∞

0

). 
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Chapter 2 

Toeplitz Operators and their Representations 

We discuss various examples. In the case of 𝑆 =  𝐶(�̅�) and 𝑆 = 𝐶(�̅�)  ⊗ 𝐿∞(0, 1) 
we characterize all irreducible representations of the resulting Toeplitz operator 𝐶∗-algebras. 

Their Calkin algebras are described and mdex formulas are provided. 

Section (2.1): Bergman Space Representation and Action of Toeplitz 

Operators with Commutative Algebras Generated by Toeplitz Operators 

In the study of Toeplitz operators 𝑇𝑎 consists in selecting symbol subclasses 𝑆 of 𝐿∞
   

so that the properties of 𝑇𝑎 with 𝑎 ∈  𝑆 and of the algebra generated by them admit a 

reasonable description. To study an algebra generated by Toeplitz operators (rather then just 

Toeplitz operators themselves) lies, first, in a possibility to apply more tools, in particular 

those coming from the algebraic toolbox. Secondly, the results obtained are applicable not 

only for generating Toeplitz operators but for all elements of the algebra. 

A fundamental result due to Coburn, describes the structure of the 𝐶∗-algebra 

generated by Toeplitz operators with 𝐶(𝔹𝑛̅̅ ̅̅ )-symbols. This work initiated an extensive study 

of algebras generated by Toeplitz operators with symbols from certain predefined classes. 

The majority of the results obtained deal with Toeplitz operators that act on the Bergman 

space on the unit disk. The multidimensional setting, even the case of the unit ball, is more 

difficult as, beyond the class of continuous symbols, the symbol-functions may have more 

sophisticated behavior then for the one-dimensional case of the unit disk. 

We study algebras generated by Toeplitz operators which act on weighted Bergman 

spaces over the complex two-dimensional unit ball 𝔹2 ⊂ ℂ2. Here the dimension 𝑛 =  2 of 

the underlying domain is minimal such that the proposed approach is meaningful. 

Discussing this lowest dimensional case permits us to present the main ideas in a more 

simple and transparent form. However, a similar approach can be applied in the higher 

dimensional framework in which some new features are present.  

It has been observed that Toeplitz operators, with symbols invariant under the action 

of the (maximal Abelian) subgroup 𝕋2 of all biholomorphisms of 𝔹2, generate a 

commutative 𝐶∗-algebra on any weighted Bergman space 𝓐𝜆
2(𝔹2). In this case there exists 

a unitary operator 𝑅𝜆 that maps 𝓐𝜆
2(𝔹2) onto the one-sided sequence space ℓ2

  = ℓ2
 (ℤ+) 

(the direct sum of one-dimensional Hilbert spaces ℂ). For Toeplitz operators 𝑇𝑎
𝜆 with 

bounded and group invariant symbols 𝑎 =  𝑎(|𝑧1|, |𝑧2|), these one-dimensional spaces ℂ 

are invariant for the operator 𝑅𝜆𝑻𝑎
𝜆𝑅𝜆

∗. In particular, 𝑅𝜆𝑻𝑎
𝜆𝑅𝜆

∗ acts on each of these spaces as 

multiplication by a constant operator, and the commutativity result trivially follows. 

We consider symbols that are invariant under the action of the subgroup {1} × 𝕋 ≅ 𝕋 

of 𝕋2. On the one hand replacing 𝕋2 by a strict subgroup enlarges the class of admissible 

symbols but on the other hand it destroys the commutativity property of Toeplitz operators. 

At the same time, there still exists the unitary operator 𝑈, of the form (7) mapping 𝓐𝜆
2(𝔹2) 

onto the direct sum of the weighted Bergman spaces 𝒜𝛼2+𝜆+1
2 (𝔻), 𝛼2 ∈ ℤ+ of holomorphic 

𝐿2-functions on the unit disk 𝔻. 
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We consider various subclasses of symbols of the form  

𝑎(𝑧1), 𝑏 (
|𝑧2|

√1 − |𝑧1|
2
) , and    𝑎(𝑧1)𝑏 (

|𝑧2|

√1 − |𝑧1|
2
),          (1) 

where 𝑎 ∈  𝐿∞(𝔻) and 𝑏 ∈  𝐿∞(0, 1). Note that these functions are invariant under the 

action of the group {1}  × 𝕋. Again each space 𝒜𝛼2+𝜆+1
2 (𝔻) is invariant for the operators 

𝑈𝑻𝑐
𝜆𝑈∗ where 𝑻𝑐

𝜆 is the Toeplitz operator on 𝓐𝜆
2(𝔹2) with a symbol 𝑐 of one of the three 

types in (1). Moreover precisely, the restrictions act as follows: 

𝑈𝑻𝑎
𝜆𝑈∗|𝒜𝛼2+𝜆+1

2 (𝔻) = 𝑇𝑎
𝛼2+𝜆+1 and  𝑈𝑻𝑏

𝜆𝑈∗|𝒜𝛼2+𝜆+1
2 (𝔻)  = 𝛾𝑏

𝜆 𝐼, 𝑤ℎ𝑒𝑟𝑒 𝛾𝑏
𝜆 ∈ ℂ. 

Here 𝑇𝑎
𝛼2+𝜆+1  denotes the Toeplitz operator with symbol a acting on 𝒜𝛼2+𝜆+1

2 (𝔻). 

In summary, the invariance of the symbols under a certain subgroup of biholomorphisms of 

the unit ball 𝔹2 permits us to diminish the dimension of the problem: the study of the algebra 

generated by Toeplitz operators on 𝓐𝜆
2(𝔹2) with such invariant symbols reduces to the 

study of the algebras generated by Toeplitz operators on a countable number of differently 

weighted Bergman spaces 𝒜𝛼2+𝜆+1
2 (𝔻), 𝛼2  ∈  ℤ+ over the unit disk 𝔻. Known results on 

𝐶∗-algebras generated by Toeplitz operators acting on Bergman spaces over the unit disk 𝔻 

can be successfully applied to describe algebras generated by Toeplitz operators on the two-

dimensional ball 𝔹2. 

A unitary operator 𝑈 between 𝓐𝜆
2(𝔹2) and a countable sum of differently weighted 

Bergman spaces over 𝔻 is defined. Given a {1}  × 𝕋-invariant symbol 𝑐 ∈  𝐿∞(𝔹
2), each 

space in this orthogonal decomposition is invariant under the action of 𝑈𝑻𝑐
𝜆𝑈∗. Moreover, 

this action is described in Corollaries (2.1.3) and (2.1.5). 

We devoted to the description of the commutative algebras, both 𝐶∗ and Banach, that 

are generated by various subclasses of the above invariant symbols. Among other cases we 

show that the commutative 𝐶∗-algebras in ℒ(𝐴𝜇
2(𝔻)) generated by Toeplitz operators  

induce commutative subalgebras in ℒ(𝒜𝜆
2(𝔹2)) of the corresponding type (quasi-elliptic, 

quasi-parabolic, quasi-hyperbolic). 

We study non-commutative Toeplitz 𝐶∗-algebras in ℒ(𝓐𝜆
2(𝔹2)) that originate from 

the construction. The first algebra corresponds to the classical Toeplitz 𝐶∗-algebra and is 

generated by operators {𝑻𝑐
𝜆 ∶  𝑐(𝑧1, 𝑧2)  =  𝑎(𝑧1) where 𝑎 ∈  𝐶(�̅�)}. The second 𝐶∗-algebra 

under consideration is larger: it is generated by elements from the first algebra and Toeplitz 

operators with the componentwise radial symbols 𝑏 described in (1). 

We give a complete list of irreducible representations of both algebras. Different from 

the case of the classical Toeplitz algebra over the unit disk or ball, an additional series of 

irreducible representations arise via a quantization effect. This effect is based on the 

appearance of weighted Bergman spaces with weight parameter tending to infinity in the 
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orthogonal sum decomposition. An explicit expression of these representations involves 

limits of the Berezin transforms for operators on each Bergman space 𝒜𝜇
2(𝔻) (as a weight 

parameter tends to infinity) of the above direct sum decomposition of 𝓐𝜆
2(𝔹2). 

Finally, for both 𝐶∗-algebras we give explicit direct sum expressions for their elements and 

characterize their Fredholmness. It is shown that Fredholm operators in the first algebra 

always have index zero; in case of the second algebra we provide an index formula. 

We simultaneously use differently weighted Bergman spaces both on the unit ball 𝔹2 
and the unit disk 𝔻, as well as various objects (functions, operators, etc) that correspond to 

these two different settings (unit ball 𝔹2 and unit disk 𝔻). To distinguish them, we will write 

in bold the objects that correspond to the unit ball setting. 

       Recall that, given a weight parameter 휆 ∈  (−1,∞), the weighted Bergman space 

𝒜𝜆
2(𝔹2) is the closed subspace of L2(𝔹

2, dvλ) which consists of functions that are complex 

analytic in 𝔹2 . Here the standard weighted measure dv𝜆 is given by 

𝑑𝑣𝜆(𝑧)  =
𝛤(휆 +  3)

휋2𝛤(휆 +  1)
(1 − |𝑧|2)𝜆 𝑑𝑣(𝑧), 

 where 𝑧 =  (𝑧1, 𝑧2)  ∈   𝔹
2 and 𝑑𝑣 denotes the Lebesgue volume form on ℂ2 ≅ ℝ4. 

Put ℤ+ ∶=  {0, 1, 2,· · · } and recall that the normalized monomials  

𝒆𝜆(𝛼1, 𝛼2) ∶=
𝛤(|𝛼| +  휆 +  3)

𝛤(𝛼1 + 1)𝛤(𝛼2 + 1)𝛤(휆 + 3)
 𝑧1
𝛼1  𝑧2

𝛼2  , (𝛼1, 𝛼2)  ∈  ℤ+
2  

 form an orthonormal basis in 𝒜𝜆
2(𝔹2).  

         We denote by 𝐵𝜆 the orthogonal (Bergman) projection from L2(𝔹
2, d𝑣𝜆) onto the 

Bergman space 𝓐𝝀
𝟐(𝔹2). The Toeplitz operator 𝑻𝑎

𝜆 with a symbol             a ∈  L∞(𝔹
2) acts 

on 𝓐𝜆
2(𝔹2) by  

𝑻𝑎
𝜆𝒇 = 𝑩𝜆(𝑎𝒇). 

In what follows we will consider as well the weighted Bergman spaces 𝒜𝜇
2(𝔻) on the unit 

disk and Toeplitz operators acting on them. Recall that, given a weight parameter 휇 ∈
 (−1,∞),𝒜𝜇

2(𝔻) is the closed subspace of 𝐿2(𝔻, 𝑑휂𝜇) consisting of complex analytic 

functions in 𝔻. 

Here the standard weighted measure 𝑑휂𝜇 is given by 

𝑑휂𝜇(𝑤)  =
휇 + 1

휋
 (1 − |𝑤|2)𝜇 𝑑𝓍𝑑𝑦, 𝑤 =  𝑥 +  𝑖𝑦 ∈  𝔻. 

Recall that the normalized monomials 

                         𝑒𝜇(𝑛):= √
𝛤(𝑛 +  휇 +  2)

𝛤(𝑛 + 1)𝛤(휇 + 2)
𝑤𝑛 , 𝑛 ∈ ℤ+       (2)  

form an orthonormal basis in 𝒜𝜇
2(𝔻). 
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We will denote by 〈 · , · 〉 𝜆 ,𝔹2 and 〈 · , · 〉𝜇,𝔻 the inner products in 𝓐𝜆
2(𝔹2) and 

𝓐𝜇
2(𝔻), respectively. The corresponding norms will be written as ‖  ·  ‖𝜆,𝔹2 and  ‖  ·  ‖𝜇,𝔻. 

We denote by 𝐵𝜇 the orthogonal (Bergman) projection from 𝐿2(𝔻, 𝑑휂𝜇) onto the Bergman 

space 𝒜𝜇
2(𝔻). Again, given 𝑎 ∈  𝐿∞ (𝔻), the Toeplitz operator 𝑇𝑎

𝜇
 with symbol a acts on 

𝒜𝜇
2(𝔻) by the formula 

𝑇𝑎
𝜇
 𝜑 =  𝐵𝜇(𝑎𝜑). 

 For each 𝛼2  ∈ ℤ+ we denote by 𝐻𝛼2  the following (closed) subspace of 𝓐𝜆
2(𝔹2) 

𝐻𝛼2  =  𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {𝒆𝜆(𝛼1, 𝛼2) ∶  𝛼1  ∈  ℤ+, 𝛼2  ∈  ℤ+𝑖𝑠 𝑓𝑖𝑥𝑒𝑑 . 

Then we can represent 𝓐𝜆
2(𝔹2) as a countable orthogonal sum: 

                                                  𝓐𝜆
2(𝔹2)  =⨁𝐻𝛼2

𝛼2∈ℤ+

 .                                (3) 

Observe that 

𝒆휆(𝛼1, 𝛼2) = √
 (𝛤(|𝛼| +  휆 +  3))

𝛤(𝛼1  +  1)𝛤(𝛼2  +  1)𝛤(휆 +  3)
 𝑧1
𝛼1  𝑧2

𝛼2

= √
 (𝛤(|𝛼| +  휆 +  3))

𝛤(𝛼1  +  1)𝛤(𝛼2  +  휆 + 3)
 𝑧1
𝛼1  . √

𝛤(𝛼2  +  휆 +  3)

𝛤(𝛼2  +  1)𝛤(휆 +  3)
 𝑧2
𝛼2

= 𝑒𝛼2 +𝜆+1(𝛼1) ·  𝑒𝜆 + 1(𝛼2). 

That is, the orthonormal basis in 𝐻𝛼2  has the form 

{ 𝑒𝛼2+𝜆+1(𝛼1) · 𝑒𝜆 +1(𝛼2)}𝛼1∈ℤ+  , 

and thus we have 

𝐻𝛼2  = {𝑓(𝑧1) · [𝑒𝜆+1(𝛼2)](𝑧2): 𝑓 ∈ 𝒜𝛼2+𝜆+1
2 (𝔻)}.           (4) 

According to the direct sum decomposition (3) each function 𝒇 ∈  𝓐𝜆
2(𝔹2 ) admits the 

unique representation: 

𝒇(𝑧1, 𝑧2)  =  ∑ 𝑓𝛼2(𝑧1) ·

𝛼2∈ℤ+

[𝑒𝜆+1(𝛼2)](𝑧2),

𝑤ℎ𝑒𝑟𝑒 𝑓𝛼2 ∈  𝒜𝛼2+𝜆+1
2 (𝔻) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼2  ∈  ℤ+, 

and 

                      ‖𝒇‖
𝑨𝜆
2 (𝔹2)
2  = ∑ ‖𝑓𝛼2‖𝐴𝛼2+𝜆+1

2  (𝔻).

2

𝑎2∈𝑍+

                               (5) 
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We introduce the mapping 𝜔 ∶ 𝔻 ×  𝔻 →  𝔹2 by 𝜔(휁1, 휁2) ∶=  (휁1, √1 − |휁1|
2휁2). Let the 

unitary operator 

𝑢𝛼2 ∶  𝐻𝛼2 → 𝒜𝛼2 +𝜆+1
2 (𝔻) 

be defined as 

 (𝑢𝛼2𝜙)(휁1):= ∫ (𝜙 휊 𝜔)(휁1, 휁2)(1 
 

𝔻

− |휁1|
2)−

𝛼2
2 √

(휆 +  2)

𝛼2 +  휆 + 2
 [𝑒𝜆(𝛼2)](휁2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑휂𝜆(휁2).                                                         (6) 

By (4) each element 𝜙 ∈  𝐻𝛼2  has the form 

𝜙(𝑧1, 𝑧2)  =  𝑓(𝑧1)  ·  [𝑒𝜆+1(𝛼2)](𝑧2)  =  𝑓(𝑧1)  · √
𝛼2  +  휆 +  2

휆 +  2
[𝑒𝜆(𝛼2)](𝑧2),

𝑓 ∈  𝒜𝛼2+𝜆+1
2 (𝔻), 

thus 

(𝑢𝛼2𝜙)(휁1) = ∫ 𝑓(휁1)(1 − |휁1|
2)
𝛼2
2

 

𝔻

√
𝛼2  +  휆 +  2

휆 + 2
[𝑒𝜆(𝛼2)](휁2)

× (1 − |휁1|
2)−

𝛼2
2 √

휆 +  2

𝛼2 + 휆 + 2
 [𝑒𝜆(𝛼2)](휁2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑휂𝜆(휁2)

=  𝑓(휁1)∫ |[𝑒𝜆(𝛼2)](휁2)|
2𝑑휂𝜆(휁2)  =  𝑓(휁1)

 

𝔻

. 

Introduce now the Hilbert space 

ℋ =⨁ 𝒜𝛼2+𝜆+1
2 (𝔻)

𝛼2∈ℤ+

 

and the unitary operator 

 𝑈 =⨁𝑢𝛼2
𝛼2∈ℤ+

 ∶ 𝓐𝜆
2(𝔹2) = ⨁ 𝐻𝛼2

(𝛼2∈ℤ+)

  → ℋ =  ⨁𝒜𝛼2+𝜆+1
2 (𝔻)

𝛼2∈ℤ+

  (7) 

 acting componentwise according to the direct sum decomposition. We summarize the above 

observations in the following proposition. 

Proposition (2.1.1)[2]. The unitary operator 𝑈 , where each 𝑢𝛼2 is given by (6), gives an 

isometric isomorphism between the spaces in (7). 

       Our next aim is to characterize Toeplitz operators which (after conjugation with 𝑈) 

leave all spaces 𝐻𝛼2  in the decomposition (3) invariant. Hence such operators can expressed 
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as a direct sum of operators acting componentwise on ℋ. We describe the componentwise 

action. 

     In what follows we will express points z =  (z1, z2)  ∈  𝔹
2 in polar coordinates: zk  =

 rke
iθk  , k =  1, 2. Given a function c ∈  L∞(𝔻 × (0, 1)), we consider the symbol 

                                    𝑐 (𝑧1,
𝑟2

√1 − 𝑟1
2
) ∈  𝐿∞(𝔹

2)                                    (8) 

 and the corresponding Toeplitz operator 𝑇𝑐
𝜆 acting on 𝒜𝜆

2(𝔹2). For any pair of multi-

indices 𝛼, 𝛽 ∈  ℤ+
2  we calculate the corresponding matrix element of 

 𝑇𝑐
𝜆 ∶ 〈𝑇𝑐

𝜆 𝒆𝜆(𝛼), 𝒆𝜆(𝛽)〉𝜆 ,𝔹2 

= √
𝛤(|𝛼| +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛼2  +  1)𝛤(휆 +  3)

𝛤(|𝛽| +  휆 +  3)

𝛤(𝛽1  +  1)𝛤(𝛽2  +  1)𝛤(휆 +  3)

× 〈𝑐 𝑧1
𝛼1   𝑧2

𝛼2  , 𝑧1
𝛽1   𝑧2

𝛽2〉𝜆,𝔹2

=
1

𝛤(휆 +  3)
√

𝛤(|𝛼| +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛼2  +  1)
 
𝛤(|𝛽| +  휆 +  3)

𝛤(𝛽1  +  1)𝛤(𝛽2 + 1)

× 
𝛤(휆 + 3)

휋2𝛤(휆 + 1)
∫  𝑐 𝑟1

𝛼1+𝛽1   𝑟2
(𝛼2+𝛽2) 𝑒𝑖(𝛼1−𝛽1) 1  𝑒𝑖(𝛼2−𝛽2) 2

 

𝔹2

× (1 − 𝑟2)𝜆 𝑑𝑣(𝑧)

=
1

휋2𝛤(휆 +  1)
 √

𝛤(|𝛼|  +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛼2  +  1)

𝛤(|𝛽|  +  휆 +  3)

𝛤(𝛽1  +  1)𝛤(𝛽2  +  1)

× ∫  
 

𝜏(𝔹2)

∫  
2𝜋

0

∫ 𝑐 𝑟1
𝛼1+𝛽1+1 𝑟2

𝛼2+𝛽2+1
2𝜋

0

× (1 − 𝑟2 )𝜆 𝑒 
𝑖(𝛼1−𝛽1) 𝑒𝑖(𝛼2−𝛽2) 2  𝑑𝑟1𝑑𝑟2𝑑휃1𝑑휃2, 

 where the domain of the first integration is given by 

𝜏 (𝔹 
2): = {𝑟 =  ( 𝑟1, 𝑟2)  ∈  ℝ+

2 ∶  𝑟1
2  +  𝑟2

2  <  1}. 

The integral over 휃2 vanishes whenever 𝛼2  ≠  𝛽2 and is equals to 2휋 if 𝛼2  =  𝛽2. That is, 

each subspace 𝐻𝛼2 is invariant for the Toeplitz operator 𝑻𝑐
𝜆 . In the case of 𝛽2  =  𝛼2 we 

have 

〈𝑻𝑐
𝜆 𝒆𝜆(𝛼), 𝒆𝜆(𝛽)〉 𝜆 ,𝔹 2

 

=
2

휋 𝛤(휆 +  1)𝛤(𝛼2  +  1)
√
𝛤(|𝛼|  +  휆 +  3)𝛤(|𝛽|  +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛽1  +  1)

× ∫  
 

𝜏(𝔹2)

∫  
2𝜋

0

𝑐 𝑟1
𝛼1+𝛽1+1 𝑟2

2𝛼2+1 (1 −  𝑟2 )𝜆 𝑒𝑖(𝛼1−𝛽1) 1  𝑑𝑟1𝑑𝑟2𝑑휃1. 

Changing variables to 𝑟1  =  𝑠1, 𝑟2  = √1 − 𝑠1
2𝑠2  gives 
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〈𝑻𝑐
𝜆 𝒆𝜆(𝛼), 𝒆𝜆(𝛽)〉𝜆 ,𝔹2   

=
2

휋 𝛤(휆 +  1)𝛤(𝛼2  +  1)
√
𝛤(|𝛼| +  휆 +  3)𝛤(|𝛽| +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛽1  +  1)
 

× ∫  
1

0

∫  
2𝜋

0

[∫  
1

0

𝑐(𝑠1𝑒
𝑖 1 , 𝑠2) 𝑠2

2𝛼2+1 (1 − 𝑠2
2)𝜆 𝑑𝑠2] 𝑠1

𝛼1+𝛽1+1 (1 

− 𝑠1
2)𝛼2+𝜆+1 𝑒𝑖(𝛼1−𝛽1) 1𝑑휃1 𝑑𝑠1

=
2

휋 𝛤(휆 +  1)𝛤(𝛼2  +  1)
√
𝛤(|𝛼| +  휆 +  3)𝛤(|𝛽| +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛽1  +  1)
 

× ∫  
 

𝔻

[∫  
1

0

𝑐(𝑧1, 𝑠2)𝑠2
2𝛼2+1(1 − 𝑠2

2)𝜆𝑑𝑠2] 𝑧1
𝛼1𝑧1̅

𝛽1  (1 − |𝑧1|
2)𝛼2+𝜆+1𝑑𝑣(𝑧1)  

=
1

𝛤(휆 +  1)𝛤(𝛼2  +  1)
√
𝛤(|𝛼| +  휆 +  3)𝛤(|𝛽| +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛽1  +  1)

1

𝛼2  +  휆 +  2
 

× ∫  
 

𝔻

[∫  
1

0

𝑐(𝑧1, √𝑠2) 𝑠2
𝛼2  (1 − 𝑠2)

𝜆 𝑑𝑠2] 𝑧1
𝛼1  𝑧1̅

𝛽1
𝛼2  +  휆 +  2

휋
 (1 

− |𝑧1|
2)𝛼2+𝜆+1 𝑑𝑣(𝑧1) 

=
1

𝛤(휆 +  1)𝛤(𝛼2  +  1)
√
𝛤(|𝛼| +  휆 +  3)𝛤(|𝛽| +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛽1  +  1)

1

𝛼2  +  휆 +  2

× √
𝛤(𝛼1  +  1)𝛤(𝛼2  +  휆 +  3)

𝛤(|𝛼| +  휆 +  3)

𝛤(𝛽1  +  1)𝛤(𝛼2  +  휆 +  3)

𝛤(|𝛽| +  휆 +  3)

× 〈[∫ 𝑐(𝑧1, √𝑠2)𝑠2
𝛼2  (1 − 𝑠2)

𝜆 𝑑𝑠2

1

0

]  

× 𝑒𝛼2+𝜆+1(𝛼1) , 𝑒𝛼2 +𝜆+1(𝛽1)〉 𝛼2+𝜆+1,𝔻
= 〈𝑐 ̃𝛼2𝑒𝛼2 +𝜆+1(𝛼1), 𝑒𝛼2+𝜆+1(𝛽1)〉𝛼2+𝜆+1,𝔻

= 〈𝑇𝑐𝛼2
(𝛼2+𝜆+1)𝑒𝛼2+𝜆+1(𝛼1), 𝑒𝛼2+𝜆+1(𝛽1)〉𝛼2+𝜆+1,𝔻 ′ 

where 

�̃�𝛼2  (𝑧1) ∶=
𝛤(𝛼2  +  휆 +  2)

𝛤(𝛼2  +  1)𝛤(휆 +  1)
 

                                             ∫  𝑐(𝑧1, √𝑠2)𝑠2
𝛼2(1 −  𝑠2)휆 𝑑𝑠2

1

0

.                                 (9) 

We summarize the above calculation in the following lemma. 

Lemma (2.1.2)[2]. Let 𝑐 ∈  𝐿∞(𝔻 × (0, 1)). Consider the Toeplitz operator 𝑇𝑐
𝜆 acting on 

𝒜𝜆
2(𝔹2) and having the symbol 

𝑐( 𝑧1,
𝑟2

√1 − 𝑟1
2
  ∈  𝐿∞(𝔹

2). 

With 𝛼, 𝛽 ∈ ℤ+
2  we have: 
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〈𝑇𝑐
𝜆𝑒𝜆(𝛼), 𝑒𝜆(𝛽)〉𝜆,𝔹2  =  

{
0 ,                                                                                  𝑖𝑓 𝛼2 ≠ 𝛽2

〈𝑇𝑐�̃�2
𝛼2+𝜆+1  𝑒𝛼2+𝜆+1(𝛼1), 𝑒𝛼2+𝜆+1(𝛽1)〉𝛼2+𝜆+1,𝔻 , 𝑖𝑓 𝛼2 = 𝛽2 

  

where the function �̃�𝛼2(𝑧1) is given in (9). 

Corollary (2.1.3)[2]. Under the assumptions of the previous lemma, each subspace 

𝐻𝛼2 , 𝛼2  ∈ ℤ+, is invariant for the operator 𝑇𝑐
𝜆, and its action on 𝐻𝛼2  is as follows 

[𝑇𝑐
𝜆 𝑓 𝑒𝜆+1](𝑧1, 𝑧2) =  (𝑇𝑐�̃�2

𝛼2+𝜆+1𝑓) (𝑧1)[𝑒𝜆+1(𝛼2)](𝑧2)  where 𝑓 ∈ 𝒜𝛼2+𝜆+1
2 (𝔻). 

Moreover, with the operator 𝑈 given in (7) one has: 

 𝑈𝑇𝑐
𝜆 𝑈∗  =   ⨁ 𝑇  𝑐�̃�𝑧  

 𝛼2+𝜆+1

𝛼2∈ℤ+

 . 

Remark (2.1.4)[2]. Let 𝑇𝜆 be a bounded operator on 𝒜𝜆
2(𝔹2) which leaves all subspaces 

𝐻𝛼2 , 𝛼2  ∈ ℤ+ invariant. Then there exists a sequence of bounded operators {𝑇  𝛼2+𝜆+1}𝛼2 ∈

ℤ+, where each 𝑇  𝛼2+𝜆+1 acts on 𝒜 𝛼2+𝜆+1
2 (𝔻), and 

[𝑇𝜆 𝑓 𝑒𝜆+1](𝑧1, 𝑧2) =  (𝑇
 𝛼2+𝜆+1𝑓)(𝑧1)[𝑒𝜆+1(𝛼2)](𝑧2),𝑤ℎ𝑒𝑟𝑒 𝑓 ∈ 𝒜 𝛼2+𝜆+1

2 (𝔻). 

Via the unitary operator 𝑈 in (7) one has 

𝑈𝑇𝜆𝑈∗  =⨁𝑇  𝛼2+𝜆+1 .               

𝛼2∈ℤ+

                           (10) 

In what follows we will abbreviate (10) by 

𝑇𝜆 ≍⨁𝑇  𝛼2+𝜆+1 .              

𝛼2∈ℤ+

 

identifying thus the operator 𝑇𝜆 with its direct sum representation. 

In the next corollary we collect some symbols classes that induce Toeplitz operators on 

𝒜𝜆
2 (𝔹2) leaving the spaces 𝐻𝛼2 , 𝛼2  ∈ ℤ+ invariant. 

Corollary (2.1.5)[2]. Let 𝑎 ∈  𝐿∞(𝔻) and 𝑏 ∈  𝐿∞(0,1) and introduce the symbols 

𝑎(𝑧1), 𝑏 (
𝑟2

√1 − 𝑟1
2
)  , 𝑎𝑛𝑑   𝑏 (

𝑟2

√1 − 𝑟1
2
).                (11) 

The corresponding Toeplitz operators 𝑇𝑎
𝜆, 𝑇𝑏

𝜆 and 𝑇𝑎𝑏
𝜆  acting on 𝒜𝜆

2(𝔹2) leave each 

subspace 𝐻𝛼2 , 𝛼2  ∈ ℤ+ invariant and their action on 𝐻𝛼2  is as follows 

[𝑇𝑎
𝜆 𝑓𝑒𝜆+1](𝑧1, 𝑧2)  =  (𝑇𝑎

 𝛼2+𝜆+1𝑓)(𝑧1)[𝑒𝜆 +1(𝛼2)](𝑧2), 

𝑇𝑏
𝜆|𝐻𝛼2  =  𝛾𝑏

𝜆(𝛼2)𝐼, 

[𝑇𝑎𝑏
𝜆  𝑓𝑒𝜆+1](𝑧1, 𝑧2)  = 𝛾𝑏

𝜆(𝛼2)(𝑇𝑎
 𝛼2+𝜆+1𝑓)(𝑧1)[𝑒𝜆 +1(𝛼2)](𝑧2), 

where 𝑓 ∈ 𝒜 𝛼2+𝜆+1
2 (𝔻) and 

𝛾𝑏
𝜆(𝛼2) =

𝛤(𝛼2  +  휆 +  2)

𝛤(𝛼2  +  1)𝛤(휆 +  1)
∫ 𝑏(√𝑠2)𝑠2

𝛼2(1 − 𝑠2)휆 𝑑𝑠2.
1

0
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Corollary (2.1.6)[2]. With the notation of Corollary (2.1.5) the operators 𝑇𝑎
𝜆 and 𝑇𝑏

𝜆 

commute, 

𝑇𝑎𝑏
𝜆 = 𝑇𝑎

𝜆 𝑇𝑏
𝜆  =  𝑇𝑏

𝜆 𝑇𝑎
𝜆, 

and one has the identification: 

𝑇𝑎𝑏
𝜆  ≍⨁  𝛾𝑏

𝜆(𝛼2)𝑇𝑎
 𝛼2+𝜆+1

 𝛼2∈ℤ+

. 

 

In the following we restrict our attention to generating symbols of the form (11). The results 

suggest the following recipe. 

We select a subclass 𝑆 of 𝐿∞(𝔻) such that the algebra (or 𝐶∗-algebra) generated by Toeplitz 

operators 𝑇𝑎
𝜆, with 𝑎 ∈  𝑆, acting on each weighted Bergman space 𝒜𝜆

2(𝔻), 휆 ∈  (−1,∞), 
admits a reasonable description, and denote by 𝒯 휆(𝑆, 𝐿∞) the unital Banach algebra 

generated by all Toeplitz operators 𝑇𝑎
𝜆 and 𝑇𝑏

𝜆 acting on 𝒜𝜆
2(𝔹2) with symbols  

𝑎 =  𝑎(𝑧1) ∈  𝑆     𝑎𝑛𝑑    𝑏 (
𝑟2

√1 − 𝑟1
2
) , 𝑤ℎ𝑒𝑟𝑒 𝑏 ∈  𝐿∞(0,1). 

 

  Then the algebra 𝒯𝜆(𝑆, 𝐿∞) is generated by two of its subalgebras sharing the same 

identity: the 𝐶∗-algebra 𝒯𝜆(𝐿∞) generated by all Toeplitz operators 𝑇𝑏
𝜆 and the unital Banach 

algebra 𝒯𝜆(𝑆) generated by all Toeplitz operators 𝑇𝑎
𝜆 where 𝑎 ∈  𝑆. Note that 𝒯𝜆(𝑆) is a 𝐶∗-

algebra if S is closed under complex conjugation. The 𝐶∗-algebra 𝒯𝜆(𝐿∞) is isomorphic to 

an algebra of sequences. This isomorphism is given by the following assignment of 

generators of 𝒯𝜆(𝐿∞) 

𝑇𝑏
𝜆 ↦ 𝛾𝑏

𝜆  =  {𝛾𝑏
𝜆(𝛼2)}𝛼2∈ℤ+

.                          (12) 

The corresponding sequence algebra is known to coincide with the algebra 𝑆𝑂(ℤ+), 
introduced by R. Schmidt and consisting of all ℓ∞-sequences 𝛾 that satisfy the condition 

lim
𝑗+1
𝑘+1

→1

|𝛾(𝑗)  −  𝛾(𝑘)|  =  0. 

We may also interpret 𝑆𝑂(ℤ+) as the 𝐶∗-algebra of bounded functions 𝛾 ∶ ℤ+  → ℂ that are 

uniformly continuous with respect to the logarithmic metric 

휌(𝑗, 𝑘) =  |log(𝑗 +  1) − log(𝑘 +  1)| ,       𝑗, 𝑘 ∈ ℤ+. 
More details on the isomorphism (12) in both the weighted and unweighted situation can be 

found. 

          The algebra 𝒯𝜆(𝑆) splits, according to the decomposition (3), into the direct sum of 

the algebras 𝒯𝛼2+𝜆+1(𝑆) generated by all Toeplitz operators 𝑇𝑎
 𝛼2+𝜆+1, 𝑎 ∈  𝑆, acting on the 

weighted Bergman spaces 𝒜 𝛼2+𝜆+1
2 (𝔻), 𝛼2  ∈ ℤ+. This is the place where the already 

known 

description of the algebras 𝒯𝛼2+𝜆+1(𝑆) enters to the study. 

      Clearly, 𝒯𝜆(𝑆, 𝐿∞) will be a commutative 𝐶∗-algebra if and only if 𝑆 ⊂  𝐿∞(𝔻) is 

chosen such that all algebras 𝒯α2+λ+1(S) of operators acting on 𝐴 𝛼2+𝜆+1
2 (𝔻) are 𝐶∗ and 
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commutative. 

The 𝐶∗-algebras generated by Toeplitz operators which are commutative on each weighted 

Bergman space 𝒜𝜆
2(𝔻) and whose generating symbols contain the so-called 3-rich- symbols 

are completely classified. Up to a unitary equivalence via Möbius transformations there are 

only three model classes of such algebras: elliptic case – Toeplitz operators on the disk 𝔻 

with radial symbols; parabolic case - Toeplitz operators on the upper-half plane Π with 

symbols depending only on the imaginary part 𝑦 𝑜𝑓 𝑧 =  𝑥 +  𝑖𝑦 ∈  𝛱; and hyperbolic 

case - Toeplitz operators on the upper half-plane Π with symbols depending only on the 

polar angle 휃 of 𝑧 =  |𝑧|𝑒𝑖  ∈  𝛱 . 

We explore now these three one-dimensional cases and show that they generate subalgebras 

of the known commutative 𝐶∗-algebras for the two-dimensional quasi-elliptic, 

quasiparabolic, and quasi-hyperbolic cases, respectively. 

Example (2.1.7)[2]. Elliptic case put 𝑆 ∶=  {𝑎 =  𝑎(𝑟1): 𝑎 ∈  𝐿∞(0, 1)}. Then the 𝐶∗-

algebra 𝒯𝛼2+𝜆+1(𝑆) is generated by Toeplitz operators 𝑇𝑎
 𝛼2+𝜆+1 that are diagonal with 

respect to the standard monomial basis (2) in 𝒜 𝛼2+𝜆+1
2 (𝔻). More precisely, 𝑇𝑎

 𝛼2+𝜆+1 acts 

as follows: 

𝑇𝑎
 𝛼2+𝜆+1 𝑒𝛼2+𝜆+1(𝛼1)

=
𝛤(𝛼1  +  𝛼2  +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛼2  +  휆 +  2)

× ∫ 𝑎(√𝑠1)𝑠1
𝛼1(1 − 𝑠1)

𝛼2+𝜆+1 𝑑𝑠1 𝑒𝛼2+𝜆+1(𝛼1)
1

0

 . 

Consider now a separately radial symbol 

𝑐(𝑟1, 𝑟2) =  𝑎(𝑟1)  𝑏 (
𝑟2

√1 − 𝑟1
2
) 

of the form (11). Then for all 𝛼 =  (𝛼1, 𝛼2) ∈ ℤ+
2  and with 𝑟 = (𝑟1, 𝑟2)we have 

𝑇𝑐
𝜆 𝑒𝜆(𝛼) =  𝑇 𝑎𝑏

𝜆 𝑒𝛼2+𝜆+1(𝛼1) ·  𝑒𝜆+1(𝛼2) =  𝑇𝑎
( 𝛼2+𝜆+1)  𝑒𝛼2+𝜆+1(𝛼1) ·  𝑇𝑏

𝜆 𝑒𝜆+1(𝛼2)

=
𝛤(𝛼1  +  𝛼2   +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛼2  +  휆 +  2)

× ∫ 𝑎(√𝑠1)𝑠1
𝛼1(1 −  𝑠1)

𝛼2+𝜆+1 𝑑𝑠1 𝑒𝛼2+𝜆+1(𝛼1)
1

0

 

×
𝛤(𝛼2  +  휆 +  2)𝛤

(𝛼2  +  1)𝛤(휆 +  1)
 ∫ 𝑏(√𝑠2)𝑠2

𝛼2(1 − 𝑠2)
𝜆 𝑑𝑠2 𝑒𝜆+1(𝛼2)

1

0

×
𝛤(|𝛼| +  휆 +  3)

𝛤(𝛼1  +  1)𝛤(𝛼2  +  1)𝛤(휆 +  1)

× ∫  𝑐(√𝑟1, √𝑟2)𝑟
𝛼(1 −  |𝑟|2)𝜆𝑑𝑟1𝑑𝑟2  ·  𝑒𝜆(𝛼)

0≤|𝑟|2<1

. 

   The last equality follows by a change of variables: 𝑠1  =  𝑟1, 𝑠2  =  (1 – 𝑟1)
−1𝑟2. Note 

that this result recovers the formula for 𝛾𝑐,𝜆(𝛼) in the quasi-elliptic case. 

Example (2.1.8)[2]. Parabolic case 
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This case corresponds to the algebra generated by Toeplitz operators on the weighted 

Bergman space 𝒜𝜆
2(𝛱) over the upper half-plane 𝛱 whose symbols depend only 

on 𝐼𝑚 𝑤,𝑤 ∈  𝛱. That is, in this case 𝑆𝛱  =  {𝑎 =  𝑎(𝐼𝑚): 𝑎 ∈  𝐿∞(ℝ+)}. The 𝐶∗-algebra 

𝒯𝜆(𝑆𝛱) is isomorphic to a certain subalgebra of 𝐶𝑏(ℝ+)and this isomorphism is generated 

by the following mapping: 

𝑇𝑎
𝜆 ↦ 𝛾𝑎

𝜆(휉) =  
1

𝛤(휆 +  1)
 ∫  𝑎 (

𝑡

2휉
) 𝑡𝜆𝑒−𝑡𝑑𝑡

 ℝ+

, 휉 ∈ ℝ+. 

The standard unitary operator defined by the Möbius transformation 

𝑤 =  𝑖
1 −  휁

1 +  휁 
                                                         (13) 

of the unit disk 𝔻 onto the upper half-plane 𝛱 maps 𝒜𝜆
2(𝛱) onto 𝒜𝜆

2(𝔻) and provides the 

unitary equivalence of the algebras 𝒯𝜆(𝑆𝛱) and 𝒯𝜆(𝑆𝔻), where 

𝑆𝔻  =  {𝑎 =  𝑎 (
1 − |휁|2

1 + 휁 + 휁̅ + |휁|2
) ∶  𝑎 ∈  𝐿∞(ℝ+), 휁 ∈ 𝔻} . 

Then, by Corollary (2.1.6), the algebra 𝒯𝜆(𝑆𝔻. 𝐿∞)is isomorphic to a subalgebra of 

𝐶𝑏(ℝ+ × ℤ+) with the following assignment of its generators 

𝑇𝑎𝑏
𝜆  =  𝑇𝑎

𝜆𝑇𝑏
𝜆 ↦ 𝛾𝑎

𝛼2+𝜆+1 (휉) ·  𝛾𝑏
𝜆(𝛼2)                                     (14) 

=
1

𝛤(𝛼2 +  휆 +  2)
 ∫ 𝑎 (

𝑡

2휉
)  𝑡𝛼2+𝜆+1𝑒−𝑡𝑑𝑡

ℝ+

𝛤( 𝛼2 + 휆 + 2)

𝛤( 𝛼2 + 1)Γ( 휆 + 1)
 

∫  𝑏(√𝑠2)𝑠2
𝛼2(1 −  𝑠2)휆 𝑑𝑠2

1

0

, 

where (휉, 𝛼2) ∈ ℝ+  × ℤ+. 

       Introduce the two-dimensional Siegel domain 𝐷2  =  {(𝑤1, 𝑤2) ∈
ℂ2;  𝐼𝑚 𝑤1 – |𝑤2|

2  >  0 }. The Cayley transform 𝑤 =  𝑤(𝑧), where 

𝑤(𝑧) =  (𝑤1(𝑧),𝑤2(𝑧))  = (𝑖
1 − 𝑧1
1 + 𝑧1

, 𝑖
𝑧2

1 + 𝑧1
) ∶ 𝔹2  →  𝐷2            (15) 

biholomorphically maps the unit ball 𝔹2 onto the Siegel domain 𝐷2. The unitary operator 

defined by the inverse to the Cayley transform establishes the unitary equivalence between 

the algebra 𝒯𝜆(𝑆𝔻, 𝐿∞) and the corresponding Toeplitz operator algebra on 𝐷2. Under this 

unitary equivalence each generator 𝑇𝑎𝑏
𝜆  ∈ 𝒯𝜆 (𝑆𝔻, 𝐿∞) is mapped to the Toeplitz operator 

on 𝐷2 with symbol 

𝑐(𝑤1, 𝑤2) =  𝑎 (𝐼𝑚 𝑤1)𝑏 (
|𝑤2|

√𝐼𝑚 𝑤1
)     , (𝑤1, 𝑤2) ∈  𝐷2,              (16) 

which in turn is mapped to its “spectral function” 𝛾𝑐
𝜆 under the isomorphic description of 

the 𝐶∗ −algebra generated by Toeplitz operators as a function subalgebra of 𝐶𝑏(ℝ+  × ℤ+). 
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In our notation the function 𝛾𝑐
𝜆 has the form 

𝛾𝑐
𝜆 (휉, 𝛼2) =

(2휉)𝛼2+𝜆+2

𝛤(𝛼2  +  1)𝛤(휆 +  1)

× ∫  𝑐 (𝐼𝑚 𝑤1  +  |𝑤2|, √|𝑤2|) |𝑤2|
𝛼2(𝐼𝑚 𝑤1)

𝜆

ℝ+
2

× 𝑒−2𝜉(𝐼𝑚 𝑤1+|𝑤2|)𝑑𝐼𝑚 𝑤1𝑑|𝑤2|

=
1

𝛤(𝛼2 + 1)𝛤(휆 +  1)
∫ 𝑐 (

𝑣 + 𝑟

2휉
) , √

𝑟

2휉
  𝑟𝛼2𝑣𝜆𝑒−(𝑣+𝑟)𝑑𝑣𝑑𝑟

ℝ+
2

 , 

where 𝑣 =  Im 𝑤1 and 𝑟 =  |𝑤2|. Replacing now 𝑐 by its expression (16) and making a 

change of variables 𝑡 =  𝑣 +  𝑟, 𝑠2  =
𝑟

𝑣+𝑟
, gives 

𝛾𝑎𝑏
𝜆 (휉, 𝛼2) =

1

 𝛤(𝛼2 + 1)𝛤(휆 +  1)
∫ 𝑎 (

(𝑣 + 𝑟)

2휉
)𝑏 (√

𝑟

𝑣 + 𝑟
)𝑟𝛼2𝑣𝜆𝑒−(𝑣+𝑟)𝑑𝑣𝑑𝑟

ℝ+
2

 

=
1

𝛤(𝛼2  +  1)𝛤(휆 +  1)
 ∫ ∫ 𝑎 (

𝑡

2휉
) 𝑏 (√𝑠2)𝑡

𝛼2  𝑠2
𝛼2(1 − 𝑠2)

𝜆𝑡𝜆𝑒−𝑡𝑡𝑑𝑡𝑑𝑠2

1

0

  
ℝ+

 

=
1

𝛤(𝛼2 + 휆 + 2)
∫ 𝑎 (

𝑡

2휉
) 𝑡𝛼2+𝜆+1𝑒−𝑡𝑑𝑡 

ℝ+

𝛤( 𝛼2 + 휆 + 2)

𝛤( 𝛼2 +  1)𝛤(휆 +  1)
∫ 𝑏(√𝑠2)𝑠2

𝛼2(1 
1

0

− 𝑠2)
𝜆 𝑑𝑠2 = 𝛾𝑎

 𝛼2+𝜆+1(휉)  ·  𝛾𝑏
𝜆(𝛼2), (휉, 𝛼2)  ∈ ℝ+  × ℤ+. 

A comparison with (14) shows that the algebra 𝒯𝜆 (𝑆𝔻, 𝐿∞) is just unitary equivalent to a 

subalgebra of the 𝐶∗-algebra of the two-dimensional quasi-parabolic case. 

Example (2.1.9)[2]. Hyperbolic case 

This case corresponds to the algebra generated by Toeplitz operators on the weighted 

Bergman  space 𝒜𝜆
2 (𝛱) over the upper half-plane 𝛱 whose symbols depend only on the 

angular variable 휃 = arg𝑤 ,𝑤 ∈  𝛱, i.e. 

𝑆𝛱  = { 𝑎 =  𝑎(휃): 𝑎 ∈  𝐿∞(0, 휋)} . 
The 𝐶∗-algebra 𝒯𝜆  (𝑆𝛱) is isomorphic to a certain subalgebra of 𝐶𝑏(ℝ) and this 

isomorphism is generated by the following mapping (see [20], for details): 

𝑇𝛼
𝜆 ↦ 𝛾𝑎

𝜆 (휉) = (∫  𝑒−2𝜉 sin𝜆  휃  𝑑휃
𝜋

0

)

−1

∫ 𝑎(휃)
𝜋

0

𝑒−2𝜉 sin𝜆  휃  𝑑휃, 휉 ∈ ℝ 

We repeat now all the steps of the previous parabolic case. The Möbius transformation (13) 

and the corresponding unitary operator from 𝒜𝜆
2(𝛱) onto 𝒜𝜆

2(𝔻) provide the description of 

the corresponding class 𝑆𝔻 of symbols in 𝔻 and the unitary equivalence of the algebras 

𝒯𝜆 (𝑆𝛱) and 𝒯𝜆(𝑆𝔻). As a consequence of Corollary (2.1.6), the algebra 𝒯𝜆(𝑆𝔻 , 𝐿∞) is 

isomorphic to a subalgebra of 𝐶𝑏(ℝ × ℤ+) with the following assignment of its generators 
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𝑇𝑎𝑏
𝜆 = 𝑇𝑎

𝜆𝑇𝑏
𝜆  ↦  𝛾𝑎

𝛼2+𝜆+1(휉)  ·  𝛾𝑏
𝜆 (𝛼2)

= (∫ 𝑒−2𝜉 (𝑠𝑖𝑛 휃)𝛼2+𝜆+1 𝑑휃
𝜋

0

)

−1

∫ 𝑎(휃)𝑒−2𝜉 (𝑠𝑖𝑛 휃)𝛼2+𝜆+1 𝑑휃
𝜋

0

×
𝛤(𝛼2  +  휆 +  2)

𝛤(𝛼2  +  1)𝛤(휆 +  1)
 ∫  𝑏(√𝑠2)𝑠2

𝛼2(1 − 𝑠2)
𝜆 𝑑𝑠2

1

0

 

where (휉, 𝛼2) ∈ ℝ × ℤ+. Then the unitary operator, defined by the inverse to the Cayley 

transform (15), establishes the unitary equivalence between the algebra 𝒯𝜆(𝑆𝔻, 𝐿∞) and the 

corresponding Toeplitz operator algebra on 𝐷2. Under this unitary equivalence each 

generator 𝑇𝑎𝑏
𝜆  ∈ 𝒯𝜆(𝑆𝔻, 𝐿∞) is mapped to the Toeplitz operator on 𝐷2 with symbol 

𝑎(𝑎𝑟𝑔𝑤1)𝑏 (
|𝑤2|

√𝐼𝑚𝑤1
) ,     (𝑤1, 𝑤2) ∈  𝐷2.                           (17) 

Such symbols, for all 𝑎 ∈  𝐿∞(0, 휋) and 𝑏 ∈  𝐿∞(0, 1), are invariant under the action 

ℝ+ × 𝕋 ∋  (𝑟, 𝑡): (𝑤1, 𝑤2) ∈  𝐷2 ↦ (𝑟𝑤1, 𝑟
1
2𝑡𝑤2) ∈  𝐷2 

of the quasi-hyperbolic group ℝ+  × 𝕋 of biholomorphisms of 𝐷2. Thus the resulting 𝐶∗- 
algebra generated by Toeplitz operators with symbols of the form (17) is a subalgebra of the 

𝐶∗-algebra of the two-dimensional quasi-hyperbolic case. 

Example (2.1.10)[2]. More commutative  𝐶∗-algebras 

All others so far known algebras 𝒯𝜆  that are commutative for each weighted Bergman space 

𝒜𝜆
2(𝔹2), 휆 ∈  (−1,∞), were Banach (not 𝐶∗). Each of them was generated by two of its 

subalgebras: the 𝐶∗-algebra generated by Toeplitz operators with bounded radial symbols 

(which is isomorphic to 𝑆𝑂(ℤ+)) and a unital Banach algebra generated by a single Toeplitz 

operator with a so-called (generalized) quasi-homogeneous symbol. 

        Now we can unhide many others, previously unexpected, similarly constructed 

algebras that are both 𝐶∗ and commutative for each weighted Bergman space 𝐴𝜆
2(𝔹2), 휆 ∈

 (−1,∞). All of them are generated by the 𝐶∗-algebra 𝒯𝜆(𝐿∞), being isomorphic to 𝑆𝑂(𝑍+), 
and the unital 𝐶∗-algebra 𝒯𝜆(𝑎) generated by a single Toeplitz operator 𝑇𝑎

𝜆, where 𝑎(𝑧1) can 

be any real valued 𝐿∞-function on 𝔻 . 

Each such algebra admits the following description. We start with a fixed real valued 𝐿∞-

function 𝑎 =  𝑎(𝑧1) on 𝔻, and denote by sp 𝑇𝑎
𝜇

 the spectrum of the Toeplitz operator 𝑇𝑎
𝜇

 

acting on 𝒜𝜇
2(𝔻). Note that sp 𝑇𝑎

𝜇
 may depend on the weight parameter 휇. Put 

𝑀ℤ+  =  ∐ 𝑠𝑝 𝑇𝑎
𝛼2+ 𝜆+1

𝛼2∈ℤ+

, 

where ∐  denotes the disjoint union. Then the 𝐶∗-algebra 𝒯𝜆(𝑎, 𝐿∞) is isomorphic to a 

subalgebra of 𝐶𝑏(𝑀ℤ+) under the following assignment of the generators of 𝒯𝜆(𝑎, 𝐿∞): 

𝑇𝑎𝑏
𝜆 ↦ 𝑥𝛼2+𝜆+1

𝛤(𝛼2   +  휆 +  2)

𝛤(𝛼2  +  1)𝛤(휆 +  1)
 ∫ 𝑏(√𝑠2) 𝑠2

𝛼2  (1 − 𝑠2)
𝜆 𝑑𝑠2

1

0

,   𝑥𝛼2+𝜆+1 

∈  𝑠𝑝 𝑇𝑎
𝛼2+𝜆+1, 

 

where 𝑏 ∈  𝐿∞(0, 1). 
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We note that, for any finite subset 𝑁 of ℤ+, the restriction of the subalgebra of 

𝐶𝑏(𝑀ℤ+), which is isomorphic to the 𝐶∗-algebra 𝒯𝜆(𝑎, 𝐿∞), onto 𝑀𝑁 = ∐  𝑠𝑝 𝑇𝑎
𝛼2+𝜆+1 𝛼2∈𝑁  

coincides with 𝐶(𝑀𝑁) = ⨁  𝐶(𝑠𝑝 𝑇𝑎
𝛼2+𝜆+1

𝛼2∈𝑁 . 

      If a fixed symbol 𝑎 =  𝑎(𝑧1) ∈  𝐿∞(𝔻) is not real-valued, then the unital algebra 𝒯𝜆(𝑎) 

generated by the Toeplitz operator 𝑇𝑎
𝜆 is Banach, and the description of the algebra 𝒯𝜆(𝑎, 𝐿∞) 

of Example (2.1.10) needs a certain adjustment. 

      The spectrum 𝑠𝑝𝒯  𝑇𝑎
𝜇

 of the Toeplitz operator 𝑇𝑎
𝜇

, as an element of the unital algebra 

𝒯𝜇(𝑎) (generated by 𝑇𝑎
𝜇

), is a polynomially convex compact subset of ℂ the set ℂ  𝑠𝑝𝒯  𝑇𝑎
𝜇

 is 

connected.  Recall that under these conditions Mergelyan’s theorem states that any 

continuous complex function on 𝐾 =  𝑠𝑝𝒯  𝑇𝑎
𝜇

 which is holomorphic in the interior of 𝐾 can 

be uniformly approximated by holomorphic polynomials restricted to 𝐾. 

Hence, for each weight parameter 휇, the algebra 𝒯𝜇(𝑎) is isomorphic to 𝒜(𝑠𝑝𝒯  𝑇𝑎
𝜇
), 

the algebra of all functions that are continuous on 𝑠𝑝𝒯  𝑇𝑎
𝜇

 and analytic in the interior of 

𝑠𝑝𝒯  𝑇𝑎
𝜇

. Moreover, this isomorphism is generated by the assignment 

𝑇𝑎
𝜇
↦ [𝑤 ↦  𝑤] ∈  𝐴(𝑠𝑝𝒯  𝑇𝑎

𝜇
). 

Consider again the set 

𝑀ℤ+   =  ∐  𝑠𝑝𝒯  𝑇𝑎
𝛼2+𝜆+1

 𝛼2∈ℤ+

. 

Then the Banach algebra 𝒯𝜆(𝑎, 𝐿∞) is isomorphic to a subalgebra of 𝐶𝑏(𝑀ℤ+) under the 

following assignment of the generators of 𝒯𝜆(𝑎, 𝐿∞): 

𝑻𝑎𝑏
𝜆 ↦ 𝑤𝛼2 +𝜆+1  

𝛤(𝛼2  +  휆 +  2)

𝛤(𝛼2  +  1)𝛤(휆 +  1)
 ∫  𝑏(√𝑠2)𝑠2

𝛼2(1 − 𝑠2)
𝜆 𝑑𝑠2

1

0

,   

𝑤𝛼2+𝜆+1 ∈  𝑠𝑝𝒯𝑇𝑎
𝛼2+𝜆+1,                                                 (18) 

where 𝑏  ∈  𝐿∞(0, 1). 
For any finite subset 𝑁 𝑜𝑓 ℤ+, the restriction of the subalgebra of 𝐶𝑏(𝑀ℤ+), which is 

isomorphic to the algebra 𝒯𝜆(𝑎, 𝐿∞), onto 𝑀𝑁 = ∐ 𝑠𝑝𝒯  𝑇𝑎
𝛼2+𝜆+1

𝛼2∈𝑁  coincides with the 

algebra ∏  𝒜(𝑠𝑝𝒯  𝑇𝑎
𝛼2+𝜆+1

𝛼2∈𝑁 . 

Example (2.1.11)[2]. Case of 𝑎(𝑧1)  =  𝑧1 

In this case 𝑇𝑎
𝜇

   is just the multiplication operator 𝑀𝑧1, the so-called Bergman shift, and  

𝑠𝑝𝒯  𝑇𝑎
𝜇
 = 𝔻 independently on the weight parameter 휇 ∈  (−1,∞). This implies that 

𝑀ℤ+  = 𝔻 × ℤ+, and formula (18) takes the form 

𝑇 𝑧1·𝑏
𝜆 ↦ 𝛾 𝑧1·𝑏

𝜆  =  𝛾 𝑧1·𝑏
𝜆 (𝑤, 𝛼2) 

=  𝑤 
𝛤(𝛼2  +  휆 +  2)

𝛤(𝛼2  +  1)𝛤(휆 +  1)
∫  𝑏(√𝑠2)𝑠2

𝛼2(1 − 𝑠2)
𝜆 𝑑𝑠2

1

0

, (𝑤, 𝛼2)  ∈ 𝔻 × ℤ+. 
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Note that each function 𝛾 𝑧1 ·𝑏
𝜆 , 𝑏 ∈  𝐿∞(0,1), as well as each element 𝛾𝜆 of the function 

algebra  generated by them obey the following properties 

- for each fixed 𝛼2  ∈ ℤ+: 𝛾
𝜆(·, 𝛼2) ∈ 𝒜(𝔻), 

- for each fixed 𝑤 ∈ 𝔻: 𝛾𝜆(𝑤,·)  ∈  𝑆𝑂(ℤ+). 

We note that, apart from 𝑇𝑧1
𝜆 , the Banach algebra 𝒯𝜆(𝑧1) contains more Toeplitz operators. 

In fact, for each 𝑎(𝑧1)  ∈ 𝒜(𝔻), the Toeplitz operator 𝑇𝑎(𝑧1)
𝜆  =  𝑀𝑎(𝑧1) belongs to 𝒯𝜆(𝑧1). 

That is, 𝒯𝜆(𝑧1, 𝐿∞)  = 𝒯𝜆(𝑆, 𝐿∞), with 𝑆 = 𝒜(𝔻). 

Example (2.1.12)[2]. Case of 𝑆 =  𝐻∞(𝔻) 

A maximal extension of the algebra constructed in the previous example is achieved by the 

replacement of 𝑆 = 𝒜(𝔻) by the maximally ample class 𝐻∞(𝔻) of all bounded analytic 

functions in 𝔻. 

There are many other admissible sets 𝑆 related to bounded analytic functions. Actually each 

(closed) subalgebra of 𝐻∞(𝔻) can serve as a class 𝑆. We give here just one example of such 

an algebra having important connections with other function classes that often appear in the 

operator theory in function spaces. 

Example (2.1.13)[2]. Case of 𝑆 =  𝐶𝑂𝑃. We recall first the notion of Gleason parts. Let 

𝑀(𝐻∞) denote the compact set of maximal ideals of the algebra 𝐻∞  =  𝐻∞(𝔻). On 

𝑀(𝐻∞) consider the pseudohyperbolic distance 휌(𝑚1, 𝑚2) =  𝑠𝑢𝑝{ |𝑓(𝑚2)|: 𝑓 ∈
 𝐻∞, ‖𝑓‖∞  ≤  1, 𝑓(𝑚1) =  0} ,   𝑚1, 𝑚2  ∈  𝑀(𝐻

∞). 
Clearly, 휌(𝑚1, 𝑚2)  ≤  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚1, 𝑚2 and one obtains an equivalence relation on 

𝑀(𝐻∞) by 

𝑚1  ∼  𝑚2 ∶⟺  휌(𝑚1, 𝑚2)  <  1. 
The equivalence classes 𝑃(𝑚) for 𝑚 ∈  𝑀(𝐻∞) are called Gleason parts and form a 

partition of 𝑀(𝐻∞). Each Gleason part 𝑃(𝑚),𝑚 ∈  𝑀(𝐻∞) is either an analytic disc (i.e. 

the range of a certain analytic map 𝐿𝑚 ∶ 𝔻 →  𝑀(𝐻
∞)) or a single point set {𝑚}. 

Recall then that 𝐶𝑂𝑃 =  𝐶𝑂𝑃(𝔻) is the algebra of all bounded functions analytic in 

𝔻 which are constant on Gleason parts 𝑃(𝑚) for all 𝑚 ∈  𝑀(𝐻∞) \ 𝔻. 

It is known  that 𝐶𝑂𝑃 =  𝐵0  ∩  𝐻
∞, where 𝐵0 is the little Bloch space, which consists of 

all functions f analytic in 𝔻 such that |𝑓′ (𝑤)|(1 − |𝑤|2) →  0 𝑎𝑠 |𝑤| →  1−.It is known as 

well that 𝐶𝑂𝑃 is an “analytic” part of the class 𝑄, i.e., 𝐶𝑂𝑃 =  𝑄 ∩  𝐻∞. Here 𝑄 is the 

maximal 𝐶∗-subalgebra of 𝐿∞(𝔻) such that the semicommutators of Toeplitz operators with 

symbols from this algebra are compact. 

For each subset 𝑆 ⊂  𝐻∞(𝔻), the algebra 𝒯𝜆(𝑆, 𝐿∞) is isomorphic to a subalgebra of 

𝐶𝑏(𝔻 × ℤ+). The isomorphism is generated by the following mapping: given f ∈  𝑆 and 

𝑏 ∈  𝐿∞(0,1), 

𝑇𝑓·𝑏
𝜆  ↦  𝛾 𝑓·𝑏

𝜆  =  𝛾 𝑓·𝑏
𝜆 (𝑤, 𝛼2) 

=  𝑓(𝑤)  
𝛤(𝛼2  +  휆 +  2)

𝛤(𝛼2 +  1)𝛤(휆 +  1)
∫ 𝑏(√𝑠2)𝑠2

𝛼2(1 − 𝑠2)
𝜆 𝑑𝑠2

1

0

, (𝑤, 𝛼2)  ∈ 𝔻 × ℤ+. 
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In the case of 𝑆 =  𝐶𝑂𝑃 each such function 𝛾 𝑓·𝑏
𝜆 , as well as each element 𝛾𝜆 of the function 

algebra generated by them, obeys the following properties 

- for each fixed 𝛼2  ∈ ℤ+: 𝛾
𝜆(·, 𝛼2)  ∈  𝐶𝑂𝑃, 

- for each fixed 𝑤 ∈ 𝔻: 𝛾𝜆(𝑤,·)  ∈  𝑆𝑂(ℤ+). 

In particular, 𝑠𝑝 𝑇𝑓·𝑏
𝜆  =  𝑐𝑙𝑜𝑠{𝑅𝑎𝑛𝑔𝑒 𝛾 𝑓·𝑏

𝜆 }. 

Section (2.2): Non-Commutative 𝐶∗-Algebras 

        The characterization of non-commutative 𝐶∗-algebras consists in the description of its 

irreducible representations (up to unitary equivalence). If a unital operator 𝐶∗-algebra ℛ 

contains the ideal 𝒦 of compact operators, then its identical representation is irreducible 

and all other irreducible representations are obtained by composing the natural projection 

onto the Calkin algebra ℛ̂  = ℛ/𝒦 with an irreducible representation of ℛ̂. If the Calkin 

algebra is commutative, then the non-identical irreducible representations of ℛ are one-

dimensional and parametrized by the points of the compact set of maximal ideals of ℛ. 

Example (2.2.1)[2]. Case of 𝑆 =  𝐶(�̅�). This is the 𝐶∗-extension of the commutative 

Banach algebra in Example (2.1.11). The 𝐶∗-algebra 𝒯𝛼2 +𝜆+1(𝐶(�̅�)), of operators acting 

on the weighted Bergman space 𝐴 𝛼2+𝜆+1
2  (�̅�), is generated by all Toeplitz operators 

𝑇𝑎
𝛼2+𝜆+1 with symbols 𝑎 ∈  𝐶(�̅�). It is known, that each operator 𝑇 from 𝒯𝛼2+𝜆+1(𝐶(�̅�)) 

can be represented as a compact perturbation of an initial generator, i.e.,𝑇 =  𝑇𝑎  +  𝐾 for 

some 𝑎 ∈  𝐶(�̅� ) and 𝐾 ∈ 𝒦. 

We give a more detailed description of the algebra 𝒯𝜆(𝐶(�̅�)) generated by all Toeplitz 

operators 𝑇𝑎
𝜆, with 𝑎 =  𝑎(𝑧1)  ∈  𝐶(�̅�), acting on the Bergman space 𝐴𝜆

2(𝔹2). By 

Corollary (2.1.6) operators 𝑇𝜆  ∈ 𝒯𝜆(𝐶(�̅�)) admit a decomposition into a countable direct 

sum 

𝑇𝜆  ≍  ⨂ 𝑇𝛼2+𝜆+1

α2∈ℤ+

 ,                                         (19) 

where, for each 𝛼2  ∈ ℤ+, the operator 𝑇  𝛼2+𝜆+1 belongs to the algebra 𝒯𝛼2+𝜆+1 (𝐶(�̅�)). 

      Then (5), together with standard arguments, implies the following lemma. 

Lemma (2.2.2)[2]. For each operator 𝑇𝜆  ∈ 𝒯𝜆(𝐶(�̅�)), 

‖𝑇𝜆‖   = sup
 𝛼2∈ℤ+

‖𝑇  𝛼2+𝜆+1‖  . 

Corollary (2.2.3)[2]. For initial generators 𝑇𝑎
𝜆, with 𝑎 =  𝑎(𝑧1)  ∈  𝐶(�̅�), of the algebra 

𝒯𝜆 (𝐶(�̅�))we have that ‖𝑇𝑎
𝜆‖  = sup

𝑧1∈�̅�
|𝑎(𝑧1)|  =  ‖𝑎‖∞. Denote by 𝐶∞(�̅�) the dense subset 

in 𝐶(�̅�) which consists of all smooth functions whose derivatives admit a continuous 

extension to the boundary 𝑆1  =  𝜕𝔻. Let 𝒟𝜆  = 𝒟𝜆(𝐶
∞(�̅�))be the dense subalgebra of 

𝒯𝜆(𝐶(�̅�)) that consists of finite sums of finite products of Toeplitz operators with symbols 

from 𝐶∞(�̅�), i.e. elements 𝑇𝜆  ∈ 𝒟𝜆 are of the form 
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𝑇𝜆  = ∑∏𝑇𝑎𝑘,𝑗𝑘
𝜆 ,

𝑚𝑘

𝑗𝑘=1

𝑛

𝑘=1

 𝑎𝑘,𝑗𝑘  ∈  𝐶
∞(�̅�). 

Lemma (2.2.4)[2]. Each element 𝑇𝜆  ∈ 𝒟𝜆, in the direct sum representation (19), is of the 

form 

𝑇𝜆  ≍  ⨁(𝑇𝑎
 𝛼2+𝜆+1  +  𝐾𝛼2)

𝛼2∈ℤ+

, 

where 𝑎 ∈  𝐶∞(�̅�), each 𝐾𝛼2  ∈ ℒ(𝐴 𝛼2+𝜆+1
2 (𝔻)) is compact, and 𝐾𝛼2  →  0 as 𝛼2  →  ∞. 

Proof. It is sufficient to prove the lemma for finite products of m Toeplitz operators and by 

induction we can assume that 𝑚 =  2. Thus, given 𝑎, 𝑏 ∈  𝐶∞(�̅�), we consider 

𝑇𝑎
𝜆𝑇𝑏

𝜆  ≍⨁𝑇𝑎
 𝛼2+𝜆+1 𝑇𝑏

𝛼2+𝜆+1

𝛼2∈ℤ+

. 

For each 𝛼2  ∈ ℤ+, we write 𝑇𝑎
 𝛼2+𝜆+1𝑇𝑏

𝛼2+𝜆+1  =  𝑇𝑎𝑏
𝛼2+𝜆+1  +  𝐾𝛼2 , where 𝐾𝛼2 is the 

semicommutator of 𝑇𝑎
 𝛼2+𝜆+1 and 𝑇𝑏

𝛼2+𝜆+1, i.e., 𝐾𝛼2  =  𝑇𝑎
 𝛼2+𝜆+1𝑇𝑏

𝛼2+𝜆+1 − 𝑇𝑎𝑏
 𝛼2+𝜆+1. This 

operator is known to be compact. Finally, implies that 𝐾𝛼2  →  0 as 𝛼2  →  ∞. 

           Now we are ready to prove: 

Theorem (2.2.5)[2]. Each operator 𝑇𝜆  ∈ 𝒯𝜆(𝐶(�̅�)), in the direct sum decomposition (19), 

admits the following representation 

𝑇𝜆  ≍⨁(𝑇𝑎
 𝛼2+𝜆+1  +  𝐾𝛼2)

𝛼2∈ℤ+

,                                     (20) 

where 𝑎 ∈  𝐶(�̅�), each 𝐾𝛼2 is compact, and 𝐾𝛼2  →  0 as 𝛼2  →  ∞. 

Proof. Given 𝑇𝜆  ∈ 𝒯𝜆(𝐶(�̅�)), there exists a fundamental sequence {𝑇  𝜆,𝑘}
𝑘∈ℕ

 of elements 

from 𝒟𝜆 that converges in norm to 𝑇𝜆. By the previous lemma, each 𝑇  𝜆,𝑘 has the form 

𝑇  𝜆,𝑘 ≍⨁𝑇  𝛼2+𝜆+1,𝑘

 𝛼2∈ℤ+

, 𝑤𝑖𝑡ℎ 𝑇  𝛼2+𝜆+1,𝑘 =  𝑇𝑎𝑘
𝛼2+𝜆+1  +  𝐾𝑘

𝛼2 , 

where 𝑎𝑘  ∈  𝐶
∞(�̅�) for each 𝑘 ∈ ℕ and 𝐾𝑘

 𝛼2 is compact with 𝐾𝑘
 𝛼2  →  0 as 𝛼2  →  ∞, for 

fixed 𝑘 . By Lemma (2.2.2), each sequence {𝑇  𝛼2+𝜆+1,𝑘}
𝑘∈ℕ
 is also fundamental in 

ℒ(𝒜 𝛼2+𝜆+1
2 (𝔻 )). 

         In particular, for any 휀 >  0 there exists 𝑁0  ∈ ℕ such that for all 𝑛,𝑚 >  𝑁0 we have 

the following estimate (uniform in 𝛼2): 

‖𝑇  𝛼2+𝜆+1,𝑛  −  𝑇  𝛼2+𝜆+1,𝑚‖  ≤  ‖𝑇  𝜆,𝑛  −  𝑇  𝜆,𝑚‖  <  
휀

2
. 

Observe now that 𝑇  𝛼2+𝜆+1,𝑛  − 𝑇  𝛼2+𝜆+1,𝑚 = 𝑇(𝑎𝑛−𝑎𝑚)
 𝛼2+𝜆+1   + (𝐾𝑛

 𝛼2  − 𝐾𝑚
 𝛼2). For any fixed 

𝑛,𝑚 >  𝑁0 we pass to the limit as 𝛼2  →  ∞. Then, taking into account Corollary (2.2.3) 

together with the observation that 𝐾𝑛
𝛼2 and 𝐾𝑚

 𝛼2 both tend to 0 as 𝛼2  →  ∞, we have 

lim
𝛼2→∞

‖𝑇  𝛼2+𝜆+1,𝑛  −  𝑇  𝛼2+𝜆+1,𝑚‖  = lim
𝛼2→∞

‖𝑇(𝑎𝑛−𝑎𝑚)
 𝛼2+𝜆+1‖  =  ‖𝑎𝑛  −  𝑎𝑚‖∞  ≤

휀

2
. 

Hence the function sequence {𝑎𝑘}𝑘∈ℕ is fundamental, and thus converges to some 𝑎 ∈

 𝐶(�̅�). Then, ‖𝑇𝛼𝑘
𝑎2+𝜆+1 − 𝑇𝑎

 𝛼2+𝜆+1‖  ≤  ‖𝑎𝑘 − 𝑎‖∞ implies that, for each 𝛼2, the sequence 
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{𝑇𝑎𝑘
(𝛼2+𝜆+1) }

𝑘∈𝑁
 converges in norm to the operator 𝑇𝑎

 𝛼2+𝜆+1. Thus, for each 𝛼2, the 

sequence of compact operators {𝐾𝑘
 𝛼2+𝜆+1}

𝑘∈ℕ
, being the difference of two convergent 

sequences {𝑇 
 𝛼2+𝜆+1,𝑘}

𝑘∈ℕ
 and {𝑇𝑎𝑘

 𝛼2+𝜆+1}
𝑘∈ℕ

, converges in norm to a compact operator 

𝐾𝛼2. 
      This implies the desired representation 

𝑇  𝜆 ≍⨁𝑇 
 𝛼2+𝜆+1

𝛼2∈ℤ+

 =⨁𝑇𝑎
 𝛼2+𝜆+1 + 𝐾𝑎2

 𝛼2∈ℤ+

). 

          It remains to prove that 𝐾𝛼2  →  0 as 𝛼2  →  ∞. To do this we use the standard  
3
-

trick. Using the representation 

𝑇 
 𝛼2+𝜆+1  −  𝑇 

 𝛼2+𝜆+1,𝑘  =  𝑇(𝑎−𝑎𝑘)
 𝛼2+𝜆+1   +  𝐾𝛼2  −  𝐾𝑘

 𝛼2  , 

we obtain: 

‖𝐾𝛼2‖  ≤ ‖ 𝑇 
 𝛼2+𝜆+1  −  𝑇 

 𝛼2+𝜆+1.𝑘‖ + ‖𝑇(𝑎−𝑎𝑘)
𝑎2+𝜆+1‖ + ‖𝐾𝑘

 𝛼2‖  . 

Now, given any ε >  0, there exists 𝑘 ∈ ℕ such that 

‖𝑇 
 𝛼2+𝜆+1  −  𝑇 

 𝛼2+𝜆+1.𝑘‖  ≤  ‖𝑇𝜆  −  𝑇  𝜆,𝑘‖  <
3
  𝑎𝑛𝑑  ‖𝑇(𝑎−𝑎𝑘)

 𝛼2+𝜆+1‖  ≤  ‖𝑎 − 𝑎𝑘‖∞  <

 
3
 , both uniformly in 𝛼2. With this fixed 𝑘 and 

3
 , there exists 𝑁0  ∈ ℕ such that for all 

𝛼2  >  𝑁0 we have that ‖𝐾𝑘
𝛼2‖  <  

3
 . The above implies that for all 𝛼2  >  𝑁0 

‖𝐾𝛼2‖  <  3
휀

3
 =  휀. 

 Further information on the structure of the algebra 𝒯𝜆(𝐶(�̅�)) is given by the 

following two lemmas. 

Lemma (2.2.6)[2]. The representation of 𝑇𝜆   ∈ 𝒯𝜆(𝐶(�̅�)) in the form (20) is unique. 

Proof. Assume that 

𝑇𝜆 ≍⨁(𝑇𝑎1
 𝛼2+𝜆+1 + 𝐾1

𝑎2)

𝛼2∈ℤ+

=⨁(𝑇𝑎2
 𝛼2+𝜆+1 + 𝐾2

𝑎2)

𝛼2∈ℤ+

, 

where 𝑎𝑗  ∈  𝐶(�̅�), each 𝐾𝑗
 𝛼2 is compact, and 𝐾𝑗

 𝛼2  →  0 as 𝛼2  →  ∞, for 𝑗 =  1, 2. Then 

𝑇𝑎1−𝑎2
 𝛼2+𝜆+1  +  (𝐾1

𝛼2 − 𝐾2
 𝛼2) = 0,      𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝛼2  ∈ ℤ+,       (21) 

and thus 

0 = lim
𝛼2∈ℤ+

‖𝑇𝛼1−𝛼2
 𝛼2+𝜆+1 + (𝐾1

 𝛼2  −  𝐾2
 𝛼2)‖   = lim

𝛼2∈ℤ+
‖𝑇𝛼1−𝛼2

 𝛼2+𝜆+1‖ 

= ‖𝑎1 − 𝑎2‖∞ . 
Thus 𝑎1  =  𝑎2, and (21) implies that 𝐾1

 𝛼2  =  𝐾2
 𝛼2 for all 𝛼2  ∈ ℤ+. 

For fixed 𝛼2  ∈ ℤ+, we denote by 𝔗𝛼2+𝜆+1(𝐶(�̅�)) the set (algebra) of all operators 

𝑇𝑎
 𝛼2+𝜆+1  =  𝑇𝑎

 𝛼2+𝜆+1  +  𝐾𝛼2 that appear on the “𝛼2 level” in the representation (20) of 

the operators 𝑇𝜆  ∈ 𝒯𝜆(𝐶(�̅�)). 
Lemma (2.2.7)[2]. For 𝛼2  ∈ ℤ+, the algebra 𝔗𝛼2+𝜆+1(𝐶(�̅�)) coincides with algebra 

𝒯𝛼2+𝜆+1(𝐶(�̅�)), which is generated by all Toeplitz operators 𝑇𝑎
 𝛼2+𝜆+1, with 𝑎 ∈  𝐶(�̅�). 

Proof. From the decomposition 𝑇𝑎
𝜆  = ⨁ 𝑇𝑎

 𝛼2+𝜆+1
𝛼2∈ℤ+   we observe that 𝔗𝛼2+𝜆+1(𝐶(�̅�)) 

contains all Toeplitz operators 𝑇𝑎
 𝛼2+𝜆+1  with 𝑎 ∈  𝐶(�̅�). Then 
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〈𝑇𝑤
 𝛼2+𝜆+1𝑤𝑛 , 𝑤𝑚〉 𝛼2+𝜆+1,𝔻  =  〈𝑤

𝑛+1, 𝑤𝑚〉 𝛼2+𝜆+1,𝔻  

=  {

Γ(𝑛 + 2)Γ(𝛼2 + 휆 + 3)

Γ(𝑛 + 𝛼2 + 휆 + 4)
, 𝑖𝑓 𝑚 =  𝑛 +  1,

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

〈𝑇�̅�
 𝛼2+𝜆+1𝑤𝑛 , 𝑤𝑚〉 𝛼2+𝜆+1,𝔻  =  〈𝑤

𝑛, 𝑤𝑚+1〉 𝛼2+𝜆+1,𝔻  

=  {

Γ(𝑛 + 1)Γ(𝛼2 + 휆 + 3)

Γ(𝑛 + 𝛼2 + 휆 + 3)
, 𝑖𝑓 𝑚 =  𝑛 −  1,

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

〈𝑇�̅�𝑇𝑤
 𝛼2+𝜆+1𝑤𝑛 , 𝑤𝑚〉 𝛼2+𝜆+1,𝔻  =  〈𝑤

𝑛+1, 𝑤𝑚+1〉 𝛼2+𝜆+1,𝔻  

=  {

Γ(𝑛 + 2)Γ(𝛼2 + 휆 + 3)

Γ(𝑛 + 𝛼2 + 휆 + 4)
, 𝑖𝑓 𝑚 =  𝑛,

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

which implies that the operators from 𝔗𝛼2+𝜆+1(𝐶(�̅�)) do not have common non-trivial 

invariant subspaces. Therefore the identical representation of the 𝐶∗-algebra 

𝔗𝛼2+𝜆+1(𝐶(�̅�))is irreducible. 

        The algebra 𝔗𝛼2+𝜆+1(𝐶(�̅�)) obviously contains non-trivial compact operators, and 

thus by the above it contains the full ideal of compact operators. That is, 𝔗𝛼2+𝜆+1(𝐶(�̅�)) 

contains all operators of the form 𝑇𝑎
 𝛼2+𝜆+1 +  𝐾, where 𝑎 ∈  𝐶(�̅�) and 𝐾 is compact, and 

thus coincides with 𝒯𝛼2+𝜆+1 (𝐶(�̅�)). 

Next, we classify the irreducible representations of 𝒯𝜆(𝐶(�̅�)). Since each subspace in the 

direct sum decomposition (3) is invariant under the action of operators in 𝒯𝜆(𝐶(�̅�)), each 

irreducible representation of the algebra 𝒯𝜆(𝐶(�̅�)) is formed by the restriction of elements 

in 𝒯𝜆(𝐶(�̅�)) onto an invariant subspace followed (according to the result of Lemma (2.2.7)) 

by an irreducible representation of the corresponding algebra 𝒯𝛼2+𝜆+1(𝐶(�̅�))). All 

irreducible representations of the latter algebra are well known. They consist of the infinite 

dimensional identical representation ι and the one-dimensional representations 휋𝑡, 
parameterized by points 𝑡 ∈  𝑆1  =  𝜕𝔻. More precisely, 휋𝑡 has the form 

휋𝑡 ∶ 𝒯𝛼2+𝜆+1(𝐶(�̅� )) ∋  𝑇𝑎
 𝛼2+𝜆+1  +  𝐾 ↦  𝑎(𝑡)  ∈ ℂ. 

We obtain the following (not yet complete) list of irreducible representations of the 𝐶∗- 

algebra 𝒯𝜆(𝐶(�̅�)): 

- a countable family of infinite dimensional representations 휄𝛼2  induced by the identical 

representations on the spaces 𝐴 𝛼2+𝜆+1
2 (𝔻), 𝛼2  ∈ ℤ+: 

휄𝛼2 ∶  𝑇
𝜆 ≍⨁(𝑇𝑎

 𝛽2+𝜆+1  +  𝐾𝛽2)

𝛽2∈ℤ+

↦  𝑇𝑎
 𝛼2+𝜆+1  +  𝐾𝛼2 .          (22) 
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- an uncountable family of one-dimensional representations 휋𝑡,𝛼2 , (𝑡, 𝛼2) ∈  𝑆
1  ×

ℤ+,  defined by 

휋𝑡,𝛼2 ∶  𝑇
𝜆 ≍⨁(𝑇𝑎

 𝛽2+𝜆+1  +  𝐾𝛽2)

𝛽2∈ℤ+

↦   𝑎(𝑡) . 

Of course, for a fixed 𝑡, all one-dimensional representations 휋𝑡,𝛼2 , (𝑡, 𝛼2) ∈  𝑆
1  × ℤ+, are 

unitary equivalent. Thus for each 𝑡 ∈  𝑆1 we have in fact just one representation 

휋𝑡 ∶  𝑇
𝜆 ≍⨁(𝑇𝑎

 𝛽2+𝜆+1  +  𝐾𝛽2)

𝛽2∈ℤ+

↦   𝑎(𝑡) .                     (23) 

which is of infinite multiplicity. 

       At the same time, the infinite dimensional representations 휄𝛼2 , 𝛼2  ∈ ℤ+, are not pairwise 

unitary equivalent. To see this, let us consider 

휄𝛼2 ( 𝑇1−|𝑧1|2
𝜆  ) =  𝑇

1−|𝑧1|
2

 𝛼2+𝜆+1 

The Toeplitz operator on the right has a radial symbol and is unitary equivalent to a diagonal 

operator with eigenvalue sequence  

𝛾
1−|𝑧1|

2
 𝛼2+ 𝜆+1 = {𝛾

1−|𝑧1|
2

𝛼2+𝜆+ 1 (𝑘)}
𝑘∈ℤ+

,  

where 

𝛾
1−|𝑧1|

2
 𝛼2+ 𝜆+1(𝑘) = 1 −

Γ(𝑘 + 𝛼2 + 휆 + 3)

Γ(𝑘 + 1)Γ(𝛼2 + 휆 + 2)
  − ∫ 𝑟𝑘+1(1 − 𝑟)𝛼2+𝜆+1

1

0

𝑑𝑟

=
𝛼2 + 휆 + 2 

 𝑘 + 𝛼2 + 휆 + 3 
.  

Now, 

‖𝑇
1−|𝑧1|

2
 𝛼2+𝜆+1‖  = sup

𝑘∈ℤ+

𝛾
1−|𝑧1|

2
 𝛼2+𝜆 +1 (𝑘)   =  

𝛼2 + 휆 + 2

𝛼2 + 휆 + 3
  , 

and, as the norms ‖𝑇
1−|𝑧1|

2
 𝛼2+𝜆+1‖ are different for different 𝛼2, the representations 휄𝛼2 , for 

different 𝛼2, cannot be unitary equivalent. 

        A rather unexpected additional series of one-dimensional irreducible representations 

of the algebra 𝒯𝜆(𝐶(�̅�)) is induced by the Berezin quantization on the hyperbolic unit disk.  

      Recall that the Berezin transform of a bounded linear operator A acting on the weighted 

Bergman space 𝒜𝜇
2(𝔻) is defined as follows 

𝐵𝜇(𝐴)(휁)  =  〈𝐴𝑘 , 𝑘 〉𝜇,𝔻, 

where 𝑘 (𝑤) =
(1−| |2)1+𝜇2

(1− 𝑤)2+𝜇
 is the normalized Bergman kernel in 𝒜𝜇

2(𝔻). In particular, if 

𝐴 =  𝑇𝑎, with 𝑎 ∈  𝐿∞(𝔻), then 

𝐵𝜇(𝑇𝑎)(휁)  =  〈𝑇𝑎𝑘 , 𝑘 〉𝜇,𝔻  =  〈𝑎𝑘 , 𝑘 〉𝜇,𝔻  = : 𝐵𝜇(𝑎)(휁). 
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Lemma (2.2.8)[2]. The mapping 휌 ∶  𝑻𝜆(𝐶(�̅�))
           
→   𝐶(�̅�), defined by 

휌 ∶  𝑇𝜆  ≍⨁ 

𝛼2∈ℤ+

𝑇𝛼2+𝜆+1  ⟼ lim
𝛼2→∞

 𝐵𝛼2+𝜆+1(𝑇
𝛼2+𝜆+1)      (24) 

is a continuous ∗-homomorphism of the 𝐶∗-algebra 𝒯𝜆(𝐶(�̅�)) onto 𝐶(�̅�). 

Proof. Recall that all operators 𝑇𝛼2+𝜆+1 are of the form 𝑇𝑎
𝛼2+𝜆+1  +  𝐾𝛼2 with a common 

function 𝑎 ∈  𝐶(�̅�) and compact operators 𝐾𝛼2 obeying the property 𝐾𝛼2  →  0 as 𝛼2 →
∞. 
From the standard estimate 

|𝐵𝛼2+𝜆+1(𝐾
𝛼2+𝜆+1)|  ≤  ‖𝐾𝛼2+𝜆+1‖ 

it follows that lim
𝛼2→∞

  𝐵𝛼2+𝜆+1(𝐾
𝛼2+𝜆+1)  =  0. Furthermore, by (a variant of the 

correspondence principle for Berezin quantization), we have that 

lim
𝛼2→∞

 𝐵𝛼2+𝜆+1(𝑇𝑎
𝛼2+𝜆+1 )  =  𝑎 

uniformly on �̅�. Thus, 

lim
𝛼2→∞

 𝐵𝛼2+𝜆+1(𝑇
𝛼2+𝜆+1) = lim

𝛼2→∞
 𝐵𝛼2+𝜆+1(𝑇𝑎

𝛼2+𝜆+1  +  𝐾𝛼2) 

= lim
𝛼2→∞

 𝐵𝛼2+𝜆+1(𝑇𝑎
𝛼2+𝜆+1 )  =  𝑎 ∈  𝐶(𝔻), 

and (24) is well-defined. The mapping ρ is onto as for each a ∈ C(D) we have that 

휌(𝑇𝑎
𝜆) =  𝑎.  For 𝑇1

𝛼2+𝜆+1  =  𝑇𝑎1
𝛼2+𝜆+1  +  𝐾1

𝛼2 and 𝑇2
𝛼2+𝜆+1  =  𝑇𝑎2

𝛼2+𝜆+1  +  𝐾2
𝛼2  we have 

𝑇1
𝛼2+𝜆+1  +  𝑇2

𝛼−2+𝜆+1  =  𝑇𝑎1+𝑎2
𝛼2+𝜆+1  +  𝐾+

𝛼2  , 

𝑇1
𝛼2+𝜆+1 × 𝑇2

𝛼2+𝜆+1  =  𝑇𝑎1·𝑎2
𝛼2+𝜆+1  +  𝐾×

𝛼2  , 

(𝑇1
𝛼2+𝜆+1 )

∗
 =  𝑇𝑎1

𝛼2+𝜆+1  +  (𝐾1
𝛼2  )

∗
, 

which implies that 휌 is a *-homomorphism.  

The continuity follows from the inequality 

‖𝑎‖∞  = sup
𝑧1∈𝔻

 |𝑎(𝑧1)|  = lim
𝛼2→∞

 ‖𝑇𝑎
𝛼2+𝜆+1‖ ≤ sup

𝛼2∈ℤ+

 ‖𝑇𝑎
𝛼2+𝜆+1  +  𝐾𝛼2‖  =  ‖𝑇𝜆‖. 

Corollary (2.2.9)[2]. For each 𝑧1  ∈  𝔻, the mapping 휌𝑧1 ∶  𝒯𝜆 (𝐶(𝔻)) →  ℂ, defined by 

휌𝑧1 ∶  𝑇
𝜆⟼  휌(𝑇𝜆)  =  𝑎 ⟼  𝑎(𝑧1)  ∈  ℂ, 

is a one-dimensional representation of the 𝐶∗-algebra 𝒯𝜆 (𝐶(𝔻)). 

Remark (2.2.10)[2]. Given 𝑇𝜆 ≍ ⨁  𝛼2∈ℤ+ 𝑇
𝛼2+𝜆+1  ∈  𝒯𝜆(𝐶(𝔻)), the result of Lemma 

(2.2.8) permits us to recover its unique (by Lemma (2.2.6)) representation (20). Indeed, all 

necessary data for the representation (20) are given by 

𝑎 =  휌(𝑇𝜆)  = lim
𝛼2→∞

 𝐵𝛼2+𝜆+1(𝑇
𝛼2+𝜆+1)  ∈  𝐶(𝔻)  

and  

𝐾𝛼2  =  𝑇𝛼2+𝜆+1  −  𝑇𝑎
𝛼2+𝜆+1 . 

    Our next aim is to show that the above described irreducible representations of 𝒯𝜆 (𝐶(𝔻)) 

exhaust all its irreducible representations. Observe first that for each 

𝑇𝜆  ≍⨁ 

𝛼2∈ℤ+

(𝑇𝑎
𝛼2+𝜆+1  +  𝐾𝛼2)  ∈  𝒯𝜆 (𝐶(𝔻)),              (25) 
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the operator 𝑲 ≍ ⨁  𝛼2∈ℤ+ + 𝐾
𝛼2 is compact on 𝒜𝜆

2(𝔹2), being the norm-limit of the 

compact operators 𝑲𝑛 ≍ ⨁  𝛼2∈ℤ+ 𝐾
𝛼2  as 𝑛 → ∞. 

We denote by 𝓚𝜆 (𝐶(𝔻)) the closed two-sided ideal in 𝒯𝜆 (𝐶(𝔻)) generated by all such 

compact operators 𝑲. It is easy to see that 𝓚𝜆 (𝐶(𝔻)) is just the set of all operators of the 

form 𝑲 ∈  𝒯𝜆 (𝐶(𝔻)). Let 𝓚𝓐𝜆
2(𝔹2) stand for the closed two-sided ideal of all compact 

operators on 𝓐𝜆
2(𝐵2). 

Lemma (2.2.11)[2]. We have that 𝒯𝜆 (𝐶(𝔻)) ∩ 𝓚𝓐𝜆
2(𝐵2)  =  𝓚𝜆 (𝐶(𝔻)). 

Proof. Note that the operator 𝑻𝜆 in (25) is compact on 𝓐𝜆
2(𝔹2) if and only if each operator 

𝑇𝑎
𝛼2+𝜆+1  +  𝐾𝛼2 is compact on 𝒜𝛼2+𝜆+1

2 (𝔻) for each 𝛼2  ∈  ℤ+, and 

lim
𝛼2→∞

 𝑇𝑎
𝛼2+𝜆+1  +  𝐾𝛼2  =  0, 

which is equivalent to 𝑇𝑎
𝛼2+𝜆+1 being compact on 𝒜𝛼2+𝜆+1

2 (𝔻) for each 𝛼2  ∈  ℤ+, and 

lim
𝛼2→∞

 𝑇𝑎
𝛼2+𝜆+1  =  ‖𝑎‖∞  =  0. 

The last conditions are equivalent to 𝑇𝜆  ≍ ⨁  𝛼2∈ℤ+ 𝐾
𝛼2  ≍  𝑲 ∈  𝓚𝜆(𝐶(𝔻)). 

   Observe now that the kernel of the mapping (24) coincides with the ideal 𝓚𝜆 (𝐶(𝔻)). 

This implies that the Calkin algebra ' �̂�𝜆  =  𝒯𝜆 (𝐶(𝔻)) /𝓚𝜆 (𝐶(𝔻)) is isomorphic and 

isometricto 𝐶(𝔻), and that the one-dimensional representations 휌𝑧 of Corollary (2.2.9) as 

well as the representations 휋𝑡 of (23) come from the one-dimensional representations of  �̂�𝜆. 

Recall, that if 𝐽 is a closed two sided ideal of a 𝐶∗-algebra 𝒜 then each irreducible 

representation of 𝒜 is either induced by an irreducible representation of the quotient algebra 

𝒜/𝐽, or is an extension to 𝒜 of an irreducible representation of 𝐽. 

   That is, what is left, is a description of the representations being extensions to 𝒯𝜆 (𝐶(𝔻)) 

of the irreducible representation of 𝓚𝜆 (𝐶(𝔻)). Recall that each summand in (3) is an 

invariant subspace for 𝓚𝜆 (𝐶(𝔻)), whose restriction on “the level 𝛼2” coincides with the 

ideal of all compact operators on 𝒜𝛼2+𝜆+1
2 (𝔻). Thus its identical irreducible representation 

induces the infinite dimensional irreducible representation 휄𝛼2 of the form (22). 

    That is, we listed above all (up to unitary equivalence) irreducible representations of the 

𝐶∗-algebra 𝒯𝜆 (𝐶(𝔻)). 

    As a byproduct of the description of the Calkin algebra  �̂�𝜆, we have the following 

proposition. 

Proposition (2.2.12)[2]. An operator 𝑇𝜆  ≍ ⨁  𝛼2∈ℤ+ (𝑇𝑎
𝛼2+𝜆+1  + 𝐾𝛼2)  ∈  �̂�𝜆 (𝐶(𝔻)) is 

Fredholm if and only if 𝑎(𝑧1)  ≠  0 for all 𝑧1  ∈  𝔻. In the case of Fredholmness, Ind 𝑇𝜆   =
 0. The essential spectrum of 𝑇𝜆 is given by ess-sp 𝑇𝜆 =  𝑅𝑎𝑛𝑔𝑒(𝑎). 
    The following clarifying observation seems to be useful here. In the case of Fredholmness 

of the operator 𝑇𝜆  ≍ ⨁  𝛼2∈ℤ+ (𝑇𝑎
𝛼2+𝜆+1  + 𝐾𝛼2), its two sided regularizer can be taken in 

the form 𝑅𝜆𝑇𝜆  ≍ ⨁  𝛼2∈ℤ+ (𝑇1/𝑎
𝛼2+𝜆+1 ). So that 
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𝑇𝜆𝑅𝜆  ≍⨁ 

𝛼2∈ℤ+

(𝐼 + 𝐾1
𝛼2) 𝑎𝑛𝑑  𝑅𝜆𝑇𝜆  ≍⨁ 

𝛼2∈ℤ+

(𝐼 + 𝐾2
𝛼2) , 

where both 𝐾1
𝛼2 and 𝐾2

𝛼2 tend to 0 as 𝛼2 tends to infinity. Thus the norms 𝐾1
𝛼2 and 𝐾2

𝛼2 

become less than 1 for all 𝛼2 greater then some 𝛼2
0, which implies that the operators 

𝑇𝑎
𝛼2+𝜆+1  +  𝐾𝛼2 , with 𝛼2  >  𝛼2

0, are all invertible. That is, in the direct sum decomposition 

𝑇𝜆  ≍ ⨁  𝛼2∈ℤ+ (𝑇𝑎
𝛼2+𝜆+1  + 𝐾𝛼2)  of zero index Fredholm operators, only a finite number 

of operators 𝑇𝑎
𝛼2+𝜆+1  + 𝐾𝛼2 may not be invertible. This implies that dim ker 𝑇𝜆  = dim 

coker 𝑇𝜆 is finite, as it should be. 

Lemma (2.2.13)[2]. The intersection 𝒯𝜆(𝐶(𝔻), 𝐿∞) ∩𝓚𝓐𝜆
2(𝔹2) consists of all operators of 

the form 𝑲𝜆 ≍ ⨁  𝛼2∈ℤ+ 𝐾
𝛼2 , where each 𝐾𝛼2 is compact on 𝒜𝛼2+𝜆+1

2 (𝔻), and 𝐾𝛼2  →  0 

as 𝛼2  → ∞.   
Proof. As each subspace of the direct sum decomposition (3) is invariant for operators from 

𝒯𝜆(𝐶(�̅�), 𝐿∞)  ∩  𝓚𝓐𝜆
2(𝔹2), each compact operator 𝑲𝜆 in 𝒯𝜆(𝐶(𝔻), 𝐿∞) is of the form 

⨁  𝛼2∈ℤ+ 𝐾
𝛼2 , where 𝐾𝛼2 is compact on 𝒜𝛼2+𝜆+1

2 (𝔻), for all 𝛼2 ∈ ℤ+, and 𝐾𝛼2  →  0 as 

𝛼2 → ∞. 
    Take now any sequence {𝐾𝛼2}𝛼2∈ℤ+ , where 𝐾𝛼2 is compact on  𝒜𝛼2+𝜆+1

2 (𝔻) and 𝐾𝛼2  →

 0 as 𝛼2  → ∞. It remains to show that 𝑲𝜆  ≍ ⨁  𝛼2∈ℤ+ 𝐾
𝛼2 belongs to 𝒯𝜆(𝐶(𝔻), 𝐿∞). 

Observe that, for each fixed 𝛼2
0 ∈  ℤ+, the sequence 𝛾𝛼20(𝛼2)  =  𝛿𝛼20,𝛼2 belongs to 𝑐0  ⊂

 𝑆𝑂(ℤ+), and thus the projection 𝑃𝛼20 onto the 𝛼2
0-level in the decomposition (3) belongs to 

the algebra 𝒯𝜆(𝐿∞)  ⊂  𝒯𝜆(𝐶(𝔻), 𝐿∞). Then, by Lemma (2.2.7), the algebra 

𝑃𝛼20  𝒯𝜆 (𝐶(𝔻))𝑃𝛼20 ⊂ 𝒯𝜆(𝐶(𝔻), 𝐿∞) contains the compact operator 𝑲𝛼20 =

⨁  𝛼2∈ℤ+ 𝛿𝛼20,𝛼2𝐾
𝛼2
0
 . and thus the operator  

𝑲𝜆 ≍⨁ 

𝛼2∈ℤ+

𝐾𝛼2  = lim
𝑛→∞

 ⨁ 

𝑛

𝛼2
0=0

𝐾𝛼2
0
≍ lim
𝑛→∞

 ∑  

𝑛

𝛼2
0=0

𝑲𝛼20
  

belongs to 𝒯𝜆(𝐶(𝔻), 𝐿∞).  

    Below we frequently consider the tensor product 𝒜⊗ℬ of two commutative 𝐶∗-algebras 

𝒜 and ℬ. Recall that as 𝒜 and ℬ are commutative, and thus nuclear, the 𝐶∗-norm on 𝒜⊗
ℬ is uniquely defined. In particular, if 𝑀𝒜  and 𝑀ℬ are the (locally) compact sets of maximal 

ideals of 𝒜 and ℬ, respectively, then 

𝒜⊗ℬ ≅ 𝐶(𝑀𝒜)  ⊗  𝐶(𝑀ℬ)  =  𝐶(𝑀𝒜  × 𝑀ℬ). 
The algebraic tensor product of 𝒜 and ℬ, which consists of all finite sums of the form  

∑𝑎𝑘  ⊗ 𝑏𝑘 , 𝑎𝑘  ∈  𝒜 and 𝑏𝑘  ∈  ℬ, we will denote by 𝒜⊗𝑎  ℬ. 

Corollary (2.2.14)[2]. All compact Toeplitz operators from the algebra 𝒯𝜆(𝐶(𝔻), 𝐿∞) are 

of the form  

⨁ 

𝛼2∈ℤ+

𝑇𝑑(𝑧1,𝛼2)
𝛼2+𝜆+1 , where    𝑑 =  𝑑(𝑧1, 𝛼2) ∈  𝐶0 (𝔻)  ⊗ 𝑐0. 

Here 𝐶0(𝔻) denotes the set of functions from 𝐶(𝔻) that vanish on the boundary 𝜕𝔻 =  𝑆1. 

    The next theorem gives the description of elements from 𝒯𝜆(𝐶(𝔻), 𝐿∞). 
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Theorem (2.2.15)[2]. Each element 𝑇𝜆  ∈  𝒯𝜆(𝐶(𝔻), 𝐿∞) admits the following 

representation 

𝑇𝜆 ≍⨁ 

𝛼2∈ℤ+

(𝑇𝑐(𝑧1,𝛼2)
𝛼2+𝜆+1  +  𝐾𝛼2),                                          (26) 

where 𝑐 =  𝑐(𝑧1, 𝛼2)  ∈  𝐶(𝔻) ⊗  𝑆𝑂(ℤ+), 𝐾
𝛼2  is compact for all 𝛼2  ∈  ℤ+, and 𝐾𝛼2  →

 0 as 𝛼2 → ∞. 
Proof. Observe first that the theorem is valid for elements of the dense subalgebra 𝐷 formed 

by all operators of the form  

𝑇𝜆  = ∑  

𝑛

𝑘=1

∏ 

𝑚𝑘

𝑗𝑘=1

 𝑇𝑎𝑘,𝑗𝑘
𝜆 𝑏𝑘,𝑗𝑘

, 

where 𝑎𝑘,𝑗𝑘
∈  𝐶(𝔻) and 𝑏𝑘,𝑗𝑘

∈  𝐿∞(0, 1). 

       To see this it is sufficient to consider, as in Lemma (2.2.4), just a product of two 

operators: 

𝑇𝑎1𝑏1
𝜆 𝑇𝑎2𝑏2

𝜆 ≍⨁ 

𝛼2∈ℤ+

𝛾𝑏1
𝜆 (𝛼2)𝛾𝑏2

𝜆 (𝛼2)(𝑇𝑎1
𝛼2+𝜆+1  +  𝐾1

𝛼2  )(𝑇𝑎2
𝛼2+𝜆+1  +  𝐾2

𝛼2  )

=⨁ 

𝛼2∈ℤ+

𝛾𝑏1
𝜆 (𝛼2)𝛾𝑏2

𝜆 (𝛼2)(𝑇𝑎1𝑎2
𝛼2+𝜆+1  +  𝐾12

𝛼2  ) =⨁ 

𝛼2∈ℤ+

(𝑇𝑐
𝛼2+𝜆+1  +  𝐾𝛼2), 

where 𝑐 =  𝑐(𝑧1, 𝛼2) =  𝑎1𝑎2(𝑧1)𝛾𝑏1
𝜆 𝛾𝑏2

𝜆 (𝛼2) ∈  𝐶(𝔻)⊗𝑎  𝑆𝑂(ℤ+), and 𝐾𝛼2  =

 𝛾𝑏1
𝜆 𝛾𝑏2

𝜆 (𝛼2)𝐾12
𝛼2 →  0   as 𝛼2  → ∞. 

    We show now that each operator of the form (26) belongs to the algebra 𝒯𝜆(𝐶(𝔻), 𝐿∞). 

Indeed, given any 𝑐 =  𝑐(𝑧1, 𝛼2)  ∈  𝐶(𝔻) ⊗  𝑆𝑂(ℤ+), there exists a sequence of functions 

𝑐𝑛  ∈  𝐶(𝔻) ⊗𝑎  𝑆𝑂(ℤ+) that converges uniformly to 𝑐. Thus the operator 𝑇𝑐
𝜆  = lim

𝑛→∞
  𝑇𝑐𝑛

𝜆 , 

belongs to 𝒯𝜆(𝐶(𝔻), 𝐿∞), and Lemma (2.2.13) implies the conclusion. 

Given 𝑇𝜆  ∈  𝒯𝜆(𝐶(𝔻), 𝐿∞), there is a sequence of operators 

𝑇𝑛
𝜆⨁ 

𝛼2∈ℤ+

𝑇𝑛
𝛼2+𝜆+1  =⨁ 

𝛼2∈ℤ+

(𝑇𝑐𝑛
𝛼2+𝜆+1  +  𝐾𝑛

𝛼2  )  ∈  𝐷 

that converges in norm to the operator 𝑇𝜆. As the sequence {𝑇𝑛
𝜆}
𝑛∈ℕ

 is fundamental, for each 

휀 >  0 there is 𝑁0  ∈ ℕ such that for all 𝑛,𝑚 >  𝑁0 and all 𝛼2  ∈ ℕ we have that 

‖𝑇𝑛
𝛼2+𝜆+1 − 𝑇𝑚

𝛼2+𝜆+1‖ <
휀

2
. 

    Recall, that the compact set of maximal ideals (multiplicative functionals) of the algebra 

𝑆𝑂(ℤ+) has the form 𝑀(𝑆𝑂(ℤ+))  =  ℤ+ ∪𝑀∞, where each 𝛼2  ∈  ℤ+ is identified with the 

evaluation functional 𝛾 ∈  𝑆𝑂(ℤ+) ⟼ 𝛾(𝛼2), and the fiber 𝑀∞ is closed, connected, and 

consists of all functionals 휇 obeying the property 휇(𝛾)  =  0 for all 𝛾 ∈  𝑐0. The points of 

𝑀∞ are responsible for the partial limit values of sequences in 𝑆𝑂(ℤ+), none of the points 

휇 ∈  𝑀∞ can be reached by subsequences of ℤ+; its topological nature requires to use nets 

(subnets of ℤ+). That is, for each point 휇 ∈  𝑀∞ there is a net {𝛼2  } ∈𝐸 , valued in ℤ+, 

converging to 휇 in the Gelfand topology of 𝑀(𝑆𝑂(ℤ+)). 

    Fix 휇 ∈  𝑀∞, and let {𝛼2 } ∈𝐸 be a net converging to 휇. Then, 
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lim
𝛼2
𝜂
 𝐵𝛼2

𝜂
+𝜆+1 (𝑇𝑛

𝛼2
𝜂
+𝜆+1

 )  = lim
𝛼2
𝜂
 𝐵𝛼2

𝜂
+𝜆+1 (𝑇𝑐𝑛

𝛼2
𝜂
+𝜆+1

 +  𝐾𝑛
𝛼2
𝜂

 )  

= lim
𝛼2
𝜂
 𝐵𝛼2

𝜂
+𝜆+1 (𝑇𝑐𝑛

𝛼2
𝜂
+𝜆+1

 )

= lim
𝛼2
𝜂
 𝐵𝛼2

𝜂
+𝜆+1 (𝑐𝑛(𝑧1, 𝛼2 )  − 𝑐𝑛(𝑧1, 휇))  + lim

𝛼2
𝜂
 𝐵𝛼2

𝜂
+𝜆+1(𝑐𝑛(𝑧1, 휇)) 

=  0 + 𝑐𝑛(𝑧1, 휇) =  𝑐𝑛(𝑧1, 휇).                                          (27) 
Thus, for the above 휀, 𝑁0, and 𝑛,𝑚 >  𝑁0, we have 

‖𝑐𝑛(𝑧1, 휇) − 𝑐𝑚(𝑧1, 휇)‖∞  = lim
𝛼2
𝜂
 ‖𝐵𝛼2

𝜂
+𝜆+1 (𝑇𝑛

𝛼2
𝜂
+𝜆+1

− 𝑇𝑚
𝛼2
𝜂
+𝜆+1

 )‖
∞

 

≤ sup
𝛼2∈ℤ+

 ‖𝑇𝑛
𝛼2+𝜆+1 − 𝑇𝑚

𝛼2+𝜆+1‖ =  ‖𝑇𝑛
𝜆 − 𝑇𝑚

𝜆‖ <
휀

2
 . 

    The above estimate is uniform in 휇 ∈  𝑀∞, thus the sequence {𝑐𝑛|𝔻×𝑀∞  } converges 

uniformly to a certain function 𝑐∞  =  𝑐∞(𝑧1, 휇)  ∈  𝐶(𝔻 × 𝑀∞). 

Fix now any 𝛼2  ∈  ℤ+. Since each 𝑐𝑛(·, 𝛼2) is continuous on 𝔻 and 𝐾𝑛
𝛼2 is compact, for the 

above 휀, 𝑁0, 𝑛,𝑚 >  𝑁0, and each 𝑡 ∈  𝑆1  =  𝜕𝔻, we have: 

lim
𝑧1→𝑡

 |𝐵𝛼2+𝜆+1(𝑇𝑛
𝛼2+𝜆+1 − 𝑇𝑚

𝛼2+𝜆+1 )(𝑧1)|  =

= lim
𝑧1→𝑡

 |𝐵𝛼2+𝜆+1(𝑇𝑐𝑛−𝑐𝑚
𝛼2+𝜆+1 )(𝑧1)  + 𝐵𝛼2+𝜆+1(𝐾𝑛

𝛼2+𝜆+1 − 𝐾𝑚
𝛼2+𝜆+1 )(𝑧1)|

=  |(𝑐𝑛  −  𝑐𝑚)(𝑡) +  0| ≤ sup
𝑡∈𝑆1

 |(𝑐𝑛  −  𝑐𝑚)(𝑡)| ≤  ‖𝑇𝑛
𝜆 − 𝑇𝑚

𝜆‖ <
휀

2
 . 

That is, for each 𝛼2  ∈ ℤ+, the sequence of restrictions {𝑐𝑛|𝐶(𝑆1)} converges uniformly to a 

certain function 𝑐𝛼2  =  𝑐𝛼2(𝑧1)  ∈  𝐶(𝑆
1). Moreover, the function 

�̂�  = {
𝑐∞(𝑧1, 휇) ,   for (𝑧1, 휇)  ∈  𝔻 × 𝑀∞

       𝑐𝛼2(𝑧1),      for (𝑧1, 𝛼2)  ∈  𝑆
1  ×  ℤ+

 

is continuous on the closed subset (𝔻 × 𝑀∞)  ∪ (𝑆
1  ×  ℤ+) 𝑜𝑓 𝔻 ×  𝑀(𝑆𝑂(ℤ+)). Thus, 

by Tietze’s theorem, �̂� admits a continuous extension (which we will still denote by �̂�) from 

(𝔻 × 𝑀∞)  ∪  (𝑆
1  ×  ℤ+) 𝑡𝑜 𝔻 × 𝑀(𝑆𝑂(ℤ+)), with 

‖�̂�‖
𝐶(𝔻×𝑀(𝑆𝑂(ℤ+)))

 =  ‖�̂�‖
𝐶((𝔻×𝑀∞)∪(𝑆

1×ℤ+))
. 

We denote now by 𝑐 =  𝑐(𝑧1, 𝛼2) the function from 𝐶(𝔻) ⊗  𝑆𝑂(ℤ+) whose Gelfand 

transform coincides with �̂�. 
For each 𝑛 ∈ ℕ, the function 

 �̂�𝑛  = {
�̂�(𝑧1, 휇)  − �̂�𝑛(𝑧1, 휇),        for (𝑧1, 휇)  ∈  𝔻 × 𝑀∞
𝑐(𝑧1, 𝛼2)  − 𝑐𝑛(𝑧1, 𝛼2), for (𝑧1, 𝛼2)  ∈  𝑆

1  ×  ℤ+
 

where �̂�𝑛 is the Gelfand transform of the function 𝑐𝑛  ∈  𝐶(𝔻) ⊗ 𝑎 𝑆𝑂(ℤ+), is continuous 

on (𝔻 × 𝑀∞)  ∪ (𝑆
1  ×  ℤ+). Thus, by Tietze’s theorem, �̂�𝑛 admits a continuous extension 

preserving the norm, which we will keep denoting by �̂�𝑛, from (𝔻 × 𝑀∞)  ∪ (𝑆
1  ×  ℤ+) 

onto 𝔻 ×  𝑀(𝑆𝑂(ℤ+)). We denote now by dn = dn(z1, α2) the function from 𝐶(𝔻) ⊗
 𝑆𝑂(ℤ+), 

whose Gelfand transform coincides with �̂�𝑛. 

    Observe that for the above 휀, 𝑁0, and all 𝑛 >  𝑁0 we have both 
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‖𝑑𝑛‖  <
휀

2
        𝑎𝑛𝑑       ‖�̂�𝑛‖  <

휀

2
 . 

With these data we introduce 𝑐𝑛
′  =  𝑐 − 𝑑𝑛  ∈  𝐶(𝔻) ⊗  𝑆𝑂(ℤ+), and observe that on 

(𝔻 × 𝑀∞) ∪  (𝑆
1  ×  ℤ+) 

�̂�𝑛
′  =  �̂�  −  �̂�𝑛  =  �̂�  − �̂�  + �̂�𝑛  =  �̂�𝑛, 

that is 𝑐𝑛
′ − 𝑐𝑛  ∈  𝐶0(𝔻) ⊗ 𝑐0, and thus (by Corollary (2.2.14)), the Toeplitz operators 

𝑇𝑐𝑛′−𝑐𝑛
𝜆  are compact for all 𝑛 ∈ ℕ. Moreover the sequence of functions 𝑐𝑛

′  converges 

uniformly to 𝑐 ∈  𝐶(𝔻) ⊗  𝑆𝑂(ℤ+). For each 𝑛 ∈ ℕ, we have 

𝑇𝑛
𝜆 ≍⨁ 

𝛼2∈ℤ+

(𝑇𝑐𝑛
𝛼2+𝜆+1  +  𝐾𝑛

𝛼2  )  =⨁ 

𝛼2∈ℤ+

(𝑇
𝑐𝑛
′
𝛼2+𝜆+1  +  𝐾𝑛

𝛼2  +  𝑇
𝑐𝑛−𝑐𝑛

′
𝛼2+𝜆+1), 

 where 𝐾′𝑛
𝛼2  =  𝐾  𝑛

𝛼2  +  𝑇
𝑐𝑛−𝑐𝑛

′
𝛼2+𝜆+1 is compact for each 𝛼2  ∈  ℤ+, and 𝐾′𝑛

𝛼2 →  0 as 𝛼2  →

∞. 
The end of the proof now repeats literally the end of the proof of Theorem (2.2.5). 

Remark (2.2.16)[2]. Theorem (2.2.15) ensures that any operator 𝑇𝜆  ∈

 𝒯𝜆(𝐶(𝔻), 𝐿∞) admits a representation of the form (26). Given an operator 𝑇𝜆, there is a 

simple procedure to recover this representation. First of all the operator 𝑇𝜆 uniquely defines 

a function continuous on (𝔻 ×𝑀∞) ∪ (𝑆
1 × ℤ+). Indeed, let 휇 ∈  𝑀∞, and let {𝛼2 } ∈𝐸  be 

a net converging to 휇. Then, as in (27), we have 

lim
𝛼2
𝜂
 𝐵𝛼2

𝜂
+𝜆+1 (𝑇

𝛼2
𝜂
+𝜆+1)  = lim

𝛼2
𝜂
 𝐵𝛼2

𝜂
+𝜆+1 (𝑇𝑐

𝛼2
𝜂
+𝜆+1

 +  𝐾2
𝛼𝜂 ) 

= lim
𝛼2
𝜂
 𝐵𝛼2

𝜂
+𝜆+1 (𝑇𝑐

𝛼2
𝜂
+𝜆+1

 )  =  𝑐(𝑧1, 휇).                      (28) 

Fix now any 𝛼2  ∈  ℤ+, then 

lim
|𝑧1|→1−

  𝐵𝛼2+𝜆+1(𝑇𝑐
𝛼2+𝜆+1  +  𝐾𝛼2)  =  𝑐|𝑆1×{𝛼2}. 

Having the function c continuous on (𝔻 × 𝑀∞)  ∪  (𝑆
1  × ℤ+) we extend it continuously 

to 𝔻× (ℤ+  ∪ 𝑀∞) (e.g. by Tietze’s theorem) and denote by the same letter c the function 

from 𝐶(𝔻) ⊗  𝑆𝑂(ℤ+) whose Gelfand transform coincides with this extension. 

    We note that any other extension of 𝑐 ∈  𝐶 ((𝔻 × 𝑀∞)  ∪ (𝑆
1  ×  ℤ+)) defines a 

function  

𝑐′  ∈  𝐶(𝔻)⊗  𝑆𝑂(ℤ+) with   𝑐 − 𝑐
′  ∈  𝐶0(𝔻) ⊗  𝑐0. 

By Corollary (2.2.14), the difference 𝑇𝑐
𝜆 − 𝑇𝑐′

𝜆 = 𝑇𝑐−𝑐′
𝜆  only affects the compact part of the 

representation (26). Finally, with such 𝑐 ∈ 𝐶(𝔻)⊗ 𝑆𝑂(ℤ+), put 𝐾𝛼2  =  𝑇𝛼2+𝜆+1 −

𝑇𝑐
𝛼2+𝜆+1 . 

   Next, we describe the irreducible representations of the 𝐶∗-algebra 𝒯𝜆(𝐶(𝔻), 𝐿∞). By 

Corollary (2.1.6) its generators 𝑇𝑎𝑏
𝜆 , where 𝑎 ∈  𝐶(𝔻) and 𝑏 ∈  𝐿∞(0, 1) split into the 

following direct sum of operators  

𝑇𝑎𝑏
𝜆 ≍⨁ 

𝛼2∈ℤ

+ 𝛾𝑏
𝜆 (𝛼2)𝑇𝑎

𝛼2+𝜆+1 , 
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 according to the direct sum decomposition (3). Such a splitting implies the following list of 

irreducible representations of 𝒯𝜆(𝐶(𝔻), 𝐿∞): according to the direct sum decomposition (3). 

Such a splitting implies the following list of irreducible representations of 𝒯λ(C(𝔻), L∞): 

- infinite dimensional (identical) representations 휄𝛼2 on the spaces 𝒜𝛼2+𝜆+1
2 (𝔻), 𝛼2  ∈

ℤ+, defined by 

휄𝛼2 ∶  𝑇
𝜆 ≍⨁(𝑇𝑐

𝛼2+𝜆+1  +  𝐾𝛼2)

𝛼2∈ℤ+

 ⟼ 𝑇𝑐
𝛼2+𝜆+1  +  𝐾𝛼2  ; 

-  one-dimensional representations 휋𝑡,𝛼2 , (𝑡, 𝛼2)  ∈  𝑆
1  ×  ℤ+, defined by  

휋𝑡,𝛼2 ∶ 𝑇
𝜆 ≍⨁(𝑇𝑐

𝛼2+𝜆+1  +  𝐾𝛼2)

𝛼2∈ℤ+

 ⟼ 𝑐(𝑡, 𝛼2). 

It is easy to see that these representations are not pairwise unitary equivalent, and that the 

ambiguity of the form (26), does not effect the action of the above representations. 

As in the case of the algebra 𝒯𝜆(𝐶(�̅�)), there is a series of one-dimensional representations 

of the 𝐶∗-algebra 𝒯𝜆(𝐶(�̅�), 𝐿∞), induced by the Berezin quantization procedure on the 

hyperbolic disk 𝔻. 

For a fixed point 휇 ∈  𝑀∞, let {𝛼2 } be a ℤ+-valued net that converges to 휇. Then, by 

Theorem (2.2.15) and (28), we have the well-defined map 

휌𝜇 ∶  𝑇
𝜆  ≍⨁(𝑇𝑐

𝛼2+𝜆+1  +  𝐾𝛼2)

𝛼2∈ℤ+

⟼ 𝑐(·, 휇), 

which is easily seen to be a ∗-homomorphism of 𝒯𝜆(𝐶(�̅�), 𝐿∞) onto 𝐶(�̅�). The map 휌𝜇 

induces a family of one-dimensional representations of 𝒯𝜆(𝐶(�̅�), 𝐿∞), defined for each 

(𝑧1, 휇)  ∈ 𝔻 × 𝑀∞ as follows 

휌(𝑧1, 휇) ∶  𝑇
𝜆  ≍⨁(𝑇𝑐

𝛼2+𝜆+1  +  𝐾𝛼2)

𝛼2∈ℤ+

𝜌𝜇
→ 𝑐(·, 휇) ∈ 𝐶(�̅�) ⟼ 𝑐(𝑧1, 휇)  ∈ ℂ. 

Observe now that the difference of 𝑇1
𝜆 = 𝑇𝑐1

𝜆  + 𝐾1
𝜆 and 𝑇2

𝜆 = 𝑇𝑐2
𝜆 + 𝐾2

𝜆 is compact if and 

only if 𝑇𝑐1
𝜆 − 𝑇𝑐2

𝜆  =  𝑇𝑐1−𝑐2
𝜆  is compact, or if and only if 𝑐1  −  𝑐2 ∈ 𝐶0(𝔻)⊗ 𝑐0. This 

implies that the Calkin algebra 𝒯𝜆(𝐶(�̅�), 𝐿∞) = 𝒯𝜆(𝐶(�̅�), 𝐿∞)/𝒯𝜆(𝐶(�̅�), 𝐿∞) ∩ (𝒦𝒜𝜆
2(𝔹2)) is 

isomorphic and isometric to 

𝐶(𝔻 × (ℤ+  ∪ 𝑀∞))/𝐶0(�̅�)  ⊗ 𝑐0 = 𝐶((𝔻 × 𝑀∞) ∪ (𝑆
1  ×  ℤ+)). 

The same arguments, as given for the case of the 𝐶∗-algebra 𝒯𝜆(𝐶(�̅�)), show that we listed 

above all (up to unitary equivalence) irreducible representations of the 𝐶∗-algebra 

𝒯𝜆(𝐶(�̅�), 𝐿∞). Again, as a byproduct of the description of the Calkin algebra �̂�𝜆(𝐶(�̂�), 𝐿∞), 
we have the following proposition. 

Proposition (2.2.17)[2]. An operator 𝑇𝜆 ≍ ⨁ (𝑇𝑐(𝑧1,𝛼2)
𝛼2+𝜆+1  +  𝐾𝛼2)𝛼2∈ℤ+ ∈ 𝒯𝜆(𝐶(�̅�), 𝐿∞) is 

Fredholm if and only if �̂� does not vanish at any point of (�̅�  × 𝑀∞)  ∪ (𝑆
1  ×  ℤ+), where 

�̂�  ∈ 𝐶(�̅� × (ℤ+  ∪ 𝑀∞)) is the Gelfand transform of the unction 𝑐 =  𝑐(𝑧1, 𝛼2)  ∈
 𝐶(�̅�) ⊗ SO(ℤ+). 
In the case of Fredholmness, 

Ind 𝑇𝜆  = ∑ Ind (𝑇𝑐(𝑧1,𝛼2)
𝛼2+𝜆+1  +  𝐾𝛼2)

&𝛼2∈ℤ+

= −
1

2휋
∑ {𝑎𝑟𝑔 𝑐(·, 𝛼2)}𝜕𝔻

&𝛼2∈ℤ+

.       (29) 

The essential spectrum of 𝑇𝜆 is given by ess-sp 𝑇𝜆  =  Range (�̂� |(�̅�×𝑀∞)∪(𝑆1×ℤ+)). 
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We note that the right-hand side of (29) contained only a finite number of non-zero 

summands. Indeed, as �̂� has no zeros on �̅� × 𝑀∞, the functions 𝑐𝛼2 = 𝑐(·, 𝛼2)  ∈  𝐶(�̅�) do 

not vanish on �̅� for all 𝛼2, starting from some 𝛼2
0. Furthermore, all operators 𝑇𝑐(𝑧1,𝛼2)

𝛼2+𝜆+1  +

𝐾𝛼2 are invertible for all 𝛼2, starting from some 𝛼2
1, possibly greater than 𝛼2

0. That is, only 

a finite number of the Fredholm operators 𝑇𝑐(𝑧1,𝛼2)
𝛼2+𝜆+1  + 𝐾𝛼2 are not invertible, making thus 

their generically non-zero contribution to the index formula. This implies, in particular, that 

both ker 𝑇𝜆 and coker 𝑇𝜆 are finite dimensional, as it should be. 

Theorem (2.2.18)[6]. [Mergelyan’s theorem]. 

 Let 𝑘 ⊆ 𝐶 be compact and assume that �̂�\𝑘 has only finitely many connected 

components if 𝑓 ∈ 𝑐\𝑘 be analytic on the interior of 𝑘, then for any 휀 > 0, there exists 

arotional function 𝑟(𝑧) such that: 

sup
𝑧∈𝑘
|𝑓(𝑧) − 𝑟(𝑧)| < 휀 

Theorem (2.2.19)[7]. Extension of Tietze’ theorem: 

 Let 𝑋, 𝑌 be arbitrary space, and 𝐴 ⊂ 𝑋, let 𝑓: 𝐴 → 𝑌 be continuous 𝐹: 𝑋 → 𝑌 is called 

the extension of 𝑓 if 𝐹(𝑎) = 𝑓(𝑎) for every 𝑎 ∈ 𝐴. 

Definition (2.2.20)[8]. Cayley Transform: 

 Cayley’s transformation parameterizes a proper orthogonal matrix 𝐶 as a function of 

a skew-symmetric matrix 𝑄. 

It is therefore, a map 𝜓 = 𝑠𝑜(𝑛) → 𝑆𝑂(𝑛). The classical Tayley transform is given by: 

𝐶 = 𝜓(𝑄) = (1 − 𝑄)(1 + 𝑄)−1 = (1 + 𝑄)−1(1 − 𝑄). 
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Chapter 3 

Minimal Nuclear 𝑪∗-Algebras 

We give the first examples of minimal ambient nuclear 𝐶∗-algebras of non-nuclear 

𝐶∗-algebras. For this purpose, we study generic Cantor systems of infinite free product 

groups. 

Section (3.1): Some Generic Properties of Cantor Systems 

Choi constructed the first example of an ambient nuclear 𝐶∗-algebra of a non-nuclear 

𝐶∗-algebra. Kirchberg–Phillips show that any separable exact 𝐶∗-algebra in fact has an 

ambient nuclear 𝐶∗-algebra. (In fact, one can choose it to be isomorphic to the Cuntz algebra 

𝒪2.) When we consider reduced group 𝐶∗-algebras, thanks to Ozawa’s result, we have more 

natural ambient nuclear 𝐶∗-algebras, namely, the reduced crossed products of amenable 

dynamical systems. Ambient nuclear 𝐶∗-algebras play important roles in theory of both 𝐶∗- 
and von Neumann algebras. 

We investigate how an ambient nuclear 𝐶∗-algebra of a non-nuclear 𝐶∗-algebra can 

be tight. Based on (new) results on topological dynamical systems, we give the first example 

of a minimal ambient nuclear 𝐶∗-algebra of a non-nuclear 𝐶∗-algebra. 

In fact, we have a stronger result: our examples of minimal ambient nuclear 𝐶∗-algebras 

have no proper intermediate 𝐶∗-algebras. 

Note that as shown in contrast to injectivity of von Neumann algebras, nuclearity of 𝐶∗-
algebras is not preserved under taking the decreasing intersection. We also note that the 

increasing union of non-nuclear 𝐶∗-algebras can be nuclear. Thus there is no obvious way 

to provide a minimal ambient nuclear 𝐶∗-algebra. We also remark that in the von Neumann 

algebra case, thanks to the bicommutant theorem, for any von Neumann algebra, finding a 

minimal ambient injective von Neumann algebra is equivalent to finding a maximal 

injective von Neumann subalgebra. Popa provided the first concrete examples of maximal 

injective von Neumann subalgebras. 

Powers invented a celebrated method to study structures of the reduced group 𝐶∗-
algebras. His idea has been applied to more general situations, particularly for reduced 

crossed products, and to more general groups, by many hands. We combine his technique 

with certain properties of dynamical systems to obtain the following main theorem of the 

paper. 

We say that a group is an infinite free product group if it is a free product of infinitely many 

nontrivial groups. Groups are supposed to be countable. 

        Let Γ be an infinite free product group with the 𝐴𝑃 (or equivalently, each free product 

component has the 𝐴𝑃). Then there is an amenable action of Γ on the Cantor set 𝑋 with the 

following property. There is no proper intermediate 𝐶∗-algebra of the inclusion 𝐶𝑟
∗(Γ) ⊂

 𝐶(𝑋) ⋊𝑟  Γ. 

In particular 𝐶(𝑋) ⋊𝑟 Γ is a minimal ambient nuclear 𝐶∗-algebra of the non-nuclear 𝐶∗-
algebra 𝐶𝑟

∗(Γ). 
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We remark that it is not known if there is an ambient injective von Neumann algebra (or 

equivalently, injective von Neumann subalgebra) of a non-injective von Neumann algebra 

with no proper intermediate von Neumann algebra. Here we remark that the 𝐴𝑃 implies 

exactness, while the converse is not true. We need the 𝐴𝑃 to determine when a given element 

of the reduced crossed product sits in the reduced group 𝐶∗-algebra. 

In theory of both measurable and topological dynamical systems, the Baire category theorem 

is a powerful tool to produce an example with a nice property. For further information on 

this topic. We follow this strategy to construct dynamical systems as in Main Theorem. To 

apply the Baire category theorem, we need a nice topology on the set of dynamical systems. 

We deal with the following (well-known) space of topological dynamical systems. 

Let 𝑋 be a compact metric space with a metric 𝑑𝑋. Then, on the homeomorphism group 

Homeo(𝑋) of 𝑋, define a metric 𝑑 as follows. 

𝑑(𝜑,𝜓):= max
𝑥∈𝑋

 𝑑𝑋(𝜑(𝑥), 𝜓(𝑥)) + max
𝑥∈𝑋

 𝑑𝑋(𝜑
−1(𝑥), 𝜓−1(𝑥)). 

Then 𝑑 defines a complete metric on Homeo(𝑋). The topology defined by 𝑑 coincides with 

the uniform convergence topology. In particular it does not depend on the choice of 𝑑𝑋. 

Next let Γ be a (countable) group and consider the set 𝑆(Γ, 𝑋) = Hom(Γ,Homeo(𝑋)) of all 

dynamical systems of Γ on 𝑋. The set 𝑆(Γ, 𝑋) is naturally identified with a closed subset of 

the product space ∏  Γ Homeo(𝑋), where the latter space is equipped with the product 

topology. Since Γ is countable, this makes 𝑆(Γ, 𝑋) a complete metric space. 

Finally, we recall some definitions from theory of topological dynamical systems. Let 

𝛼: Γ ↷ 𝑋 and 𝛽 ∶  Γ ↷  𝑌 be actions of a group on compact metrizable spaces. The 𝛼 is said 

to be an extension of 𝛽 if there is a Γ-equivariant quotient map ∶  𝑋 →  𝑌 . In this case 𝛽 is 

said to be a factor of 𝛼. The action 𝛼: Γ ↷ 𝑋 is said to be 

(i)            Free if any 𝑠 ∈ Γ \ {𝑒} has no fixed points, 

(ii)            Minimal if every Γ-orbit is dense in 𝑋, 

(iii) Prime if there is no nontrivial factor of 𝛼, 

(iv) Amenable if for any 𝜖 >  0 and any finite subset 𝑆 of Γ, there is a continuous 

map 휇: 𝑋 → Prob(Γ) satisfying ‖𝑠. 휇𝑥  −  휇𝑠.𝑥‖1 <  𝜖 for all 𝑠 ∈  𝑆 and 𝑥 ∈  𝑋. 

Here Prob(Γ) denotes the space of probability measures on Γ equipped with the pointwise 

convergence topology (which coincides with the ℓ1-norm topology), and Γ acts on Prob(Γ) 

by the left translation. Obviously freeness and amenability pass to extensions and minimality 

passes to factors. Anantharaman-Delaroche has characterized amenability of topological 

dynamical systems by the nuclearity of the reduced crossed product. 

We say that a property of topological dynamical systems is open, 𝐺𝛿, dense, 𝐺𝛿-dense, 

respectively when the subset of 𝑆(𝛤, 𝑋) consisting of actions with this property has the 

corresponding property. We say that a property is generic when the corresponding set 

contains a 𝐺𝛿-dense subset of 𝑆(𝛤, 𝑋). Note that thanks to the Baire category theorem, the 

intersection of countably many 𝐺𝛿-dense properties is again 𝐺𝛿-dense, and similarly for 

genericity. Although some results (e.g., genericity of amenability, minimality, primeness, 

for infinite free product groups) can be extended to more general spaces by minor 
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modifications, we concentrate on the Cantor set. This is enough for Main Theorem. For 

short, we call an action on the Cantor set a Cantor system. 

(i) For an action 𝛼: Γ ↷ 𝑋, let 𝐶(𝑋) ⋊alg Γ denote its algebraic crossed product, i.e., the 

∗-subalgebra of the reduced crossed product generated by 𝐶(𝑋) and Γ. 

(ii) For the simplicity of notation, in the reduced crossed product 𝐴 = 𝐶(𝑋) ⋊𝑟 Γ, we 

denote the unitary of A corresponding to 𝑠 ∈ Γ by the same symbol 𝑠. 
(iii) Denote by e the unit element of a group. 

(iv) Let 𝐸: 𝐶(𝑋) ⋊𝑟 Γ →  𝐶(𝑋) denote the canonical conditional expectation on the 

reduced crossed product. That is, the unital completely positive map defined by the 

formula 𝐸(𝑓𝑠) ∶=  𝛿𝑒,𝑠𝑓 for 𝑓 ∈  𝐶(𝑋) and 𝑠 ∈ Γ. 

(v) For a unital 𝐶∗-algebra, we denote by ℂ the 𝐶∗-subalgebra generated by the unit. 

(vi) Denote by ⊗ the minimal tensor product of 𝐶∗-algebras. We use the same 

notation for the minimal tensor product of completely positive maps. 

(vii) For a subset 𝑆 of a set, denote by 𝜒𝑆 the characteristic function of 𝑆. 

(viii) For a subset 𝑆 of a group, denote by 〈𝑆〉 the subgroup generated by 𝑆. 

When the action 𝛼: Γ ↷ 𝑋 is clear from the context, we denote 𝛼𝑠(𝑥) by 𝑠. 𝑥 for short. 

Similarly for 𝑠 ∈  Γ and 𝑈 ⊂  𝑋, we denote 𝛼𝑠(𝑈) by 𝑠𝑈 when no confusion arises.  

      We summarize generic properties of Cantor systems. From now on we denote by 𝑋 the 

Cantor set. We recall that the Cantor set is the topological space characterized (up to 

homeomorphism) by the following four properties: compactness, total disconnectedness, 

metrizability, and perfectness (i.e., no isolated points). 

Lemma (3.1.1)[3]. For any group 𝛤, the following properties are 𝐺𝛿 in 𝒮(𝛤, 𝑋). 

(i) Freeness. 

(ii) Amenability. 

Proof. The first claim is well-known. For completeness, we include a proof. 

(i): For 𝑠 ∈  𝛤, set 𝑉𝑠: = {𝛼 ∈ 𝑆(𝛤, 𝑋): 𝛼𝑠(𝑥) ≠ 𝑥 for all 𝑥 ∈ 𝑋}. By the compactness of 𝑋, 

each 𝑉𝑠 is open. The 𝐺𝛿-set ⋂  𝑠∈𝛤\{𝑒} 𝑉𝑠 consists of all free Cantor systems. 

(ii): For each finite subset 𝑆 of 𝛤, we say that an action 𝛼: 𝛤 ↷ 𝑋 has property as if it admits 

a continuous map 휇: 𝑋 → Prob(𝛤) satisfying 

‖𝑠. 휇𝑥 − 휇𝑠.𝑥‖1 <
1

|𝑆|
 

for all 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝑋. Let 𝛼 ∈ 𝑆(𝛤, 𝑋) be given and suppose we have a continuous map 휇 

that witnesses 𝒜𝑆 of 𝛼. Then, by the continuity of 휇, it guarantees 𝒜𝑆 for any 𝛽 sufficiently 

close to 𝛼. This shows that 𝒜𝑆 is open. Now obviously, the intersection ⋀𝑆 𝒜𝑆 is equivalent 

to amenability, where 𝑆 runs over finite subsets of 𝛤.  

The following simple lemma is crucial to show the genericity of some properties. 

Lemma (3.1.2)[3]. Let 𝛼: 𝛤 ↷ 𝑋 be a given Cantor system. Then the set of extensions of 𝛼 

is dense in 𝑆(𝛤, 𝑋). 
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Proof. Let us regard the Cantor set 𝑋 as the direct product of infinitely many copies 𝑌 of 

the Cantor set: 𝑋 = 𝑌ℕ. We regard α as a dynamical system on 𝑌 via a homeomorphism ≅

𝑌 . For each 𝑁 ∈ ℕ, define a map 𝜎𝑁: ℕ → ℕ by  

𝜎𝑁(𝑛):= {
𝑛            when n <  N,
𝑛 + 1    when n ≥  N.

 

Now let 𝛽 ∈ 𝑆(Γ, 𝑋) be given. Let 𝛾: Γ ↷ 𝑌 × 𝑋 be the diagonal action of 𝛼 and 𝛽. For each 

𝑁 ∈ ℕ, define a homeomorphism 𝜑𝑁: 𝑋 → 𝑌 × 𝑋 by 𝜑𝑁(𝑥):= (𝑥𝑁 , (𝑥𝛿𝑁(𝑁))𝑛∈ℕ
. Put 

𝛽(𝑁): = 𝜑𝑁
−1 ∘ 𝛾 ∘ 𝜑𝑁 ∈ 𝑆(Γ, 𝑋). Then for each 𝑁 ∈ ℕ, the projection from 𝑋 onto the Nth 

coordinate gives a factor map of 𝛽(𝑁) onto 𝛼. Moreover the sequence (𝛽(𝑛))
𝑛=1

∞
converges 

to 𝛽. Since 𝛽 is arbitrary, this proves the claim.  

The next lemma is well-known. 

Lemma (3.1.3)[3]. Every group admits a free Cantor system. Also, every exact group admits 

an amenable Cantor system. 

Proof. Let 𝛤 be a group. We first show that the left translation action of Γ on its Stone–�̌�ech 

compactification 𝛽𝛤 is free. Let 𝑠 ∈ Γ \ {𝑒} be given. Put Λ ∶= 〈𝑠〉. Take a 𝛬-equivariant 

map Γ → 𝛬 where 𝛬 acts on both groups by the left multiplication. This extends to the 𝛬 -

equivariant quotient map 𝛽Γ → 𝛽𝛬. By universality, 𝛽 𝛬 factors onto every minimal 

dynamical system of 𝛬 (on a compact space). Since any cyclic group admits a minimal free 

action on a compact space, this shows that s has no fixed points in 𝛽Γ. 

Let (𝐴𝜇)𝜇∈𝑀 be the increasing net of Γ-invariant unital 𝐶∗-subalgebras of ℓ∞(Γ) = 𝐶(𝛽Γ) 

generated by countably many projections. Note that ⋃  𝜇∈𝑀 𝐴𝜇 = ℓ
∞(Γ). Let 𝑋𝜇 denote the 

spectrum of 𝐴𝜇. Obviously, each 𝑋𝜇 is totally disconnected and metrizable. Let 𝛼𝜇: Γ ↷ 𝑋𝜇 

be the action induced from the action Γ 𝑦 𝐴𝜇. By the freeness of Γ ↷ 𝛽Γ, for sufficiently 

large 휇, the 𝛼𝜇 must be free. When Γ is exact, for sufficiently large 휇, the 𝛼𝜇 must be 

amenable. Hence for sufficiently large 휇, the diagonal action of 𝛼𝜇 and the trivial Cantor 

system gives the desired action.  

We now summarize the results. 

Corollary (3.1.4)[3]. For any group Γ, freeness is a 𝐺𝛿-dense property in 𝑆(Γ, 𝑋). Moreover, 

when Γ is exact, amenability is also a 𝐺𝛿-dense property in 𝑆(Γ,𝑋). 

Proof. Since both freeness and amenability are inherited to extensions, it follows from 

Lemmas (3.1.1) Theorem (3.1.3).  

 Section (3.2): Construction of Dynamical Systems and Further Examples 

We prove Main Theorem. Let (Γ𝑖)𝑖=1
∞  be a sequence of nontrivial groups and let Γ:= 

∗𝑖=1∞ Γ𝑖 be their free product. By replacing Γ𝑖 by Γ2𝑖−1 ∗ Γ2𝑖  for all i if necessary, in the rest 

of the paper, we assume that each free product component Γ𝑖 contains a torsionfree element. 

We start with the following elementary lemmas. We remark that in the case that Γ is the free 

group 𝔽∞, we do not need these lemmas. 
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Lemma (3.2.1)[3]. Let 𝛬 be a group and 𝛶 be its subgroup. Then for any minimal dynamical 

system 𝛼 of 𝛶 on a compact metrizable space, there is a Cantor system of 𝛬 whose restriction 

on 𝛶 is an extension of 𝛼. 

Proof. Let 𝛼: Υ ↷ 𝑌 be an action as in the statement. Fix an element ∈ 𝑌 . Then the map 

Υ → 𝑌 defined by 𝑠 ⟼ 𝑠. 𝑦 extends to a factor map Υ → 𝑌 . This induces an 𝛶-equivariant 

unital embedding of 𝐶(𝑌) into ℓ∞(𝛶) . By the right coset decomposition of 𝛬 with respect 

to 𝛶, we have an 𝛶 -equivariant unital embedding of ℓ∞(𝛶) into ℓ∞(Λ). 

We identify 𝐶(𝑌) with a unital 𝛶-invariant 𝐶∗-subalgebra of ℓ∞(𝛶) via the composite of 

these two embeddings. Take a 𝛶-invariant 𝐶∗-subalgebra 𝐴 of ℓ∞(Λ) which contains 𝐶(𝑌) 
and is generated by countably many projections. Let 𝑍 be the spectrum of 𝐴. Note that 𝑍 is 

metrizable and totally disconnected. Let 𝛽: Λ ↷ 𝑍 be the action induced from the action Λ ↷
𝐴. Since 𝐴 contains 𝐶(𝑌) as a unital 𝐶∗-subalgebra, the restriction of 𝛽 on 𝛶 is an extension 

of 𝛼. Now the diagonal action of 𝛽 with the trivial Cantor system gives the desired Cantor 

system.  

Lemma (3.2.2)[3]. Let 𝛬 be a group. Let s be a torsion-free element of 𝛬. Then for any finite 

family 𝑈 = {𝑈1, . . . , 𝑈𝑛} of pairwise disjoint proper clopen subsets of 𝑋, there is a Cantor 

system 𝛼: Λ ↷ 𝑋 with 𝑠𝑈𝑖 = 𝑈𝑖+1 for all 𝑖. (modn) 

Proof. By Lemma (3.2.1), there is a Cantor system 𝛼: Λ ↷ 𝑋 whose restriction on 〈𝑠〉 factors 

a transitive action on the set {1, . . . , 𝑛}. For such 𝛼, there is a partition {𝑉1, . . . , 𝑉𝑛} of 𝑋 by 

clopen subsets satisfying 𝑠𝑉𝑖 = 𝑉𝑖+1 for all 𝑖. Set 𝐼: = {0, 1} if ⋃  𝑛
𝑖=1 𝑈𝑖 ≠ 𝑋. Otherwise we 

set 𝐼: = {0}. Then define a new action 𝛽: Λ ↷ 𝑋 × 𝐼 by 

𝛽𝑡(𝑥, 𝑗) ≔ {
(𝛼𝑡(𝑥), 0)    when   𝑗 = 0,

(𝑥, 1)                otherwise 
 

Since nonempty clopen subsets of the Cantor set are mutually homeomorphic, there is a 

homeomorphism 𝜑: 𝑋 × 𝐼 → 𝑋 which maps 𝑉𝑖 × {0} onto 𝑈𝑖 for each 𝑖. For such 𝜑, the 

conjugate 𝜑 ∘ 𝛽 ∘ 𝜑−1 gives the desired Cantor system.  

We next introduce a property of Cantor systems which is one of the key of the proof of Main 

Theorem and show that this property is 𝐺𝛿-dense for infinite free product groups. 

Proposition (3.2.3)[3]. Let Γ= ∗𝑖=1
∞ 

𝛤𝑖 be an infinite free product group. Then the 

following property ℛ of Cantor systems is 𝐺𝛿-dense in 𝒮(Γ, 𝑋). 

(ℛ): For any finite family 𝑢 = {𝑈1, . . . , 𝑈𝑛} of mutually disjoint proper clopen subsets of 𝑋, 

there are infinitely many 𝑖 ∈ ℕ satisfying the following condition. The group Γ𝑖 contains a 

torsion-free element s satisfying 𝑠𝑈𝑗 = 𝑈𝑗+1 for all 𝑗. 

Here we put 𝑈𝑛+1: = 𝑈1 as before. 

Proof. For any 𝑖 ∈ ℕ and a family 𝑢 as stated, we say that an element 𝛼 ∈ 𝒮(Γ, 𝑋) has 

property ℛ(𝑖, 𝒰) if it satisfies the following condition. There are 𝑘 ≥ 𝑖 and a torsion-free 

element 𝑠 ∈ Γ𝑘 satisfying 𝑠𝑈𝑗 = 𝑈𝑗+1 for all 𝑗. Then observe that for any two clopen subsets 

𝑈 and 𝑉 of 𝑋, the set 
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{𝜑 ∈ Homeo(𝑋): 𝜑(𝑈) = 𝑉} 

is clopen in Homeo(𝑋). This shows that property ℛ(𝑖,𝒰) is open in 𝒮(Γ, 𝑋). 

To show the density of ℛ(𝑖, 𝒰), for each 𝑚 ∈ ℕ, take a Cantor system 𝜑𝑚: Γ𝑚 ↷ 𝑋 as in 

Lemma (3.2.2). Let 𝛼 ∈ 𝒮(Γ, 𝑋) be given. Then, for each 𝑚 ∈ ℕ, we define 𝛼(𝑚) ∈ 𝒮(Γ, 𝑋) 
as follows. 

𝛼(𝑚) |Γ𝑘: = {
𝛼|Γ𝑘  for 𝑘 <  𝑚,

𝜑𝑘 for 𝑘 ≥  𝑚.
  

Then each 𝛼(𝑚) satisfies property ℛ(𝑖, 𝒰) and the sequence (𝛼(𝑚))
 𝑚=1

∞
 converges to 𝛼. 

This proves the density of ℛ(𝑖,𝒰). 

Now observe that property ℛ is equivalent to the intersection ⋀  𝑖,𝑈 ℛ(𝑖,𝒰). Since there are 

only countably many clopen subsets in 𝑋, the intersection is taken over a countable family. 

Now the Baire category theorem completes the proof. 

Proposition (3.2.4)[3]. Assume 𝛼 ∈ 𝒮(Γ, 𝑋) satisfies ℛ. Then there is no Γ-invariant closed 

subspace of 𝐶(𝑋) other than 0, ℂ, or 𝐶(𝑋). In particular ℛ implies primeness. 

Proof. Let 𝑉 be a closed Γ-invariant subspace of 𝐶(𝑋) other than 0 or ℂ. We first show that 

𝑉 contains ℂ. Take a nonzero function. Then for any 𝜖 >  0, there is a partition 𝒰:=
{𝑈1, . . . , 𝑈𝑛} of 𝑋 by proper clopen sets and complex numbers 𝑐1, . . . , 𝑐𝑛 with |𝑐1| = ‖𝑓‖ 

such that with : = ∑  𝑛
𝑖=1 𝑐𝑖𝜒𝑈𝑖 , we have ‖𝑓 − 𝑔‖ < 𝜖. Put 𝑐:=

1

𝑛
∑  𝑛
𝑖=1  𝑐𝑖. 

By replacing 𝒰 by dividing 𝑈1 into sufficiently many clopen subsets and replacing the 

sequence (𝑐𝑖)𝑖 suitably, we may assume |𝑐| ≥ ‖𝑓‖/2. By property ℛ, we can take 𝑠 ∈ Γ 

with 𝑠𝑈𝑖 = 𝑈𝑖+1 for all 𝑖. We then have ∑  𝑛
𝑖=1 𝑠

𝑖𝑔𝑠−𝑖  = ∑  𝑛
𝑖=1 𝑐𝑖 . This yields the inequality  

‖
1

𝑛
∑ 

𝑛

𝑖=1

𝑠𝑖𝑓𝑠−𝑖 −  𝑐‖  < 𝜖. 

Since 𝜖 > 0 is arbitrary and |𝑐| ≥ ‖𝑓‖/2, we obtain ℂ ⊂ 𝑉 . 

From this, we can choose a nonzero function 𝑓 ∈ 𝑉 with 0 ∈ 𝑓(𝑋). For any      𝜖 > 0, take 

a partition 𝑈 = {𝑈0, 𝑈1, . . . , 𝑈𝑛} of 𝑋 by proper clopen sets and complex numbers 𝑐1, . . . , 𝑐𝑛 

such that with : = ∑  𝑛
𝑖=1  𝑐𝑖𝜒𝑈𝑖 , we have ‖𝑓 − 𝑔‖ < 𝜖. Put 𝑐: =

1

𝑛
∑  𝑛
𝑖=1 𝑐𝑖 . As before, we 

may assume |𝑐| ≥ ‖𝑓‖/2. By using property ℛ to the family {𝑈1, . . . , 𝑈𝑛}, we can take 𝑠 ∈

Γ satisfying  𝑠𝑈0  = 𝑈0 and 𝑠𝑈𝑖 = 𝑈𝑖+1 for 1 ≤ 𝑖 < 𝑛. Then we have, 
1

𝑛
∑  𝑛
𝑖=1  𝑠

𝑖𝑔𝑠−𝑖 =

 𝑐𝜒𝑋\𝑈0 . Now let 𝑈 be any proper clopen subset of 𝑋. Take 𝑡 ∈ Γ with 𝑡(𝑋 \ 𝑈0) = 𝑈. (To 

find such 𝑡, use property ℛ twice.) We then have 

𝑡 (
1

𝑛
∑ 

𝑛

𝑖=1

𝑠𝑖𝑔𝑠−𝑖) 𝑡−1 = 𝑐𝑡(𝜒𝑋\𝑈0)𝑡
−1  =  𝑐𝜒𝑈 . 

This shows the inequality  
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‖(
1

𝑛
∑ 

𝑛

𝑖=1

𝑡𝑠𝑖𝑓𝑠−𝑖𝑡−1) − 𝑐𝜒𝑈‖ < 𝜖. 

Since 𝜖 > 0 is arbitrary, this proves 𝜒𝑈 ∈ 𝑉 . Since 𝑈 is arbitrary, we obtain     𝑉 = 𝐶(𝑋). 

We need the following restricted version of the Powers property for free product groups. 

Although the proof is essentially contained, for completeness, we include a proof. 

Lemma (3.2.5)[3]. Let 𝛬1,𝛬2 be groups and set 𝛬:= 𝛬1 ∗ 𝛬2. Let 𝑠 ∈ 𝛬1, 𝑡 ∈ 𝛬2 be torsion-

free elements. Then for any finite subset 𝐹 of 𝛬 \ {𝑒}, there are a partition 𝛬 = 𝐷 ⊔ 𝐸 of 𝛬 

and elements 𝑢1, 𝑢2, 𝑢3 ∈ 〈𝑠, 𝑡〉 with the following properties. 

(i) 𝑓𝐷 ∩ 𝐷 = ∅  for all 𝑓 ∈ 𝐹. 

(ii) 𝑢𝑗𝐸 ∩ 𝑢𝑘𝐸 = ∅ for any two distinct 𝑗, 𝑘 ∈ {1, 2, 3}. 

Proof. Let 𝐹 ⊂ 𝛬\{𝑒} be given. Then for sufficiently large 𝑛 ∈ ℕ, with             𝑧:= 𝑡𝑠𝑛, 

any element of 𝑧𝐹𝑧−1 is started with t and ended with 𝑡−1. Here for   𝑢 ∈ 𝛬𝑖\{𝑒}, we say an 

element 𝑤 of 𝛬 is started with 𝑢 if 𝑤 = 𝑢𝑤1 . . . 𝑤𝑛 for some (possibly empty) sequence 

𝑤1, . . . , 𝑤𝑛 with 𝑤𝑗 ∈ 𝛬𝑘𝑗\{𝑒} and 𝑖 ≠ 𝑘1 ≠ 𝑘2 ≠· · ·≠  𝑘𝑛. The word “ended with 𝑢” is 

similarly defined. (Thus, in our terminology, the element 𝑢2 is not started with 𝑢.) 

Let 𝐸′ be the subset of 𝛬 consisting of all elements started with 𝑡. Put 𝐸 ∶=  𝑧−1𝐸′, 𝐷:=
𝛬\𝐸, and 𝐷′: = 𝛬\𝐸′. Then note that 𝑓𝐷 ∩ 𝐷 = ∅ for all 𝑓 ∈  𝐹 if and only if 𝑓′𝐷′  ∩ 𝐷′ =
∅ for all 𝑓′ ∈ 𝑧𝐹𝑧−1. Since elements 𝑓′ ∈ 𝑧𝐹𝑧−1 are started with 𝑡 and ended with 𝑡−1 but 

𝐷′  consists of elements not started with t, we have 𝑓′𝐷′ ∩ 𝐷′ =  ∅. Now for 𝑗 ∈  {1, 2, 3}, 
put 𝑢𝑗: = 𝑠

𝑗𝑧. Obviously each 𝑢𝑗 is contained in 〈𝑠, 𝑡〉. By definition, we have 𝑢𝑗𝐸 = 𝑠
𝑗𝐸′. 

This shows that 𝑢𝑗𝐸 consists of only elements started with 𝑠𝑗 . Therefore 𝑢1𝐸, 𝑢2𝐸, and 𝑢3𝐸 

are pairwise disjoint.  

Now we prove Main Theorem. Before the proof, we remark that the AP is preserved under 

taking free products. Hence Γ has the AP if and only if each free product component Γ𝑖 has 

it. 

Theorem (3.2.6)[3]. Let Γ be an infinite free product group with the AP. Then, for 𝛼 ∈
𝑆(Γ, 𝑋) with property ℛ, there is no proper intermediate 𝐶∗-algebra of the inclusion 𝐶𝑟

∗(Γ) ⊂
𝐶(𝑋) ⋊𝑟 Γ. In particular, when additionally 𝛼 is amenable, then 𝐶(𝑋) ⋊𝑟 Γ is a minimal 

ambient nuclear 𝐶∗-algebra of the non-nuclear   𝐶∗-algebra 𝐶𝑟
∗(Γ). 

Proof. Let 𝐴 be an intermediate 𝐶∗-algebra of the inclusion 𝐶𝑟
∗ (Γ) ⊂ 𝐶(𝑋) ⋊𝑟  Γ. We first 

consider the case 𝐸(𝐴) = ℂ. In this case, we have the equality 𝐴 = 𝐶𝑟
∗ (Γ). 

We next consider the case 𝐸(𝐴) ≠ ℂ. In this case, by Proposition (3.2.4), 𝐸(𝐴) is dense in 

𝐶(𝑋). Let 𝑈 be a proper clopen subset of 𝑋. Let 𝜖 > 0 be given. Then take a self-adjoint 

element 𝑥 ∈ 𝐴 with 𝐸(𝑥) − 𝜒𝑈𝑘 < 𝜖. By property ℛ, there are torsion-free elements 𝑠1 ∈

Γ𝑖 and 𝑠2 ∈ Γ𝑗 with 𝑖 ≠ 𝑗 which fix 𝜒𝑈. Put 𝛬 ∶=  〈𝑠1, 𝑠2〉. Take 𝑦 ∈ 𝐶(𝑋) ⋊alg Γ satisfying 

𝐸(𝑦) = 𝜒𝑈 and ‖𝑦 − 𝑥‖ < 𝜖. By Lemma (3.2.5), we can apply the Powers argument, , by 
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elements of 𝛬. Iterating the Powers argument sufficiently many times, we obtain a sequence 

𝑡1, . . . , 𝑡𝑛 ∈ 𝛬 satisfying the inequality 

‖
1

𝑛
∑ 

𝑛

𝑖=1

𝑡𝑖(𝑦 − 𝜒𝑈)𝑡𝑖
−1‖ < 𝜖. 

Since 𝜒𝑈 is 𝛬 -invariant, we have 

‖
1

𝑛
∑ 

𝑛

𝑖=1

𝑡𝑖𝑥𝑡𝑖
−1 − 𝜒𝑈‖ < 2𝜖. 

Since 𝜖 > 0 is arbitrary, this shows 𝜒𝑈 ∈ 𝐴. Therefore 𝐴 = 𝐶(𝑋) ⋊𝑟 Γ. 

Proposition (3.2.7)[3]. Let A be a simple C∗-algebra. Let Γ be an infinite free product group 

with the AP. Let 𝛼: Γ ↷ 𝑋 be a Cantor system with property ℛ. Then the inclusion 𝐴⊗
𝐶𝑟
∗(Γ) ⊂ 𝐴⊗ (𝐶(𝑋) ⋊𝑟 Γ) has no proper intermediate 𝐶∗-algebra. 

Proof. Let 𝐵 be an intermediate 𝐶∗-algebra of the inclusion 𝐴⊗ 𝐶𝑟
∗ (Γ) ⊂ 𝐴⊗

(𝐶(𝑋) ⋊𝑟 Γ). Put Φ:= id𝐴⊗𝐸. Throughout the proof, we identify 𝐴 with a  𝐶∗-subalgebra 

of 𝐴⊗ 𝐶(𝑋) in the canonical way. Note that the image Φ(𝐵) contains 𝐴. When the equality 

Φ(𝐵) = 𝐴 holds, we have 𝐵 = 𝐴⊗ 𝐶𝑟
∗ (Γ). 

Suppose Φ(𝐵) ≠ 𝐴. We observe first that for an element 𝑥 ∈ 𝐴⊗ 𝐶(𝑋) satisfying 

(𝜑 ⊗ id𝐶(𝑋))(𝑥) ∈ 𝐶 for all pure states 𝜑 on 𝐴, we have 𝑥 = (id𝐴⊗𝜓)(𝑥) ∈ 𝐴 for any 

state 𝜓 on 𝐶(𝑋). Hence we can choose a pure state 𝜑 on 𝐴 and an element 𝑏 ∈ 𝐵 satisfying 

𝑓:= (𝜑⊗ 𝑖𝑑𝐶(𝑋))(Φ(𝑏)) ∈ 𝐶(𝑋) \𝐶 and ‖𝑓‖ = 1. Now let 𝜖 > 0 be given. 

By the Akemann–anderson–Pedersen excision theorem, there is a positive element 𝑎 ∈ 𝐴 of 

norm one satisfying ‖Φ(𝑎𝑏𝑎)  −  𝑎2⊗𝑓‖ < 𝜖. By the simplicity of 𝐴, for any 𝜖 > 0 and 

any positive contractive element 𝑐 ∈  𝐴, there is a finite sequence 𝑥1, . . . , 𝑥𝑛 ∈ 𝐴 satisfying 

the following conditions. 

(i) ‖∑ 

𝑛

𝑖=1

 𝑥𝑖𝑎
2𝑥𝑖
∗ −  𝑐‖ ≤ 𝜖. 

(ii) ‖∑ 

𝑛

𝑖=1

 𝑥𝑖𝑥𝑖
∗‖  ≤  2. 

For such a sequence, we have 

‖Φ(∑ 

𝑛

𝑖=1

𝑥𝑖𝑎𝑏𝑎𝑥𝑖
∗ ) − 𝑐 ⊗ 𝑓)‖ < 3𝜖. 

This shows that the closure of Φ(𝐵) contains 𝑐 ⊗ 𝑓. Proposition (3.2.4) then shows that the 

closure of Φ(𝐵) contains the subspace 𝑐 ⊗ 𝐶(𝑋). Now the proof of Theorem (3.2.6) shows 

the equality 𝐵 = 𝐴⊗ (𝐶(𝑋) ⋊𝑟 Γ).  
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Chapter 4 

Quasi-States on 𝑪∗-Algebras 

We show that an answer to a question that positive quasi-linear functionals in 𝐶∗-
algebras are linear under certain given conditions. 

Section (4.1): Decomposition of Quasi-States and 𝑪∗-Algebras Generated by two 

Projections 

Let A  be a 𝐶∗-algebra. A positive quasi-linear functional on A is a function 휌: A → 𝑪 such 

that: 

(i) 휌 is a positive linear functional on each abelian 𝐶∗-subalgebra of A, 

(ii) sup{휌(𝐴)|𝐴 ∈ A, 𝐴 ≥ 0, ‖𝐴‖ ≤ 1}  < ∞, 

(iii) 휌(𝐴 +  𝑖𝐵) = 휌(𝐴) +  𝑖휌(𝐵) if 𝐴 and 𝐵 are self-adjoint elements of A. 

A quasi-state on A  is a positive quasi-linear functional 휌 on A  that satisfies the 

normalization condition sup{휌(𝐴)|𝐴 ∈ A, 𝐴 ≥ 0, ‖𝐴‖ ≤ 1 }  =  1. If A  is unital with unit 

𝐼, this is equivalent to the condition 𝑝(𝐼)  =  1. 

We are concerned with the question of when positive quasilinear functionals on 𝐶∗-
algebras are linear. In view of the condition (iii) and since positive quasi-linear functionals 

are scalar multiples of quasistates, this reduces to the question of additivity of quasi-states 

on the self-adjoint elements of a 𝐶∗-algebra. This question and its various forms, depending 

both on the nature of quasi-states and on the structure of the underlying algebra, substantial 

progress had been made in a number of cases. 

One of the most remarkable advances was the pioneering work of 

which the question was settled in the allirmative for quasistates on B(H   ), the algebra of 

all bounded operators acting on a Hilbert space H, with the property of being completely 

additive on orthogonal projections, provided the dimension of H   is different from 2. In the 

two dimensional case the answer is, in general, negative-one can construct discontinuous 

quasi-states by simple geometrical arguments; so that one cannot expect all quase-states to 

be linear on 𝐶∗-algebras that admit two-dimensional irreducible representations. Following 

Gleason’s result, contributions to the problem were made, and in recent years the general 

problem. Combined together their results provide an affirmative answer for quasi-states on 

von Neumann algebras without central summands of type 𝐼2. One of the crucial points 

underlying this solution is the norm-continuity of quasi-states on the set of projections. For 

more general 𝐶∗-algebras continuity of quasi-states still remains an open problem. More can 

be said about additivity of continuous quasi-states. One finds, for example, that continuous 

quasi-states are linear on AF 𝐶∗-algebras, by applying Gleason’s result to a norm-dense 

union of finite-dimensional subalgebras. 

We study various classes of continuous quasi-states and the objective is to obtain 

further information on the problem. Besides continuous and uniformly continuous quasi-

states we consider the so-called weakly subadditive quasi-states that satisfy 휌(𝐴 +  𝐵) ≥
휌(𝐴) + 휌(𝐵) for all positive 𝐴 and 𝐵 in A, and approximately additive quasi-states with 
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the property that |휌(𝐴𝑎 + 𝐵𝑎) − 휌(𝐴𝑎) − 휌(𝐵𝑎) →𝑎 0, whenever {𝐴𝑎}𝑎∈𝐴 and {𝐵𝑎}𝑎∈𝐴 are 

bounded nets of self-adjoint elements in A  and ‖[ 𝐴𝑎, 𝐵𝑎]‖ →𝑎 0. Develops some of the 

elementary properties of such quasi-states. We obtain a decomposition of uniformly 

continuous quasi-states into atomic and diffuse parts on separable 𝐶∗-algebras whose 

irreducible representations are of dimension different from 2. This is used together with 

Christensen’s result to show additivity of weakly subadditive quasi-states on certain 

extensions of locally trivial fields of elemantary algebras by finite-dimensional 𝐶∗-algebras, 

and, in particular, on 𝐶∗-subalgebras generated by two projections under suitable 

multiplicity condition. We use the information and the techniques developed to obtain new 

results about quasi-states on 𝐶∗-algebras containing a dense set of elements with finite 

spectrum. In particular, additivity is shown for arbitrary quasi-states on the Calkin algebra, 

and for weakly subadditive and continuous quasistates on certain stable algebras. 

The letters A,B and C  will denote 𝐶∗-algebras with elements 

𝐴, 𝐵, 𝐶, 𝐷,… ,A𝑠.𝑎,A
   +

, and A1
    +

 are the symbols for the self-adjoint part of - A, positive 

part of A, and positive part of the unit ball of A, respectively. If A is unital, I will always 

denote the identity of J&‘. The C*-algebra of 𝑛 × 𝑛 matrices over A  is denoted by 𝑀𝑛(A  ). 
We shall occasionally consider 𝐶∗-algebra A in its universal representation. In this case D  − 

will denote the weak closure of a subset D ⊆ A and 𝐶𝑎𝑡 stands for the minimal central 

projection in A
    −

 majorizing each minimal projection of A
    −

 (the atomic projection of 

A
    −

). For a linear functional 휌 on A we shall sometimes use the same letter 휌 to denote its 

ultraweakly continuous extension to A
    −

. The symbols B(H   ) and K are reserved for the 

algebra of all bounded operators on a Hilbert space H  and the algebra of compact operators 

on a separable Hilbert space, respectively. 

If 휌 is a positive quasi-linear functional on A, we use the notation ‖휌‖ = sup{휌(𝐴)|𝐴 ∈

A1
    +} in analogy with positive linear functionals. 

Similarly, for positive quasi-linear functionals 휌 and 𝜔 on A the expression 𝜔 ≤ 휌 will 

mean that 𝜔(𝐴) ≤ 휌(𝐴) for all 𝐴 ∈ A
    +

 (equivalently, 휌 − 𝜔 is a positive quasi-linear 

functional on A   ). 

Definition (4.1.1)[4]. A positive quasi-linear functional 휌 on a 𝐶∗-algebra A  is said to be 

weakly subadditive if 휌(𝐴 +  𝐵).= 휌(𝐴)  + 휌(𝐵) for all positive 

𝐴, 𝐵 in A. 휌 is said to be approximately additive if |휌(𝐴𝑎 + 𝐵𝑎) − 휌(𝐴𝑎) − 휌(𝐵𝑎) →𝑎 0 for 

each pair of bounded nets {𝐴𝑎}𝑎∈𝐴 and {𝐵𝑎}𝑎∈𝐴 in A𝑠.𝑎, such that ‖[𝐴𝑎, 𝐵𝑎]‖ →𝑎 0. 

Proposition (4.1.2)[4]. Let 휌 be a positive quasi-linear functional on a 

𝐶∗-algebra A. 

(i) If 휌 is weakly subadditive, then 휌 is monotone on A
+. If in addition, A is unital, then 휌 

is monotone on A𝑠.𝑎, and uniformly continuous on A . 

(ii) If 휌 is approximately additive and {𝐴𝑎}𝑎∈𝐴, {𝐵𝑎}𝑎∈𝐴 are bounded nets in A𝑠.𝑎, such that 

‖𝐴𝑎 − 𝐵𝑎‖ →𝑎  0, then |휌(𝐴𝑎) − 휌(𝐵𝑎)| →𝑎  0. 

Proof. (i) Monotonicity of 휌 on A
    +

 follows immediately from the definition, since 휌(𝐴) −
휌(𝐵) ≥ 휌(𝐴 − 𝐵) ≥ 0 when 0 ≤ 𝐵 ≤ 𝐴. If A is unital and 𝐶 ≤ 𝐷 for 𝐶,𝐷 ∈ A𝑠.𝑎, then 
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0 ≤ 𝐶 + 휆𝐼 ≤ 𝐷 + 휆𝐼 where 𝐼 = max{‖𝐶‖, ‖𝐷‖}. Consequently, 휌(𝐶) + 휆휌(𝐼) ≤
휌(𝐷) + 휆휌(𝐼), and 휌(𝐶) ≤ 휌(𝐷). Finally, for 𝐴 and 𝐵 in A𝑠.𝑎, we have, so that 

𝐵 − ‖𝐴 − 𝐵‖𝐼 ≤ 𝐴 ≤ 𝐵 + ‖𝐴 − 𝐵‖𝐼, 

So that 

휌(𝐵) − ‖𝐴 − 𝐵‖휌(𝐼) ≤ 휌(𝐴) ≤ 휌(𝐵) + ‖𝐴 −  𝐵‖휌(𝐼), 

from the remark above. Thus |휌(𝐴) − 휌(𝐵)| ≤ 휌(𝐼)‖𝐴 − 𝐵‖. For arbitrary 𝐴 and 𝐵 we 

obtain |휌(𝐴) − 휌(𝐵)| ≤ 2휌(𝐼)‖𝐴 −  𝐵‖, by applying the preceding inequality to the real 

and imaginary parts. 

(ii) Since the nets {𝐴𝑎}𝑎∈𝐴 and {𝐵𝑎}𝑎∈𝐴 are bounded, we have 

‖[𝐴𝑎, 𝐵𝑎]‖ →𝑎 0 and hence |휌(𝐴𝑎) − 휌(𝐵𝑎) − 휌(𝐴𝑎  −  𝐵𝑎)| →𝑎 0 from the definition of 

휌. On the other hand, |휌(𝐴𝑎  −  𝐵𝑎)| ≤ ‖휌‖ ⋅ ‖𝐴𝑎  −  𝐵𝑎‖, since for each 𝑎 ∈ 𝐴 the 

restriction of 휌 to the abelian 𝐶∗-subalgebra generated by 

𝐴𝑎  −  𝐵𝑎 is a positive linear functional. Therefore 휌(𝐴𝑎  −  𝐵𝑎) →𝑎  0, and the assertion 

follows. 

Let 𝑄(A   ) denote the set of all positive quasi-linear functionals on A of norm less 

or equal to 1, and let 𝑆𝑄(A  ) denote the subset of 𝑄(A   ), consisting of weakly subadditive 

positive quasi-linear functionals. It was shown that Q(A  ) is weak*-compact and convex. 

The same property holds for the weak*-closed convex subset SQ(A  ). From the Krein-

Milman theorem the sets Q(A  ) and SQ(A  ) are weak*-closed convex hulls of their extreme 

points. It is not hard to see that the zero functional is an extreme point of each of these sets, 

while the nonzero extreme points are of norm 1, that is, are quasi-states of A. Following this 

observation we shall call the nonzero extreme points of Q(A  ) (resp. Se(A   )) pure quasi-

states (resp. pure weakly subadditive quasi-states). 

Where the following proposition. 

Proposition (4.1.3)[4]. Let d be a unital 𝐶∗-algebra. 

(i) 휌 is a pure quasi-state of A if and only if each positive quasi-linear functional 𝜎 on A 

such that 𝜎 ≤ 휌 is a scalar multiple of 휌. 

(ii) If 휌 is a pure weakly subadditive quasi-state of A and 𝜑1, is a nonzero positive linear 

functional on A  such that 𝜑1 ≤ 휌, then 휌 = (1/‖𝜑1‖) ⋅ 𝜑1. 

Proof: We shall show (ii). The proof of (i) is analogous. Let 𝜑2 = 휌 − 𝜑1. Then 𝜑2 is a 

positive quasi-linear functional on A, and 𝜑2 is weakly subadditive, because 

𝜑2(𝐴 + 𝐵) = 휌(𝐴 + 𝐵) − 𝜑1(𝐴 + 𝐵) = 휌(𝐴 + 𝐵) − (𝜑1(𝐴) + 𝜑1(𝐵))

≥ 휌(𝐴) + 휌(𝐵) − (𝜑1(𝐴) + 𝜑1(𝐵)) 

= 𝜑2(𝐴) + 𝜑2(𝐵), when    𝐴, 𝐵 ∈ A
    +

 

With 휆1 = ‖𝜑1‖ and 휆2 = ‖𝜑2‖ = (𝜑2(𝐼)), we have 
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휆1 + 휆2 = 𝜑1(𝐼) + (휌(𝐼) − 𝜑1(𝐼) = 휌(𝐼) =  1. 

If 휆1 = 0, then 𝜑2 = 0, and 휌 = 𝜑1 = (
1

‖𝜑1‖
)𝜑1 ,. If 휆2 ≠ 0, then 𝜔1 = (

1

𝜆1
)𝜑1 and 𝜔2 =

(
1

𝜆2
)𝜑2 belong to 𝑆𝑄(A  ), and 휌 = 휆1𝜔1 + 휆2𝜔2. Since 휌 is pure, this implies 𝜔1 = 𝜔2 =

휌. Consequently, 휌 =  (
1

‖𝜑1‖
)𝜑1. 

We obtain the natural decomposition of a uniformly continuous quasi-state on a 

separable 𝐶∗-algebra, whose irreducible representations are of dimension different from 

two, into atomic and diffuse parts. Applications of this technique appear in the second part, 

where we consider weakly subadditive quasi-states on certain separable type I 𝐶∗-algebras. 

Lemma (4.1.4)[4]. (i) The function 휌|⋃ BB  ∈Λ  extends to the function 휌̅ on ⋃ BB  ∈Λ
  −

, 

given by 휌̅(𝐴) = 𝜔𝑥|B  if 𝐴 ∈ B  for some B ∈ 𝐴 휌|B = 𝜔𝑥|B . (ii) if 𝑃1, … , 𝑃𝑛, is a 

finite family of mutually orthogonal minimal projections in A
    −

, then 𝑃1, … , 𝑃𝑛, and ∑ 𝑃𝑖
𝑛
𝑖=1  

belong to ⋃ BB  ∈Λ
  −

, and ∑ 휌̅(𝑃𝑖)
𝑛
𝑖=1 = 휌̅(∑ 𝑃𝑖

𝑛
𝑖=1 ) ≤ 1. 

Proof. (i) We have to show that 𝜔𝑥(𝐴)  = 𝜔𝑦(𝐴), if 𝐴 ∈ B
   − ∩C

   −
 for some B and C  in 

Λ and 휌|B = 𝜔𝑥|B , 휌|C = 𝜔𝑦|C. Choose nets {𝐵𝑎}𝑎∈Λ and {𝐶𝑎}𝑎∈Λ contained in B  and 

C, respectively, and convergent to A in the weak-operator topology. Since 0 is the weak-

operator limit of the net {𝐵𝑎 − 𝐶𝑎}𝑎∈Λ, and bounded linear functionals on A  are 

weakoperator continuous, the Hahn-Banach separation theorem implies that 0 belongs to 

the norm-closed convex hull of any cofinal subnet of {𝐵𝑎 − 𝐶𝑎}𝑎∈Λ. Consequently, for any 

휀 >  0 we can choose 𝑎0 ∈ 𝐴 such that |𝜔𝑥(𝐴) − 𝜔𝑥(𝐵𝑎)| < 휀, |𝜔𝑦(𝐴) − 𝜔𝑦(𝐶𝑎)| < 휀 for 

all 𝑎 ≥ 𝑎0 and a convex combination ∑ 휆𝑗 (𝐵𝑎𝑗 − 𝐶𝑎𝑗)𝑗  such that 𝑎𝑗 ≥ 𝑎0, for all 𝑗 and 

|휌 (∑ 휆𝑗𝐵𝑎𝑗𝑗 ) − 휌 (∑ 휆𝑗𝐶𝑎𝑗𝑗 )| < 휀, from uniform continuity of 휌. Therefore |𝜔𝑥(𝐴) −

𝜔𝑦(𝐴)| ≤ ∑ 휆𝑗 |𝜔𝑥(𝐴) − 𝜔𝑥 (𝐵𝑎𝑗)| + |휌 (∑ 휆𝑗𝐵𝑎𝑗𝑗 ) − 휌 (∑ 휆𝑗𝐶𝑎𝑗𝑗 )| + ∑ 휆𝑗 |𝜔𝑦 (𝐶𝑎𝑗) −𝑗𝑗

𝜔𝑦(𝐴)| < 3휀 and 𝜔𝑥(𝐴) = 𝜔𝑦(𝐴). 

(ii) If 𝑃 is a minimal projection in A
    −

, then 𝑃 is the support projection of some pure state 

𝜔 of A , and 𝐼 −  𝑃 is the open right support projection for the left kernel L𝜔   of 𝜔. Since 

L 𝜔 ∩L𝜔
    ∗

, is separable, it admits a strictly positive element 𝐴𝜌, whose range projection is 

𝐼 −  𝑃. Thus, 𝑃 belongs to a weak-operator closure of a maximal abelian subalgebra of d 

containing A,. If 𝑃1, . . . . 𝑃𝑛, is a finite family of mutually orthogonal minimal projections in 

A
   −

, the corresponding pure states 𝜔1, … , 𝜔𝑛, satisfy ‖𝜔𝑗 −𝜔𝑘‖ = 2 (𝑗, 𝑘 ∈
{1,… , 𝑛},   𝑗 ≠ 𝑘). From there is a maximal abelian 𝐶∗-subalgebra B ⊆ A  such that for 

each 𝑖 ∈ { 1, . . . . 𝑛}, 𝜔𝑖|B  is a pure state of B , and 𝜔𝑖 is the unique extension of 𝜔𝑖|B  to 

a state of A . Noting that 𝜔𝑖 also uniquely extends to a normal state of A
    −

, we see that 

𝑃𝑖 ∈ B
   −

 for each 𝑖 =  1,… , 𝑛. Therefore ∑ 𝑃𝑖
𝑛
𝑖=1 ∈ B

  −
, and from the definition of 휌̅ in 

(i), ∑ 휌̅(𝑃𝑖)
𝑛
𝑖=1 = 휌̅(∑ 𝑃𝑖

𝑛
𝑖=1 ) ≤ |휌| = 1. 

Now consider an arbitrary but fixed t in Â, the spectrum of A, and fix (휋,H𝝅) in 𝑡. Let 𝐶𝑡 
be the central cover of (휋,H𝝅) in A  , and let Φ denote a fixed isomorphism of A

    −𝐶𝑡, onto 

𝐵(H𝜋). With each unit vector 𝑒 in H𝜋, we shall associate the minimal projection 𝑃𝑒 in 
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A
    −𝐶𝑡, such that Φ(𝑃𝑒) is the one-dimensional projection onto the subspace spanned by 𝑒. 

This notation is implicit in the following lemma. 

Lemma (4.1.5)[4]. If dim(H𝜋) ≠ 2, then there is a positive normal linear functional 𝜎𝑡, on 

A
   −𝐶𝑡, such that 𝜎𝑡(𝑃)  = 휌̅(𝑃) for each minimal projection 

𝑃 ∈ A
    −𝐶𝑡. 

Proof: Let 𝜓 be the nonnegative function on the unit sphere of H𝝅, given by 𝜓(𝑒) =
휌̅(𝑃𝑒) (𝑒 ∈ H𝝅, ‖𝑒‖ = 1). If S  is a finite-dimensional subspace 

of H𝝅 and{𝑒𝑖}𝑖=1
𝑛 , {𝑔𝑖}𝑖=1

𝑛 , are any two orthonormal bases of S,  then ∑ 𝑃𝑒𝑖
𝑛
𝑖=1 = ∑ 𝑃𝑔𝑖

𝑛
𝑖=1 , so 

that 

∑𝜓(𝑒𝑖) =∑휌̅(𝑃𝑒𝑖)

𝑖𝑖

= 휌̅ (∑𝑃𝑒𝑖
𝑖

) = 휌̅ (∑𝑃𝑔𝑖
𝑖

) =∑휌̅(𝑃𝑔𝑖)

𝑖

=∑𝜓(𝑔𝑖)

𝑖

, 

from Lemma (4.1.4) (ii). Therefore, the restriction of 𝜓 to a unit sphere of any finite-

dimensional subspace of H𝝅 is a frame function. There is a positive operator 𝑇 ∈ 𝐵(H𝜋) 
such that 𝜓(𝑒) = 〈𝑇𝑒, 𝑒〉 for each unit vector 𝑒 ∈ H𝜋, and 𝑇 is of the trace class, because 

sup
𝑚
(∑ 휌̅(𝑃ℎ𝑖)

𝑚
𝑖<1 ) ≤ 1 for any orthonormal basis {ℎ𝑖} of H𝜋 (Lemma (4.1.4) (ii)). 

Let 𝜎𝑡 be the positive normal linear functional on A
    −𝐶𝑡, given by 𝜎𝑡(𝐴) =

𝑇𝑟(Φ(𝐴)𝑇) (𝐴 ∈ A
    −𝐶𝑡, where 𝑇𝑟 denotes the usual trace on 𝐵(H𝜋). If 𝑃 is a minimal 

projection of A
    −𝐶𝑡, then 𝑃 =  𝑃𝑢 for some unit vector 𝑢 ∈ H𝜋, and 𝜎𝑡(𝑃𝑢) =

𝑇𝑟(Φ(𝑃𝑢)𝑇) = 〈𝑇𝑢, 𝑢〉 = 𝜓(𝑢) = 휌̅(𝑃𝑢). 

Proposition (4.1.6)[4]. Let A   be a separable 𝐶∗-algebra given in its universal 

representation on a Hilbert space H , and Λ be the set of all maximal abelian subalgebras of 

A . Suppose 휌 is a uniformly continuous quasi-state on A . Then: 

(i) The set ⋃ BB  ∈Λ
  −

 contains all finite orthogonal sums of minimal projections in A
    −

. 

(ii) The function 휌|⋃ BB  ∈Λ   extends to a function 휌 on ⋃ BB  ∈Λ
  −

, such that 

,휌̅(∑ 𝑃𝑖
𝑛
𝑖=1 ) = ∑ 휌̅(𝑃𝑖)

𝑛
𝑖=1  or any finite orthogonal family 𝑃1 , … , 𝑃𝑛 of minimal projections 

of A  . 

(iii) If A  does not admit irreducible representations of dimension 2, then there exists the 

atomic positive linear functional 휌𝑎𝑡 on A  such that 휌𝑎𝑡 ≤ 휌 and 휌𝑎𝑡(𝑃)  = 휌̅(𝑃) for each 

minimal projection 𝑃 ∈ A
    −

. 

The proof of the proposition will be broken into several steps. Note first that if B ∈ Λ, then 

the restriction 휌|B  of 휌 to B  extends to a positive linear functional on A , so that 휌|B =
𝜔𝑥|B  for some vector 𝑥 ∈ H . 

Proof. Lemma (4.1.4) establishes parts (i) and {ii) of the proposition. It remains to show 

part (iii). 

Let {𝑃(𝑖,𝑡)|(𝑖, 𝑡) ∈ 𝐈 × Â  } be any orthogonal family of minimal projections in A
    −

, such 

that ∑ 𝑃(𝑖,𝑡)𝑖∈𝕀 = 𝐶𝑡, for each 𝑡 ∈ Â. For any finite subset 𝐹 ⊆ 𝐈 × Â we 
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have∑ 휌̅(𝑃(𝑖,𝑡))(𝑖,𝑡)∈𝐅 ≤ 1, from Lemma (4.1.4)(ii). Consequently, the series 

∑ ∑ 휌̅(𝑃(𝑖,𝑡))𝑖∈𝐈𝑡∈Â , is ( unconditionally) convergent, and 

∑∑휌̅(𝑃(𝑖,𝑡))

𝑖∈𝐈𝑡∈Â

=∑𝜎𝑡(𝐶𝑡)

𝑡∈Â

                                            (1) 

from Lemma (4.1.5). For each 𝑡 ∈ Â   let 𝜓𝑡 be the positive normal linear functional on 

A
    −

, given by 𝜓𝑡(𝐴) = 𝜎𝑡(𝐴𝐶𝑡)(𝐴 ∈ A
    −). From (1) there are at most countably many t 

for which 𝜓𝑡 ≠ 0. Relabeling these as 𝑡1, 𝑡2, …, we see that the series ∑ 𝜓𝑡𝑖
∞
𝑖=1 , is absolutely 

convergent to a positive normal linear functional 휌𝑎𝑡. We have 

휌𝑎𝑡(𝐴) =∑𝜎𝑡𝑖(𝐴𝐶𝑡𝑖)

∞

𝑖=1

    (𝐴 ∈ A
    −),                                (2) 

so that ‖휌𝑎𝑡‖ = 휌𝑎𝑡(𝐶𝑎𝑡). Hence pat is an atomic positive linear functional on A. From (2) 

and Lemma (4.1.5), 휌𝑎𝑡(𝑃)  = 휌̅(𝑃) for each minimal projection 

𝑃 ∈ A
    −

. 

Given 𝐴 ∈ A
    +

, we shall show that 휌𝑎𝑡(𝐴) ≤ 휌(𝐴). For this it suffices to establish that 

휌𝑎𝑡(𝐸) ≤ 휌̅(𝐸) for each projection 𝐸 of the form 𝐸 = X(𝝀,𝝀′](𝐴), where X(𝝀,𝝀′] is the 

characteristic function of an interval (휆, 휆′] ⊆ ℝ. Furthermore, from inner regularity of the 

measure induced on ℝ by the restrictions of 휌𝑎𝑡 and 휌 to the abelian 𝐶∗-subalgebra generated 

by 𝐴, it suffices to consider 𝐸 =  XK  (𝐴), where K  is a compact subset of ℝ. By outer 

regularity, for any 휀 > 0 we can choose an open subset O containing K  such that 

휌̅(XO(𝐴)) − 휀 < 휌̅(𝐸), and continuous nonnegative functions 𝑓  and 𝑔  that are identically 

1 on K, vanish outside O, and satisfy 𝑓  𝑔  =  𝑔 . We then have 

휌(𝑓 (𝐴)) − 휀 < 휌̅(𝐸) ≤ 휌(𝑓 (𝐴)).                                         (3) 

On the other hand, ∑ 𝐸𝐶𝑡𝑖
∞
𝑖=1 = ∑ 𝑃𝑎𝑎∈𝐴 , for some orthogonal family {𝑃𝑎}𝑎∈𝐴 of minimal 

projections of A
    −

, so that from (2) 

휌𝑎𝑡(𝐸) =∑𝜎𝑡𝑖(𝐸𝐶𝑡𝑖)

∞

𝑖−1

=∑휌̅(𝑃𝑎)

𝑎∈𝐴

.                                       (4) 

From (3) and (4) it now follows that the inequality 휌𝑎𝑡(𝐸) ≤ 휌̅(𝐸) will be established, once 

we show that 

∑휌̅(𝑃𝑗)

𝑛

𝑗=1

≤ 휌(𝑓 (𝐴))                                                     (5) 

for any finite subfamily {𝑃𝑗}𝑗=1
𝑛

 of {𝑃𝑎}𝑎∈𝐴. Let 𝜔1, … , 𝜔𝑛 be the pure states of A  with 

support projections 𝑃1, … , 𝑃𝑛, respectively. Since ∑ 𝑃𝑗
𝑛
𝑗=1 ≤ 𝑔 (𝐴), the restriction of each 

𝜔𝑗(𝑗 = 1,… , 𝑛) to the hereditary 𝐶∗-subalgebra I = 𝑔 (𝐴)A 𝑔 (𝐴) is a pure state of I. 

There is a maximal abelian 𝐶∗-subalgebra B0 of T such that 𝜔𝑗|B0 is multiplicative and 
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𝜔𝑗|T is the unique extension of 𝜔𝑗|B0 each 𝑗. Noting that 𝑓 (𝐴) is a unit for T, it follows 

that 𝑃1, … , 𝑃𝑛 and 𝑓 (𝐴) belong to the weak closure of some abelian 𝐶∗-subalgebra B ⊇
B0. Thus (5) follows from the definition of 휌̅. The proof is complete. 

Following Proposition (4.1.6) we see that 휌𝑑 = 휌 − 휌𝑎𝑡 is a positive quasilinear functional 

on A  that satisfies 휌̅𝑑(𝑃)  =  0 for each minimal projection 𝑃 ∈ A
    −

 Thus, it is natural to 

call 휌𝑎𝑡 and 휌𝑑 the afomic and diffuse parts of 휌. 

Christensen established an affirmative solution to the general quasi-state problem for 𝐶∗-
algebras with Hausdorff spectrum that are representable by locally trivial continuous fields 

of elementary 𝐶∗-algebras nonisomorphic to 𝑀2(𝐶). This result is used in the following 

proposition, where we consider weakly subadditive quasi-states on unital extensions of such 

algebras by finite-dimensional 𝐶∗-algebras. 

Proposition (4.1.7)[4]. Let A  be a separable unital 𝐶∗-algebra containing a 𝐶∗-algebra B  

with Hausdorff spectrum as a closed ideal, such that B is representable by a locally trivial 

continuous field of elementary 𝐶∗-algebras,   A /B is finite dimensional, and A does not 

admit two-dimensional irreducible representations. Then weakly subadditive quasi-states on 

A  are linear. 

Proof. It suffices to consider the case of pure weakly subadditive quasistate 휌 on A  in its 

universal representation. From Proposition (4.1.2)(i), 휌 is uniformly continuous on A . 

Following the notation of Proposition (4.1.6), 휌𝑎𝑡 ≠ 0 if 휌̅(𝑃) ≠ 0 for some minimal 

projection 𝑃 ∈ A
    −

. Hence 휌 = (1 ‖휌𝑎𝑡‖⁄ ) ⋅ 휌𝑎𝑡 from Proposition (4.1.3)(ii), and 휌 is 

linear in this case.  

Otherwise, let 𝐶B denote the open central support of B  in A
    −

. Since A (𝐼 − 𝐶B) is 

isomorphic to the finite-dimensional 𝐶∗-algebra A /B , we have 𝐼 − 𝐶B = ∑ 𝑃𝑖
𝑚
𝑖=1  for 

some finite orthogonal family of minimal projections 𝑃1, … , 𝑃𝑚 in A . From Lemma 

(4.1.4)(ii), 𝑃1, … , 𝑃𝑚 belong to the weak closure of some maximal abelian 𝐶∗-subalgebra C. 

By spectral theory there is an increasing sequence {𝐴𝑛} in C, such that 𝐴𝑛 →𝑛 𝐼 − ∑ 𝑃𝑖
𝑚
𝑖=1 =

𝐶B in the strong-operator topology. Since 휌̅(𝑃𝑖) = ⋯ = 휌̅(𝑃𝑚) = 0, we have 휌(𝐴𝑛) →𝑛 1. 

In particular, ‖휌|B ‖ = 1. 휌|B  is a state of B. Let {𝐻𝑎}𝑎∈𝐴 ⊆ B1
  +

 be an increasing 

approximate unit of B, which is quasi-central for A, and let 𝜔 be the state of A  that extends 

휌|B  via 𝜔(𝐴) = lim
𝑎
휌(𝐻𝑎𝐴𝐻𝑎) (𝐴 ∈ A  ). If 𝐴 ∈ A

   +
, we have 휌 (𝐴

1

2𝐻2
𝑎𝐴

1

2) ≤ 휌(𝐴) for 

each 𝑎 ∈ 𝐴 (Proposition (4.1.2) (i)). Therefore 

𝜔(𝐴) = lim
𝑎
휌(𝐻𝑎𝐴𝐻𝑎) = lim

𝑎
휌 (𝐴

1
2𝐻𝑎

2𝐴
1
2) ≤ 휌(𝐴), 

from uniform continuity of 휌. Consequently, 𝜔 ≤ 휌, and from Proposition 

(4.1.3)(ii), 휌 = 𝜔 is linear. This completes the proof. 

Corollary (4.1.8)[4]. Let A  be a unital 𝐶∗-algebra containing projections 𝑃 and 𝑄, 𝐶∗(𝑃, 𝑄) 
be the 𝐶∗-subalgebra generated by 𝑃, 𝑄, and 𝐼, and 휌 be 𝑎 weakly subadditive quasi-state 

on A. If the relative commutant of 𝐶∗(𝑃, 𝑄) in A contains a unital copy of 𝑀𝑛(𝑪) for some 

n 2 3, then 휌 is linear on 𝐶∗(𝑃, 𝑄). 
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Proof. It is well known that 𝐶∗(𝑃, 𝑄) has at most two-dimensional irreducible 

representations. The two-dimensional representations are characterized up to unitary 

equivalence by 𝑆𝑝(𝑃𝑄𝑃){0,1}, so that to each 휆 ∈ 𝑆𝑝(𝑃𝑄𝑃){0,1} corresponds the 

representation 휋𝜆 given by 

휋𝜆(𝑃) = [
1 0
0 0

]      and     휋𝜆(𝑄) = [
휆 (휆 − 휆2)1 2⁄

(휆 − 휆2)1 2⁄ 1 − 휆
] 

Let L  denote the intersection of kernels of one-dimensional representations. 

Then L ≅ 𝑀2(C 0(𝑆𝑝(𝑃𝑄𝑃)\{0,1})) and 𝐶∗(𝑃, 𝑄)/L  ≅ ∑ ⊕ 𝑪𝑖  for some integer 𝑙 such 

that 0 ≤ 𝑙 ≤ 3, depending on the relative position of 𝑃 and 𝑄. 

Consequently, if A0 denotes the separable 𝐶∗-subalgebra generated by 𝐶∗(𝑃, 𝑄) and some 

commuting unital copy of 𝑀𝑛(𝐶) (𝑛 ≥  3), then A𝟎 ≅ 𝑀𝑛(𝐶
∗(𝑃, 𝑄)), and A0 contains a 

closed ideal B0 ≅ 𝑀𝑛(L  ) ≅ 𝑀2𝑛(C0(𝑆𝑝(𝑃𝑄𝑃)\{0,1})), such that A0/B0 ≅ ∑ ⊕𝑡
𝑀𝑛(𝐶). 

From Proposition (4.1.7), 휌 is linear on A0 and, in particular, on 𝐶∗(𝑃, 𝑄). 

Section (4.2): 𝑪∗-Algebras Containing a Dense Set of Elements with Finite Spectrum 

The following theorem is the crucial tool in our investigation of quasi-states on 𝐶∗-
algebras containing a dense set of elements with finite spectrum. It is a slight generalization 

established by Christensen for quasi-states on properly infinite von Neumann algebras. 

Theorem (4.2.1)[4]. Let A  be a unital 𝐶∗-algebra, and 휌 be a quasi-state on A  which is 

linear when restricted to each 𝐶∗-subalgebra generated by two projections. Suppose that 

there exists a sequence of projections {𝑃𝑛} in A  such that 

(i) 휌(𝐼 − 𝑃𝑛) →𝑛 0, and 

(ii) for each n there are partial isometries 𝑈𝑛, 𝑉𝑛, and 𝑊𝑛 in A  such that 𝑈𝑛
∗𝑈𝑛  =  𝑉𝑛

∗𝑉𝑛 =
 𝑊𝑛

∗ 𝑊𝑛  =  𝑃𝑛, and 𝑃𝑛, 𝑈𝑛 𝑈𝑛
∗ , 𝑉𝑛𝑉𝑛

∗,𝑊𝑛 𝑊𝑛
∗ are mutually orthogonal. 

Then there is a state on A  that coincides with 휌 on the set of projections of A. In particular, 

if A contains a dense set of elements with finite spectrum and 휌 is continuous, then 휌 is 

linear. 

Proof. The key point in the proof is to show that 휌 is “almost linear” on the algebras 𝑃𝑛A 
𝑃𝑛 for all sufficiently large 𝑛. For this, the conditions (6) and (7) are used to construct, for 

each 𝑛 and any two positive elements 𝐴 and 𝐵 satisfying 𝐴, 𝐵 <
1

2
𝑃𝑛, mutually orthogonal 

projections 𝑄 and 𝑅 in A  such that 

𝑃𝑛𝑄𝑃𝑛 = 𝐴, 𝑃𝑛𝑅𝑃𝑛 = 𝐵 

and 

휌(𝑄) ≈ 휌(𝑃𝑛𝑄𝑃𝑛), 휌(𝑅) ≈ 휌(𝑃𝑛𝑅𝑃𝑛), 휌(𝑄 + 𝑅) ≈ 휌(𝑃𝑛(𝑄 + 𝑅)𝑃𝑛) 

when n is sufficiently large. Once this is achieved, 
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휌(𝐴 + 𝐵) ≈ 휌(𝑄 + 𝑅) = 휌(𝑄) + 휌(𝑅) ≈ 휌(𝐴) + 휌(𝐵). 

From this it will follow that the sequence of functions {𝜑𝑛}, given by 𝜑𝑛(𝐶) =
휌(𝑃𝑛𝐶𝑃𝑛) (𝐶 ∈ A  ), is pointwise convergent on the linear span of projections to the positive 

linear functional that coincides with 휌 on each projection. 

For a fixed n consider any two positive elements 𝐴, 𝐵 ∈ 𝑃𝑛A  𝑃𝑛, such that 

𝐴, 𝐵 ≤
1

2
𝑃𝑛. From (ii) the elements 

𝑋𝑛 = 𝐴
1
2 + 𝑈𝑛𝐴

1
2 + 𝑉𝑛(𝑃𝑛 −  2𝐴)

1
2 

and 

𝑌𝑛 = 𝐵
1
2 − 𝑈𝑛𝐵

1
2 + 𝑊𝑛(𝑃𝑛  −  2𝐵)

1
2 

are partial isometries that satisfy 

𝑋𝑛
∗𝑋𝑛 = 𝑌𝑛

∗𝑌𝑛 = 𝑃𝑛      and          𝑋𝑛
∗𝑌𝑛 = 0. 

Thus, the projections 𝑄 =  𝑋𝑛𝑋𝑛
∗  and 𝑅 =  𝑌𝑛𝑌𝑛

∗ are mutually orthogonal, so that 휌(𝑄 +
 𝑅)  = 휌(𝑄) + 휌(𝑅). In addition, 𝑃𝑛𝑄𝑃𝑛  =  𝐴 and 𝑃𝑛𝑅𝑃𝑛  =  𝐵. 

Since 휌 is linear on the 𝐶∗-subalgebra 𝐶∗(𝑄, 𝑃𝑛), generated by 𝑄, 𝑃𝑛 and 𝐼, we have 

|휌(𝐴) − 휌(𝑄)| = |휌(𝑃𝑛𝑄𝑃𝑛) − 휌(𝑄)| ≤ |휌((𝑃𝑛 − 𝐼)𝑄𝑃𝑛)| + |휌(𝑄(𝑃𝑛 − 𝐼))| ≤ 2/𝑛, from 

the Cauchy-Schwarz inequality (where it is assumed that 휌(𝐼 − 𝑃𝑛) ≤ 1/𝑛
2). Similarly, 

|휌(𝐵) − 휌(𝑅)| ≤
2

𝑛
       and        |휌(𝐴 + 𝐵) − 휌(𝑄 + 𝑅)| ≤

2

𝑛
. 

Therefore 

|휌(𝐴 + 𝐵) − 휌(𝐴) − 휌(𝐵)| ≤
6

𝑛
    (0 ≤ 𝐴, 𝐵 ≤

1

2
𝑃𝑛).                    (6) 

If 𝐶 and 𝐷 are arbitrary self-adjoint elements of A, and 𝑎 = max{‖𝐶‖, ‖𝐷‖}, 𝑏 =
max{‖𝑃𝑛𝐶𝑃𝑛 + 𝑎𝑃𝑛‖, ‖𝑃𝑛𝐷𝑃𝑛 + 𝑎𝑃𝑛‖, then 

0 ≤ (
1

2𝑏
) (𝑃𝑛𝐶𝑃𝑛 + 𝑎𝑃𝑛), (

1

2𝑏
) (𝑃𝑛𝐷𝑃𝑛 + 𝑎𝑃𝑛) ≤

1

2
𝑃𝑛; so that from (6), 

|휌(𝑃𝑛(𝐶 + 𝐷)𝑃𝑛) − 휌(𝑃𝑛𝐶𝑃𝑛) − 휌(𝑃𝑛𝐷𝑃𝑛)|
12𝑏

𝑛
≤
24𝑎

𝑛
  

This, in its turn, implies that 

|휌(𝑃𝑛(𝐴 + 𝐵)𝑃𝑛) − 휌(𝑃𝑛𝐴𝑃𝑛) − 휌(𝑃𝑛𝐵𝑃𝑛)|
       𝑛    
→    0   for    𝐴, 𝐵 ∈ A.   (7) 

Let {𝜑𝑛} be the sequence of functions of A, given by 𝜑𝑛(𝐴)  = 휌(𝑃𝑛𝐴𝑃𝑛) (𝐴 ∈ A   ) . For 

each projection 𝐸 ∈ A  we have |𝜑𝑛(𝐸) − 휌(𝐸)| = |휌(𝑃𝑛𝐸𝑃𝑛) − 휌(𝐸)| ≤ 2/𝑛, as before. 

Thus, lim
𝑛
𝜑𝑛 (𝐸) = 휌(𝐸), and we see from (7) that the sequence {𝜑𝑛}𝑛=1

∞  , converges on 

the linear span S  of projections of A to the linear functional 𝜑. If 𝐴 ∈ S
    +

, then 𝜑(𝐴) =
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lim
𝑛→∞

휌 (𝑃𝑛𝐴𝑃𝑛) ≥ 0. Consequently, 𝜑 is a state on S, and 𝜑 extends to a state of A, which 

satisfies the first assertion of the theorem. 

Note that if F  denotes the subset of S  consisting of the elements with finite spectrum, then 

𝜑|F = 휌|F. Consequently, if F is norm-dense in A  and 휌 is continuous, then 휌 is the unique 

continuous extension of 𝜑|F. 

Therefore 휌 is the unique extension of 𝜑 to a positive linear functional on A. 

Corollary (4.2.2)[4]. Let A  be a unital 𝐶∗-algebra containing a dense set of elements with 

finite spectrum, and M  a properly infinite von Neumann algebra. if 휌 is a weakly subadditive 

quasi-state on A ⨂ M𝑚𝑖𝑛 , then 휌 is linear on A. 

Proof. Let B denote a subalgebra of M, which is the relative commutant of some unital type 

𝐼3 subfactor of M. Since B  is a properly infinite von Neumann algebra, we can choose an 

increasing sequence of projections {𝑃𝑛} in B, such that 휌(𝑃𝑛) ≥ 1 − 2
−𝑛 and 𝐼 − 𝑃𝑛 

contains three mutually orthogonal subprojections each equivalent to 𝑃𝑛. From Corollary 

(4.1.8). 휌 is linear when restricted to each 𝐶∗-subalgebra of A⨂ B𝑚𝑖𝑛 (⊂ A ⨂ M𝑚𝑖𝑛   )  
generated by two projections. Furthermore, 휌 is continuous on A ⨂ Mmin   (Proposition 

(4.1.2) (i)). Thus, Theorem (4.2.1) applies, and 휌 is linear A ⨂ Bmin  . In particular, 휌 is 

linear on A. 

Corollary (4.2.3)[4]. If 휌 is a quasi-state on the Calkin algebra C = B(H   )/K (H   ), then 

휌 is linear. 

Proof. Since each self-adjoint element of C belongs to some abelian 𝐶∗-subalgebra 

generated by projections, any bounded linear functional on C  that agrees with 휌 on the set 

of projections must coincide with 휌. Hence it suffices to show that 휌 satisfies the conditions 

of Theorem (4.2.1). It is easy to see that 휌 satisfies conditions (6) and (7). We shall show 

that 휌 is linear on each 𝐶∗-subalgebra generated by two projections of C. 

Consider projections 𝐸 and 𝐹 in C. There are projections 𝐸1 and 𝐹1 in B(H   ) such that 

𝜙(𝐸1) =  𝐸 and 𝜙(𝐹1) =  𝐹, where 𝜙 denotes the quotient map. Indeed, if 𝐸 = 𝜙(𝐴) for 

some 𝐴 ∈ B (H  )+, it suffices to choose 𝐸1 equal to the spectral projection of A 

corresponding to the interval (
1

2
, ∞). 

The 𝑊∗-subalgebra of B(H   ), generated by 𝐸1 and 𝐹1 is the direct sum of a type 𝐼2 𝑊∗-

algebra B and an abelian 𝑊∗-algebra D . Thus, with 𝐶∗(𝐸, 𝐹)-the 𝐶∗-algebra generated by 

𝐸 and 𝐹-we have 

𝐶∗(𝐸, 𝐹) ⊆ 𝜙(B )⨁𝜙(D ) 

If 𝜙(B ) = 0, then 𝐶∗(𝐸, 𝐹) is abelian, and 휌 is linear on 𝐶∗(𝐸, 𝐹). Since B is generated 

by the projections 𝐸2 = 𝐸1 − 𝐸1 ∧ 𝐹1 − 𝐸1 ∧ (𝐸1 ∨ 𝐹1  − 𝐹1) 

and 𝐹2 = 𝐹1  −  𝐸1 ∧ 𝐹1 − (𝐸1 ∨ 𝐹1  −  𝐸1) ∧ 𝐹1, we may assume that 𝐸2 and 𝐹2 are infinite 

projections of B(H   ). 

The algebra B  may be identified with 𝑀2(C(𝑋)), where 𝑋 is a compact hyperstonean 

space-the spectrum of the abelian 𝑊∗-algebra generated by 𝐸2 𝐹2𝐸2. Let B0, be the norm-
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dense *-subalgebra of B consisting of 2 × 2 matrices over continuous functions that take 

finitely many values on 𝑋. 

Then 𝜙(B0) is norm-dense in 𝜙(B ). If 𝐴0 and 𝐵0 are two elements in 𝜙(B 0), they 

generate a common finite partition of the identity of 𝜙(B ) into nonzero projections 

𝐻1, … , 𝐻𝑘 in the center of 𝜙(B ), and we can find projections 𝐺1, … , 𝐺𝑘 in the center of B 

such that 𝜙(𝐺1) = 𝐻1, … , 𝜙(𝐺𝑘) = 𝐻𝑘. 

Since 𝐺1, … , 𝐺𝑘 are infinite projections of B(H  ), each can be halved into two equivalent 

subprojections; and we see that 𝐴0 and 𝐵0 are contained in the direct sum of 𝑘 copies of 

𝑀4(𝐶) inside C. By Gleason’s theorem, 휌(𝐴0 + 𝐵0) = 휌(𝐴0) + 휌(𝐵0). Therefore 

휌|𝜙(B0) is a positive linear functional on 𝜙(B0), and 휌|𝜙(B0) extends by continuity to 

a positive linear functional 𝜑 on 𝜙(B ).  휌 is continuous on the set of projections in 𝜙(B ). 
But the set of projections in 𝜙(B0) is norm-dense in the set of projections in 𝜙(B ). Thus 

휌 agrees with 𝜑 on the set of projections in 𝜙(B ), so that 𝜑 = 휌|𝜙(B ). Consequently, 휌 

is linear on 𝜙(B)⨁𝜙(D ), and, in particular, on 𝐶∗(𝐸, 𝐹). This completes the proof. 

Proposition (4.2.4)[4]. Let A   be a unital 𝐶∗-algebra containing a dense set of elements 

with finite spectrum. If 휌 is a weakly subadditive and continuous quasi-state on A ⨂K, then 

휌 is linear. 

Proof. A ⨂K contains a dense *-subalgebra that may be identified with the increasing union 

⋃ 𝑀𝑚(A  )𝑚∈𝑁 , where 𝑀𝑚(A  ) is viewed as embedded in 𝑀𝑚+1(A  ) via the map 𝑖𝑚 given 

by 𝑖𝑚(𝐴) = [
𝐴 0
0 0

]. We shall adopt the proof of Theorem (4.2.1) to show that 휌 is linear 

on ⋃ 𝑀𝑚(A  )𝑚∈𝑁 . 

Since A  is unital and 휌 is continuous, 휌|𝑪𝐼⨂K ≠ 0 (in fact, 휌|𝑪𝐼⨂K   is a state). Therefore 

we can choose an increasing sequence of projections {𝑃𝑛} in ⋃ 𝑀𝑚(𝑪)𝑚∈ℕ  (⊆
⋃ 𝑀𝑚(A𝑚∈𝑁   )) such that 휌(𝑃𝑛) ≥ ‖휌|𝐶𝐼⨂K  ‖ − 1/𝑛2. In particular, 휌(𝐺 − 𝑃𝑛) ≤ 1/𝑛

2if 

𝐺 is a projection in ⋃ 𝑀𝑚(𝑪)𝑚∈𝑁  and 𝐺 ≥ 𝑃𝑛. It is easy to see also that for a given n there 

is a sufficiently large integer 휌, and partial isometries 𝑈𝑛, 𝑉𝑛,𝑊𝑛 in 𝑀𝜌(𝑪), such that 𝑈𝑛
∗𝑈𝑛 =

𝑉𝑛
∗𝑉𝑛 = 𝑊𝑛

∗𝑊𝑛  = 𝑃𝑛 and 𝑃𝑛, 𝑈𝑛𝑈𝑛
∗  𝑉𝑛𝑉𝑛

∗𝑊𝑛𝑊𝑛
∗ are mutually orthogonal. 

For each 𝑚 ∈ ℕ let 𝐼𝑚, denote the identify projection of 𝑀𝑚(A  ). If 𝑃 and 𝑄 are two 

projections in ⋃ 𝑀𝑚(A  )𝑚∈ℕ , then 𝑃,𝑄 ∈ 𝑀𝑚(A  ) for some 𝑘. 

Let {𝐸𝑖𝑗|𝑖, 𝑗 ∈ {1,2,3}} be the system of matrix units coming from the equivalence of 

projections 𝐼𝜅𝐼2𝜅 − 𝐼𝑘 , and 𝐼3𝜅−2𝜅 in 𝑀3𝜅(𝑪). The 𝐶∗-algebra 𝐶∗(𝑃, 𝑄) generated by 𝑃, 𝑄, 

and 𝐼𝜅 is a hereditary subalgebra of the 𝐶∗-algebra B generated by 𝐶∗(𝑃, 𝑄) and 

{𝐸𝑖𝑗|𝑖, 𝑗 ∈ {1,2,3}}. From the proof of Corollary (4.1.8) it follows that B contains an 

essential ideal L𝟎 ≅ 𝑀6(C0(𝑆𝑝(𝑃𝑄𝑃)\{0,1})) such that B /L0 ≅ ∑ ⨁𝑀3(𝑪)𝑙   for some 

integer l. 

From Proposition (4.1.7), 휌 is linear on B and, in particular, on 𝐶∗(𝑃, 𝑄). 

The proof of Theorem (4.2.1) now applies almost verbatim (indeed, the only change is to 

replace the estimate 휌(𝐼 − 𝑃𝑛) ≤ 1/𝑛
2 by 휌(𝐺 − 𝑃𝑛) ≤ 1/𝑛

2, if 𝐺 ∈ ⋃ 𝑀𝑚(𝑪)𝑚∈ℕ  and 
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𝐺 ≥ 𝑃𝑛) and shows that 휌 is linear on the normdense ∗-subalgebra ⋃ 𝑀𝑚(A  )𝑚∈ℕ . Since 휌 

is continuous, it is linear on A  ⨂K. 

Guided by the example of pure states, it is natural to ask whether the conditions (6) and (7) 

of Theorem (4.2.1) (or somewhat similar properties reflecting the size of a nullspace) hold 

for pure quasi-states. We were not able to answer this question even for continuous pure 

quasi-states on 𝐶∗-algebras containing a dense set of elements with finite spectrum. 

However, some additional evidence for a certain class of 𝐶∗-algebras with finite trace may 

be deduced by “approximate centralizer” techniques developed for finite von Neumann 

algebras. In the following proposition we shall say that a 𝐶∗-algebra A, containing a dense 

set of elements with finite spectrum, is strictly finite if there is a tracial state 𝜏 on A, such 

that for each pair of projections 𝑃 and 𝑄 in A, the condition 𝜏(𝑃) ≤ 𝜏(𝑄) implies 𝑃 ≲
𝑄 (" ≲ " means “Murray-von Neumann subequivalent”). 

Since the positive part of the unit ball of each hereditary 𝐶∗-subalgebra of A is a norm-

closed convex span of projections, it follows that A is simple. In particular, any tracial state 

of A  is faithful. 

Obvious examples of strictly finite 𝐶∗-algebras are finite von Neumann algebra factors and 

UHF-algebras. 

Proposition (4.2.5)[4]. If A is a separable unital strictly finite 𝐶∗-algebra and 휌 is a 

continuous pure quasi-state on A, which is linear when restricted to each 𝐶∗-subalgebra 

generated by two projections, then 휌 is linear. 

Proof. Let 𝜏 denote a tracial state of A  and P  denote the set of projections of A. We may 

assume that there is at least one projection 𝐺 in P, such that 𝜏(𝐺) = 𝛼 ≤
1

4
 (otherwise A is 

isomorphic to 𝑀𝑛(𝐶) for some 𝑛 ≤ 3. 

If 𝑀(𝛼) = sup{휌(𝐹)|𝐹 ∈ P, 𝜏(𝐹)  = 𝛼}, choose a sequence of projections {𝑃𝑛} such that 

𝜏(𝑃𝑛)  = 𝛼 for each 𝑛, and 휌(𝑃𝑛)  >  𝑀(𝛼)  −  1/2𝑛
2(𝑛 = 1,2, . . . ). 

Which apply with only slight changes in the proof to the present case, for each projection 

𝐸 ∈ P  we have 

|휌(𝐸) − 휌(𝑃𝑛𝑄𝑃𝑛) − 휌((𝐼 − 𝑃𝑛)𝐸(𝐼 − 𝑃𝑛))|
1

𝑛
,                      (8) 

휌(𝑃𝑛𝐸𝑃𝑛) ≥ 휆𝑛𝜏(𝑃𝑛𝐸𝑃𝑛) −
1

2𝑛2
,                                  (9) 

휌((𝐼 − 𝑃𝑛)𝐸(𝐼 − 𝑃𝑛)) ≤ 휆𝑛𝜏((𝐼 − 𝑃𝑛)𝐸(𝐼 − 𝑃𝑛)) +
1

𝑛2
              (10) 

for some sequence of nonnegative real numbers {휆𝑛}𝑛=1
∞ . From (8) and (9) 

휌(𝐸) ≥ 휆𝑛𝜏(𝑃𝑛𝐸𝑃𝑛) −
1

2𝑛2
−
1

𝑛
    (𝐸 ∈ P, 𝑛 =  1, 2, . . . ).              (11) 
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We claim that 휌(𝑙 − 𝐸𝜅) →𝜅 0 for some sequence of projections {𝐸𝜅} such that 𝜏(𝐸𝜅) = 𝛼 

for each 휅. Indeed, if inf{휆𝑛|𝑛 ∈ ℕ}, then from (10), applied for 𝐸 = 𝐼, 휌(𝐼 − 𝑃𝑛) ≤

휆𝑛𝜏(𝐼 − 𝑃𝑛) +
1

2𝑛2
≤ 휆𝑛

1

2𝑛2
 , so that a suitable subsequence of {𝑃𝑛}𝑛=1

∞  can be taken for 

{𝐸𝜅}𝜅=1
∞ . 

On the other hand, if 휆𝑛 ≥ 휆 > 0 for all 𝑛, consider the sequence of positive linear 

functionals {𝜑𝑛} on A  given by 𝜑𝑛(𝐴) = 휆𝑛𝜏(𝑃𝑛𝐴𝑃𝑛) (𝐴 ∈ A  ). From (9), ‖𝜑𝑛‖ ≤
3

2
 for 

each 𝑛. By weak compactness, the sequence {𝜑𝑛} has a limit point 𝜑, and 𝜑 ≠ 0, because 

𝜑𝑛(𝐼) = 휆𝑛𝜏(𝑃𝑛) ≥ 휆𝛼 for each 𝑛. Furthermore, from (11), 휌(𝐸) ≥ 𝜑(𝐸) for each 𝐸 ∈  P. 

Since 휌 is continuous, and the elements with finite spectrum are dense in A, this implies 

휌(𝐸) ≥ 𝜑(𝐸) for each A  in A
    +

. Therefore 휌 = (1/‖𝜑‖) ⋅ 𝜑 (Proposition (4.1.3) (i)), so 

that 휌 is a pure state. But then the maximal hereditary 𝐶∗-subalgebra L𝝆 ∩L𝝆
    ∗

 has an 

increasing approximate identity consisting of projections. Consequently, since A  is strictly 

finite, L𝝆 ∩L𝝆
    ∗

 must contain projection 𝑃 such that 𝜏(𝑃) = 1 − 𝛼, and we may set 𝐸𝜅 =

 𝐼 −  𝑃 for each K. Thus, the claim follows, and 휌 is linear by Theorem (4.2.1). 

Proposition (4.2.6)[4]. Let 휌 be an approximately additive quasi-state on a 𝐶∗-algebra A, 

in addition, 휌 is either monotone on A
    +

, monotone on A𝑠,𝑎 or weakly subadditive, then 휌 

extends to a quasi-state with the same properties on the multiplier algebra M(A  ). 

Proof. Suppose first that 휌 is approximately additive and monotone on A
    +

. Let {𝐻𝑎}𝑎∈𝐴 ⊆
A1
    +

 be an increasing approximate identity for A, which is quasi-central for M(A  ). We 

note that the net {𝐻𝑎

1

2}
𝑎∈𝐴

 is also quasi-central for M(A  ). For this consider the 𝐶∗-algebra 

R = 𝑙∞(M(A  ), 𝐴)/I, where 𝑙∞(M(A  ), 𝐴) denotes the 𝐶∗-algebra of all bounded nets 

{𝑀𝑎}𝑎∈𝐴 along 𝐴 in M(A  ) under the pointwise operations and the norm ‖{𝑀𝑎‖  =
 sup𝑎 ‖𝑀𝑎‖, and I   is the closed ideal in 𝐼∞(M  (A  ), 𝐴), consisting of all the nets 

converging to 0. If [{𝑀𝑎}] denotes the image of {𝑀𝑎}𝑎∈𝐴 in R under the quotient map, and 

M̃(A  ) denotes the image of M(A  ) in R under the canonical embedding of M(A  ) into R, 

then [{𝐻𝑎}] belongs to the relative commutant of M̃(A  ) in R  Hence [{𝐻𝑎
12}](=

[{𝐻𝑎}]
1/2)a 1s o commutes with  M̃  (A   ). This means that ‖𝐻𝑎

1/2
𝑀 −𝑀ℎ𝑎

1/2
‖ → 0 for 

each 𝑀 ∈ M   (A   )  

Given 𝐴 ∈ M   (A  ), the net {휌(𝐴1/2𝐻𝑎𝐴
1/2)}

𝑎∈𝐴
 is increasing, since 휌 is monotone on 

A   + , and bounded above by ‖𝐴‖. Therefore lim
𝑎
  휌(𝐴1/2𝐻𝑎𝐴

1/2) exists. Since 

‖[(𝐴1/2𝐻𝑎𝐴
1/2 − 𝐻𝑎

1/2
𝐴𝐻𝑎

1/2
‖ → 0, we have |휌(𝐴1/2𝐻𝑎𝐴

1/2) − 휌(𝐻𝑎
1/2
𝐴𝐻𝑎

1/2
)| →𝑎  0, 

(Proposition (4.1.2)(ii)). 

Consequently, lim
𝑎
 휌(𝐻𝑎

1/2
𝐴𝐻𝑎

1/2
) exists, lim

𝑎
  휌(𝐻𝑎

1

2𝐴𝐻𝑎

1

2)  = lim
𝑎
 휌(𝐴 

1/2𝐻𝑎𝐴
1/2 ), and 

we may define 𝜎(𝐴) = lim
𝑎
 휌(𝐻𝑎

1/2
𝐴𝐻𝑎

1/2
) for each 𝐴 ∈ M   (A   )+. If 𝐴 and 𝐵 are 

commuting elements in M   (A   )+ then ‖[ 𝐻𝑎
1/2
𝐴𝐻𝑎

1/2
 𝐻𝑎
1/2
 𝐵𝐻𝑎

1/2
]‖ →  0, so that from 

approximate additivity of 휌, 
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 𝜎(𝐴 +  𝐵) = lim
𝑎
  휌(𝐻𝑎

1/2(𝐴 + 𝐵) 𝐻𝑎
1/2
)  = lim

𝑎
  휌(𝐻𝑎

1/2
𝐴𝐻𝑎

1/2
) + lim

𝑎
 휌(𝐻𝑎

1/2
𝐵𝐻𝑎

1/2
)

= 𝜎(𝐴) + 𝜎(𝐵). 

From this it follows that 𝜎 extends to a positive linear functional on each maximal abelian 

subalgebra of M  (A  ), and to a positive quasi-linear functional (again denoted by 𝜎) on M  
(A  ). It is clear that 𝜎 is a quasi-state. 

Furthermore, if 𝐶 ∈ A  +, then 𝜎(𝐶) = lim
𝑎
 휌(𝐶1/2𝐻𝑎 𝐶

1/2) = 휌(𝐶), from Proposition 

(4.1.2)(ii). 

If 휌 is either monotone on A  𝒔.𝒂. or weakly subadditive, then, in particular, 휌 is 

monotone on A  +. From the arguments above, 휌 extends to a quasi-state 𝜎 on M  (A  ). In 

either case, monotonicity, subadditivity, and approximate additivity of 𝜎 are easily deduced 

from the definition of 𝜎 and the corresponding properties of 휌. 
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