Sudan University of Science and Technology
College of Graduate Studies

MeasurementEffective Radiation Dose
In of Patient Myocardial Infarct Imaging using
Tc-99m – Pyrophosphate

قياس الجرعة المؤثرة للمريض في فحص احتشاء عضلة القلب باستخدام
بايروفروسفاتm99 تكتشيوم

A complementary research submitted for partial fulfillment of the requirements
of M.Sc. degree in Nuclear Medicine Technology

By :
NmariqAbdalqadirEltaib Mohamed

Supervisor :
Dr. Awad AbdallaAdlan

2017
DeDication:

To my parents, who give me support always and who encourage me to do this work …

To my brothers ….

To my husband and sons…
Acknowledgment

Firstly, I thank the Almighty God for unlimited help, health, strength and patience to complete this work.

Then, I'd like to express my deep and sincere gratitude to my supervisor Dr. Awad Abdalla Adlan, for his supervision and guidance that set me on the right track, and I am very thankful for his detailed and constructive comments and for his support and personal guidance for this work.

Special thanks to the staff of Alnilein Medical Diagnostic Center in Khartoum.

From the very beginning until the end of this work, I owe a tremendous debt of gratitude and respect to my dear father, and mother. None of this work could have been achieved without their kind support and endless encouragement. Thanks to father and mother.

To all of those who helped me along the time of this work, I'd like to express my sincere gratitude and my deep appreciation.
abstract

This study was conducted at Alnilain Diagnostic Medical Center in Khartoum, 50 patients was investigated for diagnosis of myocardial infraction using Tc-99m pyrophosphate agent. The administered activity was calculated based on patients weight which ranged between (70-140) Kg for the study sample. The effective dose for each patient was calculated using the equation:

Effective dose = sum of [organ doses x tissue weighting factor].

The effective dose (E) to an individual was found by calculating a weighted average of the equivalent dose (H) to different body tissues, with the weighting factors (W) designed to reflect the different radio sensitivities of the tissues:

\[E = \sum_i H_i W_i \]

The data was analyzed using statistical program of social studies (SPSS) and Microsoft excel program.

Patients weights varied between (70-140 Kg) and administered activities were found to be between (3.75-5.56 mCi) depending on the weights of patients and the average effective radiation doses in the case of the two cardiac imaging studies (stress and rest) were (0.98-4.47 mSv) and the average tissue weighting factors were (14.67-95.44). It was found that the effective radiation dose was directly proportional to the patient weight.
المستخصص

في هذه الدراسة تم حساب الجرعه الإشعاعية المؤثرة في حالة تصوير أمراض القلب عن طريق استخدام جهاز القاما كاميرا وتم عمليه التصوير على مريض שתי تصوير تحت تأثير الجهد وتصوير عند الراحه واجري المسح لعدد 50 مريضاً بواسطة حقن المريض بعنصر التكنيشيوم 99 م وجري ذلك عن طريق تخطيط القلب المستمر أثناء القيام بفحص الجهد او عند أعطاء بعض الأدوية القلبية البديلة للتميز بين سرعة ضربات القلب وتم خلالها حقن المريض بواحد العناصر المشعة ثم تؤخذ صورة لعَضلة القلب بتوجيه القاما كاميرا لالتقاط المواد المشعة التي سكنت بخلايا عضلة القلب (صورة جهد) بينما تؤخذ الصورة الثانيه بنفس الطريقه المتبعه لاخذ الصورة الأولي بعد ساعتين (صورة عند الراحه). وتم حساب الجرعه بواسطة معادلة الجرعه المؤثرة

\[E = \sum_i H_i W_i \]

ووجد أن أوزان المرضى تتواجد بين (70-140) كجم وكانت الجرعه في اختبار الراحه (3.75) أما في حاله الجهد (3.33) وذلك اعتقاداً على أوزان المرضى وكان المتوسط للجرعات في حاله الاختبارين معاً (4.47-0.98) ومتوسط الوزن يساوي (14.67-44.95).
Table of Contents

Dedication: .. 1
Acknowledgments .. II
Abstract ... III

muqaddimah ... IV

list of figures ... VII
list of tables ... VIII

Chapter one: Introduction

Introduction ... 1
1.1 Historical review of nuclear medicine: ... 1
1.2 Nuclear Heart Scan: ... 2
1.3 Radiation dose and risks in nuclear medicine: ... 3
1.4 Problem of study: ... 5
1.5 Objectives: ... 5
1.6 Importance of study: ... 5
1.7 Study outlines: .. 5

Chapter two

Theoretical background .. 7
2.1.1 The Gamma Camera: ... 7
2.1.2 Signal processing: ... 10
2.1.3 Heart scans procedures: .. 11
2.1.4 Single Photon Emission Computed Tomography: ... 11
2.1.5 Positron Emission Tomography: .. 12
2.1.6 Expectation before a Nuclear Heart Scan: ... 12
2.1.7 Expectation during a Nuclear Heart Scan: ... 13
2.1.8 Expectation during the Stress Test: ... 14
2.1.9 Expectation during a Nuclear Heart Scan: ... 14
2.1.10 Expectation after a Nuclear Heart Scan: ... 15
2.3 Radio nuclides in heart scan: .. 15
2.3.2 Purpose: ... 15
2.3.3 Precautions: ... 16
2.3.4 Description: ... 16
List of figures

<table>
<thead>
<tr>
<th>Item</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1 : gamma camera</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2 : diagrammatic cross section of a gamma camera detector</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3 : details of the cross section of gamma camera</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.4 : animated schematic of gamma camera physics and Main constituents</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4.1 : direct linear association between the patient weight and effective dose with a coefficient of 0.04 msv/kg</td>
<td>28</td>
</tr>
<tr>
<td>Figure 4.2 : direct linear association between BMI and effective dose with coefficient of 4.05msv</td>
<td>29</td>
</tr>
<tr>
<td>Figure 4.3 : direct linear association between patient height and effective dose with coefficient of 0.03 msv/cm</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.4 : direct linear association between patient age and effective dose with coefficient of 0.02 msv/cm</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.5 : direct linear association between patient activity and effective dose with coefficient of 0.034 msv/cm</td>
<td>32</td>
</tr>
</tbody>
</table>
list of tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Table 2.1 Recommended radiation weight factor (ICRP 60 :1990 recommendations)</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Table 2.2 Tissue weighting factors for individual tissue and organ (ICRP 60 :1990 recommendations)</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Table 4.1 Shows (mean±SD range) for patient effective dose and Body characteristics ;(weight, age, height, and effective dose) In heart examination</td>
<td>27</td>
</tr>
</tbody>
</table>