ä

قال تعالى: ((اللَّهُ نُورُ السَّمَوَاتِ وَالْأَرْضِ مَثَلُ نُورِهِ كَمِشْكَاةٍ فِيهَا مِصْبَاحُ الْمِصْبَاحُ فِي زُجَاجَةٍ الزُّجَاجَةُ كَأَنَّهَا كَوْكَبٌ دُرِّيٌّ يُوقَدُ مِنْ شَجَرَةٍ مُبَارَكَةٍ زَيْتُونَةٍ لَا شَرْقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِيءُ وَلَوْ لَمْ تَمْسَسْهُ نَارٌ نُورٌ عَلَى نُورٍ يَهْدِي اللَّهُ لِنُورِهِ مَنْ يَشَاءُ وَيَضْرِبُ اللَّهُ الْأَمْثَالَ لِلنَّاس وَاللَّهُ بِكُلِّ شَيْءٍ عَلِيمٌ))

صدق الله العظيم

سورة النور الآية (35)

DEDICATION

To My Mother,

My husband,

My brothers,

ACKNOWLEDGEMENT

First off all, I would like to thank Allah almighty for making this work possible. Secondly, I would like to express my gratitude to my supervisors Prof. Mubarak Dirar Abdallah, Dr. Sawsan Ahmed Elhouri Ahmeda, and Dr. Abdalsakhi Abdallah for his supervision, valuable advice, kind treatment and guidance during this work period and chemistry department, colleagues and all whom support me.

ABSTRACT

In this work the effect of changing the anode of polymer solar cell on their performance was experimentally investigated .The cells were fabricated from ITO which act as a cathode beside MEH PPV, Ecrchrom Black T and Rohadamin B dyer . The anodes which c are AL, GL ,AU with atomic number 13 , 47 and 79 were used . It was found that the efficiency of the solar cell of AL, GL ,AU electrode for Ecrchrom dye are 1.66, 1.59 , and 1.58 Respectively the efficiency for Rohadamin , Ecrchrom Black T dye are 1.49, 1.48 and 1.46 respectively these results shows clearly that the efficiency increases as the atomic number decreases this conforms with the fact that energy gap increase with the atomic number.

Solar cells made from dye sensitized solar cells made from: Ecrchrom Black T, DDTTC, Rohadamin B,and Coumarin 500,with Al and TTO electrodes were fabricated. The energy gab of these dyes were found using UV Spectrometer. The energy gap for: Ecrchrom Black T, DDTTC, Rohadamin B, and Coumarin 500; were found 2.16 eV, 2.20 eV, 3.27 eV and 3,60 respectively.

The V- I characteristics for these cells and their performance were also found. The efficiency: Ecrchrom Black T, DDTTC, Rohadamin B, Coumarin 500 were found 1.66,1.62, 1.49 and 1.31. It is realized that; the efficiency increases when energy gab decreases.

المستخلص

تم دراسة أثر تغير المهبط في خلايا البولمر حيث صممت خلايا من اكسيد التيتانيوم كمصعد ورسب عليه بولمر (MEH – PPV) باستخدام الصبغات (اكري كروم بلاك تي - رودمين بي) مع تغير القطب الموجب بالفضه والالمونيوم والذهب وتحصل علي كفاءه % 1.66 ، % 1.59 و % 1.58 بالنسبه لصبغه الاكري كروم وكفاه % 1.49 ، %1.48 و % 1.46 بالنسبه للرودمين بي وجد أن الكفاءه تزيد بزياده الرقم الذري.

ومن ثم تم ايجاد فجوه الطاقه للصبغات المستخدمه بواسطه جهاز مطافيه الأشعه تحت البنفسجيه والمرئيه وكانت للأكري كروم تي 2.16 إلكترون فولت ودي دي تي سي 2.2 إلكترون فولت والرودمين بي 3.27 وكانت للأكري كروم تي 3.36 إلكترون فولت أخذت قراءة الجهد والتيار للخلايا المصنعه من الصبغات السابقه وكانت كفاءتها % 1.66 اكري كروم ، % 1.62 دي دي تي سي و % 1.49 رودمين بي ، % 1.36 كومرين 500 ولوحظ أن الكفاءة تزيد بنقصان فجوة الطاقه.

TABLE OF CONTENTS

NO	Subject	Page No
1	الآيــة	Ι
2	Dedication	II
3	Acknowledgements	III
4	Abstract	IV
5	Abstract (Arabic)	V
6	Table of Contents	VI
7	List of Samples	Х
8	List of Figures	XI
9	Chapter one	
	Introduction	
10	1.1 Introduction	1
11	1.2 The importance of research	1
12	1.3 The Research Problem	2
13	1.4 Literature Review	2
14	1.5 The Aim of the work	4
15	1.6 Thesis Layout	4
16	Chapter Two	
	Theoretical Background	
17	2.1 PV History	5
18	2.2 Solar Cells Properties	6
19	2.3 Solar Cells (PV) Panels	7
20	2.4 PV Advantages and Disadvantages of Solar Cells	8
21	2.4.1 High Reliability	8
22	2.4.2 Low Operating Costs	8

23	2.4.3 Environmental Benefits	9
24	2.4.4 Modularity	9
25	2.4.5 Portability	9
26	2.4.6 Least Cost Alternative	9
27	2.5 Some of the main disadvantages of PV include	10
28	2.5.1 Expensive Technology	10
29	2.5.2 Weather and Climate Dependent	10
30	2.5.3 Space Requirements	11
31	2.5.4 Other Necessary Equipment	11
32	2.6 Types of Materials Used in PV	11
33	2.7 Comparison of Common Types of PV modules	13
34	2.7.1 Single crystal silicon (the Siemens modules on your roof are single crystal silicon)	13
35	2.7.2 Polycrystalline Silicon	14
36	2.7.3 Amorphous Silicon	15
37	2.8 Other Materials for PV Cells	16
38	2.8.1 Dyes solar cell	16
39	2.8.2 Structure of Dye sensitized solar cell	17
40	2.8.3 Types of Organic Solar Cells	18
41	2.8.3.1 Dye Sensitized Solar Cells	18
42	2.8.3.2 Polymer Solar Cells	20
43	2.8.3.3 Polymer Solar Cells Work	21
44	2.8.3.4 Consist of Polymer Solar Cell	22

45	2.9 Geometries	23
46	2.10 Active layer	24
47	2.11 Photovoltaic Terminology	24
48	2.12 PV System Components	25
49	2.13 Power Ratings of PV Modules	26
50	Chapter Three	
	Literature Review	
51	3.1 Interdiction	27
52	3.2 Using Gum Arabic in Making Solar Cells by Thin Films Instead Of Polymers	27
53	3.3 Performance Improvement of MEH-PPV: PCBM Solar Cells Using Bathocuproine and Bathophenanthroline as The Buffer Layers*	27
54	3.4 Non-Linear I–V Characteristics of MEH-PPV Patterned on Sub-Micrometer Electrodes	28
55	3.5 Summary and Critique	29
56	Chapter Four	
	Experimental, Results and Discussion	
57	4.1 Introduction	30
58	4.1.1 The Materials of an Organic Solar Cell	30
59	4.1.3 polymer	30
60	4.1.3 ITO	32
61	4.1.4 Rhodamine B	32
62	4.1.5 Coumarin 500	33
63	4.1.6 DDTTCI	34
64	4.1.7 Ecr - Chrome Black T	34
65	4.1.8 Methods	35
66	4.1.9 Apparatus	36
67	4.1.10 Theory	38
68	4.1.11 Setup	41

69	4.1.12 Carrying Out of The Experiment	41
70	4.2 Results	42
71	4.2.1 Results Samples of (DDTTC)	42
72	4.2.2 Results Samples of (Ecrchrom Black)	47
73	4.2.3 Results Samples of (Rohadamin B)	52
74	4.2.4 Results Samples of (Coumarin 500)	57
75	4.3 Discussion	63
76	Chapter Five	
	Conclusion and Suggested Future Work	
	Conclusion and Suggested Future Work	
77	Conclusion and Suggested Future Work 5.1 Conclusion	68
77 78	Conclusion and Suggested Future Work 5.1 Conclusion 5.2 Suggested Future Work	68 68
77 78 79	Conclusion and Suggested Future Work 5.1 Conclusion 5.2 Suggested Future Work Appendix (A)	68 68 69

LIST OF SAMPLES

No	Subject	Page No
1	Table (4.1) I-V reaction for sample 1(Ag)	44
2	Table (4.2) I-V reaction for sample1 (Al)	45
3	Table (4.3) I-V reaction for sample1 (Au)	46
4	Table (4.4) are Factors for characterization of performance	47
	DDTTC for three samples	
5	Table (4.5) I-V reaction for sample2 (Ag)	49
6	Table (4.6) I-V reaction for sample2 (Al)	50
7	Table (4.7) I-V reaction for sample2 (Au)	51
8	Table (4.8) are Factors for characterization of performance	52
	Ecrchrom Black T. for three samples	
9	Table (4.9) I-V reaction for sample3 (Ag)	54
10	Table (4.10) I-V reaction for sample3 (Al)	55
11	Table (4.11) I-V reaction for sample3 (Au)	56
12	Table (4.12) are Factors for characterization of performance	57
	Rohadamin B for three samples	
13	Table (4.13) I-V reaction for sample4 (Ag)	59
14	Table (4.14) I-V reaction for sample4 (Al)	60
15	Table (4.15) I-V reaction for sample4 (Au)	61
16	Table (4.16) are Factors for characterization of performance	62
	Coumarin 500 for three samples	
17	Table (4.17) sample 2performance and Energy gab for dyes	62
18	Table (4.18) sample 2performance and Atomic number for	62
	electrodes	

LIST OF FIGURES

No	Subject	Page No
1	Fig (2.1) Single crystal silicon (the Siemens modules on	14
	your roof are single crystal silicon)	
2	Fig (2.2) Polycrystalline Silicon solar cell	15
3	Fig (2.3) Amorphous Silicon solar cells	16
4	Fig (2.4) Dye sensitized solar cell diagram (source: Dyes	17
	sensitized solar cell images).	
5	Fig (2.5) Schematic scheme of the traditional dye-	19
	Sensitized solar cell	
6	Fig (2.6) Polymer solar cells	21
7	Figure (2.7). The working principle	22
8	Fig (2.8) Consist of Polymer Solar Cell	23
9	Fig (2.9) Energy levels for normal and inverted geometry	24
	solar cells	
10	Fig (4.1) the two figures is the monomer of MEH-PPV	32
	(right) and the monomer of PPV (left)	
11	Fig (4.2) Rhodamine B	33
12	Fig (4.3) Coumarin 500	33
13	Fig (4.4) DDTTCI	34
14	Fig (4.5) Ecr - chrome Black T structure	35
15	Fig (4.6) spin coating	37
16	Fig (4.7) UV spectrometer device	38
17	Fig (4.8) schematic structure of polymer solar cell formed	40
	with a single organic layer of MEH-PPV	

18	Fig (4.9) Current-voltage characteristic of a solar cell	40
19	Fig (4.10) the relation between absorbance and wavelength	42
	of DDTTC	
20	Fig (4.11) the relation between transparent and wavelength	43
	of DDTTC	
21	Fig (4.12) the optical energy gap (Eg) value of DDTTC.	43
	The optical energy gap (Eg) has been calculated by the	
	relation $(\alpha h \upsilon)^2 = C(h \upsilon - Eg)$ where (C) is constant	
22	Fig (4.13) several factors for characterization of sample1	44
	(Ag)	
23	Fig (4.14) several factors for characterization of sample1	45
	(Al)	
24	Fig (4.15) several factors for characterization of sample1	46
	(Au)	
25	Fig (4.16) the relation between absorbance and wavelength	47
	of Ecrchrom Black.	
26	Fig (4.17) the relation between transparent and wavelength	48
	of Ecrchrom Black T.	
27	Fig(4.18) The optical energy gap (Eg) value of Ecrchrom	48
	Black T	
28	Fig (4.19) several factors for characterization of sample2	49
	(Ag)	
29	Fig (4.20) several factors for characterization of	50
	sample2(Al)	
30	Fig (4.21) several factors for characterization of sample2	51
	(Au)	

31	Fig (4.22) the relation between absorbance and wavelength of Rohadamin B	52
32	Fig (4.23) the relation between transparent and wavelength of Rohadamin B	53
33	Fig (4.24) the optical energy gap (Eg) value of Rohadamin B	53
34	Fig (4.25) several factors for characterization of sample3 (Ag)	54
34	Fig (4.26) several factors for characterization of sample3 (Al)	55
35	Fig (4.27) several factors for characterization of sample3 (Au)	56
36	Fig (4.28) the relation between absorbance and wavelength of Coumarin 500	57
37	Fig (4.29) the relation between transparent and wavelength of Coumarin 500	58
38	Fig (4.30) the optical energy gap (Eg) value of Coumarin 500	58
39	Fig (4.31) several factors for characterization of sampl4 (Ag)	59
40	Fig (4.32) several factors for characterization of sample4 (AL)	60
41	Fig (4.33) several factors for characterization of sample4 (Au)	61