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ABSTRACT 

 

 This research about modeling and simulation of 6-DOF manipulator 

robots and the KUKA KR 6 manipulator robot have been selected as a target 

robot for study. The study performed using theoretical analysis including 

mathematical modeling of the robot based on transformation matrix and 

geometry approach for kinematic analysis and based on Euler-Lagrange 

equations and recursive Newton-Euler for dynamic analysis, then the 

modeling implemented by ARTE toolbox that work under MATLAB 

program. These analyses are important for manipulator robots where the 

execution of the specific task requires the manipulator to follow a preplanned 

path, which the practical geometric parameters, physical characteristics and 

restriction relations are adopted to establish robots’ dynamics and kinematics 

model. The robot model has been developed as accurate as the real one by 

implementing dynamic model of robot in ARTE toolbox linking with 

MATLAB for motion studies. 3D Simulation experiments show that the 

modeling method is efficient and it provides an effective platform for 

researching on the assistant robot system. 
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 مستخلصال

  

تحرك القدرة على ال ولديهستخدام الاومحاكاة روبوت متعدد  نمذجةدراسة  إلىالبحث  فيهد 

 جةللبحث. تم نمذ كنموذج (KUKA KR6( حيث تم اختيار الروبوت )DOF-6في ستة محاور )

نهجية مو نتقالية كل من نظرية المصفوفات الإ عتمد علىوت بواسطة التحليل الرياضي الذي االروب

جرانج( لا-اوليربينما استخدمت كل من نظرية )  اد معادلات الحركة الكيناماتيكيةيجلإ  سيالتحليل الهند

من ثم تم تنفيذ محاكاة ديناميكية للروبوت. ويجاد معادلة الحركة الاويلر( لإ-ف نيوتنو )ريكريس

وبوت لرن تنفيذ اذجة والمحاكاة للروبوت مهمة حيث أهذه النم ،ستخدام ماتلاب تولبوكسالروبوت با

شكل ن العوامل الهندسية لبحيث ألأي مهمة يتطلب تحرك الروبوت في مسار معد ومخطط له مسبقا 

كيف ن ت  يجب أ الروبوت والخواص الفيزيائية للروبوت والعوامل الاخرى المقيدة لحركة الروبوت

ل على محاكاة صووللحبحيث يتم التناسق في الحركة تبعا لمعادلات الحركة الديناميكية والكيناماتيكية. 

صممت بشكل خاص لدراسة وتحليل الأنظمة  ( ARTE Toolboxجديدة ) أداة استخدامتم  دقيقة

 اءةكفذات   ( ARTE Toolboxالمحاكاة ثلاثية الأبعاد باستخدام ) توصلت الدراسة أنالروبوتية. 

المزيد مام أ فتح الباببالإضافة أنها تفي هذا المجال  ين والمهتمينمكانية تساعد الباحثعالية وذات إ

 .المستقبلية في هذا المجالبحاث من الأ
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Chapter One 

Introduction 

1.1 Preface 

The ever-increasing utilization of robotic manipulators in various 

applications in recent years has been motivated by the requirements and 

demands of industrial automation. Among the rigid and flexible manipulator 

types, attention is focused more towards flexible manipulators. This is owing 

to various advantages such manipulators offer as compared to their rigid 

counterparts. Exploitation of the potential benefits and capabilities of rigid 

and flexible manipulators introduces a further emerging line of research in 

which hybrid rigid–flexible manipulator structures are considered.  

Flexural dynamics (vibration) in flexible manipulators has been the main 

research challenge in the modeling and control of such systems. Accordingly, 

research activities in flexible manipulators have looked into the development 

of methodologies to cope with the flexural motion dynamics of such systems. 

 A considerable amount of research on the development of dynamic 

models of flexible manipulators has been carried out. These have led to 

descriptions in the form of either partial differential equations, or finite-

dimensional ordinary differential equations. From a control perspective, an 

input/output characterization of the system is desired, which can be obtained 

through suitable online estimation and adaptation mechanisms. Given the 

dynamic nature of flexible manipulator systems, the practical realization of 

such methodologies presents new challenges. 

The motion of a mechanical system is related via a set of dynamic 

equations to the forces and torques the system is subject to. In this work, we 
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will be primarily interested in robots consisting of a collection of rigid links 

connected through joints that constrain the relative motion between the 

links[1]. 

1.2 Problem Statement:   

The purpose of this research is to present an analytical method and  

a geometrical approach for solving forward and inverse kinematics and 

dynamics problem of a particular six degree-of freedom serial manipulator, 

accordingly. Where kinematics analysis requires deriving the formulation that 

shows the relation between angles of robot joints and the position of the robot 

end-effector. Whereas the dynamics analysis requires deriving equations that 

explain the relations between the forces effecting on robot and the motions 

parameters such as velocity and acceleration. The target robot is a KR 6 

KUKA which is an industrial manipulator production of KUKA corporation. 

1.3 Proposed Solution:  

This work will present the study and modelling of KR 6 KUKA Robot, 

of the Robotics and shows the MATLAB model (Computer Design), the direct 

kinematics, the inverse kinematics and the inverse dynamical model. The 

direct kinematic is based in the use of homogeneous matrix. The inverse 

kinematics uses the geometric approach model. The dynamical model is based 

on the use of Euler-Lagrange equations and recursive Newton-Euler. 

1.4 Research Aim and Objectives:  

 This research will present the modeling of KUKA KR 6 Robot: 

1. Robot modeling. 

2. MATLAB simulation. 
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1.5 Research Methodology:   

search supposed to contain two main parts:  

first part: modeling and mathematical analysis:  

 There are two main formalisms for deriving the dynamic equations for 

such mechanical systems: Newton-Euler equations that are directly based on 

Newton’s laws and Euler-Lagrange equations that have their root in the 

classical work of Alembert and Lagrange on analytical mechanics and the 

work of Euler and Hamilton on vibrational calculus.  

second part: MATLAB toolbox and Simulink analysis:   

 In this part of search where we can use MATLAB graphical user 

interface (GUI) aspects to build 3D model for robot and make motion control 

for that model. 

1.6 Research layout: 

Chapter two: This chapter presents basic concepts of manipulator robotic 

modeling.  

Chapter three: This chapter studies the principles of kinematics and dynamics 

of KUKA KR6 robot. 

Chapter four: This chapter shows the MATLAB simulation for KUKA KR6 

robot and analysis its results. 

Chapter five: This chapter shows the results that introduced from simulation 

and its discussions. 

Chapter six: This chapter concludes the research and presents 

recommendations for future work.    
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Chapter Two 

Fundamentals of Manipulator Robots Modeling 

2.1 Background: 

 Research on flexible manipulator systems (FMS) ranges from a single-link 

manipulator rotating about a fixed axis to three-dimensional multi-link arms. 

However, experimental work, in general, is almost exclusively limited to 

single-link manipulators. This is because of the complexity of multi-link 

manipulator systems, resulting from more degrees of freedom and the 

increased interactions between gross and deformed motions. It is important 

for control purposes to recognize the flexible nature of the manipulator system 

and to build a suitable mathematical framework for modelling of the system. 

FMSs offer several advantages in contrast to their traditional rigid 

counterparts. These include faster system response, lower energy 

consumption, the requirement of relatively smaller actuators, reduced non-

linearity owing to elimination of gearing, lower overall mass and, in general, 

lower overall cost. However, owing to the distributed nature of the governing 

equations describing dynamics of such systems, the control of flexible 

manipulators has traditionally involved complex processes. Moreover, to 

compensate for flexural effects and thus yield robust control the 

design focuses primarily on non-collocated controllers[1]. 

2.2 Modeling and Identification of Serial Robots: 

The design and control of robots require certain mathematical models, such 

as: 

 transformation models between the operational space (in which the 

position of the end-effector is defined) and the joint space (in which the 

configuration of the robot is defined). The following is distinguished: 
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 direct and inverse geometric models giving the location of the end-

effector 

(or the tool) in terms of the joint coordinates of the mechanism and vice 

versa. 

 direct and inverse kinematic models giving the velocity of the end-

effector in terms of the joint velocities and vice versa. 

 dynamic models giving the relations between the torques or forces of 

the actuators, and the positions, velocities and accelerations of the 

joints[2]. 

2.3 Space Movement Representation:  

 For the representation of space movements there are several methods 

such as rotation matrix, vectors, quaternions, roll pitch and yaw, Euler angles, 

homogenous matrix. The selected method used for the developing of the direct 

kinematic model in this work is the homogeneous matrix. 

2.4 Homogeneous Matrix:  

 Homogeneous matrices are 4×4 matrixes, which can represent 

rotations, translations, scales and perspectives. In general, the homogeneous 

matrices represent linear transformations. The general form is presented in 

equation: 

𝐴 = [
[𝑅(3 × 3)] [𝑇(3 × 1)]

[𝑃(3 × 3)] [𝐸(1 × 1)]
]                                                                    (2.1)  

𝑅(3 × 3) Corresponds to a matrix of three rows by three columns representing 

rotations. 

𝑇(3 × 1) Corresponds to an array of three rows by a column that represents 

translation. 

𝑃(3 × 3) Represents a vector of a row of three columns representing the 

perspective. 
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𝐸(1 × 1) Corresponds to a scalar that represents the scale of the 

transformation. For this case 𝑃 ⃑⃑  ⃑ =  0⃑  and E = 1 the principal homogeneous matrix 

Rotation around the Z axis as: 

 

 

1 Figure 2.1a: Rotation around to axis Z. 

 

 

2 Figure 2.1b: Translation Px, Py, Pz. 

 The movements in the space are represented by a series of rotations and 

translations, these rotations and translations figures (2.1a&b), can be 

represented as a homogeneous matrix multiplication. 

2.5 Direct Kinematics: 

 Direct kinematics refers to the use of the kinematic equations of 

a robot to compute the position of the end-effector from specified values for 

the joint parameters[3]. In this model, the movements of the robot 

(coordinates of degrees of freedom) are given and the final positions are 

https://en.wikipedia.org/wiki/Kinematic
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Robot_end_effector
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found. See Figure (2.2). 

  

3 Figure 2.2: direct kinematics. 

 To find the direct kinematic model, using the homogeneous matrix 

method, is necessary to make the moves of coordinated system from the fixed 

base until the last link. For each movement, homogeneous matrices are 

obtained and the final result is the product of these matrices[4]. 

2.6 Geometric Modeling: 

 A systematic and automatic modeling of robots requires an appropriate 

method for the description of their morphology. Several methods and 

notations have been proposed. The most widely used one is that of Denavit-

Hartenberg. However, this method, developed for simple open structures, 

presents ambiguities when it is applied to closed or tree-structured robots. 

Hence, the notation of Khalil and Kleinfinger enables the unified description 

of complex and serial structures of articulated mechanical systems[2]. 

2.7 Denavit-Hartenberg (DH) Convention: 

The DH parameters were originally proposed by Denavit and 

Hartenberg (1955) and widely used to define links’ configuration of a robotic 

manipulator consisting of one degree-of-freedom (DOF) joints, i.e., revolute 

or prismatic. Later, Khalil and Kleinfinger (1986) showed that the DH 

parameters are powerful tool for serial robots, but, lead to ambiguities in the 
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case of closed and tree structured robots. They presented the modified DH 

parameter from its original definition. Craig (1991) also used modified DH 

notation for serial robots[5]. 

In order to compute the direct kinematics equation for an open-chain 

manipulator general method is to be derived to define the relative position and 

orientation of two consecutive links; the problem is that to determine two 

frames attached to the two links and compute the coordinate transformations 

between them. In general, the frames can be arbitrarily chosen as long as they 

are attached to the link they are referred to. Nevertheless, it is convenient to 

set some rules also for the definition of the link frames[6].  

 A robot manipulator consists of several links connected by, usually, 

single degree of freedom joints, say, a revolute or a prismatic joint. In order 

to control the end-effector with respect to the base, it is necessary to find the 

relation between the coordinate frames attached to the end-effector and the 

base[5]. 

2.8 Identification of Denavit-Hartenberg Parameters of an Industrial 

Robot: 

 The travel from the base frame to the end-effector frame is achieved by 

moving across two consecutive frames placed at the joints.  

The set of four parameters relates the transformation between Frame i to 

Frame i+1 by bi, θi, ai and αi, as shown in figure (2.3) and figure (2.4) and the 

parameters defined as in table (2.1) [7]. 
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4 Figure 2.3: DH parameters and Frames attached. 

1 Table 2.1: Symbolic notation used to describe the DH parameters with its definition[7].  
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5 Figure 2.4: Frame convention for modified DH parameters. 

The transformation matrix defining the frame i the frame i+1 is obtained 

from figure (2.4): 

 𝑛−1𝑇𝑛 = 𝑅𝑜𝑡𝑥𝑛−1
(𝛼𝑛−1). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛−1

(𝛼𝑛−1). 𝑅𝑜𝑡𝑍𝑛
(𝜃𝑛). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛

(𝑑𝑛)   (2.2) 

 𝑛−1𝑇𝑛 = [

𝐶𝜃𝑛+1 −𝑆𝜃𝑛+1𝐶𝛼𝑛+1    𝑆𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝐶𝜃𝑛+1

𝑆𝜃𝑛+1 𝐶𝜃𝑛+1𝐶𝛼𝑛+1    −𝐶𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝑆𝜃𝑛+1

0                    𝑆𝛼𝑛+1                        𝐶𝛼𝑛+1          𝑑𝑛+1

0                          0                              0                         1

]       (2.3) 

2.9 Inverse kinematics:  

 Inverse kinematics refers to the use of the kinematics equations of a 

robot to determine the joint parameters that provide a desired position of 

the end-effector figure (2.5). Specification of the movement of a robot so that 

its end-effector achieves a desired task is known as motion planning.  

 Inverse kinematics transforms the motion plan into 

joint actuator trajectories for the robot. The inverse kinematics seeks the 

https://en.wikipedia.org/wiki/Kinematics
https://en.wikipedia.org/wiki/Robot_end_effector
https://en.wikipedia.org/wiki/Motion_planning
https://en.wikipedia.org/wiki/Actuator
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coordinates of each degree of freedom based on the final position of the 

robot[3].   

   

6 Figure 2.5: Inverse kinematics. 

 There are two approaches to solve the inverse kinematics problem of a 

robot manipulator; mathematical or algebraic and geometrical. The higher 

degrees of freedom requires the more complicated algebraic solution[8]. 

Therefore, this section has been devoted to present a geometrical solution for 

the inverse kinematics problem of a KUKA KR6. 

2.10 Dynamic Modeling: 

 Dynamic modeling means deriving equations that explicitly describes 

the relationship between force and motion. These equations are important to 

consider in simulation of robot motion, and in design of control algorithms[9].  

 During the work cycle a manipulator must accelerate, move at constant 

speed and decelerate. This time-varying position and orientation of 

manipulator is termed as its dynamic behavior. Time-varying torques are 

applied at the joints to balance out the internal and external forces[10].  

 The internal forces are cause by motion of link. Inertial, Coriolis, and 

frictional forces are some of the internal forces. The external forces are the 

forces exerted by the environment. These include load and gravitational 



 Fundamentals of Manipulator Robots Modeling Chapter Two 

12 
 

forces[10]. 

 The real problem in robot dynamics is a practical one, namely, that of 

finding formulations for the equations of motion that lead to efficient 

computational algorithms. To derive these equations, we can use well 

established procedures from classical mechanics such as those based on the 

equations of Newton-Euler, Euler-Lagrange[11]. 

2.11 Newton-Euler and Euler-Lagrange formulations: 

 In the Newton-Euler approach, the derivation of the equations of 

motion is based on direct application of Newton's and Euler's laws, while in 

the Lagrangian approach, the equations of motion are derived from two scalar 

quantities, namely, the kinetic and potential energy[11]. The resulting 

dynamic model is the same for both methods and can be written in matrix 

form as[9].  

𝑇(𝑡) = 𝐷(𝜃(𝑡))𝜃̈(𝑡) + ℎ (𝜃(𝑡), 𝜃̇(𝑡)) + 𝑐(𝜃(𝑡))                                        (2.4)  

Were:  

𝑇(𝑡) =Vector torque. 

𝜃(𝑡) = Vector of joint positions. 

𝜃̇(𝑡) = Vector of angular Velocities. 

𝜃̈(𝑡) = Vector of angular acceleration. 

𝐷 = Inertia matrix. 

ℎ(𝜃(𝑡), 𝜃̇(𝑡)) = Vector of Coriolis and centrifugal force. 

𝑐(𝜃) = Gravity forces vector.  
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Chapter Three 

Kinematics and Dynamics of KUKA KR6 Robot 

 3.1 KUKA KR6 robot specifications: 

KUKA KR6 is an industrial robot designed by links which are 

connected to each other by six revolute joints. All the joints of this robot are 

the same and there is no prismatic, cylindrical, planar or any other type of 

joint in the structure of the robot, the table (3.1) shows the robot specifications. 

2 Table 3.1: The KUKA KR6- robot specifications. 

  

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

Pictures and dimension of the robot is appended in appendix A 

KUKA KR6-2 robot specifications 

Payload 6 kg 

Total load 16 kg 

Maximum reach 1611 mm 

Number of controlled axes 6 

Position repeatability ±0,05 mm 

Weight 235 kg 

Mounting positions Floor 

Ambient temperature 0 °C bis + 0 °C 

Controller KR C4 

Protection class IP 65 

Protection class inline wrist IP 65 
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3.2 Kinematics Model of KUKA KR6: 

 The manipulator kinematics model is based on the use of homogeneous 

matrix for this purpose; coordinated systems are located in a convention 

proposed by the authors. Supported by recommendations of the Denavit-

Hartenberg algorithm[4]. 

3.3 The Direct Geometric Model:  

 The direct geometric model (DGM) is the set of relations which express 

the position of the end-effector, i.e. operational coordinates of the robot, 

according to its joint coordinates. In the case of a simple open-chain, it can be 

represented by the transformation matrix 0Tk.  

𝑇𝑘 = 
0 𝑇1(𝑞1) 𝑇2(𝑞2)… 

0 𝑇𝑘(𝑞𝑛)                                                                  (3.1) 
𝑛−1

 
0  

q being the vector of joint coordinates 

 

 

 

 

 

 

 

 

7 
Figure 3.1: Reference coordinate systems, for the KR6 KUKA Robot. 
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The generated movements for going from one frame to another are 

mathematically represented by homogeneous matrix transformations and 

follow the particular geometry of the robot link to link as in figure (3.1)[4]:  

1. R(Zo, θo) ∗ T(Zo, L1)                                                                                   (3.2)  

2. T(Xo´, L2) ∗ R (Xo´,
π

2
) ∗ R (Zo´,

π

2
)                                                           (3.3)  

3. R(Z1, θ1) ∗ T(X1, L3) ∗ R (Z1´, −
π

2
)                                                        (3.4)  

4. R(Z2, θ2) ∗ T(X2, L4)                                                                          (3.5) 

The full kinematic model is presented in equation: 

𝑇 = R(Zo, θo) × T(Zo, L1) ×  T(Xo´, L2) × R(Xo´,
π

2
) × R(Zo´,

π

2
)  

×   R(Z1, θ1) × T(X1, L3)  × R (Z1´, −
π

2
) × R(Z2, θ2)

× T(X2, L4)                                                                                (3.6)  

3.4 The D-H Parameters of KUKA KR 6 Robot:  

 Denavit and Hartenberg put forwards to a matrix method to build the 

attached coordinate system on each link in the joint chains of the robot to 

describe the relationship of translation or rotation between the contiguous 

links way back in 1955. This robot kinematic model is based on the D-H 

Coordination system figure (3.2) and table (3.2) shows D-H Parameters for 

KUKA KR 6 robot. 
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3Table 3.2: D-H Parameters for KUKA KR 6 robot. 

 

Joint 

Number 

Joint angle 

)degi( 

Joint offset 

)mi(d 

Link length 

)mi(a 

Twist angle 

)degi ( 

1 1 d1 a1 -90 

2 2 0 a2 0 

3 3 0 a3 90 

4 4 d4 0 -90 

5 5 0 0 90 

6 6 d6 0 180 

8Figure 3.2: The joints of the robot with coordinate system following the DH-   

convention. 
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 The transformations between each two successive joints can be 

written by simply substituting the parameters from the parameters table into 

the T matrix. The transform matrix is given by the following order of 

operations[10]: 

 𝑛−1𝑇𝑛 = 𝑅𝑜𝑡𝑥𝑛−1
(𝛼𝑛−1). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛−1

(𝛼𝑛−1). 𝑅𝑜𝑡𝑍𝑛
(𝜃𝑛). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛

(𝑑𝑛)   (3.7) 

 

Thus, the matrix of the modified DH parameters becomes: 

 

 𝑛−1𝑇𝑛 = [

𝐶𝜃𝑛+1 −𝑆𝜃𝑛+1𝐶𝛼𝑛+1    𝑆𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝐶𝜃𝑛+1

𝑆𝜃𝑛+1 𝐶𝜃𝑛+1𝐶𝛼𝑛+1    −𝐶𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝑆𝜃𝑛+1

0                    𝑆𝛼𝑛+1                        𝐶𝛼𝑛+1          𝑑𝑛+1

0                          0                              0                         1

]       (3.8) 

Where (C = cosine, S = sine) 

The transformation matrices are computed in the following: 

 0𝑇1 = [

Cθ1
Sθ1
0
0

   
0
0

−1
0

 
−Sθ1
−Cθ1   

0
0

  𝑎1𝐶θ1
  𝑎1𝑆θ1

𝑑1
1

]                                                                  (3.9) 

 1𝑇2 = [

Cθ2
Sθ2  
0
0

       

−𝑆θ2
𝐶θ2
0
0

        

0
0
1
0

       

𝑎2𝐶θ2
𝑎2𝑆θ2

0
1

]                                                    (3.10) 

 2𝑇3 = [

Cθ3
Sθ3
0
0

      

0
0
0
0

        

𝑆θ3
−𝐶θ3

0
0

       

𝑎3𝐶θ3
𝑎3𝑆θ3

0
1

]                                                       (3.11) 

 3𝑇4 = [

Cθ4
Sθ4
0
0

      

0
0

−1
0

        

−𝑆θ4
𝐶θ4
0
0

       

0
0
𝑑4
1

]                                                           (3.12) 
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 4𝑇5 = [

Cθ5
Sθ5
0
0

      

0
0
1
0

        

𝑆θ5
−𝐶θ5

0
0

       

0
0
0
1

]                                                                 (3.13) 

 5𝑇6 = [

Cθ6
Sθ6
0
0

      

−𝑆θ6
𝐶θ6
0
0

        

0
0
1
0

       

0
0
0
1

]                                                                 (3.14) 

The total transformation between the base of the robot and the hand is: 

 𝑅𝑇𝐻 = T1. T2. T3. T4. T5. T6                                                                         (3.15) 

 𝑅𝑇𝐻 = T1. T2. T3. T4. T5. T6 = [

𝑆𝑥

𝑆𝑦

𝑆𝑧

0 

  

𝑛𝑥

𝑛𝑦

𝑛𝑧

0 

  

𝑎𝑥

𝑎𝑦

𝑎𝑧

0 

  

𝑃𝑥

𝑃𝑦

𝑃𝑧

1 

]                                      (3.16) 

 After calculation and identification of the terms of two matrices then 

we can find the values of   𝑃𝑥, 𝑃𝑦 & 𝑃𝑧 let,  

 0𝑇6 = [

𝑟11

𝑟21

𝑟31

0 

  

𝑟12

𝑟22

𝑟32

0 

  

𝑟13

𝑟23

𝑟33

0 

  

𝑟14

𝑟24

𝑟34

1 

]                                                                                 (3.17) 

 The position and the orientation of the end effector in roll-pitch-yaw 

representation are as follows[8]: 

 0𝑃6 = [  

𝑟14

𝑟24

𝑟34 

]                                                                                                       (3.17) 

𝑝𝑖𝑡𝑐ℎ = 𝐴𝑡𝑎𝑛2(𝑟13, √𝑟23
2 + 𝑟33

2 )                                                                 (3.18) 
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𝑟𝑜𝑙𝑙 = {

0                   𝑝𝑖𝑡ℎ =  
𝜋

2
,−

𝜋

2
 

𝐴𝑡𝑎𝑛2 (−
𝑟12

cos(𝑝𝑖𝑡𝑐ℎ)
,

𝑟11

cos(𝑝𝑖𝑡𝑐ℎ)
)  𝑜. 𝑤 

                                  (3.19)

 

  

𝑦𝑎𝑤 =

{
 
 

 
 𝐴𝑡𝑎𝑛2(𝑟32, 𝑟22)                         𝑝𝑖𝑡𝑐ℎ =

𝜋

2

−𝐴𝑡𝑎𝑛2(𝑟32, 𝑟22)                     𝑝𝑖𝑡𝑐ℎ = −
𝜋

2

𝐴𝑡𝑎𝑛2 (−
𝑟12

cos(𝑝𝑖𝑡𝑐ℎ)
,

𝑟11

cos(𝑝𝑖𝑡𝑐ℎ)
)  𝑜. 𝑤

                                 (3.20) 

Where Atan = tan-1 

3.5 Inverse Kinematic Model of KUKA KR 6 Robot: 

 Transformation matrix Equation will be used to calculate inverse 

kinematics equations. Its solution, however, is much more complex than direct 

kinematics since there is no unique analytical solution. Each manipulator 

needs a particular method considering the system structure and 

restrictions[12]. 

3.6 Geometric Approach:   

 The user specifies the desired target position of the end-effector in 

Cartesian space as (x, y, z) where z is the height, and the angle of the end-

effector relative to ground. In a geometrical method, vectors describe the 

robot’s state to solve the problem which is the calculation of the joint angles 

of the robot. This section is divided into five subsections to illustrate the joint 

angles’ computing method[8]. 

Joint 1 

 The first joint angle’s calculation, as shown in figure (3-3), is 

accomplished by the projection of a vector which originates from the origin 

of frame K0 and ends to the origin of frame 𝐾4( 𝑃𝑘04
0⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑) on the X-Y plane of 
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frame K0.  

let 𝑇𝐺
0  be the target transformation matrix relative to the base which defines 

the target position and orientation. 

𝑇𝐺
0 =

[
 
 
 

𝑇11𝐺
0 𝑇12𝐺

0

𝑇21𝐺
0 𝑇22𝐺

0      
𝑇13𝐺

0 𝑇14𝐺
0

𝑇23𝐺
0 𝑇24𝐺

0

𝑇31𝐺
0 𝑇32𝐺

0

0 0
     𝑇33𝐺

0 𝑇34𝐺
0

0 1 ]
 
 
 

 ⟹ 𝑁𝑘06
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ = [

𝑇13𝐺
0

𝑇23𝐺
0

𝑇33𝐺
0

]                            (3.21) 

 

 

 

 

 

 

 

 

 

 

then, 

{
 
 

 
 𝑃𝑘06

4⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑑6 × 𝑃𝑁𝑘06
4⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

𝑃𝑘06
0⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ = [

𝑇14𝐺
0

𝑇24𝐺
0

𝑇34𝐺
0

]
                                                                                     (3.22) 

9 Figure 3.3: geometrical representation of first joint angle calculation. 
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⇒ 𝑃𝑘06
4⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑃𝑘06

4⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ − 𝑃𝑘06
4⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ = [

𝑇14𝐺
0 − 𝑑6 𝑇13𝐺

0

𝑇24𝐺
0 − 𝑑6 𝑇23𝐺

0

𝑇34𝐺
0 − 𝑑6 𝑇33𝐺

0

]                                            (3.23) 

so, 

𝜃1 = {
𝐴𝑡𝑎𝑛2( 𝑇24𝐺

0 − 𝑑6 𝑇23𝐺
0 , 𝑇14𝐺

0 − 𝑑6 𝑇13𝐺
0 )

𝐴𝑡𝑎𝑛2( 𝑇24𝐺
0 − 𝑑6 𝑇23𝐺

0 , 𝑇14𝐺
0 − 𝑑6 𝑇13𝐺

0 ) + 𝜋
                                (3.24)

 
 

Joint 3 

 

10 Figure 3.4: Visual representation of joint 3 angle calculation. 

 Based on figure (3-4) illustration, to calculate 𝜃3, first 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ needs to be 

calculated. In order to compute 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ , 𝑃𝑘04

0⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ should be available, beforehand. 

By having 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ and l1,  can be calculated and then by using a simple 

geometric rule, which helps to compute the angle of between two edges of a 

triangle,  will be quantified.  

let 𝜃2 = 0  
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and 

𝑇2
0 =

[
 
 
 

𝑇112
0 𝑇122

0

𝑇212
0 𝑇222

0      
𝑇132

0 𝑇142
0

𝑇232
0 𝑇242

0

𝑇312
0 𝑇322

0

  
     𝑇332

0 𝑇342
0

  ]
 
 
 
                                                                (3.25) 

Thus, 

⟹ 𝑁𝑘02
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ = [

𝑇132
0

𝑇232
0

𝑇332
0

]                                                                                             (3.26) 

𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑃𝑘04

0⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ − 𝑃𝑘02
0⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ =

[
 
 
 𝑃𝑘0𝑥4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

𝑃𝑘0𝑦4
2⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  

𝑃𝑘0𝑧4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑]

 
 
 

                                                                       (3.27) 

∅ = 𝐴𝑠𝑖𝑛(
(𝑙1

2 − 𝑎2
2 + | 𝑃𝑘04

2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑|
2

)

2 | 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑| 𝑙1

 
)

+ 𝐴𝑠𝑖𝑛

(

 
 
 
 | 𝑃𝑘04

2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑| −
𝑙1
2 − 𝑎2

2 + | 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑|

2

2 | 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑|

𝑎2

)

 
 
 
 

                                 (3.28) 

𝛼 = 𝐴𝑡𝑎𝑛2(−𝑑4, 𝑎3)                                                                                        (3.29) 

So, 

𝜃3 = {
𝜋 − ∅ − 𝛼
𝜋 + ∅ − 𝛼

                                                                                                (3.30) 
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Joint 2 

 

11Figure 3.5: Joint 2 angle calculation vector representation. 

2 is computed by 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑, β1 and β2 as Figure (3.5) displays 

𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑅0

2 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑅0

2 𝑃𝑘04
−12⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑                                                                            (3.31) 

𝑇 = [ 𝑅2
0 𝑅𝑂𝑅𝐺2

0

0 1
]                                                                                           (3.32)2

0  

𝑅2
0 =

[
 
 
 

𝑇112
0 𝑇122

0

𝑇212
0 𝑇222

0      
𝑇132

0  

𝑇232
0  

𝑇312
0 𝑇322

0

  
     𝑇332

0  
  ]

 
 
 
= 𝑅−1

0
2                                                         (3.33) 

𝑃𝑘24
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑ =

[
 
 
 

𝑇112
0 𝑇122

0

𝑇212
0 𝑇222

0      
𝑇132

0  

𝑇232
0  

𝑇312
0 𝑇322

0

  
     𝑇332

0  
  ]

 
 
 

[
 
 
 𝑃𝑘0𝑥4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

𝑃𝑘0𝑦4
2⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  

𝑃𝑘0𝑧4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑]

 
 
 

                                                      (3.34) 

Thus  

𝛽1 = 𝐴𝑡𝑎𝑛2 ( 𝑃𝑘2𝑥4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑, 𝑃𝑘2𝑦4

2⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  )                                                                           (3.35) 
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𝛽2 = 𝐴𝑠𝑖𝑛(
𝑎2

2 − | 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑|

2

+ 𝑙1
2

2𝑙1𝑎2
) + 𝐴𝑠𝑖𝑛

(

  
 𝑙1 −

𝑎2
2 − | 𝑃𝑘04

2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑|
2

+ 𝑙1
2

2𝑙2

| 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑|

)

  
 

    (3.36) 

And then, 

𝜃2 = {

𝜋

2
− (|𝛽1| + 𝛽2)

𝜋

2
+ (|𝛽1|𝛽2

)
                                                                                     (3.37) 

Joint 5 

 

12 Figure 3.6: Joint 5 angle calculation geometrical visualization. 

 In order to calculate 5, 𝑇4
0  is computed by assuming 4 is equal to 0. 

Then by using the definition of dot product of two normal vectors which are 

shown in Figure (3.6), 5 is obtained. 
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𝑇4
0 =

[
 
 
 

𝑇114
0 𝑇124

0

𝑇214
0 𝑇224

0      
𝑇134

0 𝑇144
0

𝑇234
0 𝑇244

0

𝑇314
0 𝑇324

0

  
     𝑇334

0 𝑇344
0

  ]
 
 
 
⟹ 𝑁𝑘04

0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ = [

𝑇134
0

𝑇234
0

𝑇334
0

]                               (3.38) 

So we have, 

𝜃5 = 𝜋 − 𝐴𝑐𝑜𝑠 ( 𝑁𝑘04
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝑁𝑘06

0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ )                                                                         (3.39) 

Joint 4 and 6  

To obtain 4 and 6, rotation matrix 𝑅6
4  is used. On the one hand 𝑅6

4  is: 

𝑅6
4 = 𝑅−1 𝑅 = 𝑅0

4 𝑅                                                                                      (3.40)6
0

6
0

4
0  

And on the other hand, 

𝑅6
4 = 𝑅𝑜𝑡𝑧(𝜃4)𝑅𝑜𝑡𝑦(𝜃5 + 𝜋)𝑅𝑜𝑡𝑧(𝜃6)                                                        (3.41) 

In which, 

𝑅𝑜𝑡𝑦(𝜃5 + 𝜋) = [
𝑐𝑜𝑠(𝜃5 + 𝜋) 0 𝑠𝑖𝑛(𝜃5 + 𝜋)

0 1 0
−𝑠𝑖𝑛(𝜃5 + 𝜋) 0 𝑐𝑜𝑠(𝜃5 + 𝜋)

]                               (3.42) 

𝑅𝑜𝑡𝑧(𝜃6) = [
𝑐𝑜𝑠(𝜃6) −𝑠𝑖𝑛(𝜃6) 0

0𝑠𝑖𝑛(𝜃6) 𝑐𝑜𝑠(𝜃6) 0
0 0 1

]                                                     (3.43) 

Thus, 

𝑅 = [

−𝑐4𝑐5𝑐6 − 𝑠4𝑠6 𝑐4𝑐5𝑠6 − 𝑠4𝑐6 −𝑐4𝑠5

−𝑠4𝑐5𝑐6 + 𝑐4𝑠6 𝑠4𝑐5𝑠6 + 𝑐4𝑐6 −𝑠4𝑠5

𝑠5𝑐6 −𝑠5𝑠6 −𝑐5

]                                   (3.44)6
4  

in which C4 is corresponding to cos (4) and S4 is sin (4) and so forth. For 

the sake of simplicity, let: 
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𝑅 = [

𝑅6
4

11 𝑅6
4

12 𝑅6
4

13

𝑅6
4

21 𝑅6
4

22 𝑅6
4

23

𝑅6
4

31 𝑅6
4

32 𝑅6
4

33

]6
4                                                                             (3.45) 

So, we have, 

𝜃4 = 𝐴𝑡𝑎𝑛2(− 𝑅6
4

23, 𝑅6
4

13)                                                                              (3.46) 

𝜃6 = 𝐴𝑡𝑎𝑛2(− 𝑅6
4

32, 𝑅6
4

31)                                                                              (3.47) 

3.7 Dynamic Modeling of KUKA KR 6 Robot Manipulator:  

 In a dynamic model of a system there are two main aspects with which 

one is concerned: motion and forces. The motion of a system is called its 

trajectory and consists of a sequence of desired positions, velocities, and 

accelerations of some point or points in the system. Forces are usually 

characterized as internal (or constraint) forces and external (or applied) 

forces. The external forces are the ones which cause motion[11]. 

3.8 Forward Dynamics:  

 The Forward or direct dynamics is one where the forces which act on a 

robot are given and we wish to solve for the resulting motion. In its simplest 

form, the forward dynamics problem can be expressed symbolically as a 

vector differential equation of the form:  

𝑞̈ = ℎ(𝑞, 𝑞̇, 𝜏, manipulator parameters )                                                              (3.48) 

where, q is the vector of generalized coordinates joint variables, 𝑞̈ and 𝑞̇ are 

its derivatives with respect to time, 't is the (input) generalized force vector, 

i.e., the vector of joint torques and/or joint forces and the "manipulator 

parameters" are all those parameters which characterize the particular 

geometry and dynamics of a robot manipulator[11]. 
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3.9 Inverse Dynamics:  

 The inverse dynamics is one in which we need to determine the 

generalized forces that will produce a specified motion trajectory. 

The inverse dynamics problem can be described mathematically by an 

equation of the form: 

𝜏 = 𝑓(𝑞, 𝑞̇, 𝑞̈, manipulator parameters )                                                    (3.49) 

3.10 KUKA KR 6 Manipulator Robot Parameters: 

 The dynamic simulation of a robotic is based upon a set of equations 

and assumes that a great number of parameters are known. These parameters 

include the inertia matrices that model the robot links, the center of mass of 

each link with respect to its D-H reference system and more... such as viscous 

friction factors.  

 To determine the inertia tensor of each, link the CAD model was used, 

obtaining the inertia moments around of the reference system used in the 

assembly module of the CAD software. As an example is presented the case 

of link 2[4]. 

4Table 3.3: data of inertia and centroids using the software solid edge[4]. 

m2 38,767 Kg 

Ixx2 112,0126 Kg-m2 

Iyy2 107,2872 Kg-m2 

Izz2 16 Kg-m2 

Ixy2 7,1702 Kg-m2 

Ixz2 -22,7151 Kg-m2 

Iyz2 -30,4911 Kg-m2 
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3.11 Dynamic Formulations: 

 Based on Euler-Lagrange formulations the model represented in a 

matrix form is shown in equation as following: 

𝑇(𝑡) = 𝐷(𝜃(𝑡))𝜃̈(𝑡) + ℎ (𝜃(𝑡), 𝜃̇(𝑡)) + 𝑐(𝜃(𝑡))                                     (3.50) 

Were: 

𝑇(𝑡) = [𝑇1(𝑡)𝑇2 ……𝑇𝑛(𝑡)]
𝑇Vector torque, size nx1 

𝜃(𝑡) = [𝜃1(𝑡)𝜃2 ……𝜃𝑛(𝑡)]
𝑇Vector of joint positions, size nx1. 

𝜃̇(𝑡) = [𝜃̇1(𝑡)𝜃̇2 …… 𝜃̇𝑛(𝑡)]
𝑇
Vector of angular Velocities, size nx1. 

𝜃̈(𝑡) = [𝜃̈1(𝑡)𝜃̈2 …… 𝜃̈𝑛(𝑡)]
𝑇
Vector of angular acceleration, size nx1. 

𝐷𝑖𝑘 = ∑ 𝑇𝑟(𝑈𝑗𝑘𝐽𝑗𝑈𝑗𝑖
𝑇) 

𝑛

𝑗=max (𝑖,𝑘)

i, k = 1,2. . , n Inertia matrix, size nxn(3.51) 

𝐽𝑖 =

[
 
 
 
 
 
 
−𝐼𝑥𝑥 + 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑥𝑦 𝐼𝑥𝑧 𝑚𝑖𝑥𝑖

𝐼𝑥𝑦

𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑦𝑧 𝑚𝑖𝑦𝑖

𝐼𝑥𝑧 𝐼𝑦𝑧

𝐼𝑥𝑥 + 𝐼𝑦𝑦 − 𝐼𝑧𝑧

2
𝑚𝑖𝑧𝑖

𝑚𝑖𝑥𝑖 𝑚𝑖𝑦𝑖 𝑚𝑖𝑧𝑖 𝑚𝑖 ]
 
 
 
 
 
 

Inertia Tensor, size 4x4 (3.52) 

By using data of inertia given in equation (3.52) the Inertia tensor can be 

determined as following matrix [4].  

Xc -0,3661 M 

Yc -0,505 M 

Zc 1,55 M 
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[

2,295 
4,062
7,170

0

    

4,062
53,840
22,715
 7,753

    

7,170
22,715
1,111
14,195

    

0
7,753
14,195
38,767

] 

ℎ(𝜃, 𝜃̇)

= [ℎ1 ℎ2 ……ℎ𝑛]
𝑇Vector of Coriolis and centrifugal force, Size nx1(3.53) 

ℎ𝑖 = ∑ ∑ ℎ𝑖𝑘𝑚𝜃̇𝑘𝜃̇𝑚

𝑛

𝑚=1

𝑛

𝑘=1

        𝑖 = 1,2,… . . 𝑛                                            (3.54) 

ℎ𝑖𝑘𝑚 = ∑ 𝑇𝑟(𝑈𝑗𝑘𝑚𝐽𝑗𝑈𝑗𝑖
𝑇) 

𝑛

𝑗=max(𝑖,𝑘,𝑚)

i, k,m = 1,2,… , n                            (3.55)  

𝑐(𝜃) = [𝐶1 𝐶2 ………𝐶𝑛]
𝑇Gravity forces vector size nx1 

𝐶𝑖 = ∑ (−𝑚𝑗𝑔𝑈𝑗𝑖
𝑗
𝑟𝑗)

𝑛
𝑗=𝑖           𝑖 = 1,2,… . , 𝑛                                                 (3.56)                       

 From the direct kinematic model, presented it is necessary determine 

Ujk matrices, the inertia tensor Ji for each link, the inertia effects D, the matrix 

hi and hijk of Coriolis and centrifugal acceleration, the position vector R and 

the gravitational vectors force C.   

To calculate the matrix Ujk is used the canonical equation as: 

𝑈𝑗𝑘 =
𝜕 0𝐴𝑗

𝜕𝜃𝑘
=  0𝐴𝑗−1𝑄𝑖

𝑗−1
𝐴𝑘                                                                         (3.57) 

For the determination of the matrix D (matrix of inertial effects). It is 

necessary to use the following Equation: 

𝐷(𝜃) = [

𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

𝐷31 𝐷32 𝐷33

]                                                                              (3.58) 
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 For the determination of vector h, vector of Coriolis and centrifugal 

forces, the following equation is proposed. This equation presents the 

angular velocities independently through the matrix Hi,v 

ℎ𝑖 = 𝜃̇𝑇𝐻𝑖,𝑣𝜃̇                                                                                                       (3.59) 

Where 

𝐻𝑖,𝑣 = [

ℎ𝑖11
ℎ𝑖12

ℎ𝑖13

ℎ𝑖21
ℎ𝑖22

ℎ𝑖23

ℎ𝑖31
ℎ𝑖32

ℎ𝑖33

]                                                                             (3.60) 

 

Thus, the vector h of centrifugal and Coriolis forces is: 
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For the Determination of the gravity force vector C: 

𝑐(𝜃) = [𝐶1 𝐶2 𝐶3]
𝑇                                                                                      (3.67) 

𝐶𝑖 = ∑(−𝑚𝑗𝑔𝑈𝑗𝑖 𝑟𝑗̅ 
𝑗 )

3

𝑗=𝑖

 𝑖 = 1,2,3                                                                   (3.68) 

𝐶1 = −𝑚1𝑔𝑈11 𝑟1̅ 
1 − 𝑚2𝑔𝑈21 𝑟2̅ 

2 − 𝑚3𝑔𝑈31 𝑟3 ̅̅ ̅ 
3  

𝐶2 = −𝑚2𝑔𝑈22 𝑟2̅ 
2 − 𝑚3𝑔𝑈32 𝑟3̅ 

3  

𝐶3 = −𝑚3𝑔𝑈33 𝑟 ̅ 
3  

(

𝐶1

𝐶2

𝐶3

) = [

−𝑚1𝑔𝑈11 𝑟1̅ 
1 − 𝑚2𝑔𝑈21 𝑟2̅ 

2 − 𝑚3𝑔𝑈31 𝑟3 ̅̅ ̅ 
3

–𝑚2𝑔𝑈22 𝑟2̅ 
2 − 𝑚3𝑔𝑈32 𝑟3̅ 

3

−𝑚3𝑔𝑈33 𝑟 ̅ 
3

]                            (3.69) 

The vector r in the reference system of rotation axes is: 

𝑟1 = [

−0.0052
0.0026
0.369

1

] 𝑟2 = [

0
0.2

0.366
1

] 
2  𝑟3 = [

0
0.454

−.00015
1

] 
3                                  (3.70) 

1  

𝑔 = [0  0 − 𝑔  0 ] 

The total system is then as follows: 

𝑇(𝑡) = 𝐷(𝜃(𝑡))𝜃̈(𝑡) + ℎ (𝜃(𝑡), 𝜃̇(𝑡)) + 𝑐(𝜃(𝑡)) 
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Chapter Four 

MATLAB Simulation for KUKA KR 6 Robot  

4.1 Introduction:  

 The fundamental of robotics technology such as kinematics, dynamics, 

coordinate transformation and trajectory planning is neither easy nor fun like 

watching robot movies or playing with robot toys for the students. 

 Apart from difficulty in grasping the mathematical concept and relate 

it immediately to robot practical behavior, visualizing the concept through 

conventional teaching approach is challenging. The safety concern also 

hinders the extent to which researchers could be allowed to independently 

handle and explore robotics equipment’s, and hence limits the attainment of 

the learning outcomes. It is therefore important to review strategy with 

incorporation of relevant information technology tools which is constantly 

evolving for effective and productive outcomes.  

 Several tools are now available in this respect, among them is a 

MATLAB based computational toolboxes dedicated to robotics applications. 

This toolbox provides collection of functions (tools) that support 

representation and presentation of fundamental concepts in robotics such as 

robot configuration based on standard notations, robot kinematics, dynamics 

and trajectory generation, etc. 

4.2 Robotics Technology and MATLAB Toolboxes: 

 Robotics technology is the art, knowledge base, and the know-how of 

designing, applying and using robots in human endeavors. It is an integrated 

field of study incorporating several areas of science and engineering 

discipline. The major learning activities and skills required been: physical 

design of structures and mechanisms; computational design including 
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software/program development; and lastly mission planning. The details of 

each of these activities depends on the type of robot and its domain of 

application.  

 In this research, focus is beamed on serial robots, also known as robot 

manipulator due to their overwhelming popularity in industrial application 

and automation. The fundamental concepts needed in the design and 

development of this type of robots are: pose and coordinate transformation, 

geometry description; forward and inverse kinematics; and trajectory 

planning for a given application. These concepts are not only mathematically 

intensive; they require intuitive understanding in relation to their practical 

applications. With these challenges in mind, MATLAB robotics toolboxes 

was developed[13].  

4.3 MATLAB Toolboxes: 

 The toolboxes are organized functionally to address each of the 

fundamental concepts. It provides computation and visualization capabilities 

for effective learning and students engagements. The next subsections outline 

these basic concepts alongside the functional tools provided by the toolboxes. 

 In this research toolbox used is a new toolbox ARTE (A Robotics 

Toolbox for Education) that focused on the teaching of robotic manipulators 

which it is developed by SPAINS searchers from Miguel Hernández 

University of Elche (UMH). 

4.4 A Robotics Toolbox for Education (ARTE): 

 ARTE is a new library of toolbox focused on the teaching of robotic 

manipulators. The library works under MATLAB and has been designed to 

strengthen the theoretical concepts of manipulator robots. The educational 

approach is focused on the main concepts through developing math modeling 
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and simulation. The library possesses features that typically needed the usage 

of proprietary software, such as the visualization of a realistic 3D 

representation of commercial robotic arms and the programming of those 

arms in an industrial language. That includes the concepts of direct and 

inverse kinematics, inverse and direct dynamics, path planning and robot 

programming. As a transversal practice, during the sessions, the student is 

asked to choose and integrate a new robotic arm in the library, proposing a 

particular solution to the direct and inverse kinematic problem, as well as the 

inclusion of other important parameters[14].  

4.5 Main Features of The Toolbox:  

 The toolbox presents the following main features:  

(a) Denavit–Hartenberg's representation of the robotic manipulator. 

(b) Capacity to visualize the position, velocity and acceleration of the joint 

variables of the robot when it performs a movement. In addition, the capacity 

to represent the velocity of the end effector during the simulation. 

(c) Capacity to visualize joint forces and torques during the performance of 

any movement.  

(d) Realistic 3D representation of the robot link as solid objects. 

(e) Path planning of joint trajectories.  

(f) Programming the robot in an industrial language. Step-bystep simulation 

of the program.  

(g) Programming of the robot using a virtual teach pendant. 

Creation of target points and way points using a graphical interface. 

(h) Easy inclusion of new robots.  

(i) Realistic representation of the robot in a robotic cell with auxiliary 

equipment. The toolbox is available to download in its web site[15]. 
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4.6 Geometry Description: 

 This involves systematic description of robot arm geometry, and 

determination of its configuration parameters based on number of joints, links 

and relative pose of each joint to its preceding one. A common approach is to 

use method proposed by Denavit and Hartenberg , known as D-H notation. 

 

4.7 Visualization Tool: 

 A visualization tool is highly required in this task for effective studies’ 

engagement. This is one of the great potential of the toolboxes.  

Functions such as “load_robot” is provided to represent a link and create a 

given serial robot, respectively.  

 Visualize and animate the created robot using following functions 

robot = load_robot(manufacturer, version), which returns a robot data 

structure of the specified robot.  Each robot parameters are stored in the 

directory named robots/manufacturer/version. For our study robot we can load 

a data structure corresponding to the robot by using following function  

robot=load_robot('kuka', 'kr6_2'), as shown in figure (4.1), MATLAB code 

for Visualization robot in [appendix B1] 
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 The robot view can be adjusted by using (adjust_view) function, and 

(draw_axes) to draw axes (T, X_text, Y_text, Z_text, scale). There are another 

functions for visualization requirements such as:  

 (animate (robot, q) and drawrobot3d(robot, q) ).  

4.8 Kinematics concept: 

 kinematics is the study of robot movement (motion) without recourse 

to the force that causes it. Two types of kinematics are involved in serial robot 

manipulator. forward kinematics and inverse kinematics.  

4.9 Direct Kinematics: 

 Forward kinematics seek to answer the following operational query, 

“given the robot joint variables (angles), q, determine the robot end-effector 

pose, relative to the reference frame. Mathematically, transformation process 

13 Figure 4.1:  KUKA KR6 view and its corresponding data structure. 
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expressed as product of individual link transformation matrices. The 

transform matrix is given by the equations (3.3 – 3.4) in previous chapter [10]. 

The total transformation between the base of the robot and the hand is: 

 𝑅𝑇𝐻 = T1. T2. T3. T4. T5. T6                                                                            (4.1) 

The forward kinematics are computed using the toolbox function, 

“directkinematic”  

if we assume initial values for each joint (6 joints)  

q = [0.5 -0.5 pi/6 0.1 0.1 0.1] 

to compute direct kinematics for this position q 

T = directkinematic(robot, q) figure(4.2).  

MATLAB code for forward kinematic of the KUKA KR 6 robot appended in 

[appendix B2]. 

4.10 Inverse Kinematics: 

 The second type of kinematics, known as inverse kinematics is used to 

determine the required joint angles for a given robot end-effector. There are 

eight possible solutions for the inverse kinematic problem for most of these 

robots. Unlike forward kinematics, it is quite computational intensive, it is not 

unique, and a close-form solution may not exist for classes of robots. The 

inverse kinematics are computed using the toolbox function, 

“inversekinematic” 

n_solutions = 8; not all the eight possible solutions will be feasible for an 

anthropomorphic 6 axis robot. 

 A call the “inversekinematic” for this robot. All the possible solutions 

are stored at qinv. At least, one of the possible solutions should match q 

qinv = inversekinematic(robot, T); as shown in figure(4.3) for n = 8 solutions 

all of them matched with input q values.  
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MATLAB code for inverse kinematic of the KUKA KR 6 robot appended in 

[appendix B3]. 

 

14  

 

 

 

 

 

Figure 4.2:  snapshot for MATLAB kinematic function results for KUKA KR6 robot. 

 To check that all of them are feasible solutions and every Ti equals  

   for i=1:8,  Ti = directkinematic(robot, qinv(:,i)) 

  

 

 

 

 

 

 

 

 

4.11 Trajectory Planning: 

 A trajectory is the path followed by the manipulator, plus the time 

profile along the path. It involves planning of the robot movement from one 

pose to the other. 

  Issues in trajectory planning include: attaining a specific target from 

an initial starting point, avoiding obstacles, and staying within 

15 Figure 4.3: MATLAB snapshot sample of 8 solution matched with q values. 
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manipulator capabilities. Generally, given two ends points, it is required to 

determine series of poses to be follow by the robot from starting point to the 

end point using either joint space trajectory, or Cartesian space trajectory 

approach. The detail description of the two types of trajectory planning 

methods can be found in the literatures[13].   

 The following MATLAB code is used for the joint space and Cartesian 

space approach, respectively as shown in figures (4.4) & (4.5). 

MATLAB code for joint space and Cartesian space approach [Appendix B4]. 

  

 

 

 

 

 

 

 

 

 

16 Figure 4.4: joint trajectory in joint space approach. 

17 Figure 4.5: joint trajectory in Cartesian space approach. 
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4.12 Dynamic Modeling: 

 To validate the dynamic model, the input data were oblique trajectories 

and tasks that require the motion of the terminal element with constant speed, 

working load which corresponds to the maximum load recommended by 

KUKA Robot[4]. “forwarddynamic” function can be used to test the 

manipulator robot, for applied this function we should determine simulation 

time and values for position and joint speeds as in figures (4.6) & (4.7). 

The MATLAB code for direct dynamic for KUKA KR6 robot as assumed no 

friction and no torque applied [Appendix B5]. 

Figure (4.6): varying joints speed with time. 

 

Figure (4.7): varying joints position with time. 
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4.13 Inverse Dynamics: 

 Manipulator inverse dynamics, or simply inverse dynamics, is the 

calculation of the forces and/or torques required at a robot's joints in order to 

produce a given motion trajectory consisting of a set of joint positions, 

velocities and accelerations. Mathematically, the inverse dynamics problem 

can be described by a vector equation of the form:  

𝜏 = 𝑓(𝑞, 𝑞̇, 𝑞̈, manipulator parameters)                                                       (4.2) 

Where 

𝜏 = 𝑡𝑜𝑟𝑞𝑢𝑒 

𝑞 = 𝑗𝑜𝑖𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝑞̇ = 𝑗𝑜𝑖𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 

𝑞̈ =acceleration   

the function “inversedynamic” used to Compute inverse dynamics via 

recursive Newton-Euler.  

general call to inverse dynamic function: 

TAU = inversedynamic(robot, Q, QD, QDD, GRAV, FEXT) 

where if one of three different poses chosen then find which one the worst.  

assume the poses have the following values 

q1 = [0 0 0 0 0 0];  

q2 = [0 pi/2 -pi/2 0 0 0];   

q3 = [0 0 -pi/2 0 0 0]; 

for dynamic robot friction = 1 

robot dynamics friction=1; 

sample MATLAB code to compute torques at each pose(q1&q2) [Appendix 

B6]  

 

 



MATLAB Simulation for KUKA KR 6 Robot   Chapter Four 

42 
 

case (1) at pose q1= [0 0 0 0 0 0] as shown in figure (4.8). 

 

 

18 Figure 4.8 : robot 3d view for q1= [0 0 0 0 0 0]. 

 In this case the result of MATLAB computing for inverse dynamic at 

q1 as following: Torques at each joint given position q1, zero speed and 

acceleration, standard gravity acting on Z0 computing static torques at 

position q1 due to gravity [0 0 9.81]   

tau = -0.0000, 87.3335, 85.7443, 0.0000, 2.1631, -0.0000 

Case (2) at pose q2 = [0 pi/2 -pi/2 0 0 0] as shown in figure (4.9). 
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 In this case the result of MATLAB computing for inverse dynamic at 

q1 as following Torques at each joint given position q2, zero speed and 

acceleration, static torques at position q2 due to gravity [0 0 9.81]. 

The differences noted with respect to torque tau_2 at q1 

tau = 0.0000, 446.0656, 85.7443, 0.0000, 2.1631, -0.0000. From previous 

analysis, some differences of torques can be noted respect to position values. 

4.14 Robot Programming Tools:  

 programming tools are set of functions allow us to build our desired 

application such as robot for pick and place application. The ARTE library 

includes a subset of instructions of the ABB RAPID language that specialized 

for robotic programming. Programming in ARTE will be done in the 

following way[15]:  

a) The teach graphical user interface (GUI) allows to simulate the robot 

and program target points. The user will place the robot in different 

points in the workspace that will be needed, for example, to pick a piece 

or place it inside a box figure (4.10).  

19 Figure 4.9: robot 3d view for q1= [0 pi/2 -pi/2 0 0 0]. 
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b) These points will be defined in a m-file in order to do this, the points 

created in the teach application can be exported to a m-file by using 

“teach” function as shown in figure (4.10). Next, the user should write 

a program using the equivalent MATLAB functions provided, such as 

MoveJ(), MoveL() or MoveAbsJ(). 

c) The program can be simulated under MATLAB. By using its 

debugging tools, you may execute the program step by step or even 

look into the MATLAB’s functions. 

Figure 4.10: the usage of the teach graphical user interface (GUI). 

4.15 Allumium Milling Application Using Kuka Kr6 Robot: 

 There are many functions used to program the robot and make control 

motion of the robot, such as following function with their tasks. 

MoveL: Make a linear planning in space.  
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MoveC: Make a circular path in space.  

Matlab code for the application [Appendix B7] and the result as shown in 

figure (4.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 Figure 4.11: 3d view for aluminum plate milling application. 
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Chapter Five 

Results and Discussions 

5.1 Introduction: 

 As the basic principle of the manipulator robots modelling illustrated 

in chapter tow, these principles implemented on the target manipulator robot 

KUKA KR 6 as a practical study to support the research by applicable real 

scientific sides as much as possible. The KUKA KR 6 robot subjected to 

mathematical analysis, where the kinematic and dynamic formulations for 

robot derived as shown in chapter three.  

 The transformation matrix based on DH parameters used to obtain the 

forward kinematic equations and the invers kinematic equations derived by 

using geometrical method. The dynamic modeling analysis based on Euler-

Lagrange equations and recursive Newton-Euler formulations. 

 New software tools work under MATLAB environment called ARTE 

(a robotic toolbox for education) used to simulate the robot in advanced way 

to get modeling analysis. The results of the modeling and MATLAB 

simulation that obtained in chapter three and chapter four can be discussed as 

the following: 

5.2 Kinematic Modeling and Simulation Results: 

The direct kinematic represented by transformation matrix as: 

 𝑛−1𝑇𝑛 = 𝑅𝑜𝑡𝑥𝑛−1
(𝛼𝑛−1). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛−1

(𝛼𝑛−1). 𝑅𝑜𝑡𝑍𝑛
(𝜃𝑛). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛

(𝑑𝑛)   (5.1) 

 𝑛−1𝑇𝑛 = [

𝐶𝜃𝑛+1 −𝑆𝜃𝑛+1𝐶𝛼𝑛+1    𝑆𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝐶𝜃𝑛+1

𝑆𝜃𝑛+1 𝐶𝜃𝑛+1𝐶𝛼𝑛+1    −𝐶𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝑆𝜃𝑛+1

0                    𝑆𝛼𝑛+1                        𝐶𝛼𝑛+1          𝑑𝑛+1

0                          0                              0                         1

]       (5.2) 
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 The direct kinematic can be obtained by this formulation but in 

manually calculation it needs to exert more time and work because the 

complicated calculations and the results may be not accurate as well. Where 

we need to calculate the transformation matrix for each link T1, T2...etc. then 

aggregate the total matrix. 

 𝑅𝑇𝐻 = T1. T2. T3. T4. T5. T6                                                                           (5.3) 

 A computer simulation program and software tools help to get the 

accurate analysis and calculation, such as ARTE toolbox that used in this 

research where this toolbox has many features such as inclusion the important 

functions that called to do some complex mathematic operations and the 

important robotic parameters that are needed to analysis such as DH 

parameters.  

 By using ARTE tool, the visualizations geometry of the robot presents 

in 3d based on DH parameters as following:  

 

21 Figure 5.1: DH parameters represented in MATLAB. 

 The function “robot = load_robot(manufacturer, version)” used to 

visualize and animate the robot. For KUKA KR 6 robot we can use the 

function as the following: 

 robot=load_robot('kuka', 'kr6_2') 
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 The forward kinematics are computed using the toolbox function, 

“directkinematic” if we assume initial values for each joint (6 joints)  

q = [0.5 -0.5 pi/6 0.1 0.1 0.1]  

to compute direct kinematics for this position q 

T = directkinematic(robot, q) figure(5.2). 

 In inverse kinematic it considers there are eight possible solutions for 

the inverse kinematic problem for most of these robots. not all the eight 

possible solutions will be feasible for an anthropomorphic 6R robot. 

A call the “inversekinematic” for this robot. All the possible solutions are 

stored at qinv. At least, one of the possible solutions should match q 

qinv = inversekinematic(robot, T). 

5.2.1 KUKA KR 6 Joints Trajectory Planning: 

 ARTE toolbox contain some functions and MATLAB commands 

specified for determine and plot the paths of robot joints position and velocity 

changes with time based on space trajectory, or Cartesian space trajectory 

methods.  

22 Figure 5.2: KUKA KR6 view. 
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The aim of the trajectory generation: to generate inputs to the motion 

control system which ensures that the planned trajectory is executed.  

The user describes the desired trajectory by some parameters, usually:  

• Initial and final point (point-to-point control).  

• Finite sequence of points along the path (motion through sequence of points).

 The figure (5.3) shows path followed by the manipulator joints, plus the 

time profile along the path according to input positions (initial and final 

position). 

 

 

5.3 Dynamic Modeling and Simulation Results: 

 The dynamic based on Euler-Lagrange equations and recursive 

Newton-Euler formulations, as illustrated in previous chapters, then the main 

equation used to analysis dynamic is:   

𝑇(𝑡) = 𝐷(𝜃(𝑡))𝜃̈(𝑡) + ℎ (𝜃(𝑡), 𝜃̇(𝑡)) + 𝑐(𝜃(𝑡))                                        (5.4) 

23 Figure 5.3: the robot joints trajectory. 
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  According to this equation some parameters assumes to be determine 

such as inertia matrix as explained in chapter three, the following matrix 

equation used to find inertia matrix.  

𝐷𝑖𝑘 = ∑ 𝑇𝑟(𝑈𝑗𝑘𝐽𝑗𝑈𝑗𝑖
𝑇) 

𝑛

𝑗=max (𝑖,𝑘)

i, k = 1,2,… , n Inertia matrix, size nxn 

𝐽𝑖 =

[
 
 
 
 
 
 
−𝐼𝑥𝑥 + 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑥𝑦 𝐼𝑥𝑧 𝑚𝑖𝑥𝑖

𝐼𝑥𝑦

𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑦𝑧 𝑚𝑖𝑦𝑖

𝐼𝑥𝑧 𝐼𝑦𝑧

𝐼𝑥𝑥 + 𝐼𝑦𝑦 − 𝐼𝑧𝑧

2
𝑚𝑖𝑧𝑖

𝑚𝑖𝑥𝑖 𝑚𝑖𝑦𝑖 𝑚𝑖𝑧𝑖 𝑚𝑖 ]
 
 
 
 
 
 

Inertia Tensor, size 4x4 

The following matrix shows the values of inertia tensor matrix  

[

2,295 
4,062
7,170

0

    

4,062
53,840
22,715
 7,753

    

7,170
22,715
1,111
14,195

    

0
7,753
14,195
38,767

] 

5.3.1 Forward Dynamic Results Analysis: 

 The equation represented on forward dynamics is:  

𝑞̈ = ℎ(𝑞, 𝑞̇, 𝜏,manipulator parameters ) 

 In MATLAB ARTE toolbox the function “forwarddynamic” called as 

shown in MATLAB code [appendix B5] and the result figures following show 

values for position and joints speed with time for KUKA KR 6 robot as 

assumed no friction and no torque applied and the initial position and joint 

speeds as following: 

q0 = [0 0 0 0 0 0] 

qd0 = [0 0 0 0 0 0] 

g= [0 0 -9.81] 

 



 Results and Discussions   Chapter Five 

51 
 

 

figure 5.4: the values of varying joints speeds with time. 

 

figure 5.5: the values of varying joints positions with time. 

 As result of applying “forwarddynamic” function the figures (5.4) & 

(5.5) show the values of varying joints speed with time where (qd1, 

qd2,…qd6) represent on speed of joints and varying position of joints with 

time where (q1,q2,…q6) represent on a position of joints. 

5.3.2 Inverse Dynamics Results Analysis: 

 Mathematically, the inverse dynamics problem can be described by a 

vector equation of the form:  

𝜏 = 𝑓(𝑞, 𝑞̇, 𝑞̈, manipulator parameters) 

 In MATLAB ARTE toolbox the function “inversedynamic” used to 

Compute inverse dynamics via recursive Newton-Euler. to applying the invers 

dynamic function, we should choose different positions then compare the 
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result torques for each position as:   

q1 = [0 0 0 0 0 0];  

q2 = [0 pi/2 -pi/2 0 0 0];   

  If we choose q = [0 pi/2 -pi/2 0 0 0] as example to test the position and 

result torque for each joints the following figure show view of KUKA KR6 

robot at q = [0 pi/2 -pi/2 0 0 0] as shown in figure (5.6). 

 

24 Figure 5.6: robot 3d view for q1= [0 pi/2 -pi/2 0 0 0]. 

 And the following values represent the torque at each joints of the robot 

tau = 0.0000, 446.0656, 85.7443, 0.0000, 2.1631, -0.0000. 

5.4 Robot Programming Tools: 

 As ARTE toolbox has feature of robot program tool, it is give the ability 

to test the manipulator robots for any chosen application. In this research the 

robot tested as aluminum milling machine application where the result of 

MATLAB Simulink showed in 3d animation. 
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5.5 Results discussions: 

The experimental result obtained by feedback testing showed these 

solutions are less erroneous and more accurate. In the simulated programming 

application which with this method has been tested, all the steps have been 

implemented and therefore the result is based on the accuracy of the models 

in the simulation environment. Even the results are based upon simulation; 

one can conclude that the measurement has enough accuracy for practical 

usage. 
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Chapter six 

Conclusion and Recommendations 

6.1 Conclusion:  

 In this research modeling and simulation of 6-DOF KUKA KR 6 

manipulator robot have been performed using theoretical analysis and ARTE 

toolbox that work under MATLAB program.  

 The Denavit-Hartenberg and inertia parameters and also kinematic and 

dynamic analysis of robot were exploited.  

 The theoretical approach only gives the forward kinematics values and 

inverse kinematics values. but to find individual velocity, force, torque values 

of each link and joint it is complicated.  

 By using ARTE toolbox in MATLAB we can easily identify velocity 

acceleration graphs and their values regarding the joints and links and 

simulation of robot end effector can be done.  

 Simulation results show that the modeling method is effective and it 

lays a solid foundation for designing and manufacturing the real assistant 

robot. 

 Graphical programming languages like MATLAB can be utilized as 

powerful tools for simulating a robotic system as it is reported in this research. 

 With the aid of the MATLAB robotic simulation toolboxes, the core 

ideas of the coordinate transformation, forward and inverse kinematics, 

dynamic, control and robot programming are conveyed vividly. 

 By using ARTE toolbox programing tools the KUKA KR6 tested as 

aluminum milling machine application so this tool can be used to simulate and 

animate manipulator robots in many different applications and study their 

behaviors and kinematic and dynamic properties and get best approaches for 

development and enhancement the manipulator robots performance. 
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6.2 Recommendations:  

 A number of issues with respect to absolute safety, accuracy, cost-

effectiveness etc., still remains unaddressed which are up to the engineers to 

consider, before feasibly manufacturing it.  

 With this approach, we sincerely hope to simplify the complexity 

further and attain a complete solution for the kinematic and dynamic of a 

robotic manipulator using MATLAB and other help tools. 
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Appendix A: KUKA KR 6 manipulator robot specifications and 

dimentions 

 

  



2-A 
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Appendix B: MATLAB codes: 

B1: MATLAB code for Visualization robot  
function robot = parameters() 

  
robot.DH.theta= '[ q(1)    q(2)-pi/2    q(3)      q(4)    q(5)    q(6)  ]'; 
robot.DH.d='     [ 0.675   0            0        -0.67     0     -0.115 ]'; 
robot.DH.a='     [ 0.26    0.68        -0.035      0       0       0   ]'; 
robot.DH.alpha= '[ -pi/2   0           pi/2      -pi/2    pi/2     pi  ]'; 

  
robot.name= 'KR6_2'; 

  
robot.inversekinematic_fn = 'inversekinematic_kuka_kr6_2(robot, T)'; 

  
%number of degrees of freedom 
robot.DOF = 6; 

  
%rotational: 0, translational: 1 
robot.kind=['R' 'R' 'R' 'R' 'R' 'R']; 

  
%minimum and maximum rotation angle in rad 
robot.maxangle =[deg2rad(-185) deg2rad(185); %Axis 1, minimum, maximum -185 a 

185 
                deg2rad(-155) deg2rad(35); %Axis 2, minimum, maximum 
                deg2rad(-130) deg2rad(154); %Axis 3 
                deg2rad(-350) deg2rad(350); %Axis 4: Unlimited (400؛ default) 
                deg2rad(-130) deg2rad(130); %Axis 5 
                deg2rad(-350) deg2rad(350)]; %Axis 6: Unlimited (800؛ default) 

  
%maximum absolute speed of each joint rad/s or m/s 
robot.velmax = [deg2rad(156); %Axis 1, rad/s 
                deg2rad(156); %Axis 2, rad/s 
                deg2rad(156); %Axis 3, rad/s 
                deg2rad(343); %Axis 4, rad/s 
                deg2rad(362); %Axis 5, rad/s 
                deg2rad(659)];%Axis 6, rad/s 
% end effectors maximum velocity 
robot.linear_velmax = 1.0; %m/s, not specified 
robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time 

  
%base reference system 
robot.T0 = eye(4); 

  
%INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION 
%position, velocity and acceleration 
robot=init_sim_variables(robot); 

  

  
% GRAPHICS 
robot.graphical.has_graphics=1; 
robot.graphical.color = [255 20 40]./255; 
%for transparency 
robot.graphical.draw_transparent=0; 
%draw DH systems 
robot.graphical.draw_axes=1; 
%DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for 
%bigger robots 
robot.graphical.axes_scale=1; 



 B1-2 

 

%adjust for a default view of the robot 
robot.axis=[-1.5 1.5 -1.5 1.5 0 2]; 
%read graphics files 
robot = read_graphics(robot); 

  
%DYNAMICS 
robot.has_dynamics=1; 

  
%consider friction in the computations 
robot.dynamics.friction=0; 

  
%link masses (kg) 
robot.dynamics.masses=[25 27 15 10 2.5 1.5]; 

  
%COM of each link with respect to own reference system 
robot.dynamics.r_com=[0       0          0; %(rx, ry, rz) link 1 
                     -0.05   0.006   0.1; %(rx, ry, rz) link 2 
                    -0.0203 -0.0141  0.070;  %(rx, ry, rz) link 3 
                     0       0.019       0;%(rx, ry, rz) link 4 
                     0       0           0;%(rx, ry, rz) link 5 
                     0       0         0.032];%(rx, ry, rz) link 6 

  
%Inertia matrices of each link with respect to its D-H reference system. 
% Ixx   Iyy Izz Ixy Iyz Ixz, for each row 
robot.dynamics.Inertia=[0      0.35 0       0   0   0; 
    .13     .524    .539    0   0   0; 
    .066    .086    .0125   0   0   0; 
    1.8e-3  1.3e-3  1.8e-3  0   0   0; 
    .3e-3   .4e-3   .3e-3   0   0   0; 
    .15e-3  .15e-3  .04e-3  0   0   0]; 

  

  

  
robot.motors=load_motors([5 5 5 4 4 4]); 
%Speed reductor at each joint 
robot.motors.G=[300 300 300 300 300 300]; 
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B2: MATLAB code for forward kinematic of the KUKA KR 6 robot: 
%load robot parameters 
 robot=load_robot('kuka', 'kr6_2'); 

  

  
total_simulation_time = 0.5 %simulate for .5 second 

  
%initial position and joint speeds 
q0 = [0 0 0 0 0 0]'; 
qd0 = [0 0 0 0 0 0]'; 

  
g=[0   0 -9.81]'; %Z0 axis 

  
drawrobot3d(robot, q0); 
adjust_view(robot); 

  
%try both 
%tau = [0 0 0 0 0 0]';%no torques applied 
tau = [0 200 1 1 1 1]'; 
%tau = [20 20 21 21 21 21]'; 

  
%no friction 
robot.friction = 0; 

  
fprintf('\nCOMPUTING FORWARD DYNAMICS (this may take a while)') 

  
%this may take a while, since it requires integration 
%of the acceleration at each time step 
%[t q qd] = forwarddynamic(robot, total_simulation_time, q0, qd0, tau, [0 0 

9.81]); 
            %forwarddynamic(robot, time_end, q0, qd0, tau, g, torqfun, 

varargin) 
[t q qd] =  (robot, total_simulation_time, q0, qd0, tau, g, []); 

  
%animate it!! 
animate(robot, q) 

  
figure, plot(t, q), grid, title('Position vs. time') 
xlabel('time (s)'), ylabel('Position (rad)') 
legend('q_1', 'q_2', 'q_3', 'q_4', 'q_5', 'q_6'); 

  
figure, plot(t, qd), grid, title('Speed vs. time') 
xlabel('time (s)'), ylabel('Speed (rad/s)') 
legend('qd_1', 'qd_2', 'qd_3', 'qd_4', 'qd_5', 'qd_6'); 
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B3: MATLAB code for inverse kinematic of the KUKA KR 6 robot 

%there are eight possible solutions for the inverse kinematic problem for most 

of these robots 
n_solutions = 8; 

  
%Try different configurations beware that, depending on the robot's topology 
%not all the eight possible solutions will be feasible for an antropomorphic 6R 

robot. 
q=[0.5 -0.5 pi/6 0.1 0.1 0.1] 
%q = [0.1 -pi/4 pi/4 0.1 0.1 0.1]; 

  
%load robot parameters. You can try different robots 
%robot=load_robot('ABB', 'IRB140'); n_solutions = 8; 
%robot=load_robot('ABB', 'IRB120'); n_solutions = 8; 
%robot=load_robot('ABB', 'IRB1600_6_120'); n_solutions = 8; 
%robot=load_robot('ABB', 'IRB1600_X145_M2004'); n_solutions = 8; 

  

  
%adjust 3D view as desired 
adjust_view(robot) 

  
%there are just 2 solutions for these robots and 4 DOF 
%q = [pi/2 0.2 0.8 pi/4] 
%q = [-pi/4 pi/2 0.5 pi] 
%robot=load_robot('kuka', 'KR5_scara_R350_Z200'); n_solutions = 2; 
%robot=load_robot('example', 'scara'); n_solutions = 2; 
%robot=load_robot('example', '2dofplanar'); n_solutions = 2; 
%robot=load_robot('example', '3dofplanar'); n_solutions = 2; 
%robot=load_robot('example', 'prismatic');n_solutions = 1; %just one possible 

solutions for this case 

  

  
%draw the robot 
drawrobot3d(robot, q) 

  
%Now compute direct kinematics for this position q 
T = directkinematic(robot, q) 

  
%Set to zero if you want to see the robot transparent 
robot.graphical.draw_transparent=0; 

  
%Set to one if you want to see the DH axes 
%abb.graphical.draw_axes=1; 

  
%Call the inversekinematic for this robot. All the possible solutions are 
%stored at qinv. At least, one of the possible solutions should match q 
qinv = inversekinematic(robot, T); 

  

  
fprintf('\nNOW WE CAN REPRESENT THE DIFFERENT SOLUTIONS TO ACHIEVE THE SAME 

POSITION AND ORIENTATION\n') 
fprintf('\nNot that some solutions may not be feasible. Some joints may be out 

of range\n') 
correct=zeros(1,n_solutions); 
%check that all of them are possible solutions! 
for i=1:size(qinv,2), 
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  Ti = directkinematic(robot, qinv(:,i)) %Ti is constant for the different 

solutions     

     
    % Note that all the solutions may not be feasible. Some of the joints may 
    % be out of range. You can test this situation with test_joints 
    test_joints(robot, qinv(:,i)); 

     

     
    %now draw the robot to see the solution 
    drawrobot3d(robot, qinv(:,i)) 

     
    pause(1); 

     
    k=sum(sum((T-Ti).^2)); 
    if k < 0.01 % a simple threshold to find differences in the solution 
        correct(1,i)= 1;         
    else 
        correct(1,i)= 0; %uncorrect solution 
        fprintf('\nERROR: One of the solutions seems to be uncorrect. Sum of 

errors: %f', i, k); 
    end 
end 
%Display a message if any of the solutions is not correct 
if sum(correct)==n_solutions 
    fprintf('\nOK: Every solution in qinv yields the same position/orientation 

T'); 
else 
    fprintf('\nERROR: One or more of the solutions seems to be uncorrect.'); 
end 

  
%Now, test if any of the solutions in qinv matches q 
%find the solution that matches the initial q 
%delta is just a squared sum of errors at each of the columns of the matrix 
%which store the different solutions of qinv 
delta=(repmat(q',[1 n_solutions])-qinv).^2; 
i=find(sum(delta,1)<0.01); 
if ~isempty(i) 
    fprintf('\nOK!: Found a matching solution:\n'); 
    qinv(:,i) 
else 
    fprintf('\nERROR: Did not find a matching solution for the initial q'); 
end 
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B4: Matlab code for joint space and Cartesian space approach 

robot=load_robot('kuka', 'kr6_2'); 

%NOA matrix initial point 

T1=[0 0 1 1.5; 

    0 -1 0 -0.3; 

    1 -0 0 1.320;  

    0 0.707 0  1.320] 

%NOA matrix end point 

T2=[0.325 -.776 0.541 0.5; 

    0.9 -.42 -0.05 -0.04; 

    0.27 0.47 0.839 1.7;  

    0.5 0.2 0.12  0.8] 

  

%distancia entre puntos consecutivos 

delta = 0.02; 

  

punto_inicial = T1(1:3,4); 

punto_final = T2(1:3,4); 

  

v=(punto_final-punto_inicial); 

v=delta*v/norm(v); %vector normalizado en la direcci  َn de la 

recta 

distancia = sqrt((punto_final-punto_inicial)'*(punto_final-

punto_inicial)); 

%Generaci  َn de puntos en la trayectoria 

num_points = floor(distancia/delta); 

puntos = punto_inicial; 

for i=1:num_points, 

    puntos=[puntos i*v+punto_inicial]; 

end 

puntos=[puntos punto_final]; 

  



 B4-2 

figure, hold on, grid, 

plot3(puntos(1,:),puntos(2,:),puntos(3,:)), title('Trajectory in 

space'), xlabel('X (m)'), ylabel('Y (m)') 

  

qs=[]; 

for i=1:length(puntos), 

    T1(1:3,4)=puntos(1:3,i);     

    qinv = inversekinematic(robot, T1); 

     

    %select the joint coordinates in qinv which are closest to 

the  

    %current joint position robot.q 

    q=select_closest_joint_coordinates(qinv, robot.q); 

    qs=[qs q]; 

    robot.q=q;%update robot.q here 

end 

  

drawrobot3d(robot, qs(:,1)) 

adjust_view(robot) 

drawrobot3d(robot, qs(:,end)) 

  

%Now, animate the robot in 3D 

animate(robot, qs); 

  

figure, hold, plot(qs(1,:), 'r'),plot(qs(2,:), 'g'), 

plot(qs(3,:), 'b'), plot(qs(4,:), 'c'),  

plot(qs(5,:), 'm.'), plot(qs(6,:), 'y.'), 

legend('q_1 (rad)','q_2 (rad)','q_3 (rad)', 'q_4 (rad)', 'q_5 

(rad)', 'q_6 (rad)' ), title('Joint trajectories'), xlabel('Step 

number') 
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B5: The following matlab code for forward dynamic for kuka kr6 robot as 

assumed no friction and no torque applied. 

 

%load robot parameters 

 robot=load_robot('kuka', 'kr6_2'); 

total_simulation_time = 0.5 %simulate for .5 second 

%initial position and joint speeds 

q0 = [0 0 0 0 0 0]'; 

qd0 = [0 0 0 0 0 0]'; 

g=[0   0 -9.81]'; %Z0 axis 

drawrobot3d(robot, q0); 

adjust_view(robot); 

%try both 

%tau = [0 0 0 0 0 0]';%no torques applied 

tau = [0 200 1 1 1 1]'; 

%tau = [20 20 21 21 21 21]';  

%no friction 

robot.friction = 0;  

fprintf('\nCOMPUTING FORWARD DYNAMICS (this may take a while)')  

%this may take a while, since it requires integration 

%of the acceleration at each time step 

%[t q qd] = forwarddynamic(robot, total_simulation_time, q0, qd0, 

tau, [0 0 9.81]); 

           %forwarddynamic(robot, time_end, q0, qd0, tau, g, 

torqfun, varargin) 

[t q qd] =  (robot, total_simulation_time, q0, qd0, tau, g, []);  

%animate it!! 

animate(robot, q)  

figure, plot(t, q), grid, title('Position vs. time') 

xlabel('time (s)'), ylabel('Position (rad)') 

legend('q_1', 'q_2', 'q_3', 'q_4', 'q_5', 'q_6'); 

figure, plot(t, qd), grid, title('Speed vs. time') 

xlabel('time (s)'), ylabel('Speed (rad/s)') 

legend('qd_1', 'qd_2', 'qd_3', 'qd_4', 'qd_5', 'qd_6'); 
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B6: sample matlab code to compute torques at each pose(q1&q2)  

fprintf('\nTorques at each joint given position q1, zero speed and 

acceleration, standard gravity acting on Z0') 

fprintf('\nComputing static torques at position q1 due to gravity [0 0 9.81]') 

tau = inversedynamic(robot, q1, [0 0 0 0 0 0], [0 0 0 0 0 0], [0  0 9.81]', [0 0 

0 0 0 0]') 

drawrobot3d(robot,q1) 

disp('press any key to continue') 

pause 

fprintf('\nTorques at each joint given position q2, zero speed and 

acceleration, standard gravity acting on Z0') 

fprintf('\nComputing static torques at position q2 due to gravity [0 0 9.81]'); 

fprintf('\nPLEASE note the differences with respect to torque tau_2 at q1'); 

tau = inversedynamic(robot, q2, [0 0 0 0 0 0], [0 0 0 0 0 0], [0  0 9.81]', [0 0 

0 0 0 0]') 

drawrobot3d(robot,q2) 

disp('press any key to continue') 

pause 
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B7: Matlab code for the application: 

 

function adept_simulation 

    global robot 

    global qua 

    global milling_tool 

  

    % Para que la ejecucion no sea tan lenta 

    configuration.delta_time=0.04; 

  

    q=[0 0 0 0 pi/2 0]; 

  

    % Configuraci  َn inicial 

   robot=load_robot('kuka', 'kr6_2'); 

    punto=directkinematic(robot, [0 0 0 0 pi/2 0]); 

    qua=T2quaternion(punto); 

  

    robot.tool=load_robot('equipment/end_tools', 'milling_machine'); 

    robot.equipment[1]=load_robot('equipment', 'aluminum_plate'); 

    drawrobot3d(robot, q); 

    robot.graphical.draw_axes = 0; 

    robot.tool.graphical.draw_axes = 0; 

     

    adjust_view(robot) 

  

    

milling_tool=[1,[[robot.tool.TCP(1,4),robot.tool.TCP(2,4),robot.tool.TCP(3,4)],

[1,0,0,0]],[0,[0,0,0],[1,0,0,0],0,0,0]];  

  

    main; 

end 

  

function main() 

    circleA; 

    vel=obtain_joint_speed(robot, speeddata); 

    circleB;   

    triangle; 

    circleC; 
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 circleD; 

    endpos; 

end 

  

  

function circleA() 

    global qua milling_tool 

     

    E=[[0.7 0.2033 0.2; 0.66 0.2433 0.2; 0.7 0.2833 0.2;0.74 0.2433 0.2]]; 

  

    RT_tp0=[[E(1,1:2) 0.4],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp1=[[E(1,:)],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp2=[[E(2,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp3=[[E(3,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp4=[[E(4,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];     

     

    MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp1,RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveC(RT_tp2,RT_tp3, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveC(RT_tp3,RT_tp4, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveC(RT_tp4,RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveJ(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

end 

  

  

function vel=obtain_joint_speed(robot, speeddata) 

  

  

if strncmp(speeddata, 'vmax',4); 

    vel=robot.velmax; 

else 

    [tag,remain] = strtok(speeddata, 'v'); 

    vel = robot.velmax.*str2num(tag)/6000; 
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end 

end  

  

function circleB() 

    global qua milling_tool 

     

    E=[[1.025 0.16 0.2; 0.985 0.2 0.2; 1.025 0.24 0.2;1.065 0.2 0.2]]; 

  

    RT_tp0=[[E(1,1:2) 0.4],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp1=[[E(1,:)],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp2=[[E(2,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp3=[[E(3,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp4=[[E(4,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

  

    MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp1,RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveC(RT_tp2,RT_tp3, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp3,RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp4,RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveJ(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

end 

  

function circleC() 

    global qua milling_tool 

     

    E=[[0.7 -0.2033 0.2; 0.74 -0.2433 0.2; 0.7 -0.2833 0.2;0.66 -0.2433 0.2]]; 

     

    RT_tp1=[[E(1,:)],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp2=[[E(2,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp3=[[E(3,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 
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 RT_tp4=[[E(4,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp0=[[E(1,1:2) 0.4],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

     

    MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp1,RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveC(RT_tp2,RT_tp3, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp3,RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp4,RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveJ(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

end 

  

function circleD() 

    global qua milling_tool 

     

    E=[[1.025 -0.16 0.2; 1.065 -0.2 0.2; 1.025 -0.24 0.2;0.985 -0.2 0.2]]; 

  

    RT_tp1=[[E(1,:)],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp2=[[E(2,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp3=[[E(3,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp4=[[E(4,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp0=[[E(1,1:2) 0.4],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

  

    MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

  

    MoveC(RT_tp1,RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveC(RT_tp2,RT_tp3, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp3,RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveC(RT_tp4,RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveJ(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

end 
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function triangle() 

    global qua milling_tool 

     

    E=[[0.8 -0.0866 0.2; 0.8 0.0866 0.2; 0.95 0 0.2; 0.8 -0.0866 0.5]]; 

  

    RT_tp1=[[E(1,:)],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp2=[[E(2,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp3=[[E(3,:)],[qua], [-1, -1, -2, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

    RT_tp4=[[E(4,:)],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

     

    MoveL(RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

    MoveL(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveL(RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveL(RT_tp3, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveL(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0'); 

    MoveL(RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

end 

  

function endpos() 

    global qua milling_tool 

    

    RT_tpend=[[0.7 0.2033 0.4],[qua], [0, -1, -1, 

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 

  

    MoveL(RT_tpend, 'vmax' , 'z100' , milling_tool, 'wobj0'); 

end 

   

 

 

 

 


