
Sudan University of Science and Technology

College of Graduated Studies

M.sc. Program in Mechatronics Engineering

Modelling and Simulation of KUKA KR6 Robot Manipulator

 (KUKA KR6)محاكاة ونمذجة الذراع الألي

 A Thesis Submitted in Partial fulfillment for the Requirements of the

 Degree of M.Sc. in Mechatronics Engineering

 Prepared by:

 NASR ABDO ALI MOHAMMED

 Supervised by:

 Dr. MOHAMMED EL-NOUR ABDALLA

April 2017

II

 الأية

III

Dedication

 All praise to Allah, today we fold the days' tiredness and the

errand summing up between the cover of this humble work.

To the Spring that never stops giving, to my mother who weaves my

happiness with strings from her merciful heart... to my mother.

To whom he strives to bless comfort and welfare and never stints what

he owns to push me in the success way who taught me to promote life stairs

wisely and patiently, to my dearest father

To whose love flows in my veins, and my heart always remembers them,

to my brothers and sisters.

To those who taught us letters of gold and words of jewel of the utmost

and sweetest sentences in the whole knowledge. Who reworded to us

their knowledge simply and from their thoughts made a lighthouse guides

us through the knowledge and success path, To our honored teachers

and professors.

IV

Acknowledgement

 I would like to reflect on the people who have supported and helped

me so much throughout period of search.

 Special thanks goes to my search supervisor, Dr. MOHAMMED EL-

NOUR. I have learned many things since I became his student. He spends

very much time instructing me how to write a paper, how to search literature

and how collect data.

V

ABSTRACT

 This research about modeling and simulation of 6-DOF manipulator

robots and the KUKA KR 6 manipulator robot have been selected as a target

robot for study. The study performed using theoretical analysis including

mathematical modeling of the robot based on transformation matrix and

geometry approach for kinematic analysis and based on Euler-Lagrange

equations and recursive Newton-Euler for dynamic analysis, then the

modeling implemented by ARTE toolbox that work under MATLAB

program. These analyses are important for manipulator robots where the

execution of the specific task requires the manipulator to follow a preplanned

path, which the practical geometric parameters, physical characteristics and

restriction relations are adopted to establish robots’ dynamics and kinematics

model. The robot model has been developed as accurate as the real one by

implementing dynamic model of robot in ARTE toolbox linking with

MATLAB for motion studies. 3D Simulation experiments show that the

modeling method is efficient and it provides an effective platform for

researching on the assistant robot system.

VI

 مستخلصال

تحرك القدرة على ال ولديهستخدام الاومحاكاة روبوت متعدد نمذجةدراسة إلىالبحث فيهد

 جةللبحث. تم نمذ كنموذج (KUKA KR6(حيث تم اختيار الروبوت)DOF-6في ستة محاور)

نهجية مو نتقالية كل من نظرية المصفوفات الإ عتمد علىوت بواسطة التحليل الرياضي الذي االروب

جرانج(لا-اوليربينما استخدمت كل من نظرية) اد معادلات الحركة الكيناماتيكيةيجلإ سيالتحليل الهند

من ثم تم تنفيذ محاكاة ديناميكية للروبوت. ويجاد معادلة الحركة الاويلر(لإ-ف نيوتنو)ريكريس

وبوت لرن تنفيذ اذجة والمحاكاة للروبوت مهمة حيث أهذه النم ،ستخدام ماتلاب تولبوكسالروبوت با

شكل ن العوامل الهندسية لبحيث ألأي مهمة يتطلب تحرك الروبوت في مسار معد ومخطط له مسبقا

كيف ن ت يجب أ الروبوت والخواص الفيزيائية للروبوت والعوامل الاخرى المقيدة لحركة الروبوت

ل على محاكاة صووللحبحيث يتم التناسق في الحركة تبعا لمعادلات الحركة الديناميكية والكيناماتيكية.

صممت بشكل خاص لدراسة وتحليل الأنظمة (ARTE Toolboxجديدة) أداة استخدامتم دقيقة

 اءةكفذات (ARTE Toolboxالمحاكاة ثلاثية الأبعاد باستخدام) توصلت الدراسة أنالروبوتية.

المزيد مام أ فتح الباببالإضافة أنها تفي هذا المجال ين والمهتمينمكانية تساعد الباحثعالية وذات إ

 .المستقبلية في هذا المجالبحاث من الأ

VII

Table of Contents

الأية .. II

Dedication ..III

Acknowledgement .. IV

ABSTRACT ... V

خلصتالمس ... VI

Table of Contents ... VII

List of Tables .. XI

List of Figures .. XII

List of Abbreviations …………………………….…………………..…. XIV

List of Symbols…………...………………...…………………………......XV

Chapter One: Introduction

1.1 Preface ... 1

1.2 Problem Statement ... 2

1.3 Solution Proposed .. 2

1.4 Research Aims and Objectives .. 2

1.5 Research Methodology .. 3

1.6 Research layout .. 3

Chapter Two: Fundamentals of Manipulator Robots Modeling

2.1 Background .. 4

2.2 Modeling and Identification of Serial Robots ... 4

VIII

2.3 Space Movement Representation .. 5

2.4 Homogeneous Matrix .. 5

2.5 Direct Kinematics .. 6

2.6 Geometric Modeling .. 7

2.7 Denavit-Hartenberg (DH) Convention .. 7

2.8 Identification of Denavit-Hartenberg Parameters of an Industrial Robot . 8

2.9 Inverse kinematics ...10

2.10 Dynamic Modeling ..11

2.11 Newton-Euler and Euler-Lagrange formulations12

Chapter Three: Kinematics and Dynamics of KUKA KR6 Robot

3.1 KUKA KR6 robot specifications ...13

3.2 Kinematics Model of KUKA KR6 ..14

3.3 The Direct Geometric Model ...14

3.4 The D-H Parameters of KUKA KR 6 Robot ...15

3.5 Inverse Kinematic Model of KUKA KR 6 Robot19

3.6 Geometric Approach ..19

3.7 Dynamic Modeling of KUKA KR 6 Robot Manipulator26

3.8 Forward Dynamics...26

3.9 Inverse Dynamics ..27

3.10 KUKA KR 6 Manipulator Robot Parameters ..27

3.11 Dynamic Formulations ..28

IX

Chapter Four: MATLAB Simulation for KUKA KR 6 Robot

4.1 Introduction ..32

4.2 Robotics Technology and The MATLAB Toolboxes32

4.3 MATLAB Toolboxes ..33

4.4 A Robotics Toolbox for Education (ARTE) ...33

4.5 Main Features of The Toolbox ..34

4.6 Geometry Description ..35

4.7 Visualization Tool ...35

4.8 Kinematics concept ..36

4.9 Direct Kinematics ..36

4.10 Inverse Kinematics ..37

4.11 Trajectory Planning ...38

4.12 Dynamic Modeling ..39

4.13 Inverse Dynamics ..41

4.14 Robot Programming Tools ..43

4.15 Allumium Milling Application Using KUKA KR6 robot44

Chapter Five: Results and Discussions

5.1 Introduction ..46

5.2 Kinematic Modeling and Simulation Results ..46

5.2.1 KUKA KR 6 Joints Trajectory Planning48

5.3 Dynamic Modeling and Simulation Results ..49

5.3.1 Forward Dynamic Results Analysis50

X

5.3.2 Inverse Dynamics Results Analysis51

5.4 Robot Programming Tools ..52

5.5 Results discussions ..52

Chapter Six Conclusion and Recommendations

6.1 Conclusions ..54

6.2 Recommendations..55

References ..56

Appendices………………………………………………………....….59-74

XI

List of Tables

 2.1 Symbolic notation used to describe the DH parameters with its

definition. 9

 3.1 The KUKA KR6-2 robot specifications. 13

 3.2 D-H Parameters for KUKA KR 6 robot. 16

 3.3 DATA OF INERTIA AND CENTROIDS USING THE SOFTWARE SOLID

 EDGE. 27

file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678392
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678392
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678393
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678393
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678394
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678394
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678395
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678395

XII

List of Figures

 2.1a Rotation around to axis Z. 6

 2.1b Translation Px, Py, Pz. 6

 2.2 direct kinematics. 7

 2.3 DH parameters and Frames attached. 9

 2.4 Frame convention for modified DH parameters. 10

 2.5 Inverse kinematics. 11

 3.1 Reference coordinate systems, for the KR6 KUKA Robot. 14

 3.2 The joints of the robot with coordinate system following the DH-

convention. 16

 3.3 geometrical representation of first joint angle calculation. 20

 3.4 Visual representation of joint 3 angle calculation. 21

 3.5 Joint 2 angle calculation vector representation. 23

 3.6 Joint 5 angle calculation geometrical visualization. 24

 4.1 KUKA KR6 view and its corresponding data structure. 36

 4.2 snapshot for MATLAB kinematic function results for KUKA KR6

robot. 36

 4.3 matlab snapshot sample of 8 solution matched with q values. 38

 4.4 joint trajectory in joint space approach. 39

 4.5 joint trajectory in Cartesian space approach. 39

 4.6 varying joints speed with time. 40

 4.7 varying joints position with time. 42

file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678398
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678399
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678400
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678401
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678402
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678403
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678404
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678405
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678405
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678406
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678407
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678408
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678409
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678410
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678410
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678410
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678411
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678412
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678413
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678414
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678415

XIII

4.8 robot 3d view for q1= [0 0 0 0 0 0]. 43

4.9 robot 3d view for q1= [0 pi/2 -pi/2 0 0 0]. 43

4.10 the usage of the teach graphical user interface (GUI). 44

4.11 3d view for aluminum plate milling application. 45

5.1 DH parameters represented in MATLAB. 47

5.2 KUKA KR6 view. 48

 5.3 the robot joints trajectory. 49

5.4 the values of varying joints speed with time 51

5.5 the values of varying joints speeds with time 52

5.6 ROBOT 3D VIEW FOR Q1= [0 PI/2 -PI/2 0 0 0]. 52

file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678416
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678417
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678418
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678419
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678420
file:///C:/Users/nasr/Desktop/search.docx%23_Toc471678421
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678422
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678423
file:///D:/search/بحث%20شبه%20جاهز.docx%23_Toc471678423

XIV

List of Abbreviations

ARTE - A Robotics Toolbox for Education

DGM - Direct Geometric Model

DH - Denavit-Hartenberg

DOF - Degree-Of-Freedom

FMS - Flexible Manipulator Systems

GUI - Graphical User Interface

KUKA - Keller und Knappich Augsburg

UMH - Miguel Hernández University of Elche

3D - Three Dimension

XV

List of Symbols

D,d - Diameter

F - Force

G - Gravity = 9.81 m/s

I - Moment of inersia

l - Length

m - Mass

N - Rotational Velocity

Q,q - Volumetric Flow-Rate

r - Radius

T - Torque

V - Velocity

x - Displacement

z - Height

θ - Angle

Chapter One

Introduction

Introduction Chapter One

1

Chapter One

Introduction

1.1 Preface

The ever-increasing utilization of robotic manipulators in various

applications in recent years has been motivated by the requirements and

demands of industrial automation. Among the rigid and flexible manipulator

types, attention is focused more towards flexible manipulators. This is owing

to various advantages such manipulators offer as compared to their rigid

counterparts. Exploitation of the potential benefits and capabilities of rigid

and flexible manipulators introduces a further emerging line of research in

which hybrid rigid–flexible manipulator structures are considered.

Flexural dynamics (vibration) in flexible manipulators has been the main

research challenge in the modeling and control of such systems. Accordingly,

research activities in flexible manipulators have looked into the development

of methodologies to cope with the flexural motion dynamics of such systems.

 A considerable amount of research on the development of dynamic

models of flexible manipulators has been carried out. These have led to

descriptions in the form of either partial differential equations, or finite-

dimensional ordinary differential equations. From a control perspective, an

input/output characterization of the system is desired, which can be obtained

through suitable online estimation and adaptation mechanisms. Given the

dynamic nature of flexible manipulator systems, the practical realization of

such methodologies presents new challenges.

The motion of a mechanical system is related via a set of dynamic

equations to the forces and torques the system is subject to. In this work, we

Introduction Chapter One

2

will be primarily interested in robots consisting of a collection of rigid links

connected through joints that constrain the relative motion between the

links[1].

1.2 Problem Statement:

The purpose of this research is to present an analytical method and

a geometrical approach for solving forward and inverse kinematics and

dynamics problem of a particular six degree-of freedom serial manipulator,

accordingly. Where kinematics analysis requires deriving the formulation that

shows the relation between angles of robot joints and the position of the robot

end-effector. Whereas the dynamics analysis requires deriving equations that

explain the relations between the forces effecting on robot and the motions

parameters such as velocity and acceleration. The target robot is a KR 6

KUKA which is an industrial manipulator production of KUKA corporation.

1.3 Proposed Solution:

This work will present the study and modelling of KR 6 KUKA Robot,

of the Robotics and shows the MATLAB model (Computer Design), the direct

kinematics, the inverse kinematics and the inverse dynamical model. The

direct kinematic is based in the use of homogeneous matrix. The inverse

kinematics uses the geometric approach model. The dynamical model is based

on the use of Euler-Lagrange equations and recursive Newton-Euler.

1.4 Research Aim and Objectives:

 This research will present the modeling of KUKA KR 6 Robot:

1. Robot modeling.

2. MATLAB simulation.

Introduction Chapter One

3

1.5 Research Methodology:

search supposed to contain two main parts:

first part: modeling and mathematical analysis:

 There are two main formalisms for deriving the dynamic equations for

such mechanical systems: Newton-Euler equations that are directly based on

Newton’s laws and Euler-Lagrange equations that have their root in the

classical work of Alembert and Lagrange on analytical mechanics and the

work of Euler and Hamilton on vibrational calculus.

second part: MATLAB toolbox and Simulink analysis:

 In this part of search where we can use MATLAB graphical user

interface (GUI) aspects to build 3D model for robot and make motion control

for that model.

1.6 Research layout:

Chapter two: This chapter presents basic concepts of manipulator robotic

modeling.

Chapter three: This chapter studies the principles of kinematics and dynamics

of KUKA KR6 robot.

Chapter four: This chapter shows the MATLAB simulation for KUKA KR6

robot and analysis its results.

Chapter five: This chapter shows the results that introduced from simulation

and its discussions.

Chapter six: This chapter concludes the research and presents

recommendations for future work.

Chapter Two

Fundamentals of Manipulator Robots Modeling

 Fundamentals of Manipulator Robots Modeling Chapter Two

4

Chapter Two

Fundamentals of Manipulator Robots Modeling

2.1 Background:

 Research on flexible manipulator systems (FMS) ranges from a single-link

manipulator rotating about a fixed axis to three-dimensional multi-link arms.

However, experimental work, in general, is almost exclusively limited to

single-link manipulators. This is because of the complexity of multi-link

manipulator systems, resulting from more degrees of freedom and the

increased interactions between gross and deformed motions. It is important

for control purposes to recognize the flexible nature of the manipulator system

and to build a suitable mathematical framework for modelling of the system.

FMSs offer several advantages in contrast to their traditional rigid

counterparts. These include faster system response, lower energy

consumption, the requirement of relatively smaller actuators, reduced non-

linearity owing to elimination of gearing, lower overall mass and, in general,

lower overall cost. However, owing to the distributed nature of the governing

equations describing dynamics of such systems, the control of flexible

manipulators has traditionally involved complex processes. Moreover, to

compensate for flexural effects and thus yield robust control the

design focuses primarily on non-collocated controllers[1].

2.2 Modeling and Identification of Serial Robots:

The design and control of robots require certain mathematical models, such

as:

 transformation models between the operational space (in which the

position of the end-effector is defined) and the joint space (in which the

configuration of the robot is defined). The following is distinguished:

 Fundamentals of Manipulator Robots Modeling Chapter Two

5

 direct and inverse geometric models giving the location of the end-

effector

(or the tool) in terms of the joint coordinates of the mechanism and vice

versa.

 direct and inverse kinematic models giving the velocity of the end-

effector in terms of the joint velocities and vice versa.

 dynamic models giving the relations between the torques or forces of

the actuators, and the positions, velocities and accelerations of the

joints[2].

2.3 Space Movement Representation:

 For the representation of space movements there are several methods

such as rotation matrix, vectors, quaternions, roll pitch and yaw, Euler angles,

homogenous matrix. The selected method used for the developing of the direct

kinematic model in this work is the homogeneous matrix.

2.4 Homogeneous Matrix:

 Homogeneous matrices are 4×4 matrixes, which can represent

rotations, translations, scales and perspectives. In general, the homogeneous

matrices represent linear transformations. The general form is presented in

equation:

𝐴 = [
[𝑅(3 × 3)] [𝑇(3 × 1)]

[𝑃(3 × 3)] [𝐸(1 × 1)]
] (2.1)

𝑅(3 × 3) Corresponds to a matrix of three rows by three columns representing

rotations.

𝑇(3 × 1) Corresponds to an array of three rows by a column that represents

translation.

𝑃(3 × 3) Represents a vector of a row of three columns representing the

perspective.

 Fundamentals of Manipulator Robots Modeling Chapter Two

6

𝐸(1 × 1) Corresponds to a scalar that represents the scale of the

transformation. For this case 𝑃 ⃑⃑ ⃑ = 0⃑ and E = 1 the principal homogeneous matrix

Rotation around the Z axis as:

1 Figure 2.1a: Rotation around to axis Z.

2 Figure 2.1b: Translation Px, Py, Pz.

 The movements in the space are represented by a series of rotations and

translations, these rotations and translations figures (2.1a&b), can be

represented as a homogeneous matrix multiplication.

2.5 Direct Kinematics:

 Direct kinematics refers to the use of the kinematic equations of

a robot to compute the position of the end-effector from specified values for

the joint parameters[3]. In this model, the movements of the robot

(coordinates of degrees of freedom) are given and the final positions are

https://en.wikipedia.org/wiki/Kinematic
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Robot_end_effector

 Fundamentals of Manipulator Robots Modeling Chapter Two

7

found. See Figure (2.2).

3 Figure 2.2: direct kinematics.

 To find the direct kinematic model, using the homogeneous matrix

method, is necessary to make the moves of coordinated system from the fixed

base until the last link. For each movement, homogeneous matrices are

obtained and the final result is the product of these matrices[4].

2.6 Geometric Modeling:

 A systematic and automatic modeling of robots requires an appropriate

method for the description of their morphology. Several methods and

notations have been proposed. The most widely used one is that of Denavit-

Hartenberg. However, this method, developed for simple open structures,

presents ambiguities when it is applied to closed or tree-structured robots.

Hence, the notation of Khalil and Kleinfinger enables the unified description

of complex and serial structures of articulated mechanical systems[2].

2.7 Denavit-Hartenberg (DH) Convention:

The DH parameters were originally proposed by Denavit and

Hartenberg (1955) and widely used to define links’ configuration of a robotic

manipulator consisting of one degree-of-freedom (DOF) joints, i.e., revolute

or prismatic. Later, Khalil and Kleinfinger (1986) showed that the DH

parameters are powerful tool for serial robots, but, lead to ambiguities in the

 Fundamentals of Manipulator Robots Modeling Chapter Two

8

case of closed and tree structured robots. They presented the modified DH

parameter from its original definition. Craig (1991) also used modified DH

notation for serial robots[5].

In order to compute the direct kinematics equation for an open-chain

manipulator general method is to be derived to define the relative position and

orientation of two consecutive links; the problem is that to determine two

frames attached to the two links and compute the coordinate transformations

between them. In general, the frames can be arbitrarily chosen as long as they

are attached to the link they are referred to. Nevertheless, it is convenient to

set some rules also for the definition of the link frames[6].

 A robot manipulator consists of several links connected by, usually,

single degree of freedom joints, say, a revolute or a prismatic joint. In order

to control the end-effector with respect to the base, it is necessary to find the

relation between the coordinate frames attached to the end-effector and the

base[5].

2.8 Identification of Denavit-Hartenberg Parameters of an Industrial

Robot:

 The travel from the base frame to the end-effector frame is achieved by

moving across two consecutive frames placed at the joints.

The set of four parameters relates the transformation between Frame i to

Frame i+1 by bi, θi, ai and αi, as shown in figure (2.3) and figure (2.4) and the

parameters defined as in table (2.1) [7].

 Fundamentals of Manipulator Robots Modeling Chapter Two

9

4 Figure 2.3: DH parameters and Frames attached.

1 Table 2.1: Symbolic notation used to describe the DH parameters with its definition[7].

 Fundamentals of Manipulator Robots Modeling Chapter Two

10

5 Figure 2.4: Frame convention for modified DH parameters.

The transformation matrix defining the frame i the frame i+1 is obtained

from figure (2.4):

 𝑛−1𝑇𝑛 = 𝑅𝑜𝑡𝑥𝑛−1
(𝛼𝑛−1). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛−1

(𝛼𝑛−1). 𝑅𝑜𝑡𝑍𝑛
(𝜃𝑛). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛

(𝑑𝑛) (2.2)

 𝑛−1𝑇𝑛 = [

𝐶𝜃𝑛+1 −𝑆𝜃𝑛+1𝐶𝛼𝑛+1 𝑆𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝐶𝜃𝑛+1

𝑆𝜃𝑛+1 𝐶𝜃𝑛+1𝐶𝛼𝑛+1 −𝐶𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝑆𝜃𝑛+1

0 𝑆𝛼𝑛+1 𝐶𝛼𝑛+1 𝑑𝑛+1

0 0 0 1

] (2.3)

2.9 Inverse kinematics:

 Inverse kinematics refers to the use of the kinematics equations of a

robot to determine the joint parameters that provide a desired position of

the end-effector figure (2.5). Specification of the movement of a robot so that

its end-effector achieves a desired task is known as motion planning.

 Inverse kinematics transforms the motion plan into

joint actuator trajectories for the robot. The inverse kinematics seeks the

https://en.wikipedia.org/wiki/Kinematics
https://en.wikipedia.org/wiki/Robot_end_effector
https://en.wikipedia.org/wiki/Motion_planning
https://en.wikipedia.org/wiki/Actuator

 Fundamentals of Manipulator Robots Modeling Chapter Two

11

coordinates of each degree of freedom based on the final position of the

robot[3].

6 Figure 2.5: Inverse kinematics.

 There are two approaches to solve the inverse kinematics problem of a

robot manipulator; mathematical or algebraic and geometrical. The higher

degrees of freedom requires the more complicated algebraic solution[8].

Therefore, this section has been devoted to present a geometrical solution for

the inverse kinematics problem of a KUKA KR6.

2.10 Dynamic Modeling:

 Dynamic modeling means deriving equations that explicitly describes

the relationship between force and motion. These equations are important to

consider in simulation of robot motion, and in design of control algorithms[9].

 During the work cycle a manipulator must accelerate, move at constant

speed and decelerate. This time-varying position and orientation of

manipulator is termed as its dynamic behavior. Time-varying torques are

applied at the joints to balance out the internal and external forces[10].

 The internal forces are cause by motion of link. Inertial, Coriolis, and

frictional forces are some of the internal forces. The external forces are the

forces exerted by the environment. These include load and gravitational

 Fundamentals of Manipulator Robots Modeling Chapter Two

12

forces[10].

 The real problem in robot dynamics is a practical one, namely, that of

finding formulations for the equations of motion that lead to efficient

computational algorithms. To derive these equations, we can use well

established procedures from classical mechanics such as those based on the

equations of Newton-Euler, Euler-Lagrange[11].

2.11 Newton-Euler and Euler-Lagrange formulations:

 In the Newton-Euler approach, the derivation of the equations of

motion is based on direct application of Newton's and Euler's laws, while in

the Lagrangian approach, the equations of motion are derived from two scalar

quantities, namely, the kinetic and potential energy[11]. The resulting

dynamic model is the same for both methods and can be written in matrix

form as[9].

𝑇(𝑡) = 𝐷(𝜃(𝑡))𝜃̈(𝑡) + ℎ (𝜃(𝑡), 𝜃̇(𝑡)) + 𝑐(𝜃(𝑡)) (2.4)

Were:

𝑇(𝑡) =Vector torque.

𝜃(𝑡) = Vector of joint positions.

𝜃̇(𝑡) = Vector of angular Velocities.

𝜃̈(𝑡) = Vector of angular acceleration.

𝐷 = Inertia matrix.

ℎ(𝜃(𝑡), 𝜃̇(𝑡)) = Vector of Coriolis and centrifugal force.

𝑐(𝜃) = Gravity forces vector.

Chapter Three

Kinematics and Dynamics of KUKA KR6 Robot

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

13

Chapter Three

Kinematics and Dynamics of KUKA KR6 Robot

 3.1 KUKA KR6 robot specifications:

KUKA KR6 is an industrial robot designed by links which are

connected to each other by six revolute joints. All the joints of this robot are

the same and there is no prismatic, cylindrical, planar or any other type of

joint in the structure of the robot, the table (3.1) shows the robot specifications.

2 Table 3.1: The KUKA KR6- robot specifications.

.

Pictures and dimension of the robot is appended in appendix A

KUKA KR6-2 robot specifications

Payload 6 kg

Total load 16 kg

Maximum reach 1611 mm

Number of controlled axes 6

Position repeatability ±0,05 mm

Weight 235 kg

Mounting positions Floor

Ambient temperature 0 °C bis + 0 °C

Controller KR C4

Protection class IP 65

Protection class inline wrist IP 65

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

14

3.2 Kinematics Model of KUKA KR6:

 The manipulator kinematics model is based on the use of homogeneous

matrix for this purpose; coordinated systems are located in a convention

proposed by the authors. Supported by recommendations of the Denavit-

Hartenberg algorithm[4].

3.3 The Direct Geometric Model:

 The direct geometric model (DGM) is the set of relations which express

the position of the end-effector, i.e. operational coordinates of the robot,

according to its joint coordinates. In the case of a simple open-chain, it can be

represented by the transformation matrix 0Tk.

𝑇𝑘 =
0 𝑇1(𝑞1) 𝑇2(𝑞2)…

0 𝑇𝑘(𝑞𝑛) (3.1)
𝑛−1

0

q being the vector of joint coordinates

7
Figure 3.1: Reference coordinate systems, for the KR6 KUKA Robot.

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

15

The generated movements for going from one frame to another are

mathematically represented by homogeneous matrix transformations and

follow the particular geometry of the robot link to link as in figure (3.1)[4]:

1. R(Zo, θo) ∗ T(Zo, L1) (3.2)

2. T(Xo´, L2) ∗ R (Xo´,
π

2
) ∗ R (Zo´,

π

2
) (3.3)

3. R(Z1, θ1) ∗ T(X1, L3) ∗ R (Z1´, −
π

2
) (3.4)

4. R(Z2, θ2) ∗ T(X2, L4) (3.5)

The full kinematic model is presented in equation:

𝑇 = R(Zo, θo) × T(Zo, L1) × T(Xo´, L2) × R(Xo´,
π

2
) × R(Zo´,

π

2
)

× R(Z1, θ1) × T(X1, L3) × R (Z1´, −
π

2
) × R(Z2, θ2)

× T(X2, L4) (3.6)

3.4 The D-H Parameters of KUKA KR 6 Robot:

 Denavit and Hartenberg put forwards to a matrix method to build the

attached coordinate system on each link in the joint chains of the robot to

describe the relationship of translation or rotation between the contiguous

links way back in 1955. This robot kinematic model is based on the D-H

Coordination system figure (3.2) and table (3.2) shows D-H Parameters for

KUKA KR 6 robot.

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

16

3Table 3.2: D-H Parameters for KUKA KR 6 robot.

Joint

Number

Joint angle

)degi(

Joint offset

)mi(d

Link length

)mi(a

Twist angle

)degi (

1 1 d1 a1 -90

2 2 0 a2 0

3 3 0 a3 90

4 4 d4 0 -90

5 5 0 0 90

6 6 d6 0 180

8Figure 3.2: The joints of the robot with coordinate system following the DH-

convention.

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

17

 The transformations between each two successive joints can be

written by simply substituting the parameters from the parameters table into

the T matrix. The transform matrix is given by the following order of

operations[10]:

 𝑛−1𝑇𝑛 = 𝑅𝑜𝑡𝑥𝑛−1
(𝛼𝑛−1). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛−1

(𝛼𝑛−1). 𝑅𝑜𝑡𝑍𝑛
(𝜃𝑛). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛

(𝑑𝑛) (3.7)

Thus, the matrix of the modified DH parameters becomes:

 𝑛−1𝑇𝑛 = [

𝐶𝜃𝑛+1 −𝑆𝜃𝑛+1𝐶𝛼𝑛+1 𝑆𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝐶𝜃𝑛+1

𝑆𝜃𝑛+1 𝐶𝜃𝑛+1𝐶𝛼𝑛+1 −𝐶𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝑆𝜃𝑛+1

0 𝑆𝛼𝑛+1 𝐶𝛼𝑛+1 𝑑𝑛+1

0 0 0 1

] (3.8)

Where (C = cosine, S = sine)

The transformation matrices are computed in the following:

 0𝑇1 = [

Cθ1
Sθ1
0
0

0
0

−1
0

−Sθ1
−Cθ1

0
0

 𝑎1𝐶θ1
 𝑎1𝑆θ1

𝑑1
1

] (3.9)

 1𝑇2 = [

Cθ2
Sθ2
0
0

−𝑆θ2
𝐶θ2
0
0

0
0
1
0

𝑎2𝐶θ2
𝑎2𝑆θ2

0
1

] (3.10)

 2𝑇3 = [

Cθ3
Sθ3
0
0

0
0
0
0

𝑆θ3
−𝐶θ3

0
0

𝑎3𝐶θ3
𝑎3𝑆θ3

0
1

] (3.11)

 3𝑇4 = [

Cθ4
Sθ4
0
0

0
0

−1
0

−𝑆θ4
𝐶θ4
0
0

0
0
𝑑4
1

] (3.12)

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

18

 4𝑇5 = [

Cθ5
Sθ5
0
0

0
0
1
0

𝑆θ5
−𝐶θ5

0
0

0
0
0
1

] (3.13)

 5𝑇6 = [

Cθ6
Sθ6
0
0

−𝑆θ6
𝐶θ6
0
0

0
0
1
0

0
0
0
1

] (3.14)

The total transformation between the base of the robot and the hand is:

 𝑅𝑇𝐻 = T1. T2. T3. T4. T5. T6 (3.15)

 𝑅𝑇𝐻 = T1. T2. T3. T4. T5. T6 = [

𝑆𝑥

𝑆𝑦

𝑆𝑧

0

𝑛𝑥

𝑛𝑦

𝑛𝑧

0

𝑎𝑥

𝑎𝑦

𝑎𝑧

0

𝑃𝑥

𝑃𝑦

𝑃𝑧

1

] (3.16)

 After calculation and identification of the terms of two matrices then

we can find the values of 𝑃𝑥, 𝑃𝑦 & 𝑃𝑧 let,

 0𝑇6 = [

𝑟11

𝑟21

𝑟31

0

𝑟12

𝑟22

𝑟32

0

𝑟13

𝑟23

𝑟33

0

𝑟14

𝑟24

𝑟34

1

] (3.17)

 The position and the orientation of the end effector in roll-pitch-yaw

representation are as follows[8]:

 0𝑃6 = [

𝑟14

𝑟24

𝑟34

] (3.17)

𝑝𝑖𝑡𝑐ℎ = 𝐴𝑡𝑎𝑛2(𝑟13, √𝑟23
2 + 𝑟33

2) (3.18)

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

19

𝑟𝑜𝑙𝑙 = {

0 𝑝𝑖𝑡ℎ =
𝜋

2
,−

𝜋

2

𝐴𝑡𝑎𝑛2 (−
𝑟12

cos(𝑝𝑖𝑡𝑐ℎ)
,

𝑟11

cos(𝑝𝑖𝑡𝑐ℎ)
) 𝑜. 𝑤

 (3.19)

𝑦𝑎𝑤 =

{

 𝐴𝑡𝑎𝑛2(𝑟32, 𝑟22) 𝑝𝑖𝑡𝑐ℎ =

𝜋

2

−𝐴𝑡𝑎𝑛2(𝑟32, 𝑟22) 𝑝𝑖𝑡𝑐ℎ = −
𝜋

2

𝐴𝑡𝑎𝑛2 (−
𝑟12

cos(𝑝𝑖𝑡𝑐ℎ)
,

𝑟11

cos(𝑝𝑖𝑡𝑐ℎ)
) 𝑜. 𝑤

 (3.20)

Where Atan = tan-1

3.5 Inverse Kinematic Model of KUKA KR 6 Robot:

 Transformation matrix Equation will be used to calculate inverse

kinematics equations. Its solution, however, is much more complex than direct

kinematics since there is no unique analytical solution. Each manipulator

needs a particular method considering the system structure and

restrictions[12].

3.6 Geometric Approach:

 The user specifies the desired target position of the end-effector in

Cartesian space as (x, y, z) where z is the height, and the angle of the end-

effector relative to ground. In a geometrical method, vectors describe the

robot’s state to solve the problem which is the calculation of the joint angles

of the robot. This section is divided into five subsections to illustrate the joint

angles’ computing method[8].

Joint 1

 The first joint angle’s calculation, as shown in figure (3-3), is

accomplished by the projection of a vector which originates from the origin

of frame K0 and ends to the origin of frame 𝐾4(𝑃𝑘04
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑) on the X-Y plane of

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

20

frame K0.

let 𝑇𝐺
0 be the target transformation matrix relative to the base which defines

the target position and orientation.

𝑇𝐺
0 =

[

𝑇11𝐺
0 𝑇12𝐺

0

𝑇21𝐺
0 𝑇22𝐺

0
𝑇13𝐺

0 𝑇14𝐺
0

𝑇23𝐺
0 𝑇24𝐺

0

𝑇31𝐺
0 𝑇32𝐺

0

0 0
 𝑇33𝐺

0 𝑇34𝐺
0

0 1]

 ⟹ 𝑁𝑘06
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ = [

𝑇13𝐺
0

𝑇23𝐺
0

𝑇33𝐺
0

] (3.21)

then,

{

 𝑃𝑘06

4⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝑑6 × 𝑃𝑁𝑘06
4⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑

𝑃𝑘06
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ = [

𝑇14𝐺
0

𝑇24𝐺
0

𝑇34𝐺
0

]
 (3.22)

9 Figure 3.3: geometrical representation of first joint angle calculation.

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

21

⇒ 𝑃𝑘06
4⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝑃𝑘06

4⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ − 𝑃𝑘06
4⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ = [

𝑇14𝐺
0 − 𝑑6 𝑇13𝐺

0

𝑇24𝐺
0 − 𝑑6 𝑇23𝐺

0

𝑇34𝐺
0 − 𝑑6 𝑇33𝐺

0

] (3.23)

so,

𝜃1 = {
𝐴𝑡𝑎𝑛2(𝑇24𝐺

0 − 𝑑6 𝑇23𝐺
0 , 𝑇14𝐺

0 − 𝑑6 𝑇13𝐺
0)

𝐴𝑡𝑎𝑛2(𝑇24𝐺
0 − 𝑑6 𝑇23𝐺

0 , 𝑇14𝐺
0 − 𝑑6 𝑇13𝐺

0) + 𝜋
 (3.24)

Joint 3

10 Figure 3.4: Visual representation of joint 3 angle calculation.

 Based on figure (3-4) illustration, to calculate 𝜃3, first 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ needs to be

calculated. In order to compute 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ , 𝑃𝑘04

0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ should be available, beforehand.

By having 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ and l1,  can be calculated and then by using a simple

geometric rule, which helps to compute the angle of between two edges of a

triangle,  will be quantified.

let 𝜃2 = 0

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

22

and

𝑇2
0 =

[

𝑇112
0 𝑇122

0

𝑇212
0 𝑇222

0
𝑇132

0 𝑇142
0

𝑇232
0 𝑇242

0

𝑇312
0 𝑇322

0

 𝑇332

0 𝑇342
0

]

 (3.25)

Thus,

⟹ 𝑁𝑘02
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ = [

𝑇132
0

𝑇232
0

𝑇332
0

] (3.26)

𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝑃𝑘04

0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ − 𝑃𝑘02
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ =

[

 𝑃𝑘0𝑥4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑

𝑃𝑘0𝑦4
2⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑

𝑃𝑘0𝑧4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑]

 (3.27)

∅ = 𝐴𝑠𝑖𝑛(
(𝑙1

2 − 𝑎2
2 + | 𝑃𝑘04

2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑|
2

)

2 | 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑| 𝑙1

)

+ 𝐴𝑠𝑖𝑛

(

 | 𝑃𝑘04

2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑| −
𝑙1
2 − 𝑎2

2 + | 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑|

2

2 | 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑|

𝑎2

)

 (3.28)

𝛼 = 𝐴𝑡𝑎𝑛2(−𝑑4, 𝑎3) (3.29)

So,

𝜃3 = {
𝜋 − ∅ − 𝛼
𝜋 + ∅ − 𝛼

 (3.30)

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

23

Joint 2

11Figure 3.5: Joint 2 angle calculation vector representation.

2 is computed by 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑, β1 and β2 as Figure (3.5) displays

𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝑅0

2 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝑅0

2 𝑃𝑘04
−12⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ (3.31)

𝑇 = [𝑅2
0 𝑅𝑂𝑅𝐺2

0

0 1
] (3.32)2

0

𝑅2
0 =

[

𝑇112
0 𝑇122

0

𝑇212
0 𝑇222

0
𝑇132

0

𝑇232
0

𝑇312
0 𝑇322

0

 𝑇332

0
]

= 𝑅−1

0
2 (3.33)

𝑃𝑘24
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑ =

[

𝑇112
0 𝑇122

0

𝑇212
0 𝑇222

0
𝑇132

0

𝑇232
0

𝑇312
0 𝑇322

0

 𝑇332

0
]

[

 𝑃𝑘0𝑥4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑

𝑃𝑘0𝑦4
2⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑

𝑃𝑘0𝑧4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑]

 (3.34)

Thus

𝛽1 = 𝐴𝑡𝑎𝑛2 (𝑃𝑘2𝑥4
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, 𝑃𝑘2𝑦4

2⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑) (3.35)

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

24

𝛽2 = 𝐴𝑠𝑖𝑛(
𝑎2

2 − | 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑|

2

+ 𝑙1
2

2𝑙1𝑎2
) + 𝐴𝑠𝑖𝑛

(

 𝑙1 −

𝑎2
2 − | 𝑃𝑘04

2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑|
2

+ 𝑙1
2

2𝑙2

| 𝑃𝑘04
2⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑|

)

 (3.36)

And then,

𝜃2 = {

𝜋

2
− (|𝛽1| + 𝛽2)

𝜋

2
+ (|𝛽1|𝛽2

)
 (3.37)

Joint 5

12 Figure 3.6: Joint 5 angle calculation geometrical visualization.

 In order to calculate 5, 𝑇4
0 is computed by assuming 4 is equal to 0.

Then by using the definition of dot product of two normal vectors which are

shown in Figure (3.6), 5 is obtained.

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

25

𝑇4
0 =

[

𝑇114
0 𝑇124

0

𝑇214
0 𝑇224

0
𝑇134

0 𝑇144
0

𝑇234
0 𝑇244

0

𝑇314
0 𝑇324

0

 𝑇334

0 𝑇344
0

]

⟹ 𝑁𝑘04

0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ = [

𝑇134
0

𝑇234
0

𝑇334
0

] (3.38)

So we have,

𝜃5 = 𝜋 − 𝐴𝑐𝑜𝑠 (𝑁𝑘04
0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝑁𝑘06

0⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑) (3.39)

Joint 4 and 6

To obtain 4 and 6, rotation matrix 𝑅6
4 is used. On the one hand 𝑅6

4 is:

𝑅6
4 = 𝑅−1 𝑅 = 𝑅0

4 𝑅 (3.40)6
0

6
0

4
0

And on the other hand,

𝑅6
4 = 𝑅𝑜𝑡𝑧(𝜃4)𝑅𝑜𝑡𝑦(𝜃5 + 𝜋)𝑅𝑜𝑡𝑧(𝜃6) (3.41)

In which,

𝑅𝑜𝑡𝑦(𝜃5 + 𝜋) = [
𝑐𝑜𝑠(𝜃5 + 𝜋) 0 𝑠𝑖𝑛(𝜃5 + 𝜋)

0 1 0
−𝑠𝑖𝑛(𝜃5 + 𝜋) 0 𝑐𝑜𝑠(𝜃5 + 𝜋)

] (3.42)

𝑅𝑜𝑡𝑧(𝜃6) = [
𝑐𝑜𝑠(𝜃6) −𝑠𝑖𝑛(𝜃6) 0

0𝑠𝑖𝑛(𝜃6) 𝑐𝑜𝑠(𝜃6) 0
0 0 1

] (3.43)

Thus,

𝑅 = [

−𝑐4𝑐5𝑐6 − 𝑠4𝑠6 𝑐4𝑐5𝑠6 − 𝑠4𝑐6 −𝑐4𝑠5

−𝑠4𝑐5𝑐6 + 𝑐4𝑠6 𝑠4𝑐5𝑠6 + 𝑐4𝑐6 −𝑠4𝑠5

𝑠5𝑐6 −𝑠5𝑠6 −𝑐5

] (3.44)6
4

in which C4 is corresponding to cos (4) and S4 is sin (4) and so forth. For

the sake of simplicity, let:

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

26

𝑅 = [

𝑅6
4

11 𝑅6
4

12 𝑅6
4

13

𝑅6
4

21 𝑅6
4

22 𝑅6
4

23

𝑅6
4

31 𝑅6
4

32 𝑅6
4

33

]6
4 (3.45)

So, we have,

𝜃4 = 𝐴𝑡𝑎𝑛2(− 𝑅6
4

23, 𝑅6
4

13) (3.46)

𝜃6 = 𝐴𝑡𝑎𝑛2(− 𝑅6
4

32, 𝑅6
4

31) (3.47)

3.7 Dynamic Modeling of KUKA KR 6 Robot Manipulator:

 In a dynamic model of a system there are two main aspects with which

one is concerned: motion and forces. The motion of a system is called its

trajectory and consists of a sequence of desired positions, velocities, and

accelerations of some point or points in the system. Forces are usually

characterized as internal (or constraint) forces and external (or applied)

forces. The external forces are the ones which cause motion[11].

3.8 Forward Dynamics:

 The Forward or direct dynamics is one where the forces which act on a

robot are given and we wish to solve for the resulting motion. In its simplest

form, the forward dynamics problem can be expressed symbolically as a

vector differential equation of the form:

𝑞̈ = ℎ(𝑞, 𝑞̇, 𝜏, manipulator parameters) (3.48)

where, q is the vector of generalized coordinates joint variables, 𝑞̈ and 𝑞̇ are

its derivatives with respect to time, 't is the (input) generalized force vector,

i.e., the vector of joint torques and/or joint forces and the "manipulator

parameters" are all those parameters which characterize the particular

geometry and dynamics of a robot manipulator[11].

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

27

3.9 Inverse Dynamics:

 The inverse dynamics is one in which we need to determine the

generalized forces that will produce a specified motion trajectory.

The inverse dynamics problem can be described mathematically by an

equation of the form:

𝜏 = 𝑓(𝑞, 𝑞̇, 𝑞̈, manipulator parameters) (3.49)

3.10 KUKA KR 6 Manipulator Robot Parameters:

 The dynamic simulation of a robotic is based upon a set of equations

and assumes that a great number of parameters are known. These parameters

include the inertia matrices that model the robot links, the center of mass of

each link with respect to its D-H reference system and more... such as viscous

friction factors.

 To determine the inertia tensor of each, link the CAD model was used,

obtaining the inertia moments around of the reference system used in the

assembly module of the CAD software. As an example is presented the case

of link 2[4].

4Table 3.3: data of inertia and centroids using the software solid edge[4].

m2 38,767 Kg

Ixx2 112,0126 Kg-m2

Iyy2 107,2872 Kg-m2

Izz2 16 Kg-m2

Ixy2 7,1702 Kg-m2

Ixz2 -22,7151 Kg-m2

Iyz2 -30,4911 Kg-m2

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

28

3.11 Dynamic Formulations:

 Based on Euler-Lagrange formulations the model represented in a

matrix form is shown in equation as following:

𝑇(𝑡) = 𝐷(𝜃(𝑡))𝜃̈(𝑡) + ℎ (𝜃(𝑡), 𝜃̇(𝑡)) + 𝑐(𝜃(𝑡)) (3.50)

Were:

𝑇(𝑡) = [𝑇1(𝑡)𝑇2 ……𝑇𝑛(𝑡)]
𝑇Vector torque, size nx1

𝜃(𝑡) = [𝜃1(𝑡)𝜃2 ……𝜃𝑛(𝑡)]
𝑇Vector of joint positions, size nx1.

𝜃̇(𝑡) = [𝜃̇1(𝑡)𝜃̇2 …… 𝜃̇𝑛(𝑡)]
𝑇
Vector of angular Velocities, size nx1.

𝜃̈(𝑡) = [𝜃̈1(𝑡)𝜃̈2 …… 𝜃̈𝑛(𝑡)]
𝑇
Vector of angular acceleration, size nx1.

𝐷𝑖𝑘 = ∑ 𝑇𝑟(𝑈𝑗𝑘𝐽𝑗𝑈𝑗𝑖
𝑇)

𝑛

𝑗=max (𝑖,𝑘)

i, k = 1,2. . , n Inertia matrix, size nxn(3.51)

𝐽𝑖 =

[

−𝐼𝑥𝑥 + 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑥𝑦 𝐼𝑥𝑧 𝑚𝑖𝑥𝑖

𝐼𝑥𝑦

𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑦𝑧 𝑚𝑖𝑦𝑖

𝐼𝑥𝑧 𝐼𝑦𝑧

𝐼𝑥𝑥 + 𝐼𝑦𝑦 − 𝐼𝑧𝑧

2
𝑚𝑖𝑧𝑖

𝑚𝑖𝑥𝑖 𝑚𝑖𝑦𝑖 𝑚𝑖𝑧𝑖 𝑚𝑖]

Inertia Tensor, size 4x4 (3.52)

By using data of inertia given in equation (3.52) the Inertia tensor can be

determined as following matrix [4].

Xc -0,3661 M

Yc -0,505 M

Zc 1,55 M

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

29

[

2,295
4,062
7,170

0

4,062
53,840
22,715
 7,753

7,170
22,715
1,111
14,195

0
7,753
14,195
38,767

]

ℎ(𝜃, 𝜃̇)

= [ℎ1 ℎ2 ……ℎ𝑛]
𝑇Vector of Coriolis and centrifugal force, Size nx1(3.53)

ℎ𝑖 = ∑ ∑ ℎ𝑖𝑘𝑚𝜃̇𝑘𝜃̇𝑚

𝑛

𝑚=1

𝑛

𝑘=1

 𝑖 = 1,2,… . . 𝑛 (3.54)

ℎ𝑖𝑘𝑚 = ∑ 𝑇𝑟(𝑈𝑗𝑘𝑚𝐽𝑗𝑈𝑗𝑖
𝑇)

𝑛

𝑗=max(𝑖,𝑘,𝑚)

i, k,m = 1,2,… , n (3.55)

𝑐(𝜃) = [𝐶1 𝐶2 ………𝐶𝑛]
𝑇Gravity forces vector size nx1

𝐶𝑖 = ∑ (−𝑚𝑗𝑔𝑈𝑗𝑖
𝑗
𝑟𝑗)

𝑛
𝑗=𝑖 𝑖 = 1,2,… . , 𝑛 (3.56)

 From the direct kinematic model, presented it is necessary determine

Ujk matrices, the inertia tensor Ji for each link, the inertia effects D, the matrix

hi and hijk of Coriolis and centrifugal acceleration, the position vector R and

the gravitational vectors force C.

To calculate the matrix Ujk is used the canonical equation as:

𝑈𝑗𝑘 =
𝜕 0𝐴𝑗

𝜕𝜃𝑘
= 0𝐴𝑗−1𝑄𝑖

𝑗−1
𝐴𝑘 (3.57)

For the determination of the matrix D (matrix of inertial effects). It is

necessary to use the following Equation:

𝐷(𝜃) = [

𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

𝐷31 𝐷32 𝐷33

] (3.58)

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

30

 For the determination of vector h, vector of Coriolis and centrifugal

forces, the following equation is proposed. This equation presents the

angular velocities independently through the matrix Hi,v

ℎ𝑖 = 𝜃̇𝑇𝐻𝑖,𝑣𝜃̇ (3.59)

Where

𝐻𝑖,𝑣 = [

ℎ𝑖11
ℎ𝑖12

ℎ𝑖13

ℎ𝑖21
ℎ𝑖22

ℎ𝑖23

ℎ𝑖31
ℎ𝑖32

ℎ𝑖33

] (3.60)

Thus, the vector h of centrifugal and Coriolis forces is:

 Kinematics and Dynamics of KUKA KR 6 Robot pter ThreeCha

31

For the Determination of the gravity force vector C:

𝑐(𝜃) = [𝐶1 𝐶2 𝐶3]
𝑇 (3.67)

𝐶𝑖 = ∑(−𝑚𝑗𝑔𝑈𝑗𝑖 𝑟𝑗̅
𝑗)

3

𝑗=𝑖

 𝑖 = 1,2,3 (3.68)

𝐶1 = −𝑚1𝑔𝑈11 𝑟1̅
1 − 𝑚2𝑔𝑈21 𝑟2̅

2 − 𝑚3𝑔𝑈31 𝑟3 ̅̅ ̅
3

𝐶2 = −𝑚2𝑔𝑈22 𝑟2̅
2 − 𝑚3𝑔𝑈32 𝑟3̅

3

𝐶3 = −𝑚3𝑔𝑈33 𝑟 ̅
3

(

𝐶1

𝐶2

𝐶3

) = [

−𝑚1𝑔𝑈11 𝑟1̅
1 − 𝑚2𝑔𝑈21 𝑟2̅

2 − 𝑚3𝑔𝑈31 𝑟3 ̅̅ ̅
3

–𝑚2𝑔𝑈22 𝑟2̅
2 − 𝑚3𝑔𝑈32 𝑟3̅

3

−𝑚3𝑔𝑈33 𝑟 ̅
3

] (3.69)

The vector r in the reference system of rotation axes is:

𝑟1 = [

−0.0052
0.0026
0.369

1

] 𝑟2 = [

0
0.2

0.366
1

]
2 𝑟3 = [

0
0.454

−.00015
1

]
3 (3.70)

1

𝑔 = [0 0 − 𝑔 0]

The total system is then as follows:

𝑇(𝑡) = 𝐷(𝜃(𝑡))𝜃̈(𝑡) + ℎ (𝜃(𝑡), 𝜃̇(𝑡)) + 𝑐(𝜃(𝑡))

Chapter Four

MATLAB Simulation for KUKA KR 6 Robot

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

32

Chapter Four

MATLAB Simulation for KUKA KR 6 Robot

4.1 Introduction:

 The fundamental of robotics technology such as kinematics, dynamics,

coordinate transformation and trajectory planning is neither easy nor fun like

watching robot movies or playing with robot toys for the students.

 Apart from difficulty in grasping the mathematical concept and relate

it immediately to robot practical behavior, visualizing the concept through

conventional teaching approach is challenging. The safety concern also

hinders the extent to which researchers could be allowed to independently

handle and explore robotics equipment’s, and hence limits the attainment of

the learning outcomes. It is therefore important to review strategy with

incorporation of relevant information technology tools which is constantly

evolving for effective and productive outcomes.

 Several tools are now available in this respect, among them is a

MATLAB based computational toolboxes dedicated to robotics applications.

This toolbox provides collection of functions (tools) that support

representation and presentation of fundamental concepts in robotics such as

robot configuration based on standard notations, robot kinematics, dynamics

and trajectory generation, etc.

4.2 Robotics Technology and MATLAB Toolboxes:

 Robotics technology is the art, knowledge base, and the know-how of

designing, applying and using robots in human endeavors. It is an integrated

field of study incorporating several areas of science and engineering

discipline. The major learning activities and skills required been: physical

design of structures and mechanisms; computational design including

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

33

software/program development; and lastly mission planning. The details of

each of these activities depends on the type of robot and its domain of

application.

 In this research, focus is beamed on serial robots, also known as robot

manipulator due to their overwhelming popularity in industrial application

and automation. The fundamental concepts needed in the design and

development of this type of robots are: pose and coordinate transformation,

geometry description; forward and inverse kinematics; and trajectory

planning for a given application. These concepts are not only mathematically

intensive; they require intuitive understanding in relation to their practical

applications. With these challenges in mind, MATLAB robotics toolboxes

was developed[13].

4.3 MATLAB Toolboxes:

 The toolboxes are organized functionally to address each of the

fundamental concepts. It provides computation and visualization capabilities

for effective learning and students engagements. The next subsections outline

these basic concepts alongside the functional tools provided by the toolboxes.

 In this research toolbox used is a new toolbox ARTE (A Robotics

Toolbox for Education) that focused on the teaching of robotic manipulators

which it is developed by SPAINS searchers from Miguel Hernández

University of Elche (UMH).

4.4 A Robotics Toolbox for Education (ARTE):

 ARTE is a new library of toolbox focused on the teaching of robotic

manipulators. The library works under MATLAB and has been designed to

strengthen the theoretical concepts of manipulator robots. The educational

approach is focused on the main concepts through developing math modeling

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

34

and simulation. The library possesses features that typically needed the usage

of proprietary software, such as the visualization of a realistic 3D

representation of commercial robotic arms and the programming of those

arms in an industrial language. That includes the concepts of direct and

inverse kinematics, inverse and direct dynamics, path planning and robot

programming. As a transversal practice, during the sessions, the student is

asked to choose and integrate a new robotic arm in the library, proposing a

particular solution to the direct and inverse kinematic problem, as well as the

inclusion of other important parameters[14].

4.5 Main Features of The Toolbox:

 The toolbox presents the following main features:

(a) Denavit–Hartenberg's representation of the robotic manipulator.

(b) Capacity to visualize the position, velocity and acceleration of the joint

variables of the robot when it performs a movement. In addition, the capacity

to represent the velocity of the end effector during the simulation.

(c) Capacity to visualize joint forces and torques during the performance of

any movement.

(d) Realistic 3D representation of the robot link as solid objects.

(e) Path planning of joint trajectories.

(f) Programming the robot in an industrial language. Step-bystep simulation

of the program.

(g) Programming of the robot using a virtual teach pendant.

Creation of target points and way points using a graphical interface.

(h) Easy inclusion of new robots.

(i) Realistic representation of the robot in a robotic cell with auxiliary

equipment. The toolbox is available to download in its web site[15].

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

35

4.6 Geometry Description:

 This involves systematic description of robot arm geometry, and

determination of its configuration parameters based on number of joints, links

and relative pose of each joint to its preceding one. A common approach is to

use method proposed by Denavit and Hartenberg , known as D-H notation.

4.7 Visualization Tool:

 A visualization tool is highly required in this task for effective studies’

engagement. This is one of the great potential of the toolboxes.

Functions such as “load_robot” is provided to represent a link and create a

given serial robot, respectively.

 Visualize and animate the created robot using following functions

robot = load_robot(manufacturer, version), which returns a robot data

structure of the specified robot. Each robot parameters are stored in the

directory named robots/manufacturer/version. For our study robot we can load

a data structure corresponding to the robot by using following function

robot=load_robot('kuka', 'kr6_2'), as shown in figure (4.1), MATLAB code

for Visualization robot in [appendix B1]

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

36

 The robot view can be adjusted by using (adjust_view) function, and

(draw_axes) to draw axes (T, X_text, Y_text, Z_text, scale). There are another

functions for visualization requirements such as:

 (animate (robot, q) and drawrobot3d(robot, q)).

4.8 Kinematics concept:

 kinematics is the study of robot movement (motion) without recourse

to the force that causes it. Two types of kinematics are involved in serial robot

manipulator. forward kinematics and inverse kinematics.

4.9 Direct Kinematics:

 Forward kinematics seek to answer the following operational query,

“given the robot joint variables (angles), q, determine the robot end-effector

pose, relative to the reference frame. Mathematically, transformation process

13 Figure 4.1: KUKA KR6 view and its corresponding data structure.

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

37

expressed as product of individual link transformation matrices. The

transform matrix is given by the equations (3.3 – 3.4) in previous chapter [10].

The total transformation between the base of the robot and the hand is:

 𝑅𝑇𝐻 = T1. T2. T3. T4. T5. T6 (4.1)

The forward kinematics are computed using the toolbox function,

“directkinematic”

if we assume initial values for each joint (6 joints)

q = [0.5 -0.5 pi/6 0.1 0.1 0.1]

to compute direct kinematics for this position q

T = directkinematic(robot, q) figure(4.2).

MATLAB code for forward kinematic of the KUKA KR 6 robot appended in

[appendix B2].

4.10 Inverse Kinematics:

 The second type of kinematics, known as inverse kinematics is used to

determine the required joint angles for a given robot end-effector. There are

eight possible solutions for the inverse kinematic problem for most of these

robots. Unlike forward kinematics, it is quite computational intensive, it is not

unique, and a close-form solution may not exist for classes of robots. The

inverse kinematics are computed using the toolbox function,

“inversekinematic”

n_solutions = 8; not all the eight possible solutions will be feasible for an

anthropomorphic 6 axis robot.

 A call the “inversekinematic” for this robot. All the possible solutions

are stored at qinv. At least, one of the possible solutions should match q

qinv = inversekinematic(robot, T); as shown in figure(4.3) for n = 8 solutions

all of them matched with input q values.

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

38

MATLAB code for inverse kinematic of the KUKA KR 6 robot appended in

[appendix B3].

14

Figure 4.2: snapshot for MATLAB kinematic function results for KUKA KR6 robot.

 To check that all of them are feasible solutions and every Ti equals

 for i=1:8, Ti = directkinematic(robot, qinv(:,i))

4.11 Trajectory Planning:

 A trajectory is the path followed by the manipulator, plus the time

profile along the path. It involves planning of the robot movement from one

pose to the other.

 Issues in trajectory planning include: attaining a specific target from

an initial starting point, avoiding obstacles, and staying within

15 Figure 4.3: MATLAB snapshot sample of 8 solution matched with q values.

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

39

manipulator capabilities. Generally, given two ends points, it is required to

determine series of poses to be follow by the robot from starting point to the

end point using either joint space trajectory, or Cartesian space trajectory

approach. The detail description of the two types of trajectory planning

methods can be found in the literatures[13].

 The following MATLAB code is used for the joint space and Cartesian

space approach, respectively as shown in figures (4.4) & (4.5).

MATLAB code for joint space and Cartesian space approach [Appendix B4].

16 Figure 4.4: joint trajectory in joint space approach.

17 Figure 4.5: joint trajectory in Cartesian space approach.

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

40

4.12 Dynamic Modeling:

 To validate the dynamic model, the input data were oblique trajectories

and tasks that require the motion of the terminal element with constant speed,

working load which corresponds to the maximum load recommended by

KUKA Robot[4]. “forwarddynamic” function can be used to test the

manipulator robot, for applied this function we should determine simulation

time and values for position and joint speeds as in figures (4.6) & (4.7).

The MATLAB code for direct dynamic for KUKA KR6 robot as assumed no

friction and no torque applied [Appendix B5].

Figure (4.6): varying joints speed with time.

Figure (4.7): varying joints position with time.

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

41

4.13 Inverse Dynamics:

 Manipulator inverse dynamics, or simply inverse dynamics, is the

calculation of the forces and/or torques required at a robot's joints in order to

produce a given motion trajectory consisting of a set of joint positions,

velocities and accelerations. Mathematically, the inverse dynamics problem

can be described by a vector equation of the form:

𝜏 = 𝑓(𝑞, 𝑞̇, 𝑞̈, manipulator parameters) (4.2)

Where

𝜏 = 𝑡𝑜𝑟𝑞𝑢𝑒

𝑞 = 𝑗𝑜𝑖𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑞̇ = 𝑗𝑜𝑖𝑛𝑡 𝑠𝑝𝑒𝑒𝑑

𝑞̈ =acceleration

the function “inversedynamic” used to Compute inverse dynamics via

recursive Newton-Euler.

general call to inverse dynamic function:

TAU = inversedynamic(robot, Q, QD, QDD, GRAV, FEXT)

where if one of three different poses chosen then find which one the worst.

assume the poses have the following values

q1 = [0 0 0 0 0 0];

q2 = [0 pi/2 -pi/2 0 0 0];

q3 = [0 0 -pi/2 0 0 0];

for dynamic robot friction = 1

robot dynamics friction=1;

sample MATLAB code to compute torques at each pose(q1&q2) [Appendix

B6]

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

42

case (1) at pose q1= [0 0 0 0 0 0] as shown in figure (4.8).

18 Figure 4.8 : robot 3d view for q1= [0 0 0 0 0 0].

 In this case the result of MATLAB computing for inverse dynamic at

q1 as following: Torques at each joint given position q1, zero speed and

acceleration, standard gravity acting on Z0 computing static torques at

position q1 due to gravity [0 0 9.81]

tau = -0.0000, 87.3335, 85.7443, 0.0000, 2.1631, -0.0000

Case (2) at pose q2 = [0 pi/2 -pi/2 0 0 0] as shown in figure (4.9).

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

43

 In this case the result of MATLAB computing for inverse dynamic at

q1 as following Torques at each joint given position q2, zero speed and

acceleration, static torques at position q2 due to gravity [0 0 9.81].

The differences noted with respect to torque tau_2 at q1

tau = 0.0000, 446.0656, 85.7443, 0.0000, 2.1631, -0.0000. From previous

analysis, some differences of torques can be noted respect to position values.

4.14 Robot Programming Tools:

 programming tools are set of functions allow us to build our desired

application such as robot for pick and place application. The ARTE library

includes a subset of instructions of the ABB RAPID language that specialized

for robotic programming. Programming in ARTE will be done in the

following way[15]:

a) The teach graphical user interface (GUI) allows to simulate the robot

and program target points. The user will place the robot in different

points in the workspace that will be needed, for example, to pick a piece

or place it inside a box figure (4.10).

19 Figure 4.9: robot 3d view for q1= [0 pi/2 -pi/2 0 0 0].

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

44

b) These points will be defined in a m-file in order to do this, the points

created in the teach application can be exported to a m-file by using

“teach” function as shown in figure (4.10). Next, the user should write

a program using the equivalent MATLAB functions provided, such as

MoveJ(), MoveL() or MoveAbsJ().

c) The program can be simulated under MATLAB. By using its

debugging tools, you may execute the program step by step or even

look into the MATLAB’s functions.

Figure 4.10: the usage of the teach graphical user interface (GUI).

4.15 Allumium Milling Application Using Kuka Kr6 Robot:

 There are many functions used to program the robot and make control

motion of the robot, such as following function with their tasks.

MoveL: Make a linear planning in space.

MATLAB Simulation for KUKA KR 6 Robot Chapter Four

45

MoveC: Make a circular path in space.

Matlab code for the application [Appendix B7] and the result as shown in

figure (4.11).

20 Figure 4.11: 3d view for aluminum plate milling application.

Chapter Five

Results and Discussions

 Results and Discussions Chapter Five

46

Chapter Five

Results and Discussions

5.1 Introduction:

 As the basic principle of the manipulator robots modelling illustrated

in chapter tow, these principles implemented on the target manipulator robot

KUKA KR 6 as a practical study to support the research by applicable real

scientific sides as much as possible. The KUKA KR 6 robot subjected to

mathematical analysis, where the kinematic and dynamic formulations for

robot derived as shown in chapter three.

 The transformation matrix based on DH parameters used to obtain the

forward kinematic equations and the invers kinematic equations derived by

using geometrical method. The dynamic modeling analysis based on Euler-

Lagrange equations and recursive Newton-Euler formulations.

 New software tools work under MATLAB environment called ARTE

(a robotic toolbox for education) used to simulate the robot in advanced way

to get modeling analysis. The results of the modeling and MATLAB

simulation that obtained in chapter three and chapter four can be discussed as

the following:

5.2 Kinematic Modeling and Simulation Results:

The direct kinematic represented by transformation matrix as:

 𝑛−1𝑇𝑛 = 𝑅𝑜𝑡𝑥𝑛−1
(𝛼𝑛−1). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛−1

(𝛼𝑛−1). 𝑅𝑜𝑡𝑍𝑛
(𝜃𝑛). 𝑇𝑟𝑎𝑛𝑠𝑍𝑛

(𝑑𝑛) (5.1)

 𝑛−1𝑇𝑛 = [

𝐶𝜃𝑛+1 −𝑆𝜃𝑛+1𝐶𝛼𝑛+1 𝑆𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝐶𝜃𝑛+1

𝑆𝜃𝑛+1 𝐶𝜃𝑛+1𝐶𝛼𝑛+1 −𝐶𝜃𝑛+1𝑆𝛼𝑛+1 𝛼𝑛+1𝑆𝜃𝑛+1

0 𝑆𝛼𝑛+1 𝐶𝛼𝑛+1 𝑑𝑛+1

0 0 0 1

] (5.2)

 Results and Discussions Chapter Five

47

 The direct kinematic can be obtained by this formulation but in

manually calculation it needs to exert more time and work because the

complicated calculations and the results may be not accurate as well. Where

we need to calculate the transformation matrix for each link T1, T2...etc. then

aggregate the total matrix.

 𝑅𝑇𝐻 = T1. T2. T3. T4. T5. T6 (5.3)

 A computer simulation program and software tools help to get the

accurate analysis and calculation, such as ARTE toolbox that used in this

research where this toolbox has many features such as inclusion the important

functions that called to do some complex mathematic operations and the

important robotic parameters that are needed to analysis such as DH

parameters.

 By using ARTE tool, the visualizations geometry of the robot presents

in 3d based on DH parameters as following:

21 Figure 5.1: DH parameters represented in MATLAB.

 The function “robot = load_robot(manufacturer, version)” used to

visualize and animate the robot. For KUKA KR 6 robot we can use the

function as the following:

 robot=load_robot('kuka', 'kr6_2')

 Results and Discussions Chapter Five

48

 The forward kinematics are computed using the toolbox function,

“directkinematic” if we assume initial values for each joint (6 joints)

q = [0.5 -0.5 pi/6 0.1 0.1 0.1]

to compute direct kinematics for this position q

T = directkinematic(robot, q) figure(5.2).

 In inverse kinematic it considers there are eight possible solutions for

the inverse kinematic problem for most of these robots. not all the eight

possible solutions will be feasible for an anthropomorphic 6R robot.

A call the “inversekinematic” for this robot. All the possible solutions are

stored at qinv. At least, one of the possible solutions should match q

qinv = inversekinematic(robot, T).

5.2.1 KUKA KR 6 Joints Trajectory Planning:

 ARTE toolbox contain some functions and MATLAB commands

specified for determine and plot the paths of robot joints position and velocity

changes with time based on space trajectory, or Cartesian space trajectory

methods.

22 Figure 5.2: KUKA KR6 view.

 Results and Discussions Chapter Five

49

The aim of the trajectory generation: to generate inputs to the motion

control system which ensures that the planned trajectory is executed.

The user describes the desired trajectory by some parameters, usually:

• Initial and final point (point-to-point control).

• Finite sequence of points along the path (motion through sequence of points).

 The figure (5.3) shows path followed by the manipulator joints, plus the

time profile along the path according to input positions (initial and final

position).

5.3 Dynamic Modeling and Simulation Results:

 The dynamic based on Euler-Lagrange equations and recursive

Newton-Euler formulations, as illustrated in previous chapters, then the main

equation used to analysis dynamic is:

𝑇(𝑡) = 𝐷(𝜃(𝑡))𝜃̈(𝑡) + ℎ (𝜃(𝑡), 𝜃̇(𝑡)) + 𝑐(𝜃(𝑡)) (5.4)

23 Figure 5.3: the robot joints trajectory.

 Results and Discussions Chapter Five

50

 According to this equation some parameters assumes to be determine

such as inertia matrix as explained in chapter three, the following matrix

equation used to find inertia matrix.

𝐷𝑖𝑘 = ∑ 𝑇𝑟(𝑈𝑗𝑘𝐽𝑗𝑈𝑗𝑖
𝑇)

𝑛

𝑗=max (𝑖,𝑘)

i, k = 1,2,… , n Inertia matrix, size nxn

𝐽𝑖 =

[

−𝐼𝑥𝑥 + 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑥𝑦 𝐼𝑥𝑧 𝑚𝑖𝑥𝑖

𝐼𝑥𝑦

𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑦𝑧 𝑚𝑖𝑦𝑖

𝐼𝑥𝑧 𝐼𝑦𝑧

𝐼𝑥𝑥 + 𝐼𝑦𝑦 − 𝐼𝑧𝑧

2
𝑚𝑖𝑧𝑖

𝑚𝑖𝑥𝑖 𝑚𝑖𝑦𝑖 𝑚𝑖𝑧𝑖 𝑚𝑖]

Inertia Tensor, size 4x4

The following matrix shows the values of inertia tensor matrix

[

2,295
4,062
7,170

0

4,062
53,840
22,715
 7,753

7,170
22,715
1,111
14,195

0
7,753
14,195
38,767

]

5.3.1 Forward Dynamic Results Analysis:

 The equation represented on forward dynamics is:

𝑞̈ = ℎ(𝑞, 𝑞̇, 𝜏,manipulator parameters)

 In MATLAB ARTE toolbox the function “forwarddynamic” called as

shown in MATLAB code [appendix B5] and the result figures following show

values for position and joints speed with time for KUKA KR 6 robot as

assumed no friction and no torque applied and the initial position and joint

speeds as following:

q0 = [0 0 0 0 0 0]

qd0 = [0 0 0 0 0 0]

g= [0 0 -9.81]

 Results and Discussions Chapter Five

51

figure 5.4: the values of varying joints speeds with time.

figure 5.5: the values of varying joints positions with time.

 As result of applying “forwarddynamic” function the figures (5.4) &

(5.5) show the values of varying joints speed with time where (qd1,

qd2,…qd6) represent on speed of joints and varying position of joints with

time where (q1,q2,…q6) represent on a position of joints.

5.3.2 Inverse Dynamics Results Analysis:

 Mathematically, the inverse dynamics problem can be described by a

vector equation of the form:

𝜏 = 𝑓(𝑞, 𝑞̇, 𝑞̈, manipulator parameters)

 In MATLAB ARTE toolbox the function “inversedynamic” used to

Compute inverse dynamics via recursive Newton-Euler. to applying the invers

dynamic function, we should choose different positions then compare the

 Results and Discussions Chapter Five

52

result torques for each position as:

q1 = [0 0 0 0 0 0];

q2 = [0 pi/2 -pi/2 0 0 0];

 If we choose q = [0 pi/2 -pi/2 0 0 0] as example to test the position and

result torque for each joints the following figure show view of KUKA KR6

robot at q = [0 pi/2 -pi/2 0 0 0] as shown in figure (5.6).

24 Figure 5.6: robot 3d view for q1= [0 pi/2 -pi/2 0 0 0].

 And the following values represent the torque at each joints of the robot

tau = 0.0000, 446.0656, 85.7443, 0.0000, 2.1631, -0.0000.

5.4 Robot Programming Tools:

 As ARTE toolbox has feature of robot program tool, it is give the ability

to test the manipulator robots for any chosen application. In this research the

robot tested as aluminum milling machine application where the result of

MATLAB Simulink showed in 3d animation.

 Results and Discussions Chapter Five

53

5.5 Results discussions:

The experimental result obtained by feedback testing showed these

solutions are less erroneous and more accurate. In the simulated programming

application which with this method has been tested, all the steps have been

implemented and therefore the result is based on the accuracy of the models

in the simulation environment. Even the results are based upon simulation;

one can conclude that the measurement has enough accuracy for practical

usage.

Chapter six

Conclusion and Recommendations

Conclusions and Recommendations Chapter Six

54

Chapter six

Conclusion and Recommendations

6.1 Conclusion:

 In this research modeling and simulation of 6-DOF KUKA KR 6

manipulator robot have been performed using theoretical analysis and ARTE

toolbox that work under MATLAB program.

 The Denavit-Hartenberg and inertia parameters and also kinematic and

dynamic analysis of robot were exploited.

 The theoretical approach only gives the forward kinematics values and

inverse kinematics values. but to find individual velocity, force, torque values

of each link and joint it is complicated.

 By using ARTE toolbox in MATLAB we can easily identify velocity

acceleration graphs and their values regarding the joints and links and

simulation of robot end effector can be done.

 Simulation results show that the modeling method is effective and it

lays a solid foundation for designing and manufacturing the real assistant

robot.

 Graphical programming languages like MATLAB can be utilized as

powerful tools for simulating a robotic system as it is reported in this research.

 With the aid of the MATLAB robotic simulation toolboxes, the core

ideas of the coordinate transformation, forward and inverse kinematics,

dynamic, control and robot programming are conveyed vividly.

 By using ARTE toolbox programing tools the KUKA KR6 tested as

aluminum milling machine application so this tool can be used to simulate and

animate manipulator robots in many different applications and study their

behaviors and kinematic and dynamic properties and get best approaches for

development and enhancement the manipulator robots performance.

Conclusions and Recommendations Chapter Six

55

6.2 Recommendations:

 A number of issues with respect to absolute safety, accuracy, cost-

effectiveness etc., still remains unaddressed which are up to the engineers to

consider, before feasibly manufacturing it.

 With this approach, we sincerely hope to simplify the complexity

further and attain a complete solution for the kinematic and dynamic of a

robotic manipulator using MATLAB and other help tools.

56

References

1. Díaz, J.F.A., F.A.d.N.C. Pinto, and M.S. Dutra, Kinematical and

dynamical models of KR 6 KUKA robot, including the kinematic control in a

parallel processing platform. 2010: INTECH Open Access Publisher.

2. Tokhi, M.O. and A.K. Azad, Flexible robot manipulators: modelling,

simulation and control. Vol. 68. 2008: Iet.

3. Dombre, E. and W. Khalil, Modeling, Performance Analysis and

Control of Robots Manipulators. 2006: Iste.

4. Paul, R.P., Robot manipulators: mathematics, programming, and

control: the computer control of robot manipulators. 1981: Richard Paul.

5. Saha, S.K., Introduction to robotics. 2014: Tata McGraw-Hill

Education.

6. Sciavicco, L. and B. Siciliano, Modelling and control of robot

manipulators. 2012: Springer Science & Business Media.

7. Hayat, A.A., et al. Identification of Denavit-Hartenberg parameters of

an industrial robot. in Proceedings of Conference on Advances In Robotics.

2013. ACM.

8. Khatamian, A. Solving Kinematics Problems of a 6-DOF Robot

Manipulator. in Proceedings of the International Conference on Scientific

Computing (CSC). 2015. The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied Computing

(WorldComp).

57

9. Høifødt, H., Dynamic modeling and simulation of robot manipulators:

the Newton-Euler formulation. 2011.

10. Niku, S., Introduction to robotics. 2010: John Wiley & Sons.

11. Balafoutis, C.A. and R.V. Patel, Dynamic analysis of robot

manipulators: A Cartesian tensor approach. Vol. 131. 1991: Springer Science

& Business Media.

12. Qassem, M.A., I. Abuhadrous, and H. Elaydi. Modeling and Simulation

of 5 DOF educational robot arm. in Advanced Computer Control (ICACC),

2010 2nd International Conference on. 2010. IEEE.

13. Tijani, I.B. Teaching fundamental concepts in robotics technology

using MATLAB toolboxes. in 2016 IEEE Global Engineering Education

Conference (EDUCON). 2016. IEEE.

14. Gil, A., et al., Development and deployment of a new robotics toolbox

for education. Computer Applications in Engineering Education, 2015. 23(3):

p. 443-454.

15. ARTE website (http://arvc.umh.es/arte/index_en.html).

http://arvc.umh.es/arte/index_en.html

A-1

Appendix A: KUKA KR 6 manipulator robot specifications and

dimentions

2-A

3-A

 B1-1

Appendix B: MATLAB codes:

B1: MATLAB code for Visualization robot
function robot = parameters()

robot.DH.theta= '[q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)]';
robot.DH.d=' [0.675 0 0 -0.67 0 -0.115]';
robot.DH.a=' [0.26 0.68 -0.035 0 0 0]';
robot.DH.alpha= '[-pi/2 0 pi/2 -pi/2 pi/2 pi]';

robot.name= 'KR6_2';

robot.inversekinematic_fn = 'inversekinematic_kuka_kr6_2(robot, T)';

%number of degrees of freedom
robot.DOF = 6;

%rotational: 0, translational: 1
robot.kind=['R' 'R' 'R' 'R' 'R' 'R'];

%minimum and maximum rotation angle in rad
robot.maxangle =[deg2rad(-185) deg2rad(185); %Axis 1, minimum, maximum -185 a

185
 deg2rad(-155) deg2rad(35); %Axis 2, minimum, maximum
 deg2rad(-130) deg2rad(154); %Axis 3
 deg2rad(-350) deg2rad(350); %Axis 4: Unlimited (400؛ default)
 deg2rad(-130) deg2rad(130); %Axis 5
 deg2rad(-350) deg2rad(350)]; %Axis 6: Unlimited (800؛ default)

%maximum absolute speed of each joint rad/s or m/s
robot.velmax = [deg2rad(156); %Axis 1, rad/s
 deg2rad(156); %Axis 2, rad/s
 deg2rad(156); %Axis 3, rad/s
 deg2rad(343); %Axis 4, rad/s
 deg2rad(362); %Axis 5, rad/s
 deg2rad(659)];%Axis 6, rad/s
% end effectors maximum velocity
robot.linear_velmax = 1.0; %m/s, not specified
robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time

%base reference system
robot.T0 = eye(4);

%INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION
%position, velocity and acceleration
robot=init_sim_variables(robot);

% GRAPHICS
robot.graphical.has_graphics=1;
robot.graphical.color = [255 20 40]./255;
%for transparency
robot.graphical.draw_transparent=0;
%draw DH systems
robot.graphical.draw_axes=1;
%DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for
%bigger robots
robot.graphical.axes_scale=1;

 B1-2

%adjust for a default view of the robot
robot.axis=[-1.5 1.5 -1.5 1.5 0 2];
%read graphics files
robot = read_graphics(robot);

%DYNAMICS
robot.has_dynamics=1;

%consider friction in the computations
robot.dynamics.friction=0;

%link masses (kg)
robot.dynamics.masses=[25 27 15 10 2.5 1.5];

%COM of each link with respect to own reference system
robot.dynamics.r_com=[0 0 0; %(rx, ry, rz) link 1
 -0.05 0.006 0.1; %(rx, ry, rz) link 2
 -0.0203 -0.0141 0.070; %(rx, ry, rz) link 3
 0 0.019 0;%(rx, ry, rz) link 4
 0 0 0;%(rx, ry, rz) link 5
 0 0 0.032];%(rx, ry, rz) link 6

%Inertia matrices of each link with respect to its D-H reference system.
% Ixx Iyy Izz Ixy Iyz Ixz, for each row
robot.dynamics.Inertia=[0 0.35 0 0 0 0;
 .13 .524 .539 0 0 0;
 .066 .086 .0125 0 0 0;
 1.8e-3 1.3e-3 1.8e-3 0 0 0;
 .3e-3 .4e-3 .3e-3 0 0 0;
 .15e-3 .15e-3 .04e-3 0 0 0];

robot.motors=load_motors([5 5 5 4 4 4]);
%Speed reductor at each joint
robot.motors.G=[300 300 300 300 300 300];

 B2

B2: MATLAB code for forward kinematic of the KUKA KR 6 robot:
%load robot parameters
 robot=load_robot('kuka', 'kr6_2');

total_simulation_time = 0.5 %simulate for .5 second

%initial position and joint speeds
q0 = [0 0 0 0 0 0]';
qd0 = [0 0 0 0 0 0]';

g=[0 0 -9.81]'; %Z0 axis

drawrobot3d(robot, q0);
adjust_view(robot);

%try both
%tau = [0 0 0 0 0 0]';%no torques applied
tau = [0 200 1 1 1 1]';
%tau = [20 20 21 21 21 21]';

%no friction
robot.friction = 0;

fprintf('\nCOMPUTING FORWARD DYNAMICS (this may take a while)')

%this may take a while, since it requires integration
%of the acceleration at each time step
%[t q qd] = forwarddynamic(robot, total_simulation_time, q0, qd0, tau, [0 0

9.81]);
 %forwarddynamic(robot, time_end, q0, qd0, tau, g, torqfun,

varargin)
[t q qd] = (robot, total_simulation_time, q0, qd0, tau, g, []);

%animate it!!
animate(robot, q)

figure, plot(t, q), grid, title('Position vs. time')
xlabel('time (s)'), ylabel('Position (rad)')
legend('q_1', 'q_2', 'q_3', 'q_4', 'q_5', 'q_6');

figure, plot(t, qd), grid, title('Speed vs. time')
xlabel('time (s)'), ylabel('Speed (rad/s)')
legend('qd_1', 'qd_2', 'qd_3', 'qd_4', 'qd_5', 'qd_6');

 B3-1

B3: MATLAB code for inverse kinematic of the KUKA KR 6 robot

%there are eight possible solutions for the inverse kinematic problem for most

of these robots
n_solutions = 8;

%Try different configurations beware that, depending on the robot's topology
%not all the eight possible solutions will be feasible for an antropomorphic 6R

robot.
q=[0.5 -0.5 pi/6 0.1 0.1 0.1]
%q = [0.1 -pi/4 pi/4 0.1 0.1 0.1];

%load robot parameters. You can try different robots
%robot=load_robot('ABB', 'IRB140'); n_solutions = 8;
%robot=load_robot('ABB', 'IRB120'); n_solutions = 8;
%robot=load_robot('ABB', 'IRB1600_6_120'); n_solutions = 8;
%robot=load_robot('ABB', 'IRB1600_X145_M2004'); n_solutions = 8;

%adjust 3D view as desired
adjust_view(robot)

%there are just 2 solutions for these robots and 4 DOF
%q = [pi/2 0.2 0.8 pi/4]
%q = [-pi/4 pi/2 0.5 pi]
%robot=load_robot('kuka', 'KR5_scara_R350_Z200'); n_solutions = 2;
%robot=load_robot('example', 'scara'); n_solutions = 2;
%robot=load_robot('example', '2dofplanar'); n_solutions = 2;
%robot=load_robot('example', '3dofplanar'); n_solutions = 2;
%robot=load_robot('example', 'prismatic');n_solutions = 1; %just one possible

solutions for this case

%draw the robot
drawrobot3d(robot, q)

%Now compute direct kinematics for this position q
T = directkinematic(robot, q)

%Set to zero if you want to see the robot transparent
robot.graphical.draw_transparent=0;

%Set to one if you want to see the DH axes
%abb.graphical.draw_axes=1;

%Call the inversekinematic for this robot. All the possible solutions are
%stored at qinv. At least, one of the possible solutions should match q
qinv = inversekinematic(robot, T);

fprintf('\nNOW WE CAN REPRESENT THE DIFFERENT SOLUTIONS TO ACHIEVE THE SAME

POSITION AND ORIENTATION\n')
fprintf('\nNot that some solutions may not be feasible. Some joints may be out

of range\n')
correct=zeros(1,n_solutions);
%check that all of them are possible solutions!
for i=1:size(qinv,2),

 B3-2

 Ti = directkinematic(robot, qinv(:,i)) %Ti is constant for the different

solutions

 % Note that all the solutions may not be feasible. Some of the joints may
 % be out of range. You can test this situation with test_joints
 test_joints(robot, qinv(:,i));

 %now draw the robot to see the solution
 drawrobot3d(robot, qinv(:,i))

 pause(1);

 k=sum(sum((T-Ti).^2));
 if k < 0.01 % a simple threshold to find differences in the solution
 correct(1,i)= 1;
 else
 correct(1,i)= 0; %uncorrect solution
 fprintf('\nERROR: One of the solutions seems to be uncorrect. Sum of

errors: %f', i, k);
 end
end
%Display a message if any of the solutions is not correct
if sum(correct)==n_solutions
 fprintf('\nOK: Every solution in qinv yields the same position/orientation

T');
else
 fprintf('\nERROR: One or more of the solutions seems to be uncorrect.');
end

%Now, test if any of the solutions in qinv matches q
%find the solution that matches the initial q
%delta is just a squared sum of errors at each of the columns of the matrix
%which store the different solutions of qinv
delta=(repmat(q',[1 n_solutions])-qinv).^2;
i=find(sum(delta,1)<0.01);
if ~isempty(i)
 fprintf('\nOK!: Found a matching solution:\n');
 qinv(:,i)
else
 fprintf('\nERROR: Did not find a matching solution for the initial q');
end

 B4-1

B4: Matlab code for joint space and Cartesian space approach

robot=load_robot('kuka', 'kr6_2');

%NOA matrix initial point

T1=[0 0 1 1.5;

 0 -1 0 -0.3;

 1 -0 0 1.320;

 0 0.707 0 1.320]

%NOA matrix end point

T2=[0.325 -.776 0.541 0.5;

 0.9 -.42 -0.05 -0.04;

 0.27 0.47 0.839 1.7;

 0.5 0.2 0.12 0.8]

%distancia entre puntos consecutivos

delta = 0.02;

punto_inicial = T1(1:3,4);

punto_final = T2(1:3,4);

v=(punto_final-punto_inicial);

v=delta*v/norm(v); %vector normalizado en la direcci َn de la

recta

distancia = sqrt((punto_final-punto_inicial)'*(punto_final-

punto_inicial));

%Generaci َn de puntos en la trayectoria

num_points = floor(distancia/delta);

puntos = punto_inicial;

for i=1:num_points,

 puntos=[puntos i*v+punto_inicial];

end

puntos=[puntos punto_final];

 B4-2

figure, hold on, grid,

plot3(puntos(1,:),puntos(2,:),puntos(3,:)), title('Trajectory in

space'), xlabel('X (m)'), ylabel('Y (m)')

qs=[];

for i=1:length(puntos),

 T1(1:3,4)=puntos(1:3,i);

 qinv = inversekinematic(robot, T1);

 %select the joint coordinates in qinv which are closest to

the

 %current joint position robot.q

 q=select_closest_joint_coordinates(qinv, robot.q);

 qs=[qs q];

 robot.q=q;%update robot.q here

end

drawrobot3d(robot, qs(:,1))

adjust_view(robot)

drawrobot3d(robot, qs(:,end))

%Now, animate the robot in 3D

animate(robot, qs);

figure, hold, plot(qs(1,:), 'r'),plot(qs(2,:), 'g'),

plot(qs(3,:), 'b'), plot(qs(4,:), 'c'),

plot(qs(5,:), 'm.'), plot(qs(6,:), 'y.'),

legend('q_1 (rad)','q_2 (rad)','q_3 (rad)', 'q_4 (rad)', 'q_5

(rad)', 'q_6 (rad)'), title('Joint trajectories'), xlabel('Step

number')

 B5

B5: The following matlab code for forward dynamic for kuka kr6 robot as

assumed no friction and no torque applied.

%load robot parameters

 robot=load_robot('kuka', 'kr6_2');

total_simulation_time = 0.5 %simulate for .5 second

%initial position and joint speeds

q0 = [0 0 0 0 0 0]';

qd0 = [0 0 0 0 0 0]';

g=[0 0 -9.81]'; %Z0 axis

drawrobot3d(robot, q0);

adjust_view(robot);

%try both

%tau = [0 0 0 0 0 0]';%no torques applied

tau = [0 200 1 1 1 1]';

%tau = [20 20 21 21 21 21]';

%no friction

robot.friction = 0;

fprintf('\nCOMPUTING FORWARD DYNAMICS (this may take a while)')

%this may take a while, since it requires integration

%of the acceleration at each time step

%[t q qd] = forwarddynamic(robot, total_simulation_time, q0, qd0,

tau, [0 0 9.81]);

 %forwarddynamic(robot, time_end, q0, qd0, tau, g,

torqfun, varargin)

[t q qd] = (robot, total_simulation_time, q0, qd0, tau, g, []);

%animate it!!

animate(robot, q)

figure, plot(t, q), grid, title('Position vs. time')

xlabel('time (s)'), ylabel('Position (rad)')

legend('q_1', 'q_2', 'q_3', 'q_4', 'q_5', 'q_6');

figure, plot(t, qd), grid, title('Speed vs. time')

xlabel('time (s)'), ylabel('Speed (rad/s)')

legend('qd_1', 'qd_2', 'qd_3', 'qd_4', 'qd_5', 'qd_6');

 B6

B6: sample matlab code to compute torques at each pose(q1&q2)

fprintf('\nTorques at each joint given position q1, zero speed and

acceleration, standard gravity acting on Z0')

fprintf('\nComputing static torques at position q1 due to gravity [0 0 9.81]')

tau = inversedynamic(robot, q1, [0 0 0 0 0 0], [0 0 0 0 0 0], [0 0 9.81]', [0 0

0 0 0 0]')

drawrobot3d(robot,q1)

disp('press any key to continue')

pause

fprintf('\nTorques at each joint given position q2, zero speed and

acceleration, standard gravity acting on Z0')

fprintf('\nComputing static torques at position q2 due to gravity [0 0 9.81]');

fprintf('\nPLEASE note the differences with respect to torque tau_2 at q1');

tau = inversedynamic(robot, q2, [0 0 0 0 0 0], [0 0 0 0 0 0], [0 0 9.81]', [0 0

0 0 0 0]')

drawrobot3d(robot,q2)

disp('press any key to continue')

pause

 B7-1

B7: Matlab code for the application:

function adept_simulation

 global robot

 global qua

 global milling_tool

 % Para que la ejecucion no sea tan lenta

 configuration.delta_time=0.04;

 q=[0 0 0 0 pi/2 0];

 % Configuraci َn inicial

 robot=load_robot('kuka', 'kr6_2');

 punto=directkinematic(robot, [0 0 0 0 pi/2 0]);

 qua=T2quaternion(punto);

 robot.tool=load_robot('equipment/end_tools', 'milling_machine');

 robot.equipment[1]=load_robot('equipment', 'aluminum_plate');

 drawrobot3d(robot, q);

 robot.graphical.draw_axes = 0;

 robot.tool.graphical.draw_axes = 0;

 adjust_view(robot)

milling_tool=[1,[[robot.tool.TCP(1,4),robot.tool.TCP(2,4),robot.tool.TCP(3,4)],

[1,0,0,0]],[0,[0,0,0],[1,0,0,0],0,0,0]];

 main;

end

function main()

 circleA;

 vel=obtain_joint_speed(robot, speeddata);

 circleB;

 triangle;

 circleC;

B7-2

 circleD;

 endpos;

end

function circleA()

 global qua milling_tool

 E=[[0.7 0.2033 0.2; 0.66 0.2433 0.2; 0.7 0.2833 0.2;0.74 0.2433 0.2]];

 RT_tp0=[[E(1,1:2) 0.4],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp1=[[E(1,:)],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp2=[[E(2,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp3=[[E(3,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp4=[[E(4,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp1,RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveC(RT_tp2,RT_tp3, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveC(RT_tp3,RT_tp4, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveC(RT_tp4,RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveJ(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0');

end

function vel=obtain_joint_speed(robot, speeddata)

if strncmp(speeddata, 'vmax',4);

 vel=robot.velmax;

else

 [tag,remain] = strtok(speeddata, 'v');

 vel = robot.velmax.*str2num(tag)/6000;

 B7-3

end

end

function circleB()

 global qua milling_tool

 E=[[1.025 0.16 0.2; 0.985 0.2 0.2; 1.025 0.24 0.2;1.065 0.2 0.2]];

 RT_tp0=[[E(1,1:2) 0.4],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp1=[[E(1,:)],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp2=[[E(2,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp3=[[E(3,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp4=[[E(4,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp1,RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveC(RT_tp2,RT_tp3, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp3,RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp4,RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveJ(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0');

end

function circleC()

 global qua milling_tool

 E=[[0.7 -0.2033 0.2; 0.74 -0.2433 0.2; 0.7 -0.2833 0.2;0.66 -0.2433 0.2]];

 RT_tp1=[[E(1,:)],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp2=[[E(2,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp3=[[E(3,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 B7-4

 RT_tp4=[[E(4,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp0=[[E(1,1:2) 0.4],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp1,RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveC(RT_tp2,RT_tp3, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp3,RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp4,RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveJ(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0');

end

function circleD()

 global qua milling_tool

 E=[[1.025 -0.16 0.2; 1.065 -0.2 0.2; 1.025 -0.24 0.2;0.985 -0.2 0.2]];

 RT_tp1=[[E(1,:)],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp2=[[E(2,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp3=[[E(3,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp4=[[E(4,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp0=[[E(1,1:2) 0.4],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp1,RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveC(RT_tp2,RT_tp3, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp3,RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveC(RT_tp4,RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveJ(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveL(RT_tp0, 'vmax' , 'z100' , milling_tool, 'wobj0');

end

 B7-5

function triangle()

 global qua milling_tool

 E=[[0.8 -0.0866 0.2; 0.8 0.0866 0.2; 0.95 0 0.2; 0.8 -0.0866 0.5]];

 RT_tp1=[[E(1,:)],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp2=[[E(2,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp3=[[E(3,:)],[qua], [-1, -1, -2,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 RT_tp4=[[E(4,:)],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 MoveL(RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0');

 MoveL(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveL(RT_tp2, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveL(RT_tp3, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveL(RT_tp1, 'vmax' , 'fine' , milling_tool, 'wobj0');

 MoveL(RT_tp4, 'vmax' , 'z100' , milling_tool, 'wobj0');

end

function endpos()

 global qua milling_tool

 RT_tpend=[[0.7 0.2033 0.4],[qua], [0, -1, -1,

0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 MoveL(RT_tpend, 'vmax' , 'z100' , milling_tool, 'wobj0');

end

