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Chapter 1 

𝑾𝑪𝑮 Banach Spaces 

We show that if the Banach space is strongly generated by a convex super weak 

compact set, then there is an equivalent norm on 𝑋 such that its restriction to any reflexive 

subspace of 𝑋 is both uniformly convex and uniformly Frechet smooth. 

Section (1.1): Super Weak Compactness 

The notion of weakly compactly generated Banach space (𝑊𝐶𝐺) is the first and most 

remarkable attempt to generalize separable Banach spaces keeping quite a few good 

structural, geometrical and topological properties. Recall that a Banach space 𝑋 is 𝑊𝐶𝐺 if 

there exists a weakly compact 𝐾 ⊂ 𝑋 such that span(𝐾)  = 𝑋. The deep impact of 𝑊𝐶𝐺 

spaces in Banach space theory began, and nowadays the amount of material is 

overwhelming, for an account of properties of 𝑊𝐶𝐺 Banach spaces in the frame of 

nonseparable Banach space theory. We are dealing only with real Banach spaces and any 

operator here is always linear and bounded. As usual, if 𝑋 is a Banach space, then 𝐵𝑋 and 

𝑆𝑋 denote its unit ball and its unit sphere respectively. 

Theorem (1.1.1)[1]. For a Banach space 𝑋 the following are equivalent: 

(a) 𝑋 is weakly compactly generated; 

(b) there exists a weakly compact operator 𝑇: 𝑍 → 𝑋 with dense range; 

(c) there exists a reflexive space 𝑍 and operator 𝑇: 𝑍 → 𝑋 with dense range. 

In other words, 𝑊𝐶𝐺 is the same as “weakly compact operator generated” or 

“reflexive generated”. Recent results depend on the possibility of changing reflexivity in (c) 

by a stronger condition, as super reflexivity or Hilbert, leading to the classes of super 

reflexive-generated Banach spaces and Hilbert-generated Banach spaces. In particular, 

where several particular classes of “space-generated” properties are involved with 

smoothness conditions on equivalent renormings. We shall need the following notions. 

Definition (1.1.2)[1]. The norm of the Banach space (𝑋, ‖·‖)is said to be uniformly Gâteaux 

(𝑈𝐺) smooth if for every ℎ ∈ 𝑋  

sup{‖𝑥 +  𝑡ℎ‖ + ‖𝑥 −  𝑡ℎ‖ −  2 ∶  𝑥 ∈  𝑆𝑋}   =  𝑜(𝑡) when 𝑡 →  0. 

Given a bounded set 𝐻 ⊂ 𝑋, the norm is said to be 𝐻 − 𝑈𝐺 smooth if   

sup{‖𝑥 +  𝑡ℎ‖  + ‖𝑥 −  𝑡ℎ‖ −  2 ∶  𝑥 ∈  𝑆X, ℎ ∈  𝐻}  =  𝑜(𝑡) when 𝑡 →  0. 

Finally, the norm is said to be strongly 𝑈𝐺 smooth if it is 𝐻 − 𝑈𝐺 smooth for some bounded 

and linearly dense subset 𝐻 ⊂ 𝑋. 

The following result showing different classes of space generation and its relationships. 

Theorem (1.1.3)[1]. For a Banach space 𝑋consider the assertions: 

(i) 𝑋 is Hilbert-generated. 

(ii) 𝑋 is super reflexive-generated. 

(iii) 𝑋 is generated by the ℓ2-sum of super reflexive spaces. 
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(iv) 𝑋 admits an equivalent strongly 𝑈𝐺 smooth norm. 

(v) 𝑋 is 𝑊𝐶𝐺 and admits an equivalent 𝑈𝐺 smooth norm. 

(vi) 𝑋 is a subspace of a Hilbert-generated space. 

Then (i) ⇒(ii) ⇒(iii) ⇒(iv) ⇒(v) ⇒(vi). Moreover, no one of these implications can be 

reversed in general. 

We study the suitable “ideal-generated” or “subset-generated” version of super 

reflexive-generated Banach spaces, that is, in the spirit of (b) or (a) from Theorem (1.1.1). 

For this purpose we shall need the operator version of super reflexivity. Among several 

equivalent definitions, we shall give one based on ultrapowers. An operator 𝑇: 𝑋 →
𝑌 induces an operator between the ultrapowers of the spaces 𝑇𝒰: 𝑆𝒰 → 𝑌𝒰 for a free 

ultrafilter 𝒰 on an index set. 

Definition (1.1.4)[1]. An operator 𝑇: 𝑋 → 𝑌 is said to be super weakly compact if 𝑇𝒰 is 

weakly compact for any ultrafilter 𝒰(equivalently, a free ultrafilter on 𝑁). The class of all 

super weakly compact operators will be denoted 𝔚super. 

The class 𝔚super is an operator ideal that was first studied, under the name of uniformly 

convexifying operators, being the link between the alternative definitions a sort of Enflo’s  

renorming theorem for operators. Note that 𝔚super lies strictly between the compact and 

the weakly compact operators, and like them, it is a symmetric ideal as well, that is, 𝑇 ∈
𝔚super if and only if 𝑇∗ ∈ 𝔚super. 

Clearly, the identity map of a super reflexive Banach space is a natural example of super 

weakly compact operator. We can state now the following definition. 

Definition (1.1.5)[1]. A Banach space 𝑋 is said to be super weakly compactly generated 

(super 𝑊𝐶𝐺 for short) if there exist a Banach space 𝑍 and a super weakly compact operator 

𝑇: 𝑍 → 𝑋 such that 𝑇(𝑍)is dense in 𝑋. 

We show that an operator 𝑇: 𝑍 → 𝑋 is super weakly compact if and only if 𝑇(𝐵𝑋) is 

finitely dentable (see Definition (1.1.9)). Moreover, if  𝐾 ⊂ 𝑋 is a finitely dentable bounded 

closed convex subset, then there exists a reflexive Banach space 𝑍 and an operator 𝑇: 𝑍 →
𝑋 such that 𝐾 ⊂ 𝑇(𝐵𝑍). The suggestive notion of super weakly compact set  which is, for 

bounded closed convex sets, equivalent to being finitely dentable. Therefore, The results 

yield that 𝑋 is super 𝑊𝐶𝐺 if and only if there is 𝐾 ⊂  𝑋 convex super weakly compact such 

that span (𝐾)  = 𝑋. In other words, in this setting “ideal-generated” and “subset-generated” 

essentially coincide. 

The ideal 𝔚super does not have the factorization property, see also Example (1.2.10). In 

particular, that means that there are super 𝑊𝐶𝐺 Banach spaces which are not super 

reflexive-generated. It is natural to wonder how the class super 𝑊𝐶𝐺 is related to the six 

classes in Theorem (1.1.3). The answer is the following. 

Theorem (1.1.6)[1]. A Banach space 𝑋 is super 𝑊𝐶𝐺 if and only if it admits an equivalent 

strongly 𝑈𝐺 smooth norm. 

Bearing in mind that 𝑋 admits an equivalent 𝑈𝐺 smooth norm if and only if 𝐵𝑋∗ is uniform 

Eberlein for the weak∗, Theorem(1.1.6) improves the previous result where we first dealt 
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with Banach spaces generated by bounded closed convex finitely dentable subsets. A key 

ingredient for the proof is the symmetry of the ideal 𝔚super. 

A stronger notion of generation for Banach spaces is necessary in order to transfer properties 

from a super weakly compact generator to all the weakly compact subsets of the space. 

Proof. If 𝑋 is generated by an absolutely convex super weakly compact 𝐾, Theorem (1.2.7) 

implies that 𝑋 has an equivalent 𝐾-UG smooth renorming. Suppose now that 𝑋 is strongly 

UG smooth, so there is 𝐾 ⊂  𝑋 total such that the norm is 𝐾-UG smooth. Lemma (1.2.5) 

implies that we may suppose 𝐾 to be absolutely convex and closed. 𝐾 is weakly compact. 

Use the Davis–Figiel–Johnson–Pelczynski interpolation theorem to find a reflexive Banach 

space 𝑍 and an operator 𝑇: 𝑍 → 𝑋 such that 𝑇(𝐵𝑍)  ⊂  2
𝑛𝐾 + 2−𝑛𝐵𝑋 for every 𝑛 ∈ ℕ. Note 

that 𝑇(𝐵𝑍) is strongly generated by 𝐾, and so 𝑋 is 𝑇(𝐵𝑍)-UG smooth by Lemma (1.2.6). 

Now Lemma (1.2.5) yields that 

0 = lim
𝑛
𝑝𝑇(𝐵𝑍)(𝑥𝑛

∗ − 𝑦𝑛
∗) = lim

𝑛
sup{|(𝑥𝑛

∗ − 𝑦𝑛
∗)(𝑇(𝑧))| ∶ 𝑧 ∈ 𝐵𝑍}  

= lim
𝑛
sup{|𝑇∗(𝑥𝑛

∗ − 𝑦𝑛
∗)(𝑧)| ∶ 𝑧 ∈ 𝐵𝑍}  = lim

𝑛
‖𝑇∗(𝑥𝑛

∗) − 𝑇∗(𝑦𝑛
∗)‖ 

whenever (𝑥𝑛
∗), (𝑦𝑛

∗)  ⊂  𝑆𝑋∗ are such that lim
𝑛
‖𝑥𝑛

∗ + 𝑦𝑛
∗‖  =  2, that is, 𝑇∗ is uniformly 

convex. Therefore 𝑇 is a super weakly compact operator and so 𝑋 is super WCG. 

Definition (1.1.7)[1]. A Banach space 𝑋 is said to be strongly generated by a subset 𝐾 ⊂ 𝑋 

if for any weakly compact 𝐻 ⊂ 𝑋 𝑎𝑛𝑑 𝜀 > 0 there is 𝑛 ∈ 𝑁 such that 𝐻 ⊂  𝑛 𝐾 +  𝜀 𝐵𝑋. 

This definition admits “space-generated” and “ideal-generated” variations in a quite obvious 

way. Banach spaces strongly generated by a weakly compact subset are called strongly 

𝑊𝐶𝐺 Banach spaces, and denoted 𝑆𝑊𝐶𝐺 (or  𝑊𝐶𝐺). Their interesting properties have been 

studied by 𝐺. For instance. if 𝑋 is 𝑆𝑊𝐶𝐺 then it is weakly sequentially complete, and so the 

subspaces of 𝑋 either contain ℓ are reflexive, by Rosenthal’s theorem. Here we shall 

consider Banach spaces strongly generated by a convex super weakly compact subset. 

Definition (1.1.8)[1]. A Banach space 𝑋 is said to be strongly super weakly compactly 

generated (𝑆2𝑊𝐶𝐺 for short) if there is a convex super weakly compact set 𝐾  ⊂  𝑋 that 

strongly generates 𝑋. 

In spite of the length of the name, the notion of 𝑆2𝑊𝐶𝐺 has very natural examples. It is well 

known that 𝐿1(𝜇)for a finite measure 𝜇 is strongly Hilbert-generated and so it is 𝑆2𝑊𝐶𝐺. 

Moreover, if 𝑋 is super reflexive then the Lebesgue–Bochner space 𝐿1(𝜇, 𝑋)is strongly 

super reflexive generated. Indeed, we may assume that 𝜇 is a probability. If 𝐻 ⊂  𝐿1 (𝜇, 𝑋) 
is weakly compact, then it is uniformly integrable, that is, the sequence defined by 

𝑎𝑛  =  𝑠𝑢𝑝{ ∫ ‖𝑓‖

 

‖𝑓‖≥𝑛

 𝑑𝜇 ∶  𝑓 ∈  𝐻} 

converges to 0. The decomposition 1‖𝑓‖≥𝑛𝑓 + 1‖𝑓‖<𝑛𝑓 for 𝑓 ∈  𝐻shows that 𝐻 ⊂

𝑎𝑛𝐵𝐿(𝜇,𝑋)  + 𝑛𝐵𝐿2(𝜇,𝑋) where 𝐿2(𝜇, 𝑋)is identified with a subset of 𝑋 by its continuous 

injection into 𝐿1(𝜇, 𝑋). That finishes the proof since 𝐿2(𝜇, 𝑋). 

Definition (1.1.9)[1].  The subset 𝐶 ⊂ 𝑋 is said to be 𝜌-finitely dentable if for every   𝜀 >
0 there is  𝑛 ∈ 𝑁 such that [𝐶]𝜀

𝑛 = ∅, where the set derivation is made with respect to 𝜌. If 
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𝜌 is the norm metric, then we simply say that 𝐶 is finitely dentable. The first 𝑛 ∈ 𝑁 such 

that [𝐶]𝜀
𝑛 = ∅ is called the index of 𝜀-dentability and it is denoted 𝐷𝑍  (𝐶, 𝜀). 

𝑋 is super reflexive if and only if 𝐵𝑋 is finitely dentable. Moreover, if 𝑋 is uniformly convex 

then 𝐷𝑍(𝐵𝑋, 𝜀)  ≤ 1 + 𝛿𝑋(𝜀)
−1 where 𝛿𝑋 is the modulus of convexity of 𝑋. Note that 

Pisier’s celebrated renorming result implies that for a super reflexive space 𝑋 there exists 

𝑐 > 0 and 𝑝 ≥ 2 such that 𝐷𝑍 (𝐵𝑋, 𝜀)  ≤ 𝑐 𝜀
−𝑝 for every 𝜀 ∈ (0, 1]. Devoted to the study 

of the properties of finitely dentable sets in Banach spaces. The most relevant properties are 

that convex finitely dentable sets are weakly compact and uniform Eberlein with respect to 

the weak topology. Another interesting fact is that they characterize the super weak 

compactness of operators. 

Proposition (1.1.10)[1]. A linear operator 𝑇: 𝑋 → 𝑌 is super weakly compact (equivalently, 

uniformly convexifying) if and only if  𝑇(𝐵𝑋) is finitely dentable. 

Definition (1.1.11)[1]. A subset 𝐾 ⊂ 𝑋 is said to be super weakly compact if 𝐾𝒰 is a weakly 

compact subset of 𝑋𝒰 for any free ultrafilter 𝒰. 

The relation of equivalence here is the same as in the case of Banach spaces, that 

is, ( 𝑋𝑖)𝑖∈𝐼 ∼ (𝑦𝑖)𝑖∈𝐼  if and only if lim
𝑖,𝒰
  ‖𝑥𝑖 − 𝑦𝑖‖ = 0 where 𝒰 is a free ultrafilter on a set 

𝐼. Note that it is enough to consider free ultrafilters on ℕ since the weak compactness is 

separably determined. We shall need some assorted definitions. A convex set 𝐶 ⊂ 𝑋 is said 

to have the finite tree property if there exists 𝜀 > 0 such that Ccontains 𝜀-separated dyadic 

trees of arbitrary height. Recall that a dyadic tree of height 𝑛 ∈ ℕ is a set of the form 

{𝑥𝑠: |𝑠|  ≤ 𝑛}, indexed by finite sequences 𝑠 ∈  ⋃  𝑛
𝑘=0  

{0, 1}𝑘 of length |𝑠|  ≤ 𝑛, such that 

𝑥𝑠 = 2
−1(𝑥𝑠⌢0 − 𝑥𝑠⌢1) for every |𝑠|  < 𝑛, where {0, 1}0: = {∅} indexes the root 𝑥∅ and “_” 

denotes concatenation. We say that a dyadic tree {𝑥𝑠: |𝑠|  ≤ 𝑛}is 𝜀 −separated if 

‖𝑥𝑠⌢0 − 𝑥𝑠⌢1‖ ≥ 𝜀for every |𝑠|  < 𝑛. A function 𝑓: 𝐶 → ℝ defined on a convex subset 𝐶 ⊂
𝑋 is said uniformly convex if for every 𝜀 > 0 there is 𝛿 > 0such that ‖𝑥 − 𝑦‖  < 𝜀 when 

ever 𝑥, 𝑦 ∈ 𝐶 are such that  

 
𝑓(𝑥)  +  𝑓(𝑦)

2
  −  𝑓 (

𝑥 +  𝑦

2
 )  <  𝛿 

The most typical convex function on a Banach space, its norm ‖·‖ , cannot be an uniformly 

convex function (neither a strictly convex function), so we shall modify the definition for 

norms. We say that a norm  ‖·‖is uniformly convex on some bounded convex set 𝐾 ⊂ 𝑋 if 

𝑓(𝑥)  = ‖𝑥‖2 is a uniformly convex function on 𝐾. 

Note that a space 𝑋 is uniformly convex if and only if its norm is uniformly convex 

(in the previous sense) on 𝐵𝑋, equivalently on any bounded convex subset 𝐾 ⊂ 𝑋. 

As we announced, super weak compactness coincide with finite dentability for 

bounded closed convex subsets of a Banach space. The following result establishes the 

equivalence between both properties and several others studied. 

Proposition (1.1.12)[1]. Let 𝑋 be a Banach space and 𝐾 ⊂ 𝑋 a bounded closed convex 

subset. The following conditions are equivalent: 

(i)  𝐾 is super weakly compact; 
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(ii) 𝐾 is finitely dentable; 

(iii) 𝐾 does not have the finite tree property; 

(iv) there is a reflexive Banach space 𝑍 and a super weakly compact operator 𝑇: 𝑍 → 𝑋 such 

that 𝐾 ⊂ 𝑇(𝐵𝑍); 

(v) there is a bounded uniformly convex function 𝑓:𝐾 → 𝑅; 

(vi) there is an equivalent norm  |‖·‖|on 𝑋 which is uniformly convex on 𝐾. 

Proof. The equivalences (ii)⇔(v)⇔(vi) applied to the identity map on 𝐾. On the other hand, 

(iv)⇒(ii) is consequence of Proposition (1.1.10), and (ii)⇒(iv) is contained. Note that if 𝐾 

contains a ε-separated dyadic tree of height n, then 𝐷𝑧(𝐾, 𝜀/2)  > 𝑛, following that 

(ii)⇒(iii). The equivalence (i)⇔(iii) . In order to close the loop, assume (ii). Then 𝐻 = 𝐾 −
𝐾 is finitely dentable (see also Proposition (1.1.15)). Clearly, if the norm|‖·‖| of 𝑋 is 

uniformly convex on 𝐻, then 𝑓𝑥0(𝑥) ∶= |‖𝑥 − 𝑥0‖|
2 is uniformly convex on 𝐾 for every 

𝑥0 ∈ 𝐾, and thus 𝐾 is uniformly convexifiable. We get that 𝐾 is super weakly compact and 

so (ii)⇒(i), which completes the proof 

Note that if a bounded closed convex subset 𝐾 ⊂ 𝑋 has the finite tree property, then there 

is 𝜀 > 0 such that 𝐾𝒰 contains an infinite 𝜀 −separated dyadic tree for any free ultrafilter 𝜐 

on ℕ, and therefore 𝐾𝒰is not weakly compact. That means that super weak compactness for 

closed convex sets can be checked just by one free ultrafilter on ℕ. 

Property (vi) suggests to reproduce arguments involving uniformly convex norms for super 

weakly compact sets. For the next two examples we shall need a couple of definitions. It is 

said that a subset 𝐾 has the Banach–Saks property if every sequence (𝑥𝑛)  ⊂ 𝐾 has a 

subsequence (𝑥𝑛𝑘)such that its Cesàro averages 𝑘−1 ∑ 𝑥𝑘𝑗
𝑘
𝑗=1  are norm converging to some 

point of 𝑋. A bounded convex set 𝐾 ⊂ 𝑋 is said to have normal structure if every 

nonsingleton convex subset 𝐻 ⊂ 𝐾 has a nondiametral point 𝑥 ∈ 𝐻, that is, sup{‖ 𝑦 − 𝑥 ‖ ∶
𝑦 ∈ 𝐻}  < diam(𝐻)}. 

Proposition (1.1.13)[1]. Convex super weakly compact sets of Banach spaces have the 

Banach–Saks property 

Proof. It is possible to adapt the proof of Kakutani’s theorem as presented, but it is easier to 

use that a super weakly compact operator has the Banach–Saks property. 

Proposition (1.1.14)[1]. If 𝐾 ⊂ 𝑋 is a convex super weakly compact set, then there is a 

renorming of 𝑋 such that 𝐾 has normal structure.  

Proof.  By Proposition (1.1.15) the set 𝐻 = 𝐾 − 𝐾 is a convex super weakly compact set. 

By Proposition (1.1.12) (vi) there is a norm‖·‖of 𝑋 which is uniformly convex on H. Let 

𝑆 ⊂ 𝐾 be a convex subset containing at least two different points 𝑢, 𝑣 ∈ 𝑆. Take 

𝑑 = 𝑑𝑖𝑎𝑚(𝑆) and for 𝜀 = ‖𝑢 − 𝑣‖ find 𝛿 > 0 witnessing the uniform convexity of ‖·‖2 

on 𝐻. Put 𝑥 = (𝑢 + 𝑣)/2 and observe that for any 𝑧 ∈ 𝑆 we have 

𝛿 ≤
 ‖𝑢 −  𝑧‖2 + ‖𝑣 − 𝑧‖2

2
 − ‖𝑥 −  𝑧‖2 ≤ 𝑑2 − ‖𝑥 −  𝑧‖2  
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since 𝑢 − 𝑧, 𝑣 − 𝑧, 𝑥 − 𝑧 ∈ 𝐻 and the uniform convexity of  ‖·‖2. Therefore ‖𝑥 − 𝑧‖ ≤

√𝑑2 − 𝛿 < 𝑑 for every 𝑧 ∈ 𝑆 and thus 𝑥 is a nondiametral point of 𝑆.  

Note that the normal structure implies the fixed point property for nonexpansive mappings. 

 Observe that the Proposition (1.1.12) requires the hypothesis of convexity, and implicitly. 

The results Theorem (1.1.6) and Theorem (1.2.8) too. Actually, we do not know if the closed 

convex hull of a super weakly compact is again super weakly compact, that is, a sort of 

Krein’s theorem. We know that the answer is negative for finite dentability and it is also 

negative for the somehow related property. 

 The estimations of the dentability indices are implicit in the proofs. 

Proposition (1.1.15)[1]. “Stability properties of convex super weakly compact sets”. 

(i) 𝐴 closed convex subset 𝐻 ⊂ 𝐾 of a convex super weakly compact is again super weakly 

compact. Moreover, 𝐷𝑧(𝐻, 𝜀)  ≤ 𝐷𝑧(𝐾, 𝜀). 

(ii) The image of a convex super weakly compact 𝐾 set through an operator 𝑇 is again super 

weakly compact. Moreover, 𝐷𝑧(𝑇(𝐾), 𝜀)  ≤ 𝐷𝑧(𝐾, 𝜀/2‖𝑇‖). 

(iii) The product of convex super weakly compact sets in a finite direct sum of Banach 

spaces is super weakly compact. 

(iv) The sum and the convex hull of two convex super weakly compact sets areagain super 

weakly compact. In particular, the absolute convex hull of a convex super weakly compact 

is super weakly compact. 

(v) Let 𝐾 ⊂ 𝑋 be such that for every 𝜀 > 0 there is a convex super weakly compact set 𝐻𝜀 
such that  𝐾 ⊂ 𝐻𝜀 + 𝜀𝐵𝑋. Then Kis super weakly compact. 

Section (1.2): Renormings in Super WCG Spaces 

The most remarkable result in renorming of WCG spaces that ensures the existence of 

equivalent locally uniformly convex norms. As super weakly compact sets are exactly the 

sets supporting uniformly convex functions, we may expect that renormings for super WCG 

should be “more uniform”. Actually, the uniform convexity of the norm given by 

Proposition (1.1.12) (vi) only extends to certain family of weakly compact sets which satisfy 

a local version of Definition (1.1.7). 

Definition (1.2.1)[1]. Let 𝐾,𝐻 ⊂ 𝑋 be subsets and suppose moreover that 𝐾 is absolutely 

convex. The set 𝐻 is said to be strongly generated by 𝐾 if for every 𝜀 > 0 there is 𝑛 ∈ ℕ 

such that 𝐻 ⊂ 𝑛𝐾 + 𝜀𝐵𝑋. 

This definition is necessary where the strongly generated subsets are known. For instance, 

consider a SWCG Banach 𝑋 space and a probability measure space (𝛺, 𝛴, 𝜇). Says that there 

exists a symmetric weakly compact 𝐾 ⊂ 𝐿1(𝜇, 𝑋)that strongly generates any weakly 

compact decomposable setof 𝐿1(𝜇, 𝑋). 𝐴 set  𝐻 ⊂ 𝐿1(𝜇, 𝑋) is called decomposable if 𝟏𝐴𝑓 +
𝟏𝛺\𝐴𝑔 ∈ 𝐻 whenever 𝑓, 𝑔 ∈ 𝐻 and 𝐴 ∈ 𝛴. 

We shall begin with an improvement of statement (vi) of Proposition (1.1.12). 
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Theorem (1.2.2)[1]. Let 𝐾 ⊂ 𝑋 be an absolutely convex super weakly compact. There is an 

equivalent norm  |‖·‖| on 𝑋 such that its restriction to convex sets strongly generated by 𝐾 

is uniformly convex. 

Proof. Without loss of generality we may assume that 𝐾 = 𝑇(𝐵𝑍) where 𝑇: 𝑍 → 𝑋 is an 

uniformly convex operator and 𝑍 is reflexive by Proposition (1.1.12) (iv). Consider the 

sequence of equivalent norms on 𝑋 

‖𝑥‖𝑘
2 =  inf{‖𝑥 −  𝑇(𝑧)‖2 + 𝑘−1‖𝑧‖2 ∶  𝑧 ∈  𝑍}. 

Note that the infimum is actually attained since 𝑍 is reflexive. Fix 𝐻 a subset strongly 

generated by 𝐾. Note that lim
𝑘
 ‖𝑥‖𝑘 = 0 uniformly on 𝐻. We claim that the norm  ‖| · |‖on 

𝑋 defined by ‖|·|‖2 = ∑ 2−𝑘∞
𝑘−1 ‖·‖𝑘

2  has the desired property. Fix 𝜀 > 0 and suppose that 

(𝑥𝑛), (𝑦𝑛)  ⊂ 𝐻 are such that 

lim
𝑛
(2‖|𝑥𝑛|‖

2 + 2‖|𝑦𝑛|‖
2 − ‖|𝑥𝑛 + 𝑦𝑛|‖

2) =  0.  

An standard convexity argument yields that 

lim
𝑛
(2‖𝑥𝑛‖𝑘

2 +  2‖𝑦𝑛‖𝑘
2 − ‖𝑥𝑛 + 𝑦𝑛‖𝑘

2) =  0 

for any 𝑘 ∈ ℕ. Fix 𝑘 ∈ ℕ such that ‖𝑥‖𝑘 < 𝜀 for every 𝑥 ∈ 𝐻 and find (𝑧𝑛), (𝑤𝑛)  ⊂ 𝑍 

such that 

‖𝑥𝑛‖𝑘
2 = ‖𝑥𝑛 − 𝑇(𝑧𝑛)‖

2 + 𝑘−1‖𝑧𝑛‖
2, ‖𝑦𝑛‖𝑘

2  = ‖𝑦𝑛  −  𝑇(𝑤𝑛)‖
2 + 𝑘−1‖𝑤𝑛‖

2. 

Note that the sequences (𝑧𝑛), (𝑤𝑛) are bounded. For the sum of the points we have 

‖𝑥𝑛  +  𝑦𝑛‖𝑘
2 ≤ ‖𝑥𝑛 + 𝑦𝑛 −  𝑇(𝑧𝑛 + 𝑤𝑛)‖

2 + 𝑘−1‖𝑧𝑛  +  𝑤𝑛‖
2 

and so, using the convexity of the squared norm, we obtain that  

𝑘−1(2‖𝑧𝑛‖
2 + 2‖𝑤𝑛‖

2 − ‖𝑧𝑛  +  𝑤𝑛‖
2)  ≤  2‖𝑥𝑛‖𝑘

2 + 2‖𝑦𝑛‖𝑘
2 − ‖𝑥𝑛 + 𝑦𝑛‖𝑘

2  

Therefore 

lim
𝑛
(2‖𝑧𝑛‖

2 + 2‖𝑤𝑛‖
2  −  ‖𝑧𝑛  +  𝑤𝑛‖

2) =  0  

which implies that lim
𝑛
‖𝑇(𝑧𝑛)  − 𝑇(𝑤𝑛)‖ = 0 by the uniform convexity of 𝑇. Take an 𝑁 ∈

ℕ such that ‖𝑇(𝑧𝑛)  − 𝑇(𝑤𝑛)‖  < 𝜀 if 𝑛 ≥ 𝑁. Then we have 

‖𝑥𝑛  − 𝑦𝑛‖ ≤ ‖𝑥𝑛  − 𝑇(𝑧𝑛)‖ + ‖𝑇(𝑧𝑛) − 𝑇(𝑤𝑛)‖ + ‖𝑦𝑛 − 𝑇(𝑤𝑛)‖ < 3𝜀 

for  𝑛 ≥ 𝑁. That shows lim
𝑛
‖𝑥𝑛 − 𝑦𝑛‖ = 0 as we wanted. 

Proposition (1.2.3)[1]. Let 𝑋 be a dual Banach space generated by a super weakly compact 

convex set 𝐾. There is an equivalent dual norm ‖| · |‖ on X such that its restriction to convex 

sets strongly generated by 𝐾 is uniformly convex. 

Proof. Let ‖·‖ be a dual norm on 𝑋. We construct ‖| · |‖ as in Theorem (1.2.2). We only 

need to check that it is 𝑤∗-lower semicontinuous which is easy using the fact that the 

infimum in the definition of  ‖·‖𝑘 is attained. 

This is another observation about dual renormings and, actually. 
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Lemma (1.2.4)[1]. Suppose that 𝑋 is a dual Banach space and 𝑇: 𝑋 → 𝑌 is super weakly 

compact and 𝑤∗ −𝑤-continuous. Then there is an equivalent dual norm on 𝑋 such that 𝑇 

becomes uniformly convex. 

Proof. Suppose that 𝑋 is endowed with a (nondual) norm such that 𝑇 is uniformly convex. 

We claim that the norm  ‖|. |‖ on 𝑋 having 𝐵𝑋
𝑤∗̅̅ ̅̅ ̅as the unit ball makes 𝑇 also uniformly 

convex. Given 𝜀 > 0 there is 𝛿 > 0 such that 𝑥, 𝑦 ∈ 𝐵𝑋 and  ‖
𝑥+𝑦

2
‖ > 1– 𝛿 implies 

‖𝑇(𝑥)  − 𝑇(𝑦)‖  < 𝜀. As a consequence, if 𝐻 is a half space such that 𝐻 ∩ (1 − 𝛿)𝐵𝑋 = ∅ 

then diam (𝑇(𝐻 ∩ 𝐵𝑋))  ≤ 𝜀. Take 𝑥, 𝑦 ∈ 𝑋 with  ‖|𝑥|‖  = ‖|𝑦|‖  = 1 and  ‖|𝑥 + 𝑦|‖  >

2 − 2𝛿, that is, 𝑥, 𝑦 ∈ 𝐵𝑋
𝑤∗̅̅ ̅̅ ̅ and  

𝑥+𝑦

2
∉ (1 − 𝛿)𝐵𝑋

𝑤∗̅̅ ̅̅ ̅. Take 𝐻 a 𝑤∗-open halfspace with 
𝑥+𝑦

2
∈

𝐻 and 𝐻 ∩ (1 − 𝛿)𝐵𝑋
𝑤∗̅̅ ̅̅ ̅ = ∅. Observe that ‖𝑥 − 𝑦‖  ≤ 2 diam(𝐻 ∩ 𝐵𝑋

𝑤∗̅̅ ̅̅ ̅). Now, by the 

𝑤∗ −𝑤-continuity of 𝑇 we have 

𝑇(𝐻 ∩ 𝐵𝑋
𝑤∗̅̅ ̅̅ ̅ )  ⊂  𝑇(𝐻 ∩  𝐵𝑋)𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  =  𝑇(𝐻 ∩  𝐵𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

As diam(𝑇(𝐻 ∩ 𝐵𝑋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )) =diam(𝑇(𝐻 ∩ 𝐵𝑋))  ≤ 𝜀, we get that ‖𝑇(𝑥)  − 𝑇(𝑦)‖  ≤ 2𝜀 and so 

the uniform convexity of 𝑇 with respect to ‖|. |‖.  

Given 𝐻 ⊂ 𝑋, the seminorm on 𝑋∗ of uniform convergence on 𝐻 is denoted 𝑝𝐻, that 

is, 𝑝𝐻(𝑥
∗) = sup{|𝑥∗(𝑥)| ∶ 𝑥 ∈ 𝐻}. The following Šmulyian’s criterion for 𝐻-UG. 

Lemma (1.2.5)[1]. Let 𝑋 be a Banach space and 𝐻 ⊂ 𝑋 a bounded subset. The norm on 𝑋 

is 𝐻-UG smooth if and only if 𝑝𝐻(𝑥𝑛
∗ − 𝑦𝑛

∗)  = 0 whenever (𝑥𝑛
∗), (𝑦𝑛

∗) ⊂ 𝑆𝑋∗are such that 

lim
𝑛
 ‖𝑥𝑛

∗ + 𝑦𝑛
∗‖  = 2. 

Lemma (1.2.6)[1]. Suppose that 𝑋 is 𝐾-UG smooth and 𝐻 is strongly generated by 𝐾, then 

𝑋 is 𝐻-UG smooth as well. 

Proof. Let (𝑥𝑛
∗), (𝑦𝑛

∗) ⊂ 𝑆𝑋∗ such that lim
𝑛
 ‖𝑥𝑛

∗ + 𝑦𝑛
∗‖  = 2. Fix 𝜀 > 0 and find 𝑚 ∈ ℕ such 

that 𝐻 ⊂ 𝑚𝐾 + 𝜀𝐵𝑋. By Lemma (1.2.5), take 𝑁 ∈ ℕ such that 𝑝𝐾(𝑥𝑛
∗ − 𝑦𝑛

∗)  < 𝜀/𝑚 for 

𝑛 ≥ 𝑁. It is easy to see that 𝑝𝐻(𝑥𝑛
∗ − 𝑦𝑛

∗)  < 3𝜀 for 𝑛 ≥ 𝑁, and thus the norm of 𝑋 is 𝐻-

UG smooth, again by Lemma (1.2.5). 

Let us recall that it is a natural consequence of the symmetry of 𝔚𝑠𝑢𝑝𝑒𝑟. 

Theorem (1.2.7)[1]. Let 𝐾 ⊂ 𝑋 be an absolutely convex super weakly compact set. There 

is an equivalent norm ‖·‖ on 𝑋 such that it is 𝐻-UG smooth for any 𝐻 ⊂ 𝑋 bounded and 

strongly generated by 𝐾. 

Proof. Take 𝑇 ∶  𝑍 →  𝑋 a super weakly compact operator such that 𝐾 ⊂  𝑇(𝐵𝑍) where 𝑍 

is reflexive (see Proposition (1.1.12) (iv)). Then the adjoint 𝑇∗ ∶ 𝑋∗  →  𝑍∗ is super weakly 

compact as well. By Lemma (1.2.4) we may renorm 𝑋∗ with a dual norm ‖·‖ such that 𝑇∗ 
is uniformly convex. Moreover, we may assume that 𝑋 is endowed with the induced predual 

norm. We claim that this norm is 𝐾-UG smooth. Indeed, applying Lemma (1.2.5), take 

(𝑥𝑛
∗), (𝑦𝑛

∗)  ⊂  𝑆𝑋∗ such that lim
𝑛
 ‖𝑥𝑛

∗  +  𝑦𝑛
∗‖  =  2. Since 𝑇∗ is uniformly convex, we have  

0 = lim
𝑛
 ‖𝑇∗(𝑥𝑛

∗)  − 𝑇∗(𝑦𝑛
∗)‖ = lim

𝑛
 sup{|𝑇∗(𝑥𝑛

∗  −  𝑦𝑛
∗)(𝑧)| ∶  𝑧 ∈  𝐵𝑍}  

= lim
𝑛
 sup{|(𝑥𝑛

∗  −  𝑦𝑛
∗)(𝑇(𝑧))|: 𝑧 ∈  𝐵𝑍}  ≥ lim

𝑛
 𝑝𝐾(𝑥𝑛

∗  −  𝑦𝑛
∗). 
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 Therefore, lim
𝑛
 𝑝𝐾(𝑥𝑛

∗  −  𝑦𝑛
∗)  =  0 and the norm on 𝑋 is 𝐾-UG smooth as desired. Now, 

by Lemma (1.2.6) the norm ‖·‖ built on 𝑋 is 𝐻-UG smooth for every 𝐻 ⊂  𝑋 strongly 

generated by 𝐾. 

Theorem (1.2.8)[1]. Let 𝑋 be a 𝑆2𝑊𝐶𝐺 Banach space. Then there is an equivalent norm on 

𝑋 such that its restriction to any reflexive subspace of 𝑋 is both uniformly convex and 

uniformly Fréchet smooth. 

This result extends qualitatively renorming results done for the spaces 𝐿1(𝜇) 
and 𝐿1(𝜇, 𝑋)with 𝑋 super reflexive. Note that it is established that for a strongly super 

reflexive generated Banach space there is a renorming which is uniformly Fréchet smooth 

on its reflexive subspaces. Example (1.2.9) shows that the class of 𝑆2𝑊𝐶𝐺 Banach spaces 

is strictly larger than the class of strongly super reflexive generated Banach spaces. 

The structure is a survey on super weak compactness which includes the main equivalences 

in the convex case  and an account of the properties which are relevant for the results. We 

also describe the relationships with the uniformly convexifying operators of Beauzamy 

which are extremely useful for the proofs.  We devoted to super 𝑊𝐶𝐺 Banach spaces and 

their renormings, including the proof of the main results and two examples. 

The interesting example of a super property is the super reflexivity, introduced. A Banach 

space 𝑋 is super reflexive if any ultrapower 𝑋𝒰 is reflexive for 𝒰 any free ultrafilter. States 

that 𝑋 is super reflexive if and only if it has an equivalent uniformly convex renorming. 

Extended the notion of super reflexivity to operators. An operator 𝑇: 𝑍 → 𝑋 is uniformly 

convexif given 𝜀 > 0 there is 𝛿 > 0 such that ‖𝑇(𝑥) − 𝑇(𝑦)‖  < 𝜀  when ever ‖𝑥‖  =
‖𝑦‖  = 1 and ‖𝑥 + 𝑦‖  > 2 − 𝛿. An operator 𝑇: 𝑍 → 𝑋 is said uniformly convexifying if 

it becomes uniformly convex after a suitable renorming of 𝑍. Of course, uniformly 

convexifying operators coincide with the super weakly compact operators. 

A localized version of super reflexivity for subsets was introduced. Let 𝐶 be a bounded 

closed convex set of a Banach space 𝑋 and let 𝜌 be a metric defined on 𝑋 (the norm metric, 

for instance). We say that 𝐶 is 𝜌-dentable  if for any nonempty closed convex subset 𝐷 ⊂ 𝐶 

and 𝜀 > 0 it is possible to find an open half space 𝐻 intersecting 𝐷 such that 𝜌-diam(𝐷 ∩
𝐻)  < 𝜀. If 𝐶 is 𝜌-dentable we may consider the following “derivation” 

[𝐷]𝜀
′  =  {𝑥 ∈  𝐷 ∶  𝜌 − 𝑑𝑖𝑎𝑚(𝐷 ∩  𝐻)  >  𝜀, ∀𝐻 ∈  ℍ, 𝑥 ∈  𝐻}. 

Here H denotes the set of all the open half spaces of 𝑋. Clearly, [𝐷]𝜀
′  is what remains of  𝐷 

after removing all the slices of 𝜌-diameter less or equal than 𝜀. Consider the sequence of 

sets defined by [𝐶]0
𝜀  = 𝐶 and, for every 𝑛 ∈ ℕ, inductively by 

[𝐶]𝑛
𝜀 = [[𝐶]𝜀

𝑛−1]𝜀
′  

 Such a process can be extended to transfinite ordinal numbers in a quite natural way, and 

for any dentable set the process finishes at the empty set. However, we are only interested 

in sets for which the iteration process is finite. 

Proof. By Theorem (1.2.2) we know that there is an equivalent norm ‖·‖1 on 𝑋 such that its 

restriction to any reflexive subspace of 𝑋 is uniformly convex. On the other hand, by 

Theorem (1.2.7) there is an equivalent norm ‖·‖2 on 𝑋 such that given a reflexive subspace 

𝑌 ⊂  𝑋, then ‖·‖2 is 𝐵𝑌 -UG smooth. In particular, the restriction of ‖·‖2 to 𝑌 is uniformly 
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Fréchet smooth. Our aim is to show that the norms ‖·‖1 and ‖·‖2 can be “averaged”. Let 𝑃 

denote the set of equivalent norms on 𝑋 endowed with the distance 𝜌(𝑝, 𝑞)  =  sup{|𝑝(𝑥)  −
 𝑞(𝑥)| ∶ ‖𝑥‖ =  1}. The metric space (𝑃, 𝜌) is a Baire space. We claim that the set of norms 

sharing the property of ‖·‖1 is a residual subset of (𝑃, 𝜌), that is, it contains a dense 𝒢𝛿-set. 

For any 𝑝 ∈  𝑃 consider the set 

𝐺(𝑝, 𝑗)  =  {𝑞 ∈  𝑃 ∶  sup{|𝑝(𝑥)2 + 𝑗−1‖𝑥‖1
2 − 𝑞(𝑥)2|: ‖𝑥‖ = 1}  <  𝑗−2}. 

By construction 𝐺(𝑝, 𝑗) is open in (𝑃, 𝜌) and 𝐺𝑘 = ⋃ ⋃ 𝐺(𝑝, 𝑘)𝑗≥𝑘𝑝∈𝑃  is dense. We will 

show that any 𝑞 ∈ ⋂ 𝐺𝑘
∞
𝑘=1  is uniformly convex restricted to any 𝑌 ⊂  𝑋 reflexive. Suppose 

that (𝑥𝑛),(𝑦𝑛) ⊂ 𝐵𝑌 are such that 

lim
𝑛
(2𝑞(𝑥𝑛)

2  +  2𝑞(𝑦𝑛)
2  −  𝑞(𝑥𝑛 + 𝑦𝑛)

2) = 0. 

Given 𝑘 ∈ ℕ then 𝑞 ∈  𝐺(𝑝, 𝑗) for some 𝑝 ∈  𝑃 and some 𝑗 ≥  𝑘. Using convexity we 

deduce that 

𝑗−1(2‖𝑥𝑛‖1
2 + 2‖𝑦𝑛‖1

2 − ‖𝑥𝑛 + 𝑦𝑛‖1
2)  < 8𝑗−2 + 2𝑞(𝑥𝑛)

2 + 2𝑞(𝑦𝑛)
2 − 𝑞(𝑥𝑛 + 𝑦𝑛)

2. 

Taking limits as 𝑛 →  ∞ we have 

𝑗−1 lim sup
𝑛

(2‖𝑥𝑛‖1
2 +  2‖𝑦𝑛‖1

2 − ‖𝑥𝑛 + 𝑦𝑛‖1
2) ≤ 8𝑗−2. 

That is, lim sup
𝑛

(2‖𝑥𝑛‖1
2 +  2‖𝑦𝑛‖1

2 − ‖𝑥𝑛 + 𝑦𝑛‖1
2) ≤ 8𝑗−2 ≤  8𝑘−1. Since 𝑘 ∈ ℕ was 

arbitrary, we have lim
𝑛
(2‖𝑥𝑛‖1

2 +  2‖𝑦𝑛‖1
2 − ‖𝑥𝑛 + 𝑦𝑛‖1

2) = 0, and the uniform convexity 

of ‖·‖1 implies that lim
𝑛
 ‖𝑥𝑛 − 𝑦𝑛‖ = 0. Therefore 𝑞 is uniformly convex on 𝑌 as desired. 

In order to show that the set of norms sharing the property of ‖·‖2 is a residual subset of 

(𝑃, 𝜌) too it is enough to work on the set of equivalent dual norms on 𝑋∗ because the duality 

map is a homeomorphism. 

By Lemma (1.2.5) it is enough to show that there is a residual set of equivalent dual norms 

‖|⋅|‖ on 𝑋∗ such that lim
𝑛
 𝑝𝐵𝑌(𝑥𝑛

∗ − 𝑦𝑛
∗)  =  0 whenever 𝑌 ⊂  𝑋 is reflexive and 

(𝑥𝑛
∗), (𝑦𝑛

∗) ⊂ 𝐵𝑋∗ are such that 

lim
𝑛
(2‖|𝑥𝑛

∗ |‖2 +  2‖|𝑦𝑛
∗|‖2  −  ‖|𝑥𝑛

∗ + 𝑦𝑛
∗|‖2) = 0. 

It is obvious that the same argument as the one used before for ‖·‖1 will give the desired 

result. Now, the intersection of two residual sets in the Baire space (𝑃, 𝜌) is nonempty, thus 

there exist norms sharing the properties of ‖·‖1 and ‖·‖2. 

 

The following example shows that there exist 𝑆2WCG Banach spaces which are not 

super reflexive generated. Note that such spaces cannot be reflexive because a reflexive 

𝑆2WCG Banach space is super reflexive, and they must be nonseparable since separable 

Banach spaces are Hilbert generated. 
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Example (1.2.9)[1]. Let (𝑝𝑘) be an enumeration of (1, 2] ∩ ℚ. Then the space 

𝑋 = (∑ℓ𝑝𝑘

∞

𝑘=1

(𝜔1))

1

 

is 𝑆2WCG, but 𝑋 is not super reflexive generated. 

Proof. We claim that 𝐾 = ∏ 2−𝑘∞
𝑘=1 𝐵ℓ𝑝𝑘(𝜔1)

 is super weakly compact. Indeed, observe that 

𝐾 ⊂ ∏ 2−𝑘𝐵ℓ𝑝𝑘(𝜔1)
𝑛
𝑘=1 + 2−𝑛𝐵𝑋 for every 𝑛 ∈ ℕ. Since ∏ 2−𝑘𝐵ℓ𝑝𝑘(𝜔1)

𝑛
𝑘=1  is a finite sum 

of convex super weakly compact subsets it is again super weakly compact by Proposition 

(1.1.15). Now Proposition (1.1.15) implies that 𝐾 is super weakly compact. 

Let 𝐻 ⊂  𝑋 be weakly compact, and let 𝜋𝑘 be the projection on the k-th summand of 

𝑋. We claim that for every 𝜀 >  0 there is 𝑛 ∈ ℕ such that 

sup { ∑  

∞

𝑘=𝑛+1

‖𝜋𝑘(𝑥)‖: 𝑥 ∈  𝐻} ≤  𝜀.                                     (1) 

Indeed, assume that for some 𝜀 >  0 the property does not hold. Then we can find 𝑥1 ∈
 𝐻, 𝑛1 ∈ ℕ  and 𝑤𝑘 ∈  𝑝𝑘(𝜔1)

∗ with ‖𝑤𝑘‖ =  1 for 𝑘 ≤  𝑛1 such that 

∑ 

𝑛1

𝑘=1

𝑤𝑘(𝜋𝑘(𝑥1)) > 𝜀   and    ∑  

∞

𝑘=𝑛1+1

‖𝜋𝑘(𝑥1)‖ < 𝜀/2. 

Find now 𝑥2  ∈  𝐻, 𝑛2 > 𝑛1 and 𝑤𝑘 ∈  𝑝𝑘(𝜔1)
∗ with ‖𝑤𝑘‖ =  1 for 𝑛1 < 𝑘 ≤ 𝑛2 such that 

∑  

𝑛2

𝑘=𝑛1+1

𝑤𝑘(𝜋𝑘(𝑥2)) > 𝜀   and    ∑  

∞

𝑘=𝑛2+1

‖𝜋𝑘(𝑥2)‖ < 𝜀/2. 

Repeating inductively this argument we get sequences (𝑥𝑘) ⊂ 𝐻, (𝑛𝑘) ⊂ 𝑁 and norm one 

functionals 𝑤𝑘 ∈ ℓ𝑝𝑘
(𝜔1)

∗ satisfying analogous estimations. Consider the operator 𝑇 ∶

 𝑋 → ℓ1 defined by 𝑇(𝑥) = (𝑤𝑘(𝜋𝑘(𝑥)))
𝑘=1

∞
. Since ℓ1 has the Schur property, we have 

that T(H) is a norm compact subset of ℓ1. On the other hand, by the previous construction 

we have ‖𝑇(𝑥𝑘) −  𝑇(𝑥𝑗)‖ > 𝜀/2 for 𝑘 ≠ 𝑗, and thus 𝑇(𝐻) cannot be norm compact. This 

contradiction proves the claim. 

Now we are ready to show that 𝐾 strongly generates 𝑋. Let 𝐻 ⊂  𝑋 be a weakly 

compact subset and 𝜀 >  0. Take 𝑛 ∈ ℕ such that inequality is satisfied. If 𝑚 > 0 is such 

that 𝜋𝑘(𝐻) ⊂ 𝑚2
−𝑘𝐵ℓ𝑝𝑘

(𝜔1) for every 𝑘 ≤  𝑛, then 𝐻 ⊂ 𝑚𝐾 + 𝜀𝐵𝑋. 

In order to prove the second statement, consider the space 
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𝑌 = (∑  

∞

𝑘=1

ℓ𝑝𝑘(𝜔1))

2

. 

The identity map 𝐽 ∶  𝑋 →  𝑌 is an operator with dense range. If 𝑋 were super reflexive 

generated, then 𝑌 would be super reflexive generated too. But 𝑌 is not super reflexive 

generated since this space is the example showing the nonreversibility of (ii)⇒(iii) in 

Theorem (1.1.3). 

The construction given in Example (1.2.9) easily implies that 𝔚super does not have the 

factorization property, but it has the disadvantage of being nonseparable. The following is 

an example of separable convex super weakly compact set that cannot be interpolated by a 

super reflexive space. 

Example (1.2.10)[1]. Consider 𝑋 = (∑ ℓ𝑘
∞
𝑘=2 )2 and  = ∏ 2−𝑘𝐵ℓ𝑘

∞
𝑘=2  . Then 𝑋 is reflexive 

and separable, 𝐾 is a super weakly compact set that generates 𝑋 and 

sup{𝜀𝑝𝐷𝑧(𝐾, 𝜀): 𝜀 ∈  (0, 1)} = +∞ 

for every 𝑝 >  1. In particular, we have 𝐾 ⊄ 𝑇(𝐵𝑍) for any super reflexive space 𝑍 and any 

operator 𝑇 ∶  𝑍 →  𝑋. 

Proof. Some of the statements can be easily checked and the super weak compactness of 𝐾 

follows by the same proof as in the previous example. Only the estimation of the growth of 

𝐷𝑧(𝐾, 𝜀) needs a proof. Fix 𝑘 ∈ ℕ and take 𝜀 ∈ (0, 2−𝑘). A simple homogeneity argument 

gives that 

𝐷𝑧(𝐾, 𝜀) ≥  𝐷𝑧(𝐵ℓ𝑘 , 2
𝑘𝜀)  ≥  (2𝑘𝜀)−𝑘 = 2−𝑘

2
𝜀−𝑘 

where we are using that 𝐷𝑧(𝐵ℓ𝑝  , 𝜀)  ≥  𝜀
−𝑝. Such an estimation is obtained as follows. Start 

a 2𝜀-separated dyadic tree in ℓ𝑝 with root 0. Set the first level as (𝜀, 0, 0, . . . ) and 

(−𝜀, 0, 0, . . . ), the second level as (𝜀, 𝜀, 0, . . . ), (𝜀, −𝜀, 0, . . . ), (−𝜀, 𝜀, 0, . . . ), (−𝜀,−𝜀, 0, . . . ), 
and so on until the 𝑛-th level. If 𝑛𝜀𝑝 ≤ 1, then that tree is contained in the unit ball and, in 

such a case, 𝐷𝑧(𝐵ℓ𝑝 , 𝜀)  >  𝑛. Taking 𝑛 as the integer part of 𝜀−𝑝 we get the desired bound. 

We finish with a reflection on an alternative meaning for the sentence “super WCG”: 

What are the Banach spaces 𝑋 such that their ultraproducts 𝑋𝒰 are WCG? Such class of 

Banach spaces might be very restrictive as the next partial result hints. 

Proposition (1.2.11)[1]. Let 𝑋 be a Banach space, let 𝐾 be a convex weakly compact set 

and let 𝒰 be a free ultrafilter on ℕ. Assume that 𝐾𝒰 is weakly compact and generates 𝑋𝒰, 

then 𝑋 is super reflexive. 

Proof. First note that 𝐾 is a super weakly compact and by Proposition (1.1.15) we may 

assume that 𝐾 is absolutely convex taking con𝑣(𝐾 ∪ (−𝐾)). We claim that 𝐵𝑋 is strongly 

generated by 𝐾. Assume the contrary, so there is 𝜀 > 0 such that for every 𝑛 ∈ ℕ we can 

find 𝑥𝑛 ∈ 𝐵𝑋 \ (𝑛𝐾 +  𝜀𝐵𝑋). By construction, the element (𝑥𝑛) ∈ 𝑋
𝒰 satisfies ‖(𝑥𝑛) −

 (𝑦𝑛)‖ ≥  𝜀 for every (𝑦𝑛) ∈ ⋃ 𝑚𝐾𝒰∞
𝑚=1  which is a contradiction. Now 𝐵𝑋 is weakly 

compact since it is strongly generated by a weak compact. Moreover 𝐵𝑋 is super weakly 

compact by Proposition (1.1.15), and thus 𝑋 is super reflexive. 

Definition (1.2.12)[5]. A Banach space 𝑋 is 𝑊𝐶𝐺 if 𝑋 admits 𝑀. 2𝑅 norm for som bounded 
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Definition (1.2.13)[6]. A Banach space 𝑋 is said to be super. Reflexive if every Banach 

space 𝑌 which an be finitely repre sentable in 𝑋 refixive. 
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Chapter 2 

𝑝-Compact Sets of 𝑝-Compact Linear Operators 

After obtaining a factorization of 𝑝-compact linear operators via universal Banach 

spaces, and using the lifting property of quotient maps for 𝑝-compact sets we prove a 

factorization result for relatively 𝑟-compact subsets of 𝑝-compact operators, where 𝑟 ≥
 2, 1 ≤  𝑝 ≤  𝑟 < ∞. To apply our results to homogeneous polynomials. 

Section (2.1): Preliminaries 

W.B. Johnson proved that an operator in the closure of finite rank operators can be 

factorized through a universal Banach space. T. Figiel proved that compact operators can be 

factorized through a closed subspace of Johnson’s universal Banach space. D.J. Randtke, T. 

Terzioglu, and J. Dazord factorized compact operators defined on some certain Banach 

spaces, such as ℒ1 , ℒ∞. Then W. H. Graves and W. M. Ruess, extended these works to 

simultaneous factorization of operators belonging to compact subsets of compact operators. 

But the (uniform) factorization of compact subsets of compact operators on arbitrary Banach 

spaces was studied by R. Aron, M. Lindstrom, W.M. Ruess, R. Ryan. Showing that the 

universal Banach space established by W.B. Johnson  and T. Figiel also serves as a uniform 

factorization space for factorization of operators belonging to the space of compact weak*-

weak continuous operators, they obtain a factorization of relative compact subsets of 

compact operators defined on an arbitrary Banach space. 

 As a stronger form of compactness D.P. Sinha and A.K. Karn introdueced pcompactness 

notion, which was motivated by the well-known characterization of compact sets duee to A. 

Grothendieck. 

        We study simultaneous factorization of operators belonging to a 𝑝-compact subset of 

𝑝-compact operators, basing on R. Aron, M. Lindstr¨om, W.M. Ruess, R. Ryan. We firstly 

consider factorization of 𝑝-compact operators via universal Banach spaces, then we study 

factorization of relatively 𝑟-compact subsets of the Banach space of all 𝑝-compact operators. 

We get a factorization of 𝑝-compact operators through a universal Banach space. We study 

uniform factorization of relatively 𝑟-compact subsets of 𝑝-compact operators. 

The characterization of relatively 𝑝-compact sets in the projective tensor produect of 

Banach spaces, strengthen a result given, and then making a careful modification with 

quantitative strengthening of a method given and show that every 𝑝-compact operator in 

certain relatively r-compact subsets of the Banach space of p-compact operators with 𝑟 ≥
2 and 1 ≤ 𝑝 ≤ 𝑟 < ∞, can be factorized simultaneously through a universal Banach space. 

It should be pointed out that we do not use any selection principal in our proof, rather we 

use the lifting property of quotient maps for p-compact sets. Finally, we prove partial p-

compact versions of a result of E. Toma for homogeneous polynomials. We show that for 

any 𝑝 ≥ 1 every relatively 𝑝-compact subset of a Banach space of p-compact operators is 

collectively 𝑝-compact. 

       The letters 𝑋 and 𝑌 will always represent complex Banach spaces. The symbol 𝐵𝑋 

represents the closed unit ball of 𝑋, 𝑆𝑋 represents the unit sphere of 𝑋. For any topology 𝜏 
on 𝑋, �̅�𝜏 will denote the 𝜏 -closure of a set 𝑀 in 𝑋. The space of all bounded linear operators 

from 𝑋 to 𝑌 will be denoted by 𝐿(𝑋, 𝑌). The subspace of all compact (respectively, finite 
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rank) operators of 𝐿(𝑋, 𝑌) is denoted by 𝐾(𝑋, 𝑌) (respectively, 𝐹(𝑋, 𝑌)). If 𝑋 is a Banach 

space, and 1 ≤ 𝑝 ≤ ∞ with the conjugate index 𝑝∗ given by 
1

𝑝
 +

1

𝑝∗
= 1 (where 𝑝∗ = 1 if 

𝑝 = ∞), we let ℓ𝑝(𝑋) (1 ≤ 𝑝 < ∞) (resp. , ℓ∞ (𝑋)) denote the set of all sequences (𝑥𝑛)𝑛=1
∞  

in 𝑋 such that ∑  ∞
𝑛=1  ‖𝑥𝑛‖

𝑝 < ∞ (resp., (𝑥𝑛)𝑛=1
∞  is bounded), and we let 𝑐0(𝑋) denote the 

set of all sequences (𝑥𝑛)𝑛=1
∞  in 𝑋 such that 𝑥𝑛  → 0 in 𝑋. A set 𝐾 ⊂ 𝑋 is said to be relatively 

𝑝-compact if there is a sequence (𝑥𝑛)𝑛=1
∞  in ℓ𝑝(𝑋) ((𝑥𝑛)𝑛=1

∞  in 𝑐0(𝑋) ⊂ ℓ∞(𝑋) if 𝑝 =

∞) such that 𝐾 ⊂ {∑  ∞
 𝑛=1  𝑎𝑛𝑥𝑛: (𝑎𝑛)𝑛=1

∞ ∈  𝐵ℓ𝑝∗  }. A relatively 𝑝-compact and closed set 

will be called 𝑝-compact. We denote this last set by 𝑝 − 𝑐𝑜{(𝑥𝑛) 𝑛=1
∞ } and we will call it a 

fundamental 𝑝-compact set since these sets form a fundamental system of pcompact sets of 

𝑋. From Grothendieck’s characterization of compact sets, a subset 𝐾 of a Banach space 𝑋 

is relatively compact if and only if there is a sequence (𝑥𝑛) 𝑛=1
∞  in 𝑐0(𝑋) such that 𝐾 ⊂

{∑  ∞
 𝑛=1  𝑎𝑛𝑥𝑛 ∶  (𝑎𝑛) 𝑛=1

∞  ∈  𝐵ℓ1}.  

Thus, by the above definition one can consider compact sets as ∞-compact. Also, note that 

𝑝-compact sets are 𝑞-compact if 1 ≤ 𝑝 < ∞, For 1 ≤ 𝑝 ≤ ∞ an operator 𝑇 ∈ 𝐿(𝑋, 𝑌) is 

said to be 𝑝-compact if 𝑇(𝐵𝑋) is a relatively 𝑝-compact set in Y. The subspace of all p-

compact operators of 𝐿(𝑋, 𝑌 ) will be denoted by 𝐾𝑝(𝑋, 𝑌).  

If 𝑇 belongs to 𝐾𝑝(𝑋, 𝑌 ), we define  

𝑘𝑝(𝑇) = inf {‖(𝑦𝑛)𝑛=1
∞ ‖𝑝: (𝑦𝑛)𝑛=1

∞ ∈ 𝑙𝑝(𝑌) 𝑎𝑛𝑑 𝑇(𝐵𝑋) ⊂ 𝑝 − 𝑐𝑜{(𝑦𝑛)𝑛=1
∞ }} 

where 𝑘∞ coincides with the supremum norm. It is easy to see that 𝑘𝑝 is a norm on 𝐾𝑝(𝑋, 𝑌), 

and that (𝐾𝑝, 𝑘𝑝) is a Banach ideal. 

We recall that a mapping 𝑃: 𝑋 →  𝑌 is an n-homogeneous polynomial if there 

is an n-linear mapping 𝐴:𝑋 × … ×  𝑋 →  𝑌 such that 𝑃(𝑥) =  𝐴(𝑥,… , 𝑥) for all 𝑥 ∈  𝑋. 

Let 𝑃(𝑛𝑋, 𝑌) denote the space of all continuous n-homogeneous polynomials from 𝑋 to Y , 

endowed with the usual sup norm. Given a polynomial 𝑃 ∈ 𝑃(𝑛𝑋, 𝑌 ), there is a unique 

symmetric continuous n-linear mapping �̌� ∈ 𝐿(𝑛𝑋, 𝑌) such that 𝑃(𝑥)  = �̌� (𝑥, . . . , 𝑥⏟    
𝑛 𝑡𝑖𝑚𝑒𝑠

) . It is 

well known that the correspondence �̌� ↔  𝑃 is a topological isomorphism between 

𝐿𝑠(𝑛 𝑋, 𝑌), the space of all symmetric continuous n-linear mappings from 𝑋 to 𝑌 , and 

𝑃(𝑛𝑋, 𝑌). The space of n-homogeneous polynomials that are weakly uniformly continuous 

on bounded subsets of 𝑋 is denoted 𝑃𝑤𝑢(
𝑛𝑋, 𝑌) and the corresponding space of symmetric 

n-linear mappings is denoted by 𝐿𝑤𝑢
𝑠 (𝑛𝑋, 𝑌). When 𝑌 = 𝐶, instead of 𝑃𝑤𝑢(

𝑛𝑋, 𝑌), 
𝐿𝑠(𝑛𝑋, 𝑌)  and 𝐿𝑤𝑢

𝑠 (𝑛𝑋, 𝑌) we will shortly write 𝑃𝑤𝑢(
𝑛𝑋) , 𝐿𝑠(𝑛𝑋) and 𝐿𝑤𝑢

𝑠 (𝑛𝑋), 
respectively. For each n-homogeneous polynomial 𝑃 there is a linear operator 𝑇𝑃: 𝑋 →
𝐿𝑠(𝑛−1𝑋), defined by 𝑇𝑃(𝑥1)(𝑥2, . . . , 𝑥𝑛) = 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛). It is known that 𝑃 belongs to 

𝑃𝑤𝑢(
𝑛𝑋) if and only if the operator 𝑇𝑃 is compact. 

Following R.M. Aron, M. Maestre and P. Rueda we say that an n-homogenous 

polynomial is p-compact if for each 𝑥 ∈ 𝑋 there is a neighborhood 𝑉𝑥 of 𝑥 such that 𝑃(𝑉𝑥) 
is relatively p-compact in 𝑌. We denote by 𝑃𝐾𝑝(

𝑛𝑋, 𝑌) the space of p-compact n-

homogeneous polynomials. By an n-homogenous polynomial 𝑃 is p-compact if and only if 

𝑃(𝐵𝑋) is relatively p-compact in 𝑌. On 𝑃𝐾𝑝(
𝑛𝑋, 𝑌 ) we define 
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𝑘𝑝(𝑃) = inf {‖(𝑥𝑛)𝑛=1
∞ ‖𝑝: (𝑥𝑛)𝑛=1

∞ ∈ 𝑙𝑝(𝑌 ), 𝑃(𝐵𝑋) ⊂  𝑝 − 𝑐𝑜{(𝑥𝑛)𝑛=1
∞ }} 

which is a norm satisfying that ‖𝑃‖  ≤ 𝑘𝑝(𝑃) for any 𝑝-compact homogeneous polynomial 

𝑃. Also, (𝑃𝐾𝑝(
𝑛𝑋, 𝑌), 𝑘𝑝)  is a Banach space. 

𝑋⊗𝜋 𝑌 denotes the tensor produect of 𝑋 and 𝑌 endowed with the projective norm 𝜋, which 

is defined as 𝜋(𝑢) = inf{∑  𝑛
𝑛=1 ‖𝑥𝑛‖‖𝑦𝑛‖: 𝑛 ∈ ℕ, 𝑢 = ∑  𝑛

𝑛=1 𝑥𝑛⊗𝑦𝑛} for 𝑥 ∈ 𝑋 ⊗𝜋 𝑌. 

⊗̂𝜋𝑠
𝑛,𝑠 𝑋 will denote the completed 𝑛-fold symmetric tensor produect of 𝑋 endowed with the 

projective 𝑠-tensor norm 𝜋𝑠, which is defined as 𝜋𝑠(𝑧) = inf  {∑  ∞
𝑗=1 |𝜆𝑗|‖𝑥𝑗‖

𝑛
: 𝑧 =

∑  ∞
𝑗=1 𝜆𝑗  ⊗

𝑛 𝑥𝑗} for 𝑧 ∈⊗̂𝜋𝑠 
𝑛 ,𝑠 𝑋, where ⊗𝑛 𝑥:=  𝑥 ⊗. . .⊗  𝑥⏟        

𝑛−𝑡𝑖𝑚𝑒𝑠

. 

Finally, 𝑙𝑝∗ = 𝑐0 if 𝑝 = 1 and the 𝑙𝑝-sum (of Banach spaces), as usual, will stand for 

the 𝑐0-sum if 𝑝 = ∞. 

D. Galicer, S. Lassalle and P. Turco showed that a linear operator is 𝑝-compact if and 

only if it is quotiented in 𝑙𝑝∗. To be more precise, their proof can be sketched as follows: 

Given 𝑇 ∈ 𝐾𝑝(𝑋, 𝑌) there is a 𝑧 = (𝑧𝑛)𝑛=1
∞ ∈ 𝑙𝑝(𝑌) such that 𝑇(𝐵𝑋) ⊂ {∑  ∞

𝑛=1  𝛼𝑛𝑧𝑛 ∶

(𝛼𝑛)𝑛=1
∞ ∈ 𝐿}, where 𝐿 is a compact set in 𝐵ℓ𝑝∗  . Then, define two linear mappings 𝜃𝑧: 𝑙𝑝∗ →

𝑌 by 𝜃𝑧(𝛼) = ∑  ∞
𝑛=1 𝛼𝑛𝑧𝑛, 𝛼 = (𝛼𝑛)𝑛=1

∞ ∈ 𝑙𝑝∗ ,  and 𝜃𝑧: 𝑙𝑝∗/𝑘𝑒𝑟𝜃𝑧 →  𝑌 by 𝜃𝑧([𝛼]) =

𝜃𝑧(𝛼). And define a linear operator 𝑅:𝑋 → 𝑙𝑝∗/𝑘𝑒𝑟𝜃𝑧 by 𝑅(𝑥) = [(𝛼𝑛)𝑛=1
∞ ], where 

(𝛼𝑛)𝑛=1
∞ ∈ 𝐿 is a sequence satisfying that 𝑇(𝑥) = ∑  ∞

𝑛=1  𝛼𝑛𝑧𝑛. 

Then one can easily see that 𝑇 =  𝜃𝑧𝑜𝑅. Here, we notice that 𝜃𝑧 is 𝑝-compact and 𝑅 

is compact. We get the following factorization of 𝑝-compact operators through a universal 

Banach space. 

Theorem (2.1.1)[2]. Let 1 ≤ 𝑝 < ∞, let 𝑋 and 𝑌 be Banach spaces. Then there is a universal 

Banach space 𝑍(𝑝) such that every operator 𝑇 ∈ 𝐾𝑝(𝑋, 𝑌) can be factored as 𝑇 = 𝐵 o 𝐴, 

where 𝐴 ∈ 𝐾(𝑋, 𝑍(𝑝) ) and 𝐵 ∈ 𝐾𝑝(𝑍
(𝑝) , 𝑌). In particular, for 1 ≤ 𝑞 ≤ ∞, 𝑍(𝑝) can be 

chosen as 𝑍(𝑝) = (∑  𝑊(𝑝) 𝑊(𝑝))
𝑞
, for a fixed 𝑞, where 𝑊(𝑝) runs through the quotient 

spaces of 𝑙𝑝∗ which are Banach spaces. 

Proof. Given 𝑇 ∈ 𝐾𝑝(𝑋, 𝑌), there exist 𝑧 =  (𝑧𝑛) 𝑛=1
∞  ∈  𝑙𝑝(𝑌), 𝑅 ∈ 𝐾(𝑋, 𝑙𝑝∗  /𝑘𝑒𝑟𝜃𝑧)  

and  �̃�𝑧 ∈  𝐾𝑝(𝑙𝑝∗ /𝑘𝑒𝑟𝜃𝑧, 𝑌)  such that 𝑇 = �̃�𝑧 ∘ 𝑅. Let 𝐼𝑙𝑝∗/ 𝑘𝑒𝑟𝜃𝑧 :𝑙𝑝∗ /𝑘𝑒𝑟𝜃𝑧  →  𝑍
(𝑝) 

denote the natural norm one embedding and let 𝑃𝑙𝑝∗  /𝑘𝑒𝑟𝜃𝑧 ∶  𝑍
(𝑝) → 𝑙𝑝∗ /𝑘𝑒𝑟𝜃𝑧 denote the 

natural norm one projection. If we define the mappings 𝐴:= 𝐼𝑙𝑝∗/𝑘𝑒𝑟𝜃𝑧
 ∘ 𝑅 and : = �̃�𝑧 ∘

𝑃𝑙𝑝∗  /𝑘𝑒𝑟𝜃𝑧 , then 𝐴 ∈ 𝐾(𝑋, 𝑍(𝑝)), 𝐵 ∈  𝐾𝑝(𝑍
(𝑝) , 𝑌) and 𝑇 = 𝐵 ∘ 𝐴. 

On the other hand, we know by results of T. Figiel  and W.B. Johnson, combined with 

a result of S. Banach and S. Mazur, that compact operators between Banach spaces can be 

factored compactly through a quotient space of 𝑙1. We note that by a slight modification we 

recover this result easily as follows, which we include here for the sake of completeness. 

 Proposition (2.1.2)[2]. Let 𝑋 and 𝑌 be Banach spaces and let 𝑇 ∈ 𝐾(𝑋, 𝑌). Then there exist 

(𝑧𝑛) 𝑛=1
∞ ∈ 𝑐0(𝑌), 𝑅 ∈ 𝐾(𝑋, 𝑙1/𝑘𝑒𝑟𝜃𝑧)  and �̃�𝑧 ∈ 𝐾(𝑙1/𝑘𝑒𝑟𝜃𝑧, 𝑌 ) such that 𝑇 = �̃�𝑧  ∘ 𝑅. 
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 Proof. Let (𝑧𝑛) 𝑛=1
∞  ∈  𝑐0(𝑌) be such that 𝑇(𝐵𝑋) ⊂ {∑  ∞

𝑛=1  𝛼𝑛𝑧𝑛 ∶ (𝛼𝑛) 𝑛=1
∞ ∈ 𝐵𝑙1  . 

Choosing a sequence (𝜆𝑛)𝑛=1
∞  with, 𝜆𝑛 ≥ 1 and 𝜆𝑛 → ∞ such that (𝜆𝑛𝑧𝑛) 𝑛=1

∞ ∈ 𝑐0(𝑌), and 

defining (𝑦𝑛) 𝑛=1
∞ : = (𝜆𝑛𝑧𝑛) 𝑛=1

∞ , we get 𝑇(𝐵𝑋) ⊂ {∑   𝑛=1  𝛽𝑛𝑦𝑛 ∶ (𝛽𝑛)𝑛=1
∞ ∈ 𝐿}, where 𝐿 is 

a relatively compact set in 𝐵𝑙1 . Now following the lines of the proof one can get the required 

factorization.  

As a consequence of Proposition (2.1.2), we obtain the following 𝑝 = ∞ case of 

Theorem (2.1.1), which is nothing more than a factorization of compact operators through 

a universal Banach space, and is well known as we already mentioned above. 

Theorem (2.1.3)[2]. Let 𝑋 and 𝑌 be Banach spaces. Then there is a universal Banach space 

𝑍(∞) such that a compact operator 𝑇 ∈ 𝐾(𝑋, 𝑌) can be factored as 𝑇 = 𝐵 ∘  𝐴, where 𝐴 ∈

𝐾(𝑋, 𝑍(∞)) and 𝐵 ∈ 𝐾(𝑍(∞) , 𝑌). In particular, for 1 ≤ 𝑞 ≤ ∞ 𝑍(∞) can be chosen as 

𝑍(∞) = (∑  𝑊 𝑊)𝑞 for a fixed 𝑞, where 𝑊 runs through the quotient spaces of 𝑙1 which are 

Banach spaces.  

The above factorization results will be used in the next section. It should be pointed 

out that factorization results for operators are quite useful when working with approximation 

properties of Banach spaces, since in many cases they have a crucial role for determining 

whether or not certain (classes of) Banach spaces have certain type of approximation 

properties. For instance, we consider the approximation and the 𝑘𝑝-approximation 

properties. We recall that a Banach space 𝑋 is said to have the approximation property (AP 

for short) if for every compact set 𝐾 in 𝑋 and every 𝜀 > 0, there exists a 𝑇 ∈ 𝐹(𝑋; 𝑋) such 

that sup
𝑥∈𝐾

  ‖𝑇𝑥 − 𝑥‖ ≤ 𝜀, and a Banach space 𝑋 is said to have the 𝑘𝑝-approximation 

property (𝑘𝑝-AP for short) if for every Banach space 𝑌, 𝐹(𝑌, 𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑘𝑝 = 𝐾𝑝(𝑌, 𝑋). It is known 

that there are quotient spaces of 𝑙𝑞 for 1 < 𝑞 < 2, which does not have the AP. But using 

the factorization for 𝑝-compact operators given in one gets the same result at once without 

any effort. By using standard methods, we get easily another known result asserting that if 

1 ≤ 𝑝 < ∞, 𝑝 ≠ 2, then there are quotient spaces of 𝑙1 which does not have the 𝑘𝑝-AP.  

Section (2.2): The Results 

  R. Aron, M. Lindström, W. Ruess and R. Ryan obtained (uniform) factorizations of 

compact subsets of compact operators between Banach spaces. Here by a suitable and 

careful modification of their method we obtain, speaking roughly, (uniform) factorizations 

of 𝑟-compact subsets of p-compact operators between Banach spaces. In order to obtain this 

result we need some preparation. We will start with a sequence of lemmas. 

Lemma (2.2.1)[2]. (the lifting property of quotient maps for p-compact sets) Let 𝑋 be 

Banach space and let 1 ≤ 𝑝 < ∞. Let 𝑁 be a closed subspace of 𝑋 and let 𝑄𝑁
𝑋 ∶ 𝑋 →  𝑋/𝑁 

be the quotient mapping. If 𝐾 is a relatively 𝑝-compact subset of 𝑋/𝑁, then there is a 

relatively 𝑝-compact subset 𝐶 of 𝑋 such that 𝐾 ⊂ 𝑄𝑁
𝑋(𝐶). 

Proof. If 𝐾 is a relatively 𝑝-compact subset of 
𝑋

𝑁
, there exists (𝑋𝑛)𝑛

∞ ∈ 𝑙𝑝 (
𝑋

𝑁
) such that 𝐾 ⊂

{∑  ∞
 𝑛=1  𝛼𝑛𝑋𝑛: (𝛼𝑛) 𝑛=1

∞ ∈  𝐵𝑝∗ }. For each 𝑛 ∈ ℕ, choose 𝑥𝑛  ∈  𝑋𝑛 such that ‖𝑥𝑛‖ <

‖𝑋𝑛‖ +
1

𝑛2
 , so that (𝑥𝑛) 𝑛=1

∞ ∈ 𝑙𝑝(𝑋). Taking 𝐶:= 𝑝 −  𝑐𝑜{(𝑥𝑛)𝑛=1
∞ )}  ends up the proof.  
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The following lemma says that any 𝑝-compact subset in the range of a surjective continuous 

linear operator is always contained in the image of a 𝑝-compact set by the operator.  

Lemma (2.2.2)[2]. Let 𝑋 and 𝑌 be Banach spaces, let 1 ≤ 𝑝 < ∞ and let 𝑇 ∈  𝐿(𝑋, 𝑌) be 

onto. If 𝐻 is a relatively p-compact subset of  , then there exists a relatively p-compact subset 

𝐴 of 𝑋 such that 𝐻 ⊂ 𝑇(𝐴).  

Proof. If 𝑇 ∈ 𝐿(𝑋, 𝑌) is onto, then it admits a factorization 𝑇 = 𝑇0 ∘ 𝑄, where 

𝑇0: 𝑋/𝑁(𝑇) → 𝑌 is an isomorphism and 𝑄: 𝑋 → 𝑋/𝑁(𝑇) is the quotient map. Letting 𝐶:=
𝑇0
−1(𝐻) and applying Lemma (2.2.1) we get the conclusion.  

A result similar to the above lemma, replacing quotient maps by continuous surjective linear 

maps, can be stated for fundamental 𝑝-compact sets as follows. 

 Lemma (2.2.3)[2]. Let 𝑋 and 𝑌 be Banach spaces and let 𝑇 ∈ 𝐿(𝑋, 𝑌) be onto.  

a) If 𝑝 = 1, 𝛼 > 1 and 𝐻 ⊂ 𝑝 − 𝑐𝑜{(𝑎𝑘)𝑘=1
∞ } with (𝑘𝛼𝑎𝑘)𝑘=1

∞ ∈ 𝑙𝑝(𝑌), then there exist a 

sequence (𝜏𝑘)𝑘=1
∞ ⊂ 𝑋 with (𝑘𝛼𝜏𝑘)𝑘=1

∞ ∈ 𝑙𝑝(𝑋) such that for 𝐿:=  𝑝 − 𝑐𝑜{(𝜏𝑘) 𝑘=1
∞ } we 

have 𝐻 ⊂ 𝑇(𝐿). 

 b) If 1 < 𝑝 < ∞ and 𝐻 ⊂ 𝑝 −  𝑐𝑜{(𝑎𝑘)𝑘=1
∞ }  with (𝑘𝑎𝑘) 𝑘=1

∞ ∈ 𝑙𝑝(𝑌), then there exist a 

sequence (𝜏𝑘) 𝑘=1
∞ ⊂ 𝑋 with (𝑘𝜏𝑘) 𝑘=1

∞ ∈ 𝑙𝑝(𝑋) such that for 𝐿:= 𝑝 − 𝑐𝑜{(𝜏𝑘)𝑘=1
∞ } we have 

𝐻 ⊂  𝑇(𝐿).  

Proof. We give a proof for the case 𝑝 = 1 since the proof for the case 1 < 𝑝 <  ∞ is similar. 

Since 𝑇 ∈ 𝐿(𝑋, 𝑌) is onto, as in the proof of Lemma (2.2.2), we can write 𝑇 = 𝑇0 ∘ 𝑄, where 

𝑇0: 𝑋/𝑁(𝑇) → 𝑌 is an isomorphism and         𝑄:𝑋 → 𝑋/𝑁(𝑇) is the quotient map. If 𝑦 ∈ 𝐻, 

then there exists (𝛼𝑘)𝑘=1
∞ ∈  𝐵𝑝∗ such that 𝑦 = ∑  ∞

 𝑘=1  𝛼𝑘𝑎𝑘. For each 𝑘 ∈ ℕ, there is a 

𝜏𝑘 ∈ 𝑇0
−1 (𝑎𝑘): = [𝜏𝑘] ∈ 𝑋/𝑁(𝑇) such that ‖𝜏𝑘‖ < ‖[𝜏𝑘] ‖ +

1

𝑘2𝛼
 . Therefore, since 

∑  ∞
𝑘=1 ‖𝑘

𝛼𝜏𝑘‖ < ‖𝑇0
−1‖∑  ∞

 𝑘=1  ‖𝑘
𝛼𝑎𝑘‖ + ∑  ∞

𝑘=1
1

𝑘𝛼
< ∞, letting 𝐿: = 𝑝 − 𝑐𝑜{(𝜏𝑘)𝑘=1

∞ }, 

we get that 𝐻 ⊂ 𝑇(𝐿). By strengthening a result we obtain the following lemma, which 

relies on a result of A. Grothendieck characterizing tensor produects. This lemma will be 

the key result since the main result Theorem (2.2.5) will be based on the tensor 

representation provided therein.  

Lemma (2.2.4)[2]. Let 𝑋 and 𝑌 be Banach spaces.  

a) Let 2 ≤ 𝑝 < ∞. If 𝐿 ⊂ 𝑝 − 𝑐𝑜{(𝜏𝑘)𝑘=1
∞ } with (𝑘𝜏𝑘)𝑘=1

∞ ∈ 𝑙𝑝(𝑋 ⊗̂𝜋 𝑌), then there exist 

sequences (𝑟𝑘)𝑘=1
∞ ∈ 𝑐0(𝑋), (𝑠𝑘)𝑘=1

∞ ∈ 𝑙𝑝(𝑌) and a subset 𝐾 of 𝐵𝐿𝑝∗  with 𝐾 ⊂  𝑝∗  −

 𝑐𝑜{(𝑡𝑘) 𝑘=1
∞ }, (𝑡𝑘) 𝑘=1

∞  ∈  𝑙𝑝∗  (𝐵ℓ𝑝∗  ), such that L ⊂ {∑  ∞
 k=1  λkrk  ⊗ sk ∶  (λk) k=1

∞  ∈  K}. 

 𝑏) Let 1 < 𝑝 <  ∞. If 𝐿 ⊂  𝑝 −  𝑐𝑜{(𝜏𝑘) 𝑘=1
∞ } with (𝜏𝑘) 𝑘=1

∞  ∈  𝑙𝑝(𝑋 ⊗̂𝜋 𝑌 ), then there 

exist sequences (𝑟𝑘) 𝑘=1
∞  ∈  𝑐0(𝑋), (𝑠𝑘) 𝑘=1

∞  ∈  𝑙𝑝(𝑌 ) and a compact subset 𝐾 of 𝐵ℓ𝑝∗  , such 

that 𝐿 ⊂  {∑  ∞
 𝑘=1   𝜆𝑘𝑟𝑘  ⊗ 𝑠𝑘 ∶  (𝜆𝑘) 𝑘=1

∞  ∈  𝐾}.  

Proof. 𝑎) If 𝐿 ⊂  𝑝 −  𝑐𝑜{(𝜏𝑘) 𝑘=1
∞ } with (𝑘𝜏𝑘) 𝑘=1

∞  ∈  𝑙𝑝(𝑋 ⊗̂𝜋 𝑌 ), then for any 𝜏 ∈

 𝐿, there exists (𝜆𝑘
𝜏 ) 𝑘=1
∞  ∈  𝐵ℓ𝑝∗  such that 𝜏 = ∑  ∞

 𝑘=1  𝜆𝑘
𝜏 𝜏𝑘. Since 𝜏𝑘  ∈  𝑋 ⊗̂𝜋 𝑌 , it 



19 

follows from that 𝜏𝑘  = ∑  ∞
 𝑖=1  𝜆𝑘,𝑖𝑟𝑘,𝑖⊗ 𝑠𝑘,𝑖 , where for every 𝑖 ∈ ℕ, 𝑟𝑘,𝑖  ∈  𝑆𝑋, 𝑠𝑘,𝑖  ∈  𝑆𝑌 

and ∑  ∞
𝑖=1  |𝜆𝑘,𝑖|  <  ∞ with 𝜇𝑘 ∶= ∑  ∞

𝑖=1  |𝜆𝑘,𝑖|  <  𝜋(𝜏𝑘) +
1

2𝑘𝑘
 . Thus we get that  

𝜏 = ∑  

∞

 𝑘=1

 𝜆𝑘
𝜏 𝜏𝑘  = ∑  

∞

 𝑘=1

 𝜆𝑘
𝜏  ∑  

∞

𝑖=1

 𝜆𝑘,𝑖𝑟𝑘,𝑖⊗ 𝑠𝑘,𝑖  

= ∑  

∞

 𝑘=1

 ∑  

∞

 𝑖=1

1

𝑘
𝜆𝑘
𝜏 (
𝜆𝑘,𝑖
𝜇𝑘
)
1/𝑝∗

 𝑟𝑘,𝑖⊗𝑘 (
𝜆𝑘,𝑖
𝜇𝑘
)
1/𝑝

𝜇𝑘𝑠𝑘,𝑖 . 

 Since the series ∑  ∞
 𝑘=1  ∑  ∞

 𝑖=1
1

𝑘
𝜆𝑘
𝜏  (

𝜆𝑘,𝑖

𝜇𝑘
)
1/𝑝∗

 𝑟𝑘,𝑖  ⊗  𝑘 (
𝜆𝑘,𝑖

𝜇𝑘
)
1/𝑝

 𝜇𝑘𝑠𝑘,𝑖 converges 

absolutely in 𝑋 ⊗̂𝜋 𝑌 , and since ∑  ∞
 𝑘=1  ∑  ∞

 𝑖=1  |
1

𝑘
𝜆𝑘
𝜏 (

𝜆𝑘,𝑖

𝜇𝑘
)
1/𝑝∗

 |
𝑝∗

= ∑  ∞
𝑘=1

1

𝑘𝑝
∗
 
 |𝜆𝑘

𝜏 |𝑝
∗
≤ 1 

and ∑  ∞
 𝑘=1  ∑  ∞

 𝑖=1 ‖  𝑘 (
𝜆𝑘,𝑖

𝜇𝑘
)
1/𝑝

 𝜇𝑘𝑠𝑘,𝑖  ‖
𝑝

≤ 2𝑝 ( ∑  ∞
 𝑘=1 (𝜋(𝑘𝜏𝑘))

𝑝
 +

1

2𝑝𝑘
 )  <  ∞, by 

choosing a specific order one can write  

(𝛾𝑙
𝜏) 𝑙=1
∞ ∶=  (

1

𝑘
𝜆𝑘
𝜏 (
𝜆𝑘,𝑖
𝜇𝑘
)
1/𝑝∗

)
(𝑘,𝑖)∈ℕ×ℕ

 ∈  𝐵ℓ𝑝  , 

 (𝑥𝑙 ) 𝑙=1
∞ ∶=  (𝑟𝑘,𝑖)(𝑘,𝑖)∈ℕ×ℕ ∈  𝑙∞

(𝑋), 

 (𝑦𝑙 ) 𝑙=1
∞ ∶=  (𝑘 (

𝜆𝑘,𝑖
𝜇𝑘
 )
1/𝑝

𝜇𝑘𝑠𝑘,𝑖)
(𝑘,𝑖)∈ℕ×ℕ

∈  𝑙𝑝(𝑌 ), 

 so that we obtain a representation 𝜏 = ∑  ∞
𝑙=1  𝛾𝑙

𝜏 𝑥𝑙⊗𝑦𝑙  . Moreover, since ∑  ∞
𝑙=1  ‖𝑦𝑙‖

𝑝  <
 ∞, we may choose a positive increasing sequence (𝑐𝑙 ) 𝑙=1

∞  , diverging to infinity, such 

that ∑  ∞
 𝑙=1  ‖𝑦𝑙‖

𝑝𝑐𝑙  <  ∞. Thus, writing 𝜏 = ∑  ∞
 𝑙=1  𝛾𝑙

𝜏 𝑥𝑙
1

𝑐𝑙
1/𝑝  ⊗ 𝑐𝑙

1/𝑝
 𝑦𝑙 , and letting 𝑟𝑙 ∶

=  𝑥𝑙
1

𝑐𝑙
1/𝑝 and 𝑠𝑙 ∶=  𝑐𝑙

1/𝑝
 𝑦𝑙 for each 𝐿, we get that 𝜏 = ∑  ∞

 𝑙=1  𝛾𝑙
𝜏 𝑟𝑙  ⊗ 𝑠𝑙 , where 

(𝑟𝑙 ) 𝑙=1
∞  ∈  𝑐0(𝑋) and (𝑠𝑙 ) 𝑙=1

∞  ∈  𝑙𝑝(𝑌 ). 

     Now, we claim that the sequences (𝛾𝑙
𝜏 ) 𝑙=1

∞  , (𝜏 ∈  𝐿), range over a relatively 𝑝∗-compact 

subset 𝐾 of 𝐵ℓ𝑝∗  . Indeed, according to the order chosen above, we can write  

(𝛾𝑙
𝜏 ) 𝑙=1

∞  =  (
1

𝑘
𝜆𝑘
𝜏 (
𝜆𝑘,𝑖
𝜇𝑘
)

1
𝑝∗

 )

(𝑘,𝑖)∈ℕ×ℕ

= ∑  

∞

 𝑘=1

 𝜆𝑘
𝜏  ∑  

∞

𝑖=1

 
1

𝑘
 (
𝜆𝑘,𝑖
𝜇𝑘
)

1
𝑝∗

 𝑒𝑖
𝑘 

 where the vectors 𝑒𝑖
𝑘 appeared in the double indexed set (𝑒𝑖

𝑘 )
(𝑘,𝑖)∈ℕ×ℕ

 are the standard 

basis vectors 𝑒𝑙 of 𝑙𝑝∗ ordered as above. Next, for each 𝑘 ∈ ℕ, we define 𝑡𝑘 ∶=

1

𝑘
 ∑  ∞
 𝑖=1  (

𝜆𝑘,𝑖

𝜇𝑘
)
1/𝑝∗

 𝑒𝑖
𝑘 . Hence, for every 𝑘 ∈ ℕ we have that 𝑡𝑘  ∈  𝐵ℓ𝑝∗  , and, since 1 <

 𝑝∗  ≤  2, we have ∑  ∞
 𝑘=1  ‖𝑡𝑘‖𝑝∗

𝑝∗
  =  ∑  ∞

 𝑘=1
1

𝑘𝑝∗
∑  ∞
 𝑖=1  |

𝜆𝑘,𝑖

𝜇𝑘
| ‖𝑒𝑖

𝑘‖
𝑝∗

 <  ∞. Thus, 

(𝑡𝑘) 𝑘=1
∞  ∈  𝑙𝑝∗  (𝐵ℓ𝑝∗  )  ⊂  𝑙𝑝∗ (𝑙𝑝∗ ). On the other hand since 𝑝∗  ≤  𝑝, we have (𝜆𝑘

𝜏 ) 𝑘=1
∞  ∈
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 𝐵𝑙𝑝  . Therefore, since (𝛾𝑙
𝜏 ) 𝑙=1

∞  = ∑  ∞
 𝑘=1  𝜆𝑘

𝜏 𝑡𝑘 with (𝜆𝑘
𝜏 ) 𝑘=1
∞  ∈  𝐵ℓ𝑝  , if we take 𝐾 as the 

set {(𝛾𝑙
𝜏 ) 𝑙=1

∞ ∶  𝜏 ∈  𝐿}, then 𝐾 ⊂  𝑝∗  −  𝑐𝑜{(𝑡𝑘) 𝑘=1
∞ }, and the proof of part a) is complete. 

b) If 𝐿 ⊂  𝑝 − 𝑐𝑜{(𝜏𝑘) 𝑘=1
∞ } with (𝜏𝑘) 𝑘=1

∞  ∈  𝑙𝑝(𝑋 ⊗̂𝜋 𝑌 ), then by a similar argument as 

in (a) any 𝜏 ∈  𝐿 can be written as 𝜏 =  ∑  ∞
𝑖=1  𝜆𝑖

𝜏 𝑟𝑖  ⊗ 𝑡𝑖  with (𝜆𝑖
𝜏 ) 𝑖=1

∞  ∈  𝐵𝑙𝑝∗  where 

(𝑟𝑖) 𝑖=1
∞  ∈  𝑐0(𝑋) and (𝑡𝑖) 𝑖=1

∞  ∈  𝑙𝑝(𝑌 ). Since (𝑡𝑖) 𝑖=1
∞  ∈  𝑙𝑝(𝑌 ), we may choose 𝛽 =

 (𝛽𝑖) 𝑖=1
∞  ∈  𝐵𝑐0  such that (

𝑡𝑖

𝛽𝑖
)
 𝑖=1

∞
 ∈  𝑙𝑝(𝑌 ). Accordingly we write 𝜏 = ∑  ∞

 𝑖=1  𝜆𝑖
𝜏 𝑟𝑖  ⊗

 𝑡𝑖  =  ∑  ∞
 𝑖=1   𝛽𝑖𝜆𝑖

𝜏 𝑟𝑖  ⊗
𝑡𝑖

𝛽𝑖
 , where (𝜆𝑖

𝜏) 𝑖=1
∞  ∈  𝐵𝑙𝑝∗  . If for every 𝑖 ∈ ℕ we let 𝜃𝑖

𝜏 ∶=  𝛽𝑖𝜆𝑖
𝜏 

and 𝑠𝑖 ∶=
𝑡𝑖

𝛽𝑖
 , then, 

𝜏 =  ∑  

∞

 𝑖=1

 𝜃𝑖
𝜏 𝑟𝑖  ⊗ 𝑠𝑖 , (𝜃𝑖

𝜏 ) 𝑖=1
∞  ∈  𝐵𝑙𝑝∗  

 with (𝑟𝑖) 𝑖=1
∞  ∈  𝑐0(𝑋), (𝑠𝑖) 𝑖=1

∞  ∈  𝑙𝑝(𝑌 ). To see that the sequences (𝜃𝑖
𝜏 ) 𝑖=1

∞  range over a 

compact subset of 𝐵𝑙𝑝∗  , note that the set 𝐾 ∶=  {(𝛽𝑖𝛾𝑖) 𝑖=1
∞ ∶  (𝛾𝑖) 𝑖=1

∞  ∈  𝐵𝑙𝑝∗  } is a compact 

subset of 𝐵𝑙𝑝∗  , so the proof of the claim is complete.  

  As a final step towards our main result, let 1 ≤  𝑝 <  ∞, and let 𝑍(𝑝) be the universal 

Banach space given in Theorem (2.1.1). Given Banach spaces 𝑋 and  , according to Theorem 

(2.1.1), the continuous bilinear map  

𝜏 ∶  𝐾(𝑋, 𝑍(𝑝) )  ×  (𝐾𝑝(𝑍
(𝑝) , 𝑌 ), 𝑘𝑝)  →  (𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝), 𝜏 (𝑢, 𝑣)  =  𝑣 ∘  𝑢, 

 is onto. The linearization of 𝜏 , �̂� ∶  𝐾(𝑋, 𝑍(𝑝) ) ⊗̂𝜋 (𝐾𝑝(𝑍
(𝑝) , 𝑌 ), 𝑘𝑝)  →  (𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝), 

defined by �̂� (𝑢 ⊗  𝑣)  =  𝜏 (𝑢, 𝑣)  =  𝑣 ∘  𝑢, is a continuous linear map which is onto. For 

the proof we will carefully modify a method. It should be emphasized that in our proof we 

do not use any selection principal as it is done in the first method, instead we use the lifting 

of p-compact sets (given by Lemma (2.2.1)) which is already pointed out at the end of the 

compact case.  

Theorem (2.2.5)[2]. Let 𝑋 and 𝑌 be Banach spaces, let 𝑟 ≥  2 and let 1 ≤  𝑝 ≤  𝑟 <  ∞. 

For every (balanced and convex) relatively 𝑟-compact subset 𝐻 of (𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝) such that 

𝐻 ⊂  𝑟 −  𝑐𝑜{(𝑎𝑘) 𝑘=1
∞ } with (𝑘𝑎𝑘) 𝑘=1

∞  ∈  𝑙𝑟(𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝), there exist an operator 𝑢 ∈

 𝐾(𝑋, 𝑍𝐹 𝐽 ), a (resp. balanced and convex) relatively 𝑟∗-compact subset {𝐵𝑇 ∶  𝑇 ∈  𝐻}of 

𝐾(𝑍𝐹 𝐽 , 𝑍
(𝑟) ) and an operator 𝑣 ∈  𝐾𝑟(𝑍

(𝑟) , 𝑌 ) such that 𝑇 =  𝑣 ∘  𝐵𝑇  ∘  𝑢 for all 𝑇 ∈

 𝐻, where 𝑍𝐹 𝐽 denotes a universal factorization space of Figiel and Johnson, and 𝑍(𝑟) is the 

universal Banach space given in Theorem (2.1.1). 

 Proof. Since �̂� is a continuous linear onto map and 𝐻 ⊂  𝑟 − 𝑐𝑜{(𝑎𝑘)𝑘=1
∞ } with 

(𝑘𝑎𝑘) 𝑘=1
∞  ∈  𝑙𝑟(𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝), by Lemma (2.2.3) b), there exists (𝜏𝑘) 𝑘=1

∞  in 

𝐾(𝑋, 𝑍(𝑝) ) ⊗̂𝜋 (𝐾𝑝(𝑍
(𝑝) , 𝑌 ), 𝑘𝑝) with (𝑘𝜏𝑘) 𝑘=1

∞ ∈ 𝑙𝑟(𝐾(𝑋, 𝑍
(𝑝) ) ⊗̂𝜋 

(𝐾𝑝(𝑍
(𝑝) , 𝑌 ), 𝑘𝑝)) such that for 𝐿 ∶=  𝑟 −  𝑐𝑜{(𝜏𝑘) 𝑘=1

∞ } we have 𝐻 ⊂  �̂�(𝐿). Thus, for 

every 𝑇 ∈  𝐻 there exist 𝜏𝑇  ∈  𝐿 such that 𝑇 =  �̂� (𝜏𝑇  ). By Lemma (2.2.4) a) we have a 

representation 𝜏𝑇  = ∑  ∞
 𝑖=1  𝜆𝑖

𝜏𝑇  𝑟𝑖  ⊗ 𝑠𝑖 with (𝜆𝑖
𝜏𝑇  )

 𝑖=1

∞
 ∈  𝐾, where (𝑟𝑖) 𝑖=1

∞  ∈
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 𝑐0 (𝐾(𝑋, 𝑍
(𝑝) )) , (𝑠𝑖) 𝑖=1

∞  ∈  𝑙𝑟(𝐾𝑝(𝑍
(𝑝) ), 𝑌 ), 𝑘𝑝)  and 𝐾 ⊂  𝑙𝑟∗ is a relatively 𝑟∗-

compact subset. Now, define 𝑟 ∶  𝑋 →  𝑐0(𝑍
(𝑝) )𝑏𝑦 𝑟(𝑥):=  (𝑟𝑖(𝑥)) 𝑖=1

∞
. Then 𝑟 ∈

 𝐾 (𝑋, 𝑐0(𝑍
(𝑝) )). Next, for each 𝑇 ∈  𝐻 define 𝐴𝑇 ∶  𝑐0(𝑍

(𝑝) ) →  𝑙𝑟∗ (𝑍
(𝑝) ) by 𝐴𝑇  (𝑧) =

(𝜆𝑖
𝜏𝑇  𝑧𝑖) 𝑖=1

∞
, 𝑧 =  (𝑧𝑖) 𝑖=1

∞  ∈  𝑐0(𝑍
(𝑝) ). Since 

∑ 

∞

 𝑖=1

 ‖𝜆𝑖
𝜏𝑇  𝑧𝑖‖

𝑟∗

 ≤  ∑  

∞

 𝑖=1

 |𝜆𝑖
𝜏𝑇  |

𝑟∗

 ‖𝑧𝑖‖
𝑟∗  ≤  (sup

𝑖∈ℕ
  𝑧𝑖)

𝑟∗

 ∑  

∞

 𝑖=1

 |𝜆𝑖
𝜏𝑇|

𝑟∗

 <  ∞, 

𝐴𝑇  is well defined and that 𝐴𝑇  ∈  𝐿 (𝑐0(𝑍
(𝑝) ), 𝑙𝑟∗ (𝑍

(𝑝) )). Now we consider the 

continuous linear map 𝐴 ∶  𝑙𝑟∗  →  𝐿(𝑐0(𝑍
(𝑝)), 𝑙𝑟∗ (𝑍

(𝑝)) defined by 𝐴(𝜆)𝑧 ∶=

 (𝜆𝑖𝑧𝑖) 𝑖=1
∞ , 𝜆 =  (𝜆𝑖) 𝑖=1

∞ , 𝑧 =  (𝑧𝑖) 𝑖=1
∞ . Since {𝐴𝑇 ∶  𝑇 ∈  𝐻} ⊂  𝐴(𝐾)and 𝐾 is a relatively 

𝑟∗-compact subset in 𝑙𝑟∗  , it follows that the subset {𝐴𝑇 ∶  𝑇 ∈

 𝐻}𝑜𝑓 𝐿 (𝑐0(𝑍
(𝑝) ), 𝑙𝑟∗ (𝑍

(𝑝) )) is relatively 𝑟∗-compact. Finally we define 𝑠 ∶

 𝑙𝑟∗ (𝑍
(𝑝) ) →  𝑌 by 𝑠(𝑤):= ∑  ∞

 𝑖=1  𝑠𝑖(𝑤𝑖),𝑤 =  (𝑤𝑖) 𝑖=1
∞  ∈  𝑙𝑟∗  (𝑍

(𝑝) ). Since  

∑ 

∞

 𝑖=1

 ‖𝑠𝑖(𝑤𝑖)‖  ≤ ∑  

∞

 𝑖=1

 𝑘𝑝(𝑠𝑖)‖𝑤𝑖‖   ≤  ( ∑  

∞

 𝑖=1

(𝑘𝑝(𝑠𝑖))
𝑟

)

1
𝑟

 (∑  

∞

 𝑖=1

 ‖𝑤𝑖‖
𝑟∗)

1
𝑟∗

 <  ∞,  

𝑠 is well defined, and since ‖𝑠‖ ≤ ‖(𝑘𝑝(𝑠𝑖))
 𝑖=1

∞
‖
𝑟
 , s is a continuous operator. Now we 

show that 𝑠 is, in fact, r-compact. For every 𝑖 ∈ ℕ, since 𝑠𝑖  ∈  𝐾𝑝(𝑍
(𝑝) , 𝑌 ) and 𝑝 ≤  𝑟, 

then 𝑠𝑖  ∈  𝐾𝑟(𝑍
(𝑝) , 𝑌 ) and 𝑘𝑟(𝑠𝑖)  ≤  𝑘𝑝(𝑠𝑖). Hence, since (𝑠𝑖) 𝑖=1

∞  ∈

 𝑙𝑟(𝐾𝑝(𝑍
(𝑝) , 𝑌 ), 𝑘𝑝)) , then ∑  ∞

 𝑖=1 (𝑘𝑟(𝑠𝑖))
𝑟
 <  ∞. Now, for every 𝑖 ∈ ℕ, choose a 

sequence (𝑐𝑛
𝑖 )
 𝑛=1

∞
 ∈  𝑙𝑟(𝑌 ) such that ‖(𝑐𝑛

𝑖 )
 𝑛=1

∞
‖
𝑟
 <  𝑘𝑟(𝑠𝑖) +

1

2𝑖
 with 𝑠𝑖(𝐵𝑍(𝑝) )  ⊂  𝑟 −

𝑐𝑜 {(𝑐𝑛
𝑖 )
 𝑛=1

∞
}. Since ∑  ∞

𝑖=1  ‖(𝑐𝑛
𝑖 )
 𝑛=1

∞
‖
𝑟

𝑟
 <  2𝑟  ∑  ∞

𝑖=1 (𝑘𝑟(𝑠𝑖))
𝑟
 + ∑  ∞

𝑖=1
1

2𝑖𝑟
   <  ∞, we 

have ∑  ∞
 𝑖=1  ∑  ∞

 𝑛=1  ‖𝑐𝑛
𝑖 ‖
𝑟
 = ∑  ∞

𝑖=1  ‖(𝑐𝑛
𝑖 )
𝑛=1

∞
‖
𝑟

𝑟
 <  ∞. Next, let 𝑤 =  (𝑤𝑖) 𝑖=1

∞  ∈

 𝐵𝑙𝑟∗  (𝑍
(𝑝)) (without loss of generality we can assume that 𝑤𝑖 ≠  0 for each 𝑖 ∈ ℕ). Now, 

one can write 𝑠(𝑤)  = ∑  ∞
 𝑖=1  ‖𝑤𝑖‖ ∑  ∞

 𝑛=1  𝛼𝑛
𝑤𝑖  𝑐𝑛

𝑖  with (𝛼𝑛
𝑤𝑖  )

 𝑛=1

∞
 ∈  𝐵𝑙𝑟∗  . Note that  

∑ 

∞

 𝑖=1

 ∑  

∞

 𝑛=1

 ‖𝑤𝑖‖𝛼𝑛
𝑤𝑖  𝑐𝑛

𝑖  ≤∑ 

∞

𝑖=1

[(∑  

∞

 𝑛=1

(𝑤𝑖|𝛼𝑛
𝑤𝑖  |)

𝑟∗

 )

1/𝑟∗

 ( ∑  

∞

 𝑛=1

 ‖𝑐𝑛
𝑖 ‖
𝑟
)

1/𝑟

]  

≤  ( ∑  

∞

 𝑖=1

 ∑  

∞

 𝑛=1

 ‖𝑤𝑖‖
𝑟∗ |𝛼𝑛

𝑤𝑖|
𝑟∗

 )

1/𝑟∗

 ( ∑  

∞

 𝑖=1

 ∑  

∞

 𝑛=1

 ‖𝑐𝑛
𝑖 ‖
𝑟
)

1/𝑟

 <  ∞, 

 and since ∑  ∞
 𝑖=1  ∑  ∞ 

 𝑛=1  ‖𝑐𝑛
𝑖 ‖
𝑟
 <  ∞ and ∑  ∞

 𝑖=1  ∑  ∞
𝑛=1 (𝑤𝑖|𝛼𝑛

𝑤𝑖|)
𝑟∗

 ≤  1, choosing a 

specific order for these double series and writing (𝜆𝑙 )𝑙∈ℕ ∶=  (𝑤𝑖𝛼𝑛
𝑤𝑖)

(𝑖,𝑛)∈ℕ×ℕ
 ∈
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 𝐵𝑙𝑟∗  𝑎𝑛𝑑 (𝑧𝑙 )𝑙∈ℕ ∶=  (𝑐𝑛
𝑖  )

(𝑖,𝑛)∈ℕ×ℕ
 ∈  𝑙𝑟(𝑌 ), we obtain a representation 𝑠(𝑤)  =

 ∑  ∞
𝑙=1  𝜆𝑙𝑧𝑙 , which shows that 𝑠 ∈  𝐾𝑟(𝑙𝑟∗ (𝑍

(𝑝) ), 𝑌 ).          

Now for 𝑇 ∈  𝐻, where 𝑇 =  �̂� (𝜏𝑇  ) =  ∑  ∞
 𝑖=1  𝜆𝑖

𝜏𝑇  𝑠𝑖  ∘  𝑟𝑖 , we have 𝑇 =  𝑠 ∘   𝐴𝑇  ∘

  𝑟. Finally we factor r and s through 𝑍𝐹 𝐽 and (𝑟) , respectively. That is, there exist operators 

𝑢 ∈  𝐾(𝑋, 𝑍𝐹 𝐽 ), 𝛼 ∈  𝐾 (𝑍𝐹 𝐽 , 𝑐0(𝑍
(𝑝) )) , 𝛽 ∈  𝐾(𝑙𝑟∗ (𝑍

(𝑝) ), 𝑍(𝑟) ) 𝑎𝑛𝑑 𝑣 ∈

 𝐾𝑟(𝑍
(𝑟) , 𝑌 ) such that 𝑟 =  𝛼 ∘   𝑢 and 𝑠 =  𝑣 ∘  𝛽. For each 𝑇 ∈  𝐻, let 𝐵𝑇 ∶=  𝛽 ∘  𝐴𝑇  ∘

 𝛼. Then it can be easily seen that {𝐵𝑇 ∶  𝑇 ∈  𝐻} is a relatively 𝑟∗-compact subset of 

𝐾(𝑍𝐹 𝐽 , 𝑍
(𝑟) ) 𝑎𝑛𝑑 𝑇 =  𝑣 ∘  𝐵𝑇  ∘  𝑢 for every 𝑇 ∈  𝐻.  

In addition if we assume that 𝐻 is convex and balanced, then one can readily see that 

{𝐵𝑇 ∶  𝑇 ∈  𝐻} is also convex and balanced, with which the proof is complete. 

   If we relax the hypothesis of the previous theorem by removing the factor ”𝑘” in the 

sequence (𝑘𝑎𝑘)𝑘=1
∞ , as compared to Theorem (2.2.5), we obtain the following weaker result.  

Proposition (2.2.6)[2]. Let 𝑋 and 𝑌 be Banach spaces, let 1 ≤  𝑝 ≤  𝑟 <  ∞ with 𝑟 >  1. 

For every (balanced and convex) relatively 𝑟-compact subset 𝐻 of (𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝), there 

exist an operator 𝑢 ∈  𝐾(𝑋, 𝑍𝐹 𝐽 ), a (resp. balanced and convex) relatively compact subset 

{𝐵𝑇 ∶  𝑇 ∈  𝐻}of 𝐾(𝑍𝐹 𝐽 , 𝑍
(𝑟) ) and an operator 𝑣 ∈  𝐾𝑟(𝑍

(𝑟) , 𝑌 ) such that 𝑇 =  𝑣 ∘

 𝐵𝑇  ∘  𝑢 for all 𝑇 ∈  𝐻. 

 Proof. Let 𝐻 be a relatively r-compact subset of (𝐾𝑝(𝑋, 𝑌), 𝑘𝑝). By Lemma (2.2.2) there 

exist a relatively 𝑟-compact subset 𝐿 of 𝐾(𝑋, 𝑍(𝑝) ) ⊗̂𝜋 (𝐾𝑝(𝑍
(𝑝) , 𝑌 ), 𝑘𝑝) such that 𝐻 ⊂

 �̂�(𝐿). Now by Lemma (2.2.4) b) any 𝜏𝑇  ∈  𝐿 has a representation 𝜏𝑇  =  ∑  ∞
𝑖=1  𝜃𝑖

𝜏𝑇  𝑟𝑖  ⊗

 𝑠𝑖 with (𝜃𝑖
𝜏𝑇  )

𝑖=1

∞
 ∈  𝐾, where (𝑟𝑖)𝑖=1

∞ ∈  𝑐0 (𝐾(𝑋, 𝑍
(𝑝) )) , (𝑠𝑖) 𝑖=1

∞  ∈

 𝑙𝑟(𝐾𝑝(𝑍
(𝑝) , 𝑌 ), 𝑘𝑝), and 𝐾 is a compact subset of Blr∗ . Now the set {𝐴𝑇 ∶  𝑇 ∈  𝐻} 

obtained in Theorem (2.2.5) is a relatively compact subset of 𝐿(𝑐0(𝑍
(𝑝) ), 𝑙𝑟∗  (𝑍

(𝑝) ) and so 

is the corresponding set {𝐵𝑇 ∶  𝑇 ∈  𝐻}. Finally if 𝐻 is balanced and convex then, one can 

see that the set {𝐵𝑇 ∶  𝑇 ∈  𝐻} has the same properties. Thus, we have the proof. 

We can improve Theorem (2.2.5) and Proposition (2.2.6) a little bit more, since in the 

factorizations given in these results one of the spaces through which the p-compact operators 

factorize depends on the number 𝑟 ≥  2. 

Let 1 ≤  𝑝, 𝑞 ≤  ∞ and let 𝑍 =  ( 1 ≤ 𝑝 ≤ ∞ 𝑍(𝑝) )
𝑞
 for a fixed 𝑞, where 𝑍(𝑝) is 

the universal Banach space given in Theorems (2.1.1) and (2.1.3). Thus by Theorem (2.1.1) 

and Theorem (2.1.3), it can be easily seen that 𝑍 is a universal Banach space for the 

factorization of all pcompact operators between arbitrary Banach spaces, which is 

independent of 𝑝. That is, given Banach spaces 𝑋 and 𝑌 , and any 1 ≤  𝑝 ≤  ∞ and any 

𝑇 ∈  𝐾𝑝(𝑋, 𝑌 ), we can write 𝑇 =  𝑣𝑜𝑢, 𝑢 ∈  𝐾(𝑋, 𝑍), 𝑣 ∈  𝐾𝑝(𝑍, 𝑌 ). As a consequence 

we obtain the following strengthening of Theorem (2.2.5) and Proposition (2.2.6), 

respectively, in which the corresponding factorizations are obtained through a universal 

Banach space which does not depend on the number 𝑟 ≥  2. 
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Corollary (2.2.7)[2]. Let 𝑋 and 𝑌 be Banach spaces, let r ≥ 2 and let 1 ≤  𝑝 ≤  𝑟 <  ∞. 

For every (balanced and convex) relatively 𝑟-compact subset 𝐻 of (𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝) such that 

𝐻 ⊂  𝑟 −  𝑐𝑜{(𝑎𝑘)𝑘=1
∞ } with (𝑘𝑎𝑘) 𝑘=1

∞  ∈  𝑙𝑟(𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝), there exist an operator 𝑢 ∈

 𝐾(𝑋, 𝑍), a (resp. balanced and convex) relatively r∗-compact subset {𝐵𝑇 ∶  𝑇 ∈  𝐻} of 

𝐾(𝑍, 𝑍) and an operator 𝑣 ∈  𝐾𝑟(𝑍, 𝑌 ) such that 𝑇 =  𝑣 ∘   𝐵𝑇  ∘   𝑢 for all 𝑇 ∈  𝐻. 

Corollary (2.2.8)[2]. Let 𝑋 and 𝑌 be Banach spaces, let 𝑟 >  1 and 1 ≤  𝑝 ≤  𝑟 <  ∞. For 

every (balanced and convex) relatively 𝑟-compact subset 𝐻 of (𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝) there exist an 

operator 𝑢 ∈  𝐾(𝑋, 𝑍), a (resp. balanced and convex) relatively compact subset {𝐵𝑇 ∶  𝑇 ∈
 𝐻} of 𝐾(𝑍, 𝑍) and an operator 𝑣 ∈  𝐾𝑟(𝑍, 𝑌 ) such that 𝑇 =  𝑣 ∘  𝐵𝑇  ∘   𝑢 for all 𝑇 ∈  𝐻.  

We now look at the use of uniform factorization result given in Corollary (2.2.7). The 

motivation is that whether or not compact sets can be replaced by 𝑝-compact sets in a result 

of 𝐸. Toma which gives a characterization of scalar valued homogeneous polynomials that 

are weakly uniformly continuous on the unit ball. It is worth saying that in the p-compact 

case the situation is quite complicated due to the nature of 𝑝-compact sets. 

We will begin by defining collectively 𝑝-compact set, which is the natural extension 

of notion of collectively compactness. 

 Definition (2.2.9)[2]. Let 𝑋 and 𝑌 be Banach spaces, let 𝑝 ≥  1. A subset 𝐴 of 𝐿(𝑋, 𝑌 ) is 

said to be collectively 𝑝-compact if 𝐴(𝐵𝑋)  =  {𝑇 𝑥 ∶  𝑇 ∈  𝐴, 𝑥 ∈  𝐵𝑋} is a relatively p-

compact set. 

        We obtain the following result, which is of independent interest, and will be needed in 

the proof of the next theorem. 

Proposition (2.2.10)[2]. Let 1 ≤  𝑝 <  ∞. Every relatively p-compact subset 𝐾 of 

(𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝) is collectively 𝑝-compact. 

 Proof. We give a proof for the case 1 < 𝑝 <  ∞ since the proof for the case 𝑝 =  1 is 

similar. Let 𝐾 be a relatively 𝑝-compact subset of (𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝). Thus, for a given 𝑇 ∈  𝐾 

there exist (𝛼𝑛
𝑇  )𝑛=1

∞  ∈  𝐵𝑙𝑝∗  and (𝑇𝑛)𝑛=1
∞  ∈  𝑙𝑝(𝐾𝑝(𝑋, 𝑌 ), 𝑘𝑝))  such that  𝑇 =

 ∑  ∞
𝑛=1  𝛼𝑛

𝑇  𝑇𝑛. For every 𝑛 ∈ ℕ we choose a sequence (𝑧𝑘
𝑛 )𝑘=1

∞  ∈  𝑙𝑝(𝑌 ) such that 

‖(𝑧𝑘
𝑛 ) 𝑘=1

∞ ‖𝑝  <  𝑘𝑝(𝑇𝑛) +
1

2𝑛
 and 𝑇𝑛(𝐵𝑋)  ⊂  𝑝 −  𝑐𝑜{(𝑧𝑘

𝑛 )𝑘=1
∞ }. Hence, for 𝑇 ∈  𝐾 and 

𝑥 ∈  𝐵𝑋 we have that 𝑇(𝑥)  =  ∑  ∞
𝑛=1  𝛼𝑛

𝑇  𝑇𝑛(𝑥)  =  ∑  ∞
𝑛=1  ∑  ∞

 𝑘=1  𝛼𝑛
𝑇  𝜆𝑘

𝑛,𝑥  𝑧𝑘
𝑛 , where 

(𝛼𝑛
𝑇  ) 𝑛=1

∞ , (𝜆𝑘
𝑛,𝑥 )

𝑘=1

∞
 ∈  𝐵𝑙𝑝∗  . Since ∑  ∞

𝑛=1  ∑  ∞
𝑘=1  |𝛼𝑛

𝑇  𝜆𝑘
𝑛,𝑥|

𝑝∗

 ≤  ∑  ∞
𝑛=1 |𝛼𝑛

𝑇|𝑝
∗
 ≤  1 and  

∑ 

∞

𝑛=1

 ∑  

∞

𝑘=1

  ‖𝑧𝑘
𝑛‖𝑝 = ∑  

∞

𝑛=1

 ‖(𝑧𝑘
𝑛 )𝑘=1

∞ ‖𝑝
𝑝
< 2𝑝 ( ∑  

∞

𝑛=1

 𝑘𝑝
𝑝(𝑇𝑛) +

1

2𝑛𝑝
 )  <  ∞, 

 by choosing a specific order one can write (𝛾𝑙
𝑇,𝑥 )

𝑙=1

∞
∶=  (𝛼𝑛

𝑇  𝜆𝑘
𝑛,𝑥 )

(𝑛,𝑘)∈ℕ×ℕ
 ∈

 𝐵ℓ𝑝∗  𝑎𝑛𝑑 (𝑠𝑙 )𝑙=1
∞ ∶=  (𝑧𝑘

𝑛 )(𝑛,𝑘)∈ℕ×ℕ ∈  𝑙𝑝(𝑌 ), so that we obtain 𝑇(𝑥)  =  ∑  ∞
𝑙=1  𝛾𝑙

𝑇,𝑥 𝑠𝑙 . 

Thus, 𝐾(𝐵𝑋)  =  {𝑇 𝑥 ∶  𝑇 ∈  𝐾, 𝑥 ∈  𝐵𝑋}  ⊂  𝑝 −  𝑐𝑜{(𝑠𝑙 ) 𝑙=1
∞  }.  

Theorem (2.2.11)[2]. Let 𝑋 be a Banach space with 𝑋′ having the 𝐴𝑃, and let 𝑟 ≥  2, 1 ≤

 𝑝 ≤  𝑟 <  ∞. Let 𝐻 be a relatively r-compact subset of (𝐾𝑝(𝑋, 𝑋
′ ), 𝑘𝑝) such that 𝐻 ⊂
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 𝑟 −  𝑐𝑜{(𝑎𝑘) 𝑘=1
∞ } with (𝑘𝑎𝑘)𝑘=1

∞  ∈  𝑙𝑟(𝐾𝑝(𝑋, 𝑋
′ ), 𝑘𝑝). Then for every 𝜀 >  0 there exists 

an 𝑟-compact subset 𝐾𝜀
′ of 𝑋′ such that for every 𝑇 ∈  𝐻 and 𝑥 ∈  𝑋  

|𝑇(𝑥)(𝑥)|  ≤  𝜀  ‖𝑥‖ sup
𝑘′∈𝐾𝜀

′
  |𝑘′ (𝑥)|  + sup

𝑘′∈𝐾𝜀
′
  |𝑘 (𝑥)|2. 

 Proof. By Corollary (2.2.7), there are a Banach space 𝑍, a relatively 𝑟∗-compact subset 

{𝐿𝑇 ∶  𝑇 ∈  𝐻} of 𝐾(𝑋, 𝑍), and an operator 𝑣 ∈  𝐾𝑟(𝑍, 𝑋
′ ) such that 𝑇 =  𝑣 ∘ 𝐿𝑇 for all 𝑇 ∈

𝐻. Thus, for each 𝑥 ∈  𝑋 ⊂ 𝑋′′ and for each 𝑇 ∈  𝐻, we have |𝑇(𝑥)(𝑥)|   =  |𝑣 ∘
  𝐿𝑇  (𝑥)(𝑥)| ≤ ‖𝑣

′(𝑥)‖‖𝐿𝑇  (𝑥)‖, where 𝑣′ is the adjoint of 𝑣. Note that ‖𝑣′(𝑥)‖  =

sup
𝑧∈𝐵𝑍

  |𝑣(𝑧)(𝑥)| ≤ sup
𝑘′∈𝐾1

′  
 |𝑘′(𝑥)|, where 𝐾1

′ ∶=  𝑣(𝐵𝑍)  ⊂  𝑋
′ , which is an 𝑟-compact set. 

Furthermore,  

‖𝐿𝑇  (𝑥)‖  = sup
𝑧′∈𝐵𝑍′

 |𝑧′ (𝐿𝑇  (𝑥))|  = sup
𝑧′∈𝐵𝑍′

  |(𝐿𝑇
′  𝑧′ )(𝑥)|. 

 Let 𝐾 ∶=  {𝐿𝑇 ∶  𝑇 ∈  𝐻} and let 𝐾∗ ∶=  {𝐿𝑇′ ∶  𝑇 ∈  𝐻}. Since 𝐾∗ is relatively 𝑟∗- compact 

subset of 𝐾(𝑍′, 𝑋′), there exists (𝑆𝑛) 𝑛=1
∞  ∈  𝑙𝑟∗ (𝐾(𝑍, 𝑋)) such that 𝐾∗  ⊂  𝑟∗ −

 𝑐𝑜{(𝑆𝑛
′ ) 𝑛=1
∞ }. Hence, for any 𝜀 >  0 there is 𝑁 =  𝑁(𝜀)  ∈ ℕ such that 

∑  ∞
𝑛=𝑁+1  ‖𝑆𝑛

′ ‖𝑟
∗
 ≤ (

𝜀

2
)
𝑟∗

. Since 𝑋′ has the 𝐴𝑃, for every 𝑛 ∈ ℕ there is an 𝑆𝑛
𝐹  ∈

 𝐹(𝑍′, 𝑋′ ) such that  ‖𝑆𝑛
′  −  𝑆𝑛

𝐹‖    <
𝜀

2𝑛2
 ( ∑  ∞

𝑛=1
1

𝑛2
 )
−1
. So, if we define a sequence 

(𝑆𝑛
∗)𝑛=1
∞  in 𝐹(𝑍′, 𝑋′) by 𝑆𝑛

∗ ∶=  𝑆𝑛
𝐹  for 𝑛 =  1, 2, . . . , 𝑁, and 𝑆𝑛

∗ ∶=  0 for 𝑛 > 𝑁, and 

consequently a set by 𝐾 𝐹,𝜀
∗ ∶=  { ∑  ∞

𝑛=1  𝛼𝑛𝑆𝑛
∗ ∶  (𝛼𝑛) 𝑛=1

∞  ∈  𝐵𝑙𝑟   with ∑  ∞
𝑛=1  𝛼𝑛𝑆𝑛

′  ∈

 𝐾∗}  then, 𝐾𝐹,𝜀
∗  is a relatively 𝑟∗-compact subset of (𝐹(𝑍′, 𝑋′ ), 𝑘𝑟∗ ). Now, given any 𝐿𝑇

′ =

 ∑  ∞
𝑛=1  𝛼𝑛

𝑇  𝑆𝑛
′  ∈  𝐾∗, let 𝐿𝑇

∗ ∶= ∑  ∞
𝑛=1  𝛼𝑛

𝑇  𝑆𝑛
∗ . Thus, we have that 

 ‖𝐿𝑇  −  𝐿𝑇
∗ ‖  ≤  ∑  

𝑁

𝑛=1

 ‖𝑆𝑛
′  −  𝑆𝑛

𝐹‖ + ( ∑  | 𝛼𝑛
𝑇  |𝑟  

∞

𝑛=𝑁+1

   )

1/𝑟

∑  

∞

𝑛=𝑁+1

 ‖𝑆𝑛
′ ‖𝑟

∗
 )1/𝑟

∗
  <  𝜀. 

Hence, we have shown that for any 𝐿𝑇  ∈  𝐾 there is 𝐿𝑇
∗  ∈  𝐾𝐹,𝜀

∗  such that 𝐿𝑇  −  𝐿𝑇
∗   <  𝜀. 

Therefore, by (1), for every 𝑥 ∈  𝑋 we get that 

‖𝐿𝑇  (𝑥)‖ ≤ ‖𝐿𝑇
′ − 𝐿𝑇

∗ ‖ sup
 𝑧′∈𝐵𝑍′

  ‖𝑧′‖  ‖𝑥‖ + sup
𝑧′∈𝐵𝑍′

 |𝐿𝑇
∗  𝑧 (𝑥)|  <  𝜀 ‖𝑥‖ +

sup
 𝑧′∈𝐵𝑍′

 |𝐿𝑇
∗  𝑧′(𝑥)|. 

Since 𝐾𝐹,𝜀
∗  is a relatively 𝑟∗-compact subset of (𝐾𝑟∗(𝑍, 𝑋 ), 𝑘𝑟∗ ), thus by Proposition 

(2.2.10) the set 𝐾𝐹,𝜀
∗  is collectively 𝑟∗-compact in 𝐿(𝑍′, 𝑋′), so that the set 𝐾2

′ ∶=

 {𝐿𝑇
∗  (𝑧): 𝐿𝑇

∗  ∈  𝐾𝐹,𝜀
∗  , 𝑧′  ∈  𝐵𝑍′} is an 𝑟∗-compact, hence r-compact, subset of 𝑋 . Therefore,  

‖𝐿𝑇  (𝑥)‖  <  𝜀‖𝑥‖  + sup
𝑧′∈𝐵𝑍′

 |𝐿𝑇
∗  𝑧′(𝑥)| ≤  𝜀  ‖𝑥‖  + sup

𝑘′∈𝐾2
′
  |𝑘′(𝑥)|. Finally, letting 𝐾𝜀

′ ∶=

 𝐾1
′  ∪  𝐾2

′ , which is also 𝑟-compact, for all 𝑇 ∈  𝐻 and 𝑥 ∈  𝑋 we obtain |𝑇(𝑥)(𝑥)|  ≤
 𝜀 ‖ 𝑥 ‖ sup

𝑘′∈𝐾𝜀
′
  |𝑘′(𝑥)| + sup

𝑘′∈𝐾𝜀
′
  |𝑘′(𝑥)|2. 
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Now as an application of Theorem (2.2.11) we get the following partial 𝑝-compact 

version of a result of 𝐸. Toma for 2-homogenous polynomials. 

Corollary (2.2.12)[2]. Let 𝑋 be a Banach space with 𝑋 having the 𝐴𝑃 and let 2 ≤  𝑟 <
 ∞. Then for a 𝑃 ∈  𝑃𝑤𝑢( 𝑋 

2 ) with 𝑇𝑃 being r-compact, given any 𝜀 >  0 there exists an 𝑟 

compact subset 𝐾𝜀
′ of 𝑋 such that |𝑃(𝑥)| ≤  𝜀  ‖𝑥‖ sup

𝑘′∈𝐾𝜀
′ 
 |𝑘′ (𝑥)| + sup

𝑘′∈𝐾𝜀
′
  |𝑘′ (𝑥)|2 for all 

𝑥 ∈  𝑋. 

 Proof. Let 𝑃 ∈  𝑃𝑤𝑢( 𝑋 
2 ) with 𝑇𝑃 being r-compact, 2 ≤  𝑟 <  ∞. Then taking 𝐻 ∶=  {𝑇𝑃} 

and applying Theorem (2.2.11) we obtain the desired inequality. 

Recall that a polynomial 𝑃 ∈  𝑃( 𝑋 
𝑛 , 𝑌 ) is of finite type if it can be written as a linear 

combination of functions 𝜙𝑛  ⊗  𝑦 (𝑛 ∈ ℕ, 𝜙 ∈  𝑋′ , 𝑦 ∈  𝑌 ), where 𝜙𝑛  ⊗  𝑦(𝑥)  =
 𝜙𝑛(𝑥)𝑦 for each 𝑥 ∈  𝑋. Note that if a polynomial 𝑃 is of finite type then the corresponding 

operator is also of finite type, hence, is 𝑟-compact for any 𝑟 ≥  2. 

We do not know if the reverse implication in Corollary (2.2.12) is true. If that would 

be the case, Corollary (2.2.12) would be an improvement for the case 𝑛 =  2, since the 

compact sets are replaced by r-compact sets. Motivated and Corollary (2.2.12), a result for 

vector-valued 𝑝-compact 𝑛-homogeneous polynomials can be stated in a similar fashion. 

Therefore, as a consequence of Theorem (2.2.11) we prove the following interesting result 

concerning 𝑝-compact polynomials with values in (⊗̂𝜋𝑠
𝑛,𝑠  𝑋)

′
 . 

Corollary (2.2.13)[2]. Let 𝑋 be a Banach space such that (⊗̂𝜋𝑠
𝑛,𝑠  𝑋)  has the 𝐴𝑃. Let 𝑟 ≥

 2, 1 ≤  𝑝 ≤  𝑟 <  ∞, and let 𝐻𝑛 be a relatively 𝑟-compact subset of 

(𝑃𝑘𝑝  ( 𝑋 
𝑛 , (⊗̂𝜋𝑠

𝑛,𝑠  𝑋)  , 𝑘𝑝)) such that 𝐻𝑛  ⊂  𝑟 −  𝑐𝑜{(𝑎𝑘
𝑛 ) 𝑘=1

∞ } with (𝑘𝑎𝑘
𝑛 ) 𝑘=1

∞  ∈

 𝑙𝑟  (𝑃𝑘𝑝  ( 𝑋 
𝑛 , (⊗̂𝜋𝑠

𝑛,𝑠  𝑋)
′
 ) , 𝑘𝑝) . Then for  every 𝜀 >  0 there exists an 𝑟-compact subset 

𝐾𝜀
′ of (⊗̂𝜋𝑠

𝑛,𝑠  𝑋)  such that for all 𝑃 ∈  𝐻𝑛 and all 𝑥 ∈  𝑋, |𝑃(𝑥)(⊗𝑛 𝑥)| ≤

sup
𝑘′∈𝐾𝜀

′
  |𝑘(⊗𝑛 𝑥)| (𝜀‖𝑥‖𝑛  + sup

𝑘′∈𝐾𝜀
′
  |𝑘(⊗𝑛 𝑥)|).  

Proof. Since (𝑃𝑘𝑝   ( 𝑋 
𝑛 (⊗̂𝜋𝑠

𝑛,𝑠  𝑋)
′
 ) , 𝑘𝑝)  and (𝐾𝑝 (⊗̂𝜋𝑠

𝑛,𝑠  𝑋, (⊗̂𝜋𝑠
𝑛,𝑠  𝑋)

′
  ) , 𝑘𝑝) are 

isometrically isomorphic, there is a sequence (𝑇𝑘
𝑛 )𝑘=1

∞  ⊂  𝐾𝑝 (⊗̂𝜋𝑠
𝑛,𝑠  𝑋, (⊗̂𝜋𝑠

𝑛,𝑠  𝑋)
′
) such 

that (𝑘𝑇𝑘
𝑛 )𝑘=1

∞  ∈  𝑙𝑟 (𝐾𝑝 (⊗̂𝜋𝑠
𝑛,𝑠  𝑋, (⊗̂𝜋𝑠

𝑛,𝑠  𝑋)
′
) , 𝑘𝑝) and 𝐶𝑛 ∶=   {𝑃

𝐿 ∶  𝑃 ∈  𝐻𝑛 }  ⊂  𝑟 −

 𝑐𝑜{(𝑇𝑘
𝑛 )𝑘=1

∞ }, where the mapping 𝑃𝐿 ∶ ⊗̂𝜋𝑠
𝑛,𝑠  𝑋 →  𝑌 , defined by 𝑃𝐿(⊗𝑛 𝑥)  =  𝑃(𝑥) is 

the linearization of 𝑃. Now since (⊗̂𝜋𝑠
𝑛,𝑠  𝑋)

′
 has the 𝐴𝑃 hence, by Theorem (2.2.11), given 

any 𝜀 >  0, there exits an r-compact subset 𝐾𝜀
′ of (⊗̂𝜋𝑠

𝑛,𝑠  𝑋) such that for all 𝑃𝐿  ∈  𝐶𝑛 and 

for all 𝑥 ∈  𝑋, we have  

|𝑃𝐿(⊗𝑛 𝑥)(⊗𝑛 𝑥)| ≤ sup
𝑘′∈𝐾𝜀

′
  |𝑘′(⊗𝑛 𝑥)| (𝜀 ‖ ⊗𝑛 𝑥‖  + sup

𝑘′∈𝐾𝜀
′
  |𝑘′(⊗𝑛 𝑥)|), from which 

we get the conclusion. 
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     Note that in Corollary (2.2.13) taking 𝑛 =  1 one gets exactly Theorem (2.2.11). In this 

sense it is a generalization of Theorem (2.2.11).  

Definition (2.2.14)[7]. Let 𝑋 be a Bauch space and 𝑘 ⊂ 𝑋. Then 𝑘 is said to be realatively 

weakly 𝑝-compact 1 ≤ 𝑝 ≤ ∞ if there is 𝑋 ∈ 𝑙𝑝
𝑤(𝑋), such that 𝑘 ⊂ 𝐸𝑋(𝑙𝑝′)(𝑙𝑝′: (𝑙𝑝)

∗
), and 

𝑘 is said to be relatively weakly ∞-compact if there is 𝑥 ∈ 𝐶0
𝑤(𝑋) such that 𝑘 ⊂

𝐸𝑋(ball (𝑙1)). 
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Chapter 3 

Almost over Total Sequences in Banach Spaces 

We show information about the structure of such sequences. In particular it can 

happen that, an 𝐴𝑂𝐶〈resp. 𝐴𝑂𝑇〉given sequence admits countably many not nested 

subsequences such that the only subspace contained in the closed linear span of every of 

such subsequences is the trivial one < resp. the closure of the linear span of the union of 

the annihilators in 𝑋 of such subsequences is the whole 𝑋 >. Moreover, any 𝐴𝑂𝐶 sequence 

{𝑥𝑛}𝑛∈ℕ contains some subsequence {𝑥𝑛𝑗}𝑗∈ℕ
 that is 𝑂𝐶 in [{𝑥𝑛𝑗}𝑗∈ℕ

]; any 𝐴𝑂𝑇 sequence 

{𝑓𝑛}𝑛∈ℕcontains some subsequence {𝑓𝑛𝑗}𝑗∈ℕ
 that is 𝑂𝑇 on any subspace of 𝑋 complemented 

to {𝑓𝑛𝑗}𝑗∈ℕ

𝑇
. 

Section (3.1): Almost over Complete Sequences 

– [S] stands for the closure of the linear span of the set 𝑆; 

– the annihilator in 𝑋∗ of a subset 𝛤 of the Banach space 𝑋 is the subspace 𝛤⊥ ⊂ 𝑋∗ whose 

members are the bounded linear functionals on 𝑋 that vanish on 𝛤; 

– the annihilator in 𝑋 of a subset 𝛤 of the dual space 𝑋∗ is the subspace 𝛤⊤ ⊂ 𝑋, 𝛤⊤ =
∩𝑓∈𝛤 ker 𝑓; 

– a set 𝛤 ⊂  𝑋∗ is called total over 𝑋 whenever 𝛤⊤ = {0}. 

Recall that a sequence in a Banach space 𝑋 is called overcomplete (𝑂𝐶 in short) in 𝑋 

whenever the linear span of each of its subsequences is dense in 𝑋. It is a well-known fact 

that overcomplete sequences exist in any separable Banach space. 

– A sequence in a Banach space 𝑋 is called almost overcomplete (𝐴𝑂𝐶 in short) whenever 

the closed linear span of each of its subsequences has finite codimension in 𝑋. 

– A sequence in the dual space 𝑋∗ of the Banach space 𝑋 is called overtotal on 𝑋 (𝑂𝑇 in 

short) whenever each of its subsequences is total over 𝑋. 

– A sequence in the dual space 𝑋∗ of the Banach space 𝑋 is called almost overtotal (𝐴𝑂𝑇 in 

short) on 𝑋 whenever the annihilator (in 𝑋) of each of its subsequences has finite dimension. 

Some applications have been shown to support the usefulness of these notions. 

For instance, the fact that bounded 𝐴𝑂𝐶 as well as 𝐴𝑂𝑇 sequences must be strongly 

relatively compact makes it possible to answer quickly in the positive the following 

questions. 

– Must any infinite-dimensional closed subspace of 𝑙∞ contain infinitely many linearly 

independent elements with infinitely many zero-coordinates? 

 – Let 𝑋 ⊂  𝐶(𝐾) be an infinite-dimensional subspace of 𝐶(𝐾) where 𝐾 is metric compact. 

Must an (infinite) sequence {𝑡𝑘}𝑘∈ℕ exist in 𝐾 such that 𝑥(𝑡𝑘)  =  0 for infinitely many 

linearly independent 𝑥 ∈  𝑋? 
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It provide information about the structure of 𝐴𝑂𝐶 and 𝐴𝑂𝑇 sequences. For any 

separable Banach space 𝑋 the following questions seem to be of interest. 

– Does an 𝐴𝑂𝐶 sequence exist in 𝑋 that admits countably many subsequences such that the 

intersection of their closed linear spans is the origin? 

– Does an 𝐴𝑂𝑇 sequence exist on 𝑋 that admits countably many subsequences such that the 

closure of the linear span of the union of their annihilators in 𝑋 is the whole 𝑋? 

We answer in the positive both of them, respectively. It is a remarkable fact that, in 

both cases, the involved subsequences cannot be nested (Propositions (3.1.4) and (3.1.2). 

The second aim is to give a possible explanation for the following fact. As a consequence, 

by using strong relative compactness of bounded 𝐴𝑂𝑇 sequences we get e.g., as a special 

case, that any infinite-dimensional closed subspace of 𝑙𝑝 contains infinitely many elements 

with infinitely many zero-coordinates not only when 𝑝 =  ∞, as we mentioned at the 

beginning, but for any 𝑝 ≥  1. However, the case 𝑝 <  ∞ looks much more complicated to 

be handled than the case 𝑝 =  ∞. We provide an example to show one possible reason for 

that. 

We refer for general information about 𝐴𝑂𝐶 and 𝐴𝑂𝑇 sequences. Here we point out 

only the evident fact that, if {(𝑥𝑛, 𝑥𝑛
∗)} is a countable biorthogonal system, then neither {𝑥𝑛} 

can be almost overcomplete in [{𝑥𝑛}], nor {𝑥𝑛
∗} can be almost overtotal on [{𝑥𝑛}]. 

Almost overcomplete and to totatal sequeuces 

We start by recalling a simple method, to get an overcomplete sequence in any 

separable Banach space 𝑋. We will use it in the proof of Proposition (3.1.2). 

Fact (3.1.1)[3]. Let {𝑒𝑘}𝑘∈ℕ be any bounded sequence such that [{𝑒𝑘}𝑘∈ℕ]  =  𝑋. Then the 

sequence 

{𝑦𝑚}𝑚=2
∞ = {∑𝑒𝑘𝑚

−𝑘

∞

𝑘=1

}

𝑚=2

∞

 

 is 𝑂𝐶 in 𝑋. 

Proof. Let {𝑦𝑚𝑗
}
𝑗=1

∞
 be any subsequence of {𝑦𝑚}𝑚=2

∞ = {∑ 𝑒𝑘𝑚
−𝑘∞

𝑘=1 }𝑚=2
∞ , let 

𝑓 ∈ 𝑋∗  ∩  {𝑦𝑚𝑗
}
⊥
                                               (1) 

and let 𝐷 be the open unit disk in the complex field. Since the complex function 𝜙 ∶  𝐷 → ℂ 

defined by 𝜙(𝑡) = ∑  ∞
𝑘=1 𝑓(𝑒𝑘)𝑡

𝑘 is holomorphic, from 𝑓 (𝑦𝑚𝑗
) = 𝜙(1/𝑚𝑗) = 0 for  =

 1, 2, . .. , it follows 𝜙 ≡  0 that forces 𝑓(𝑒𝑘)  =  0 for every 𝑘 ∈ ℕ. Since 𝑓 in (1) was 

arbitrarily chosen, it follows [{𝑦𝑚𝑗
}] = 𝑋. 

Proposition (3.1.2)[3]. Any (infinite-dimensional) separable Banach space 𝑋 contains an 

𝐴𝑂𝐶 sequence {𝑥𝑛}𝑛∈ℕ with the following property: for each 𝑖 ∈ ℕ, {𝑥𝑛}𝑛∈ℕ admits a 

subsequence, that we denote by {𝑥𝑗
𝑖}
𝑗∈ℕ

 to lighten notation, such that both the following 

conditions are satisfied 
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a) codim𝑋 [{𝑥𝑗
𝑖}
𝑗∈ℕ
] =  𝑖; 

b) ⋂  𝑖∈ℕ [{𝑥𝑗
𝑖}
𝑗∈ℕ
] =  {0}. 

Proof. Let the biorthogonal system {𝑒𝑘, 𝑒𝑘
∗}𝑘∈ℕ  ⊂  𝑋 × 𝑋

∗ provide a normalized M-basis 

for 𝑋. We recall that, by definition, the sequence {𝑒𝑘
∗}𝑘∈ℕ must be total on 𝑋. Moreover, it 

is a well-known fact that, at least when A is a finite subset of 𝑁, a (topological) complement 

in 𝑋 to the subspace [{𝑒𝑘}𝑘∈𝐴] is the subspace [{𝑒𝑘}𝑘∈ℕ 𝐴⁄ ]. For 𝑖 =  1, 2, … put 

𝑌𝑖 = [{𝑒𝑘}𝑘∉{𝑖,𝑖+1,𝑖+2,...,2𝑖−1}]                                    (2) 

so codim𝑋𝑌𝑖  =  𝑖. For each integer 𝑖 ∈ ℕ, 𝑌𝑖 is a Banach space itself so, by Fact (3.1.1), the 

sequence {𝑦𝑚
𝑖 }
𝑚≥2

⊂ 𝑌𝑖 defined by. 

𝑦𝑚
𝑖 = ∑  

∞

𝑘=1,𝑘∉{𝑖,𝑖+1,𝑖+2,...,2𝑖−1}

𝑚−𝑖𝑘𝑒𝑘      𝑖 =  1, 2, . . . , 𝑚 =  2, 3, . . .        (3) 

provides an 𝑂𝐶 sequence in 𝑌𝑖. 

Order in any way the countable set ∪𝑖∈ℕ,𝑚≥2 {𝑦𝑚
𝑖 } as a sequence {𝑥𝑛}𝑛∈ℕ. For each 𝑖, select 

a subsequence {𝑥𝑝
𝑖 }
𝑝∈ℕ

 of {𝑥𝑛}𝑛∈ℕ whose terms belong to {𝑦𝑚
𝑖 }
𝑚≥2

: this last sequence being 

𝑂𝐶 in 𝑌𝑖, we have codim𝑋[{𝑥𝑝
𝑖 }
𝑝∈ℕ
]  =  codim𝑋𝑌𝑖 =  𝑖. Moreover, since the sequence 

{𝑒𝑘
∗}𝑘∈ℕ is total on 𝑋, it is clear that ∩𝑖=1

∞ 𝑌𝑖 = {0}, so ∩𝑖=1
∞ [{𝑥𝑝

𝑖 }
𝑝∈ℕ
] = {0} too. 

It remains to show that the sequence {𝑥𝑛}𝑛∈ℕ is 𝐴𝑂𝐶 in 𝑋. Let {𝑥𝑛𝑗}𝑗∈ℕ
 be any of its 

subsequences. Two cases are possible. 

A) For some 𝑖, {𝑥𝑛𝑗}𝑗∈ℕ
 contains infinitely many terms from {𝑦𝑚

𝑖 }
𝑚≥2

: being {𝑦𝑚
𝑖 }
𝑚≥2

 𝑂𝐶 

in 𝑌𝑖, we have codim𝑋 [{𝑥𝑛𝑗}𝑗∈ℕ
] ≤  codim𝑋𝑌𝑖 = 𝑖 and we are done. 

B) For each 𝑖, {𝑥𝑛𝑗}𝑗∈ℕ
 contains at most finitely many terms from {𝑦𝑚

𝑖 }
𝑚≥2

. Take any 

𝑓 ∈  {𝑥𝑛𝑗}𝑗∈ℕ

⊥
.                                                        (4) 

We prove that 𝑓(𝑒𝑘)  =  0 for every 𝑘 ∈ ℕ: it implies 𝑓 =  0, that means that {𝑥𝑛𝑗}𝑗∈ℕ
 is 

complete in 𝑋. Suppose by contradiction that 𝑓(𝑒�̅�) ≠  0 for some index �̅�: without loss of 

generality we may assume that �̅� is the first of such indexes. For 𝑗 ∈ ℕ, let 

𝑦𝑚(𝑗)
𝑖(𝑗)

= 𝑥𝑛𝑗; 

Put 

𝐴 =  {𝑖 ∶  𝑖 =  𝑖(𝑗), 𝑗 ∈ ℕ, 𝑖(𝑗)  >  𝑘}. 



30 

Under our assumption 𝑖(𝑗) goes to infinity with 𝑗, so 𝐴 is infinite and we have 𝑒�̅� ∈  𝑌𝑖 for 

every 𝑖 ∈  𝐴. For 𝑖 ∈  𝐴, put 

𝑚𝑖 = min{𝑚(𝑗) ∶  𝑖(𝑗)  =  𝑖, 𝑦𝑚(𝑗)
𝑖(𝑗)

∈  {𝑦𝑚
𝑖 }
𝑚≥2

}. 

From (4) it follows that, for each 𝑖 ∈  𝐴, we have  

𝑓(𝑒�̅�) = −𝑚𝑖
𝑖�̅� ∑  

∞

𝑘>�̅�,𝑘∉{𝑖,𝑖+1,𝑖+2,...,2𝑖−1}

𝑚𝑖
−𝑖𝑘  𝑓(𝑒𝑘)                     (5) 

hence 

|𝑓(𝑒�̅�)| ≤  𝑚𝑖
𝑖�̅�‖𝑓‖ ∑  

∞

𝑘>�̅�,𝑘 ∉{𝑖,𝑖+1,𝑖+2,…,2−1}

𝑚𝑖
−𝑖𝑘 ≤ 

≤ ‖𝑓‖ ∑  

∞

𝑘=�̅�+1

𝑚𝑖
𝑖(�̅�−𝑘)

 ≤ 2‖𝑓‖𝑚𝑖
−𝑖 →  0   as    𝑖 →  ∞             (6) 

that forces 𝑓(𝑒𝑘) =  0, so contradicting our assumption. We are done. 

Our construction above can be modified by replacing (2) with 

𝑌𝑖  =  [{𝑒𝑘}𝑘≠𝑖]                                                    (7) 

and modifying (3), (5) and (6) according to that. In this case it is still true that ⋂[{𝑥𝑛𝑗}𝑗∈ℕ
] =

{0} as {𝑥𝑛𝑗}𝑗∈ℕ
 ranges among all possible subsequences of the 𝐴𝑂𝐶 sequence {𝑥𝑛}𝑛∈ℕ, but 

actually the codimension of the closure of the linear span of any subsequence is at most 1. 

In other words, the following alternative version to Proposition (3.1.2) holds. 

Proposition (3.1.3)[3]. Any (infinite-dimensional) separable Banach space 𝑋 contains an 

𝐴𝑂𝐶 sequence {𝑥𝑛}𝑛∈ℕ with the following property: {𝑥𝑛}𝑛∈ℕ admits countably many 

subsequences {𝑥𝑗
𝑖}
𝑗∈ℕ
, 𝑖 =  1, 2, … , such that both the following conditions are satisfied 

a) codim𝑋[{𝑥𝑗
𝑖}
𝑗∈ℕ
] = 1 for each 𝑖; 

b) ⋂  𝑖∈ℕ [{𝑥𝑗
𝑖}
𝑗∈ℕ
]  =  {0}. 

By the previous proposition, it is matter of evidence that actually the conclusion 

⋂  𝑖∈ℕ [{𝑥𝑗
𝑖}
𝑗∈ℕ
]  =  {0} is due to the fact that infinitely many pairwise “skew” subsequences 

can be found of {𝑥𝑛}𝑛∈ℕ. This consideration is stressed by the following proposition. 

Proposition (3.1.4)[3]. Let {𝑥𝑛}𝑛∈ℕ be any 𝐴𝑂𝐶 sequence in any (infinite-dimensional) 

separable Banach space 𝑋 and let {𝑥𝑗
1}
𝑗∈ℕ

⊃ {𝑥𝑗
2}
𝑗∈ℕ

 ⊃  {𝑥𝑗
3}
𝑗∈ℕ

⊃ ⋯ be any countable 

family of nested subsequences of {𝑥𝑛}𝑛∈ℕ. Then the increasing sequence of integers 

{codim𝑋 [{𝑥𝑗
𝑖}
𝑗∈ℕ
]}
𝑖∈ℕ

 is finite (so eventually constant). 
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Proof. Let {𝑥𝑛}𝑛∈ℕ be an 𝐴𝑂𝐶 not 𝑂𝐶 sequence in 𝑋 and let {𝑥𝑗
1}
𝑗∈ℕ

 be any of its 

subsequences whose linear span is not dense in 𝑋. Put 

𝑋1 = [{𝑥𝑗
1}
𝑗∈ℕ
] , 𝑝1 = codim𝑋𝑋1  ≥  1. 

If {𝑥𝑗
1}
𝑗∈ℕ

 is 𝑂𝐶 in 𝑋1 we are done; otherwise, let {𝑥𝑗𝑘
1 }
𝑘∈ℕ

 be any of its subsequences whose 

linear span is not dense in 𝑋1. Put 

{𝑥𝑗𝑘
1 }
𝑘∈ℕ

= {𝑥𝑗
2}
𝑗∈ℕ
, 𝑋2 = [{𝑥𝑗

2}
𝑗∈ℕ
] , 𝑝2 = codim𝑋𝑋2 > 𝑝1. 

Now we can continue in this way. Let us prove that this process must stop after finitely 

many steps. Assume the contrary, i.e. that a nested infinite family 

{𝑥𝑗
1}
𝑗∈ℕ

 ⊃  {𝑥𝑗
2}
𝑗∈ℕ

 ⊃ ⋯ ⊃  {𝑥𝑗
𝑖}
𝑗∈ℕ

⊃ ⋯ 

of subsequences of {𝑥𝑛}𝑛∈ℕ can be found such that 𝑝𝑖 ↑  ∞ as 𝑖 ↑  ∞, where 𝑝𝑖 = codim𝑋𝑋𝑖 
with 

𝑋𝑖 = [{𝑥𝑗
𝑖}
𝑗∈ℕ
]. 

Under this assumption, we can construct a linearly independent sequence {𝑓𝑖}𝑖=1
∞ ⊂ 𝑋∗ such 

that, for each 𝑖, 𝑓𝑖 ∈  𝑋𝑖+1
⊥  \ 𝑋𝑖

⊥ . For each 𝑖, let 𝑦𝑖  be an element of the sequence {𝑥𝑗
𝑖}
𝑗∈ℕ

 

not belonging to the sequence {𝑥𝑗
𝑖+1}

𝑗∈ℕ
 such that 𝑓𝑖(𝑦𝑖) ≠ 0 (of course such an element 

must exist): because of our construction we have 𝑓𝑘(𝑦𝑖) = 0 for each 𝑘 < 𝑖. Without loss 

of generality we may assume 𝑓𝑖(𝑦𝑖) = 1. 

Now, following a standard procedure due to Markushevich, put  

𝑔1 = 𝑓1, 𝑔2 = 𝑓2 − 𝑓2(𝑦1)𝑔1, 𝑔3 = 𝑓3 − 𝑓3(𝑦1)𝑔1 − 𝑓3(𝑦2)𝑔2, … 

… , 𝑔𝑘  =  𝑓𝑘  −∑  

𝑘−1

𝑖=1

𝑓𝑘(𝑦𝑖)𝑔𝑖… 

Clearly we have 𝑔𝑘(𝑦𝑖) = 𝛿𝑘,𝑖 for each 𝑘, 𝑖 ∈ ℕ, so actually {𝑦𝑘 , 𝑔𝑘}𝑘∈ℕ is a biorthogonal 

system with {𝑦𝑘}𝑘∈ℕ ⊂ {𝑥𝑛}𝑛∈ℕ. This is a contradiction since {𝑥𝑛}𝑛∈ℕ was an 𝐴𝑂𝐶 

sequence. 

As an immediate consequence of Proposition (3.1.4) we get the following 

Corollary (3.1.5)[3]. Any 𝐴𝑂𝐶 sequence {𝑥𝑛}𝑛∈ℕ in a separable Banach space 𝑋 contains 

some subsequence {𝑥𝑛𝑗}𝑗∈ℕ
 that is 𝑂𝐶 in [{𝑥𝑛𝑗}𝑗∈ℕ

] (with, of course, [{𝑥𝑛𝑗}𝑗∈ℕ
]of finite 

codimension in 𝑋). 
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Section (3.2): Almost over Total Sequences 

The results shown about 𝐴𝑂𝐶 sequences have a dual restatement for 𝐴𝑂𝑇 sequences. 

Proposition (3.2.1)[3]. Let 𝑋 be any (infinite-dimensional) separable Banach space. Then 

there is a sequence {𝑓𝑛}𝑛∈ℕ ⊂ 𝑋
∗ that is 𝐴𝑂𝑇 on 𝑋 and, for each 𝑖 ∈ 𝑁, admits a 

subsequence {𝑓𝑗
𝑖}
𝑗∈ℕ

 such that both the following conditions are satisfied 

a) dim  {𝑓𝑗
𝑖}
𝑗∈ℕ

⊤
= 𝑖; 

b) [⋃  𝑖∈ℕ {𝑓𝑗
𝑖}
𝑗∈ℕ

⊤
]  = 𝑋. 

Proof. The idea for the proof is the same as for the proof of Proposition (3.1.2), so we 

confine ourselves to sketch the fundamental steps. 

Let the biorthogonal system {𝑒𝑘, 𝑒𝑘
∗}𝑘∈ℕ ⊂ 𝑋 × 𝑋

∗ provide an M-basis for 𝑋 with {𝑒𝑘
∗}𝑘∈ℕ a 

norm-one sequence in 𝑋∗. For 𝑖 = 1, 2,… put  

𝑍𝑖 = [{𝑒𝑘}𝑘=𝑖
2𝑖−1], 𝑌𝑖 = [{𝑒𝑘}𝑘 ∉ {𝑖, 𝑖 + 1, 𝑖 + 2, . . . ,2𝑖 − 1}],

Y 
∗
i = [{ek

∗ }k ∉ {i, i + 1, i + 2, . . . ,2i − 1}]. 

Clearly 𝑋 = 𝑍𝑖⊕𝑌𝑖 and 𝑌 
∗
𝑖
⊤ = 𝑍𝑖, so dim 𝑌 

∗
𝑖
⊤ = 𝑖 for 𝑖 = 1, 2,…. For each integer 𝑖 ∈ 𝑁, 

the sequence {𝑦𝑚
∗𝑖}

𝑚≥2
⊂ 𝑌 

∗
𝑖 defined by  

𝑦𝑚
∗𝑖 = ∑  

∞

𝑘=1,𝑘∉{𝑖,𝑖+1,𝑖+2,...,2𝑖−1}

𝑚−𝑖𝑘𝑒𝑘
∗          𝑖 =  1, 2, … ,𝑚 =  2, 3, … 

being over complete in the Banach space 𝑌 
∗
𝑖, is overtotal on 𝑌𝑖. 

Order in any way the countable set ∪𝑖∈ℕ,𝑚≥2 {𝑦𝑚
∗𝑖}as a sequence {𝑓𝑛}𝑛∈ℕ. For each 𝑖, select 

a subsequence {𝑓𝑝
𝑖}
𝑝∈ℕ

 of  {𝑓𝑛}𝑛∈ℕ whose terms belong to {𝑦𝑚
∗𝑖}

𝑚≥2
: since this last sequence 

is overtotal on 𝑌𝑖, we have {𝑓𝑝
𝑖}
𝑝∈ℕ

⊤
= 𝑍𝑖 too, so dim{𝑓𝑝

𝑖}
𝑝∈ℕ

⊤
= 𝑖. Moreover, since the 

sequence {𝑒𝑘}𝑘∈ℕ is complete in 𝑋, we have [∪𝑖=1
∞ 𝑍𝑖]  = 𝑋. 

It remains to show that the sequence {𝑓𝑛}𝑛∈ℕ is 𝐴𝑂𝑇 on 𝑋. Let {𝑓𝑛𝑗}𝑗∈ℕ
 be any of its 

subsequences. Two cases are possible. 

A) For some 𝑖, {𝑓𝑛𝑗}𝑗∈ℕ
 contains infinitely many terms from {𝑦𝑚

∗𝑖}
𝑚≥2

: being {𝑦𝑚
∗𝑖}

𝑚≥2
 𝑂𝑇 

on 𝑌𝑖, we have {𝑓𝑛𝑗}𝑗∈ℕ

⊤
⊂ 𝑍𝑖, dim{𝑓𝑛𝑗}𝑗∈𝑁

⊤
≤ 𝑖 and we are done. 

B) For each 𝑖, {𝑓𝑛𝑗}𝑗∈ℕ
 contains at most finitely many terms from {𝑦𝑚

∗𝑖}
𝑚≥2

. Take any 𝑥 ∈

{𝑓𝑛𝑗}𝑗∈ℕ

⊤
: by proceeding exactly as in B) of the proof of Proposition (3.1.2), just 

interchanging the roles of points and functionals, we get 𝑒𝑘
∗(𝑥)  = 0 for every 𝑘 ∈ ℕ. 
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{𝑒𝑘
∗}𝑘∈ℕ being total on 𝑋, it follows 𝑥 = 0. It means that {𝑓𝑛𝑗}𝑗∈ℕ

 too is total on 𝑋 and again 

we are done. The proof is complete. 

          As we did for 𝐴𝑂𝐶 sequences, with obvious modifications in the previous proof we 

can obtain for 𝐴𝑂𝑇 sequences the following alternative version to Proposition (3.2.1): it is 

the dual version to Proposition (3.1.3). 

Proposition (3.2.2)[3]. Let 𝑋 be any (infinite-dimensional) separable Banach space. Then 

there is a sequence {𝑓𝑛}𝑛∈ℕ ⊂ 𝑋
∗ that is 𝐴𝑂𝑇 on 𝑋 and admits countably many subsequences 

{𝑓𝑗
𝑖}
𝑗∈ℕ
, 𝑖 = 1, 2,…, such that both the following conditions are satisfied 

a) dim{𝑓𝑗
𝑖}
𝑗∈ℕ

⊤
= 1 for each 𝑖; 

b) [⋃  𝑖∈ℕ {𝑓𝑗
𝑖}
𝑗∈𝑁

⊤
] = 𝑋. 

We point out that, though the existence of an 𝐴𝑂𝑇 sequence on a Banach space 𝑋 does not 

imply 𝑋 to be separable (one of the significant applications of this concept was to the space 

𝑙∞), the results we have shown in Propositions (3.2.1) and (3.2.2), as they have been stated, 

must concern only separable spaces. In fact, the annihilator of any subsequence of any 𝐴𝑂𝑇 

sequence being finite-dimensional, the closed linear span of the union of countably many of 

such annihilators must be separable too. 

Finally we notice that also Proposition (3.1.4) has its dual version that shows that the 

countably many subsequences in the statement of Proposition (3.2.2) cannot be assumed to 

be nested. The proof can be carried on exactly like the proof of Proposition (3.1.4), just 

interchanging the roles of points and functionals. 

Proposition (3.2.3)[3]. Let {𝑓𝑛}𝑛∈ℕ be any sequence 𝐴𝑂𝑇 on any (infinite-dimensional) 

Banach space Xand let {𝑓𝑗
1}
𝑗∈ℕ

⊃ {𝑓𝑗
2}
𝑗∈ℕ

⊃ {𝑓𝑗
3}
𝑗∈ℕ

⊃ ⋯ be any countable family of 

nested subsequences of {𝑓𝑛}𝑛∈ℕ. Then the increasing sequence of integers 

{dim{𝑓𝑗
𝑖}
𝑗∈ℕ

⊤
}
𝑖∈ℕ

is finite (so eventually constant). 

As an immediate consequence of Proposition (3.2.3) we get the following 

Corollary (3.2.4)[3]. Any AOT sequence {𝑓𝑛}𝑛∈ℕ on a Banach space 𝑋 contains some 

subsequence {𝑓𝑛𝑗}𝑗∈ℕ
 that is 𝑂𝑇 on any subspace of 𝑋 complemented to {𝑓𝑛𝑗}𝑗∈ℕ

⊤
 (with, of 

course, {𝑓𝑛𝑗}𝑗∈ℕ

⊤
 of finite dimension). 

We provide an example that may be of interest in Operator theory. That any infinite-

dimensional closed subspace of 𝑙𝑝 contains infinitely many elements with infinitely many 

zero-coordinates not only when 𝑝 = ∞, as we mentioned at the beginning, but for any 𝑝 ≥
1. In fact the following much more general results have been proved there. 

Theorem (3.2.5)[3]. Let 𝑋 be a separable infinite-dimensional Banach space and 𝑇: 𝑋 → 𝑙∞ 

be a one-to-one bounded non-compact linear operator. Then there exist an infinite-
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dimensional subspace 𝑌 ⊂ 𝑋 and a strictly increasing sequence {𝑛𝑘} of integers such that 

𝑒𝑛𝑘(𝑇𝑦)  = 0 for any 𝑦 ∈ 𝑌 and for any 𝑘 (enthe “𝑛-coordinate functional” on 𝑙∞). 

Theorem (3.2.6)[3]. Let 𝑋, 𝑌 be infinite-dimensional Banach spaces. Let 𝑌 have an 

unconditional basis {𝑢𝑖}𝑖=1
∞  with {𝑒𝑖}𝑖=1

∞  as the sequence of the associated coordinate 

functionals. Let 𝑇: 𝑋 → 𝑌 be a one-to-one bounded non-compact linear operator. Then there 

exist an infinite-dimensional subspace 𝑍 ⊂ 𝑋 and a strictly increasing sequence {𝑘𝑙} of 

integers such that 𝑒𝑘𝑙(𝑇𝑧)  = 0 for any 𝑧 ∈ 𝑍 and any 𝑙 ∈ ℕ. 

To show both the theorems, the fundamental tool was the fact that bounded 𝐴𝑂𝑇 

sequences are strongly relatively compact. However, despite Theorem (3.2.5) was then 

obtained as a quite easy consequence of the Ascoli–Arzelà Theorem, the proof of Theorem 

(3.2.6) has required some additional delicate tools. One could expect that Theorem (3.2.6) 

should be proved in a simple way by the following argument. 

“Under notation as in the statement of Theorem (3.2.6), assume by contradiction that for 

each sequence of integers {𝑖𝑗} we have dim ({𝑇∗𝑒𝑖𝑗}
⊤
) < ∞. Then the sequence {𝑇∗𝑒𝑖}  ⊂

𝑋∗ is almost over total on 𝑋, so {𝑇∗𝑒𝑖} is relatively norm-compact in 𝑋∗. {𝑒𝑖} being the 

sequence of the coordinate functionals associated to the (unconditional) basis {𝑢𝑖} of 𝑌, that 

forces 𝑇 to be a compact operator, contradicting our assumption.” 

In fact this argument does not work since the last conclusion 𝑇 being forced to be 

compact is false, as the following example shows. 

Example (3.2.7)[3]. There exist a Banach space 𝑌 with an unconditional basis {𝑢𝑖}𝑖∈ℕ, 

{𝑒𝑖}𝑖∈ℕ being the sequence of the associated coordinate functionals, and a non-compact 

operator 𝑇: 𝑐0 → 𝑌 such that 𝑇∗𝑒𝑖 → 0 as 𝑖 → ∞ (so the sequence {𝑇∗𝑒𝑖} is relatively norm 

compact). 

Proof. Let {𝑢𝑖
𝑘}
𝑖=1

𝑘
 be the natural (algebraic) basis of ℝ𝑘. For 𝑘 ∈ ℕ, define 𝑇𝑘: ℝ

𝑘 → ℝ𝑘 

in the following way  

𝑇𝑘 (∑𝑎𝑖𝑢𝑖
𝑘

𝑘

𝑖=1

)  =∑𝑎𝑖 𝑢𝑖
𝑘 𝑘⁄

𝑘

𝑖=1

, 𝑎𝑖 ∈ ℝ   for   𝑖 =  1, … , 𝑘. 

Let 𝑙∞
𝑘 〈resp. 𝑙1

𝑘〉be the k-dimensional space ℝ𝑘 endowed with the max-norm 〈resp. the 1 −
norm〉. If we consider 𝑇𝑘: 𝑙∞

𝑘 → 𝑙1
𝑘, we easily get ‖𝑇𝑘‖ = 1 for every 𝑘 ∈ ℕ. 

For a sequence {𝑋𝑘 , ‖·‖𝑋𝑘}𝑘=1
∞

 of Banach spaces, consider the Banach space  

(⊕𝑘=1
∞ 𝑋𝑘)𝑐0(the linear space, under the usual algebraic operations, whose elements are the 

sequences {𝑥𝑘}𝑘=1
∞ , 𝑥𝑘 ∈ 𝑋𝑘 for each 𝑘, such that ‖𝑥𝑘‖𝑋𝑘 → 0 as 𝑘 → ∞, endowed with the 

norm ‖{𝑥𝑘}𝑘=1
∞ ‖ = max

𝑘
 ‖𝑥𝑘‖𝑋𝑘). 

Clearly we have  

𝑐0 = (⊕𝑘=1
∞ 𝑙∞

𝑘 )𝑐0 .                                                   (8) 

Put  
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𝑌 = (⊕𝑘=1
∞ 𝑙1

𝑘)
𝑐0
 . 

Order the set ∪𝑘=1
∞ {𝑢𝑖

𝑘}
𝑖=1

𝑘
 in the natural way and rename it as  

{𝑢1
1, 𝑢1

2, 𝑢2
2, … , 𝑢1

𝑘, … , 𝑢𝑘
𝑘, … } =  {𝑢1, 𝑢2, 𝑢3, … }.                          (9) 

Of course {𝑢𝑖}𝑖=1
∞  is an unconditional basis both for 𝑐0 and for 𝑌. Call 𝑃𝑘 the natural norm-

one projection of 𝑐0 on to 𝑙∞
𝑘  suggested by (8) and define 𝑇: 𝑐0 → 𝑌 in the following way  

𝑇𝑥 =∑𝑇𝑘𝑃𝑘𝑥

∞

𝑖=0

, 𝑥 ∈ 𝑐0. 

𝑇 is a (linear) non-compact operator, since ‖𝑇(∑ 𝑢𝑖
𝑘𝑘

𝑖=1 )‖ = 1 and  ∑ 𝑢𝑖
𝑘𝑘

𝑖=1  is weakly null 

as 𝑘 → ∞. However, if we denote by {𝑒𝑖}𝑖=1
∞  the sequence of the coordinate functionals 

associated to the basis {𝑢𝑖}𝑖=1
∞  of 𝑌, it is true that 𝑇∗𝑒𝑖 → 0 in 𝑋∗ as 𝑖 → ∞. In fact, for 𝑥 =

∑  ∞
𝑘=1 ∑  𝑘

𝑗=1 𝑥𝑗
𝑘𝑢𝑗

𝑘 ∈ 𝐵𝑐0 the following holds 

|𝑥𝑗
𝑘| ≤ 1      1 ≤  𝑗 ≤  𝑘, 𝑘 = 1, 2,… 

so, if we denote by 𝑢𝑗𝑖
𝑘𝑖  the element 𝑢𝑖 as identified by (9), we have  

|(𝑇∗𝑒𝑖)(𝑥)| = |𝑒
𝑖(𝑇𝑥)| = |𝑒𝑖 (∑  

∞

𝑘=1

∑ 

𝑘

𝑗=1

𝑥𝑗
𝑘𝑢𝑗

𝑘 𝑘⁄ )|  = |𝑥𝑗𝑖
𝑘𝑖| 𝑘𝑖⁄ ≤ 1 𝑘𝑖⁄ . 

Since 𝑘𝑖 → ∞ with 𝑖, we are done. 

Theorem (3.2.8)[8]. Each almost over complete bounded sequence in a Banach space is 

relatively norm-compact. 

Proof. Let {𝑥𝑛} be an almost over complete bounded sequence is (separable) Banach space 

(𝑋, ‖⋅‖) without loss of generality we may assume, possibly passing to an equivalent norm 

that the norm ‖⋅‖ is locally Uniformly rotund (𝐿𝑈𝑅) and that {𝑥𝑛} is normalized under that 

norm. 

First note that {𝑥𝑛} is relatively weakly compact other wise, it is known that it should admit 

som subsequence that is a basic sequence, a contradiction. Hence by the Eberlein-Smulyan 

theorem states that the three are equivalent on a Banach space. While this equivalence is 

truein general for (metric space), the weak topology is not metrizable in infinite dimensional 

vector spaces, and so the Eberlein-Smulyan theorem is needed [9] that {𝑥𝑛} admits som 

subsequence {𝑥𝑛𝑘} that weakly converges to some point 𝑥0 ∈ 𝐵𝑋. Two coses must now be 

considered: 

(i) ‖𝑥0‖ < 1. Form ‖𝑥𝑛𝑘 − 𝑥0‖ ≥ 1. ‖𝑥0‖ > 0, according to a well known we sult, it 

follows that sequence: hence codim {𝑥𝑛𝑘𝑖
− 𝑥0} is a basic sequence: hence codim 

[{𝑥𝑛𝑘2𝑖
− 𝑥0}] = codim [{𝑥𝑛𝑘2𝑖

} , 0] = codim [{𝑥𝑛𝑘2𝑖
}] = ∞ a contradiction. 
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‖𝑥0‖ = 1 sine we are working with a 𝐿𝑈𝑅 norm, the subsequence {𝑥𝑛𝑘} a ctually converges 

to 𝑥0 in the norm too and we are done.  
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Chapter 4 

Banach Spaces and Superprojectivity 

 
We show that the class of superprojective spaces is stable under finite products, 

certain unconditional sums, certain tensor products, and other operations, providing new 

examples. 
 

Section (4.1): Some Properties of Superprojective Spaces 
A Banach space 𝑋  is called subprojective if every (closed) infinite-dimensional subspace 

of 𝑋 contains an infinite-dimensional subspace complemented in 𝑋 , and 𝑋  is called 

superprojective if every infinite- codimensional subspace of 𝑋 is contained in an infinite-

codimensional subspace complemented. These two classes of Banach spaces were 

introduced by Whitley in order to find conditions for the conjugate of an operator to be 

strictly singular or strictly cosingular. More recently, they have been used to obtain some 

positive solutions to the perturbation classes problem for semi-Fredholm operators. This 

problem has a negative solution in generae, but there are some positive answers when one 

of the spaces is subprojective. 

There are many examples of subprojective spaces, like  ℓ𝑝  for 1 ≤  𝑝 <  ∞, 𝐿𝑝 

(0, 1) for 2 ≤  𝑝 <  ∞, 𝐶 (𝐾 ) with 𝐾 a scattered compact and some Lorentz and Orlicz 

spaces. It is not difficult to show that subspaces of subprojective  spaces are subprojective, 

and quotients of superprojective spaces are superprojective (Proposition (4.1.4)) and, as a 

consequence of the duality  relations between subspaces and quotients, a reflexive space is 

sub- projective (superprojective) if and only if its dual space is superprojective 

(subprojective), which provides many examples of reflexive superprojective spaces. 

However, the only examples of non- reflexive superprojective spaces previously known are 

the 𝐶 (𝐾 ) spaces with 𝐾 a scattered compact and their infinite-dimensional quotients. 

Some of the duality relations between subprojective and superprojective spaces are known 

to fail in general: 

(a) 𝑋 being subprojective does not imply that 𝑋∗ is superprojective, for instance for 𝑋 = 𝑐0 

and  𝑋∗ = ℓ1. 
(b) 𝑋∗  being subprojective  does not imply that 𝑋  is superprojective, for instance for the 

hereditarily indecomposable space obtained whose dual  is isomorphic to ℓ1. 
However we do not know if the remaining relations are valid: 

(a’) Does 𝑋  being superprojective imply that 𝑋∗ is subprojective?  

(b’) Does 𝑋∗ being superprojective imply that 𝑋  is subprojective? 

The answer to these two questions is likely negative, but we know of few examples of non-

reflexive super- projective spaces to check, and none of them is a dual space. 

Studied the stability properties of subprojective spaces under vector sums, tensor products 

and other operations, obtaining plenty of new examples of subprojective spaces. 

We will begin with some auxiliary results and show some properties of subprojective and 

superprojective spaces, such as the fact that superprojective spaces cannot contain copies of 

1, which restricts the search for non-reflexive examples of these spaces, and we also 

characterise the superprojectivity of some projective tensor products. Following the scheme, 

we show several stability results for the class of superprojective spaces under finite products, 

certain unconditional sums and certain tensor products, and we provide new examples of 

superprojective spaces. 
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           The dual space of a Banach space 𝑋 is 𝑋∗, and the action of 𝑥∗ ∈ 𝑋∗ on 𝑥 ∈ 𝑋  is 

written as 〈 𝑥∗, 𝑥〉. Given a subset 𝑀  of a Banach space 𝑋 , its annihilator in 𝑋∗ will be 

denoted by 𝑀⊥; if 𝑀  is a subset of 𝑋∗, its annihilator in 𝑋  will be denoted by 𝑀⊥. If (𝑥𝑛 )𝑛∈ℕ 

is a sequence in 𝑋 , then [𝑥𝑛 ∶  𝑛 ∈ ℕ] will denote the closed linear span of (𝑥𝑛)𝑛∈ℕ  in 𝑋. 
The injective and projective tensor products of 𝑋  and 𝑌 are respectively denoted by 𝑋 ⊗̂𝜋  

Operators will always be bounded. The identity operator on 𝑋 is denoted by 𝐼𝑋 . 
Given an operator 𝑇 ∶  𝑋 →  𝑌 , 𝑁 (𝑇 ) and 𝑅(𝑇 ) denote the kernel and the range of 𝑇 , and 

𝑇∗ ∶ 𝑌∗ → 𝑋∗ denotes its conjugate operator. An operator 𝑇 ∶  𝑋 → 𝑌 is strictly singular if 

𝑇|𝑀  is an isomorphism only if M is finite-dimensional; and T is strictly cosingular if there 

is no operator 𝑄 ∶  𝑌 → 𝑍 with Z infinite-dimensional such that 𝑄𝑇 is surjective or, 

equivalently, if there is no infinite-codimensional (closed) subspace 𝑁  of 𝑌 such that 

𝑅(𝑇) + 𝑁 =  𝑌 . 
       The way that superprojective Banach spaces are defined means that we will be dealing 

with infinite- codimensional subspaces and their induced quotients often, so we will adopt 

the following definition. 

Definition (4.1.1)[4].  We will say that an operator 𝑇 ∶  𝑋 → 𝑌  is a surjection if 𝑇 is 

surjective and 𝑌  is infinite- dimensional. 

The following results will be useful when dealing with complemented subspaces, 

subjections and super projective spaces.   

Proposition (4.1.2)[4]. For a Banach space 𝑋 , the following are equivalent: 

(i) 𝑋  is superprojective; 

(ii) for any surjection 𝑇 ∶ 𝑋 𝑌 , there exists another surjection 𝑆 ∶  𝑌 ⟶  𝑍 such that 

N (𝑆𝑇 ) is complemented in 𝑋 . 
Proof. For the direct implication, let 𝑇 ∶  𝑋 ⟶ 𝑌 be a surjection, so that 𝑁 (𝑇 ) is infinite-

codimensional in 𝑋 . By the superprojectivity of 𝑋 , 𝑁 (𝑇 ) is contained in a complemented, 

infinite-codimensional  subspace 𝑀  of 𝑋 , and clearly 𝑇 (𝑀 ) is closed in 𝑌 . Thus the 

quotient map 𝑄 from 𝑌 onto 𝑌 /𝑇 (𝑀 ) is a surjection such that 𝑁 (𝑄𝑇) = 𝑀  is 

complemented in 𝑋 . 
For the converse implication, let 𝑀 be an infinite-codimensional subspace of 𝑋 , so 

that 𝑄𝑀 ∶  𝑋 ⟶ 𝑋/𝑀 is a surjection.  Then there exists another surjection 𝑆 ∶  𝑋/𝑀 ⟶ 𝑍  

such that 𝑁 (𝑆𝑄𝑀 ) is infinite- codimensional and complemented in 𝑋,  and contains 𝑀. 

The next result allows to push the complementation of a subspace through an operator under 

certain conditions. 

Proposition (4.1.3)[4]. Let 𝑋 , 𝑌 and 𝑍 be Banach spaces and let 𝑇 ∶  𝑋 ⟶  𝑌 and 

𝑆 ∶ 𝑌 ⟶ 𝑍 be operators such that 𝑆𝑇 is a surjection and 𝑁(𝑆𝑇) is complemented in 𝑋. Then 

𝑁(𝑆) is complemented in 𝑌. 
Proof. Let 𝐻  be a subspace of 𝑋 such that 𝑋 = 𝑁 (𝑆𝑇 )⊕𝐻 . Since 

𝑆𝑇 ∶  𝑋 ⟶  𝑍 is a surjection, 𝑆𝑇 |𝐻 must be an isomorphism onto 𝑍 ; in particular, 𝑇 |𝐻  is 

an isomorphism and 𝑌 = 𝑁(𝑆)⊕𝑇(𝐻 ), as proved by the projection 𝑇(𝑆𝑇 |𝐻 )
−1 𝑆 ∶  𝑌 ⟶

𝑌 . 
A simple consequence of Propositions (4.1.2) and (4.1.3) is the fact that the class of 

superprojective spaces is stable under quotients. 

Proposition (4.1.4)[4]. Let 𝑋  be a superprojective Banach space and let 𝑇 ∶ 𝑋 ⟶ 𝑌 be a 

surjection. Then 𝑌 is superprojective 

Proof. Let 𝑆 ∶ 𝑌 ⟶ 𝑍 be a surjection; then 𝑆𝑇 is a surjection and, by Proposition (4.1.2), 

there exists an-other surjection 𝑅 ∶  𝑍 ⟶ 𝑊  such that 𝑁(𝑅𝑆𝑇 ) is complemented in 𝑋. By 
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Proposition (4.1.3), 𝑁 (𝑅𝑆) is complemented in 𝑌, which means, again by Proposition 

(4.1.2), that 𝑌 is superprojective. 

Finally, we will state a technical observation on the behaviour of surjections on spaces that 

have a complemented superprojective subspace. 

Proposition (4.1.5)[4]. Let 𝑋 be a Banach space, let 𝑃 ∶ 𝑋 ⟶ 𝑋  be a projection with 

𝑃(𝑋) superprojective and let 𝑆 ∶ 𝑋 ⟶ 𝑌 be a surjection such that SP is not strictly 

cosingular. Then there exists another surjection 𝑅 ∶ 𝑌 ⟶ 𝑍 such that 𝑁(𝑅𝑆) is 

complemented in 𝑋. 
Proof. Let 𝐽 ∶  𝑃 (𝑋 )  ⟶  𝑋  be the natural inclusion; then 𝑆𝑃 = 𝑆𝐽𝑃 is not strictly 

cosingular,  so neither is 𝑆𝐽 ∶  𝑃 (𝑋 ) ⟶ 𝑌 . Therefore, there exists a quotient map 𝑄 ∶ 𝑌 ⟶
𝑊 such that 𝑄𝑆𝐽 is a surjection, and Proposition (4.1.2) provides another surjection 𝑅 ∶
𝑊 ⟶ 𝑍 such that 𝑁(𝑅𝑄𝑆𝐽) is complemented in 𝑃(𝑋 ); by Proposition (4.1.3), 𝑁(𝑅𝑄𝑆) is 

complemented in 𝑋, where 𝑅𝑄: 𝑌 ⟶ 𝑍 is a surjection. 

The following results gives some simple but useful necessary conditions for Bananch 

space 𝑋 to be subprojectiv or superprojective.  

Proposition (4.1.6)[4]. Let 𝑋 and 𝑍 be infinite-dimensional Banach spaces. 

(i) If 𝐽 ∶  𝑍 ⟶ 𝑋  is a strictly cosingular embedding, then 𝑋 is not subprojective. 

(ii) If 𝑄 ∶  𝑋 ⟶ 𝑍 is a strictly singular surjection, then 𝑋  is not superprojective. 

Proof. (i) If 𝑋 = 𝑀 ⊕ 𝐻  with 𝑀 ⊆ 𝐽(𝑍 ), then 𝑄𝐻 𝐽 is surjective. Since 𝐽 is strictly 

cosingular, 𝐻 is finite-codimensional and 𝑀 is finite-dimensional. 

(ii) If 𝑋 = 𝑀 ⊕ 𝐻  with 𝑁(𝑄) ⊆ 𝑀, then  𝑄|𝐻   is an embedding. Since 𝑄 is strictly singular, 

𝐻 is finite-dimensional. 

In spite of its simplicity, Proposition (4.1.6) has several straight forward consequences. 

Proposition (4.1.7) for subprojective spaces with the same example but a different argument. 

Here we extend it to superprojective spaces. Recall that a class 𝐶 of Banach spaces satisfies 

the three-space property if a Banach space 𝑋  belongs to 𝐶 whenever 𝑀 and 𝑋/𝑀 belong to 

𝐶 for some subspace 𝑀  of 𝑋. 
Proposition (4.1.7)[4]. The classes of subprojective and superprojective  spaces do not 

satisfy the three-space prop- erty. 

Proof. Let 1 < 𝑝 < ∞ and recall that ℓ𝑝is both subprojective and superprojective. Let 𝑍𝑝  

be the Kalton– Peck space introduced. Then there exists an exact sequence 

0 ⟶ ℓp  ⟶
𝑖⟶𝑞 ℓp ⟶ 0 

In which 𝑖 is strictly cosingular and 𝑞 is strictly singular. By Proposition (4.1.6), 𝑍𝑝 is neither 

subprojective nor superprojective. 

Since ℓ1  is subprojective, the following result suggests that the class of non-reflexive 

superprojective spaces is smaller than that of non-reflexive subprojective spaces. 

Proposition (4.1.8)[4]. Let 𝑋 be a Banach space containing a subspace isomorphic to ℓ1. 
Then 𝑋  is not superpro- jective and 𝑋∗ is not subprojective. 

Proof. If 𝑋 contains a subspace isomorphic to ℓ1, then there exists a surjective operator 𝑄 ∶
𝑋 ⟶ 2 which is 2-summing, therefore weakly compact and completely continuous, 

therefore strictly singular: Indeed, if 𝑄|𝑀   is an isomorphism, then 𝑀  is reflexive and 

weakly convergent sequences in 𝑀  are convergent, so 𝑀  is finite-dimensional. By 

Proposition (4.1.6), 𝑋 is not superprojective. For the second part, observe that 

𝑄∗∗ ∶ 𝑋∗∗  ⟶ ℓ2  is also 2-summing. Then 𝑄∗∗ is strictly singular, hence 𝑄∗ ∶ ℓ2  ⟶ 𝑋∗ is 

a strictly cosingular embedding. Proposition (4.1.8) allows to fully characterise the 
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superprojectivity of 𝐶(𝐾) spaces. Recall that a compact space is called scattered if each of 

its non-empty subsets has an isolated point. 

Corollary (4.1.9)[4]. Let 𝐾 be a compact set. Then 𝐶(𝐾) is superprojective if and only if 𝐾 

is scattered.  

Proof. If 𝐾 is scattered, then 𝐶(𝐾) is superprojective. On the other hand, if K is not scattered, 

then 𝐶(𝐾) contains a copy of ℓ1 and cannot be superprojective by Proposition (4.1.8).  

It also follows immediately that certain tensor products cannot be superprojective. 

Corollary (4.1.10)[4]. Let 𝑋 and 𝑌 be Banach spaces and suppose that 𝑋 admits an 

unconditional finite-dimensional decomposition and 𝐿(𝑋, 𝑌∗ )  ≠  𝐾 (𝑋, 𝑌∗). Then 𝑋 ⊕̂𝜋 𝑌 

is not superprojective  

Proof. Note that (𝑋 ⊕̂𝜋 𝑌)
∗ ≡ 𝐿(𝑋, 𝑌∗). Since 𝐿(𝑋, 𝑌∗) ≠ 𝐾(𝑋, 𝑌∗), we have that 𝐿(𝑋, 𝑌∗) 

contains ℓ∞, hence 𝑋 ⊕̂𝜋Ycontains a (complemented) copy of ℓ1. 
Since the spaces ℓ𝑝 phave an unconditional basis and are subprojective and superprojective 

for 1 < 𝑝 < ∞, we can now characterise the superprojectivity of the tensor products 

ℓ𝑝 ⊕̂𝜋 ℓ𝑞 . 

Corollary (4.1.11)[4]. Let 1 < 𝑝, 𝑞 < ∞. Then the following are equivalent: 

(i) ℓ𝑝 ⊕̂𝜋 ℓ𝑞 is superprojective; 

(ii) ℓ𝑝 ⊕̂𝜋 ℓ𝑞 is reflexive; 

(iii) 𝐿(ℓ𝑝, ℓ𝑞
∗ ) = 𝐾(ℓ𝑝, ℓ𝑞

∗ ); 

(iv) 𝑝 > 𝑞/(𝑞 − 1). 

Proof. We have that ℓ𝑝 ⊕̂𝜋 ℓ𝑞is reflexive if and only if 𝐿(ℓ𝑝, ℓ𝑞
∗ ) = 𝐾(ℓ𝑝, ℓ𝑞

∗ ) if and only 

if 𝑝 > 𝑞/(𝑞 − 1). If 𝐿(ℓ𝑝, ℓ𝑞
∗ ) = 𝐾(ℓ𝑝, ℓ𝑞

∗ ), then ℓ𝑝 ⊕̂𝜋 ℓ𝑞 is not superprojective by 

Corollary (4.1.10); otherwise, ℓ𝑝 ⊕̂𝜋 ℓ𝑞 is reflexive and ℓ𝑝 ⊕̂𝜋 ℓ𝑞 = (ℓ𝑝
∗
⊕̂𝜀 ℓ𝑞

∗ )
∗
, so 

ℓ𝑝
∗
⊕̂𝜀 ℓ𝑞

∗   is reflexive and subprojective and ℓ𝑝 ⊕̂𝜋 ℓ𝑞 is superprojective. 

Corollary (4.1.12)[4]. ℓ𝑝 ⊕̂𝜋 ℓ𝑞 is not superprojective for any 1 ≤ 𝑝, 𝑞 ≤ ∞. 

Proof. If 𝑝 is either 1or strictly greater than 2, then 𝐿𝑝 itself is not superprojective, so neither 

is ℓ𝑝 ⊕̂𝜋 ℓ𝑞 and similarly for 𝑞. Thus, we are only concerned with the case 1 < 𝑝, 𝑞 ≤ 2, 

but then both 𝐿𝑝 and 𝐿𝑞 contain  complemented copies of ℓ2, so 𝐿(𝐿𝑝 ⊕̂𝜋 𝐿𝑞
∗ ) ≠ 𝐾(𝐿𝑝, 𝐿𝑞

∗ ) 

and 𝐿𝑝 ⨂̂𝜋 𝐿𝑞 is not superprojective by Corollary (4.1.10).  

Section (4.2): Stability Results for Superprojective Spaces 
We show some stability results for the class of superprojective spaces. Our first result here, 

and key to subsequent ones, proves that the direct sum of two superprojective Banach spaces 

is again superprojective. 

Proposition (4.2.1)[4]. Let 𝑋 and 𝑌 be Banach spaces. Then 𝑋⊕ 𝑌 is superprojective if and 

only if both 𝑋 and 𝑌 are superprojective. 

Proof. 𝑋 and 𝑌 are quotients of 𝑋 ⊕ 𝑌; if 𝑋 ⊕ 𝑌 is superprojective, then so are X and Y by 

Proposition (4.1.4). Conversely, assume that X are Y are both superprojective, and define 

the projections 𝑃𝑋: 𝑋 ⊕ 𝑌 ⟶ 𝑋 ⊕ 𝑌, with range X and kernel Y, and 𝑃𝑌: 𝑋 ⊕ 𝑌 ⟶ X ⊕ Y, 
with range 𝑌 and kernel 𝑋. Take any surjection 𝑆: 𝑋 ⊕ 𝑌 ⟶ 𝑍. Then 𝑆 = 𝑆𝑃𝑋 + 𝑆𝑃𝑌 is not 

strictly cosingular, so either 𝑆𝑃𝑋 or 𝑆𝑃𝑌 is not strictly cosingular; without loss of generality, 

we will assume that it is 𝑆𝑃𝑋. By Proposition (4.1.5), there exists another surjection 

𝑅: 𝑍 ⟶ 𝑊such that 𝑁(𝑅𝑆)  is complemented in 𝑋 ⊕ 𝑌, which finishes the proof by 

Proposition (4.1.2). 
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We will now state the result, which proves that a space is superprojective if it admits 

a suitable decomposition into superprojective parts. Recall that an operator 𝑇: 𝑋 ⟶ 𝑌 is 

upper semi-Fredholmif  𝑁(𝑇) is finite-dimensional and 𝑅(𝑇) is closed, and 𝑇 is lower semi-

Fredholm if 𝑅(𝑇) is finite-codimensional (hence closed). Note that 𝑇 is lower semi-

Fredholm if and only if 𝑇∗ is upper semi-Fredholm. 

Theorem (4.2.2)[4]. Let 𝑋 be a Banach space, let 𝛬 be a well-ordered set and let (𝑃𝜆)𝜆∈𝛬  
and (𝑄𝜆)𝜆∈𝛬 be bounded families of projections on 𝑋 such that: 

(i) 𝑃𝜆
∗𝑥∗ ⟶𝜆 𝑥

∗ for every 𝑥∗ ∈ 𝑋∗; 
(ii) 𝑃𝜇𝑃𝜈 = 𝑃min{𝜇,𝜈} and 𝑄𝜇𝑄𝜈 = 𝑄min{𝜇,𝜈} for every 𝜇, 𝜈 ∈ 𝛬; 

(iii) 𝑄𝜇𝑃𝜈 = 𝑃𝜈𝑄𝜇 for every 𝜇, 𝜈 ∈ 𝛬, and 𝑄𝜇𝑃𝜈 = 𝑃𝜈 if 𝜇 ≥ 𝜈; 

(iv) 𝑄𝜆(𝑋) is superprojective for every 𝜆 ∈ 𝛬; 
(v) for every unbounded strictly increasing sequence (𝜆𝑘)𝑘∈ℕ of elements in 𝛬 and every 

sequence (𝑥𝑘
∗)𝑘∈ℕ of non-null elements in 𝑋∗ such that 𝑥1

∗ ∈ 𝑅(𝑃𝜆1
∗ ) and 𝑥𝑘

∗ ∈

𝑅(𝑃𝜆𝑘
∗ (𝐼 − 𝑄𝜆𝑘−1

∗ )) for 𝑘 > 1, the subspace [𝑥𝑘
∗ : 𝑘 ∈ ℕ]⊥ is contained in a complemented 

infinite-codimensional subspace of 𝑋. Then 𝑋 is superprojective. 

Then 𝑋 is superprojective. 

Here, an unbounded sequence in 𝛬 is one that does not have an upper bound within 

𝛬. Also, this result is only really interesting if 𝛬 does not have a maximum element; 

otherwise, if 𝜆 is the maximum of 𝛬, then 𝑃𝜆 = 𝐼𝑋 by condition (i) and 𝑄𝜆 = 𝑄𝜆𝑃𝜆 = 𝑃𝜆 =
𝐼𝑋 by condition (iii), so 𝑋 = 𝑄𝜆(𝑋) is already superprojective by condition (iv). 

Proof. Let 𝑀 be an infinite-codimensional subspace of 𝑋 and let us denote its natural 

quotient map by 𝑆: 𝑋 ⟶ 𝑋/𝑀. If there exists 𝜆 ∈ 𝛬 such that 𝑆𝑄𝜆 is not strictly cosingular, 

then Proposition (4.1.5) provides another surjection  

𝑅:𝑋/𝑀 ⟶ 𝑍 such that 𝑁(𝑅𝑆) is complemented in 𝑋. Since 𝑁(𝑅𝑆) is infinite-

codimensional and contains Mwe are done. 

Otherwise, assume that 𝑆𝑄𝜆 is strictly cosingular for every 𝜆 ∈ 𝛬. Let 𝐶 ≥ 1 be such that 

‖𝑃𝜆‖ ≤ 𝐶 and ‖𝑄𝜆‖ ≤ 𝐶 for every 𝜆 ∈ 𝛬, and let 𝜀 = 1/8𝐶3 > 0. We will construct a 

strictly increasing sequence 𝜆1 < 𝜆2 <. .. of elements in 𝛬 and a sequence (𝑥𝑛
∗)𝑛∈ℕ of norm-

one elements in 𝑀⊥ ⊆ 𝑋∗ such that ‖𝑄𝜆𝑘−1
∗ 𝑥𝑘

∗‖  < 2−𝑘𝜀 and  ‖𝑃𝜆𝑘
∗ 𝑥𝑘

∗ − 𝑥𝑘
∗‖ < 2−𝑘𝜀 for 

every 𝑘 ∈ ℕ, where we write 𝑄𝜆0 = 0 for convenience. To this end, let 𝑘 ∈ ℕ, and assume 

that 𝜆𝑘−11has already been obtained. By hypothesis, 𝑄𝜆𝑘−1
∗ 𝑆∗ = (𝑆𝑄𝜆𝑘−1)

∗
is not an 

isomorphism, where 𝑆∗: (𝑋/𝑀)∗ ⟶ 𝑋∗ is an isometric embedding with range 𝑀⊥, so there 

exists 𝑥𝑘
∗ ∈ 𝑀⊥ such that ‖𝑥𝑘

∗‖ = 1 and ‖𝑄𝜆𝑘−1
∗ 𝑥𝑘

∗‖ < 2−𝑘𝜀, and then there is 𝜆𝑘 > 𝜆𝑘−1 

such that ‖𝑃𝜆𝑘
∗ 𝑥𝑘

∗ − 𝑥𝑘
∗‖ < 2−𝑘  𝜀 by condition (i), which finishes the inductive construction 

process. Let 𝐻 = [𝑥𝑘
∗ : 𝑘 ∈ ℕ]  ⊆ 𝑋∗; then 𝐻⊥ is infinite-codimensional and contains 𝑀. 

It is easy to check that the operators 𝑇𝑘: = (𝐼 − 𝑄𝜆𝑘−1)𝑃𝜆𝑘 are projections with norm 

‖𝑇𝑘‖ ≤ (1 + 𝐶)𝐶 ≤ 2𝐶2, and that 𝑇𝑖𝑇𝑗 = 0 if 𝑖 ≠ 𝑗. 

Let now 𝑧𝑘
∗ = 𝑇𝑘

∗(𝑥𝑘
∗) = 𝑃𝜆𝑘

∗ (𝐼 − 𝑄𝜆𝑘
∗ − 1) 𝑥∗𝑘for each 𝑘 ∈ ℕ; then 

‖𝓏𝑘
∗ − 𝑥𝑘

∗‖ ≤ ‖𝑃𝜆𝑘
∗ 𝑥𝑘

∗ − 𝑥𝑘
∗‖ + ‖𝑃𝜆𝑘

∗ 𝑄𝜆𝑘−1
∗ 𝑥𝑘

∗‖ < 2−𝑘𝜀 + 2−𝑘𝜀𝐶 ≤ 21−𝑘𝜀𝐶 < 1/2, 

So 1/2 < ‖𝑧𝑘
∗‖ < 3/2for every 𝑘 ∈ ℕ. If we take 𝑥𝑘 ∈ 𝑋 such that  

‖𝑥𝑘‖ < 2 and 〈𝑧𝑘
∗𝑘, 𝑥𝑘〉 = 1 for each 𝑘 ∈ ℕ, and define 𝑧𝑘 = 𝑇𝑘𝑥𝑘, it follows that 

〈𝑧𝑘
∗ , 𝑧𝑘〉 = 〈𝑧𝑘

∗ , 𝑇𝑘𝑥𝑘〉 = 〈𝑇𝑘
∗𝑧𝑘
∗ , 𝑥𝑘〉 = 〈𝑧𝑘

∗ , 𝑥𝑘〉 = 1 

For every 𝑘 ∈ ℕ and  

〈𝑧𝑖
∗, 𝑧𝑗〉 = 〈𝑇𝑖

∗𝑧𝑖
∗, 𝑇𝑗𝑧𝑗〉 = 〈𝑧𝑖

∗, 𝑇𝑖𝑇𝑗𝑧𝑗〉 = 0 
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if 𝑖 ≠ 𝑗, which makes (𝑧𝑘
∗ , 𝑧𝑘)𝑛∈ℕ a biorthogonal sequence in (𝑋∗, 𝑋). In the spirit of the 

principle of small perturbations, let 𝐾:𝑋 ⟶ 𝑋be the operator defined as 𝐾(𝑥) =
∑ 〈𝑥𝑘

∗ − 𝑧𝑛
∗ , 𝑥〉∞

𝑛=1 ; then 

∑‖𝑥𝑛
∗ − 𝑧𝑛

∗‖

∞

𝑛=1

‖𝑧𝑛‖ < ∑(21−𝑛𝜀𝐶)(4𝐶2)

∞

𝑛=1

=∑2−𝑛 = 1,

∞

𝑛=1

 

So 𝐾 is well defined and 𝑈 = 𝐼 + 𝐾 is an isomorphism on 𝑋. Moreover, 𝐾∗: 𝑋∗ ⟶ 𝑋∗ is 

defined as 𝐾∗(𝑥∗) = ∑ 〈𝑥∗, 𝓏𝑛〉
∞
𝑛=1  (𝑥𝑛

∗ − 𝓏𝑘
∗), so 𝐾∗(𝓏𝑘

∗) = 𝑥𝑘
∗ − 𝓏𝑘

∗  and 𝑈∗(𝑧𝑘
∗)  = 𝑥𝑘

∗for 

every 𝑘 ∈ ℕ. Let 𝑍 = [𝑧𝑘
∗: 𝑘 ∈ ℕ]; then 𝑈∗(𝑍) = 𝐻 and 𝑈(𝐻⊥)  = 𝑍⊥. 

Next we will show that 𝑍 is weak* closed in 𝑋∗. Note first that 𝑇𝑗𝑃𝜆𝑖 = (𝐼 − 𝑄𝜆𝑗−1) 𝑃𝜆𝑗𝑃𝜆𝑖 =

(𝐼 − 𝑄𝜆𝑗−1) 𝑃𝜆𝑗 = 𝑇𝑗 if 𝑖 ≥ 𝑗, and 𝑇𝑗𝑃𝜆𝑖 = (𝐼 − 𝑄𝜆𝑗−1) 𝑃𝜆𝑗𝑃𝜆𝑖 = (𝐼 − 𝑄𝜆𝑗−1) 𝑃𝜆𝑖 = 0 

otherwise. Given that 𝑧𝑘
∗ ∈ 𝑅(𝑇𝑘

∗) for every 𝑘 ∈ 𝑁, this means that 𝑃𝜆𝑖
∗ 𝑧𝑗

∗ = 𝑧𝑗
∗ 𝑖 𝑓 𝑖 ≥ 𝑗 and 

𝑃𝜆𝑖
∗ 𝑧𝑗

∗ = 0 otherwise, so 𝑃𝜆𝑘
∗ (𝑍)  = [𝑧1

∗, . . . , 𝑧𝑘
∗  ], which is finite-dimensional, for every 𝑘 ∈

𝑁. Let 𝑥∗ be a weak∗cluster point of 𝑍; then 𝑃𝜆𝑘
∗ 𝑥∗ ∈ 𝑃𝜆𝑘

∗ (𝑍)  ⊆ 𝑍 and 𝑃𝜆𝑘
∗ 𝑥∗ ⟶𝑘 𝑥

∗ by 

condition (i), so 𝑥∗ ∈ 𝑍 and 𝑍 is indeed weak∗closed. The fact that 𝐻 = 𝑈∗(𝑍) implies that 

𝐻 is weak∗closed, as well. 

This means, in turn, that no 𝑄𝜆
∗ can be an isomorphism on 𝐻 for any 𝜆 ∈ 𝛬. To see this, 

consider the natural quotient 𝑄𝐻⊥: 𝑋 ⟶ 𝑋/𝐻⊥, where 𝑋/𝐻⊥is infinite-dimensional. Since 

𝑀 ⊆ 𝐻⊥, the operator 𝑄𝐻⊥ factors through 𝑆 = 𝑄𝑀: 𝑋 ⟶ 𝑋/𝑀and, since 𝑆𝑄𝜆 is strictly 

cosingular for every 𝜆 ∈ 𝛬 by our initial hypothesis, it follows that 𝑄𝐻⊥𝑄𝜆 cannot be 

surjective for any 𝜆 ∈ 𝛬, or even lower semi-Fredholm; equivalently, 𝑄𝜆
∗ cannot be upper 

semi-Fredholm on 𝐻⊥
⊥for any 𝜆 ∈ 𝛬, where 𝐻⊥

⊥ = 𝐻 because His weak∗closed. 

Finally, we will check that the sequence (𝜆𝑘)𝑘∈ℕis unbounded. Assume, to the 

contrary, that there existed some 𝜆 ∈ 𝛬 such that 𝜆𝑘 ≤ 𝜆 for every 𝑘 ∈ ℕ. Then, for every 

𝑘 ∈ ℕ, we would have 𝑇𝑘𝑄𝜆 = (𝐼 − 𝑄𝜆𝑘−1)𝑃𝜆𝑘𝑄𝜆 = (𝐼 − 𝑄𝜆𝑘−1)𝑃𝜆𝑘 = 𝑇𝑘 , so 𝑄𝜆
∗𝑧𝑘
∗ =

𝑧𝑘
∗  and 𝑄𝜆

∗  would be an isomorphism on 𝑍. But then 𝑄𝜆
∗𝑈−1∗ would be an isomorphism on 

𝐻, where 𝑈−1 = 𝐼 − 𝑈−1 𝐾 is a compact perturbation of the identity, so 𝑄𝜆
∗ would be upper 

semi-Fredholm on 𝐻, a contradiction. 

Now that the sequence (𝜆𝑘)𝑘∈ℕ is known to be unbounded, condition (v) states that 

𝑍⊥ is contained in a complemented infinite-codimensional subspace of 𝑋, and then so 

is 𝐻⊥ = 𝑈
−1(𝑍⊥).  

Note that any sequence (𝑃𝑛)𝑛∈ℕ of projections in 𝑋 satisfying the conditions of 

Theorem (4.2.2) effectively defines a Schauder decomposition for 𝑋, where the components 

are the ranges of each operator 𝑃𝑛(𝐼 − 𝑃𝑛−1)  = 𝑃𝑛 − 𝑃𝑛−1; equivalently, each Pnis the 

projection onto the sum of the first ncomponents. For the purposes of Theorem (4.2.2), these 

components need not be finite-dimensional. 

Regarding condition (v), a further remark is in order. It may very well be the case that 

there are no unbounded strictly increasing sequences in 𝛬, for instance if 𝛬 = [0,𝜔1), where 

𝜔1 is the first uncountable ordinal, in which case condition (v) is trivially satisfied and does 

not impose any additional restriction on 𝑋 or the projections. In terms of the proof of 

Theorem (4.2.2), this means that 𝑆𝑄𝜆 must be eventually not strictly cosingular for some λ 

∈Λ, and this is so because 𝑄𝜆
∗ is an isomorphism on 𝑍 for any 𝜆 greater than the supremum 

of (𝜆𝑘)𝑘∈ℕ, so 𝑄𝜆
∗ is upper semi-Fredholm on 𝐻 and 𝑆𝑄𝜆 is not strictly cosingular. 
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Theorem (4.2.3)[4]. Let 𝑋 be a Banach space, let 𝛬 be a well-ordered set and let (𝑃𝜆)𝜆∈Λ 

be a bounded family of projections on 𝑋 such that: 

(i) 𝑃𝜆
∗𝑥∗ ⟶𝜆 𝑥

∗ for every 𝑥∗ ∈ 𝑋∗; 
(ii) 𝑃𝜇𝑃𝜈 = 𝑃min{𝜇,𝜈} for every 𝜇, 𝜈 ∈ 𝛬; 

(iii) 𝑃𝜆(𝑋) is superprojective for every 𝜆 ∈ 𝛬; 
(iv)  for every unbounded strictly increasing sequence (𝜆𝑘)𝑘∈ℕ of elements in 𝛬 and every 

sequence (𝑥𝑘
∗)𝑘∈ℕ of non-null elements in 𝑋∗ such that 𝑥1

∗ ∈ 𝑅(𝑃𝜆1
∗ ) and 𝑥𝑘

∗ ∈ 𝑅(𝑃𝜆𝑘
∗ −

𝑃𝜆𝑘−1
∗ ) for 𝑘 > 1, the subspace [𝑥𝑘

∗: 𝑘 ∈ ℕ]⊥ is contained in a complemented infinite-

codimensional subspace of 𝑋. Then 𝑋 is superprojective. 

Our first use of Theorems (4.2.2) and (4.2.3) will be to prove that the (infinite) sum 

of superprojective spaces, such as ℓ𝑝(𝑋𝑛) 𝑜𝑟 𝑐0(𝑋𝑛), is also superprojective, if the sum is 

done in a “superprojective” way. 

Definition (4.2.4)[4]. We will say that a Banach space 𝐸 ⊆ ℝℕ is a solid sequence space if, 

for every (𝛼𝑛)𝑛∈ℕ ∈ 𝐸 and (𝛽𝑛)𝑛∈ℕ ∈ ℝ
ℕ with |𝛽𝑛|  ≤ |𝛼𝑛| for every 

𝑛 ∈ ℕ, it holds that (𝛽𝑛)𝑛∈ℕ ∈ 𝐸 and ‖(𝛽𝑛)𝑛∈ℕ‖ ≤ ‖(𝛼𝑛)𝑛∈ℕ‖. 
We will say that 𝐸 is an unconditional sequence space if it is a solid sequence space and the 

sequence of canonical vectors (𝑒𝑖)𝑖 ∈ ℕ is a normalised basis for 𝐸, where 𝑒𝑖 = (𝛿𝑖𝑗)𝑗∈ℕ. 

If 𝐸 is an unconditional sequence space, then its canonical basis (𝑒𝑛)𝑛∈ℕ is actually 

1-unconditional, and its conjugate 𝐸∗ can be identified with a solid sequence space itself in 

the usual way, where the action of 𝛽 = (𝛽𝑛)𝑛∈ℕ ∈ 𝐸
∗on 𝛼 = (𝛼𝑛)𝑛∈ℕ ∈ 𝐸 𝑖𝑠 〈𝛽, 𝛼〉  =

 ∑ 𝛽𝑛𝛼𝑛
∞
𝑛=1 . If the canonical basis (𝑒𝑛)𝑛∈ℕ is shrinking in 𝐸, then 𝐸∗ is additionally 

unconditional (the coordinate functionals are a basis for 𝐸∗). 
Solid sequence spaces will play a central role in some of our results because of the following 

construction. 

Definition (4.2.5)[4]. Let 𝐸 be a solid sequence space and let (𝑋𝑛)𝑛∈ℕ be a sequence of 

Banach spaces. We will write 𝐸(𝑋𝑛) for the Banach space of all sequences (𝑥𝑛)𝑛∈ℕ ∈  𝑛 ∈
∏ 𝑋𝑛
 
𝑛∈ℕ  for which (‖𝑥𝑛‖)𝑛∈ℕ ∈ 𝐸, with the norm ‖(𝑥𝑛)𝑛∈ℕ‖ = ‖(𝑥𝑛)𝑛∈ℕ‖𝐸 . 

The identification of the dual of an unconditional sequence space with another solid 

sequence space can be carried up to the sum of spaces. 

Proposition (4.2.6)[4]. Let 𝐸 be an unconditional sequence space and let (𝑋𝑛)𝑛∈ℕ be a 

sequence of Banach spaces. Then 𝐸(𝑋𝑛)
∗ ≡ 𝐸∗(𝑋𝑛

∗). 
Proof. Each (𝑥𝑛

∗)𝑛∈ℕ ∈ 𝐸
∗(𝑋𝑛

∗) clearly defines an element of 𝐸(𝑋𝑛)
∗, so we only have to 

show the converse identification. 

Let 𝓏∗ ∈ 𝐸(𝑋𝑛)
∗, let 𝐽𝑛: 𝑋𝑛 ⟶ 𝐸(𝑋𝑛) be the canonical inclusion of 𝑋𝑛 into 𝐸(𝑋𝑛) for each 

𝑛 ∈ ℕ and let 𝑥𝑛
∗ = 𝐽𝑛

∗(𝓏∗) ∈ 𝑋𝑛
∗  for each 𝑛 ∈ 𝑁; we will prove that 𝓏∗ = (𝑥𝑛

∗)𝑛∈ℕ ∈
𝐸∗(𝑋𝑛

∗). 
To prove that (𝑥𝑛

∗)𝑛∈ℕ ∈ 𝐸
∗(𝑋𝑛

∗). choose 𝑥𝑛 ∈ 𝑋𝑛 such that ‖𝑥𝑛‖ = 1 and  

〈𝑥𝑛
∗ , 𝑥𝑛〉 for each 𝑛 ∈ 𝑁, and take any non-negative 𝛼 = (𝛼𝑛)𝑛∈ℕ ∈ 𝐸. By the definition of 

𝐸(𝑋𝑛), we have that (𝛼𝑛𝑥𝑛)𝑛∈ℕ ∈ 𝐸(𝑋𝑛), so 

∑‖𝑥𝑛
∗‖𝛼𝑛

∞

𝑛=1

≤∑2〈𝑥𝑛
∗ , 𝑥𝑛〉𝛼𝑛

∞

𝑛=1

= 2∑〈𝑥𝑛
∗ , 𝛼𝑛𝑥𝑛〉

∞

𝑛=1

= 

2∑〈𝐽𝑛
∗(𝓏∗), 𝛼𝑛𝑥𝑛〉

∞

𝑛=1

= 2∑〈𝓏∗, 𝐽𝑛(𝛼𝑛𝑥𝑛)〉

∞

𝑛=1

 

= 2〈𝓏∗, (𝛼𝑛𝑥𝑛)𝑛∈ℕ〉 ≤ 2‖𝓏
∗‖‖(𝛼𝑛𝑥𝑛)𝑛∈ℕ‖ = 2‖𝓏

∗‖‖𝛼‖. 
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This proves that (‖𝑥𝑛
∗‖) and, as a consequence, (𝑥𝑛

∗)𝑛∈ℕ ∈ 𝐸
∗(𝑋𝑛

∗) 
Now, given 𝑖 ∈ ℕ and 𝑥𝑖 ∈ 𝑋𝑖 , we have 〈(𝑥𝑛

∗)𝑛∈ℕ, 𝐽𝑖(𝑥𝑖)〉 = 〈𝑥𝑖
∗, 𝑥𝑖〉 = 〈𝓏

∗, 𝐽𝑖(𝑥𝑖)〉, so (𝑥𝑛
∗) 

and 𝓏∗ coincide over the finitely non-null sequences of 𝐸(𝑋𝑛) and therefore 𝓏∗ = (𝑥𝑛
∗)𝑛∈ℕ. 

We will show that the sum of superprojective spaces is also superprojective, if the sum is 

done in a superprojective way, which translates to the requirement that the space 𝐸 

governing the sum must be superprojective itself. This excludes ℓ1 and, more generally, 

imposes that any unconditional basis in 𝐸 be shrinking, for the same reasons that ℓ1 is not 

superprojective, or precisely because of this. 

Proposition (4.2.7)[4]. Let 𝑋 be a superprojective Banach space and let (𝑥𝑛)𝑛∈ℕbe an 

unconditional basis of 𝑋. Then (𝑥𝑛)𝑛∈ℕ is shrinking. 

Proof. If (𝑥𝑛)𝑛∈ℕ is unconditional but not shrinking, then 𝑋 contains a (complemented) 

copy of ℓ1 and cannot be superprojective by Proposition(4.1.8). 

Theorem (4.2.8)[4]. Let 𝐸 be an unconditional sequence space and let (𝑋𝑛)𝑛∈ℕ 𝑏𝑒 a 

sequence of Banach spaces. Then 𝐸(𝑋𝑛) is superprojective if and only if all of 𝐸 and 𝑋𝑛 are 

superprojective. 

Proof. (i) Let 𝑋 = 𝐸(𝑋𝑛). All of 𝐸 and 𝑋𝑛 are quotients of 𝑋; if 𝑋 is superprojective, then 

so are Eand each 𝑋𝑛. Assume now that 𝐸 and each 𝑋𝑛 are superprojective, and define the 

projections 𝑃𝑛: 𝑋 ⟶ 𝑋 as 𝑃𝑛((𝑥𝑛)𝑛∈ℕ)  = (𝑥1, . . . , 𝑥𝑛, 0, . . . )for each 𝑛 ∈ ℕ. We will prove 

that the sequence (𝑃𝑛)𝑛∈ℕ meets the criteria of Theorem (4.2.3). The fact that (𝑃𝑛)𝑛∈ℕ is 

associated with the natural Schauder decomposition of 𝑋 = 𝐸(𝑋𝑛) is enough for condition 

(ii) to hold. For condition (iii), note that 𝑃𝑛(𝑋) is isometric to ⨁𝑖=1
𝑛 which is superprojective 

by Proposition (4.2.1). As for condition (i), 𝐸 is superprojective and its canonical basis 

(𝑒𝑛)𝑛∈ℕ is unconditional, therefore shrinking by Proposition (4.2.7), so 𝐸∗ is unconditional 

and (𝑃𝑛
∗)𝑛∈ℕ is the sequence of projections associated with the natural Schauder 

decomposition of 𝐸(𝑋𝑛)
∗ ≡ 𝐸∗(𝑋𝑛

∗). 
To prove condition (iv), let (𝑛𝑘)𝑘∈ℕ be a strictly increasing sequence of integers, let 𝑇1 =
𝑃𝑛1and 𝑇𝑘 = 𝑃𝑛𝑘 − 𝑃𝑛𝑘−1for 𝑘 > 1, and let 𝑥𝑘

∗ ∈ 𝑅(𝑇𝑘
∗) be non-null for each 𝑘 ∈ 𝑁, as in 

Theorem (4.2.3). Define 𝑀 = [𝑥𝑘
∗ : 𝑘 ∈ ℕ]⊥, which is infinite-codimensional. Then 𝑥𝑘

∗ ∈
𝑋∗ ≡ 𝐸∗(𝑋𝑛

∗), so  

𝑥𝑘
∗(0,… ,0, 𝓏𝑛𝑘−1+1

∗ , … , 𝓏𝑛𝑘
∗ , 0, … ), 

Where 𝑧𝑖
∗ ∈ 𝑋𝑖

∗. Pick a normalised 𝑧𝑖 ∈ 𝑋𝑖 such that 〈𝓏𝑖
∗, 𝓏𝑖〉 ≥ ‖𝓏𝑖

∗‖/2  for each 𝑖 ∈ ℕ, and 

consider the operator 𝐽: 𝐸 ⟶ 𝑋 defined as 𝐽(𝛼𝑛)𝑛∈ℕ = (𝛼𝑛𝓏𝑛)𝑛∈ℕ which is an isometric 

embedding by the definition of 𝑋 = 𝐸(𝑋𝑛). 
We claim that 𝑄𝑀𝐽: 𝐸 ⟶ 𝑋/𝑀 is a surjection. Indeed, given 𝑥 = (𝑥𝑛)𝑛∈ℕ ∈ 𝑋, with each 

𝑥𝑛 ∈ 𝑋𝑛, let 𝑎𝑛 = 〈𝓏𝑛
∗ , 𝑥𝑛〉/〈𝓏𝑛

∗〉 if 𝓏𝑛
∗ ≠ 0, for each 𝑛 ∈ ℕ, and define 𝛼 = (𝛼𝑛)𝑛∈ℕ. Then 

|𝑎𝑛| ≤ 2|𝑥𝑛| for every 𝑛 ∈ ℕ, so 𝛼 ∈ 𝐸, and 〈𝑥𝑘
∗ , 𝑥 − 𝐽(𝛼)〉 = ∑ 〈𝓏𝑖

∗, 𝑥𝑖 − 𝛼𝑖𝓏𝑖〉 = 0
𝑛𝑘
𝑖=𝑛𝑘−1

 

for every 𝑘 ∈ ℕ, so 𝑥 − 𝐽(𝛼) ∈ 𝑀 and 𝑄𝑀(𝑥) = 𝑄𝑀𝐽(𝛼) ∈ 𝑅(𝑄𝑀 𝐽). 
Now, by the superprojectivity of 𝐸 and Proposition (4.1.2), there exists another surjection 

𝑆: 𝑋/𝑀 ⟶ 𝑍 such that 𝑁(𝑆𝑄𝑀𝐽) is complemented inE; by Proposition (4.1.3), 𝑁(𝑆𝑄𝑀) is 

complemented in 𝑋, where 𝑀 ⊆ 𝑁(𝑆𝑄𝑀) and 𝑅(𝑆𝑄𝑀)  = 𝑍, which is infinite-dimensional. 

The following result will help us check for the last condition in Theorems (4.2.2) and (4.2.3). 

Lemma (4.2.9)[4]. Let 𝑋 be a Banach space, let 𝐸 be an unconditional sequence space and 

let 𝑇, (𝑇𝑘)𝑘∈ℕ be projections in 𝑋 such that 

(i) 𝑇𝑖𝑇𝑗 = 0 𝑖𝑓 𝑖 ≠ 𝑗; 

(ii) 𝑇𝑘𝑇 = 𝑇𝑇𝑘 = 𝑇𝑘 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑘 ∈ 𝑁; 
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(iii) 𝑅(𝑇) embeds into 𝐸(𝑅(𝑇𝑘))via the mapping that takes 

        𝑥 ∈ 𝑅(𝑇)𝑡𝑜 (𝑇𝑘(𝑥))𝑘∈ℕ. 

Let 𝑥𝑘
∗ ∈ 𝑅 (𝑇𝑘

∗) be non-null for each 𝑘 ∈ 𝑁. Then [𝑥𝑘
∗ : 𝑘 ∈ 𝑁]⊥ is complemented in 𝑋. 

Proof. We will assume without loss of generality that ‖𝑥𝑘
∗‖ = 1 for every  

𝑘 ∈ 𝑁. Let 𝑍 = 𝐸(𝑅(𝑇𝑘)) and let 𝑈: 𝑅(𝑇) ⟶ 𝑍 be the isomorphism into 𝑍 defined as 

𝑈(𝑥) = (𝑇𝑘(𝑥))𝑘∈ℕ. 

Note that, in fact, (𝑇𝑘(𝑥))𝑘∈ℕ = (𝑇𝑘
(𝑇𝑥))𝑘∈ℕ = 𝑈(𝑇

(𝑥)) ∈ 𝑍 for every 𝑥 ∈ 𝑋, so 

(‖𝑇𝑘(𝑥)‖)𝑘∈ℕ ∈ 𝐸 and ‖(‖𝑇𝑘(𝑥)‖)𝑘∈ℕ‖𝐸 = ‖𝑈(𝑇(𝑥))‖𝑍 for every 𝑥 ∈ 𝑋. Define 𝑄:𝑋 ⟶

𝐸 as 𝑄(𝑥) = (〈𝑥𝑘
∗ , 𝑥〉)𝑘∈ℕ; then  

|〈𝑥𝑘
∗ , 𝑥〉| = |〈𝑇𝑘

∗(𝑥𝑘
∗), 𝑥〉| = |〈𝑥𝑘

∗ , 𝑇𝑘(𝑥)〉| ≤ ‖𝑇𝑘(𝑥)‖ 

For every 𝑥 ∈ 𝑋, so 𝑄 is well defined and ‖𝑄‖ ≤ ‖𝑈𝑇‖. Also,  

(‖𝑇𝑘(𝑥)‖)𝑘∈ℕ ∈ 𝐸 implies that 𝑇𝑘𝑥 ⟶𝑘 0 for every 𝑥 ∈ 𝑋, so there exist a constant 𝐶 such 

that ‖𝑇𝑘‖ ≤ 𝐶 for every 𝑘 ∈ ℕ. 
Take now 𝑥𝑘 ∈ 𝑋 such that 〈𝑥𝑘

∗ , 𝑥𝑘〉 = 1 and ‖𝑥𝑘‖ for each 𝑘 ∈ ℕ, so that 〈𝑥𝑖
∗, 𝑇𝑗𝑥𝑗〉 =

〈𝑇𝑗
∗𝑥𝑖
∗, 𝑥𝑗〉 = 𝛿𝑖𝑗 every 𝑖, 𝑗 ∈ ℕ, and define 𝐽: 𝐸 ⟶ 𝑋 as 𝐽((𝛼𝑛)𝑛∈ℕ) = ∑ 𝛼𝑛𝑇𝑛(𝑥𝑛)

∞
𝑛=1 . 

Then 𝑈(𝐽((𝛼𝑛)𝑛∈ℕ)) = (𝛼𝑘𝑇𝑘(𝑥𝑘))𝑘∈ℕ, as seen by considering the action of 𝑈 𝐽 over the 

finitely non-null sequences of 𝐸, where 1 ≤ ‖𝑇𝑘(𝑥𝑘)‖ ≤ 𝐶 for every 𝑘 ∈ ℕ, so 𝑈 𝐽: 𝐸 ⟶ 𝑍 

is an isomorphism, and so must be 𝐽. Finally,  

𝑄𝐽((𝛼𝑛)𝑛∈ℕ) = (〈𝑥𝑘
∗∑𝛼𝑛𝑇𝑛(𝑥𝑛)

∞

𝑛=1

〉)

𝑘∈ℕ

= (𝛼𝑘)𝑘∈ℕ, 

So 𝑄𝐽 = 𝐼𝐸  and 𝐽𝑄 is a projection in 𝑋 with kernel [𝑥𝑘
∗: 𝑘 ∈ ℕ]⊥. 

Theorem (4.2.10)[4]. Let 𝑋 and 𝑌 be 𝑐0 or ℓ𝑝 for 1 < 𝑝 < ∞. Then 𝑋 ⊗̂𝜀 𝑌 is 

superprojective. 

Proof. Let 𝑅𝑛: 𝑋 ⟶ 𝑋 be the projection given by 𝑅𝑛(𝛼𝑘)𝑘∈ℕ = (𝛼1, . . . , 𝛼𝑛, 0, . . . ) for each 

𝑛 ∈ 𝑁, and similarly for 𝑌. (We are abusing the notation here for the sake of simplicity in 

that 𝑅𝑛 is really a different operator on each of 𝑋 and 𝑌 unless they are the same space.) 

Define the projections 

𝑃𝑛 = 𝑅𝑛⨂ 𝑅𝑛 

𝑄𝑛 = 𝐼𝑋⊗̂𝜀 𝑌
− (𝐼𝑋 − 𝑅𝑛) ⨂(𝐼𝑌 − 𝑅𝑛) 

= 𝑅𝑛 ⨂ 𝑅𝑛 + (𝐼𝑋 − 𝑅𝑛) ⨂ 𝑅𝑛 + 𝑅𝑛 ⨂ (𝐼𝑌 − 𝑅𝑛)  
We will prove that the sequences (𝑃𝑛)𝑛∈ℕ and (𝑄𝑛)𝑛∈ℕ meet the criteria of Theorem (4.2.2). 

Conditions (ii) and (iii) are readily satisfied, because they clearly hold for the elementary 

tensors 𝑒𝑖⊗𝑒𝑗. For condition (i), both 𝑋∗ and 𝑌∗ are ℓ𝑞 spaces for some 1 ≤ 𝑞 < ∞, so 

𝑅𝑛
∗ (𝑥∗) ⟶ 𝑥∗ for every 𝑥∗ ∈ 𝑋∗, and similarly for 𝑌∗, so  𝑃𝑛

∗(𝓏∗) = (𝑅𝑛
∗⨂ 𝑅𝑛

∗ )(𝓏∗) ⟶𝑛 for 

every 𝑧∗ ∈ (𝑋 ⨂̂𝜀)
∗ = 𝑋∗ ⨂̂𝜋𝑌

∗, again because it holds for the elementary tensors. For 

condition(iv), note that the range of 𝑄𝑛 is the direct sum of the ranges of  𝑅𝑛⊗𝑅𝑛, (𝐼𝑋 −
𝑅𝑛)  ⊗ 𝑅𝑛and 𝑅𝑛⊗ (𝐼𝑌 − 𝑅𝑛), where the first one is finite-dimensional and the other two 

are the sum of finitely many copies of 𝑁(𝑅𝑛) in 𝑋 and 𝑌, respectively, which are finite-

codimensional subspaces of 𝑋 and 𝑌, respectively, hence superprojective. 

To prove condition (𝑣), let (𝑛𝑘)𝑘∈ℕ be a strictly increasing sequence of integers and let 

𝑇1 = 𝑃𝑛1 and 𝑇𝑘 = (𝐼 − 𝑄𝑛𝑘−1)𝑃𝑛𝑘 for 𝑘 > 1, as in Theorem(4.2.2). Note that, for 𝑘 > 1, 𝑇𝑘 

is the projection 𝑇𝑘 = (𝑅𝑛𝑘 − 𝑅𝑛𝑘−1)  ⊗ (𝑅𝑛𝑘 − 𝑅𝑛𝑘−1), so 𝑇𝑖𝑇𝑗 = 0 if 𝑖 ≠ 𝑗. The operator 
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𝑇 =  ∑  ∞
𝑘=1 𝑇𝑘 is a norm-one projection in 𝑋 ⊗̂𝜀 𝑌, with 𝑇𝑘𝑇 = 𝑇𝑇𝑘 = 𝑇𝑘 for every  𝑘 ∈ ℕ, 

and 𝑅(𝑇) embeds into 𝑐0(𝑅(𝑇𝑘)) or ℓ𝑠(𝑅(𝑇𝑘)) for suitable 1 < 𝑠 < ∞, so Lemma (4.2.9) 

ensures that [𝑥∗𝑘: 𝑘 ∈ ℕ]⊥is complemented in 𝑋 ⊗̂𝜀 𝑌 for any choice of non-null elements 

𝑥∗𝑘 ∈ 𝑅(𝑇𝑘
∗).  

   Theorem (4.2.10) can actually be extended to injective tensor products of finitely many 

copies of 𝑐0 and ℓ𝑝(1 < 𝑝 < ∞) inductively in the obvious way with only minor 

modifications. 

Lastly, we will show that 𝐶(𝐾, 𝑋) is superprojective whenever so is 𝑋 at least if  𝐾 is 

an interval of ordinals, which includes the case where 𝐾. 

Theorem (4.2.11)[4]. Let 𝑋 be a superprojective Banach space and let 𝜆 be an ordinal. Then 

 𝐶0([0, 𝜆], 𝑋) and  𝐶([0, 𝜆], 𝑋) are superprojective. 

Proof. The proof will proceed by induction in 𝜆 . Assume that 𝐶0([0, 𝜇], 𝑋) and  𝐶([0, 𝜇], 𝑋) 
are indeed superprojective for all 𝜇 < 𝜆; we will first prove that  𝐶0([0, 𝜆], 𝑋) is 

superprojective too. If  𝜆 is not a limit ordinal, then  𝜆 = 𝜇 + 1 for some 𝜇 and  

𝐶0([0, 𝜆], 𝑋)  ≡ 𝐶([0, 𝜇], 𝑋),  which is superprojective by the induction hypothesis. 

Otherwise, if  𝜆 is a limit ordinal, define the projections   

𝑃𝜇: 𝐶0([0, 𝜆], 𝑋)  ⟶ 𝐶0([0, 𝜆], 𝑋) 

as 𝑃𝜇(𝑓)  = 𝑓𝜒[0,𝜇]for each  𝜇 < 𝜆. We will prove that the family (𝑃𝜇)𝜇 < 𝜆 meets the 

criteria of Theorem (4.2.3). Condition (ii) is immediate to check. For condition (iii), 

𝑃𝜇(𝐶0([0, 𝜆], 𝑋)) is isometric to 𝐶([0, 𝜇], 𝑋),  which is superprojective by the induction 

hypothesis. 

For condition (i), we have 𝐶0([0, 𝜆])
∗ = ℓ1([0, 𝜆)) and 𝐶0([0, 𝜆], 𝑋)

∗ =

(𝐶0([0, 𝜆]) ⊗̂𝜀 𝑋)
∗
= 𝐶0([0, 𝜆])

∗ ⊗̂𝜋 𝑋
∗, so 𝐶0([0, 𝜆], 𝑋)

∗ = ℓ1([0, 𝜆)) ⊗̂𝜋 𝑋
∗ =

ℓ1([0, 𝜆), 𝑋
∗) and  𝑃𝜇

∗(𝑧) = 𝑧𝜒[0,𝜇] → 𝜇𝑧 for every 𝑧 ∈ ℓ1([0, 𝜆), 𝑋
∗). 

As for condition (iv), let (𝜆𝑘)𝑘∈ℕ be an unbounded strictly increasing sequence of 

elements in [0, 𝜆), should it exist, and let 𝑇1 = 𝑃𝜆1  and 𝑇𝑘 = 𝑃𝜆𝑘 − 𝑃𝜆𝑘−1  for 𝑘 > 1, as in 

Theorem (4.2.3). Then 𝑇𝑘 is the projection given by  𝑇𝑘(𝑓) = 𝑓𝜒[𝜆𝑘−1+1,𝜆𝑘] for 𝑘 > 1, so 

𝑇𝑖𝑇𝑗 = 0 if  𝑖 ≠ 𝑗. Since (𝜆𝑘)𝑘∈ℕ is unbounded in [0, 𝜆), its supremum must be 𝜆 itself, so 

𝐶0([0, 𝜆], 𝑋)  = 𝑐0(𝑅(𝑇𝑘))  = 𝑐0(𝐶([𝜆𝑘−1 + 1, 𝜆𝑘], 𝑋)) and Lemma (4.2.9), with 𝑇 = 𝐼, 
ensures that  [𝑥∗𝑘: 𝑘 ∈ ℕ]⊥ is complemented in 𝐶0([0, 𝜆], X) for any choice of non-null 

elements 𝑥∗𝑘 ∈ 𝑅(𝑇𝑘
∗). 

Finally, 𝐶([0, 𝜆], 𝑋)  = 𝐶0([0, 𝜆], 𝑋)  ⊕ 𝑋, which is superprojective by Proposition (4.2.1).  

   Again, note that unbounded strictly increasing sequences in [0, 𝜆) may not exist for certain 

𝜆, in which case the remark after Theorem (4.2.2) applies and 𝑃𝜇 cannot be strictly 

cosingular for all 𝜇 < 𝜆. 
  



47 

List of Symbols 

Symbol  Page 

𝑊𝐶𝐺: Weakly compactly generated  1 

Sup: Supremum 1 

ℓ2: Hilberlt space of sequences  1 

𝐿1(𝑀, 𝑥): Lebesgue-Bochner space 3 

𝐿2: Hilberlt space 3 

diam: diameter 5 

inf: infimum 7 

ℒ1: Banach space 14 

ℒ∞ Banach space 14 

ℓ𝑝: Lebesgue space  15 

ℓ∞: essential Lebesgue space 15 

𝑐𝑜: Compact 15 

⨂: tensor product 16 

ker: kernel 16 

𝐴𝑂𝐶: Almost over complete 27 

OT: Over total 27 

AOT: Almost over total 27 

codim: codimention 29 

dim: dimention 32 

⨁ dineet sum 34 

LUR: Locally uniform rotund 35 

Lp: Lebesgue space 37 

𝑧𝑝 Kalton-peck space 39 

ℓ𝑞: Dual Lebesgue space 40 

𝐿𝑞: Dual Lebesgue space 41 

min: Minimum 41 
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