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Abstract 

 The minimal submanifolds with constant mean curvature and of a sphere with 

bounded second fundamental form are considered. An intrinsic rigidity theorem from 

minimal submanifolds with parallel mean curvature in a sphere and the log-Sobolev 

inequalities for subelliptic operators satisfying a generalized curvature dimension inequality 

were studied. Stochastic completeness, volume growth, connection, curvature and distance 

comparison theorem for sub-Riemannian manifolds are shown. The sub-Riemannian 

curvature dimension inequality, volume doubling property, Poincaré inequality and balls in 

CR Sasakian manifolds are discussed. We classify the closed minimal submanifolds and 

geometric inequalities for certain submanifolds in pinched Riemannian manifolds. 
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 الخلاصة

تم اعتبار متعددات الطیات الجزئیة الأصغریة مع الانحناء المتوسط الثابت وللكرة مع الصیغة الأساسیة الثانیة          

المحددة . درسنا مبرھنة الصلابة الجوھریة من متعددات الطیات الجزئیة الأصغریة مع الانحناء المتوسط الموازي في 

سوبولیف لأجل المؤثرات الناقصیة الجزئیة المحققة لمتباینة بعد الانحناء المعمم . أوضحنا  –الكرة ومتباینات لوغریثم 

الجزئیة . تمت مناقشة  –التمام التصادفي ونمو الحجم والاتصال والانحناء ومبرھنة مقارنة المسافة لمتعددات ریمانیان 

متباینة بونكاریة والكرات في متعددات طیات الجزئي وخاصیة ازدواجیة الحجم و –متباینة بعد انحناء ریمانیان 

. صنفنا متعددات الطیات الجزئیة الأصغریة المغلقة والمتباینات الھندسیة لاجل متعددات طیات جزئیة CRساساكیان 

 معینة في متعددات طیات ریمانیان المقروصة. 
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Introdution 
 

We study submanifolds with constant mean curvature. First, we want to reduce the 
theory of constant mean curved submanifolds to the theory of minimal submanifolds under 
fairly general conditions. Second, we study the minimal submanifolds themselves. 

 Let ℎ be the second fundamental form of an n-dimensional minimal submanifold 푀 
of a unit sphere 푆 (푝 >  2), 푆 be the square of the length of ℎ, and 휎(푢)  = ‖ℎ(푢, 푢)‖  
for any unit vector 푢 ∈ 푇푀. Simons proved that if 푆 <  푛/(2 −  1/푝) on 푀, then either 
푆 ≡  0, or 푆 ≡  푛/(2 −  1/푝). Chern, do Carmo, and Kobayashi determined all minimal 
submanifolds satisfying 푆 ≡ 푛/(2 —  1/푝).  

We shall show a rigidity theorem for submanifolds with parallel mean curvature in 
푆 (1). Let 푀 be a smooth connected manifold endowed with a smooth measure μ and a 
smooth locally subelliptic diffusion operator 퐿 which is symmetric with respect to 휇. We 
assume that 퐿 satisfies a generalized curvature dimension inequality as introduced by 
Baudoin and Garofalo. 

We generalize A. Grigor’yan’s volume test for the stochastic completeness of a 
Riemannian manifold to a sub-Riemannian setting.Let 푀 be a smooth connected manifold 
endowed with a smooth measure 휇 and a smooth locally subelliptic diffusion operator 퐿 
satisfying 퐿1 =  0, and which is symmetric with respect to 휇.We show that if 퐿 satisfies, 
with a non negative curvature parameter, the generalized curvature inequality introduced, 
then the following properties hold: 
• The volume doubling property; 
• The Poincaré inequality; 
• The parabolic Harnack inequality. 

We first show a generalized Simons integral inequality for closed minimal 
submanifolds in a Riemannian manifold. Second, we show a pinching theorem for closed 
minimal submanifolds in a complete simply connected pinched Riemannian manifold, 
which generalizes the results obtained by S. S. Chern, M. do Carmo, and S. Kobayashi and 
A. M. Li and J. M. Li respectively. We show global estimates for the sub-Riemannian 
distance of CR Sasakian manifolds with nonnegative horizontal Webster-Tanaka Ricci 
curvature.  

For a subRiemannian manifold and a given Riemannian extension of the metric, we 
define a canonical global connection. This connection coincides with both the Levi-Civita 
connection on Riemannian manifolds and the Tanaka-Webster connection on strictly 
pseudoconvex 퐶푅 manifolds. We define a notion of normality generalizing Tanaka’s notion 
for CR manifolds to the subRiemannian case. Under the assumption of normality, we 
construct local frames that simplify computations in a manner analogous to Riemannian 
normal coordinates. We study global distance estimates and uniform local volume estimates 
in a large class of sub-Riemannian manifolds. Our main device is the generalized curvature 
dimension inequality introduced and its use to obtain sharp inequalities for solutions of the 
sub-Riemannian heat equation.  
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Chapter 1 

Constant Mean Curvature Submanifolds   
We study in higher dimensional submanifolds for studing submanifolds with 

constant mean curvature. 
Section (1-1): Submanifolds  

 We study the submanifolds with constant mean curvature. The object of here is two-
fold. We want to reduce the theory of constant mean curved submanifolds to the theory of 
minimal submanifolds under fairly general conditions. We study the minimal submanifolds 
themselves. 

 We shall restrict our attention to surfaces. H. Hopf was the first one who proved that 
the only constant mean curved surface with genus zero in Euclidean three space is the 
standard sphere. His idea was then extended and used by Calabi [1] and Chern [2] in the 
theory of minimal spheres. We shall use this idea again. Klotz and Osserman [9] studied 
complete surfaces with constant mean curvature in Euclidean three space. The last part of 
the argument in Theorem (1.1.11) is the same as theirs. This was pointed out to us by Klotz. 
         Is essentially Chern's presentation of Simon [3], [15] which will be extensively used. 
Is a generalization of J. Erbacher [8] and Chen and Yano [6]. These are conditions under 
which a submanifold lies in a totally umbilical submanifold.  

The main theorem below is a splitting theorem. It states that for the immersion of a 
surface with genus zero or a complete surface with non-negative curvature, the splitting of 
the normal bundle (in the geometric sense) has strong consequences. Suppose the normal 

bundle is N1 ⊕ N2 and the mean curvature vector lies in N1. Then we prove if the curvature 
of the surface is not identically  zero, it is either a minimal submanifold of an umbilical 
submanifold with normal bundle N2 or a submanifold of a totally geodesic submanifold with 
normal bundle N1. If we apply this theorem to full minimal sphere in sphere, it says that the 
normal bundle cannot split. We also consider the flat case.  

We show  that every surface with parallel mean curvature in a manifold with constant 
curvature actually lies in a totally geodesic three space or a minimal surface of an umbilical 
hypersurface. This essentially reduces the whole theory of surfaces with parallel mean 
curvature to the theory of minimal surfaces. We note that the theorem was proved by Chen 
and Ludden [7] under the assumption the surface has constant curvature and the ambient 
manifold is the Euclidean space. 

  We consider surfaces with constant mean curvature. The assumption is weaker than 
the assumption on the parallel mean curvature and we have only partial results. If a sphere 
or a complete non-negatively curved surface is immersed as a constant mean curved surface 
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of a four-dimensional constant curved manifold, then either the surface is minimal, a 
minimal surface of an umbilical hypersurface, or flat. In the last case, the second fundament 
form is covariant constant. If the ambient manifold is the Euclidean space, this generalizes 
Hopf's theorem and a theorem of Klotz and Osserman [9]. Using Calabi's theory on 
holomorphic curve, we show that the hyperbolic plane cannot be minimally immersed in 
Euclidean space, even locally. Finally we show a similar theorem as above for minimal 
totally real surfaces in manifolds with constant holomorphic sectional curvature.  

Chen proved Theorem (1.1.6). Namely he proved that if N is the Euclidean space, 
then either 푀  is a minimal surface of an umbilical hypersurface of N or M2 is a "Hoffman 
surface". He also proved Theorem (1.1.10) independently. D. Hoffman [17] has also some 
nice results in this direction. See [18].  
        We follow closely the exposition in [5]. Let M be an n-dimensional manifold immersed 
in an (푛 +  푝) −dimensional Riemannian manifold N. We choose a local field of 
orthonormal frames el, e2,.. . en+p in N such that, restricted to M, the vectors el, e2,... ,en are 
tangent to M. We shall make use of the following convention on the ranges of indices:  

1 ≦  퐴,퐵,퐶, . . . ,≦  푛 + 푝, 1 ≤  푖, 푗, 푘, . . .≤ 푛  
푛 +  1 ≤  , , , . . .≤   푛 + 푝  

and we shall agree that repeated indices are summed over the respective ranges. With respect 
to the frame field of N chosen above, let l... , n+p be the field of dual frames. Then the 
structure equations of N are given by  

               푑  =  −  ∑ ∧  ,  
                     +      =  0                                 (1)  
             푑 =  −  ∑  ∧    +     
                 =  ½ ∑K  ∧                                 (2)  

 K  +  K  = 0. 
We restrict these forms to 푀. Then  

          =  0.                        (3)  
Since 0 =  푑  =  −  ∑   by Cartan's lemma we may write  

 = ℎ  ,                  ℎ = ℎ                                 (4) 

From these formulas, we obtain  
             di= ∑ 휔  /\ 휔  ,     휔 + 휔 = 0                     (5) 
  

            푑휔 = −∑ 휔  /\ 휔   +                           (6)  

                   = ∑R  k /\ l   

             푅 = 퐾 + ∑ ℎ ℎ − ℎ ℎ ,                      (7)   
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     푑 = −  ∑휔   /\ 휔  +                                 (8)  
                  = ½ ∑R  휔  /\ 휔  

       R =  K    +∑ ℎ ℎ − ℎ ℎ .                  (9)  

The Riemannian connection of 푀 is defined by ( ). The form () defines a connection 
in the normal bundle of M. We call ℎ ije  the second fundamental form of the 
immersed manifold M. Sometimes we shall denote the second fundamental form by its 
components ℎ . We call ∑ 1/푛(∑ ℎ )푒  the mean curvature vector. The length of it is 
called the mean curvature. An immersion is said to be minimal if the mean curvature 
vanishes. We take exterior differentiation of (4) and define ℎ by  

             ∑ℎ 휔 = 푑ℎ − ∑ℎ 휔 − ∑ℎ 휔 + ∑ℎ 휔 .      (10)  
Then  

             ∑(ℎ + 퐾 )j /\ k=  0,         (11)  

            ℎ − ℎ = 퐾 = −퐾          (12)  
We take exterior of (10) and define ℎ  by  

             ∑ℎ 휔 = 푑ℎ − ∑ℎ 휔 − ∑ℎ 휔 − ∑ℎ 휔 + ∑ℎ 휔 .    (13) 
 Then  

∑ ℎ푖푗푘푙
훼 − ∑ ℎ푖푚

훼 푅푚푗푘푙 − ∑ ℎ푚푗
훼 푅푚푖푘푙 + ∑ ℎ푖푗

훽 푅훼훽푘푙  휔  /\ 휔 = 0,      (14)  

                ℎ − ℎ = ∑ ℎ푖푚
훼 푅푚푗푘푙 +∑ ℎ푚푗

훼 푅푚푖푘푙 − ∑ ℎ푖푗
훽 푅훼훽푘푙           (15)  

Since ( ) defines a connection in the tangent bundle 푇 =  푇(푀) [and, hence a 
connection in the cotangent bundle 푇∗ = 푇∗(푀) also] and (휔 ) defines a connection in the 
normal bundle T =  T(푀), we have covariant differentiation which maps a section of  
T  푇 ∗  . . . 푇 ∗푇 ∗, (T*: k times), into a section of T  푇 ∗  . . . 푇 ∗ 푇 ∗, 
(푇∗: 푘 + 1 times). The second fundamental form ℎ  is a section of the vector bundle 
T 푇∗  푇∗and ℎ   is the covariant derivative of ℎ . Similarly, ℎ  is the covariant 
derivative of ℎ  .  
 Considering 퐾  as a section of T 푇∗  푇∗푇∗,  its covariant derivative 퐾   is 
defined by  

∑퐾 휔 = 푑퐾 − ∑퐾 휔 − ∑퐾 휔 − ∑퐾 휔 + ∑퐾 휔 .  
                       (16)  
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This covariant derivative of 퐾  should be distinguished from the covariant 
derivative of 퐾  as a curvature tensor of N, which will be denoted by 퐾 ;  Restricted 
to M, 퐾 ;  is given by  

            퐾 ; = 퐾 ; − ∑퐾훼훽푗푘ℎ푖푙
훽 −∑퐾훼푖훽푘ℎ푗푙

훽 − ∑퐾푖푗훽
훼 ℎ푘푙

훽 − ∑퐾푚푖푗푘ℎ푚푙
훽              (17)  

Now let us assume that N is locally symmetric, i.e., 퐾 ; =  0. The Laplacian ℎ  of the 
second fundamental form ℎ  is defined by  

ℎ = ℎ ,                                                 (18) 

From (12) we obtain  

ℎ = ℎ − ℎ = ℎ − ℎ          (19) 

From (15) we obtain  
                ℎ = ℎ + ∑ℎ 푅 + ∑ℎ 푅 − ∑ℎ 푅          (20)  

Replace ℎ  in(20)  by ℎ − 퐾  and then substitute the right-hand side of (20) into 
ℎ  of (19). Then  

                    ℎ = (ℎ − 퐾 − 퐾 ) 

                                       + ℎ 푅푚푖푗푘 + ℎ 푅푚푘푗푘 − ℎ 푅훼훽푗푘                    (21) 

Now assume 푒  is the mean curvature vector. Hence  
      ∑ ℎ =  0   if    .         (22)  

From (10) we have  
      

                                        ℎ  
,

휔 =   푛푑퐻 

ℎ  
,

휔 =   푛푑퐻휔                            if         .            (23) 

Here H is the mean curvature. 
 From (22) and (13), we have  

ℎ  =   푛푑퐻 − ℎ ℎ (푛퐻)    푖푓     퐻 ≠ 0        

             ℎ  = 푛퐻        푖푓 퐻 = 0.                                                                               (24) 

Substituting (24) into (21), we have  
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ℎ =   푛퐻 − 휀 ℎ ℎ (푛퐻)  −   (퐾 + 퐾 )     

                            

+ ( ℎ 푅푚푖푗푘 + ℎ 푅푚푘푗푘 − ℎ 푅훼훽푗푘)               (25) 

 where 휖 =  1   if 퐻  0 and  휖 =  0 if 퐻 =  0.  
The vector 푒 is parallel in the normal bundle of 푀 if the covariant derivative of 푒 in N is 
tangent to 푀. This is equivalent to  
               = 0.               (26) 
Then by (23) and (26) we have  

      ∑ ℎ = 0       if    .        (27)  
Hence in this case,  

ℎ = 푛퐻푖푗 − (퐾 + 퐾 )     

                         

+ ( ℎ 푅푚푖푗푘 + ℎ 푅푚푘푗푘 − ℎ 푅훼훽푗푘)               (28) 

ℎ = − (퐾 + 퐾 )     

                         

+ ( ℎ 푅푚푖푗푘 + ℎ 푅푚푘푗푘 − ℎ 푅훼훿푗푘)               (29) 

 
Let N be the Euclidean space. Then Chen and Yano [6] proved that if there exists a 

nonzero normal vector field e over M such that M is umbilical with respect to e, then M lies 
in a sphere with e parallel to the radius vector field. On the other hand, J. Erbacher [8] 
proved that if  N has constant curvature and if the first normal space N1 of M is invariant 
under parallel translations with respect to the normal connection, then 푀 is a submanifold 
of a totally geodesic submanifold of N with dimension 푛 +  푙 where 푙  is the constant 
dimension of 푁 . For the later purpose, we unify and extend these theorems.  

Let 푁  be a sub-bundle of the normal bundle. We say that 푀 is umbilical (totally 
geodesic) with respect to N1 if 푀 is umbilical (totally geodesic) with respect to any local 
section of 푁 . We say that 푁  is parallel in the normal bundle if it is invariant under the 
parallel translation in the normal bundle.  
Theorem (1.1.1)[33]. Let N be a conformally flat manifold. Let 푁  be a sub- bundle of the 
normal bundle of 푀 with fiber dimension k. Suppose 푀 is umbilical with respect to 푁  and 
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푁  is parallel in the normal bundle. Then M lies in an 푛 + 푝 − 푘 dimensional umbilical 
submanifold N' of N such that the fiber of 푁  is everywhere perpendicular to N'. If N has 
constant curvature, the size of 푁' can be determined. In particular, if M is totally geodesic 
with respect to 푁 , then N' is totally geodesic. 
Proof. We first assume 푁 is the euclidean space. Let { 푒 , 푒 , . . . , 푒 , 푒 , … , , 푒  } be 
a local normal frame field of 푀 such that {푒 , 푒 , . . . , 푒 } span 푁 . By assumption, there 
exists functions {푓 , . . , 푓 } such that  

             휔 = 푓 휔           (30)  
푓표푟 푗 =  1, . . . , 푘;  푖 =  1, . . . . , 푛. It is easy to see by performing an orthogonal 
transformation in the normal space, we may assume  

휔 = 푓휔 , 
                                             휔 = 0      푓표푟    푗 =  2, … , 푘         (31)  
The hypothesis that N1 is parallel in the normal bundle means  

                           휔 = 0          (32)  
for 1 ≤  푖 ≤  푘, 푘 + 1 ≤  푗 ≤  푝. Exterior differentiate the first equation of (31) and use the 
second equation of (31) and (32), we obtain  

     df /\ 휔    = 0         (33)  
This implies f is a constant function.  

We assume f  0. Now exterior differentiate the second equation of (31), we obtain  
    휔  /\  휔   =0                  (34)  

for 푗 =  2, . . . , 푘. Here we use (32) and the second equation of (31). Since 푓 0, the equation 
(34) implies immediately 휔 = 0 for all 푗 =  2, 3, . . . , 푘. 

 Let 푋 be the position vector of 푀. Then as f is constant and 휔 = 0 for all 푗, one 
can use the definitions of covariant derivatives and 휔 = 0  to prove that 푋 + 푒 / 푓 is 
a constant vector. Hence we have proved that M lies in a sphere 푒  parallel to the radius 
vector. 

 By repeating the arguments again, it is easy to see, from the second equation of (31), 
the multivector 푒  /\  푒  /\ … /\ 푒  is constant on M. The manifold therefore lies in a linear 
space perpendicular to the linear spanned by {푒  , 푒 , … , 푒 }. Combining these assertions, 
we see 푀 lies in a sphere with 푁 perpendicular to this sphere. 

 Let us now turn to the general case. A theorem of Kuiper [10] says that every simply 
connected conformally flat manifold has a unique conformal immersion onto a domain of 
Euclidean space. Using this theorem, it suffices to prove Theorem (1.1.1) locally. Let  be 
a smooth function such that the metric 푒 ∑  ⨂   on N has zero curvature. Then { 
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푒 푒 } is an orthonormal frame field with respect to the new metric. The dual frame field 
is {휔∗ = 푒 휔 }. In this new metric, the structure equations of N are given by  

                       푑휔∗ = −∑ 휔∗
 /\ 휔∗         

                     (35) 
                      휔∗ = 휔 + 휌 휔 .      

In particular  
 휔∗ = ∑ ℎ 휔 − 휌 휔 ,         (36) 

  휔∗ = 휔           (37)  
on 푀. 

 From equation (36), one sees that 푀 is umbilical with respect to 푒 in the old metric 
if 푀 is umbilical with respect to 푒 푒  in the new metric. From equation (32), 푒 is parallel 
in the normal bundle in the old metric if 푒 푒 is parallel in the normal bundle in the new 
metric. The first part of the theorem then follows from the result in euclidean space. The last 
part follows by examining the sterographic projection.  
        For the dimension two case, it is more convenient to view 푀 as a complex manifold. 
We first prove the following theorem.  
Theorem (1.1.2)[33]. Let 푀  be a surface in a constant curved manifold. Suppose the 
normal bundle of 푀  is an orthogonal sum of two subbundles 푁  and 푁  such that both 푁  
and 푁  are invariant under the parallel translations in the normal bundle. Suppose the 
orthogonal projection of the mean curvature vector in 푁  is parallel in the normal bundle. If 
M2 has genus zero or if 푀  is a complete non-negatively curved surface with bounded mean 
curvature, then either  

(a) 푀  has curvature identically equal to zero,  
(b) 푀  lies in a 푘 + 2 dimensional umbilical submanifold of N where k is the fiber 

dimension of 푁 . If the mean curvature vector lies completely in 푁 , then the umbilical 
submanifold can be chosen to be totally geodesic or 

 (c) 푀  is a submanifold of an 2 +  푝 − 푘 dimensional umbilical submanifold with 
parallel mean curvature vector. If the mean curvature vector lies completely in 푁 , then 푀  
is actually minimal.  
Proof. By considering the two-fold cover of the surface, we may assume  
푀  is oriented and the orientation is given by  /\ . Let  

       =   +  푖           (38)  
From (1), we have  

 푑 =  푖  /\          (39)  
The existence of local isothermal coordinates means that we can write, locally,  

       =  푑푧           (40)  
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Substituting into (39), we obtain  
            (푑 −  푖12 ) /\ 푑푧 = 0           (41)  

For a normal vector ea, we define  

   퐻 = + 푖ℎ         (42)  

          

Clearly if  is changed to 푒 , 퐻 is changed to 푒 푒퐻. Hence the form 퐻2 is invariant 
under the change of   . 

Now choose a normal frame field {푒  , 푒 ,…, 푒  , 푒 , 푒 , … , 푒 } on 푀 such 

that the first k vectors span the fiber of 푁  and that ek+1  has the same direction as the 
projected mean curvature vector. Then an application of (10) shows  

        ∑ ℎ  = 0 ,                       (43)  
        푑퐻 =  2푖 퐻 − ∑ 퐻 휔  

                              + − ∑ ℎ11푙 
훼 −ℎ22푙

훼

2 휔 + 푖 ∑ ℎ 훼 휔      (44) 

when 푗 >  푘.  
Combining (43), (44) and (12), we obtain  

푑퐻 + ∑ 퐻 휔 − 2푖휔 퐻  /\                          
                       

    [ ℎ 훼 − ℎ 훼 + 푖 ℎ 훼 − ℎ 훼 ] 1/\2  
      = (퐾  + 푖퐾 ) 1 /\ 2          (45)  

Since N has constant curvature, we have  

          푑퐻 + ∑ 퐻 휔 − 2푖휔 퐻  /\  = 0          (46) 
Hence  

푑 퐻 + 4푖휔 퐻 ≡ 0 푚표푑휑                     (47) 

From the remark above, it is easy to see ∑ 퐻 휑  is a globally defined form 
on M2. Using the local isothermal coordinate z introduced in (40), we may write 

∑ 퐻 휑 = 푓(푧)푑푧  . It follows from (41) and (47) that 푓(푧) is holomorphic. This 

implies  

         휕휕̅ log ∑ 퐻훼푗
2

푗>푘 4 = 0                  (48)   

when f(z)  0. On the other hand, it is well known that the Gauss curvature of M is given by  
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          푅 = 


                              (49) 

Combining (48) and (49), we have  

 log 퐻 = 4 푅                                                 (50)  

 

where  = − 휕휕 /   is the Laplacian of M. 

 Since 푓(푧) is holomorphic, ∑ 퐻   is either identically zero or has only isolated zeros. 

An application of Gauss-Bonnet theorem on equation (50) shows that ∑ 퐻  is 
identically zero if 푀  has genus zero. Let us now consider the case where 푀  is complete 
and has non-negative curvature. First of all, it is standard that  

ℎ
, ,

− 4퐻 = 2(퐾 − 푅).                                     (51) 

     
where H is the mean curvature of 푀 . 
  Hence if 푅 ≧  0 and H is bounded, the length of the second fundamental  
form is also bounded. On the other hand, it is straightforward to see from (50)  

 퐻훼푗

2

푗>푘

≥ 8 퐻훼푗

2

푗>푘

푅                                   (52) 

everywhere on 푀 . Therefore if 푅 ≥  0, ∑ 퐻훼푗

2
푗>푘 is a bounded subharmonic function on 

푀 . A theorem of Blanc, Fiala and Huber [16] states that every complete non-negatively 

curved surface is parabolic. Hence ∑ 퐻훼푗

2
푗>푘 must be a constant. If this constant is 

nonzero, equation (52) shows 퐾 0. 

 Hence we may assume ∑ 퐻   0. We note that formula (46) and a theorem of 

Chern [2] says that the common zeroes of {퐻푒 }  is isolated. Now exterior differentiate 
the assumption  = 0 yields  

− 휔 +  = 0                                               (53) 

                                          

푓표푟 1 ≦ 푖  ≦ 푘, 푘 + 1 ≦  푗 ≦  푝. 
By definitions (2) and (4)  
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(ℎ ℎ − ℎ ℎ ) =  −퐾                                    (54) 

 

If N has constant curvature, the right hand side of the above equation vanishes and 
the second fundamental form corresponding to 푒  and 푒 , commute. Hence if 푀  is 
nonumbilical with respect to some 푒 , 1 ≦  푖 ≦  푘, the second fundamental corresponding 

to 푒  can be diagonalized simultaneously. On the other hand, ∑ 퐻 = 0 implies  

∑
ℎ11 −ℎ22

2 = ∑ ℎ   

∑  ℎ  = 0.                             (55) 

If the second fundamental form corresponding to 푒  can be diagonalized 

simultaneously, one sees from (55) that 푀  is umbilical with respect to 푁 . We have 
therefore proved if 푀  is nonumbilical with respect to 푁 , at a point then it is umbilical with 
respect to 푁  at that point. However, we have remarked that 퐻 have only isolated 

common zeroes. These two facts together imply either M2 is umbilical with respect to 푁  
globally or with respect to N2 globally. Theorem (1.1.2) then follows from Theorem (1.1.1). 
Theorem (1.1.3)[33]. Suppose in Theorem (1.1.2), 푀  is flat, N has non-negative curvature 
and N2 has trivial normal connection. Then either  

(i) 푀  lies in a 2 +  k umbilical submanifold with normal bundle 푁 .  
(ii) There are two geodesics g1 and g2 in 푀 , two umbilical submanifolds 푈  and 푈  

in 푁 such that 푀 =  푔 ⊕ 푔   푈  ⊕푈  푁 and the normal bundle of 푀  in 푈 ⊕푈  is 

푁 . The first immersion preserves the product structure and the second is the standard one.  

Proof. From the proof of Theorem (1.1.2), we know that ∑ 퐻  constant. Since the 

bundle N2 has trivial normal connection, we can see as in Theorem (1.1.1) that the second 
fundamental form with respect to local sections in N2 can be diagonalized simultaneously, 
i.e., we may assume ℎ = 0 for 푗 = 푘 + 1, . . . , 푝. Hence we conclude that  ∑ ℎ − ℎ  

is a constant on 푀. By taking 푒  to be the mean curvature vector, we may assume ℎ +

ℎ   = constant for 푗 > 푘. Therefore ∑ ∑ ℎ푚푛
훼푗

,  is constant. On the other hand, a simple 
computation shows  

½ ℎ
2

푚,푛푗>푘

= ℎ
2

푚,푛,푙푗>푘

+ ℎ푚푛
훼푗

푚,푛

ℎ푚푛
훼푗                   (56)  

푗>푘
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Substituting (21) into (56) and noting that ∑ ℎ푙푙푚푛
훼푗 = 0 for 푗 >  푘, we obtain 

ℎ푚푛
훼푗

, ,

= 0                                              (57) 

Hence from definition (10), one sees  
( ℎ − ℎ 휔 = 0 

푑ℎ + ℎ11
훼푖

푖>푘

 휔훼푗훼푖 = 0                                                        (58) 

푑ℎ + ℎ22
훼푖

푖>푘

 휔훼푗훼푖 = 0                                                         

for 푗 > 푘. We already note in Theorem (1.1.2) that either ℎ  = ℎ  on 푀  or the points 
where ℎ  = ℎ  is isolated. If ℎ − ℎ  on 푀 , then (i) holds by Theorem (1.1.1). So in 
view of the first equation of (56), we assume 12 =0. It is also clear than  ℎ  and ℎ   are 
constants for 푗 >  푘 since N2 has trivial normal connections. 

We may assume 푀  to be simply connected. Furthermore, we assume 
∑ ∑ ℎ푚푛

훼푗
, ,  is not equal to zero. (If it is zero, then (i) holds.) Hence at every point, we 

have a well-defined frame {푒 , 푒 } which diagonalized the second fundamental forms with 
respect to N2. Since  = 0, the curves defined by 1=0, 2 =0 respectively define an 
orthogonal geodesic foliation of M2. Let gi be a curve defined by i = 0 for i = 1, 2. Then it 
is clear that M = 푔 ⊕ 푔 . A lemma in J. Moore [13] shows that there are two geodesic 

submanifold 푈1 and 푈2 of N such that M = g1⊕g2 푈1⊕푈2 = N preserving the product 

structure. Using the fact that ℎ  and ℎ  are constant for j > k and an argument in Theorem 
(1.1.1), it is easy to see that g. lies in the intersection of  푈i with an umbilical submanifold 
such that N2 is orthogonal to this umbilical submanifold. The conclusion (ii) then follows 
easily.  
Corollary (1.1.4)[33]. Let 푀  be a complete flat surface in euclidean space. Suppose the 
normal bundle of 푀  is trivial. Then 푀  is a product immersion described in (ii) of Theorem 
(1.1.3).  
Proof. This follows from Theorem (1.1.3) and the classification of flat surface in Euclidean 
space of dimension three.  

Let 푀  be a surface with parallel mean curvature vector in a constant curved manifold 
N. In the notation of Theorem (1.1.2), if we take N1 to be the bundle spanned by the mean 
curvature vector and N2 the complement of  it in the normal bundle, then it follows from the 
proof of Theorem (1.1.2) that either 푀  is umbilical with respect to N1 everywhere or the 
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second fundamental form can be diagonalized simultaneously. Hence by Theorem (1.1.1), 
we have  
Lemma (1.1.5)[33]. Let 푀  be a surface with parallel mean curvature vector in a constant 
curved manifold. Then either 푀  is a minimal surface of an umbilical submanifold of N or 
the second fundamental forms of 푀  can be diagonalized simultaneously.  
Theorem (1.1.6)[33]. Let 푀  be a surface with parallel mean curvature vector in a constant 
curved manifold N. Then either 푀  is a minimal surface of an umbilical hypersurface of N 
or 푀  lies in a three-dimensional umbilical submanifold of N with constant mean curvature.  
 Proof.  By Lemma (1.1.5), we may assume the second fundamental form of 푀  can be 
diagonalized simultaneously. Without loss of generality, we may assume the mean curvature 
vector is nonzero.  

Let us now perform an orthogonal transformation in the normal bundle. We note that 
if {e} is changed to { 푎 푒  } where (푎 ) is an orthogonal matrix, then {ℎ } is changed 

to {푎  ℎ }. Since the second fundamental form can be diagonalized simultaneously, we 
may assume ℎ = 0 for all . The vectors ∑ ℎ 푒  and ∑ ℎ 푒 then define two local 
sections in the normal bundle. If e3 has the same direction as the mean curvature vector, then 
ℎ + ℎ  = 0  for  >3. Hence either ∑ ℎ 푒  or ∑ ℎ 푒 vanishes would imply 
∑ (ℎ )  and ∑ (ℎ )  vanishes. But the latter can vanish only at isolated points by 
the proof of Theorem (1.1.2). (Otherwise Theorem (1.1.6)  follows from Theorem (1.1.1) 
Therefore we can assume neither ∑ ℎ 푒  nor ∑ ℎ 푒  vanishes. Now using the Gram- 
Schmit orthogonalization process, we may assume the plane spanned by e3 and e4 is the 
plane spanned by ∑ ℎ 푒  and ∑ ℎ 푒  , this implies ℎ  = ℎ   = 0 for  > 4. Changing 
the frame e3 and e4 again, we may assume e3 has the same direction as the mean curvature 
vector.  

With all these preparations, we are going to prove  
            =   = 0            (59)  

for all  > 4. The last equality follows because e3 is parallel. It suffices, therefore, to prove 
4 =0. First of all, we know from the construction that  

              = 0            (60)  
푓표푟  > 4, 푖 = 1,2. 
 Exterior differentiate (60) gives  

            /\ 4i = 0          (61)  
푓표푟  > 4, 푖 = 1,2. Hence  

             ℎ  = 0           (62)  
f표푟  > 4, 푖 = 1,2. 
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We already noted that ℎ  = −ℎ   can vanish only at isolated points. Hence (62) 
implies  = 0 for  > 4. An application of Theorem (1.1.1) shows that 푀  lies in a four-
dimensional, totally geodesic submanifold of N. Furthermore, 푀  has constant mean 
curvature and the normal bundle of 푀  has trivial normal connection.  

We are going to complete the proof by changing the normal coordinate again. First of 
all, 푒  is a global parallel section of the normal bundle and 푒  is therefore also a globally 
defined parallel section. (By taking a double cover, we can always assume 푀  is oriented.) 
We first see from the proof of Theorem (1.1.2) that both (ℎ − ℎ )24 and ℎ − ℎ )24 
are holomorphic functions in the isothermal conditions defined by  =  푑푧. As both 
(ℎ − ℎ )2 and (ℎ − ℎ )2 are real valued, either one of them is identically zero or they 
differ by a constant factor. The first case implies 푀  is umbilical with respect to 푒  or 푒  
and the theorem follows from Theorem (1.1.1). So we assume  

     (ℎ − ℎ )2=  푐 (ℎ − ℎ ) 2              (63)  
for some constant 푐  0. Define  

     푡푎푛  =  푐.           (64)  
Then from (63) ℎ  

          푐표푠 ℎ  + 푠푖푛 ℎ  = 푐표푠 ℎ  +  푠푖푛 ℎ .        (65)  
On the other hand, we have  

         ℎ + ℎ = 0          (66)  
Therefore   

                  푐표푠 ℎ  + 푠푖푛 ℎ = − cos휃                            (67) 
which is a constant.   

Equations (65) and (67) show that 푀  is umbilical with respect to the normal section 
cose3 + sine4. Furthermore, the eigenvalues of the corresponding second fundamental 
form is constant. Since 푒  and 푒  are parallel in the normal bundle and  is constant, it is 
clear that 푐표푠푒 +  푠푖푛푒  is also parallel in the normal bundle. The theorem then follows 
from Theorem (1.1.1).  

We shall only assume the mean curvature is constant. This fact is weaker than the 
assumption that the mean curvature vector is parallel. On the other hand, if the mean 
curvature is a nonzero constant, the mean curvature gives a nonzero global section of the 
normal bundle which is a topological restriction,we have  
Proposition (1.1.7). Let n be a power of two. If 푀  is topologically a real projective space 
and if 푀  is embedded in 푁  with constant mean curvature, then 푀  is actually minimal. 
Here we assume N is a complete simply connected constant curved manifold.  
Now let us consider the case where 푀  has genus zero and 푀  has non-negative curvature. 
We prove  
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Theorem (1.1.8). Let 푀  be a topological two sphere or a complete non- negative curved 
surface immersed in a four-dimensional constant curved manifold N. If 푀  has constant 
mean curvature, either 푀  is flat, totally umbilic or 푀  is a minimal surface.  
Proof. We use the notations above . For each e in the normal bundle, we define  

            퐻 =
  

+ 푖ℎ .                    (68) 

is globally defined on  4∑ (퐻 )oof of Theorem (1.1.2), we know that As in the pr
. We claim 4푓(푧)푑푧, we can write this form as 푧. Using the local isothermal coordinate nM

that f is holomorphic. 
       In fact, let 푝 be an arbitrary point in 푀 . Choose a normal frame field such that 
휔 = 0 and 푒  has the same direction as the mean curvature vector at the point 휌. As in the 
proof of Theorem (1.1.2),  

푑 (퐻 ) − 4푖휔 (퐻 )


 0  mod                      (69) 

at p. Hence  

              = 0          (70)  
at 푝. Since 푝 is arbitrary, 푓(푧)푑푧4 is an abelian form of degree 4 on M2.  

If 푀  has genus zero or if 푀  is a complete non-negative curved surface, then as in 
Theorem (1.1.2), either 푀  is flat or 푓  0. Suppose 푓  0. Then  

ℎ11
 −  ℎ22



2 = ℎ12
  

            

                                                  (71) 
ℎ11
 −  ℎ22



2 = ℎ12
  

Now assume that the codimension is two. Let 푒  be the normal vector which has the 
same direction as the mean curvature vector. Then we may write  

              휔  = ℎ  휔 ,   휔  = ℎ  휔 , 
   휔 = 푘 휔 ,      휔 = 푘 휔 ,         (72)  

where  

  퐾 = ∑ ℎ12
 2

훼    and   퐾 = ℎ11
3 −ℎ22

3
≥ 0         (73)                         

Define  
  퐸1 = 푒l + 푖푒2,  
  퐸2= 푒3+푖푒4.           (74)  

Then  
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 퐷퐸1 = 푖l2퐸l + 푘l퐸2 + 퐻e3,                (75)  
where H is the mean curvature. By differentiation (75), we have  

 −2푖푘112퐸2 + 푑푘1 퐸2 - 푖푘1  34E2 + 퐻34e4 = 0.     (76)  
From (76), if 퐻 0,  

 /\ 34 = 0,          (77)  
which implies 34 = 0. We have therefore proved if H  0, the mean curvature is parallel in 
the normal bundle. Applying Theorem (1.1.6), 푀  is a minimal surface in a three-
dimensional constant curved manifold. By applying (70) again, one sees 푀  is actually 
totally umbilic.  

Finally let us propose to classify all possible immersions of constant curved surface 
into a constant curved manifold with constant mean curvature. In case the codimension is 1, 
these are just standard spheres, planes and cylinders.  
Proposition (1.1.9)[33]. Let M be a holornorphic curve in a Kahler manifold with non-
negative constant holomorphic sectional curvature 푐. Suppose 푀 has constant curvature with 
respect to the induced metric. Then 푀 has strictly positive constant curvature.  
Proof. The proof follows from Calabi's theory.  

In fact, let 푑푠2 =2퐹|푑푧|2 be the induced metric on M. Then Calabi [12] proved that 
there exists a sequence of functions {퐹 }  by setting  

     F0 = 1,  
     F1 = F, 

and  

              퐹 =  
̅
log퐹 + ( ) 푐퐹 ,                         (78) 

for 푘 =  1, . . . , 푛. For 0 ≤  푘 ≤  푛, Fk is non-negative and vanishes only at isolated points. 
The succeeding function Fk+1 is defined by (78) away from those points but extends to a real 
analytic function on all of M. Furthermore the function Fn+1 0. On the other hand, it is well 
known that the Gauss curvature of M is given by  

 퐾 =   
̅
log퐹.                        (79) 

Substituting (79) into (78), one sees that if F is a negative constant, Fk+1 cannot be zero. This 
contradiction finishes the proof.  

Now for every minimal surface 푀  in En Euclidean space, Chern and Osserman [4] 
defined a Gauss map into CPn-l . This map can be made into a holomorphic mapping such 
that if 푑푠̃  is the metric induced from this map,  

              ̃ = −퐾                       (80)  
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where K is the Gauss curvature of 푀 . Hence if 퐾 =  −1, the Gauss map is actually an 
isometry. Hence we have a holomorphic curve in 퐶푃  with constant negative curvature. 
This is a contradiction by Proposition (1.1.9). We have proved  
Theorem (1.1.10)[33]. The hyperbolic space cannot be minimally immersed in Euclidean 
space, even locally.  

In [14], Nomizu and Smyth proved that if M is a compact holomorphic curve in 퐶푃  
whose Gauss curvature satisfies 퐾 ≤  ½. Then 푀 is the quadric. Let us consider the opposite 
case, namely the totally real case. A submanifold M of 퐶푃  is called totally real if for every 
point 푥푀, 푇 (푀) is perpendicular to 퐽푇 (푀). Here 푇 (푀) is the tangent space of M at x 
and J is the complex structure. 

 If N is a Kahler manifold with constant holomorphic sectional curvature and M is a 
totally real submanifold, it is straightforward to calculate from (17) and (21) that  

            ∑ℎ ∆ℎ =∑ℎ ℎ 푅 + ∑ℎ ℎ 푅 − ∑ℎ ℎ 푅                (81) 
Let us consider minimal totally real surface with codimension 2. Let  

e3 = Jel, e4 = Je2. Then using the fact that N is Kaihler,  
 ℎ = ℎ , 

    ℎ = ℎ .                            (82)  
Hence by assuming ℎ  = 0 and ℎ  = a, we can write  

 ∑ℎ ∆ℎ = 8푎 퐾 + 4푎 퐾 − 8푎 .        (83)  
Since N has constant holomorphic sectional curvature,  

 퐾 = ,                      (84)  

 퐾 = .                         (85)  
The Gauss equation then implies  

 2푎 = − 퐾.           (86)   
Hence from (83), (84), and (86), we have  

           ∑ℎ ∆ℎ = 8푎 퐾 + 4푎 퐾.          (87)  
On the other hand, it is straightforward to see  

              ½  ∑(ℎ ) = ∑(ℎ ) + ℎ ∆ℎ   
                                                                               = ∑(ℎ ) + 12푎 퐾.        (88)  
Using the fact that  

              ∑ (ℎ )  = ∑ (ℎ ),,         
                                                                      (89)                                 
                         ∑ ℎ ℎ  = 0,  
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It is easy to prove  
           ∆ log∑(ℎ )   =  퐾        (90)  

Whenever ∑(ℎ )   0.  
Using the isothermal coordinate and (90), it is not hard to prove that either  ∑(ℎ )  0 or 
∑(ℎ ) vanishes only at isolated points.  

If 푀  has genus zero, the Gauss-Bonnet theorem and (90) shows that  (ℎ )  0 , 
i.e., M2 is totally geodesic. This is the standard embedding RP2 into CP2. 

 If 푀  is complete and has non-negative curvature, (88) shows that either 푀  is totally 
geodesic or the curvature 퐾 = 0 and ∑(ℎ )  = 0. In case 푀  is complete and has 
nonpositive curvature, we shall use an argument due to Klotz and Osserman [9]. From (90), 

the curvature of the metric ∑(ℎ ) 푑푠  is zero. If ∑(ℎ ) is bounded away from zero, 
this metric is complete and hence 푀  is parabolic. Since equation (90) shows that ,(h is a 
non-negative superharmonic function, K  0. By equation (86), the quantity ∑(ℎ )  is 
indeed bounded away from zero if (푐/4)  −  퐾 ≥  푎 > 0 for some constant 푎.  

We have proved  
Theorem (1.1.11)[33]. Let 푀  be a totally real minimal surface of a Kahler surface with 
constant holomorphic sectional curvature c. Then  

(i) If 푀  has genus zero, 푀  is the standard embedding of 푅푃  in 퐶푃 . 
(ii) If 푀  is a complete non-negative curved surface, then 푀  is totally geodesic or 

flat. In the last case, the second fundamental form is covariant constant.  
     (iii)      If 푀  is complete non-positive curved with Gauss curvature K and if 
                 (푐/4)  −  퐾 ≥  푎 >  0 for some constant a, then 푀  is totally geodesic or flat. 
 
Section(1-2): Constant Mean Curvature 
  

We are interested in higher dimensional submanifolds. We show a theorem similar to 
the Simons' pinching theorem for submanifolds with parallel mean curvature in sphere. 
Namely, if 푀  is a compact submanifold with parallel mean curvature in the sphere 푆  
with 푝 > 1, and the length of the second fundamental form of 푀  is not greater than 푛/3 +
 푛½ − 1/( 푝 −  1), then 푀  lies in a totally geodesic 푆  . We note that theorems of this 
form were studied by extra conditions. 

We extend a result of Nomizu and Smyth [28]. Nomizu and Smyth classified non-
negatively curved hypersurfaces with constant mean curvature. We generalize it to higher 
codimension. This was done by Yano and Ishihara [32] under a further assumption that the 
normal bundle is flat. We learned that Smyth has also independently extended their theorem. 
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Then we discuss some simple observations about isometric immersions. For example, a 
compact hypersurface with non-negative Ricci curvature and constant mean curvature in 
euclidean space is the standard sphere. This also generalizes the result of Nomizu and 
Smyth. 

 We generalize the Hilbert-Liebmann theorem to higher dimensional hypersurfaces. 
We prove, for example, that a compact convex hypersurface with constant scalar curvature 
is totally umbilical. Since this theorem is global, it seems to be more natural than the 
ordinary generalizations. We also discuss the generalization of Efimov's theorem. 

 We discuss a "quantization phenomenon" of compact minimal submanifolds in 
sphere. Lawson proved that if 푀   is a non-singular holomorphic curve in CPn whose 
curvature K satisfies 1/ 푘 ≤ 퐾 <  푙/(푘 − 1) for some 푘, 1 <  푘 ≤  푛, then 퐾1/푘. We 
will show that this phenomenon also occurs for compact minimal submanifolds. in euclidean 
sphere. The main theorem is a pinching theorem opposite to that of Simons. The bound that 
we obtain here is sharp. For example, it will be attained by some non-totally geodesic 
isometric minimal immersion of spheres.  

We improve the pinching constant of Simons in the following sense. Simons proved 
that if the average of the sectional curvatures is greater  
than   1 −

( )
  , then the compact minimal submanifold 푀  in 푆 must be totally 

geodesic. We show here that if the sectional curvatures are greater than  푝 − 1/(2푝 −  1), 
then the same conclusion holds. The constant 푝 −  푙/(2푝 − 1) is always less than Simons' 
constant  than 1 −

( )
  . It is also less than ½ which is independent of dimension. We 

also discuss the pinching formulas for complex submanifolds and minimal totally real 
submanifolds in Kahler manifolds with constant holomorphic sectional curvature. We note 
that since there is a submersion from sphere to symmetric space of rank one, the 
corresponding phenomena in sphere also occur in symmetric space of rank one by the 
techniques of Lawson [25]. In [12] However, the bound so obtained is not good and hence 
we only discuss complex submanifolds and minimal totally real submanifolds.   

 We discuss a question asked by Simons [15]. The question of Simons' is the 
following: Let 푀   be a compact minimal submanifold in 푆 . Is it true that 푡ℎ푒 (푛 +
 1) − 푝푙푎푛푒 in 푅 , which is spanned by 푇(푀)m and the radial vector m has non-trivial 
intersection with every fixed p-plane Rn+P+1 For p = 1 this was proved by DeGiorgi. Simons 
[15] and Reilly [31] also obtained partial results for general p. We shall prove it for minimal 
immersion of S2 in S4. Actually a more precise statement will be obtained. 

In [15], Simons proved that if 푀   is a compact minimal submanifold of the sphere 
푆 and if the length of the second fundamental form of 푀  is everywhere not larger than 
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푛/(2 − 1/푝), then 푀   is totally geodesic. The theorem was proved by the following 
inequality   

푆 2 −
1
푝
푆 − 푛 푑푉 ≥ 0                                   (91) 

where 푑푉 is the volume form of 푀.  
We shall prove a similar pinching theorem for submanifolds with parallel mean 

curvature by establishing an inequality similar to (91).  
Theorem (1.2.1)[36]. Let 푀   be an n-dimensional compact submanifold with parallel mean 
curvature in 푆 with p > 1. If (3 + 푛½ −(푝 − 1)-1)푆 ≤  푛, then 푀  lies in a totally 
geodesic 푆 .  
Proof. We shall still use the notations of [33]. Let 푒 , be the normalized mean curvature 
vector, then  

 휔 ,   = 0                      (92)  
for all . Exterior differentiate (92), we obtain  

           ∑ 휔 ,  /\ 휔  = 0          (93) 
For each  , let H be the matirx (ℎ ). Then (93) implies  

        퐻 퐻 = 퐻 퐻              (94)  
for all . 
 From (9), we see that (94) is equivalent to  

          푅  = 0           (95)  
for all , k, l. Hence, equation (29) gives  

∆ℎ = ℎ 푅
,

+ ℎ 푅
,

− ℎ 푅                    (96) 

  푛 + 1. 
The Gauss equation (7) then implies  

∆ℎ = ℎ ℎ ℎ
, ,

− ℎ ℎ ℎ
, ,

 

         [ 
+ ℎ ℎ ℎ

, ,

− ℎ ℎ ℎ
, ,

 

                   

+푛ℎℎ −  ℎ 푅                                           (97) 

푓표푟    푛 + 1.  
Following Simons' proof of his pinching theorem, one can then prove  
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ℎ
,

∆ℎ ≥ ℎ ℎ ℎ ℎ
, , ,

 

s                                             

− ℎ ℎ ℎ ℎ
,

+ ℎ ℎ ℎ ℎ
, , ,

 

                                  − ℎ ℎ ℎ ℎ
, , ,

 

                    

+ 푛 (ℎ ) − 2 −
1

푝 − 1
⎣
⎢
⎢
⎡

(ℎ )
,

⎦
⎥
⎥
⎤

, , ,

                                  (98) 

Now fix a vector e. Let {el,..., en} be a frame diagonalizing the matrix (ℎ ) such that  

 ℎ = 0                (99)  
for 푖푗. Then  

ℎ ℎ ℎ ℎ
, , ,

− ℎ ℎ ℎ ℎ
, , ,

 

  

+ ℎ ℎ ℎ ℎ
,

− ℎ ℎ ℎ ℎ
, , ,

 

     
[

 

                                           = ℎ ℎ ℎ ℎ
,

− ℎ ℎ ℎ ℎ
,

 

             + ℎ ℎ ℎ ℎ
,

− ℎ ℎ ℎ ℎ
,

        (100) 

On the other hand, from (94)  

   + ℎ ℎ ℎ ℎ
,

= ℎ ℎ ℎ ℎ
,

        (101) 

Therefore, (100) is equal to  

(ℎ ) ℎ ℎ − ℎ ℎ                  (102) 

The absolute value of this number is not greater than 

푛 + 1 (ℎ ) (ℎ ) = 푛 + 1 (ℎ )
,

(ℎ )
,

  (103) 

by Schwarz inequality.  
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Hence, from (98), we have  

ℎ
,

∆ℎ ≥ − 푛 + 1

⎝

⎜
⎛

(ℎ )
,

⎠

⎟
⎞

(ℎ )
,

 

+푛

⎝

⎜
⎛

(ℎ )
,

⎠

⎟
⎞
− 2−

1
푝 − 1

⎝

⎜
⎛

(ℎ )
,

⎠

⎟
⎞  

  

≥

⎝

⎜
⎛

(ℎ )
,

⎠

⎟
⎞

푛 − 2 −
1

푝 − 1 푆 − 푛
1
2 + 1 푆                      (104) 

Now it is straightforward to see   
  

1
2
∆ (ℎ푖푗

훽)2

푖,푗
훽≠푛+1

= (ℎ푖푗
훽)2

푖,푗
훽≠푛+1

+ ℎ푖푗
훽∆

푖,푗
훽≠푛+1

ℎ푗푖
훽                         (105) 

Therefore, under the assumption n ≥ (3 + n½-( p - 1)-1) S, (104) and (94) shows that 
∑ (ℎ ),  is subharmonic on 푀 . By the Hopf maximum principle, we see that this 

function must be a constant and the right hand side of (105) must be zero. In particular  

(ℎ )
,

푛 − 3 + 푛 − (푝 − 1) 푆 = 0              (106) 

      If  ∑ (ℎ ),  =0, it is easy to see from a theorem of Erbacher [8] that M lies in a totally 

geodesic 푆 . 

          If 푛 − 3 + 푛 − (푝 − 1) 푆 =0, then all the previous inequalities become 

equalities and it is not hard to see that these equalities force ∑ (ℎ ),
  to be zero and M 

lies in a totally geodesic Sn+1 . This completes the proof of Theorem (1.2.1).  
In [28], Nomizu and Smyth proved that if 푀   is a non-negatively curved compact 

hypersurface with constant mean curvature in the euclidean space, or the euclidean sphere, 
then it is the standard sphere or the product immersion of two spheres. We propose to extend 
this result to arbitrary codimension. After we have finished our proof, we learned that this 
was done by Yano and Ishihara [32] by assuming the normal bundle is locally parallelizable.  
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Theorem (1.2.2)[36]. Let 푀   be a compact non-negatively curved manifold immersed in 
a constantly curved manifold 푁. Suppose 푀  has parallel mean curvature. Then 푀   = 푀 × 
푀 × …. × 푀  such that each 푀  is a minimal submanifold of a totally umbilical submanifold 
푁  (with codimension > 0) and the 푁 's are mutually perpendicular along their intersections.  
Proof. Suppose 푒  has the same direction as the mean curvature vector. Assume the 
second fundamental form of 푀  with respect to 푒  has been diagonalized so that the 
eigenvalues are i. Then it follows from the fact that en+1 is parallel and (28). 

½  =  ℎ
, ,

+
1
2

 −  푅            (107)
,

 

Since 푀   is compact and the right hand side of (107) is non-negative, it follows from Stokes 
theorem that both of them are identically zero. Hence  

 −  푅 = 0                                                      (108)
,

 

                    

ℎ
, ,

= 0                                                                 (109) 

Equation (109) shows i are constants and (108) shows whenever    , 푅 = 0.  
Without loss of generality, let us assume  
               =   …  >    =  …  =   >  …  >   + 1 =  … =     > . . =              (110)  

Since en +1 is parallel, n+1, i = ii and i's are constants, it follows that  
(  -  )   /\   =  0                  (111)  

for all 푖, 푗.  
Hence, if 푛s-1 <  푖 ≤  푛s,            

푑휔 = − 휔 휔                                (112) 

It is known that the connection matrix (휔 ) is completely determined by (112).  Hence  
              휔 = 0           (113)  

whenever    ,   
It is clear from the equations (112), (113) that  + 1 = . . . =  =  0 defines a 

totally geodesic foliation of 푀  . Since all the i’s are constant, the leaves of this foliation 
are all closed and hence compact.  

When k varies, we get different totally geodesic foliation with compact leaves. The 
leaves of these two foliations are mutually perpendicular to each other and equation (113) 
shows actually they give a product decomposition of M. (cf. the proof of the decomposition 
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theorem of  [24]). Hence 푀= 푀 × 푀 × …. × 푀  such that the second fundamental form of 
푀  with respect to the mean curvature vector has equal eigenvalues.  

Let us now prove that whenever ei and ej are tangent to 푀  and 푀  respectively, then  

 ℎ = 0.        (114)  
for 푎 ≥  푛 +  1 and 푖 푗. In fact, since 푒  is parallel, the second fundamental form defined 
by it commutes with all other second fundamental forms, i.e.  

  ℎ   =  ℎ       (115)  
for all  ≥  푛 +  1. Hence, if i j , ℎ  =0 and (114) is proved.  

If the ambient manifold is the euclidean space, a lemma of J. D. Moore [24] and (114) 
shows that each 푀  lies in a linear subspace 푁  and that the 푁 's are all mutually 
perpendicular. Each 푀  is umbilical with respect to the mean curvature vector which is 
parallel in the normal bundle of 푀 . (n+1,j = 0 on 푀  if ej is perpendicular to 푀 ). Hence, 
Theorem (1.1.1) says that 푀  is minimal in an umbilical hypersurface of 푁  for each 푖.  

If the ambient manifold is the sphere, the theorem also follows by considering the 
standard embedding of the sphere in the euclidean space. If the ambient manifold is the 
hyperbolic space, the theorem can be obtained by considering the non-euclidean model of 
the hyperbolic space. The essential point is that if the tangent space of 푀  is spanned by 
푒 , . . . , 푒 , then  

 퐷(푒  /\ ... /\ 푒 ) = 0      (116)  
by (113) and (114).  

Let us now discuss the extra-condition imposed by Yano and Ishihara [32].  
Theorem (1.2.3)[36]. Let 푀   be a subnanifold of the euclidean space 푁 . Suppose 푀   
has flat normal bundle and parallel mean curvature vector, then there is an open dense subset 
U of 푀   such that each component of 푈 lies in a 2푛 −dimensional linear subspace of 푁 . 
Proof. We shall prove that for all 푝푀 , we can find a dense open set of a neighborhood 
of p such that each component of this open set lies in a 2푛 −dimensional linear subspace of 
푁 Take an open neighborhood U of p such that the normal bundle is geometrically trivial 
on 푈, i.e., we can find parallel normal vector fields 푒 , 푒 , . . . . , 푒  on 푈. The matrices 
(ℎ ) are then mutually commute. Hence, there exists an open dense set U1  U such that we 
can find a frame 푒 , 푒  , . . , 푒  on U1 with  

 ℎ = 0      (117)  
for 푖푗.  

By the standard matrix theory, it is easy to see that there exists another open dense set 
U2 in U1 such that on U2, we can find an orthogonal matrix valued function (a) with the 
property  
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푎 ℎ = 0                                                    (118) 

for  >  2푛.  
Hence, if we replace the normal frame on U2 by {ae}, we can assume  

i = 0      (119)  
for  > 2푛 푎푛푑 푖 = 1,2, . . . , 푛.   
Clearly, we can also assume 푒  is parallel to the mean curvature vector. Then by 
definition, and (119)  

ℎ 휔 = ℎ 휔                                         (120) 

for  >  2푛.  
In particular, ℎ  = 0 unless 푖 = 푗. On the other hand, equation (12) says that ℎ =

ℎ  Therefore, ℎ = 0 unless 푖 =  푗 = 푘 and       

ℎ 휔 =  ℎ 휔                                     (121) 

for  > 2푛. 
 Since 푒  is the mean curvature vector, we have  

ℎ = 0                                                  (122) 

for   >  푛 + 1.  
Equations (121) and (122) shows  

ℎ 휔 = 0                                           (123) 

which implies  
  ℎ = 0       (124)  

and  

ℎ 휔    = 0                                         (125) 

       Change the normal frame on an open dense subset if necessary, we may assume there 
is a number 푘 < 푛 such that the matrix   

 (ℎ )          (126)  

has rank k and  
            ℎ = 0            (127)  
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for  >  푛 +  푘 +  1. Then  
           i = 0           (128)  

for  >  푛 + 푘 + 푙 푎푛푑 푖 = 1,2, . . . ,푛.  
As in (125), we can derive 

ℎ 휔    = 0                                                       (129)  

Equations (126), (127) and (129) imply  
                = 0         (130)  

for  > 푛 + 푘 + 1,  ≤  푛 + 푘 + 1.  
The theorem of Erbacher [8] (cf. theorem (1)) then says the open set lies in a linear space 
with dimension 푛 + 푘 + 1 ≤  2푛.  
Corollary (1.2.4)[36]. Let 푀   be a submanifold with parallel mean curvature in 푆 . 
Suppose 푀   has flat normal bundle. Then there is an open dense set 푈 in 푀 such that each 
component of 푈 lies in a totally geodesic 푆 .  
Let us discuss the curvature assumption of Nomizu and Smyth.  
Proposition (1.2.5)[36]. Let 푀   be a subnanifold of another manifold 푁  with constant 
sectional curvature. Suppose the mean curvature of 푀 is nowhere zero and the Ricci 
curvature of 푀 is ≥  (푛 −  1)푐 (표푟 >  (푛 −  1)푐). Then the second fundamental form of 
푀 with respect to the mean curvature is semi-definite (definite).  
Proof. Let 푒  be the unit vector in the direction of the mean curvature vector. Diagonalize 
the second fundamental form so that  

            ℎ  = iij           (131)  
Then the Gauss equation says  

ℎ ℎ − (ℎ ) = 푅 − 푐              (132) 

− (ℎ ) + 푛 퐻 − (ℎ ) = 푅푖푐(푖)− (푛 − 1)푐              (133) 

where 푅푖푐(푖) is the Ricci curvature of 푀 in direction 푖.  
       Suppose 퐻 > 0, equation (133) and the hypothesis says  ≥ 0 for all 푖. Furthermore, it 
is clear that   = 0 implies ℎ  = 0 for all j and hence 푅 =  0 for all 푗.  
Corollary (1.2.6)[36]. Let 푀   be a hypersurface with non-zero mean curvature in a 
manifold with constant curvature 푐. If the Ricci curvature of 푀   is not less than (n −  1)c, 
then M' is convex.  
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Corollary (1.2.7)[36]. Let 푀  be a compact hypersurface with constant mean curvature in 
the euclidean space. If 푀   has non-negative Ricci curvature, then 푀   is an umbilical 
hypersurface (which is the sphere).  
Proof. Since Nomize and Smyth [28] already proved the corollary by assuming the 
curvature is positive, the assertion follows from this theorem and the proposition.  
       We generalize some well-known theorems about surfaces to higher dimensional 
submanifolds. Unlike the ordinary generalization, our theorems are global and nontrivial. 
First of all, we generalize the Hilbert-Liebmann Theorem which states that the isometric 
immersion of 푆  in three dimensional euclidean space is rigid.  
Theorem (1.2.8)[36]. Let 푀  be a compact hypersurface of a manifold with constant 
curvature c. Suppose 푀   has constant scalar curvature and non- negative sectional 
curvature. Then  

i) if 푐 ≤  0 and the Ricci curvature of 푀   is larger than (n −  1)c, 푀   is totally 
umbilical (and isometric to the standard sphere).  

ii) if 푐 >  0 and the sectional curvature of 푀   is larger than 0, 푀   is totally 
umbilical (and isometric to the standard sphere).  

Proof. Let i be the principal curvatures. Since the scalar curvature R is constant, we have, 
from the Gauss equation  

−∑  + 푛 퐻 = 푛(푛 –  1)푅 –  (푛 − 1)푐 = 푐표푛푠푡푎푛푡        (134)                
hence 

∆  = 푛 ∆(퐻 )                                         (135) 

On the other hand, from (28),  

∆  = ℎ
, ,

+ 푛  퐻 +
1
2

 −  푅               (136)
,

 

 ) we obtainFrom (135) and (136 

푛 (  )퐻 = ℎ
, ,

+ 푛 |푔푟푎푑 퐻| +
1
2

 −  푅               (137)
,

 

Since 푀  is compact, there is a point x where H attains its maximal. At this point, 
 퐻 ≤  0         (138)  

 (푔푟푎푑 퐻 )2  = 0         (139)  
On the other hand, we observe that if H is zero at some point, the Ricci curvature at that 
point will be (푛 −  1)푐 which is a contradiction to the hypothesis by (133). Hence, we may 
assume 퐻 >  0 and by proposition (1.2.5), i > 0. Therefore, from (137), (138) and (139)  
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 −  푅                                                  (140)
,

 

at the point x.  
By hypothesis and Proposition (1.2.5) , 푅  > 0. Equation (140) and this fact implies 

x is an umbilical point. The value of H2 at this point is therefore  = 푅 − 푐, by the Gauss 
equation. 

 Since we know that 퐻  attains its maximum at x, 퐻  is everywhere not greated than 
푅 −  푐. Therefore, it follows from equation (134) that 푛퐻 ≥ ∑   everywhere. On the 
other hand, the Schwartz inequality says that 푛퐻 ≤ ∑  and 푛퐻 = ∑  if and only if 
1 = 2= . . . = n . These last two facts then imply 푀   is totally umbilical everywhere .  
        We discuss the generalizations of the Hilbert-Efimov theorem. Their theorem states 
that a complete surface with curvature bounded from above by a negative constant cannot 
be isometrically immersed in three dimensional euclidean space.  
Proposition (1.2.9)[36]. Let 푀   be a hypersurface of a manifold with constant curvature c. 
Suppose 푀   has sectional curvature ≤ c. Then 푀 = 푀 ∪푀 ∪푀  with the following 
properties: the interior of Mi has codimension i totally geodesic foliation.  

The leaves of the foliation are actually totally geodesic in the ambient manifold and 
the sectional curvature between the normals of the leaf and the tangents of the leaf is equal 
to c.  
Proof. Let i be the principal curvatures of M. Then the Gauss equation shows  

ij ≤ 0          (141)  
for 푖푗.  
A simple calculation then shows at most two principal curvatures of M are non-zero.  
Let 푀  be the set of points of 푀 where the rank of the second fundamental form is 푖. We 
shall prove our assertion only for 푀 . The rest is trivial.  
Assume 1, 2 are the only non-zero eigenvalues. Then  
                                                        ,  =     

                ,  =                              (142)  
                   ,  =  0 

for 푖 >  2. 
 Exterior differentiate the last equation of (142) and simplifying, we obtain  

      11 /\   + 22 /\  = 0                  (143)  
for 푖 > 2.  

Hence, 1i and 2k are linear combinations of forms 1 and 2 only. Using the 
defining equations for  , it is then straightforward to see  = 0,  = 0 define a foliation 
on 푀 . The leaves of this foliation are totally geodesic in 푀   because   and   are zero 
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on them. They are totally geodesic in the ambient manifold because  ,  =  0 on them 
also. The last assertion on the curvature follows from the Gauss equation.  
Corollary (1.2.10)[36]. Let 푀   be a manifold with sectional curvature ≤  푐 and Ricci 
curvature < (푛 − 1)푐.  If 푛 > 3, then 푀  cannot be immersed as a hypersurface of a 
manifold with constant curvature c.  
Corollary (1.2.11)[36]. Let 푀  be a complete manifold with non-positive sectional 
curvature. If the scalar curvature of 푀  is bounded from above by a negative constant, then 
푀  cannot be isometrically immersed as a hypersurface in euclidean space.  
Proof. It is easy to see from Proposition (1.2.9) and our assumption that 푀 =  푀  has 
codimensional 2 totally geodesic foliation. The leaves of the foliation are actually 
codimensional 2 linear spaces. Arguments similar to [34] can then be used to prove that 
푀 = 푀 × 푅  where 푅 is the 푛 − 2 dimensional euclidean space. Furthermore the 
immersion of 푀  is a product immersion. The corollary then follows from Efimov's 
theorem.  

We believe that Corollary (1.2.4) can be extended to slightly higher codimension. 
This is true if the normal bundle is locally parallelizable.  
Proposition (1.2.12)[36]. Let 푀   be a manifold with sectional curvature ≤ c and Ricci 
curvature <  (푛 −  1)푐. 퐼푓 푛 >  2P, then 푀  cannot be immersed in manifold 푁  with 
constant curvature c and flat normal bundle.  
Proof. The assumption implies that the second fundamental forms can be diagonalized 
simultaneously. For each normal vector 푒, let 훼  be the corresponding principal curvatures. 
The Gauss equation then says  

훼 훼 ≤ 0                                                        (144) 

The n vectors (훼 ) lie in the euclidean p-space with 푛 >  2P. By the pigeon box principle, if 
these vectors satisfy (144), one of them must be zero. This will imply that the Ricci curvature 
of 푀   is zero for some direction which is a contradiction.  

We shall prove an inequality opposite to that of Simons and hence derive a 
quantization theorem similar to that of B. Lawson mentioned in the introduction.  
Theorem (1.2.13)[36]. Let 푀   be a compact minimal submanifold immersed in a manifold 
푁  with constant curvature c. Let S be the length of the second fundamental form of 푀 . 
Let K(x) be the function assigns to each point of 푀 the infinimum of the sectional curvatures 
of 푀 at that point. Then  

푆[푝푛 (푐 − 2퐾) − 푆]푑푉 ≥  0                            (145) 

and if K is everywhere non-positive,  
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푆[푝푛 (푐 − 퐾) − 푆]푑푉 ≥  0                            (146) 

Proof.    It follows from (29) and (9) that  

                          ℎ ∆ℎ =
, ,

ℎ ℎ 푅
, , ,

 

                                     

       + ℎ ℎ푚푖푅
, , ,

 

 

                − ℎ ℎ (ℎ ℎ − ℎ ℎ )
, , , ,

                      (147) 

If we denote by H the matrix (ℎ ), then by (7) the first two terms together on the 
right hand side of (147) is equal to the negative of  

푡푟(퐻 퐻 )
,

− 푡푟(퐻 ) (퐻 )
,

 

               + [푡푟(퐻 퐻 )]
,

− (푡푟퐻 ) (푡푟 (퐻 )
,

퐻 ) 

           

                          +(푡푟 (퐻 ) − 푛푐 (ℎ푖푗훼)
, ,

                                    (148) 

                    

Hence for any real number a,  

                ℎ ∆ℎ =
, ,

(1 + 푎) ℎ ℎ 푅
, , , ,

 

                      +(1 + 푎) ℎ ℎ푚푖푅
, , , ,

 

                               −(1− 푎) 푡푟(퐻 ) (퐻 )
,

+(1 − 푎) 푡푟
,

(퐻 퐻 )  
                               

                                       +푎 [푡푟(퐻 퐻 )]
,

푎 푡푟
,

(퐻 ) (푡푟(퐻 ) 퐻 ) 
          

+푎 (푡푟
훼

퐻
훼

)2 − 푛푎푐 (ℎ푖푗훼)2

훼,푖,푗

                           (149) 

It is easy to see  

(푡푟(퐻 ) ) ≥
1
푝

(푡푟(퐻 ) )                   (150) 
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푡푟
,

(퐻 ) (퐻 )  ≥  [푡푟(퐻 퐻 )]             
,

        (151)   

Since 푀  is minimal, it follows from (149), (151) and (152)  

                 ℎ ∆ℎ ≥
, ,

(1 + 푎) ℎ ℎ 푅
, , , ,

 

                      +(1 + 푎) ℎ ℎ푚푖푅
, , , ,

 

+푎
푆
푝

(푆 − 푝푛푐)                                                  (152) 
 

for a ≥ 1. 
 Now for each , let i be the eignevalues of the matrix (ℎ ). Then  

2 ℎ푖푗
훼ℎ푘푚

훼 푅푚푖푗푘
,푖,푗,푘,푚

+ 2 ℎ푖푗
훼ℎ푚푖

훼 푅푚푘푗푘
푖,푗,푘,푚

= (훼푖 − 훼푗)푅푖푗푖푗
푖,푗

 

                                                                                           ≥ ∑ 훼 − 훼 퐾,  

= 2푛퐾 ℎ                  
,

(153) 

Hence, from (152) and (153) 

 ℎ ∆ℎ ≥
, ,

(1 + 푎)푛퐾푆 +
푎푆
푝

(푆 − 푝푛푐) =
푎푆
푝

푆 − 푝푛푐 +
푛푝(1 + 푎)

푎
퐾   (154) 

As in Theorem (1.1.11), we obtain  

푝푛푐 −
푝푛(푐 + 푎)

푎
퐾 − 푆 푑푉 ≥ 0                                      (155) 

for a ≥ 1.  
Now (145) follows from (155) by taking 푎 = 1. If 퐾 ≤  0, (146) follows from (155) by 
letting a approach infinity.  
Corollary (1.2.14)[36]. Suppose in Theorem (1.2.3), S ≥ 푝푛(c − 2K)(S ≥  푝푛(c − K) 
when K ≤  0). Then the second fundamental form of Mn is covariant constant and 푀  is 
either totally geodesic or 푆 = 푝푛(푐 − 2퐾)(푆 = 푝푛(푐 − 퐾) 푤ℎ푒푛 퐾 ≤  0).  
Corollary (1.2.15)[36]. Let 푀  be a compact minimal submanifold of a manifold 푁  
with constant curvature c. Let 푅 be the scalar curvature of 푀  and K be the function which 
assigns to each point of 푀  the infinimum of the sectional curvature at that point. Suppose  

퐾 ≤ 푅 ≤
푛 − 1 − 푝
푛 − 1

푐 +
2푝퐾
푛 − 1

퐾 ≤ 푅 ≤
푛 − 1 − 푝
푛 − 1

푐 +
푝퐾
푛 − 1

푤ℎ푒푛 퐾 ≤ 0  

Then either 푀  is totally geodesic, or the second fundamental form of 푀  is covariant 
constant and  
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푅 =
푛 − 1 − 푝
푛 − 1

푐 +
2푝퐾
푛 − 1

푅 =
푛 − 1 − 푝
푛 − 1

푐 +
푝퐾
푛 − 1

푤ℎ푒푛 퐾 ≤ 0        

Let us now examine the bound we obtain in Theorem (1.2.3).  
In general, let 푆 (푟) be the m-dimensional sphere with radius r. Then one can 

construct a standard minimal immersion of 푆 (푚 /푛) ½ × ... × 푆 (푚 /푛)½) into 
푆 where 푛 =  ∑ 푚  In fact, if 푥i is a point in 푆 (푚 /푛) ½ , i.e., a vector of length 
(mi/n)½ in Rmi+1, then (푥 , 푥 , . . . ,푥 ) defines a minimal immersion of Sml((m1/ n)½) × ... × 
푆 (푚 /푛)½) into 푆 The length of the second fundamental form is exactly (푘 −  1)푛, 
the bound we obtained in Theorem (1.2.13), with 퐾  0. We shall prove that the converse is 
also true. In fact, if K  0 and 푆 =  푛푝푐, then  

푡푟
,

(퐻 ) (퐻 ) = [푡푟(퐻 퐻 )]             
,

        (156)   

and 
[푡푟(퐻 퐻 )] = 0           



                               (157)   

       Equality (156) implies 퐻퐻  = 퐻퐻 for all ,  and the normal bundle of 푀  is flat. 
Hence, we can diagonalize {퐻} simultaneously. Putting these informations together, we 
can apply the proof of Theorem (1.2.2) or [13] to see that 푀  is an open piece of the product 
of spheres.  
Theorem (1.2.16)[36]. Let 푀  be a minimal submanifold in another manifold 푁  with 
constant curvature c. If 푀  has non-negative curvature, 푆 =  푝푛푐 and 푐 =  1, then 푀  is 
an open piece of the product  푆 (푚 /푛) ½), 푛 =  ∑ 푚 .  

Let us consider the case 퐾 =  푐표푛푠푡푎푛푡 > 0. In [5], Chern, DoCarmo, and 
Kobayashi gave an isometric minimal immersion of 푆 (2(푛 + 1)/푛)½ into Sn+P with 푝 =
 ½(푛 −  1)(푛 + 2). (Actually, it is an embedding of the real projective space.) The length 
of the second fundamental form turns out to be 푛(푛 − 1) (푛 +  2) / 2(푛 +  1). This 
number is exactly 푝푛 (1 − 2퐾). We suspect the converse may be true, i.e., if 퐾 =
푐표푛푠푡푎푛푡 > 0 and 푆 = 푝푛(1 − 2퐾), then 푀 is the immersion of the standard sphere 
described above. From the proof of Theorem (1.2.3), we see 푀  must satisfy the following 
strong conditions 
 (i)  

ℎ
, , ,

= 0                                                (158) 

(ii) For all normal frame {푒} 

ℎ
,

=
푆
푝

= 푛(1 − 2퐾)                                              (159) 
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and  

ℎ ℎ
,

= 0                                                (160) 

for   . 
(iii) For each a, let ai be the eigenvalues of (ℎ ) and 푅  the sectional curvature between 
ei and ej. Then  

        ( −  ) (푅  –  퐾)  =  0                 (161)  
(iv)  

푡푟
,

(퐻 ) (퐻 ) = 푡푟(퐻 퐻 ) = 푛퐾푆           
,

        (162) 

(v) The Gauss equation and (162) imply  
     푛 –  1 –  푝 ≥  (푛 –  1 –  2푝 )퐾                                   (163)  

Equation (159) implies that if 푝 =  1,푀  is an open piece of the product of two 
spheres. This was proved in [5]. If 푛 = 2, it is easy to see from (161) and (162) that 푀  is 
the Veronese surface. Equation (163) shows that if  ≠  ,  푅 = 퐾. On the other hand 
(163) says the matrices {(ℎ )} are highly non-commutative. These two facts indicate Mn 
has constant curvature. Then a theorem of DoCarmo and Wallach [20] will prove the 
assertion. 

 Now we discuss the case 퐾 <  0. It seem to be not known whether there is any 
compact negatively curved minimal submanifold in sphere except for very special case 
(surface in S3). The following corollary gives some information:  
Corollary (1.2.17)[36]. Let 푀 be a compact minimal submanifold of the sphere 푆 . 
Suppose sectional curvature of 푀  is non-positive and bounded from below by – .  

Then 푀  is the standard minimal immersion of the product of circles into 푆  . 
Proof. We note that in Theorem (1.2.13), we may take 퐾 to be any function which is 
bounded from above by the sectional curvatures of M at every point. In particular, we may 
take  

           퐾 = −                (164) 

in this corollary.  
Then the hypothesis of Corollary (1.2.15) is satisfied and therefore R  0. Since the 

sectional curvature of 푀 is everywhere non-positive and the average of them is zero, 푀  is 
a flat manifold. Corollary (1.2.17) then follows from Theorem (1.2.16). Let us remark that 
if one replaces sectional curvature by Ricci curvature, one can prove inequalities similar to 
Theorem (1.2.13). In fact, let Ric(x) be the function assigns to each point of 푀  the 
infinimum of the Ricci curvature of 푀  at that point, then if 푀  is compact,  
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푝푛푐 −
푝푛(1 + 푎)

푎
(푅푖푐 − (푛 − 2)푐) − 푆 푑푉 ≥ 0                                   (165) 

       

for any 푎 ≥  1. This follows because by (7), one can prove that when i j,  
푅  ≥ 푅푖푐 –  (푛 –  2 )푐. Similarly, one can verify that –∑ 훼 훼 푅 ≥ ∑ 훼 − 푆∑ 훼,  
Therefore we also have ∫M 푆[(2푝 –  2/푛 +  1)푆 + 2푝푅푖푐 −  푝푛푐] 푑푉 ≥  0.   

We improve Simons' inequality [15] under sectional curvature restriction (instead of 
scalar curvature restriction).  
Theorem (1.2.18)[36]. Let 푀  be a compact minimal submanifold in the sphere 푆 . 
Suppose the sectional curvature of 푀  is everywhere not less than (p −  1)/(2p − 1). 
Then either 푀  is the totally geodesic sphere, the standard immersion of the product of two 
spheres or the Veronese surface in S4.  
Proof.  We first note that it was proved in [5]  

푡푟
,

(퐻 ) (퐻 ) − 푡푟(퐻 퐻 )            
,

 

≤ (푡푟
,

(퐻 ) ) 푡푟(퐻 ) ≤
푝 − 1
푝

푆                         (166) 

and the equality holds if at most two matrices (ℎ ) and (ℎ ) are not zero and these two 
matrices can be transformed simultaneously by an orthogonal matrix into scalar multiples 
of Ã and 퐵 respectively, where  
 

        Ã =

0           1               0
1         0                 

      0             0     

              

                  

 퐵 =

1           0               0
0        − 1                 

      0             0     

                               (167)  

 

By taking 0 ≤ a ≤ 1 in (149), we obtain  

ℎ ∆ℎ ≥
, ,

(1 + 푎)푛퐾푆 + (1 − 푎)
푝 − 1
푝

푆 +
푎
푝
푆 − 푛푎푆               (168) 

If 푎 = (푝 –  1)/푝, the right hand side of (168) is 푛푆/푝[(2푝 − 1)퐾 − (푝 − 1)]. If the 
hypothesis is satisfied, ∑ ℎ ∆ℎ ≥, , 0 and hence (166) and (168) are equalities.  

 We using the method of B. Lawson, it is possible to generalize Theorems (1.2.13) 
and (1.2.18) to minimal immersions into symmetric spaces of rank one. However, we shall 
consider here only immersions into Kahler manifolds with constant holomorphic sectional 
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curvature. We shall denote our ambient manifold 푁 by 푁 (푐) where 푛 + 푝 is the complex 
dimension and 푐 is the holomorphic sectional curvature. 

 A straightforward computation then shows that if 푀  is a complex manifold or a 
totally real minimal submanifold,  

ℎ ∆ℎ =  ℎ ℎ 푅
, , ,, ,

 

+ ℎ ℎ 푅
, , ,

− ℎ ℎ 푅
,
,

            (169) 

We first discuss the case where 푀  is a complex submanifold of 푁 (푐). In this 
case, if e is a local section of the normal bundle, then the fundamental form (ℎ ) has the 
following form  

               

퐴                     퐵

퐵              − 퐴

 

Furthermore, the second fundamental form corresponding to the section Je has the form  

                                          

퐵                     퐴

퐴              − 퐵

     

Using these two facts, the Gauss equation and (169), it is not hard to see  

ℎ ∆ℎ ≥ (1 + 푎) ℎ ℎ 푅
, , ,, ,

 

                                
                                       

                      +(1 + 푎) ℎ ℎ 푅
, , ,

 

                                 +푎 − 푎푐푆 − 푆                             (170)  

for a ≥ 1. Here S is the length of the second fundamental form.  
Let 퐾 be the function which assigns to each point the infinimum of the section 

curvature of 푀 , then  

ℎ ∆ℎ ≥
, ,

(1 + 푎)2푛퐾푆 +
푎푆
2푝

−
(푛 + 3)

2
푎푐푆 −

푐
2
푆                            

                = 푆 − 푝(푛 + 3)푐 − + ( )푝푛퐾                (171) 

Hence if 푀  is compact,  
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푆 −
4(1 + 푎)

푎
푝푛퐾 +

푐푝
푎

+ 푝(푛 + 3)푐 − 푆 ≥ 0                      (172) 

Letting a approach infinity when 퐾 ≤  푐/(4푛), we obtain the following.  
Theorem (1.2.19)[36]. Let 푀  be a compact complex submwnifold of a Kahler manifold 
푁 (푐) with constant holomorphic sectional curvature 푐. Let 퐾 and 푆 be defined as above. 
Then  

푆[푝(푛 + 4)푐 − 8푝푛푘 − 푆] ≥ 0                                            (173) 

If furthermore 퐾 ≤  푐/(4푛),  

푆[푝(푛 + 3)푐 − 4푝푛푘 − 푆] ≥ 0                                            (174) 
[[             

Corollary (1.2.20). Suppose in Theorem (1.2.19), 푆 ≥  푝 (푛 +  3)푐 − 8푝푛퐾 [푆 ≥  푝 (푛 +
 3)푐 −  4푝푛퐾 푖푓 퐾 <  푐/(4푛)]. Then the equality actually holds.   
Corollary (1.2.21). Suppose in Theorem (1.2.19),  

             푅 ≤
( )

[푛(푛 + 1)푐 − 푝(푛 + 3)푐 + 8푝푛푘]  
 

 (푅 ≤ 
( )

[푛(푛 + 1)푐 − 푝(푛 + 3)푐 + 4푝푛푘]  when 퐾 ≤  푐/(4푛)). Then the equality 

actually holds.   
Theorem (1.2.22)[36]. Let 푀  be a complex submanifold of a Kahler manifold 푁 (푐) 
with constant holomorphic sectional curvature 푐. Suppose 푀  has non-negative sectional 
curvature and 푆 is a constant. Then 푆 <  푝(푛 +  3)c or 푀  is totally geodesic.  
Proof. Note that from the representation of the second fundamental forms above, it is clear 
that the second fundamental forms commute to each other if and only if the complex 
submanifold is totally geodesic. The rest of the proof is similar to that of Theorem (1.2.16).  
Theorem (1.2.23)[36]. Let 푀  be a compact complex submanifold of the complex 
projective space 퐶푝 . Suppose the curvature of 푀 is not less than [(2푝 − 1) 푛 + 8푝 −
3]/(16푝 − 4)푛. Then 푀  is totally geodesic.  
Proof. The proof is similar to that of Theorem (1.2.18). In this case we have  

ℎ ∆ℎ ≥
, ,

(1 + 푎)2푛퐾푆 +
푎푆
2푝 −

(푛 + 3)
2 푎푐푆 −

푐
2 −

(1− 푎)
2푝 − 1

2푝 푆      (175) 

for 0 ≤  푎 ≤  1.  

 Hence if 푎 =  and 퐾 ≥ ( )
( )   
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ℎ ∆ℎ ≥
, ,

0 

As in Theorem (1.2.18), this implies 푝 =  1, 푀  is a complex hypersurface.  
Let 푀  be a compact minimal submanifold of the sphere 푆 . It was asked by 

Simons [15] whether the 푛 +  1 −plane spanned by the tangent space Tx(M) and the radial 
vector 푥 has non-trivial intersection with every fixed p-plane in the euclidean space 푁 . 
The assertion was first proved by DeGiorgi for 푝 = 1 and partially proved by Simons [15] 
and Reilly [31]. We observe here that the Calabi-Chern theory can be used to prove the 
assertion for S2 in S4.  

Let G2,5 be the Grassmann manifold of all oriented two-dimensional planes through 
origin of the five dimensional euclidean space. Then Chern [20] [21] defined a Gauss map 
푔: 푆 퐺 ,  by assigning at each point 푥  푆  the oriented plane through the origin which 
is parallel to the normal plane of 푆  in 푆 .  

Now 퐺 ,  has a natural complex structure defined as follows: Suppose the two-plane 
be spanned by the orthonormal vectors 휉, (in that order, as the plane is oriented). Then 휉 +
푖 is defined up to a complex constant. Regarding 휉 + 푖 as the homogeneous coordinates 
of a point in the complex projective space 퐶 , we can consider 퐺 ,  as a hyperquadric in 
퐶 .  

The Calabi-Chern theory asserts that if 푆  is minimal in 푆 , the Gauss map g is 
holomorphic with respect to the unique conformal structure of 푆 . Chern [35] also observed 
that if 푔(푆 ) lies in a hyperplane of 퐶 , the minimal sphere must be totally geodesic. The 
well-known theory of compact holomorphic curve in 퐶  says that if 푔(푆 ) does not lie in 
a hyperplane, it has to intersect every hyperplane exactly once.    

Let e3 = 푒 = (푒 , 푒 , … , 푒 ) and 푒 = (푒 , 푒 , … , 푒 ) be a normal frame at some 
point x of 푆  such that 푒 ⋀푒  defines the orientation of the normal plane. The condition that 
푔(푥) intersects the hyperplane defined by the complex vector (푎 + 푖푏 , 푎 + 푖푏 ,... , 푎 +
푖푏 ) is equivalent to 

(푎 + 푖푏 ) 푒 + 푖푒 = 0                                         (176) 

Hence if 퐴 =  (푎 , 푎 , . . . , 푎 ) is any vector in the five dimensional euclidean space 
N5, there is exactly one point 푥 in 푆  such that 퐴 is orthogonal to both 푒  and 푒 at 푥. (This 
follows by taking (푎 , … , 푎 )  =  (푏 ,푏 , . . . , 푏 ) in (176).)  

In conclusion, we have  
Theorem (1.2.24)[36]. Let 푆  be any non-totally geodesic minimal sphere in 푆 . Suppose 
S4 sits in the euclidean space 푁 . Then for all four dimensional linear space 푁  in 푁 , there 
is exactly one point 푥푆  such that the normal space at 푥 is parallel to 푁 .  
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The conjecture of Simons is equivalent to say that for all fixed three dimensional 
linear space passing through the origin, we can find a point x in S2 such that the normal plane 
at x has non-trivial projection on this fixed linear space. By taking a four dimensional linear 
space containing this three dimensional linear space, it is quite easy to see that Simons 
conjecture follows from Theorem (1.2.24) in this special case. 
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Chapter 2 
Minimal Submanifolds and an Intrinsic Rigidity Theorem 

We show that if 휎(푢) ≤  , then either 휎(푢)  ≡ 0, or 휎(푢) ≡ . All minimal 
submanifolds satisfying 휎(푢) are determined. A stronger result is obtained if 푀 is odd-
dimensional. 

 
Section(2-1): A Sphere with Bounded Second Fundamental Form  

 Let 푀 be a smooth (i.e.퐶) compact 푛 −dimensional Riemannian manifold 
minimally immersed in a unit sphere 푆  of dimension 푛 +  푝. Let ℎ be the second 
fundamental form of the immersion, h is a symmetric bilinear mapping 푇  × 푇  푇  for 
푥푀, where 푇  is the tangent space of 푀 at 푥 and 푇 is the normal space to M at x. We 
denote by S(x) the square of the length of ℎ at 푥. By the equation of Gauss, 푆(푥)  =
 푛(푛 —  1)  −   (푥), where (푥) is the scalar curvature of 푀 at 푥. Therefore, 푆(푥) is an 
intrinsic invariant of M. Let Ԥ: 푈푀 푀  and UMx be the unit tangent bundle of M and its 
fiber over 푥 푀, respectively. We set  (푢)  =  ||ℎ(푢, 푢)||  for any u in UM.  (u) is not 
an intrinsic invariant of M. However, like 푆(푥), (푢) is a measure of an immersion from 
being totally geodesic.  

 In [42] proved that if 푆(푥)  ≤  푛/(2 — 1 /푝) everywhere on M, then either 푆(푥)  0 
(i.e. 푀 is totally geodesic), or 푆(푥)  푛(2 − ). In [37], S.-S. Chern, M. do Carmo, and S. 

Kobayashi determined all minimal submanifolds 푀 of 푆  satisfying 푆(푥) = 푛/(2 —  1/푝) 
(for 푝 = 1 it was also obtained by B. Lawson [56]). The purpose is to obtain the analogous 
results for (u).  

We first describe the following examples of minimal immersions [37, 41].  

A. Let Sm(r) be an m-dimensional sphere in Rm+1 of radius r. We imbed 푆 ( 1
2
 ) × 푆  

( ) into 푆 = 푆 (1) as follows. Let ,   푆  ( ). Then  and  are vectors in 

푅  of length  . We can consider (, ) as a unit vector in 푅 = 푅 × 푅  .  It 

is easy to see that 푆 ( 1
2
 ) × 푆  ( )  is a minimal submanifold of 푆 . 

B. Let F be the field 푅 of real numbers, the field C of complex numbers, or the field 
Q of quaternions. Define d by  
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푑 =
1,     푖푓 퐹 = 푅,
2,      푖푓 퐹 = 퐶,
4,       푖푓 퐹 = 푄,

 

Let 퐹푃  denote the projective plane over F. FP2 is considered as the quotient space of the 
unit (3푑 –  1) − 푑imensional sphere 푆 (1) = {푥휖퐹 : 푥̅ ∙ 푥 = 1}obtained by identifying 
푥 with 푥 where   퐹 such that ||  =  1. The canonical metric 푔   in FP2 is the invariant 
metric such that the fibering  ∶  푆3푑−1(1)퐹푃  is a Riemannian submersion. The sectional 
curvature of 푅푃  is 1, the holomorphic sectional curvature of 퐶푃  is 4, and the Q-sectional 
curvature of 푄푃  is 4, with respect to the metric 푔 . Let 푀(3,퐹) be the vector space of all 
3 × 3 matrices over F and let  

 (3,퐹 ) = {퐴  푀(3,퐹 ): 퐴∗ = 퐴,     푡푟푎푐푒 퐴 =  0} 
 where 퐴∗ = 퐴̅. (3,퐹) is a subspace of M(3, F) of real dimension 3푑 + 2. We define the 
inner product in (3,퐹)  =  푅  by 〈퐴,퐵〉  =  ½ trace (퐴푃) for 퐴,퐵(3,퐹). Define a 
map  ∶  푆   푅 =   ( 3,퐹) as folows. 

    (x)  =
|푥 | −     푥 푥̅      푥 푥̅
푥 푥̅        |푥 | −      푥 푥̅
푥 푥̅       푥 푥̅     |푥 | −  

  

for 푥 =  (푥 , 푥 , 푥 )  푆  (l)  F3. Then, it is easily verified that   induces a map : 
퐹푃  푅  =  (3,퐹) such that  =  o . Direct computation shows that (퐹푃 )  
푆 (1/3). We blow up the metric 푔  by putting 푔 =  3푔  in FP2, so that the sectional 
curvature of 푅푃  is ⅓ and the holomorphic sectional curvature (resp. Q-sectional curvature) 
of 퐶푃  (resp. 푄푃 ) is  , with respect to the metric 푔. Then  gives a map : 퐹푃  푆  

(l). It is proved in [41] that  is an isometric minimal imbedding. Thus, we have the 
following isometric minimal imbeddings:  

1: 푅푃   S4(l)    (the Veronese surface), 
 2:CP2 S7(1),  
3:QP2  ^S13(l).  

In a similar manner one may obtain (see [41]) an isometric imbedding of the Cayley 
projective plane Cay P2 furnished with the canonical metric (normalized such that the C-
sectional curvature equals   ) into 푆 (1): 

 :Cay 푃    푆 (1).  
In addition there is an immersion  

 :  S2(√3)  푆 (1) 
defined by   =    o . 
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 For 푛,푚 ≥  0, let 푆 (1) be the great sphere in  푆 (1)given by  
푆 (1)  =  {(푥1, . . . , 푥푛+푚+1)  푆 (1): 푥푛+2  =  …  =  푥푛+푚+1  =  0}, 

and 푇 : 푆 (1) 푆 (1)be the inclusion. For p = 0,1,..., we set  
1,P = 4,p o 1:RP2 S4+p,  
2,p = 7,p o 2:CP2   S7+p,  
3,P=  13,p o3: QP2  S13+p,  
4,P=  25,p o4:Cay P2  S25+p,  

1,P=  4,p o1: S2 (√3) S4+p. 
i,p (푖 =  1, . . . ,4;  푝 =  0,1, . . . ), is an isometric minimal imbedding and 1,p  (푝 =
 0,1, . . . ), is an isometric minimal immersion.  

Let 푀 be a compact n-dimensional manifold minimally immersed in 푆 . We 
choose a local field of adapted orthonormal frames in 푆 , that is frames {푒 , . . . , 푒 } 
such that the vectors 푒 , . . . , 푒  are tangent to 푀. The vectors 푒 , . . . , 푒  are therefore 
normal to M. From now on let the indices a, b, c,..., run from 1, . . . , 푛, and the indices , ß, 
,..., run from n + 1,..., n + p. Let ℎ = (ℎ ) be the second fundamental form of the immersed 
manifold M, and (푢)  =  || ℎ(푢, 푢)||  for 푢  푈푀. Since the immersion of 푀 into 푆 is 
minimal, aℎ = 0  for a11 . 

  Let 푥푀. Suppose that 푢푈 푀  satisfies (푢)  =  푚푎푥   (푣). We shall call 
푢 a maximal direction at 푥. Let {푒 , . . . , 푒 } be an adapted frame at 푥. Assume that e1 is a 
maximal direction at 푥, (푒 )  0, and 푒 =  ℎ(푒 , 푒 )/|| ℎ(푒 , 푒 )||. Because of our 
choice of 푒 ,  

              ℎ =  0,     푛 + 1.            (1) 
 Since 푒  is a maximal direction, we have at the point 푥 for any t, x2,..., xn R 

ℎ 푒1 + 푡 푥푎
푛

푎=2
푒푎,푒1 + 푡 푥훼푒훼

푛

푎=2
≤ 1 + 푡 (푥 ) (ℎ11

푛+1)2        (2) 

      

Expanding in terms of t, we obtain  
 

4푡ℎ 푥 + 푂(푡 ) ≤ 0. 

 It follows that 
     ℎ   = 0 ,      a = 2, . . . ,n              (3) 
  We now choose an adapted frame at x  M such that in addition to (1) and (3),  

ℎ   = 0 ,      a  b.          (4)  
Once more expanding (2) in terms of t, we obtain 
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−2푡 ℎ (ℎ − ℎ ) − 2 (ℎ ) (푥 )                                        

− 4 ℎ ℎ 푥
,

푥 + 푂(푡 ) ≤ 0.                                                                  (5) 

 

It follows that  

2 ( ℎ1푎
푛+1)2 ≤ ℎ11

푛+1 ℎ11
푛+1 − ℎ푎푎

푛+1  ,        푎 = 2, … ,푛                 (6) 

Let us define a tensor field  퐻 =  (퐻 ) on M by the formula 
 

       퐻 =  ∑ ℎ  ℎ                         (7) 
 It is clear that (푢)  =  퐻(푢,푢, 푢, 푢).  
Lemma (2.1.1)[43]. Let 푢 be a maximal direction at 푥푀. Assume that (푢)  0. Let 푒 ,... 
, 푒  be an adapted frame at x such that 푒 =  푢, 푒  =  ℎ(푒 , 푒 )/||ℎ(푒 , 푒 )||, and 
ℎ  =  0 for 푎  푏. At the point x  

(i) if 푝 = 1, then  
1
2

(∆퐻)  ≥ (ℎ ) 푛 − (ℎ )                                         (8) 

    (ii) if    푝 ≥  2, then 
1
2

(∆퐻)  ≥ (ℎ ) 푛 − 푛(ℎ ) − 2 (ℎ )                                         (9) 

with equality attained if and only if 

 (ℎ − ℎ ) ℎ (ℎ − ℎ ) − 2 (ℎ



)  = 0                 (10) 

                                                               

and  
           a(ℎ )  = 0          (11) 

for all a and all , where  and   denote the Laplacian and the covariant derivative, 
respectively.  
Proof. 

1
2

(∆퐻) = ℎ11
푛+1 (∆ℎ)11

푛+1 + (∇푎
푎,훼

ℎ11
훼 )2 

 Using Simons' formula [60] for the Laplacian of the second fundamental form (see also 
[55]), we obtain 
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1
2

(∆퐻) = (ℎ11
푛+1)2 푛 − (ℎ푎푎

푛+1

푎
)2 + (∇푎

푎,훼
ℎ11
훼 )2      푖푓 푝 = 1,                    (12) 

and  
1
2 (∆퐻) = (ℎ11

푛+1)2 푛− 푛(ℎ11
푛+1)2 − 2 (ℎ푎푎

푛+1

푎
)2

+ ℎ11
푛+1

푎
ℎ11
푛+1 − ℎ푎푎

푛+1 ℎ11
푛+1 ℎ11

푛+1 − ℎ11
푛+1 − 2 (ℎ1푎



푛+1
)2 + (∇푎

푎,훼
ℎ11
훼 )2,     if 푝 ≥ 2, (13)  

from which the lemma follows readily by inequality (6).  
Lemma (2.1.2)[43]. Let an adapted frame {푒 , . . . , 푒 } at 푥푀 be as in Lemma (2.1.1).  

(i) Assume that 푛 (=  2푚) is even. If  

      (푢) ≤  
1,       if p = 1,

,      if p ≥ 2,         for all u∈ UM         

then (퐻) ≥  0.  If equality (퐻) = 0 is attained, then it is possible to renumber 
푒 , . . . , 푒  such that the following equalities hold      

ℎ = ⋯ = ℎ =  −ℎ  = ⋯ = ℎ   =  
1,        푖푓 푝 = 1,
1
√3

       푖푓  푝 ≥ 2.        (14) 

    (ii) Assume that 푛 (=  2푚 +  1) is odd. If  

휎(푢) ≤

⎩
⎨

⎧ 1 −
1
푛

,            푖푓 푝 = 1,
1

3 − 2/푛
,            푖푓 푝 ≥ 2,

푓표푟푎푙푙 푢 ∈ 푈푀  

then (퐻) ≥ 0 . if equality (퐻) = 0  is attained, then it is possible to renumber 
푒 , . . . , 푒  such that the following equalities hold.  

ℎ = ⋯ = ℎ =  −ℎ  = ⋯ = −ℎ               [ 

                           휎(푢) ≤

⎩
⎪
⎨

⎪
⎧ (1−

1
푛)  ,            푖푓 푝 = 1,

1

(3 − 2/푛)
,            푖푓 푝 ≥ 2,

푓표푟푎푙푙 푢 ∈ 푈푀                                 (15)  

        ℎ  = 0.      
Proof. Since 푒  is a maximal direction 

        −ℎ  ≤ ℎ ≤ ℎ ,11 ,   a =  2,..., n.       (16)  
Because of minimality of the immersion of M into Sn+P, 

ℎ = −ℎ                                                    (17) 
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 It is easily seen that the convex function  f(ℎ , … , ℎ ) = ∑ (ℎ )2  of (푛 —  1) 
variables ℎ , … , ℎ  subject to the linear constraints (16), (17) attains its maximal value 
when (after suitable renumbering of e1,..., en)  

ℎ = ⋯ = ℎ =  −ℎ  = ⋯ = −ℎ     , if 푛 =  2푚  
and  
                    ℎ = ⋯ = ℎ =  −ℎ  = ⋯ = −ℎ    
                                                                               ℎ   = 0, 푖푓 푛 = 2푚 + 1 
Therefore, by inequalities (8), (9), 

1
2 (∆퐻) ≥

⎩
⎪
⎨

⎪
⎧ 푛(ℎ ) [1− 휎(푒 )],                                푖푓 푝 = 1, 푛 = 2푚                     

푛(ℎ ) [1− 3휎(푒 )]                               푖푓 푝 ≥ 2,푛 = 2푚                    

(ℎ11
푛+1)2[푛− (푛 − 1)휎(푒1)]                푖푓 푝 = 1,푛 = 2푚+ 1      

(ℎ11
푛+1)2[푛− (3푛− 2)휎(푒1)]             푖푓 푝 ≥ 2,푛 = 2푚+ 1.    

             

Let 퐿(푥) be a function on 푀 defined by 퐿(푥)  =  푚푎푥  (u).  
Lemma (2.1.3)[43].   Assume that one of 퐴 , 퐴 , 퐴 , 퐴  is satisfied. 
 (퐴 ) 푝 = 1,푛 is even, (푢)  ≤  1 for all 푢푈푀,  
(퐴 ) 푝 = 1, 푛 is odd, (푢)  ≤  1/(1 –  1/푛) for all 푢푈푀, 
 (퐴 ) 푝 =  1,푛 is even, (푢)  ≤  ⅓ for all 푢푈푀,  
(퐴 ) 푝 ≥  2 ,푛 is odd, (푢)  ≤  1/(3 −  2/푛) for all 푢푈푀. 
 Then 퐿(푥) is a constant function on 푀. 
Proof. Following an idea in [39] we prove the lemma using the maximum principle. Clearly 
퐿(푥) is a continuous function. It suffices to show that 퐿(푥) is subharmonic in the generalized 
sense. Fix 푥  푀 and let 푒  be a maximal direction at x. In an open neighborhood 푈  of x 
within the cut-locus of x we shall denote by 푢(푦) the tangent vector to M obtained by parallel 
transport of 푒  =  푢(푥) along the unique geodesic joining x to y within the cut-locus of x. 
Define 푔 (푦)  =  (푢(푦)). Then 

 푔  (푥)  =   [퐻(푢(푦), 푢(푦), 푢(푦),푢(푦))]y=x 
      =  ∑ (∇ 퐻) (푒 , 푒 , 푒 , 푒 )  =  (퐻) (푥). 

If ‖ℎ(푒 , 푒 )‖  0, then by Lemma (2.1.2), (퐻) (푥) ≥ 0. If |‖ℎ(푒 , 푒 )‖ = 0, then ℎ  0 
at x. In this case the formula of Simons [60] for ℎ shows that ℎ =  0 at x, and therefore  

(퐻) (푥)  =  ( ℎ )  ≥  0
,

 . 

Thus, we obtain that in any case 푔 (x) = (퐻) (푥) ≥ 0. 
 For the Laplacian of continuous functions, we have the generalized definition  

L=  퐶 lim
→

∫ 퐿  / ( , ) ∫ 1 − 퐿(푥)( , )  ,  

where 퐶 is a positive constant and 퐵(푥, 푟) denotes the geodesic ball of radius r with the 
center at x. With this definition 퐿 is subharmonic on 푀 if and only if 퐿(푥) ≥  0 at each 
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point 푥  푀. Since 푔 (푥)  =  퐿(푥) and 푔 ≤  퐿 on Ux, 퐿(푥)  ≥ 푔 (푥)  ≥  0. Thus, 퐿(푥) 
is subharmonic and hence constant on M.  
Lemma (2.1.4)[43].  Assume that one of 퐵 , 퐵 , 퐵 , 퐵  is satisfied. 
(퐵 ) p = 1, n is even, (u) < 1 for all u  U M,  
(퐵 ) p = 1, n is odd, (u) < 1/(1 – 1/n) for all u  U M, 
(퐵 ) p ≥ 1, n is even, (u) < ⅓ for all u  U M,  
(퐵 ) p ≥ 2 , n is odd, (u) < 1/(3 - 2/n) for all u  U M. 
Then 푀 is totally geodesic in 푆 .  
Proof. Let 푥푀 and 푒  be a maximal direction at x. Assume that (e1)0. Let 푔 (푦)  =
 (푢(푦)) be the function defined in the proof of Lemma (2.1.3). By Lemma (2.1.3), 푔  (x) 
is a maximum of 푔 . Therefore, (퐻) (푥)  = 푔 (푥)  ≤  0. On the other hand, by 
Lemma (2.1.2), (H)1111(푥)  ≥  0. Therefore, (H)1111(x) =  0 on M. Hence, by (14) and (15), 

   휎(푒1) =

⎩
⎪
⎨

⎪
⎧

1,                                         푖푓 푝 = 1, 푛푖푠 푒푣푒푛                     
1

1−1/푛
                                 푖푓 푝 = 1, 푛 푖푠 표푑푑,                    

1

3
  ,                               푖푓 푝 ≥ 1, 푛 푖푠 푒푣푒푛               

1

3−2/푛
,                    푖푓 푝 ≥ 2, 푛 푖푠 표푑푑.             

             

contradicting the assumptions B1,B2,B3,B4.  Hence, ℎ(푢,푢) = 0 for all 푢푈푀, that is 푀 is 
totally geodesic in 푆 .   
Theorem (2.1.5)[43]. Let 푀 be a compact n-dimensional manifold minimally immersed in 
a unit sphere 푆 . Assume that n (= 2m) is even.  

(i) If  (u) < 1 for any 푢  푈푀, then M is totally geodesic in Sn+l. 
(ii) If 푀푎푥   (푢) = 1, then M is 푆 (½) ×  푆 (½) minimally imbedded in 

푆  as described above. 
Proof. (i) follows from Lemma (2.1.4). We prove (ii). As in the poof of Lemma (2.1.4), we 
obtain (H)1111 = 0. Hence, by (4) and (14),  

푆(푥) =  (ℎ )
, ,

= (ℎ ) = 푛  

All minimal immersions into Sn+1 satisfying 푆(푥)  푛 were found by S.-S. Chern, M. do 
Carmo, and S. Kobayashi in [37] and B. Lawson in [38]. It is easy to see that among their 
immersions only 푆  (√½) × 푆  (√½) imbedded in 푆 satisfies the condition 
푀푎푥   (푢) = 1.   
  

Theorem (2.1.6)[43]. Let 푀 be a compact n-dimensional manifold minimally immersed in 
a unit sphere 푆 . Assume that 푛 (=  2푚 +  1) is odd. If (푢)  ≤  1/(1 − 1/푛) for any 
푢 ∈  푈푀, then 푀 is totally geodesic in 푆 . 



45 
 

Proof. By Lemmas (2.1.3) and (2.1.4), we have to consider only the case 퐿(푥)  = 
푀푎푥   (푢) = 1/(1 − ) on 푀. As in the proof of Lemma (2.1.4), (H)1111 = 0. Hence, 
by (15),           

  

푆(푥) (ℎ )
, ,

 
1 

1 − 1/푛  ≡ 푛. 

It is shown in [37] that if M is minimally immersed in  푆  and 푆(푥)  푛, then ℎ  may 
attain at most two different values for 푎 =  1, . . . , 푛. However, since by (15),  

ℎ = ,   ℎ  = − ,  ℎ  = 0,         

we obtain a contradiction, so the equality 푀푎푥   (푢) = 1/(1 − ) on UM is 
impossible.   
Theorem (2.1.7)[43]. Let 푀 be a compact n-dimensional manifold minimally immersed in 
a unit sphere  푆 . Assume that 푝 ≥  2 and 푛(= 2푚) is even.  

(i) If (푢)  ≤  ⅓ for any 푢 ∈ 푈푀, then 푀 is totally geodesic in 푆 .  
(ii) If 푀푎푥   (푢) =  , then (푢)  ⅓ on 푈푀, and the immersion of 푀 into 

푆  is one of the imbeddings i,p ( 푖 =  1, . . . , 4;  푝 =  0,1, . . . ), or the 
immersions '1,p (푝 =  0,1, . . . ), described above.  

  Proof. (i) follows from Lemma (2.1.4). We prove (ii). As in the proof of Lemma (2.1.4), 
we obtain (H)1111 = 0. Let the indices i,j, k,..., run from 1,..., m, and let 횤,̅ 횥,̅ 푘, . . ., denote 
푖 +  푚, 푗 +  푚, 푘 +  푚, . . ., respectively. By (14) we have  

           ℎ =  −ℎ  ̅ = −
√  

,        푖 =  1, . . ,푚.               (18) 

Since ||ℎ(푒 , 푒 )||2 ≤  ⅓  and  || h(푒 ̅, 푒 ̅)||2 ≤ ⅓ , we obtain 
         ℎ = −ℎ ̅ ̅

 = 0,          푛 + 1,     푖 =  1, . . ,푚.   ,             (19) 
By (10),  (ℎ ̅

 )2=⅓.  Since each vector ea, (푎 = 1, . . . , 푛), is a maximal direction, 

(ℎ ̅) ==  
1
3

    i, j =  1, … , m                              (20) 

 Let 푢 = (푒 + 푒 )/√2 . Then. 

   (푢) = ||ℎ(푒 + 푒 , 푒 + 푒  ||  

                           = ℎ + ℎ 푒 + 2∑ ℎ 푒 2 

=   + n+1 (ℎ )2 ≤ . 
Therefore, 

      ℎ = 0,                 푛 + 1;    푖, 푗 =  1, . . . ,푚.        (21) 
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Similarly, 
            ℎ ̀ ̀=  0,            푛 + 1;    푖, 푗 =  1, . . . ,푚.       (22) 

Expansion (5) now takes the form  
 

푡 −4 ℎ ̅ℎ 푥 ̅푥 + 푂(푡 ) ≤ 0. 

is a maximal direction,  a. Since each vector e푗푘for  ℎ ̅ℎ = 0 It follows that  

ℎ푖푗 ̅
훼ℎ푖푘

훼  = 0          푗 ≠ 푘,                                                       (23) 

ℎ푖푘
훼 ℎ푗푘

훼  = 0          푖 ≠ 푗,                                                     (24) 

Once more expanding (2) in terms of 푡 , 
2푡  (ℎ ℎ ̅ + ℎ ̅ℎ  ) 푥 푥 푥 ̅

, , ,

+ 푂(푡 ) ≤ 0. 

from which 

ℎ ℎ ̅ +  ℎ ̅ℎ = 0 ,           푖 ≠ 푗 표푟 푘 ≠ 푙                                (25) 

 Using (4) and (19)-(25), we obtain by direct computation that (u) = ⅓ for any 푢푈푀. B. 
O'Neill [40] calls an immersion -isotropic if ||h(u, u)|| =  for any 푢푈푀. Therefore, the 
immersion under consideration is l/√3-isotropic.  

By Lemma (2.1.1), aℎ = 0. It follows that aℎ = 0. By polarization, aℎ  = 0 or 
all , a, b, c. Therefore, the second fundamental form of the immersion is parallel. All -
isotropic minimal immersions into a unit sphere with parallel second fundamental form were 
completely classified by K. Sakamoto in [41]. Among his immersions only 1,p , 2,p , 3,p, 
4,p and '1,p described in above are 1/√3-isotropic.   
Theorem (2.1.8)[43]. Let M be a compact n-dimensional manifold minimally immersed in 
a unit sphere 푆 . Assume that 푝 ≥ 2 and 푛(= 2푚 + 1) is odd. If (푢)  ≤  1/(3 — 2/푛) 
for any 푢 푈푀, then M is totally geodesic in 푆 .  
Proof. By Lemmas (2.1.3) and (2.1.4), we need only consider the case 퐿(푥)  1/(3 −
2/푛) 표푛 푀. We show that this case cannot occur. Thus, assume that 퐿(푥)  1/(3 — 2 /
푛) 표푛 푀. As in the proof of Lemma (2.1.4), (H)1111 = 0. Let the indices 푖, 푗,푘, . . ., run from 
1, . . . ,푚, and let 횤,̅ 횥,̅푘, . . ., denote 푖 +  푚, 푗 +  푚, 푘 +  푚, . . ., respectively. By (15), 

ℎ = ℎ  ̅ = (3 −
)

 ,   푖 = 1, … ,푚 ,   

 ℎ = 0 .                  (26) 

As in the proof of Theorem (2.1.7),  
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 ℎ = ℎ  ̅
 =  0,          n + 1;   i = 1,..., m.          (27) 

 Since ℎ  = −  ℎ −  ℎ ̅ ̅
   , 

 ℎ  = 0.           (28) 
By (10),     

(ℎ ̅
 ) =  

1
3 − 2/푛

,         푖 = 1, … ,푚                                            (29) 

(ℎ ) =  
1

2(3 − 2/푛)
,         푖 = 1, … ,푚                                     (30) 

(ℎ ̅
 ) =  

1
2(3 − 2/푛)

,         푖 = 1, … ,푚                                     (31) 

As in the proof of Theorem (2.1.7), we obtain with the help of expansion (2) the following 
equalities:  

ℎ ̅
 ℎ  = 0,                                                                             (32) 

ℎ ℎ  = 0,                                                                             (33) 

ℎ ̅
 ℎ  = 0,                                                                             (34) 

ℎ ̅
 ℎ ̅

  = 0,                                                                             (35) 

ℎ ̅
 ℎ + ℎ ̅

ℎ  = 0,         푖 ≠ 푗 표푟 푘 ≠ 1                          (36) 

ℎ ℎ + ℎ ℎ  = 0,                      푖 ≠ 푗                              (37) 

ℎ ̅
 ℎ + ℎ ℎ ̅

  = 0,                        푗 ≠ 푘                           (38) 

ℎ ℎ  = 0,                          푖 ≠ 푗                                             (39) 

ℎ ̅
 ℎ ̅

  = 0,                        푖 ≠ 푗                                                (40) 

ℎ ℎ ̅
  = 0,                                                                                 (41) 

      Let 푢 =  ∑ 푢 푒  푈푀. Direct computation with the help of (4) and (26)- (41) shows 
that  
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 (푢)  =  [1– (푢 ) ](3 − 2/푛) .            (42) 
 It follows from (42) that for any 푥푀, the tangent space Tx of M at x is a direct sum of two 
mutually orthogonal subspaces 푇 =  푃  +  푄 , where 푃  is 2푚 −dimensional and is 
defined by  

 푃 =  {푋푇 : ||ℎ(푋,푋)|| = 3 −  ||푋|| },        (43) 

and 푄  is 1-dimensional and is defined by 
 푄 =  {푋푇 : ℎ(푋,푋)  =  0}.          (44) 

Lemma (2.1.9)[43]. The distributions 푃: 푥 → 푃  푎푛푑 푄: 푥 → 푄  are smooth distributions on 
푀. 
Proof. It is sufficient to prove that 푄 is smooth. Let 푥  푀 and {푒 , . . . , 푒 } be a smooth 
local field of orthonormal adapted frames in a neighborhood 푈 of 푥  such that 
푒 (푥 )  푄푥 . If 푈 is sufficiently small, there is a unique vector 푋 of the form 푋 = 
∑ 푋 푒 + 푒  which belongs to 푄  at each point 푥푈. We prove that 푋 , 푎 = 1, … , 2푚, 
are smooth functions of x.  
By (44), 푋 (푥), 푎 = 1, … ,2푚 , are a unique solution of the system of equations 

ℎ (푋,푋) = ℎ
,

(푥)푋 푋 + 2 ℎ (푥)푋 = 0,                (45) 

                                          =  푛 +  1, . . . ,푛 +  푝. 
At the point x0 the Jacobian of system (45) is 

(휕ℎ/휕푋 ) = 2(ℎ  ),     = 푛 +  1, . . . , 푛 +  푝;  푎 =  1, . . . , 2푚. 
By (30), (31) and (39)-(41), the rows of the matrix (ℎ ) are mutually orthogonal nonzero 
vectors. Hence, rank (휕ℎ/휕푋 )= 2푚 at 푥 . Therefore, 푋 , 푎 = 1, … ,2푚, are smooth 
functions of x in a sufficiently small neighborhood of 푥 . 

We now return to the proof of Theorem (2.1.8). Let 푥푀. By Lemma (2.1.9), we may 
choose a smooth family of orthonormal adapted frames {푒 , . . . , 푒 } in some 
neighborhood U of x such that equations (4), (26)-(41) are satisfied on U. Set 

푁 = [(3− 2/푛)]
 
 ℎ ,                푎 = 1, … ,2푚  

By (4), (30), (31), and (39)-(41), the vectors 푒 , N1,..., N2m are orthonormal. Therefore, 
with no loss of generality, we may assume that 푒  = Na, 푎 =  1, . . . ,2푚. Then, 

ℎ  =  ℎ ̅ =  [(3 − 2/푛)]
 
 ,                      푖 = 1, … ,푚,                          (46) 

ℎ  
 = 0,                    푛 + 1 + 푖  , 푖 = 1, … ,푚,                                                   (47) 

ℎ ̅  
 = 0,                    푛 + 1 + 푖  , 푖 = 1, … ,푚,                                                   (48) 
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Let the indices 퐴,퐵,퐶 run from 1, . . . , 푛 +  푝, and let {A} and { } be the coframe 
dual to the frame {푒 } and the connection forms of the Riemannian con- nection on 푆 , 
respectively. Then, 

푑휔 =  휔  ∧ ω  ,                                                                                           (49) 
     

푑휔 =  휔 ∧ ω + 휔 ∧  ωB,                                                                         (50) 

                  = 0,                      (51)  
 =  ℎ 휔                                                                                                          (52) 

푑ℎ − ℎ 휔 − ℎ 휔 + ℎ 휔 = ∇ (ℎ )휔 .          (53) 

As in the proof of Theorem (2.1.7), we obtain  
         c(ℎ )  = 0,        푎,푏 =  1, . . . , 2푚;   푐 =  1, . . . , 푛.        (54) 

Let us take 훼 = ℎ + 1 + 푖 ,푎 = 푏 = 푖  in (53). By (4), (26)-(28), (46),(48), and (45) 

−2 ℎ 휔 − 2 3 −
2
푛

휔 + 3 −
2
푛

휔 = 0.                 (55) 

Analogously, taking  =  푛 + 푙 + 푖, 푎 =  푖,푏 = 푗푖 in (53), 

−2 ℎ 휔 + 3 −
2
푛

휔 + 휔 = 0.    푖푗                          (56) 

Summing (56) with respect to (j  i) and adding (55), we have  

−2 ℎ
,

휔 + 푚 3 −
2
푛

휔 − 2 3 −
2
푛

휔 = 0.                 (57) 

Let us now take 푎 =  푛 + 1 +  푖,   푎 =  푏 =  푘` in (53). Then, 

−2 ℎ 휔 + 3 −
2
푛

  휔 = 0.                            (58) 

Summing (58) with respect to k, 

−2 ℎ
,

휔 + 푚 3 −
2
푛

휔 = 0.                (59) 

Finally, adding (57) to (59), we get 
      휔  = 0            (60) 
Analogously, we obtain  

 휔 ̅  = 0             (61) 
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Differentiating (60) and using (4), (26)-(28), (46)-(48), and (21), we obtain 
− ℎ ℎ 휔  /\ω

, ,

+ 휔 /\ ωi = 0                                  (62) 

Taking the coefficient of  ∧     in (62) we have−∑ (ℎ ) + 1 = 0.  By (30), it gives 
2(3 —  2/푛)  =  1 and therefore 푛 =  5/4, yielding a contradiction. Therefore, the equality 
푚푎푥   (푢)  1/(3 — 2 /푛) on 푀 is impossible.  
  
Section(2-2). Minimal Submanifolds in a Sphere 
  

     Let 푀 be an n-dimensional compact minimal submanifold in a unit sphere 푆  of 
dimension n + p. Denote by || ||2 the square of the length of the second fundamental form. S.S. 
Chern, M. Do Carmo and S. Kobayashi [46] proved that if  ||||2 ≤     everywhere on 푀, then 

either M is totally geodesic or || ||2 = . In  the latter case 푀 is either a Clifford hypersurface or 

a Veronese surface in 푆 . In [47] Shen Yibing proved that if ||||2 ≤ n/l +  everywhere on 

푀, then 푀 is either a totally geodesic submanifold or a Veronese surface in S4. In [49] Wu 
Baoqiang and Song Hongzao proved that for a 3-dimensional minimal submanifold M in 
푆 , if ‖‖ <  2 everywhere on 푀, then 푀 is totally geodesic.    
 Let 푀 be an n-dimensional compact manifold, 푥 ∶  푀  푆 a minimal immersion. 
We choose a local field of orthonormal frames x, 푒 , . . . , 푒 , . . . , 푒 , … , 푒  such that, 
restricted to 푀, the vectors 푒 , . . . , 푒 are tangent to 푀, and 푒  =  푥. Let 휔A, 1 ≤  퐴 ≤
 푛 +  푝 +  1, be the field of dual frames. Then the structure equations are given by  

dA =  B /\   ,    +  = 0,  

d =     /\   , 퐴,퐵,퐶 =  1, … , 푛 +  푝 +  1.  

We restrict these forms to 푀. Then  
 = 0,  

    =   ℎ  j ,  ℎ  = ℎ  ,  
where  

푛 + 1 ≤   ≤  푛 + 푝, 1 ≤  푖, 푗 ≤  푛. 
The invariant  

|| || =   (ℎ )
, ,

 

is called the square of the length of the second fundamental form. For each , let 퐻 denote 
the symmetric matrix (ℎ ), and set  
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S= i,j ℎ ℎ   
Then the (푝 ×  푝) −matrix (푆) is symmetric and can be assumed to be diagonal for a 
suitable choice of 푒 , . . . , 푒 , i.e 
 

    푆 = 푆      푖푓 훼 = 훽
0           푖푓 ,  

where we set 푆  = 푆 By definition, ||||2 = S .S. S. Chern, M. Do Carmo and 푆. at 
Kobayashi [46] obtained the following formula for the Laplacian of ||  ||2 :  

 ½ || ||  =  (ℎ )
, , ,

+  푛|| ||  −  푁
,

퐻 퐻  −  퐻 퐻 −  푆


          (63)  

in terms . + ∑ 푆  ∑ 푁, 퐻훼퐻훽  −  퐻훽퐻훼  is to derive an upper bound for The crucial point
, which will be carried out in the sequent sections. 2||||of  

  

    First of all, let us notice the following two facts, easily to be verified.  
A)  Let 푇 =  (푇 ) be an, orthogonal, (푛 ×  푛) −matrix, and let *A= TA

tT, 1 ≤  ≤  푝. 
Then  

N(*A
*A − *A

*A) = N(AA − AA)  
*S = S, 
     *S = S. 

B) Let 퐶 =  (퐶) be an orthogonal (푝 ×  푝) −matrix and let  
퐴̅  =   ∑ 퐶 퐴     1 ≤ 훼,훽 ≤ 푝.    

Then  
∑ 푁, (퐴̅ 퐴̅ − 퐴̅ 퐴̅ )  =  ∑ 푁, (퐴 퐴 − 퐴 퐴 )   
                      ∑ 푆̅   =   ∑ 푆    

                                                                 푆̅ = S.  
Let A = (푎 ). According to the fact B, after the transformation by a suitable orthogonal 
(푝 × 푝) −matrix 퐶, the (푝 × 푝) −matrix (푆) may be assumed to be diagonal, i.e.,  

    S =  ∑ 푎,  푎 . =
푆      푖푓 훼 = 훽
0           푖푓 ,                                     (64)  

Then   
           ∑ N, (AA − AA)  +  ∑ S    ≤    S                                             (65) 
Proposition (2.2.1)[52]. Let A , A  be two symmetric (n × n)-matrices. If S1= S2, then  
             N (A A  – A A )  +  ∑ S    ≤    S  S,                                    (66) 
and the equality holds if and only if there exists an orthogonal (n x n)-matrix T such that 
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  TA1 tT = 
1        0      

                           0      
   0      − 1        
          0            0  

 ,             TA2 tT = 

0        1      
                           0      

   1      0        
          0            0  

  

Proof. This proposition follows immediately from Lemma (2.2.2) of Ref. [64] .  
       Let us now study the case of more than two matrices. Let A ,..., A  be symmetric (n × 
n)-matrices (푘 ≥  3) with  
                                            푆 =  푆 = . . . . . =   푆 >  0 

                         푆 = 푆              푖푓 훼 =  훽 
0                푖푓훼 ≠ 훽   

We may assume that A  is diagonal and we denote by 1, 2, …n the diagonal entries in A . 
Then  

S1 =   + … +    , 

                  ∑ 푁 (A A − AA ) =   2∑ ( −   ) (푎


)   

Denote S1= .... = Sk = b. We use Lagrange's method to calculate the maximum of the function 

               F = 
 ∑    ∑ ( )        

 under the constraints  
                       +… +    = b  

       ∑ (푎 ),  = b,  2 ≤  ≤ k.  
Let  

∅ = 퐹 + 푚     − 푏 +  푚 (푎 ) − 푏 + ⋯+ 푚 (푎 , ) − 푏  

Obviously, F attains its maximum 퐹(푞̇) at some point  
and  

휕∅
휕푎  (푞̇) =  0. 

Lemma (2.2.2)[52]. For any , 2 ≤  ≤ 푘, if there exist two nonzero entries in the set {푎̇ ,i<j}, 
then  
      2 ∑ (̇ − ̇ ) (푎̇ ) ≤ 푏                                      (67) 

Proof. Without loss of generality, we may assume that 푎   0. Then from 휕∅
휕푎푖푗

훼  (푞̇) =   0.  we 

have  
(̇ − ̇ )  

푘푏 −
1
푘푏 퐹

(푞̇) + 푚 = 0. 

For any 푎̇   0, 푖 < 푗, we have also  
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(̇ − ̇ )  
푘푏 −

1
푘푏 퐹

(푞) + 푚 = 0. 

it follows for  that 푎   0, 푎  0 that  
     (̇ − ̇ )2 = (̇1 − ̇2)2,   
therefore  

2 ∑ ( ̇푖 − ̇푗) (푎̇ )  = (̇ − ̇ )2 ij
 (푎̇ )  ≤ (̇ − ̇ )2 b. 

Assuming 푎̇    0, we now consider three cases separately.  
1) 푎̇     0 for some j > 2. We have  
      (̇ − ̇ )2 = (̇ − ̇ )2   
Again we consider two subcases.  
If  ̇ − ̇  = ̇ − ̇    then   

b ≧ ̇  +  ̇ + ̇ =  ̇ + 2̇ , 

  (̇1 - ̇2)2 = ̇  +  ̇ − 2̇ ̇  ≦ ̇
 +  ̇ + ̇

 + 2 ̇  

      = ̇
 +  ̇ ≦  푏. 

If  ̇1 - ̇2 = ̇1 - ̇j , then ̇j = 2 ̇1 − ̇2 

b ≧ ̇  +  ̇ + ̇ =  5̇ + 2̇ − 4̇ ̇  

  (̇1 − ̇2)2 = ̇  +  ̇  − 2̇ ̇  ≦5̇ + 2̇ − 4̇ ̇  

   ≦b < 푏 

2) 푎̇     0  for some 푗 > 2. The same argument as in 1) gives that (̇1 − ̇2)≦ 푏 .  

3) 푎̇     0  for some 푖 >  2, 푗 >  푖. We have  
 (̇1 - ̇2)2 = (̇i - ̇j)2 = ½[(̇1 - ̇2)2 + (̇i - ̇j)2] 

       ≦̇
 +  ̇ + ̇

 +  ̇ ≦ b <  푏. 
In summary, we have  
   (̇1 - ̇2)2  ≦ 푏, 

  2 ∑ (̇ − ̇ ) (푎 ) ≦(̇1 - ̇2)2 b <  푏.       

Lemma (2.2.3)[52]. For any  , , 2 ≦  <   ≦ 푘 , we have 
    2 ∑ (̇ − ̇ )  [(푎̇ ) + (푎̇ )  ]  ≦ 3b2                                                           (68) 

Proof. If  ∑ (푎̇ )   = 0 (or (푎̇ )  = 0), then  

     2 ∑ (̇ − ̇ )  [(푎̇ ) + (푎̇ )  ]  

       = 2 ∑ (̇ − ̇ ) (푎̇ )  ≦  2 푆̇1 푆̇ = 2b2 < 3b2.  
So, in the following we assume that  
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    ∑ (푎̇ )    0 , ∑ (푎̇ )   0 
We consider two cases separately.  

1) There are two nonzero elements in the set {푎 , i < j} and there are also two nonzero 

elements in the set {푎  i <j}. In this case the inequality (68) follows immediately 
from Lemma (2.2.2).  
2) There exists only one nonzero element in the set  

{푎̇ , i <j} {or{ 푎̇ , i <j}).  
Without loss of generality, we may assume that 푎̇   0.  
If   ̇1 - ̇2 = 0, then (68) holds obviously. In the case  ̇1 - ̇2 0 we can prove that  

푎̇ =  푎̇ = ⋯ =  푎̇ = 0. 
In fact, from ∅  (푞̇) =  0.   we have  

(̇1  −  ̇2)  
푘푏 −

1
푘푏 퐹

(푞) + 푚 = 0. 

−
1

푘푏
퐹(푞̇) + 푚 푎̇ = 0. 

It follows that 푎̇  = 0. Similarly, we have  
푎̇ = ⋯ =  푎̇ = 0. 

Then the condition   ∑ 푎̇ 푎̇ = 0 implies that 푎̇ = 0. As (푎̇ )   0 suppose that 푎   0 

for some i <j, (i,j)  (1, 2). We have  
2 ∑ (̇ − ̇ )  [(푎̇ ) + (푎̇ )  ] 

    ≦[(̇ − ̇ )2 + (̇ − ̇ )2 ] b. 
We consider three cases separately.  
1)   푖 = 1, 푗 > 2. We have  

  (̇ − ̇ )2 + (̇ − ̇ )2≦3(̇ + ̇ + ̇ ) ≦3b. 
2) 푖 = 2, 푗 > 2. We have  

(̇ − ̇ )2 + (̇ − ̇ )2≦3(̇ + ̇ + ̇ ) ≦3b. 
3) 2 < 푖 < 푗. We have  
  (̇ − ̇ )2 + (̇ − ̇ )2≦2(̇ + ̇ + ̇ + ̇ ) ≦2b. 
Hence  
  2 ∑ ( −  )  [(푎̇ ) + (푎̇ )  ] ≦3b2.    
Lemma (2.2.4)[52]. For any 푚 –  1  matrices 퐴 ,퐴 , . . . . ,퐴  of the matrices 
퐴 ,퐴 , . . . . ,퐴 , 3 ≦ 푚 ≦  푘, we  have  
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 2 (̇ − ̇ )  ( 푎̇ )   ≦  3
2 (푚− 1)푏2                               (69) 

Proof. We prove Lemma (2.2.4) by mathematical induction on 푚. By Lemma (2.2.3), the 
inequality (69) holds for 푚 =  3. Assume that (69) is valid for m. Let 퐴 ,퐴 , . . . . ,퐴   
be m matrices from 퐴 , . . . . ,퐴  Applying (69) to any 푚 −  1 matrices of 퐴 , . . . . ,퐴 1, 

and adding the obtained m inequalities, we get  
2(푚 − 1)  ∑ (̇푖푖<푗 − ̇푗)

2  ∑ (푚+1
ℎ=2 푎̇푖푗

ℎ)2 ≦ (푚 − 1)푚푏2 

which shows that (69) holds for 푚 +  1. Lemma (2.2.4) is proved,     
By Lemma (2.2.4) we have  

퐹(푞̇) ≦  
(푘 − 1)푏 + 푏  

푘푏 =  
3
2. 

Since F attains its maximum F (푞̇) at 푞̇ we obtain the following result.  
Proposition (2.2.5)[52]. Let A1, A2 ..... Ak be symmetric (n × n)-matrices (k≦3). Suppose 
that S1 = S2 =.....= Sk > 0,  

푆 = 푆              푖푓 훼 =  훽 
0                푖푓훼 ≠ 훽  

Then  
    ∑ 푁 (퐴 퐴 − 퐴퐴1) + 푆 ≦  푆  푆.                                            (70) 
Using Proposition (2.2.1) and Proposition (2.2.5) we can prove  
Proposition (2.2.6)[52]. Let 퐴 ,퐴 , . . . ,퐴  be symmetric (푛 ×  푛) −matrices (푘 ≦ 2). Suppose 
that 푆 =  푚푎푥 {푆 , . . . , 푆 } 

푆 = 푆              푖푓 훼 =  훽 
0                푖푓훼 ≠ 훽  

 Then  
               ∑ 푁 (퐴 퐴 − 퐴퐴1) + 푆 ≦  푆  푆.                                         (71) 
and the sign of equality holds if and only if one of the following conditions holds:  

 1) 퐴1  =  퐴2  =. . . . =  퐴푝  =  0, 
2) only one of the matrices 퐴  ..... 퐴 , say 퐴 is different from zero, and 푆 = 푆1 > 0, 
and there exists an orthogonal (푛 ×  푛) −matrix 푇 such that 
 

 푇퐴1
푡푇 = 

1        0      
                           0      

   0      − 1        
          0            0  

 ,             푇퐴푡 푇 = 

0        1      
                           0      

   1      0        
          0            0  
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Proof. We may assume that A1 = 

⎝

⎜
⎜
⎛

                              
                          

 .
           .

                       .
                                      ⎠

⎟
⎟
⎞
     

and  
   푆 =   +  … +  = 푏 > 0.   

We wish to maximize the function  

     F = 
 ∑    ∑ ( )  

 

subject to the constraints  
   +  … +  = 푏 
  0 ≦  푆  ≦ 푏 
                              ⋮    

0 ≦ Sp ≦b.  
Obviousely, F attains its maximum F(푞̇) at some point 
    푞̇ = ̇1, … , ̇푛, 푎̇푖푗

2 , … , 푎̇푖푗
푝 . 

It suffices to consider the following 4 cases separately.  
      1) at 푞̇, 0 < 푆̇2 <b,  0 < 푆̇3 <b, ...., 0< 푆̇p< b,  

For any 푎̇   0 (푖 <  푗, ≥  2), from  (푞̇) = 0 we have  

            (̇ − ̇ )2 = 푆̇1 F(푞̇).  
It follows that  

F(푞̇) = 
̇ ( ) ̇ ⋯ ̇ ̇

̇ ̇   
Hence  
                 F(푞̇) ≦ 1 <  

     2) at 푞̇ , 푆̇2 = .....=  푆̇p = 0.  

We have in this case F (푞̇)  = 
̇
̇ = 1 <    

     3) at 푞̇ , 푆̇2 = .....=  푆̇k = b, for some k ≥ 2,  
푆̇ = 0 for  > k.  

It follows from Propositions (2.2.1) and (2.2.5) that F(푞̇) ≦  

    (4) at 푞̇ , 푆̇2 = .....=  푆̇k = b, for some k ≧ 2, 푘 <  푝,   
0 < 푆̇ < b, ..., 0 < 푆̇ < b, for 1 ≦  푙 ≦ 푝 − 푘 

           푆̇ =0 for      > 푘 + 푙 
In this case the same argument as in 1) gives  
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  F(푞̇) ≦ 
̇ (푞̇) ̇ ⋯ ̇ ∑ (̇푖− ̇푗)  ∑ ( ̇ ) ̇

̇ ̇  

It follows that  

                     F(푞̇) ≦ 
∑ (̇푖− ̇푗)  ∑ ( ̇ ) ̇

̇ ( ̇ ⋯ ̇ )
. 

 Then we have F(푞̇) ≦  by Propositions (2.2.1) and (2.2.5). In summary, we have F(푞̇) ≦  
, therefore the inequality (71) is valid. The conditions for that the sign of equality holds are 
obvious by Propositions (2.2.1) and (2.2.5).  
Lemma (2.2.7)[52]. If 0 < Sp< b for some , 2 ≦   ≦ p, then  

             F(푞̇) = 
∑  ̇ ̇ ̇ ̇    ,

푆̇ ̇ .                                     (72)  

Proof. Without loss of generality, we assume that  =2, and A2 = 

⎝

⎜
⎜
⎛

                              
                          

 .
           .

                       .
                                      ⎠

⎟
⎟
⎞
 

Then  

푁
,

퐴퐴 − 퐴퐴 + 푆  

  = 4∑ ( −  ) ∑ (푎 ) + 푆 + ∑ 푁, 퐴퐴 − 퐴퐴 + ∑ 푆  
We have  

                                                  


(푞̇) = 0.                                                             (73) 

Denote  
                             푏̇ = ∑ (푎̇ ) . 

From (73) we obtain  
2 ∑ (̇ − ̇ ) 푏̇ + 푆̇ ̇ = 푆̇̇ 퐹(푞̇)  
2 ∑ ̇ − ̇ 푏̇ + 푆̇ ̇ = 푆̇̇ 퐹(푞̇) 
      ⋮ 
2 ∑ (̇ − ̇ ) 푏̇ + 푆̇ ̇ = 푆̇̇ 퐹(푞̇)  

Hence  
2 ∑ (̇ − ̇ ̇̇ ) 푏̇ + 푆̇ ̇ = 푆̇̇ 퐹(푞̇)  

2 ∑ (̇ − ̇ ̇̇ ) 푏̇ + 푆̇ ̇ = 푆̇̇ 퐹(푞̇)  
 ⋮ 
2 ∑ (̇ − ̇ ̇̇ ) 푏̇ + 푆̇ ̇ = 푆̇̇ 퐹(푞̇).  

Adding these inequalities we get  
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  F(푞̇) = 
∑ (̇푖− ̇푗)  ∑ ( ̇ ) ̇

̇ ̇ . 

           = 
∑  ̇ ̇ ̇ ̇    

푆̇2 ̇ . 

Theorem (2.2.8)[52]. Let A1, A2,...,Ap be symmetric (푛 × 푛) −matrices (푝 ≧ 2). Denote 
S = trace 퐴퐴,푆  = 푆 =  푁(퐴), 푆 =  푆 +. . . + 푆 . Then  

         ∑ 푁 퐴̇훼퐴̇− 퐴̇퐴̇훼, + ∑ 푆, ≤   푆                                           (73) 
and the equality holds if and only if one of the following conditions holds:  
1) 퐴 = 퐴 =  … . = 퐴 =  0,  
2) only two of the matrices 퐴 , 퐴 , ...., 퐴 are different from zero. Moreover, assuming 
퐴  0,퐴  0,퐴 = ⋯ =  퐴 =  0, then 푆 = 푆 , and there exists an orthogonal (푛 ×  푛) − 
matrix 푇 such that  
     

    푇퐴  
t푇 =  

1          0 
                       0  

0      − 1 
           0         0 

   , 푇퐴  
t푇 =    

1          0 
                       0  

0      − 1 
           0         0 

 

   

Proof. It suffices to consider the following two cases separately.  
1) at 푞̇ , 푆̇   = 푆̇  = … = 푆̇  = b for some k,  

1 ≦ 푘 ≦ 푝,  and 푆̇   S,=0 for  > k.  
By Propositions (2.2.1), (2.2.5) and (2.2.6) we have  

F(푞̇) =  
∑ (∑  ̇ ̇ ̇ ̇   ̇ ) 

̇ ≦  
 ̇  ∑

̇ =  

2) at 푞̇ , 푆̇   = … = 푆̇  = b for some k, 1≦k <p,  
    0 < 푆̇ < 푏, … ,0 < 푆̇ < 푏 푓표푟 1 ≤ 푙 ≤ 푝 − 푘,  

  푆 = 0 푓표푟 훼 > 푘 + 푙. 
By Lemma (2.2.7) we have  

F(푞̇) =  
 ( )( ⋯ )  ∑ (∑  ̇ ̇ ̇ ̇   ̇ )

(푆̇ ⋯ 푆̇ )
 

It follows that  

  F(푞̇) = 
 ∑ (∑    ̇ ̇ 퐴̇퐴̇훼   ̇ )

(푆̇ ⋯ 푆̇ )
 

 

By Proposition (2.2.6) we have F(푞̇) ≦   
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In any case we have F(푞̇) ≦   Since F attains its maximum at 푞̇ we get  

 푁 퐴 퐴 − 퐴퐴 +  ≤  
3
2  푆   

The conditions for that the sign of equality holds are obvious,     
Theorem (2.2.9)[52]. Let 푀 be an n-dimensional compact minimal submanifold in 
푆 ,푝 ≥ 2. Then  

    ∫ 3

2
 ||||2 –  푛 ||||2 ∗ 1 ≥ 0,                                                      (74) 

where *1 denotes the volume element of 푀.  
Proof. Applying the inequality (73), (74) and (63) and integrating over M we get (74).  
 

Theorem (2.2.10)[52]. Let 푀 be an n-dimensional compact minimal submanifold in 푆 , 
푝 ≥ 2. If ||||2 ≤⅔n everywhere on 푀, then 푀 is either a totally geodesic submanifold or a 
Veronese surface in S4.  

Our pinching constant ⅔ n is better than the pinching constants of [46], [47], [49]. 
Theorem (2.2.10) can be rewritten in terms of the scalar curvature R of 푀 as follows.  
Proof. If ||||2 ≦ n everywhere, then either ||||2  0 or ||||2  푛 by Theorem (2.2.9). When 

||||2  n we have ℎ = 0 and we may assume that  

 퐻 =   

1        0      

                           0      

     0    − 1         

          0            0  

 ,               퐻 =  
2푛
3

2
 

0        1      

                           0      

   1        0        

          0            0  

  

      H  = 0  for  ≧ 푛 + 3   
by Theorem (2.2.8). The same argument as in [46] shows that 푑푖푚 (푀) = 2, and as 푀 is 
compact 2 −dimensional minimal surface with ||||2 = , it must be a Veronese surface in 

푆 .   
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Chapter 3 
Rigidity Theorm and Log-Sobolev Inqualities 

We apply the rigidity theorem for submanifolds and we discuss functional inequalities 
for 휇 like the Poincaré inequality, the log-Sobolev inequality or the Gaussian  logarithmic 
isoperimetric inequality. 
 

Section(3-1). Submanifolds with Parallel Mean Curvature in a Sphere 
      We generalize the famous Chern-do Carmo- Kobayashi Rigidity Theorem [53] for 
minimal submanifolds to general cases. Let 푀n be an 푛 −dimensional compact submanifold 
with parallel mean curvature in a unit sphere 푆 (1), and h its second fundamental form. 
It follows from the Gauss equations that the square norm of h is given by  

                            푆 = 푛(푛 − 1) − 푅 + 푛 퐻 , 
where R and H are the scalar curvature and the mean curvature of M respectively. It was 
proved by Okumura [55, 56] that if the normal bundle of 푀 is fiat, 푛 ≧ 3, and 푆 < 2 +

퐻 , then M is totally umbilical. Yau [58] proved that if 푝 > 1, and 푆 <
( )

 , 

then 푀 lies in a totally geodesic 푆 (1). [57] improved Yau's result above. We proved that 

if 푝 > 1, and 푆 < 푚푖푛 ,
( )

, then M is a totally umbilical sphere. We shall show 

a rigidity theorem for submanifolds with parallel mean curvature in 푆 (1) by using a 
different method, which generalizes the main theorems in [53, 54], and also improves the 
results in [55,56,57].  
        Let 푀  be an n-dimensional compact manifold immersed in an (푛 + 푝) −dimensional 
unit sphere 푆 (1). We shall make use of the following convention on the range of indices:  
 1 ≦ 퐴,퐵,퐶 … ≦ 푛 + 푝, 1 ≦ 푖, 푗, 푘, … ≦ 푛,푛 + 1 ≦ 훼,훽, 훾, … ≦ 푛 + 푝. 
Choose a local orthonormal frame field {푒 } in 푆 (1) such that, restricted to M, the ei's 
are tangent to M. Let { } and { } be the dual frame field and the connection l-forms of 
N respectively. Restricting these forms to M, we have  

휔 = ℎ 휔 ,       ℎ = ℎ ,                                                                         (1) 

ℎ = ℎ푖푗
훼휔푗⨂휔푗⨂e , ξ =

1
n

ℎ푖푗
훼

,

e                         (2) 
, ,

 

푅 = 훿 훿 − 훿 훿 + (ℎ ℎ − ℎ ℎ ) ,                           (3) 

푅 = (ℎ ℎ − ℎ ℎ ) ,                                                         (4) 
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where h, ξ, 푅  and 푅  are the second fundamental form, the mean curvature vector, 
the curvature tensor and the normal curvature tensor of M respectively. We set  

    S = ||ℎ||2 , 퐻 = ||ξ|| , 퐻 = (ℎ ) ×                                                               (5)  
Definition (3.1.1)[59]. 푀 is called a submanifold with parallel mean curvature if ξ is 
parallel in the normal bundle of 푀. In particular, 푀 is called minimal if 퐻 vanishes 
identically.  
  We assume that 푀 is a submanifold with paratlel mean curvature (퐻 0). We choose 
푒 such that 푒 //ξ, 푡푟 퐻푛+1 = 푛퐻 푎푛푑 푡푟 퐻훽 = 0, 푛 + 2 ≦ 푛 + 푝 Set  

푆 = (
,

ℎ ) ,    푆 = (
,

ℎ )                                                   (6) 

We have the following proposition immediately from the definition.  
Proposition (3.1.2)[59]. M is a submanifold with parallel mean curvature in 푆 (1) if and 
only if either 퐻 0, or 퐻 is constant and 퐻  퐻  =  퐻퐻 , for all .  
     We denote the covariant derivatives of ℎ  by ℎ  and ℎ , etc. The Laplacian ∆ℎ푖푗 of h 
is defined by ∆ℎ푖푗 = ∑ ℎ푖푗푘푘

  . Following [58], we have    

∆ℎ푖푗푛+1 = ℎ푚푘
푛+1

푘,푚

푅푚푖푗푘 + ℎ푖푚
푛+1

푘,푚

푅푚푘푗푘 ,                                                                                 (7) 

∆ℎ푖푗
훽 = ℎ푚푘

훽

푘,푚

푅푚푖푗푘 + ℎ푖푚
훽

푘,푚

푅푚푘푗푘 + ℎ푘푖
훼

푘,푚
푛+1

푅훼훽푗푘 ,   훽 ≠ 푛 + 1                              (8) 

  By using Lagrange multiplier method, we have the following  
Lemma (3.1.3)[59]. Let 푎 , … ,푎  be real numbers satisfying ∑ 푎 = 0 and ∑ 푎 = 0. Then  

푎 ≦ (푛 − 2)[푛(푛 − 1)] 푎 ,                                                          (9) 

and the equality holds if and only if at least n - 1 numbers of the ai's are same with each 
other.  
For a matrix A = (푎 ) × ,  we denote by 푁(퐴) the square norm of A, i,e., 푁(퐴) =
 푡푟 (퐴 퐴) = ∑ 푎, . Then 푁(퐴) = 푁(푇퐴 푇), for each orthogonal (n × n)-matrix T.  
Lemma(3.1.4)[59]. (See [53,54]). Let An+ 1. .... An+p be symmetric (푛 × 푛)-matrices, Set 
푆 = 푡푟 퐴 퐴 , 푆 = 푆 = 푁(퐴 ), 푆 = ∑ 푆 . Then  

푁(퐴 퐴 − 퐴 퐴 ) +
,

푠 ≤ 1 +
1
2

 푠푔푛 (푝 − 1) 푆               (10)
,

 

where sgn (∙) is the standard sign function. The equality holds if  and only if at most two 
matrices A and A are not zero and these two matrices can be transformed simultaneously 
by an orthogonal matrix into scalar multiples of A and A respectively, where  
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 퐴 = 
0      1       
            0

1        0      
      0          0

,   퐴 = 
1      0       
            0

0    − 1      
      0          0

. 

 First of all, we define our pinching constants as follows  

훼(푛,퐻) = 푛 +
푛

2(푛 − 1)
퐻 −

푛(푛 − 2)
2(푛 − 1)

푛 퐻 + 4(푛 − 1)퐻 ,                     (11) 

퐶(푛,푝,퐻) =
훼(푛,퐻),                                      푓표푟 푝 = 1, 표푟 푝 = 2 푎푛푑 퐻 ≠ 0,

min 훼(푛,퐻), (2푛 + 5푛퐻 ) ,   푓표푟 푝 ≧ 3, 표푟 푝 = 2 푎푛푑 퐻 = 0.    (12) 

Theorem (3.1.5)[59]. Let 푀  be a compact submanifold with parallel mean curvature 
(퐻 0) in 푆 (1). If 푆 ≦ 훼(n, H), then either 푀 is pseudo-umbilical, or 푆 = 푆  = α(푛,퐻) 

and 푀 is the isoparametric  hypersurface S
 ( , )

× S ( , )

 ( , )
 in a totally 

geodesic 푆 (1), where (푛,퐻)  =  퐻 + ( , )
( )

.  

Proof. By (7) and Gauss equations, we have  

 
1
2
∆푆 =  (ℎ

, ,

) + ℎ ∆ℎ
,

 

      

           = (ℎ푖푗푘
푛+1

푖,푗,푘

)2 + ℎ푖푗
푛+1ℎ푚푘

푛+1

푖,푗,푘,푚

 훿푚푗훿푖푘 − 훿푚푘훿푖푗 + ℎ푚푗
 ℎ푖푘

 − ℎ푚푘
 ℎ푖푗





+  ℎ푖푗
푛+1ℎ푖푚

푛+1 훿푚푗훿푘푘 − 훿푚푘훿푗푘 + ℎ푚푗
 ℎ푘푘

 − ℎ푚푘
 ℎ푗푘



푖,푗,푘,푚

 

                                 

= (ℎ
, ,

) + 푛 (ℎ
,

) − ( (ℎ
, ,

) ) − 푛 퐻  

                                      + 푛퐻 ∑ ℎ푖푗
푛+1

푖,푗,푘  ℎ푗푘
푛+1ℎ푘푙

푛+1 − ∑ (∑ (ℎ푖푗푘
푛+1

푖,푗푖,푗,푘 − 퐻훿푖푗)ℎ푖푗
훽)2                                        (13) 

 Let {푒 } be a frame diagonalizing the matrix 퐻  such that ℎ  =   훿   for all 푖, 푗 Set  

푓 = ( )  ,                                                                                                (14) 
                   

휇 = 퐻 −  , 푖 = 1,2, … ,푛                                                               (15) 

퐵 = (휇 )푘

푖

                                                                                               (16) 

Then  
                  퐵  =  0 ,퐵 =  푆  –  푛퐻 ,            (17)  
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                  퐵 =  3퐻푆 –  2푛퐻  –  푓 .              (18) 
From (12), (16), (17) and Lemma (3.1.3), we get  
1
2
∆푆 = (ℎ ) + 푛퐻 − 푆 − 푛 퐻 + 푛퐻푓 − ( 휇 ℎ )

, ,

 

     ≧ (ℎ푖푗푘
푛+1)2 + 푛퐻퐻 − 푆퐻

2 − 푛2퐻2 + 푛퐻 3퐻푆퐻 − 2푛퐻3 −
푛 − 2

√푛(푛 − 1)
퐵2

3
2 − 퐵2푆1

푖,푗,푘

 

= (ℎ ) + 퐵 푛 + 2푛퐻 − 푆 −
푛(푛 − 2)

푛(푛 − 1)
 퐻(푆 − 푛퐻 )

, ,

 

             

          ≧ (ℎ ) − 퐵 푆 − 푛퐻 +
푛(푛 − 2)

2 푛(푛 − 1)
 퐻 +

1
2(푛 − 1) 푛 (푛 − 1)퐻 + 4푛(푛 − 1)

, ,

 

× 푆 − 푛퐻 +
푛(푛 − 2)

2 푛(푛 − 1)
퐻 −

1
2(푛 − 1) 푛 (푛 − 1)퐻 + 4푛(푛 − 1)      (19) 

On the other hand, the assumption  
      푆 ≦ (푛,퐻) 
is equivalent to  

푆 − 푛퐻 +
푛(푛 − 2)

2 푛(푛 − 1)
퐻 −

1
2(푛 − 1)

푛 (푛 − 1)퐻 + 4푛(푛 − 1)   ≦ 0,   (20) 

which together with (19) shows that 푆  is subharmonic on 푀. By the Hopf maximum 
principle, we see that 푆  must be a constant. This together with (19) and (20) force that  

퐵 (푆 − 푛퐻 ) = 퐵 (푆 − 푛퐻 )  ,                                           (21) 

퐵 푆 − 푛퐻2 +
푛(푛 − 2)

2 푛(푛 − 1)
퐻 −

1
2(푛 − 1)

푛3(푛 − 1)퐻2 + 4푛(푛 − 1)2 = 0.     (22) 

If 푆 = 푛퐻 , then M is a pseudo-umbilical submanifold.  
If 푆 = 푆  and  

 √푆 − 푛퐻 + ( )
( )

퐻 −
( )

푛 (푛 − 1)퐻 + 4푛(푛 − 1) = 0, 

then 푆 =  푆 =  (푛,퐻), and 푆 =  0. Consequently M is a hypersurface in a totally 
geodesic Sn+1 (1). From (19) we have  

    퐵 =
( )

퐵  .                                                                     (23)                                              

It follows from Lemma (3.1.3) that at least 푛 − 1 numbers of {휇 } are same with each 
other. Without loss of generality, we assume that 휇 =  휇, 푘 = 1,2, . . . ,푛 − 1, and 휇  
=휇̅. Then  
    (푛 − 1)휇 + 휇 = 0,                                                                 (24) 
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    (푛 − 1)휇̅ + 휇̅ =  훼(푛,퐻) − 푛퐻                                (25) 
Substituting the solution of equations (24) and (25) with condition (푛 − 1)휇 + 휇̅   > 0 into 
(15), we get 

   = 퐻 + ( , )  
( )

  , 푖 = 1,2, … , 푛 − 1                            

   = 퐻 − ( )( ( , )  )                                                                (26) 

Hence 푀 is the isoparametric hypersurface  

푆

⎝

⎛ 1

1 +  (푛,퐻)⎠

⎞ × 푆

⎝

⎛ (푛,퐻)

1 +  (푛,퐻)⎠

⎞  푖푛 푆 (1), 

where (푛,퐻) = 퐻 + ( , )  
( )

  .  

Corollary(3.1.6)[59]. Let 푀  be a compact hypersurface with constant mean curvature 

(퐻 0) in 푆 (1). 푖푓 푆 ≦ 훼(푛,퐻), then either M is the totally umbilical sphere 푆
√

 

or the isoparametric hypersurface 푆
 ( , )

× 푆 ( , )

 ( , )
.  

       If M is a pseudo-umbilical submanifold with nonzero parallel mean curvature and 푝 ≧
2, it is to see from a theorem of [58] that M is a minimal submanifold in  

푆 1

1+퐻2
 with second fundamental form 퐻,  =  푛 + 2, . . . ,푛 + 푝. Hence, we have 

the following  
Theorem (3.1.7)[59]. Let 푀  be a compact submanifold with parallel mean curvature 
(퐻 0) in 푆 (1). if S ≦ α(푛,퐻), then either M is a totally umbilical sphere, a 
isoparametric hyperurface in a totally geodesic 푆 (1), or a minimal submanifold in a 

totally umbilical 푆  .   

Theorem (3.1.8)[59]. Let 푀  be a compact submanifold with parallel mean curvature in 

푆 (1),. If S ≦ C (n, p, H), then either M is the totally umbilical sphere Sn   the 

isoparametric hypersurface 푆
 ( , )

× 푆 ( , )

 ( , )
.  in a totally geodesic 
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푆 (1),, one of ~ne Clifford minimal hypersutfaces 푆 × 푆 ,  푘 =

1,2 . . . . .푛 − 1, in 푆 (1), the Clifford minimal surface  

푆

⎝

⎛ 1

1 +  (푛,퐻)⎠

⎞ × 푆

⎝

⎛ (푛,퐻)

1 +  (푛,퐻)⎠

⎞  푖푛 푆3Sn

⎝

⎛ 1

1 +퐻2
⎠

⎞, 

or the Veronese surface in S4 .    

Proof. (i) If H = 0, M is minimal. The assertion follows from the main theorems in [53, 54]. 
  (ii) If H  0 and p = 1, we know from Corollary (2.3.6) that either 푀 is the hypersphere 

Sn  or the isoparametric hypersurface 푆
 ( , )

× 푆 ( , )

 ( , )
. 

 (iii) If H  0 and p ≧ 2, it is straightforward to see from (8), Proposition (3.1.2) and Lemma 
(3.1.4) that  

∆푆 = (ℎ )
, ,

+ 푡푟(퐻 퐻 ) − 푡푟(퐻 퐻 )  

+푛퐻 푡푟(퐻 퐻 ) − 푡푟 퐻 퐻 + 푛푆  

− 푡푟(퐻 퐻 − 퐻 퐻 ) −
,

푡푟(퐻푛+1퐻훽)
2

훽≠푛+1

                                             (27) 

≥ (ℎ ) + 푛퐻 푡푟 퐻푛+1퐻훽
2

훽≠푛+1
− 푡푟(퐻 퐻 )

, ,

 

    + 푛푆 − 1 +  푠푔푛(푝 − 2) 푆 . 

      We know from Theorem 1that either 푀 is pseudo-umbilical or the isoparametric 

hypersurface 푆
 ( , )

× 푆 ( , )

 ( , )
 in a totally geodesic Sn+1(1), If M is pseudo-

umbilical, then (27) becomes  

                  ∆푆 = ∑ (ℎ ), , + (푛 + 푛퐻 )푆 − 1 + 1
2  푠푔푛(푝 − 2) 푆1

2  

                              ≥ ∑ (ℎ ) + 푆1 푛+ 푛퐻2 − 1 + 1
2  푠푔푛(푝− 2) 푆 − 푛퐻2 ≥ 0., ,                      (28) 

This shows that 푆  is a constant, and the inequalities above become equalities. It is not hard 
to see that  

푆 푛 + 푛퐻 − 1 + 1

2
 푠푔푛(푝 − 2) (푆 − 푛퐻2) = 0                    (29)  
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If S1 = 0, then 푀 lies in a totally geodesic sphere Sn+1(1) and M is the totally umbilical sphere 

푆 .   

If 푛 + 푛퐻 − 1 +  푠푔푛(푝 − 2) (푆 − 푛퐻 ) = 0, namely  

                                               푆 = 푛 + 푛
3

 푠푔푛(푝 − 2) (1 − 퐻2) + 푛퐻2    ,                                                 (30) 

then ℎ = 0 and  

∑ 푡푟(퐻 퐻 − 퐻 퐻 ) −, ∑ 푡푟(퐻푛+1퐻훽)
2

훽≠푛+1 = 1 + 1

2
 푠푔푛(푝 − 2) 푆1

2.  

By Lemma (3.1.4) and the same argument as in [71], we conclude that 푛 = 2, and the second 
fundamental form h can be written as follows 

(a)     푛 = 2 푎푛푑 푝 = 2,퐻 = 퐻 1     0
0    1 ,퐻 = √1 + 퐻 1      0

0  − 1 ,    or  

(b)      푛 = 2 and 푝 ≧ 3,퐻 = 퐻 1     0
0    1 ,퐻 = 1      0

0  − 1 ,퐻 =  0    1
1    0 ,                     

          퐻 =  0,  ≧ 6. 

 By Theorem (3.1.7), we know that M is a minimal submanifold in 푆   with 

second fundamental form 퐻 , . . . ,퐻 . Therefore, M is the Clifford minimal surface  

푆
( )

× 푆 ( , )
( )

 in S3  or the Veronese surface in S4  .   

 
Section(3.2). Sub Elliptic Operators Satisfying a Generalized Curvature Dimension 
Inequality 

Logarithmic Sobolev inequalities, introduced and studied by L. Gross [136], are a 
major tool for the analysis of finite- or infinite-dimensional spaces, see for instance [118]. 
The celebrated Bakry–Émerycriterion [122] which is based on the so-called Γ  calculus for 
diffusion operator sprovides a powerful way to establish such inequalities. However this 
criterion requires some ellipticity property from the diffusion operator and fails to hold even 
for simple subelliptic diffusion operators like the sub-Laplacian on the Heisenberg group 
(see [141]). However in the past few years, most of these examples have in common the 
property that the subelliptic diffusion operator satisfies the generalized curvature dimension 
inequality that was introduced in [125] in an abstract setting. As we will see, this curvature 
dimension inequality may also be used to prove the Poincaré inequality, the log-Sobolev 
inequality or the Gaussian logarithmic isoperimetric inequality for the invariant measure of 
a subelliptic diffusion operator in some interesting new situations.  
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푀 will be a 퐶  connected finite-dimensional manifold endowed with a smooth 
measure 휇 and a second-order diffusion operator 퐿 on 푀, locally subelliptic in the sense of 
[132] (see also [140]), satisfying 퐿1 = 0,  

푓퐿푔 푑휇  =  푔퐿푓푑휇  ,         푓퐿푓 푑휇 ≤ 0, 

 for every 푓,푔 ∈ 퐶 (푀). We indicate with 훤 (푓) ∶= 훤 (푓, 푓)the carré du champ, that is the 
quadratic differential form defined by 

훤 (푓,푔) =
1
2

(퐿(푓푔) − 푓퐿푔 − 푔퐿푓),          푓,푔 ∈ 퐶 (푀).                   (31)  

An absolutely continuous curve 훾 ∶ [ 0,푇] → 푀 is said to be subunit for the operator 퐿 iffor every 

smooth function 푓 ∶ 푀 → 푅 we have 푓 훾(푡) (훤푓) 훾(푡) . We then define thesubunit length of 

훾 푎푠 ℓ푠(훾) = 푇. Given 푥,푦 ∈ 푀, we indicate with 
 푆(푥, 푦) = {훾 ∶ [0,푇] → 푀 | 훾 푖푠 푠푢푏푢푛푖푡 푓표푟 퐿,     훾(0) = 푥, 훾(푇 ) = 푦}. 

we assume that 
푆(푥,푦) ≠ ∅,           푓표푟 푒푣푒푟푦 푥,푦 ∈ 푀. 

 Under such assumption it is easy to verify that 
푑(푥, 푦) = inf {ℓ (훾)| 훾 ∈ 푆(푥, 푦),                                          (32) 

defines a true distance on M. Furthermore, it is known that 
푑(푥,푦) = sup{|푓(푥) − 푓(푦)|  푓 ∈ 퐶 (푀),   ‖훤 (푓)‖  ≤ 1}  ,    푥,푦 ∈ 푀.        (33)  

We assume that the metric space (푀,푑) is complete. 
       In addition to the differential form (84), we assume that 푀 is endowed with another 
smooth symmetric bilinear differential form, indicated with 훤 , satisfying for 푓,푔 ∈
퐶 (푀)  

훤 (푓푔,ℎ) = 푓훤 (푔, ℎ) + 푔훤 (푓, ℎ), 
and 훤 (푓) = 훤 (푓, 푓)  ≥ 0. 
 We make the following assumptions:  
 (H.1) There exists an increasing sequence ℎ ∈ 퐶 (푀) such that ℎ  1 on 푀, and   

‖훤 (ℎ )‖  +  ‖훤 (ℎ )‖  → 0,      푎푠 푘 → ∞ 
 (H.2) For any 푓 ∈ 퐶 (푀) one has 

훤(푓,훤 (푓) = 훤 (푓,훤(푓)). 
       As it has been proved in [121], the assumption (H.1) which is of technical nature, 
implies in particular that 퐿 is essentially self-adjoint on 퐶 (푀). The assumption (H.2) is 
more subtle and is crucial for the validity of most the subsequent results: It is discussed in 
details in [121] in several geometric examples. Let us consider 

훤 (푓,푔) =
1
2

[퐿훤 (푓,푔) − 훤(푓, 퐿푔) − 훤(푔, 퐿푓)],             (34) 
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훤 (푓,푔) =
1
2

[퐿훤 (푓,푔) − 훤 (푓, 퐿푔) − 훤 (푔,퐿푓)]           (35) 

     As for 훤 and 훤 , we will freely use the notations 훤 (푓) = 훤 (푓, 푓),훤 (푓) = 훤 (푓, 푓).  
Definition (3.2.1)[161]. We say that 퐿 satisfies the generalized curvature dimension 
inequality 퐶퐷(휌 , 휌 ,휅, 푑) if there exist constants 휌 ∈ 푅, 휌 > 0, 휅 ≥  0, 푎푛푑 0 < 푑 ≤
∞ such that the inequality 

훤 (푓) + 휈훤 (푓) ≥
1
푑

(퐿푓) + 휌 −
휅
휈
훤 (푓) + 휌 훤 (푓) 

 holds for every 푓 ∈ 퐶 (푀) and every 휈 > 0, where 훤  and 훤  are defined by (34) and (35). 
Theorem (3.2.2)[161]. Assume that 퐿 satisfies the generalized curvature dimension 
inequality 퐶퐷(휌 , 휌 ,휅,∞) with 휌 > 0, 휌 > 0 and 휅 ≥ 0.  
(i) The measure μ is finite and the following Poincaré inequality holds  

푓 푑휇 −  푓 푑휇    ≤
휅 + 휌
휌 휌

  훤 (푓)푑휇              푓 ∈ 퐷(퐿). 

(ii)  퐼푓 휇 is a probability measure, that is 휇(푀) = 1, then for 푓 ∈ 퐶 (푀),  

푓 ln 푓 푑휇 − 푓 푑휇 ln 푓 푑휇 

≤
2(휅 + 휌 )
휌 휌

  훤 (푓)푑휇 +
휅 + 휌
휌

 훤 (푓)푑휇 . 

Theorem (3.2.3)[161]. Assume that the measure μ is a probability measure and that 퐿 
satisfies the generalized curvature dimension inequality 퐶퐷(휌 , 휌 ,휅,∞) for some 휌 ∈ 푅,
휌 > 0, 휅 ≥ 0. Assume moreover that 

푒 ( , )  푑휇(푥) < +∞, 

for some 푥  ∈ 푀 and 휆 >  , then there is a constant 휌  > 0 such that for every function 
푓 ∈  퐶 (푀), 

푓 ln 푓 푑휇 − 푓 푑휇  푙푛 푓 푑휇 ≤
2
휌

훤 (푓)푑휇
푀

. 

       Adapting some methods of Bobkov, Gentil and Ledoux [127], we prove an analogue of 
an Otto–Villani theorem [148]. We recall that 퐿 -Wasserstein distance of two measures 
휈  푎푛푑 휈  on 푀 is defined by 
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풲 (휈 , 휈 ) = inf 푑 (푥, 푦)푑훱(푥,푦)   

where the infimum is taken over all coupling of 휈  푎푛푑 휈  that is on all probability measures 
훱 on 푀 × 푀 whose marginals are respectively 휈  푎푛푑 휈 .  
Theorem (3.2.4)[161].. Assume that the measure μ is a probability measure and that L 
satisfies the generalized curvature dimension inequality 퐶퐷(휌 , 휌 ,휅,∞) for some 휌 ∈
푅,휌 > 0 , 휅 ≤ 0. If the quadratic transportation cost inequality 

푊 (휇, 휈) ≤ 푐퐸푛푡
푑휈
푑휇

                                                   (36)  

is satisfied for every absolutely continuous probability measure 휈 with a constant 푐 <  , 

then the following modified log-Sobolev inequality 

퐸푛푡 (푓) ≤ 퐶
훤(푓)
푓

 푑휇 + 퐶  
훤 (푓)
푓

푑휇 

holds for some constants 퐶  푎푛푑 퐶  depending only on c, 휌 ,κ, 휌 . 
Theorem (3.2.5)[161]. Assume that the measure 휇 is a probability measure, that 퐿 satisfies 
the generalized curvature dimension inequality CD(휌 , 휌 ,κ,∞) for some 휌 ∈ 푅, 휌  >  0,
휅 ≥ 0 and that μ satisfies the log-Sobolev inequality: 

푓 ln 푓 푑휇 − 푓 푑휇  푙푛 푓 푑휇 ≤
2
휌

훤 (푓)푑휇,            푓 ∈  퐶 (푀)       (37)
푀

 

for all smooth functions 푓 ∈  퐶 (푀). Let A be a set of the manifold 푀 which has a finite 
perimeter 푃(퐴) and such that 0 ≤ 휇(퐴) ≤ , then 

푃(퐴) ≥
ln2

4(3 + 2휅
휌 )

 min 휌0,
휌0

휌̅
 휇(퐴) 푙푛

1
휇(퐴) . 

       Let us now turn to the fundamental question of examples to which our above results 
apply. See [125]. 
      A first observation is that if 푀 is an n-dimensional complete Riemannian manifold and 
퐿 is the Laplace–Beltrami operator, the assumptions (H.1) and (H.2) hold trivially with ΓZ 
=0. Indeed, the assumption (H.1) is satisfied as a consequence of the completeness of 푀 and 
the assumption (H.2) is trivially satisfied. In this example, the generalized curvature 
dimension inequality 퐶퐷(휌 ,1,0,n) is implied by (and it is in fact equivalent to) the 
assumption that the Ricci curvature of 푀 satisfies the lower bound 푅푖푐 ≥ 휌 .      
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       Besides Laplace–Beltrami operators on complete Riemannian manifolds with Ricci 
curvature bounded from below, awide class of examples is given by sub-Laplacians on 
Sasakian manifolds. Let 푀 be a complete strictly pseudo convex CR Sasakian manifold with 
real dimension 2푛 + 1. Let 휃 be a pseudo-hermitian form on 푀 with respect to which the 
Levi form is positive definite. The kernel of 휃 determines a horizontal bundleH. Denote now 
by 푇 the Reeb vector field on 푀, i.e., the characteristic direction of 휃. We denote by ∇ the 
Tanaka–Webster connection of 푀. We recall that the 퐶푅 manifold (푀, 휃) is called Sasakian 
if the pseudo-hermitian torsion of ∇ vanishes, in the sense that 푇(푇,푋) = 0, for every 푋 ∈
퐻. For instance the standard 퐶푅 structures on the Heisenberg group 퐻  and the sphere 
푆  are Sasakian. On 퐶푅 manifolds, there is a canonical subelliptic diffusion operator 
which is called the 퐶푅 sub-Laplacian. It plays the same role in 퐶푅 geometry as the Laplace–
Beltrami operator does in Riemannian geometry. We have the following result that shows 
the relevance of the generalized curvature dimension inequality. 
Proposition (3.2.6)[161]. (See [125].) Let (푀, 휃) be a 퐶푅 manifold with real dimension 
2푛 + 1 and vanishing Tanaka–Webster torsion, i.e., a Sasakian manifold. If for every 푥 ∈
푀 the Tanaka–Webster Ricci tensor satisfies the bound 

푅푖푐 (푣, 푣) ≥ 휌 |푣| , 
for every horizontal vector 푣 ∈ 퐻 , then,  for the CR sub-Laplacian of 푀, the curvature 

dimension inequality 퐶퐷 휌 , , 1, 푑  holds with 푑 = 2푛 and 훤 (푓) = (푇푓) . 

     In addition to sub-Laplacians on Heisenberg groups, more generally, the sub-Laplacian 
on any Carnot group of step 2 has been shown to satisfy the generalized curvature dimension 
inequality 퐶퐷(0,휌 ,κ,d), for some values of the parameters 휌  and 휅. Let us mention that 
recently [126], study sub-Laplacians in infinite-dimensional Heisenberg type groups and 
show that a generalized curvature dimension inequality is satisfied with 푑 = +∞. In that 
case the assumption (H.1) is of course not satisfied but is somehow replaced by the existence 
of nice and uniform finite-dimensional approximations, so that with suitable modifications 
the results of this topic may be used. For infinite-dimensional situations, see [139].  
      Another interesting example, which has been highlighted by several works is given by 
the Grushin operator on 푅 . It is defined by 

퐿 =
휕
휕푥

+
‖푥‖

2
휕
휕푦

  

Where ‖푥‖ = 푥  +··· +푥  푓표푟 푥 = (푥 , . . . , 푥 ) ∈ 푅 . This operator admits the Lebesgue 
measure λ as invariant and symmetric measure. If we set 푋  =  ,푌 ,  =

푥    푎푛푑  푍  =   , we can write this operator as 
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퐿 = 푋 + 푌 ,
,

= − 푋∗푋 − 푌 ,
∗ 푌 , . 

The only non-zero Lie bracket relations are 
[푋 ,푌 , ] = 푍                 푓표푟 1 ≤ 푖, 푗 ≤ 푛. 

 This algebra structure is then exactly the one of a Carnot group of step 2 and the criterion 

퐶퐷(0, 휌 ,휅,푛 + 푛 ) therefore holds with 훤 (푓,푓) = ∑  and some constant 휌 . 

Alsoit is easy to see that assumptions (H.1) and (H.2) are satisfied in that case. Let us 
however observe that more general Grushin operators are considered in [160],and that they 
cannot be handled at the moment with our methods, since their Lie algebra correspond to a 
Carnot group of step higher than 2. We mention that some close results are obtained in [137] 
for Fokker–Planck type operators. In those examples, that typically does not satisfy the 
generalized curvature dimension inequality studied, the hypoellipticity of the operator stems 
from its first order part; a situation radically different from the examples discussed above. 
       We assume that the operator 퐿 satisfies the curvature dimension inequality 
퐶퐷(휌 , 휌 ,휅,∞) for some 휌 > 0,휌 > 0, 휅 ≥ 0.  
     The main tool to prove the fore mentioned theorems, is the heat semigroup 푃 = 푒 , which is 
defined using the spectral theorem. Since 퐿 satisfies the curvature dimension inequality 
퐶퐷(휌 ,휌 , 휅,∞), this semigroup is stochastically complete (see [125]), i.e. 푃 1 = 1. Moreover, 
thanks to the hypoellipticity of 퐿, for 푓 ∈ 퐿 (푀),1 ≤ 푝 ≤  ∞, the function (푡, 푥) → 푃 푓(푥) is 
smooth on 푀 × (0,∞) and 

 푃 푓(푥) = 푝(푥, 푦, 푡)푓(푦)푑휇(푦)   

where 푝(푥, 푦, 푡) = 푝(푦, 푥, 푡) > 0 is the so-called heat kernel associated to 푃 .     
    Henceforth, we denote 

퐶 (푀) = 퐶 (푀) ∩ 퐿 (푀). 
 For 휀 > 0 we denote by퐴  the set of functions 푓 ∈ 퐶 (푀) such that  

푓 = 푔 + 휀, 
for some 휀 > 0 and some 푔 ∈ 퐶 (푀), 푔 ≧  0, such that 푔, 훤(푔), 훤 (푔) ∈ 퐿 (푀). As 
show in [125], this set is stable under the action of Pt, i.e., if 푓 ∈ 퐴 , then 푃 푓 ∈ 퐴 .  
       Our goal is to prove Theorem (3.2.2). In that direction, we first establish a useful 
gradient bound for 푃 . 
Proposition (3.2.7)[161]. Let 휀 > 0 and 푓 ∈ 퐴 . For 푥 ∈ 푀, 푡 ≥ 0 one has  

(푃 푓)훤(ln푃 푓) +
휅 + 휌
휌

(푃 푓)훤 (ln푃 푓) 
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≤ 푒  푃 (푓훤(ln 푓)) +
휅 + 휌
휌

푃 (푓훤 (ln 푓))  

 Proof. Let us fix 푇 > 0 once time for all in the following proof. Given a function 푓 ∈ 퐴 , 
for 0 ≤ 푡 ≤ 푇 we introduce the entropy functionals  

∅ (푥, 푡) = (푃 푓)(푥)훤 (ln푃 푓)(푥), 
∅ (푥, 푡) = (푃 푓)(푥)훤 (ln푃 푓)(푥), 

which are defined on 푀 × [0,푇]. As it has been proved in [125], a direct computation shows 
that 

퐿∅ +
휕∅
휕푡

 = 2(푃 푓)훤2(ln푃 푓), 

and 

퐿∅ +
휕∅
휕푡

 = 2(푃 푓)훤 (ln푃 푓). 

Let us observe that for the second equality the hypothesis (H.2) is used in a crucial way.    
     Consider now the function 
       ∅(푥, 푡) = 푎(푡)∅ (푥, 푡) + 푏(푡)∅ (푥, 푡) 
                    = 푎(푡)(푃 푓)(푥)Γ(ln푃 푓)(푥) + 푏(푡)(푃 푓)(푥)Γ (ln푃 푓)(푥), 
 where 푎 and 푏 are two non-negative functions that will be chosen later. Applying the 
generalized curvature dimension inequality 퐶퐷(휌 , 휌 , 휅,∞), we obtain 

 퐿∅ + ∅  = 푎′(푃 푓)훤(ln푃 푓) + 푏′(푃 푓)훤 (ln푃 푓)  

                  +2푎(푃 푓)Γ (ln푃 푓) + 2푏(푃 푓)훤 (ln푃 푓)  

               ≥ 푎 + 2휌 푎 − 2휅 (푃 푓)Γ(ln푃 푓) 

                  +(푏 + 2휌 푎) (푃 푓)Γ (ln푃 푓). 
Let us now chose 

 푏(푡) = 푒  
and 

푎(푡) = −
푏 (푡)
2휌

, 

so that 
푏′ + 2휌2푎 = 0 

and 

푎 + 2휌 푎 − 2휅
푎
푏

 = 0. 

With this choice, we get 
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퐿∅ +
휕∅
휕푡

≥ 0, 

and therefore from a comparison theorem for parabolic partial differential equations we have  
푃 (∅(·,푇))(푥) ≥  ∅(푥, 0). 

Since,  
∅(푥, 0) = 푎(0)(푃 푓)(푥)훤 (푙푛푃 푓)(푥) + 푏(0)(푃 푓)(푥)훤 (푙푛푃 푓)(푥) 

 And 
 푃 (∅(·,푇)) (푥) = 푎(푇)푃 (푓훤(푙푛푓))(푥) + 푏(푇)푃 (푓훤 (푙푛푓)) (푥), 

 A similar proof as above also provides the following:  
Proposition(3.2.8)[161]. Let 푓 ∈ 퐿 (푀) such that 푓 ∈ 퐶 (푀) and 훤(푓),훤 (푓) ∈
퐿 (푀).  퐹표푟 푥 ∈ 푀, 푡 ≥  0 one has 

훤(푃 푓) +
휅 + 휌
휌

훤 (푃푡푓) ≤ 푒 푃 (훤 (푓))  +  
휅 + 휌
휌

푃 (훤 (푓)) . 

Proof. We introduce 
∅ (푥, 푡) = 훤 (푃 푓)(푥), 
∅ (푥, 푡) = 훤  (푃 푓)(푥), 

and observe that 

퐿∅ +
휕∅
휕푡

 = 2훤 (푃 푓), 

and 

퐿∅ +
휕∅
휕푡

 = 2훤 (푃 푓), 

The conclusion is then reached by following the lines of the proof of Proposition (3.2.7).  
 A first interesting consequence of the above functional inequalities is the fact that ρ1 

> 0 implies that the invariant measure is finite.  
Corollary(3.2.9)[161]. The measure μ is finite, i.e. 휇(푀) < +∞  and for every 푥 ∈ 푀, 푓 ∈
퐿 (푀),  

푃 푓(푥) → →
1

휇(푀)  푓 푑휇  . 

 Proof. Let 푓,푔 ∈ 퐶 (푀), we have  

(푃 푓 − 푓)푔푑휇  =
휕
휕푠

 푃 푓 푔푑휇푑푠 =  (퐿푃 푓)푔 푑휇푑푠  

= − 훤 (푃 푓,푔)푑휇푑푠 . 

By means of Proposition (3.2.8), and Cauchy–Schwarz inequality, we find  
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             (푃 푓 − 푓)푔푑휇  

≤ 푒  푑푠 ‖훤 (푓)‖ +  
휅 + 휌
휌

  ‖훤 (푓)‖  훤 (푔)  푑휇 .        (38) 

Now it is seen from spectral theorem that in 퐿 (푀) we have a convergence 푃 푓 → 푃 푓, 
where 푃 푓 belongs to the domain of L. Moreover 퐿푃 푓 = 0. By hypoellipticity of 퐿 we 
deduce that 푃 푓 is a smooth function. Since 퐿푃 푓 = 0, we have 훤 (푃 푓)  = 0 and 
therefore 푃 푓 is constant.  

Let us now assume that 휇(푀) = +∞. This implies in particular that 푃 푓 = 0 because 
no constant besides 0 is in 퐿 (푀). Using then (3.2.7) and letting 푡 → +∞, we infer 

  푓푔푑휇 ≤ 푒  푑푠  ‖훤 (푓)‖ + 
휅 + 휌
휌

  ‖훤 (푓)‖  훤 (푔)  푑휇 . 

Let us assume 푔 ≥ 0,푔  0 and take for f the sequence hn from assumption (H.1). Letting 
푛 → ∞, we deduce 

푔 푑휇  ≤ 0, 

 which is clearly absurd. As a consequence 휇(푀) < +∞.  
 The invariance of 휇 implies then  

푃 푓 푑휇  = 푓 푑휇  , 

and thus 

푃 푓 =
1

휇(푀) 푓 푑휇 . 

Finally, using the Cauchy–Schwarz inequality, we find that for 푥 ∈ 푀, 푓 ∈ 퐿 (푀), 푠, 푡, 휏 ≥
0,   
|푃 푓(푥) − 푃 푓(푥)|   =  |푃 (푃 푓 − 푃 푓)(푥)| 

                 = 푝(휏, 푥, 푦) (푃 푓 − 푃 푓)(푦)휇(푑푦)   

             ≤ 푝(휏, 푥,푦)  휇(푑푦) ‖푃 푓 − 푃 푓‖  

                                         ≤  푝(2휏, 푥, 푥)‖푃 푓 − 푃 푓‖ .  
 Thus, we also have 

푃 푓(푥) → →
1

휇(푀)  푀푓 푑휇. 
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We also deduce a spectral gap inequality: 
Corollary (3.2.10)[161]. For every f in the domain of L, 

푓 푑휇 − 푓푑휇  ≤
휅 + 휌
휌 휌

 훤(푓)푑휇 . 

Proof. We use an argument close to one found in [151]. Let 푓 ∈ 퐶 (푀) with a compact 
support. By Proposition (3.2.8)m we have for 푡 ≥ 0  

훤(푃 푓,푃 푓)푑휇  ≤ 퐶(푓)푒
−2휌1휌2푡
휅+휌2 , 

with 

퐶(푓) = 훤 (푓,푓) +
휅 + 휌
휌

훤 (푓, 푓)푑휇. 

By the spectral theorem, one has 

훤(푃 푓,푃 푓)푑휇 =  휆푒  푑퐸 (푓) 

and 

훤 (푓, 푓)푑휇 =  휆  푑퐸 (푓) 

where 푑퐸 is the spectral measure associated to −퐿. Thus, by Holder inequality, for 0 ≤ 푠 ≤
 푡  

훤(푃 푓,푃 푓)푑휇 =  휆푒  푑퐸 (푓) ≤ 휆푒  푑퐸 (푓) 휆  푑퐸 (푓)  

≤ 퐶(푓)    푒
−2휌1휌2푠
휅+휌2 훤 (푓,푓)푑휇

푡−푠
푡

 

Letting 푡 → ∞ gives 

훤(푃 푓,푃 푓)푑휇 ≤ 푒
−2휌1휌2푠
휅+휌2 훤 (푓,푓)푑휇 

for all 퐶  function with a compact support. Since this space is dense in the domain of the 
Dirichlet form, it implies the desired Poincaré inequality. 
     We also deduce a modified log-Sobolev inequality that involves a vertical term: 
Corollary (3.2.11)[161]. Let us assume 휇(푀) = 1. For 푓 ∈ 퐶 (푀),  

푓 푙푛푓  푑휇 − 푓 푑휇 푙푛 푓 푑휇 ≤
2(휅 + 휌 )
휌 휌  훤(푓)푑휇  +

휅 + 휌
휌   훤 (푓)푑휇 . 

Proof. Let 푔 ∈ 퐴 . We have  
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푔 ln푔 푑휇  − 푔푑휇  푙푛 푔푑휇 = −
휕
휕푡

푃 푔 푙푛 푃 푔 푑휇푑푡 

                               = − 퐿푃 푔 푙푛 푃 푔 푑휇푑푡  

                   =
훤(푃 푔)
푃 푔

 푑휇푑푡 

                           = 푃 푔훤(푙푛푃 푔)푑휇푑푡 

                  ≤ 푒
−2휌1휌2푡
휅+휌2 푑푡 푔훤(푙푛 푔) +

휅 + 휌2

휌1 
푔훤 (ln 푔) 푑휇 

                                              ≤
2 휅 + 휌2

휌1휌2 

훤(푔)
푔

+
휅 + 휌2

휌1 
 
훤푍(푔)

푔
푑휇. 

Let now 푓 ∈ 퐶 (푀) and consider 푔 = 휀 + 푓 ∈ 퐴 . Using the previous inequality and 
letting 휀 → 0, yields  

푓  푙푛 푓  푑휇  − 푓  푑휇  푙푛 푓  푑휇 

≤
2 휅 + 휌2

휌1휌2 
 훤 (푓)푑휇
푀

+
휅 + 휌2

휌1 
훤푍(푓)푑휇

푀
. 

      We assume that the operator L satisfies the curvature dimension inequality 
퐶퐷(휌1, 휌2, 휅,∞) for some 휌 ∈ 푅,휌 >  0,휅 ≥ 0. We shall denote 휌̅  = 푚푎푥(−휌 , 0). 
     We show Theorem (3.2.3). 
Proposition (3.2.12)[161]. Let 휀 > 0 and 푓 ∈ 퐴 . For 푥 ∈ 푀, 푡 > 0 one has  

푡푃 푓(푥)훤(ln푃 푓)(푥) + 휌 푡 푃 푓(푥)훤 (ln푃 푓)(푥)  

≤ 1 +
2휅
휌

+ 2휌̅ 푡 [  푃 (푓 ln 푓)(푥) − 푃 푓(푥) ln푃 푓(푥)]. 

Proof. We may assume 휌 ≥ 0. We proceed similarly to the proof of Proposition  (3.2.7). 
Let 푓 ∈ 퐴 , 0 ≤ 푡 ≤ 푇 and 
                                 ∅ (푥, 푡) = (푃 푓)(푥)훤 (ln푃 푓)(푥), 

∅ (푥, 푡) = (푃 푓)(푥)훤 (ln푃 푓)(푥), 
As before, we consider the function 
 ∅(푥, 푡) = 푎(푡)∅ (푥, 푡) + 푏(푡)∅ (푥, 푡) 
             = 푎(푡)(푃 푓)(푥)훤 (푙푛푃 푓)(푥) + 푏(푡)(푃 푓)(푥)훤 (푙푛푃 푓)(푥), 
 where 푎 and 푏 are to be later chosen. As already seen, applying the generalized curvature 
dimension inequality 퐶퐷(휌 , 휌 , 휅,∞), we obtain 

             퐿∅ + ∅ ≥ 푎 + 2휌 푎 − 2휅 (푃 푓)훤(ln푃 푓) 
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                            +(푏 + 2휌 푎) (푃 푓)훤 (ln푃 푓). 
     The idea is now to chose the functions 푎 푎푛푑 푏 in such a way that  

푏′ + 2휌2푎 = 0 
and 

푎 + 2휌 푎 − 2휅
푎
푏

 ≥ 퐶 

where 퐶 is a constant independent from 푡. This leads to the candidates 

푎(푡) =
1
휌

(푇 − 푡) 

and 
푏(푡) = (푇 − 푡) , 

for which we obtain 

퐶 = −
1
휌
−

2휅
휌

+
2휌
휌

푇. 

For this choice of 푎 푎푛푑 푏, we obtain 

퐿∅ +
휕∅
휕푡

≥ 퐶(푃 푓)Γ (ln푃 푓). 

The comparison principle for parabolic partial differential equations leads then to 

푃 (휑(·,푇))(푥) ≥ ∅(0, 푥) + 퐶 푃 ((푃 푓)훤 (ln푃 푓)) (푥)푑푡. 

It is now seen that 

푃 ((푃 푓)훤 (ln푃 푓) (푥)푑푡 = 푃 (푓 ln 푓)(푥) − 푃 푓(푥) ln푃 푓 (푥), 

which yields 
푇 푃 푓(푥)훤(ln푃 푓)(푥) + 휌 푇 푃 푓(푥)훤 (ln푃 푓)(푥) 

≤ 1 +
2휅
휌

+ 2휌̅  푇 [  푃  (푓 ln 푓)(푥) − 푃 푓(푥) ln푃 푓 (푥)] 

Using a similar argument, we may prove the following:  
Proposition (3.2.13)[161]. Let 푓 ∈ 퐶 (푀), then for 푥 ∈ 푀, 푡 > 0 one has  

푡훤(푃 푓)(푥) + 휌 푡 훤 (푃 푓)(푥) ≤
1
2

1 +
2휅
휌

+ 2휌̅ 푡 [푃 (푓 ) (푥) − 푃 푓(푥) ] 

As a consequence, we get the following useful regularization bound that will be later used:  
Corollary (3.2.14)[161]. Let 푓 ∈ 퐶 (푀), then for all 푡 > 0,   

 훤(푃 푓)
 
≤

1
2 + 휅

휌 + 휌̅ 푡

푡
 ‖푓‖ . 
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An important by-product of the reverse log-Sobolev inequality that was proved in the 
previous section (Proposition 3.2.12) is the following inequality that was first observed by 
F.Y. Wang [154] in a Riemannian framework.  
Proposition (3.2.15)[161]. Let 훼 > 1. For 푓 ∈ 퐿 (푀), 푓 ≥ 0, 푡 > 0, 푥, 푦 ∈ 푀,  

(푃 푓) (푥) ≤ 푃 (푓) (푦) exp
훼

훼 − 1

1 + 휅
휌 + 2휌̅ 푡

4푡
푑 (푥,푦)  

Proof. We first assume 푓 ∈ 퐴 .  
        Consider a subunit curve 훾: [0,푇] → 푀 such that 훾(0) = 푥, 훾(푇) = 푦. 퐿푒푡 훼 > 1 and 
훽(푠) = 1 + (훼 − 1)   ,0 ≤ 푠 ≤ 푇. Let  

∅(푠) =
훼

훽(푠) ln푃푡푓 ( ) (훾(푠)),      0 ≤ 푠 ≤ 푇, 

where 푡 > 0 is fixed. Differentiating with respect to s and using then Proposition (3.2.12) 
yields 

휑 (푠) ≥
훼(훼 − 1)
푇훽(푠)

푃 푓 ( ) ln푓 ( ) − 푃 푓 ( )  푙푛 푃 푓 ( )

푃 푓 ( )  −
훼

훽(푠) 훤 (푙푛 푃푡푓
훽(푠))  

≥
훼(훼 − 1)푡

푇훽(푠)2(1 +  휅휌2
+ 2휌1푡)

 훤(ln 푙푛 푃푡푓훽
(푠)  –

훼
훽(푠) 훤 (푙푛 푃푡푓

훽(푠)). 

Now, for every 휆 > 0, 

− 훤 (푙푛 푃 푓 ( )) ≥  −
1

2휆
훤 푙푛 푃 푓 ( ) −

휆
2

. 

If we chose 

휆 =
(1 +  

2휅
휌2

+ 2휌1푡) 

2(훼 − 1)푡
푇훽(푠) 

we infer 

휑′(푠) ≥  −
훼(1 +  

2휅
휌2

+ 2휌1푡) 

4(훼 − 1)푡
푇. 

Integrating from 0 to 퐿 yields 

ln푃 (푓 ) (푦) − ln(푃 푓) (푥) ≥  −
훼(1 +  

2휅
휌2

+ 2휌̅1푡) 

4(훼 − 1)푡
푇2. 

Minimizing then 푇  over the set of subunit curves such that 훾(0) = 푥 and 훾(푇) = 푦 gives 
the claimed result. 
        If 푓 ∈ 퐿 (푀), 푓 ≥ 0, then for 휀 > 0, n0, and 휏 > 0, the function 휀 + ℎ  푃 푓 ∈
퐴 ,푤ℎ푒푟푒 ℎ  ∈ 퐶 (푀) is an increasing, non-negative, sequence that converges to 1. 
Letting then 휀 → 0, 푛 → ∞ and 휏 → 0 proves that the inequality still holds for 푓 ∈ 퐿 (푀).  
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An easy consequence of the Wang inequality of Proposition (3.3.15) is the following 
log-Harnack inequality. 
Proposition (3.2.16)[161]. For 푓 ∈ 퐿 (푀), inf 푓 > 0, 푡 > 0,푥, 푦 ∈ 푀,  

푃 (ln 푓)(푥) ≤ ln푃 (푓) (푦) +
1 +  

2휅
휌2

+ 2휌̅1푡 

4푡
 푑 (푥,푦). 

       The proof of this result appears in [158] where a general study of these Harnack 
inequalities is done. For the sake of completeness, we reproduce the argument here. 

Proof. Applying Proposition (3.2.15) to the function 푓   for α=2 , we ge 

푃 푓 (푥) ≤ 푃 (푓)(푦) exp
1

2 − 1

1 +  
2휅

휌2

+ 2휌̅1푡 

4푡
 푑2(푥, 푦) . 

Now, since 2 → 0 as 푛 → ∞, by the dominated convergence theorem,  

 푃 (ln 푓)(푥) = lim
→

푃
푓 − 1

2
(푥) 

                   ≤ lim
→

( ( ))  (  
1+ 

2휅
휌2

+2휌̅1푡 

4푡
 푑2(푥,푦))   

 

                       = lim
→

(푃푡푓(푦))2−푛  

2−푛   + (푃푡푓(푦))2−푛
푥푝( 1

2푛−1

1+ 
2휅
휌2

+2휌 ̅1푡 

4푡  ( , ))−1

2−푛  

                 = ln(푃 푓(푦) +
  

푑 (푥,푦) .   

       When 휇 is a probability measure, the above log-Harnack inequalities implies the 
following lower bound for the heat kernel.  
Corollary (3.2.17)[161]. Assume that μ is a probability measure, then for 푡 > 0, 푥,푦 ∈ 푀, 

푝 (푥,푦) ≥ 푒푥푝 −
1 +  

2휅
휌2

+ 2휌̅1푡 

4푡
푑 (푥, 푦) . 

 Proof. Again, we reproduce an argument of Wang [159]. By applying Proposition (3.2.16) 
to the function 푓(·) = 푝 (푥,·) and integrating over the manifold, one gets  

푝 (푥, 푧) ln푝 (푥, 푧)푑휇(푧)  ≤ ln 푝 (푦, 푧) 푝 (푥, 푧)푑휇(푧) +  
1 +  

2휅

휌
2

+ 2휌 ̅
1
푡 

4푡
푑2(푥, 푦). 

Now, by Jensen inequality, ∫ 푝 (푦, 푧)푝 (푥, 푧)푑휇(푧) ≥ 0 thus 
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ln푝 (푥,푦) ≥ −
1 +  

2휅
휌2

+ 2휌̅1푡 

4푡
푑 (푥,푦). 

With Wang’s inequality in hands, we can prove a log-Sobolev inequality provided 
the square integrability of the distance function.  
Theorem(3.2.18)[161]. Assume that the measure 휇 is a probability measure and that L 
satisfies the generalized curvature dimension inequality 퐶퐷(휌 , 휌 ,휅,∞) for some 휌 ∈
푅, 휌 > 0,휅 ≥ 0. Assume moreover that  

 푒 ( , )  푑휇(푥) < +∞, 

for some 푥 ∈ 푀 and 휆 > 휌1

2
  , then there is a constant 퐶 > 0 such that for every function 

푓 ∈ 퐶 (푀),  

푓 ln 푓  푑휇 − 푓  푑휇 ln 푓  푑휇 ≤ 퐶 훤 (푓)푑휇  

Proof. Let 훼 > 1 and 푓 ∈ 퐿 (푀), 푓 ≥ 0. From Proposition (3.2.15), by integrating with 
respect to y, we have 

푓 (푦)푑휇(푦)  ≥ (푃 푓) (푥) exp −
훼

훼 − 1
 

1 +  
2휅

휌
2

+ 2휌 ̅
1
푡 

4푡
푑2(푥,푦) 푑휇(푦)  

                            ≥ (푃 푓) (푥) exp −
훼

훼 − 1
 

1 +  
2휅

휌
2

+ 2휌 ̅
1
푡 

4푡
푑2(푥, 푦) 푑휇(푦)

퐵(푥0,1)
 

                          ≥ 휇(퐵(푥 , 1)) (푃푡푓)α(푥)exp −
훼

훼 − 1
 

1 +  
2휅

휌
2

+ 2휌
1̅
푡 

4푡
푑2(푥 , 푥) + 1) . 

As a consequence, we get 

(푃 푓)(푥) ≤
1

휇(퐵(푥0, 1))
1
훼

 exp 
훼

훼 − 1 
1 +  

2휅

휌2

+ 2휌1̅푡 

4푡
푑2(푥0, 푥) + 1) ‖푓‖ . 

Therefore if 

푒 ( , )  푑휇(푥) < +∞,  

for some 푥 ∈ 푀 and 휆 > 휌1

2
  ,, then we can find 1 < 훼 < 훽 and 푡 > 0 such that 

‖푃 푓‖  ≤  퐶훼,훽‖푓‖ . 
for some constant 퐶 , . This implies the supercontractivity of the semigroup (푃 ) ≥ 0 and 
therefore from Gross’ theorem (see [119]), a defective logarithmic Sobolev inequality is 
satisfied, that is there exist two constants 퐴,퐵 > 0 such that  
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푓 ln 푓 푑휇  − 푓 푑휇  푙푛 푓 푑휇 ≤ 퐴 훤(푓)푑휇   퐵 푓 푑휇,  푓 ∈ 퐶 (푀). 

Now, since moreover the heat kernel is positive and the invariant measure a probability, we 
deduce from the uniform positivity improving property that L admits a spectral gap. That is, 
a Poincaré inequality is satisfied. It is then classical (see [118]), that the conjunction of a 
spectral gap and a defective logarithmic Sobolev inequality implies the log- Sobolev 
inequality (i.e. we may actually take 퐵 = 0 in the above inequality).  

If we take the dimension in the generalized curvature dimension inequality, we may 
obtain an upper bound for the log-Sobolev constant under the assumption that the curvature 
parameter 휌  is positive. 
Theorem (3.2.19)[161]. Assume that the measure 휇 is a probability measure and that 퐿 
satisfies the generalized curvature dimension inequality CD(ρ1,ρ2,κ,d) for some 휌  >
 0, 휌  >  0, 휅 ≥ 0 푎푛푑 푑 ≥ 1. For every function 푓 ∈ 퐶 (푀),  

푓  푙푛 푓  푑휇  – 푓  푑휇  ln 푓  푑휇 ≤ 퐶 훤 (푓)푑휇 

with 

퐶 =
3(휌 + 휅)
휌 휌

 1 + Φ
푑
2

1 +
3휅
2휌

, 

where 
Φ(푥) = (1 + 푥)ln(1 + 푥) − 푥 ln 푥. 

Proof. It is proved in [125] that the generalized curvature dimension inequality 
퐶퐷(휌 , 휌 ,휅, 푑) with 휌 > 0,휌 >  0, 휅 ≥  0 and 푑 > 0 implies the following upper bound 
for the heat kernel: For 푥, 푦 ∈ 푀 푎푛푑 푡 > 0, 

푝(푥,푦, 푡) ≤
1

1 − 푒  ( ) 
(  )

. 

Therefore, from Davies’ theorem ( in [129]), for 푓 ∈ 퐶 (푀), we obtain the following 
defective log-Sobolev inequality which is valid for every 푡 > 0, 

푓 ln 푓  푑휇  – 푓  푑휇  ln 푓  푑휇 

≤ 2푡 훤 (푓)푑휇
푀

− 푑 1 +
3휅

2휌2
  ln 1 − 푒

− 
2휌1휌2푡

3 휌2+휅   푓2 푑휇.
푀

 

The previous heat kernel upper bound also implies that −퐿 has a spectral gap of size at least 

( )
. Therefore, the following Poincaré inequality holds  
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푓  푑휇 − 푓 푑휇   ≤
3(휌 + 휅)

2휌 휌
 훤(푓)푑휇 . 

If we combine the two previous inequalities using Rothaus’ inequality and then chose the 
optimal 푡, we get the result.  
 Theorem (3.2.20)[161]. Assume that the measure 휇 is a probability measure and that 
퐿 satisfies the generalized curvature dimension inequality 퐶퐷(휌 , 휌 ,휅, 푑) for some 휌 >
0,휌 > 0, 휅 ≥  0 and 푑 > 0. 
(i) The metric space (푀, 푑) is compact if and only if a log-Sobolev inequality 
  

푓  푙푛 푓  푑휇  – 푓  푑휇  ln 푓  푑휇 ≤ 퐶 훤 (푓)푑휇,     푓 ∈ 퐶0
∞(푀)         (39) 

is satisfied for some 퐶 > 0. 
 (ii) Moreover, if (푀, 푑) is compact with diameter 퐷 then, there is a constant 
퐶퐷(휌 , 휌 ,휅, 푑) such that  

퐷 ≤
퐶(휌 , 휌 , 휅, 푑)
푚푖푛(1, 휌 )

  

where  is the smallest constant 퐶 such that (125) is satisfied. 

Proof. If 푀 is compact, then  

푒 ( , )  푑휇(푥) < +∞, 

for every 푥 ∈ 푀 and 휆 > 휌1

2
  . Therefore, from Theorem (3.2.18), a log-Sobolev inequality 

is satisfied. 
    Let us now assume that 

푓  푙푛 푓  푑휇  – 푓  푑휇  ln 푓  푑휇 ≤  
2
휌0

훤(푓)푑휇,     푓 ∈ 퐶0
∞(푀) 

is satisfied.  
         Here we only sketch the proof, since we may actually follow quite closely an argument 
from Ledoux [143]. The key is to note that the curvature dimension inequality 
퐶퐷(휌 , 휌 ,휅, 푑)for some 휌 ∈ 푅, 휌 >  0,휌 >  0, 휅 ≥  0 푎푛푑 푑 > 0implies a Li–Yau type 
inequality. In particular for 0 < 푡 ≤ 1 and a positive function f 

0 ≤ 퐴
퐿푃 푓
푃 푓

 +
퐵
푡

 

where 퐴 and 퐵 are some explicit positive constants depending only on 휌 , 휌 , 휅, 푑. Since 
 = 휕  ln 푃 푓, integrating between 푡 and 1 yields, with 훾 =  , 

푃 푓 ≤
1
푡
푃 푓     for all    0 < 푡 ≤ 1. 
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    Using now the equivalence between the log-Sobolev inequality and the hypercontractivity of the 
heat semigroup due to Gross, we find that for 1 < 푝 < 푞 < ∞ 

‖푃 푓‖  ≤ ‖푓‖  

as soon as 푒  ≥   . Therefore, for 푡 = 1, 푝 = 2 and 푞 = 1 + 푒 0, 

‖푃 푓‖  ≤
1
푡
‖푃 푓‖ ≤

1
푡
‖푓‖           for 0 < 푡 ≤ 1. 

Such a semigroup estimate implies a Sobolev inequality 

‖푓‖  8(‖푓‖ +  훤(푓,푓) )  

for some 푟 > 2 . Finally, the conjunction of the logarithmic Sobolev inequality and of the 
above Sobolev inequality implies an entropy-energy inequality that may be used to prove 
that the diameter is bounded . Carefully tracking the constants leads to the desired bound for 
the diameter.  

We shall examine the links between the log-Sobolev inequality and some 
transportations cost inequalities. First, it is well known that the log-Sobolev inequality 
implies some transportation inequalities in a general “metric” setting. Conversely, on a 
weighted Riemannian manifold, under the hypothesis that the Bakry–Émery curvature is 
bounded from below, the converse implication holds true. 

We shall study how some transportation inequalities can, if the generalized curvature 
dimension inequality is satisfied, imply a log-Sobolev inequality. Unfortunately, we were 
only able to establish a partial converse in the sense that the log-Sobolev inequality we 
obtain involves a term with ΓZ. 
      we assume 휇(푀) = 1. 
      Let us begin with some notations. For a positive function f on M, we write 

퐸푛푡 (푓) = 푓ln푓푑휇  − 푓푑휇  ln 푓푑휇. 

We recall that the 퐿 -Wasserstein distance of two measures 휈  푎푛푑 휈  on 푀 is given by 

푊 (휈 , 휈 ) = inf 푑 (푥,푦)푑훱(푥, 푦) 

where the infimum is taken over all coupling of 휈  푎푛푑 휈  that is on all probability measures 
훱 표푛 푀 × 푀 whose marginals are respectively 휈  푎푛푑 휈 .  
Proposition (3.2.21)[161]. Assume that 퐿 satisfies the generalized curvature dimension 
inequality 퐶퐷(휌 , 휌 ,휅,∞) for some 휌 ∈ 푅, ,휌 >  0, 휅 ≥ . Let f  be a non-negative function 

on 푀 such that ∫ 푓 푑휇 = 1  and set 푑휈 = 푓 푑휇. Then, for any 푡 > 0, 
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퐸푛푡 (푃 푓) ≤
1 + 2휅

휌 + 2휌̅ 푡 
4푡 푊 (휇, 푣) . 

 Proof. Let 푡 > 0 and f be a positive function on 푀 such that ∫ 푓 푑휇 = 1 . The log-Harnack 
inequality of Proposition(3.2.16)  applied to the function 푃 푓 gives then 

 푃 (ln푃 푓)(푥) ≤ ln푃 (푓)(푦) +
1
푠

 푑 (푥, 푦), 

with 
푠 =

4푡

1 + 2휅
휌 + 2휌̅ 푡

 

For x fixed, by taking the infimum with respect to y on the right-hand side of the last 
inequality, we obtain  

푃 (ln푃 푓)(푥) ≤ 푄 (ln푃 푓)(푥) 
where 푄  is the infimum-convolution semigroup: 

푄 (휑)(푥) =  inf
∈

휑(푦) +
1

2푠
푑(푥, 푦) . 

Setting 휑 = ln푃 푓, by Jensen inequality 

휑푑휇 = ln푃 푓 푑휇 ≤ ln 푃 푓 푑휇 = 0, 

thus 

푃 (ln푃 푓)(푥) ≤ 푄 (휑)(푥) − 휑푑휇 . 

Since by symmetry: 

퐸푛푡 (푃 푓) = 푓 푃 (ln푃 푓)푑휇 

one finally gets 

퐸푛푡 (푓 ) ≤ sup 푄 (휓)(푥)푑휈 − 휓푑휇 .   

where the supremum is taken over all bounded measurable functions 휓 and where the 
measure 휈 is defined by  = 푓. By Monge–Kantorovich duality, 

sup 푄 (휓)(푥) − 휓푑휇 = inf  푇(푥, 푦)푑훱(푥, 푦) 

where the infimum is taken over all coupling of μ and ν and where the cost T is just 



85 
 

푇(푥,푦) =
1
푠
푑 (푥, 푦). 

Therefore the latter infimum is equal to 푊 (휇, 푣) .  
   The following lemma may be proved in the very same way as Proposition (3.2.7) 
Lemma(3.2.22)[161]. Assume that L satisfies the generalized curvature dimension 
inequality 퐶퐷(휌 , 휌 ,휅,∞) for some 휌 ∈ 푅,휌 >  0, 휅 ≥ 0. 퐿푒푡 휀 > 0 푎푛푑 푓 ∈ 퐴 .퐹표푟 푥 ∈
푀, 푡 ≥0 one has  

푃 푓훤(ln푃 푓) + 푃 푓훤 (ln푃 푓) ≤ 푒 (푃 (푓훤(ln 푓)) + 푃 (푓훤 (ln 푓))),       푡 ≥ 0, 
where 훼 = −푚푖푛(ρ2,ρ1−κ,0).   
Theorem(3.2.23)[161].Assume that 퐿 satisfies the generalized curvature dimension 
inequality 퐶퐷(휌 , 휌 ,휅,∞) for some 휌 ∈ 푅,휌 > 0, 휅 ≥ 0. If the quadratic transportation 
cost inequality 

푊 (휇, 푣) ≤  푐 퐸푛푡
푑휈
푑휇

                                            (40) 

 is satisfied for every absolutely continuous probability measure 휈 with a constant 푐 < 휌1

2
, 

then the following modified log-Sobolev inequality 

퐸푛푡 (푓)퐶
훤(푓)
푓

푑휇 + 퐶  
훤 (푓)
푓

 푑휇,         푓 ∈ 퐴 , 휖 > 0, 

holds for some constants 퐶  and 퐶  depending only on 푐, 휌 , 휅,휌 . 

 Proof. Let 푓 ∈ 퐴  such that ∫ 푓 푑휇 = 1 , by the diffusion property, we have  
푑
푑푡
퐸푛푡 (푃 푓) = −퐼(푃 푓)  

with  

퐼(푃 푓) =
훤(푃 푓)
푃 푓

 푑휇. 

From Lemma (3.2.22), we have 
훤(푃 푓)
푃 푓

≤ 푒 (푃 (푓훤(ln 푓)  + 푃 (푓훤 (ln 푓))), 

 which implies, by integration over the manifold 푀,  

퐼(푃 푓) ≤ 푒
훤(푓)
푓

 푑휇 +
훤 (푓)
푓

 푑휇  . 

As a consequence, 

퐸푛푡 (푓) ≤ 퐼(푃 푓)푑푡 + 퐸푛푡 (푃 푓) 
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≤ 푒 푑푡  
훤(푓)
푓

 푑휇 +
훤 (푓)
푓

 푑휇 + 퐸푛푡 (푃 푓). 

We now use Proposition (3.3.21) and infer 

퐸푛푡 (푓) ≤ 푒 푑푡  
훤(푓)
푓

 푑휇 +
훤 (푓)
푓

 푑휇  

+
1 + 2휅

휌2
+ 2휌1푡

4푡
푊 (휇, 푣) , 

 where 푑휈 = 푓 푑휇. Using the assumption 푊 (휇, 푣) ≤ 푐퐸푛푡 (푓) and choosing T big 
enough finishes the proof.  
  We assume that the measure 휇 is a probability measure, that is 휇(푀) = 1, and we 
show how the curvature dimension inequality 퐶퐷(휌 , 휌 ,휅,∞) together with a log-Sobolev 
inequality implies alogarithmic isoperimetric inequality of Gaussian type. The method used 
here is very close from the one in Ledoux [142].  
      We first need to precise what we mean by the perimeter of a set in our subelliptic setting: 
This is essentially done in [134]. 
     We observe that, given any point 푥 ∈ 푀 there exists an open set 푥 ∈ 푈 ⊂ 푀 in which the 
operator L can be written as 

퐿 = − 푋∗푋 ,                                                          (41) 

where the vector fields 푋  have Lipschitz continuous coefficients in 푈, and 푋∗ indicates the 
formal adjoint of 푋  in 퐿 (푀, 푑휇) . 
        We indicate with 퐹(푀) the set of 퐶  vector fields which are subunit for L. Given a 
function 푓 ∈ 퐿 (푀), which is supported in U we define the horizontal total variation of f 
as 

푉푎푟(푓) = sup
∈ ( )

푓 푋∗휑 푑휇, 

where on U, 휑 = ∑ 휑 푋 . For functions not supported in U, 푉푎푟(푓) may be defined by 
using a partition of unity. The space 

퐵푉(푀) = {푓 ∈ 퐿 (푀) | 푉푎푟(푓)  < ∞}, 
endowed with the norm 

‖푓‖ ( )  = ‖푓‖ ( ) + 푉푎푟(푓), 
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is a Banach space. It is well known that 푊 , (푀) = {푓 ∈ 퐿 (푀)| 훤푓  ∈ 퐿 (푀)} is a strict 
subspace of 퐵푉(푀) and when 푓 ∈ 푊 , (푀) one has in fact  

푉푎푟(푓) =  훤푓 ( ) . 

Given a measurable set 퐸 ⊂ 푀 we say that it has finite perimeter if 1 ∈ 퐵푉(푀). In such 
casethe perimeter of E is by definition 

푃(퐸) = 푉푎푟(1 ). 
We will need the following approximation result,  
 Lemma (3.2.24)[161]. Let 푓 ∈ 퐵푉(푀), then there exists a sequence {푓 } ∈  of functions 
in 퐶 (푀) such that: 
(i) ‖푓 − 푓‖ ( )  → 0;  

(ii)  ∫ 훤(푓 ) 푑휇 → 푉푎푟(푓).  
After this digression, we now state the follwing theorem. 
Lemma (3.2.25)[161]. Assume that L satisfies the generalized curvature dimension 
inequality CD(ρ1,ρ2, κ,∞), let 푓 ∈ 퐶 (푀), then for all 푡 > 0 

‖푓 − 푃 푓‖  
1
2

 +
휅
휌

+ 휌̅ 푡  √푡  ‖훤 (푓)‖  .                           (42) 

Proof. First, since the curvature dimension inequality 퐶퐷(휌 ,휌 , 휅,∞) holds true, by 
Corollary(3.2.14), for all 푔 ∈ 퐶 (푀) and for all 0 < 푡 ≤ 푡 ,   

‖훤(푃 푔)‖ ≤

1
2 + 휅

휌 + 휌̅ 푡

푡
‖푔‖  

Therefore, by duality, for every positive and smooth function f, every smooth function g 
such that‖푔‖ ≤ 1 and all 0 < 푡 ≤ 푡 ,  

                     푔 (푓 − 푃 푓)푑휇 = −  푔퐿푃 푓 푑휇 푑푠 

      = 훤(푃 푔, 푓)푑휇푑푠  

                    ≤ ‖훤 (푓)‖ ‖훤(푃 푔)‖ 푑푠 

                       ≤
1
2 +

휅
휌 + 휌̅ 푡 √푡  ‖훤 (푓)‖ 1 

Theorem(3.2.26)[161]. Assume that L satisfies the generalized curvature dimension 
inequality 퐶퐷(휌 , 휌 ,휅,∞) and that 휇 satisfies the log-Sobolev inequality:  

푓  푙푛 푓  푑휇  – 푓  푑휇  ln 푓  푑휇 ≤  
2
휌0

훤(푓)푑휇,                    (43) 
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for all smooth functions 푓 ∈ 퐶 (푀) . Let 퐴 be a set of the manifold 푀 which has a finite 
perimeter 푃(퐴) and such that 0 ≤ 휇(퐴) ≤ , then 

푃(퐴) ≥
ln 2

4(3 + 2휅
휌  )

 푚푖푛 휌 ,
휌
휌̅

 휇(퐴) ln
1

휇(퐴) . 

 

Proof. Let 퐴 be a set with finite perimeter. Applying Lemma (3.2.26) to smooth functions 
approximating the characteristic function 1A as in Lemma (3.2.24) gives 

‖1 − 푃 1 ‖ ≤
1

2
 +

휅

휌2

+ 휌1푡  √푡  푃(퐴). 

By symmetry and stochastic completeness of the semigroup, 

‖1 − 푃 1 ‖ =  (1 − 푃 1 )dμ + 푃 (1 )dμ 

                       =  (1 − 푃 1 )dμ + (푃 1 )dμ 

= 2 휇(퐴) − 푃 (1 )dμ  

= 2 휇(퐴) − 푃 (1퐴) . 

 Now we can use the hypercontractivity constant to bound 푃 (1퐴) . Indeed, from Gross’ 

theorem it is well known that the logarithmic Sobolev inequality 

푓  푙푛 푓  푑휇  – 푓  푑휇  ln 푓  푑휇 ≤  
2
휌0

훤(푓)푑휇,     푓 ∈ 퐶0
∞(푀) 

is equivalent to hypercontractivity property 
‖푃 푓‖  ≤ ‖푓‖  

for all f in 퐿 (푀) whenever 1 < 푝 < 푞 < ∞ and 푒  ≥    

Therefore, with 푝(푡) = 1 + 푒   <  2, we get,  
1
2 +

휅
휌 + 휌̅ 푡  √푡  푃(퐴) ≥ 2(휇(퐴)−휇(퐴)

2
푝(푡)) 

                                                                    ≥ 2휇(퐴)(1 − 휇(퐴)  ). 
Since for 푥 > 0 

 1 − 푒 min
푥
2

,
1
2

 푎푛푑  
1 − 푒
1 + 푒

≥ min
푥
4

,
1
2

, 

휇(퐴)  ≤ exp −min
휌 푡
4

,
1
4

ln
1

휇(퐴) , 
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1 − 휇(퐴)  ≤ min min
휌 푡
8

,
1
4

ln
1

휇(퐴) ,
1
2

 

Therefore for all 푡 > 0, 

푃(퐴) ≥
2

1
2  +

휅
휌2

+ 휌1푡  √푡
휇(퐴) min min

휌 푡
8

,
1
4

ln
1

휇(퐴) ,
1
2

.        (44) 

With 푡 = 푚푖푛( ,
휌1

), for 0 < 푡 ≤ 푡 , we have 

푃(퐴) ≥
2

1
2  +

휅
휌2

+ 휌1푡  √푡
휇(퐴) min

휌 푡
8

 ln
1

휇(퐴) ,
1
2

 

Now, if μ(A) is small enough, i.e. 휇(퐴) ≤  푒 , we can chose 푡 =  

( )
 ≤  푡  so that 

min  ln ( ) , =   and then get 

푃(퐴) ≥  
휌 푡  휇(퐴)(ln 1

휇(퐴))  

3 + 2휅
휌

. 

When 0 ≤ 휇(퐴) ≤ , we can apply (3.2.26) with 푡 = 푡  and since ln ( ) ≥ ln 2,   

min
휌 푡
8

 ln
1

휇(퐴) ,
1
2

≤
휌 푡 ln 2

2
  

and thus 

푃(퐴)  ≥
ln 2 휌 √푡 휇(퐴) 

2 3 + 2휅
휌

 

Noticing ln
( )

≤ 4  if 휇(퐴)  ≥ 푒 , we obtain that for every A with 0 ≤ 휇(퐴) ≤ , 

푃(퐴) ≥  
휌 푡  휇(퐴)(ln 1

휇(퐴)) ln 2 

4 3 + 2휅
휌

 

Keeping in mind that푡 = 푚푖푛( , ) .  
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Chapter 4 
Stochastic Completenss and Sub-Riemannian Curvature Dimension 

Inequality 
We give a different proof of (and extend) a theorem in Baudoin and Garofalo stating 

that when a smooth, complete and connected manifold satisfies the generalized curvature-
dimension inequality introduced, then the manifold turns out to be stochastically complete. 
The key ingredient is the study of dimension dependent reverse log-Sobolev inequalities for 
the heat semigroup and corresponding non-linear reverse Harnack type inequalities. The 
results apply in particular to all Sasakian manifolds whose horizontal Webster–Tanaka–
Ricci curvature is nonnegative, all Carnot groups of step two, and to wide subclasses of 
principal bundles over Riemannian manifolds whose Ricci curvature is nonnegative. 
 
 

Section (4-1). Volume Growth in Sub-Riemannian Manifolds 
By Baudoin and Garofalo [164] a generalizsation of the curvature- dimension 

inequality was introduced of sub-Riemannian manifolds. It proved, among other results, that 
if a smooth manifold  푀 satisfies such generalized curvature-dimension inequality with a 
finite bound from below on the curvature parameter, then the stochastic completeness of the 
heat semigroup follows. Such result extended to a sub-Riemannian setting a classical 1975 
result by Yau, see [174].  

We generalize this result in [164]. Namely, we extend a result by Grigor’yan (see 
Theorem 11.8 in [68]) that gives a condition on the growth of the volume of balls that 
guarantees stochastic completeness. We establish a point wise estimate of the volume of the 
metric balls when the manifold satisfies the curvature-dimension inequality. Once that these 
results are established, the stochastic completeness proved in [164] will follow as a special 
case. 

 It is worth mentioning that the strength of Grigor’yan’s theorem is that it only 
requires the volume condition to hold at one particular point. This is of special importance 
in the sub-Riemannian setting, since obtaining point wise estimates of the volume of the 
metric balls is an easier task than establishing the uniform control provided by the Bishop-
Gromov comparison theorem. We should however mention by Baudoin et al. [163], in 
which a global doubling property has been proved when the generalized curvature 
dimension inequality holds below with a nonnegative curvature parameter. A detailed 
exposition on the subject of curvature-dimension inequalities and Ricci-lower bounds for 
sub-Riemannian manifolds can be found in [164]. 

 We establish with the help of a Harnack inequality some new volume estimates when 
the manifold satisfies the generalized curvature-dimension inequality 퐶퐷(휌 , 휌 , 휅, 푑), with 
a negative curvature parameter 휌 . We generalize Grigor’yan’s theorem to a metric setting 
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and show that the estimates obtained  below imply the stochastic completeness of any 
manifold satisfying the generalized curvature-dimension inequality.  

One of the most important identities in Riemannian geometry is the one due to 
Bochner. The latter states that if M is an n-dimensional Riemannian manifold with Laplacian 
∆, for any 푓 ∈ 퐶 (푀) one has 

 ∆(|∇푓| ) = 2‖∇ 푓‖  + 2〈∇푓,∇∆푓〉 + 2푅푖푐(∇푓,∇푓 ),                 (1) 
where Ric indicates the Ricci tensor of M.Consider the following differential forms on 
functions 푓, g ∈ 퐶 (푀),  

 ( 푓, g) =
1
2

 (∆( 푓g) −  푓 ∆g − g∆푓 )  =  (∇푓,∇g), 

and  

 ( 푓, g) =
1
2

 [∆( 푓, g) −  ( 푓,∆푔) −  (g,∆푓 )]. 

When 푓 =  g, we simply write ( 푓 )  =  ( 푓,푓 ),       ( 푓 )  =   ( 푓,푓 ). In terms of 
these functionals, Bochner’s identity can be reformulated as  

 ( 푓 ) = 2‖∇ 푓‖  + 푅푖푐 (∇푓,∇푓 ). 
 Since the Cauchy-Schwarz inequality gives ‖∇ 푓‖ ≥  (∇푓 ) , it is clear that if the 
Riemannian Ricci tensor on M is bounded from below by 휌 ∈  푅, then we obtain the so-
called curvature-dimension inequality 퐶퐷(휌 , 푛):  

 ( 푓 )  ≥
1
푛

 (∇푓 ) + 휌 ( 푓 ),                                          (2)  

where 푓 ∈ 퐶 (푀). One should notice that by combining Theorem 1.3 in [173] with 
Proposition 3.3 in [162] the following result is obtained: on a complete n-dimensional 
Riemannian manifold M the inequality 퐶퐷(휌 , 푛) is actually equivalent to 푅푖푐 ≥  휌 . 
      Baudoin and Garofalo in [164] introduced a generalization of the curvature-dimension 
inequality (2) which has proved successful in extending to some sub-Riemannian settings 
several results from Riemannian geometry. 
Here is a brief description of their framework which is the same we are going to work with. 
See [164].  
    Consider a smooth connected manifold M endowed with a smooth measure μ and a 
smooth second-order diffusion operator L, which is assumed to be locally sub-elliptic, with 
real coefficients and satisfying: 
(i) 퐿1 = 0;  

(ii)  ∫ 푓 퐿푔푑휇   = ∫ 푔퐿푓푑휇  ;  

(iii) ∫  푓퐿푓푑휇   ≤ 0, 
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for every 푓, g ∈ 퐶 (푀), where 퐶 (푀) denotes the set of smooth and compactly supported 
functions 푓 ∶  푀 →  푅.  
There is a notion of “length of a gradient” canonically associated to 퐿.Consider in fact the 
bilinear differential form: 

  ( 푓,푔) =
1
2

 (퐿 ( 푓푔) −  푓퐿푔 − 푔퐿푓), 

where 푓,푔 ∈ 퐶 (푀), and set  
(푓 )  =  (푓, 푓 ). 

There is also a canonical distance d associated with L which is continuous and defines the 
topology of 푀. It is given by  

푑(푥, 푦) = sup{|푓 (푥) −  푓 (푦)||푓 ∈ 퐶 (푀), ‖(푓)‖ ≤ 1},       (3)  
where for a function g on 푀 we have let ‖g‖ = ess sup |g|. It is assumed that the metric 
space (푀, 푑) be complete.  
       For the purposes it will be necessary to work with yet another distance on 푀. Such 
distance is based on the notion of subunit curve introduced Fefferman and Phong in [166]. 
Here is a brief description of such metric. A result of [171] shows that, given any point 푥 ∈
푀, there exists an open neighborhood of 푥,푈 ⊂  푀, in which the operator 퐿 can be written 
as 

퐿 = −   푋∗  푋 , 

 where the vector fields 푋  have Lipschitz continuous coefficients in U, and 푋∗ indicates the 
formal adjoint in 퐿 (푀,푑휇). Such representation of 퐿 is not unique, and the number of 
vector fields 푋  varies with the representation. However, m is bounded from above by the 
dimension of 푀. A tangent vector 푣 ∈ 푇 푀 is called subunit for 퐿 at x if 푣 =
∑ 푎푖 푋푖 ,푤푖푡ℎ ∑ 푎푖2 ≤  1. The notion of subunitvector does not depend on the local 
representation of 퐿. Furthermore, a Lipschitz 푝푎푡ℎ 훾: [0,푇]  →  푀 is called subunit for 퐿 if 
훾′(푡) is subunit for 퐿 at γ(t) for a.e. 푡 ∈ [0,푇]. The subunit length of γ is defined as 푠(훾) =
 푇. The set of subunit paths joining x to y in M is denoted by 푆(푥, 푦). We assume that 
푆(푥,푦) =  ∅ for every 푥,푦 ∈  푀, so that 

푑 (푥, 푦) = inf{푙  (훾)|훾 ∈ 푆(푥, 푦)},                                     (4) 
defines a true distance on 푀. We can work indifferently with either one of the distances 푑 
and 푑  since 

 푑(푥, 푦)  = 푑 (푥, 푦). 
In addition to , we assume that there exists another first-order bilinear form Z satisfying 
for 푓,푔,ℎ ∈ 퐶 (푀): 
 (i)       ( 푓푔,ℎ)  =  푓   (푔, ℎ) + 푔 ( 푓, ℎ);  
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 (ii)     ( 푓 )  =   ( 푓, 푓 )  ≥ 0. 
Similarly to the Riemannian case, we introduce the following second-order differential 
forms:  

 ( 푓,푔) =
1
2

 [퐿 ( 푓,푔) −  ( 푓,퐿푔) −  (푔,퐿푓)], 

 (푓,푔) =
1
2

[퐿  ( 푓,푔) −  ( 푓, 퐿푔) −  (푔,퐿푓)], 

 and we let  ( 푓 )  =   ( 푓,푓 ),  ( 푓 )  =   ( 푓, 푓 ).  
    The following definition was introduced in [164] and it occupies a central role in the 
developments in that work. It is a generalization of the above mentioned curvature-
dimension inequality (2). 
Definition (4.1.1)[175]. We shall say that M satisfies the generalized curvature-dimension 
inequality 퐶퐷(휌 , 휌 ,휅, 푑) with respect to 퐿 if there exist constants 휌 ∈  푅, 휌  >  0, 휅 ≥ 0, 
and 푑 ≥ 2 such that the inequality  

  ( 푓 ) + 휈 ( 푓 ) ≥
1
푑

(퐿푓) + 휌 −
휅
휈

( 푓 ) + 휌  ( 푓 )                 (5)  

holds for every 푓 ∈ 퐶 (푀)and every 휈 > 0.  
    From now on we set  

                                                  퐷 = 푑 1 +                                                                      (6) 

where 휌 ,휅, 푑 are the parameters in (5). 
          We emphasize that the parameter 휌  plays the role of a lower bound on a sub- 
Riemannian version of the Ricci tensor, see [164]. We now introduce the general 
assumptions we will be working with. 
Hypothesis (4.1.2)[175]. There exist an increasing sequence ℎ ∈ 퐶 (푀) such that ℎ  1 
on M, and 
                              ‖(ℎ )‖ +   (ℎ )  → 0,       푎푠           푘 → ∞ .  
Hypothesis (4.1.3)[175]. For any 푓 ∈ 퐶 (푀) one has 

                                                   푓,  ( 푓 )  =    ( 푓,(푓)) 
Hypothesis (4.1.4)[175]. There exist 휌 ∈  푅, 휌  >  0,휅 ≥ 0, and 푑 ≥ 2 , such that M 
satisfies the generalized curvature-dimension inequality 퐶퐷(휌 , 휌 , 휅, 푑) with respect to L. 
       Under these hypothesis it was proved in [164] that 퐿 is an essentially self-adjoint 
operator on 퐶 (푀) whose Friedrichs extension (that we continue to denote by 퐿) is the 
generator of a strongly continuous semigroup of contractions on 퐿 (푀), which we denote 
푃  = 푒 . Since the semigroup (푃 ) ≥ 0 issub-Markovian we have 

푃 1 ≤ 1. 
 By Hörmander’s theorem [169], (푡, 푥)  → 푃 푓 (푥) is smooth on 푀 × (0,∞) and  
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푃 푓 (푥)  =  푝 (푥,푦, 푡) 푓(푦)푑휇(푦), 

where 푝(푥, 푦, 푡)  >  0 is the so called heat kernel associated to 푃 . Such function is smooth 
and symmetric, i.e., 

푝(푥,푦, 푡)  =  푝(푦, 푥, 푡). 
By the semigroup property for every 푥, 푦 ∈ 푀 and 0 <  푠, 푡 we have  

푝(푥, 푦, 푡 + 푠)  = 푝 (푥, 푧, 푡) 푝(푧, 푦, 푠)푑휇(푧)  

                              =  푝 (푥, 푧, 푡)푝(푦, 푧, 푠)푑휇(푧)                          (7) 

                                                       = 푃  (푝(푥,·, 푡))(푦). 
       In [164] it was proved that under the Hypotheses (4.1.2),(4.1.3) and (4.1.4) the 
following result holds. 
Theorem (4.1.5)[175]. The manifold 푀 is stochastically complete with respect to the 
semigroup { 푃 } , i.e., 
                                                    푃 1 ≤ 1. 
The objective of this note is to provide a different proof, and a generalization of Theorem 
(4.1.5), by proving that Grigor’yan’s test for stochastic completeness can be extended to the 
present setting.  
        One should point out here that there is alarge class of sub-Riemannian manifolds that 
satisfy the above inequality. Such class includes all CR Sasakian manifolds, all Carnot 
groups with step two, and a wide sub-class of principal bundles, see [164]. 

The main goal is proving an estimate of the volume of the metric balls when the 
curvature-dimension inequality (5) holds, with a curvature parameter 휌 < 0. Before 
proving such estimate, we need to establish a Harnack inequality for non-negative solutions 

of the heat equation 퐻 =  퐿 –  on 푀 which are of the form 푢(푥, 푡)  =  푃 푓 (푥), for some 
푓 ∈ 퐶 (푀) ∩ 퐿 (푀). This inequality is a consequence of the following generalization of 
the celebrated Li-Yau inequality [170], whose proof can be found in [164], 
 Proposition (4.1.6) [175]. Assume that the manifold M satisfies (5). Let 푓 ∈ 퐶 (푀), with 
푓 ≥ 0, then the following inequality holds for 푡 > 0:  

(푙푛 푃  푓 ) +
2휌

3
 푡 (푙푛 푃  푓 ) ≤

퐷
푑

 +
2|휌 |

3
푡
퐿푃 푓
푃 푓

 +
푑휌

6
 푡 +

|휌 |퐷
2

 +
퐷
2푑푡

. 

 Hereafter, we will denote 퐶 (푀)  = 퐶 (푀) ∩ 퐿 (푀).  
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Theorem  (4.1.7) [175]. (Harnack inequality) Assume that (5) holds with 휌 <  0. Let 푓 ∈
퐶 (푀) be such that 푓 ≥  0, and consider 푢(푥, 푡)  =  푃푡푓(푥). For every (푥, 푠), (푦, 푡)  ∈
 푀 × (0,∞) with 푠 <  푡 one has with 퐷 as in (6) 

푢(푥, 푠) ≤ 푢(푦, 푡)
푡
푠

 exp
푑(푥,푦)
4(푡 – 푠)   

퐷
푑

 +  
2 휌1

3
푡  

3푑 휌1 (푡 − 푠)
4

 .         (8) 

Proof. Let f be as in the statement of the theorem, and consider 푓 = ℎ 푓, where ℎ ∈
퐶 (푀) is an increasing sequence with 0 ≤  ℎ  ≤  1, and ℎ   1 on 푀. By the monotone 
convergence theorem we have 푢 (푥, 푡)  =  푃 푓 (푥) 푢 (푥, 푡)  =  푃 푓 (푥) for every (푥, 푡)  ∈
 푀 × (0,∞). Since 푢  =  , Proposition (4.1.6) gives us  

(ln푢푛) ≤
퐷
푑  +  

2|휌 |
3

푡
휕 ln푢푛
휕푡   +  

푑휌
6

 푡 +
퐷|휌 |

2
 +

퐷
2푑푡

 . 

This implies that 

 −
퐷
푑

 +  
2 휌1

3
푡
휕 ln푢
휕푡

 ≤ −(ln푢 ) +
푑휌1

2

6
 푡 +

퐷 휌1

2
 +

퐷2

2푑푡
         (9) 

Fix two points (푥, 푠), (푦, 푡) ∈  푀 × (0,∞) with 푠 <  푡. Let 훾(휏),0 ≤  휏 ≤  푇, be a sub-
unitary path such that 훾(0)  =  푦, 훾(푇)  =  푥. Let 훼(휏),0 ≤  휏 ≤  푇, be the path in 푀 ×
(0,∞) defined by  

훼 (휏) = 훾 (휏), 푡 +  
푠 − 푡
푇

 휏  

so that 훼(0)  =  (푦, 푡),훼(푇)  =  (푥, 푠). We have 

ln
푢푛(푥, 푠)
푢푛(푦, 푠)

  =
푑
푑휏

ln 푢푛 (훼 (휏))푑휏 

 ≤  (ln 푢푛 (훼 (휏))) −
푡 − 푠
푇

 
휕 ln푢푛
휕푡

(훼 (휏)) 푑휏 

Then for any  휖 > 0 

ln
푢푛(푥, 푠)
푢푛(푦, 푠)

≤ 푇
푑
푑휏

ln 푢푛 (훼 (휏))푑휏 −
푡 − 푠
푇

휕 ln 푢푛
휕푡

(훼 (휏))푑휏 

                       ≤
1

2휖
푇 +

휖
2

 (ln 푢푛 (훼 (휏)))푑휏 −
푡 − 푠
푇

휕 ln푢푛
휕푡

훼 ((휏))푑휏        (10) 

Set 훽 (휏) =  + | | 푡 +   휏  for 0 ≤  휏 ≤  푇. From (41) we get  
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−
푡 − 푠
푇

휕 ln 푢푛
휕푡

훼 ((휏))푑휏 ≤ −
푡 − 푠
푇

(ln푢 (훼 (휏)))
훽 (휏) 푑휏 +

푑휌1
2(푡 − 푠)

6푇
푡 + 푠 − 푡

푇 휏
훽 (휏)

푇

0

푑휏
푇

0

 

+
(푡 − 푠)퐷

2푑푇
푑휏

훽 (휏)푡 + 푠 − 푡
푇 휏

 

+
퐷 휌1 (푡 − 푠)

2푇
푑휏
훽 (휏) 

Choose 휖 > 0 such that   
휖
2

 =  
(푡 − 푠)
훽(0)푇

 , 

hence from (4) we obtain 

ln
푢푛(푥, 푠)
푢푛(푦, 푠)

≤
푇2훽(0)
4(푡 − 푠)   +

3 푑휌1 (푡 − 푠)
4  +

퐷
2 ln

푡
푠  

If we now minimize over all sub-unitary paths joining y to x, and we exponentiate, we obtain  

푢 (푥, 푠) ≤ 푢 (푦, 푡)  
푡
푠

exp
푑(푥, 푦)  훽 (0)

4(푡 − 푠)
  +

3|푑휌 |(푡 − 푠)
4

 

 Letting 푛 → ∞ in this inequality we finally obtain (8) 
 We can now extend this inequality to the heat kernel. 
 Corollary (4.1.8) [175]. Let 푝(푥, 푦, 푡) be the heat kernel on M. For every 푥, 푦, 푧 ∈  푀 and 
every 0 ≤ 푠 ≤ 푡 <  ∞ one has  

푝(푥,푦, 푠) ≤ 푝(푥, 푧, 푡)  
푡
푠

exp
푑(푥, 푦)  
4(푡 − 푠)

 
퐷
푑

+
2|푑휌 |

3
푡  +

3푑|휌 |(푡 − 푠)
4

. 

Proof. The idea of the proof is to write the heat kernel in terms of the heat semi- group in 
order to apply the above Harnack inequality. Due to the hypoellipticity of 퐿 we have that 
푝(푥,·,· +휏)  ∈  퐶 (푀 × (−휏,∞)) for 휏 > 0 and 푥 ∈ 푀 fixed. Because of (7) 

푝(푥, 푦, 푠 + 휏)  =  푃  (푝(푥,·, 휏))(푦) 
 and  

푝(푥, 푧, 푡 + 휏)  = 푃 (푝(푥,·, 휏))(푧). 
Consider as in the proof of the previous theorem 푢 (푦, 푡)  =  푃 (ℎ  푝(푥,·, 휏))(푦), where 
ℎ ∈ 퐶 (푀), 0 ≤  ℎ  ≤ 1,푎푛푑 ℎ푛  1. Applying the Harnack inequality (8) we obtain  

푃 (ℎ  푝(푥,·, 휏))(푦)  ≤  푃 (ℎ  푝(푥,·, 휏))  

(푧)  
푡
푠

exp
푑(푥, 푦)  
4(푡 − 푠)

 
퐷
푑

+
2|휌 |

3
푡  +

3푑|휌 |(푡 − 푠)
4

 

By the monotone convergence theorem, we obtain by letting 푛 → ∞   
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 푝(푥, 푦, 푠 + 휏) ≤  푝(푥, 푧, 푡 + 휏)  
푡
푠

 

The corollary follows by letting 휏 → 0.  
         To introduce our next result we recall that in [163] it was proved the following 
pointwise estimate of the volume of the balls in the special case of positive curvature, 
namely 휌 ≥ 0.  
Proposition (4.1.9) [175]. Assume that (6) holds with 휌 ≥ 0 on (푀,푑). Then, for every 
푥 ∈ 푀 and every 푅 >  0 there is a constant 퐶(푑, 휅, 휌 ) >  0 such that, with D as in (6), 

                                휇(퐵 (푥,푅))  ≤ ( , , )
( , , )

푅   ,푅 ≥  푅 . 

The next result generalizes Proposition (4.1.9) to the negative curvature case. 
Proposition (4.1.10) [175]. Assume that (5) holds with 휌 ≥ 0. There exists a constant 
퐶(푑, 휅, 휌 ) >  0 such that, given 푅 , for every 푥 ∈ 푀 and every 푅 ≥  푅  one has              

                     μ 퐵 (푥,푅) ≤ 퐶(푑,휅, 휌 ) exp
2푑|휌 | 푅

푅 푝(푥, 푥,푅 )
 푅 exp(2푑|휌 |푅 ). 

Theorem (4.1.11) [175]. If (푀,푔) is a complete Riemannian manifold with 푅푐 ≥  (푛 −
1) 퐾, where 퐾 ∈ 푅. Then for any 푥 ∈ 푀, 푟 >  0, ( ( , ))

 ( )
 is non-increasing in 푟. Hence,  

휇(퐵 (푥, 푟))  ≤  휇 (퐵 ), 
 where 휇 (퐵 ) denotes the volume of the ball 퐵  in the space form of constant curvature 퐾. 
 At this point one should remember that the volume of a ball in the space form of constant 
curvature 퐾 <  0 is given by 

휇 (퐵 ) =  휔
sinh √−퐾푟

√−퐾
 푑푟. 

This implies, in particular, that when r is large enough we obtain the following bound 
휇(퐵 (푥, 푟))  ≤ 퐶  푒푥푝(퐶2푟),          퐶  ,퐶  >  0. 

 The proof of the Bishop comparison theorem uses the theory of Jacobi fields. Since the 
exponential map in a sub-Riemannian space (푀, 푑) is in general not a local diffeomorphism 
in a neighborhood of the point at which it is based (see[172]), the use of Jacobi fields in this 
more general setting presently encounters some serious obstructions. Instead, function 
analytical tools, like those developed in [164], are emerging to tackle these type of geometric 
problems. 

As an interesting application of Proposition (4.1.10) we obtain a growth estimate of 
the volume for 퐶푅 Sasakian manifolds. Let 푀 be a non degenerate 퐶푅 manifold of real 
hypersurface type and dimension 2푛 + 1, where 푛 ≥ 1. Let 휃 be a contact form on 푀 with 
respect to which the Levi form 퐿  is positive definite. The kernel of 휃 determines the 
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horizontal bundle 퐻. Denote by 푍 the Reeb vector field on 푀 and by ∇ the Tanaka-Webster 
connection on 푀. The pseudo-hermitian torsion with respect to ∇ is  

푇 (푋,푌)  = 훻 푌 − 훻 푋 − [푋,푌]. 
Since the 퐶푅 manifold is Sasakian, we must have 

푇 (푍,푋)  = 0, 
for every 푋 ∈ 퐻. The following result was proved in [164]. 
 Theorem (4.1.12) [175]. Assume that the Tanaka-Webster Ricci tensor is bounded from 
below by 휌 ∈  푅 on smooth functions, that is  

푅푖푐(훻 푓,훻 푓 )  ≥  휌 ‖훻 푓‖  .                                     (11) 

 Then, 푀 satisfies the generalized curvature-dimension inequality 퐶퐷 휌 ,   ,1,2푛  ,i.e., 

  ( 푓 ) + 휈 (푓) ≥
1

2푛
 (퐿푓) + 휌 −

1
휈

(푓) +
푛
2

  (푓),  

for every 푓 ∈ 퐶 (푀) and any 휈 > 0. 
       As a consequence of Theorem (4.1.12) and of Proposition (4.1.10) we obtain the 
following result. Let us note that in the present case we obtain from (6)  

퐷 = 푑 1 +
3휅
2휌

= 2푛 + 6. 

 Proposition (4.1.13) [175]. Let 푀 be a complete Sasakian manifold with Tanaka-Webster 
Ricci tensor satisfying (12) with  휌 <  0. There exists a constant 퐶(푛) > 0 such that, given 
푅 , for every 푥 ∈ 푀 and every 푅 ≥ 푅  one has 

 휇(퐵 (푥,푅))  ≤ 퐶(푛) 푒푥푝
4푛 휌1 푅

푅 푝(푥, 푥,푅 )푅  exp 4푛|휌1|푅  

We recall that a manifold (M,d) is stochastically complete when the heat semigroup 
satisfies  푃 1 = 푒 1 = 1 for every 푡 > 0. This is equivalent to the condition  

푝 (푥,푦, 푡)푑휇(푦)  = 1, 

for all 푥 ∈ 푀 and 푡 >  0. It is well-known, see [248] for instance, that the stochastic 
completeness is equivalent to the fact that, for a given 푇 >  0, the only bounded solution of 
the Cauchy problem: 

휕푢
휕푡  =  퐿푢        푖푛 푀 × (0,푇),

푢|  = 0.                           
                                      (12) 

is the trivial one. Here, we are looking for a solution 푢 ∈  퐶 (푀 × (0,푇)), and the initial 
condition means that 푢(푥, 푡)  → 0 locally uniformly in 푥 ∈ 푀 as 푡 → 0. The stochastic 
completeness will follow from the following beautiful result due to Grigor’yan in the 
Riemannian case. 
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Lemma (4.1.14) [175]. Let 푢 ∈ 퐶(푀 × [푎, 푏]) be a solution of ∆푢 − 푢푡 =  0 in 푀 ×
(푎, 푏) satisfying for some 푥 ∈ 푀 and for all 푟 >  0  

푢(푥, 푡)
( , )

푑휇(푥)푑푡 ≤ 푒 ( ) ,                                   (13)  

where f is a positive function on (0,∞). Then, for any 푟 > 0 which satisfies the condition 

푏 − 푎 ≤
푟

8푓(4푟)  ,                                                           (14)  

one has  

푢(푥, 푡) 푑휇(푥) ≤
( , )

푢(푥, 푡) 푑휇(푥) + 
( , )

4
푟

.                     (15)  

Proof. The proof is completely analogous to the original one of Grigor’yan in the 
Riemannian case, and thus we confine ourselves to mention some necessary facts, and then 
refer to [168] for details. Consider the function 휌(푥) = (푑 (푥, 푥 ) − 푟)  defined on 푀. Set 
푠 ∶= 2푏 − 푎 and consider the function 

휂 (푥, 푡): =
휌 (푥)

4(푡 − 푠) . 

 Notice that 휂(푥, 푡) is defined on 푀 × [푎,푏], due to the fact that 푠[푎, 푏]. Sincethe function 
푦 → 푑(푦, 푥 ) is Lipschitz continuous (with respect to the Carnot-Carathéodory distance), 
by the Rademacher theorem in [167], one can conclude that 휌 belongs to the Sobolev space  

푊 ,  (푀)  = {푓 ∈ 퐿 (푀) | (푓 ) ∈ 퐿 (푀)}, 
and furthermore  (휌) / ≤ 1. This implies that for 푡 ∈ [푎, 푏],  

(휂) ≤  휌
4

(푡 − 푠)
, 

and we thus have  
휂  + (휂) ≤ 0.                                                           (16) 

For 푟 > 0, define the function 휑(푥) by 

휑(푥) = min 3 −  
푑(푥, 푥 )

푟
 ,1 . 

We notice here 휑 ∈ 퐿푖푝 (푀) and it has the following properties:  
(i)  휑 ≡ 1 표푛퐵 (푥 , 2푟) 푎푛푑 휑 ≡ 0 표푢푡푠푖푑푒 퐵 (푥 , 3푟).  
(ii)  (휑) / ≤ 1/푟  
      Consider the function 푢휑 푒  as a function of x for fixed 푡 ∈ [푎, 푏]. Notice that since by 
[167] we know that 푢휑 푒  belongs to 푊 ,  (푀), and supp 휑 is compact, then such function 
belongs to 푊̇ ,  (푀). We can thus multiply the heat equation 
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                                                  푢  =  퐿푢 
by 푢휑푒  and then integrate it over [푎,푏] × 푀 to obtain 

                                 
1
2

(푢 ) 휑 푒 푑휇푑푡 = (퐿푢)푢휑 푒 푑휇푑푡                  (17) 

 The time integral in the left hand side can be computed as follows: 

                      
1
2

(푢 ) 휑 푒 푑푡 =
1
2

[푢 휑 푒 ] −
1
2

휂 푢 휑 푒 푑푡                     (18) 

We can write the spatial integral on the right hand side of (17) as  

                                       (퐿푢)푢휑 푒 dμ = − (u,푢휑 푒 ) dμ 

Observe 

−(u, 푢휑 푒 ) ≤ −
1
2
(푢) + (u) / (휂) / |푢| 휑 푒 + 2(휑)푢 푒 . 

If we replace (17) into (18), and we use (16), we now obtain  

푢 휑 푒 푑휇 ≤ − (u) / |푢| − (푢) / 휑 푒  

+4 (휑)푢 휑 푒 푑휇푑푡 

and hence, 

푢 휑 푒 푑휇 ≤ 4 (휑)푢 휑 푒 푑휇푑푡                      (19) 

The properties of 휑 imply that from inequality (19) we obtain 

푢 (푥,푏)푒 ( , ) 푑휇 ≤ 푢 (푥, 푎)푒 ( , ) 푑휇 +
4
푟

푢 푒
\

푑휇푑푡 .  (20) 

Theorem (4.1.15) [175]. Let u be a solution to the Cauchy problem (12). Assume that there 
exist an increasing function 푓: (0,∞)  →  (0,∞), such that  

푟푑푟
푓(푟)

  = ∞ .                                                       (21) 

 If for some 푥 ∈  푀 and for all 푟 >  0 one has  
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푢 (푥, 푡)푑휇(푥)푑푡 ≤ exp(푓(푟))
( , )

                   (22)  

Then, 푢 ≡ 0 in (0,푇) × 푀. 
 Proof. Since we have nothing to add to the proof of Theorem 11.9 in [168]. 
       Using Theorem (4.1.15) we can now establish the following generalization of 
Grigor’yan’s criterion for stochastic completeness. Define the volume function 푉(푥, 푟) on 
the manifold (푀, 푑) by 

푉(푥, 푟)  =  휇(퐵 (푥, 푟)), 
where 퐵(푥, 푟) is a metric ball. Since (푀, 푑) is a complete metric space we have 푉(푥, 푟)  <
 ∞ for all 푥 ∈ 푀 and 푟 >  0. 
Theorem (4.1.16) [175]. If for some point 푥 ∈ 푀 there exists 푅 > 0 such that  

푟푑푟
ln푉(푥 , 푟)

 = ∞ ,                                                  (23) 

then 푀 is stochastically complete. 
Proof. If we can show that the only bounded solution to the Cauchy problem (12) is 푢 ≡ 0 
then the stochastic completeness will follow. This is because if 푃 1 ≠ 1, then the function 
푢  =  1 −  푃 1 is a non-trivial bounded solution to (12). Now, if 푢 is a bounded solution of 
(12), then if we set 푀 ∶= sup |푢| we obtain for 푇 <  ∞ 

푢 (푥, 푡)푑휇(푥) ≤ 푀 푇푉 (푥 , 푟) = exp 푓(푟) ,
( , )

 

where 
푓(푟) ∶= ln 푀 푇푉 (푥 , 푟) . 

 From (25) the function 푓 satisfies (21). Therefore, by Theorem (4.1.15), we conclude 푢 ≡
0.  By combining Theorem (4.1.15) with Propositions (4.1.10) and (4.1.9) we now recapture 
(with a different approach) the mentioned stochastic completeness result in [164]. 
 Proposition (4.1.17) [175]. Suppose that the curvature dimension (5) hold with 휌 ∈  푅. 
Then, 푀 is stochastically complete.  
Proof. It clearly suffices to consider the case 휌 < 0. In such case, for every 푥 ∈  푀 and 
every 푟 ≥ 푅  we obtain by Proposition (4.1.10) 

푉(푥 , 푟) ≤ 퐶(푑, 휅, 휌 ) exp
(2푑|휌 |푅 )

푅 푝(푥 , 푥 ,푅 )
  푟 exp(2푑|휌 |푟 ) 

= 퐶 푟 exp(2푑|휌 |푟 ) . 
This gives for every 푟 ≥ 푅 ,   
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ln푉(푥 , 푟)  ≤  퐴  +  퐷 ln 푟  +  퐵푟 . 
This clearly implies that  

푟푑푟
ln푉(푥 , 푟)

 = ∞  . 

The desired conclusion follows by Proposition (4.1.10).  
 
 

Section(4-2). Volume Doubling Property and the Poincaré Inequality 
A fundamental property of a measure metric space (푋,푑, 휇) is the so-called doubling 

condition stating that for every 푥 ∈ 푋 and every r > 0 one has 
 휇(퐵(푥, 2푟))  ≤ 퐶  휇(퐵(푥, 푟)),                                         (24) 

 for some constant 퐶 >  0, where 퐵(푥, 푟)  = { 푦 ∈  푋 | 푑(푦, 푥) < 푟}. As it is well-known, 
such property is central for the validity  of covering theorems of Vitali–Wiener type, 
maximal function estimates, and it represents one of the central ingredients in the 
development of analysis and geometry on metric measure spaces, see for instance 
[176,189,193,194,200–202]. Another fundamental property is the Poincaré inequality which 
claims the existence of constants 퐶  > 0 and 푎 ≥  1 such that for every Lipschitz function f 
on 퐵(푥,푎푟) one has  

|푓 −  푓 | 푑휇
( , )

  ≤ 퐶 푟   푔 푑휇
( , )

 ,                                           (25) 

where we have let 푓  =  휇(퐵)  ∫ 푓푑휇, with 퐵 =  퐵(푥, 푟). In the right-hand side of (25) 
the function g denotes an upper gradient for f . 
       One basic instance  of a measure metric space  supporting (24) and (25) is a complete  
n-dimensional Riemannian manifold 푀 with nonnegative Ricci tensor. In such case (24) 
follows with 퐶 =  2  from the Bishop-Gromov comparison theorem, whereas (25) was 
proved by Buser [185], with 푎 =  1 and 푔 = |∇푓|.  
      Beyond the classical Riemannian case two situations of considerable analytic and 
geometric interest are 퐶푅 and sub-Riemannian manifolds. For these classes global 
inequalities such as (24) and (25) are mostly terra incognita. The purpose is taking a first 
step in filling this gap in the class of sub-Riemannian manifolds that satisfy the generalized 
curvature dimension inequality introduced in [183]. Our main result, Theorem (4.2.8) 
below, constitutes a sub-Riemannian counterpart of the case in which Ricci ≥0 (for this 
aspect, see e.g. Theorem (4.2.10) below). 
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       To introduce the results, we recall that a n-dimensional Riemannian manifold 푀 with 
Laplacian ∆ is said to satisfy the curvature-dimension inequality 퐶퐷(휌 , 푛) if there exists 
휌 ∈ 푅 such that for every 푓 ∈ 퐶 (푀) one has 

  ( 푓 ) ≥
1
푛

 (∆푓 ) + 휌 |∇푓|  ,                                       (26) 

where 

 (푓)  =
1
2

(∆|∇푓|  − 2〈∇푓,∇(∆푓 )〉). 

This notion was introduced by Bakry and Emery [261], and it was further developed in 
[178–180,210,216–221]. What is remarkable about the curvature-dimension inequality (27) 
is that it holds on a Riemannian manifold 푀 if and only if 푅푖푐 ≥ 휌 . It follows that such 
notion could be taken as an alternative characterization of Ricci lower bounds. 
       This point of view was recently taken up by [183], where a new sub-Riemannian 
curvature-dimension inequality was introduced. Such new inequality was shown to 
constitute a very robust tool for developing a Li–Yau type program in some large classes of 
sub-Riemannian manifolds. We develop our program even further, and in a different 
direction, by proving that the generalized curvature- dimension inequality introduced in 
[183] can be successfully used to establish global inequalities such as (24) and (25) above. 
         We now introduce the relevant framework. We consider measure metric spaces 
(푀, 푑,휇), where 푀 is 퐶  connected manifold endowed with a 퐶  measure μ, and 푑 is a 
metric canonically associated with a 퐶  second-order diffusion operator 퐿 on 푀 with real 
coefficients. We assume that 퐿 is locally subelliptic on M in the sense of [195], and that 
moreover:  

(i) 퐿1 = 0;  

(ii) ∫ 푓 퐿푔푑휇   = ∫ 푔퐿푓푑휇  ;  

(iii) ∫ 푓퐿푓푑휇 ≤ 0 , 
for every 푓,푔 ∈  퐶 (푀). The following distance is canonically associated with the operator 
퐿:  

푑(푥,푦) = sup{|푓(푥) −  푓(푦)||푓 ∈ 퐶 (푀), ‖(푓 )‖ ≤ 1} ,    푥,푦 ∈ 푀,          (27)  
where for a function 푔 on 푀 we have let ‖푔‖ ess sup |푔|.  

     Given the manifold 푀 and the diffusion operator 퐿, similarly to [181] we consider the 
quadratic functional (푓)  =  (푓,푓), where 

 (푓,푔) =
1
2

(퐿( 푓푔) −  푓퐿푔 − 푔퐿푓),      푓,푔 ∈ 퐶 (푀),           (28) 

is known as le carré du champ. One should in fact think of (푓) as the square of the length 
of the gradient of f along the so-called horizontal directions. We remark that  depends only 
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on the diffusion operator L, and in this sense it is canonical. Notice that (푓) ≥ 0 and that 
(1) = 0. 
 Unfortunately, in sub-Riemannian geometry the canonical bilinear form does not suffice to 
develop the Li–Yau program. To circumvent this obstruction, we further suppose that 푀 is 
equipped with a symmetric, first-order differential bilinear form  
 :퐶∞(푀) × 퐶∞(푀)  → 퐶∞(푀), satisfying  

 ( 푓푔,ℎ)  =  푓  (푔,ℎ) + 푔 ( 푓,ℎ). 
 We make the assumption that  ( 푓 )  =   ( 푓,푓 )  ≥ 0 (one should notice that  (1) =
 0). Roughly speaking, in a sub-Riemannian manifold  (푓) represents the square of the 
length of the gradient of f in the directions of the commutators. We emphasize that, in the 
above general formulation, the bilinear form   is not canonical since, unlike the form , a 
priori it has no direct correlation to the diffusion operator L. If should however find 
reassuring that, in all the concrete geometric examples encompassed, the choice of the form 
  can be shown to be, in fact, canonical.  
      To clarify this important point we pause for a moment to discuss a basic class of three-
dimensional models which have been analyzed. Given a 휌 ∈ 푅 we consider a Lie group 
퐺(휌 ) whose Lie algebra g admits a basis of generators 푋,푌,푍 satisfying the commutation 
relations 

[푋,푌] = 푍,      [푋,푍] = − 휌 푌,           [푌,푍] = 휌 푋.                   (29) 
 The group 퐺(휌 ) can be endowed with a natural 퐶푅 structure 휃 withrespect to which the 
Reeb vector field is given by −푍. A sub-Laplacian on 퐺(휌 ) with respect to such structure 
is thus given by 퐿 =  푋 + 푌 . The pseudo-hermitian Tanaka–Webster torsion of 퐺(휌 ) 
vanishes, and thus (퐺(휌 ), 휃) is a Sasakian manifold. In the smooth manifold 푀 =
퐺(휌 ) with sub-Laplacian 퐿 we introduce the differential forms  and   defined by 

 (푓,푔)  =  푋푓푋푔 + 푌푓푌푔, Z( 푓,푔)  =  푍푓푍푔 . 
It is worth observing that, since as we have said −푍 is the Reeb vector field of the 퐶푅 
structure 휃, then the above choice of   is canonical. It is also worth remarking at this point 
that for the 퐶푅 manifold (퐺(휌 ), 휃) the Tanaka–Webster horizontal sectional curvature is 
constant and equals 휌 . For instance, when 퐺 is the 3-dimensional Heisenberg group H1, 
with real coordinates (푥,푦, 푡), and generators of the Lie algebra 푋 =  휕 − 휕 ,     푌 =

 휕 + 휕 ,       푍 =  휕 , then (30) holds with 휌 = 0. In [183] two other special instances of 
the model 퐶푅 manifold G(휌 ) were discussed in detail, namely 푆푈(2), and 푆퐿(2,푅), 
corresponding, respectively, to the cases 휌 = 1 and 휌 = −1. Given the first-order bilinear 
forms  and   on 푀, we now introduce the following second-order differential forms: 

 (푓,푔)  =
1
2

[퐿 (푓,푔) −  (푓,퐿푔) −  (푔,퐿푓)],               (30) 
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 (푓,푔) =
1
2 퐿 ( 푓,푔) −   ( 푓,퐿푔) −   (푔,퐿푓) .             (31) 

 Observe that if  ≡  0, then  ≡  0 as well. As for  and  , we will use the notations 
 (푓)  =   ( 푓,푓 ), ( 푓 )  =   ( 푓,푓 ).  
    The next definition, which we are taking from [183], is the central character . 
Definition (4.2.1)[225]. (Generalized curvature-dimension inequality) Let 휌 ∈  푅, 휌 >
 0, 휅 ≥  0, and 푚 >  0. We say that 푀 satisfies the generalized curvature-dimension 
inequality 퐶퐷(휌 , 휌 ,휅,푚) if the inequality 

 (푓) + 휈 ( 푓 ) ≥
1
푚

(퐿푓)2 + 휌1 –
휅
휈 (푓) + 휌2 ( 푓 )             (32)  

holds for every 푓 ∈ 퐶 (푀) and every 휈 > 0.  
Proposition (4.2.2). The sub-Laplacian L on the Lie group 퐺(휌 ) satisfies the generalized 
curvature-dimension inequality 퐶퐷(휌 , , 1,2).  
    The essential new aspect of the generalized curvature-dimension inequality 
퐶퐷(휌 , 휌 ,휅,푚) with respect to the Riemannian inequality 퐶퐷(휌 , 푛) in (26) is the presence 
of the a priori non-intrinsic bilinear forms   and   .As in [183], to be able to handle these 
non-intrinsic forms we will assume throughout the following hypothesis (Hypothesis 
(4.2.3)), (Hypothesis (4.2.4)) and (Hypothesis (4.2.5)). Even if they will not be mentioned 
explicitly in every individual result. 
Hypothesis (4.2.3) [225]. There exists an increasing sequence ℎk∈C (M) such that ℎk 1 
on 푀,and 

    ||Γ(ℎ )||  + ||Γ (ℎ )||  →  0,           푎푠 푘 → ∞. 
Hypothesis (4.2.4) [225]. For any f ∈C∞(푀) one has 

    훤(푓,훤 (푓))  =  훤 (푓,훤(푓)). 
Hypothesis (4.2.5) [225]. The heat  semigroup generated by L, which will denoted 푃  
throughout the section , is stochastically complete that is, for t ≥ 0, Pt1 = 1 and for every 
푓 ∈ 퐶  (푀) and 푇 ≥  0, one has 
                                 sup    ‖Γ(푃 푓)‖   Γ (푃 푓) <  +∞.  
                                t∈[0,T] 
In addition to (Hypothesis (4.2.3)–( Hypothesis (4.2.5), throughout we also assume that: 
Hypothesis (4.2.6) [225]. Given any two points 푥,푦 ∈ 푀, there exist a subunit curve (in the 
sense of [195]), joining them.  
Hypothesis (4.2.7) [225]. The metric space (푀, 푑) is complete.  
     We note that in the geometric examples encompassed by the framework (for a detailed 
discussion of these examples see [183]), (Hypothesis (4.2.3)) is equivalent to assuming that 
(푀, 푑) be a complete metric space, i.e., (Hypothesis (4.2.7)). The assumption (Hypothesis 
(4.2.6)) is for instance fulfilled when the operator 퐿 satisfies the finite rank condition of the 
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Chow–Rashevsky theorem. When (Hypothesis (4.2.6)) holds, definition above provides a 
true distance, and the metric space (푀, 푑) is a length-space in the sense of Gromov. The 
hypothesis (Hypothesis (4.2.4)) is of a geometric nature. For instance, all 퐶푅 manifolds 
which are Sasakian satisfy it. It is important to mention that the hypothesis (Hypothesis 
(4.2.5)) has been shown in [183] to be a consequence of the curvature dimension inequality 
퐶퐷(휌 , 휌 ,휅,푚) in the large class of sub-Riemanniann manifolds with transverse 
symmetries of Yang-Mills type. Such class encompasses Riemannian structures, 퐶푅 
Sasakian structures, and Carnot groups of step two. Therefore, the assumption (Hypothesis 
(4.2.5))  should not be seen as restrictive if we assume that the curvature dimension 
inequality is satisfied. We can also observe that the stochastic completeness of 푃  is 
intimately related to the volume growth of large metric balls and has been extensively 
studied (see [198,216]). The following is the central result. 
Theorem (4.2.8)[225]. Suppose that the generalized curvature-dimension inequality hold 
for some 휌 ≥ 0. Then, there exist constants 퐶 ,퐶 > 0, depending only on 휌 , 휌 ,휅,푚, for 
which one has for every 푥 ∈  푀 and every 푟 >  0: 

 휇(퐵(푥, 2푟))  ≤  퐶  휇(퐵(푥, 푟));                                   (33)  

|푓 − 푓 | 푑휇 
( , )

≤  퐶 푟  Γ(푓 )푑휇
( , )

,                        (34) 

 for every 푓 ∈ 퐶 (퐵(푥, 푟)).  
      We note explicitly that the possibility of having the same ball in both sides of (34) is due 
to the above mentioned fact that (푀, 푑) is a length-space. This follows from the assumption 
(41) below (which guarantees that (푀,푑) is a Carnot–Carathéodory space), and from 
Proposition (4.2.11) in [191] (which states that every Carnot–Carathéodory space is a 
length-space). Once we know that (푀, 푑) is a length-space, we can follow the arguments in   
Jerison [206] on the local Poincaréin equality to replace the integral on a larger ball in the 
right-hand side of (34) with an integral on the same ball 퐵(푥, 푟) as in the left-hand side, see 
[196]. To put Theorem (4.2.8) in the proper perspective we note that, be sides the already 
cited case of a complete  Riemannian manifold having 푅푖푐 ≥ 0, the only genuinely sub-
Riemannian manifolds in which (33) and (34) are presently known to simultaneously hold 
are stratified nilpotent Lie groups, aka Carnot groups, and, more in general, groups with 
polynomial growth. In Carnot groups the doubling condition (33) follows from a simple 
rescaling argument based on the non-isotropic group dilations, from the group left-
translations and form the fact that the push-forward to the group of the Lebesgue measure 
on the Lie algebra is a bi-invariant Haarmeasure. For more general Lie groups with 
polynomial growth Varopoulos gave an elementary proof of the Poincaré inequality (34) in 
[221]. In which they establish two-sided global Gaussian bounds in a Lie group with 
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polynomial growth. As it is well known, such bounds are equivalent to the doubling 
condition and the Poincaré inequality. 
        It is worth mentioning at this point that, when L is a sum of square of vector fields like 
in Hörmander’s work on hypoellipticity [205], then a local (both in 푥 ∈ 푋 and 푟 >  0) 
doubling condition was proved in [211]. In this same framework, a local version of the 
Poincaré inequality was proved by Jerison [206]. But no geometry is of course involved in 
these fundamental local results. The novelty of our work is in the global character of the 
estimates (33) and (34). 
      In order to elucidate some of the new geometric settings covered, we recall that one of 
the main motivations for [211] was understanding boundary value problems coming from 
several complex variables and 퐶푅 geometry. In connection with 퐶푅 manifolds we mention 
that in [183] the first and third named proved the following result. 
Theorem (4.2.9)[225]. Let (푀, 휃) be a complete 퐶푅 manifold with real dimension 2푛 + 1 
and vanishing Tanaka–Webster torsion, i.e., a Sasakian manifold. If for every 푥 ∈ 푀 the 
Tanaka–Webster Ricci tensor satisfies the bound 

푅푖푐  (푣, 푣)  ≥  휌 |푣| , 
for every horizontal vector 푣 ∈ 퐻 , then the curvature-dimension inequality 퐶퐷 (휌 , , 1, 2푛) 
holds. 
     By combining Theorem (4.2.8)  with Theorem (4.2.9) we obtain the following result 
which provides a large class of new geometric examples which are encompassed by our 
results, and which could not be previously covered by the existing works.  
Theorem (4.2.10)[225]. Let 푀 be a Sasakian manifold of real dimension 2푛 + 1. If for 
every 푥 ∈ 푀 the Tanaka–Webster Ricci tensor satisfies the bound 푅푖푐  ≥ 0, when restricted 
to the horizontal sub bundle 퐻 , then there exist constants 퐶 ,퐶 > 0, depending only on n, 
for which one has for every x ∈ M and every r > 0: 

  휇(퐵(푥, 2푟))  ≤  퐶  휇(퐵(푥, 푟));                                   (35)  

|푓 − 푓 | 푑휇 
( , )

≤  퐶 푟  |∇ 푓| 푑휇.     
( , )

                 (36) 

     In (36) we have denoted with ∇ 푓 the horizontal gradient of a function 푓 ∈ 퐶 (퐵(푥, 푟)). 
Concerning Theorem (4.2.10) we mention that in [176] Agrachev and Lee, with a 
completely different approach from us, have obtained (35) and (36) for three-dimensional 
Sasakian manifolds.  
     Once Theorem (4.2.8) is available, then from the work of Grigor’yan [197] and Saloff–
Coste [214] it is well-known that, in a very general Markov setting, the conjunction of (33) 
and (36) is equivalent to Gaussian lower bounds and uniform Harnack inequalities for the 
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heat equation 퐿 − 휕 . For the relevant statements we refer the reader to Theorems (4.2.24) 
and (4.2.25) below.  
     Another basic result which follows from Theorem (4.2.8) is a generalized Liouville type 
theorem, see Theorem (4.2.29) below, stating that, for any given 푁 ∈ 푵, 

dim퐻 (푀,퐿) < ∞,                                              (37)  
where we have indicated with 퐻 (푀, 퐿) the linear space of L-harmonic functions on 푀 with 
polynomial growth of order ≤  푁 with respect to the distance 푑.  
    In closing we mention that the framework is analogous to that [183], where two of us 
have used the generalized curvature-dimension inequality in Definition (4.2.1) to establish 
various global properties such as: 
(i)  An a priori Li–Yau gradient estimate for solutions of the heat equation 퐿 − 휕  of the 

form 푢(푥, 푡) =  푃 푓(푥), where 푃 = 푒  is the heat semigroup associated with L; 
(ii)  A scale invariant Harnack inequality for solutions of the heat equation of the form 

푢 =  푃  푓, with 푓 ≥ 0; 
(iii) A Liouville type theorem for solutions of 퐿푓 = 0 on 푀;  
(iv) Off-diagonal upper bounds for the fundamental solution of 퐿 − 휕 ; 
(v) A Bonnet–Myers compactness theorem for the metric space (푀, 푑). 
    As for the ideas involved in the proof of Theorem (4.2.8) we mention that our approach 
is purely analytical and it is exclusively based on some new entropy functional inequalities 
for the heat semigroup. Our central result in the proof of Theorem (4.2.8) is a uniform Hölder 
estimate of the caloric measure associated with the diffusion operator L. Such estimate is 
contained in Theorem (4.2.22) below, and it states the existence of an absolute constant 퐴 >
 0, depending only the parameters in the inequality 퐶퐷(휌 ,휌 , 휅,푑), such that for every 푥 ∈
푀, and 푟 > 0,  

푃 1 ( , ) (푥) ≥
1
2

 .                                                    (38) 

 Here, for a set 퐸 ⊂ 푀, we have denoted by 1  its indicator function. Once the crucial 
estimate (38) is obtained, with the help of the Harnack inequality  

푃 푓(푥) ≤  푃 푓(푦)
푡
푠

 exp
퐷
푚

 
푑(푥,푦)
4(푡 − 푠)

 ,     푠 <  푡,                  (39) 

that was proved in [183] (for an explanation of the parameter D see (45) below), the proofs 
of (33), (34) become fairly standard, and they rely on a powerful circle of ideas that may be 
found.  
The proof of (38) which represents the main novel contribution of the present work is rather 
technical. We mention that the main building block is a dimension dependent reverse 
logarithmic Sobolev inequality in Proposition (4.2.12) below. We stress here that, even in 
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the Riemannian case, which is of course encompassed, such estimates are new and lead to 
some delicate reverse Harnack inequalities which constitute the key ingredients in the proof 
of (38). Still in connection with the Riemannian case, it is perhaps worth noting that, 
although as we have mentioned, in this setting the inequalities (24), (25) are of course well-
known, nonetheless our approach provides a new perspective based on a systematic use of 
the heat semigroup. The more PDE oriented might in fact find somewhat surprising that one 
can develop the whole local regularity starting from a global object such the heat semigroup. 
This in a sense reverses the way one normally proceeds, starting from local solutions.  
     We mention that in [184] two of us have obtained a purely analytical proof of (38) for 
complete Riemannian manifolds with Ric ≥ 0. The approach, which is based on a functional 
inequality much simpler than the one found, is completely different from that of Theorem 
(4.2.22) below and cannot be adapted to the non-Riemannian setting . 

Hereafter, 푀 will be a C∞ connected manifold endowed with a smooth measure μ and 
a second-order diffusion operator L on 푀 with real coefficients, locally subelliptic, satisfying 
퐿1 = 0 and 

푓퐿푔 푑휇  = 푔퐿푓푑휇 ,       푓퐿푓푑휇  ≤ 0, 

for every 푓,푔 ∈  퐶 (푀). We indicate with (푓) the quadratic differential form defined by 
(28) and denote by 푑(푥, 푦) the canonical distance associated with L as in (28) . 
       There is another useful distance on 푀 which in fact coincides with 푑(푥, 푦). Such 
distance is based on the notion of subunit curve introduced by Fefferman and Phong [195], 
see also [207]. By a result in [213], given any point 푥 ∈  푀 there exists an open set 푥 ∈
푈 ⊂  푀 in which the operator L can be written as 

퐿 = −  푋∗ 푋  ,                                                        (40) 

 where the vector fields 푋  have Lipschitz continuous coefficients in U, and 푋∗ indicates the 
formal adjoint of 푋  in 퐿 (푀, 푑휇). We remark that such local representation of L is not 
unique. A tangent vector 푣 ∈ 푇 푀 is called subunit for L at x if 푣 = ∑ 푎  푋 (푥), with 
∑ 푎  ≤ 1. It turns out that the notion of subunit vector for L at x does not depend on the 
local representation (40) of L. A Lipschitz path 훾: [ 0,푇] → 푀 is called subunit for L if 훾′(푡) 
is subunit for L at 훾(푡) for a.e. 푡 ∈ [ 0,푇]. We then definethe subunit length of γ as 푠(훾)  =
 푇. Given 푥, 푦 ∈  푀, we indicate with  
푆(푥, 푦)  = { 훾 ∶ [ 0,푇] → 푀 | 훾 is subunit for 퐿, 훾(0)  =  푥,   훾( 푇)  =  푦}. 
 We remark explicitly that the assumption (H.(4.3.6)) can be reformulated by saying that 

푆(푥, 푦) =  ∅,     for every    푥, 푦 ∈  푀.                               (41) 
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Now, it is easy to verify that (72) implies that for any 푥,푦 ∈ 푀 one has 
푑 (푥, 푦)  = inf{푙 (훾) | 훾 ∈  푆(푥,푦)}  <  ∞ ,                       (42)  

and therefore (42) defines a true distance on 푀 (once we have the finiteness of ds the other 
properties defining a distance are easily verified). Furthermore, in Lemma 5.43 in [186] it is 
proved that 

 푑(푥, 푦)  = 푑 (푥,푦),        푥,푦 ∈ 푀.                            (43)  
Therefore, also 푑 is a true distance on M and, in view of (43), we can work indifferently 
with either one of the distances 푑 or 푑 .  
    In closing, we mention if L is in the form 퐿 = ∑ 푋  + 푋 , with vector fieldswhich are 
C∞ and satisfying the so-called Hörmander’s finite rank condition on the Lie algebra, then 
the Theorem of Chow–Rashevsky guarantees the validity of (Hypothesis (4.2.6)). If 
moreover L has real-analytic coefficients, we know that L is hypoelliptic if and only if it 
satisfies Hörmander’s finite rank condition. Therefore, in this situation, the hypoellipticity 
of L would guarantee the validity of (Hypothesis (4.2.6)). For generalizations of the cited 
result in [192] to more general hypoelliptic operators with real-analytic coefficients, see 
[212]. 

We collect some results from [183] which will be needed. In the framework below, L 
is essentially self-adjoint on 퐶 (푀). Due to the hypoellipticity of L, the function (푡, 푥) →
푃 푓(푥) is smooth on (0,∞) × 푀 and 

푃 푓(푥)  = 푝(푥,푦, 푡)푓(푦) 푑휇(푦),     푓 ∈ 퐶 (푀) 

where  푝(푥, 푦, 푡)  =  푝(푦, 푥, 푡) > 0 is the so-called heat kernel associated to 푃 . We denote 
퐶 (푀)  = 퐶 (푀) ∩ 퐿 (푀). 

For 휀 > 0 we also denote by 퐴  the set of functions 푓 ∈ 퐶 (푀) such that  
푓 =  푔 + 휀, 

for some 휀 > 0 and some 푔 ∈ 퐶 (푀),푔 ≥  0, such that 푔, (푔) ,  (푔)  ∈ 퐿 (푀). As 

shown in [183], this set is stable under the action of 푃 , i.e., if 푓 ∈ 퐴 , then 푃 푓 ∈ 퐴 . 
Letusfix 푥 ∈ 푀 and 푇 > 0.Given a function 푓 ∈ 퐴 , for 0 ≤ 푡 ≤ 푇 we introduce the entropy 
functionals  

 (푡)  =  푃 ((푃 − 푓) (ln푃 − 푓))(푥), 
 (푡)  =  푃 (푃 − 푓) 푍(ln푃 − 푓)(푥). 

 For later use, we observe here that 
푑
푑푡
푃 ( 푃 − 푓 ln푃 − 푓)(푥) = 푃 ( 푃 − 푓 (ln푃 − 푓)(푥) =  (푡), 

and thus, with the above notations, 
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 (푡)푑푡 =  푃 ( 푓 ln 푓 )(푥) −  푃 푓(푥) ln푃 푓 (푥).               (44) 

For the sake of brevity, we will often omit reference to the point 푥 ∈ 푀, and write for 
instance 푃 푓 instead of 푃 푓(푥). This should cause no confusion.  
      The main source of the functional inequalities that will be studied in the present work is 
the following result that was proved in [183]: 
Theorem (4.2.11)[225]. Let 푎,푏: [ 0,푇] → [ 0,∞) and 훾: [ 0,푇] → 푅 be C1 functions. For 
휀 > 0 and 푓 ∈ 퐴 , we have 
              푎(푇)푃푇( 푓(푙푛 푓 )) + 푏(푇)푃푇(푓Z(ln 푓) 
                     −푎(0)(푃푇 푓 ) (ln푃푇  푓 ) − 푏(0)(푃푇푓 ) Z(ln푃푇  푓 )  

         ≥  푎 + 2휌 푎 − 2휅
 푎
푏

  − 4
푎훾
푚

1푑푠 + (푏′ + 2휌 푎)2푑푠 

+
4
푚

푎훾푑푠  퐿푃푇푓 −
2
푚

푎훾 푑푠 푃푇푓. 

Henceforth, we let  

퐷 = 1 +  3
휅

2휌
 푚.                                                      (45) 

    The following scale invariant Harnack inequality for the heat kernel was also proved in 
[183].  
Proposition (4.2.12)[225]. Let 푝(푥,푦, 푡) be the heat kernel on 푀. For every 푥, 푦, 푧 ∈ 푀 and 
every 0 < 푠 < 푡 < ∞ one has 

푝(푥, 푦, 푠) ≤  푝(푥, 푧, 푡)
푡
푠

exp
퐷
푚

 
푑(푦, 푧)
4(푡 − 푠)

  

    A basic consequence of this Harnack inequality is the control of the volume growth of 
balls centered at a given point. 
 Proposition (4.2.13)[225]. For every 푥 ∈  푀 and every 푅 >  0 there is a constant 
퐶(푚, 휅, 휌 ) > 0 such that, 

휇 퐵(푥,푅) ≤
퐶(푚, 휅, 휌 )
푅 푝(푥,푥,푅 )

푅 ,       푅 ≥  푅 . 

Proof. Fix 푥 ∈  푀 and 푡 >  0. Applying Proposition (4.2.12) to 푝(푥, 푦, 푡) for every 푦 ∈
퐵(푥,√푡) we find 

푝(푥, 푥, 푡)  ≤ 2  푒  푝(푥,푦, 2푡)  = 퐶(푚, 휅,휌 )푝(푥,푦, 2푡). 
 Integration over 퐵(푥,√푡) gives 
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푝(푥, 푥, 푡)휇(퐵(푥,√푡))  ≤ 퐶(푚, 휅,휌 )  푝(푥,푦, 2푡)
( ,√ )

푑휇(푦)  ≤ 퐶(푚, 휅,휌 ), 

where we have used 푃 1 ≤ 1. This gives the on-diagonal upper bound  

푝(푥,푥, 푡)  ≤  
퐶(푚,휅,휌 )

휇 퐵 푥,√푡
 .                                          (46) 

Let now 푡 > 휏 > 0. Again, from the Harnack inequality of Proposition (4.2.12), we have 

푝(푥,푥, 푡)  ≥  푝(푥, 푥, 휏)
휏
푡

. 

 The inequality (46) finally implies the desired conclusion by taking 푡 =  푅  and 휏 = 푅 . 
  We derive some functional inequalities which will play a fundamental role in the 
proof of Theorem (4.2.17) below. 
 Proposition (4.2.14)[225]. Let 휀 > 0 and 푓 ∈ 퐴 . For 푥 ∈  푀, 푡, 휏 > 0, and 퐶 ∈ 푅, one has 

휏
휌

 푃 (푓(ln 푓))(푥) + 휏 푃 ( 푓 (ln 푓))(푥)  

+
1
휌

1 +
2휅
휌

 +
4퐶
푚

 [푃 (푓 ln 푓)(푥) − 푃 푓(푥) ln푃 푓 (푥)]  

≥  
푡 + 휏
휌

  푃  푓(푥)(푙푛 푃 푓)(푥) + (푡 + 휏) 푃  푓 (푥) (푙푛 푃  푓 )(푥) 

 +
4퐶푡
휌 푚

 퐿 푃  푓(푥) −
2퐶
푚휌

ln 1 +
푡
휏
푃 푓(푥). 

Proof. Let 푇, 휏 > 0 be arbitrarily fixed. Weapply Theorem (4.2.11) with 휌 = 0, in which 
we choose  

푏(푡) = (푇 + 휏 – 푡) ,   푎(푡)  =
1
휌

(푇 + 휏 − 푡),    훾(푡) =
퐶

푇 + 휏 − 푡
  , 0 ≤ 푡 ≤  푇. 

With such choices we obtain  

                              

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 푎′ − 2휅  푎2

푏
  − 4 푎훾

푚
≡ 1 +  + ,

푏′ + 2휌2푎 ≡ 0,                                                    

∫ 4푎훾
푚

푇
0 = 4퐶푇 ,                                                     

푎푛푑                                                                         

−∫ 2푎훾2

푚
= −

푇
0 ln 1 + .                    

                                                   (47)      

Keeping (75) in mind, we obtain the sought for conclusion with T in place of t. The 
arbitrariness of 푇 >  0 finishes the proof. 
Corollary (4.2.15)[225]. Let 휀 > 0 and 푓 ∈ 퐴 . For 푥 ∈ 푀, 푡 >  0 one has 
                     푡푃 푓(푥)(ln푃 푓 )(푥) + 휌 푡 푃 푓 (푥) (푙푛 푃 푓 )(푥)  
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≤ 1 +
2휅
휌

[푃 ( 푓 푙푛 푓 )(푥) −  푃 푓(푥) ln푃 푓(푥)]. 

Proof. We first apply Proposition (4.2.14) with 퐶 = 0, and then we let 휏 →  0  in the 
resulting inequality. 
  We may actually improve Corollary (4.2.15) and obtain the following crucial dimension 
dependent reverse log-Sobolev inequality.  
Theorem (4.2.16)[225]. Let 휀 > 0 and 푓 ∈ 퐴 , then for every 퐶 ≥ 0 and 훿 > 0, one has for 
푥 ∈  푀, 푡 >  0,  

푡푃 푓(푥)(ln푃 푓 )(푥) + 푡 푃 푓 (푥) (푙푛 푃 푓 )(푥)  

≤ 1 +
2휅
휌

+
4퐶
푚

[푃 ( 푓 ln 푓 )(푥) −  푃 푓(푥) ln푃 푓(푥)] 

−
4퐶
휌 푚

푡
1 + 훿

 퐿푃 푓(푥) +
2퐶
휌 푚

ln 1 +
1
훿
푃 푓(푥).               (48)  

Proof. For 푥 ∈  푀, 푡, 휏 > 0, we apply Proposition (4.2.14) to the function 푃 푓 instead of f. 
Recalling that 푃 (푃 푓) = 푃 푓, we obtain, for all 퐶 ∈ 푅,  
          푃 (푃 푓(ln푃 푓 )(푥) + 휏 푃 (푃 푓 (푙푛 푃 푓 )(푥)  

+
1
휌

1 +
2휅
휌

+
4퐶
푚

[푃 ( 푃 푓 ln푃 푓 )(푥) −  푃 푓(푥) ln푃 푓(푥)] 

≥
푡 + 휏
휌

푃푡+휏(푓(푥)(ln푃푡+휏 푓)(푥) + (푡 + 휏) 푃푡+휏푓(푥) (푙푛 푃푡+휏푓 )(푥) 

+
4퐶
휌 푚

푡 퐿푃푡+휏푓(푥) −
2퐶
휌 푚

ln 1 +
1
휏

푃푡+휏푓(푥)                                        (49) 

Invoking Proposition (4.2.15) we now find for every 푥 ∈  푀, 휏 > 0,  
휏푃 푓(푥)(ln푃 푓)(푥) + 휌 휏 푃 푓(푥) (ln푃 푓 )(푥) 

≤ 1 +
2휅
휌

[푃 ( 푓 푙푛 푓 )(푥) −  푃 푓(푥) ln푃 푓 (푥)]. 

If we now apply 푃   to this inequality, we obtain 
휏푃 푓(푥)(ln푃 푓)(푥) + 휌 휏 푃 (푃 푓 (ln푃 푓)(푥) 

≤ 1 +
2휅
휌

[푃 ( 푓 푙푛 푓 )(푥) −  푃 (푃 푓 ln푃 푓) (푥)]. 

We use this inequality to bound from above the first two terms in the left-hand side of (49), 
obtaining 

1 + 2휅
휌

휌
푃 ( 푓 푙푛 푓 )(푥) +

4퐶
휌 푚

 푃 (푃 푓 ln푃 푓) (푥) 
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−
1
휌

1 +
2휅
휌2

+
4퐶
푚

푃 푓(푥) ln푃 푓(푥)  

      ≥
푡 + 휏
휌

 푃 푓(푥)(ln푃 푓)(푥) + (푡 + 휏) 푃 푓(푥) (ln푃 푓)(푥) 

             +
4퐶
휌 푚

푡 퐿푃푡+휏푓(푥) −
2퐶
휌 푚

ln 1 +
1
휏

푃푡+휏푓(푥) 

Consider the convex 푓푢푛푐푡푖표푛 (푠) = 푠 ln 푠 ,   푠 >  0. Thanks to Jensen’s inequality, we 
have for any τ>0 and x ∈ M 

(푃 푓 (푥))  ≤ 푃 ((푓))(푥), 
which we can rewrite 

푃 푓 (푥) ln푃 푓(푥)  ≤  푃 (푓 ln 푓)(푥). 
 For 퐶 ≥ 0, applying 푃  to this inequality we find 

4퐶
휌 푚

푃 (푃 푓 ln푃 푓)(푥)  ≤
4퐶
휌 푚

푃 (푓 ln 푓)(푥). 

We therefore conclude, for 퐶 ≥ 0, 
1
휌

1 +
2휅
휌

+
4퐶
푚

[푃 휏( 푓 ln 푓 )(푥) −  푃 푓(푥) ln푃 푓(푥)] 

≥
푡 + 휏
휌

푃푡+휏푓(푥)(ln푃푡+휏 푓)(푥) + (푡 + 휏) 푃푡+휏푓(푥) (푙푛 푃푡+휏푓 )(푥) 

+
4퐶
휌 푚

푡 퐿푃푡+휏푓(푥) −
2퐶
휌 푚

ln 1 +
1
휏

푃푡+휏푓(푥)    

If in the latter inequality we now choose 휏 =  훿푡, we find:  
1
휌

1 +
2휅
휌

+
4퐶
푚

[푃 훿푡( 푓 ln 푓 )(푥) −  푃 훿푡푓(푥) ln푃 훿푡 푓(푥)] 

≥
푡 + 훿푡
휌

푃푡+훿푡푓(푥)(ln푃푡+훿푡 푓)(푥) + (푡 + 훿푡) 푃푡+훿푡푓(푥) (푙푛 푃푡+훿푡푓 )(푥) 

+
4퐶
휌 푚

푡 퐿푃푡+ 푓(푥) −
2퐶
휌 푚

ln 1 +
1
휏

푃푡+ 푓(푥)    

Changing (1 + 훿)푡 into t in the latter inequality, we finally conclude: 

                 
푡
휌 푃푡푓(푥)(ln푃푡 푓)(푥) + 푡 푃푡푓(푥) (푙푛 푃푡푓 )(푥) 

                    ≤  
1
휌 1 +

2휅
휌 +

4퐶
푚 [푃 ( 푓 ln푓 )(푥)−  푃 푓(푥) ln푃 푓(푥)] 

                  −
4퐶
휌 푚

푡
1 + 훿  퐿푃푡푓(푥) −

2퐶
휌 푚

ln 1 +
1
훿 푃푡푓(푥)    

This gives the desired conclusion (48).  
Our principal objective is proving the following result. 
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      As a first step, we prove a small time asymptotics result interesting in itself. In what 
follows for a given set 퐴 ⊂ 푀 we will denote by 1  its indicator function. 
Proposition (4.2.17)[225]. Given 푥 ∈ 푀 and 푟 >  0, let 푓 = 1 ( , ) . One has, 

lim
→

inf (−푠 ln푃 푓(푥) ) ≥
푟
4

. 

Proof. To prove the proposition it will suffice to show that 

lim
→

inf (푡 ln푃 푓(푥) ) ≥ −
푟
4

 

Let 0 < 휀 < 푟. By the Harnack inequality of Proposition (4.2.12) and the symmetry of the 
heat kernel, we have for 푦 ∈ 푀 and 푧 ∈ 퐵(푥, 휀) ,  

푝(푥, 푦, 푡) ≤  푝(푧,푦, (1 + 휀)푡)2 /  푒  . 
Therefore, multiplying the above inequality by 푓(푦) = 1 ( , ) (푦) and then integrating with 
respect to y, we obtain 

 푃 푓(푥) ≤ 푃( ) 푓 (푧)2 /  푒 . 
By integrating now with respect to 푧 ∈ 퐵(푥, 휀), we get 

푃 푓(푥) ≤
2 /  푒
휇(퐵(푥, 휀))

 1 ( , ) (푧)(푃( ) 푓 )(푧)푑휇(푧). 

Now, from Theorem 1.1 in [204] (for which normalization differs from us by a factor 1/2 
because he considers the semigroup 푒 / ), we obtain: 

lim
→

t ln 1 ( , ) (푧) 푃( ) 푓 (푧)푑휇(푧) = −
(푟 – 휀)

4(1 + 휀)
 . 

This yields therefore 

lim
→

inf (푡 ln푃 푓(푥) )  ≤ −
(푟 – 휀)

4(1 + 휀)
+
퐷휀
4푚

. 

We conclude by letting ε →0.  
As a second step toward the proof of Theorem (4.2.22) we investigate some of the 

consequences of the reverse log-Sobolev inequality in theorem (4.2.16) for functions f such 
that 0 ≤  푓 ≤ 1 (later, we will apply this to indicator functions).  
Proposition (4.2.18)[225]. Let 휀 > 0, 푓 ∈ 퐴 , 휀 ≤  푓 ≤ 1, and consider the function 
푢(푥, 푡) =  − ln푃 푓(푥) . Then, with the convention that  = +∞, we have 

2푡푢  + 푢 + 1 +
퐷∗

2
 푢 / +

퐷∗

2
푢 /  ≥ 0, 
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where 

퐷∗  = 푚 1 +
2휅
휌

. 

Proof. Noting that we have 
푡
휌
푃푡푓(푥)(ln푃푡 푓)(푥) + 푡 푃푡푓(푥) (푙푛 푃푡푓 )(푥)  ≥ 0 

                    ≤  
1
휌 1 +

2휅
휌 +

4퐶
푚 [푃 ( 푓 ln푓 )(푥)−  푃 푓(푥) ln푃 푓(푥)] 

                  −
4퐶
휌 푚

푡
1 + 훿  퐿푃푡푓(푥) −

2퐶
휌 푚

ln 1 +
1
훿 푃푡푓(푥) 

applying the inequality (48) in Theorem (4.2.16), we obtain that for all 퐶 ≥ 0, 
푚
2 1 +

2휅
휌 +

4퐶
푚 푃 ( 푓 ln푓 )(푥)−  

푚
2 1 +

2휅
휌 +

4퐶
푚 (푃 푓) ln푃 푓 

−
2퐶푡

1 + 훿  퐿푃푡푓(푥) −
퐶
훿 푃푡푓 ≥ 0, 

where we used the fact that  

ln 1 +
1
훿

≤
1
훿

 . 

On the other hand, the hypothesis 0 ≤  푓 ≤ 1 implies 푓 ln 푓  ≤ 0. After dividing both sides 
of the above inequality by 푃 푓, we thus find 

−
푚
2

1 +
2휅
휌

+
4퐶
푚

ln푃 푓 −
2퐶푡

1 + 훿
퐿푃 푓
푃 푓

+
퐶
훿
≥ 0. 

Dividing both sides by 퐶 >  0, this may be re-written  

−
퐷∗

2퐶
ln푃 푓 − 2 ln푃 푓 −

2푡
1 + 훿

퐿푃 푓
푃 푓

+
퐶
훿
≥ 0               (50) 

We now minimize the left-hand side of (50) with respect to C. The minimum value is 
attained in 

퐶 = −
훿퐷∗

2
 ln푃 푓  . 

Substituting this value in (50), we obtain 

−
훿퐷∗

2
 − ln푃 푓 − 2푃 푓 −

2푡
1 + 훿

퐿푃 푓
푃 푓

+
퐶
훿
≥ 0. 

With 푢(푥, 푡) = − ln푃 푓 (푥), and noting that 푢  = − 1

2푢

퐿  , we can re-write this 

inequality as follows, 
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훿퐷∗

2훿
 + 푢 +

2푡
1 + 훿

푢 ≥ 0, 

 or equivalently, 

2푡푢  + 푢 + 훿푢 + (1 + 훿)
퐷∗

2훿
 ≥ 0. 

If we choose 

훿 =
1

푢 / , 

 we obtain the desired conclusion.  
      We now introduce the function 푔 ∶  (0,∞)  →  (0,∞) defined by 

푔(푣)  =  
1

푣 + 1 + 퐷∗

2   푣 / + 퐷∗

2   푣 /
  .                        (51) 

One easily verifies that 

lim
→

퐷∗

2
  푣 푔(푣) = 1,    lim

→
 푣푔(푣)  = 1. 

 These limit relations show that 푔 ∈ 퐿 (0,퐴) for every A > 0, but 푔퐿 (0,∞). Moreover, 
if we set 

퐺(푢)  = 푔(푣) 푑푣, 

then 퐺′(푢)  =  푔(푢) > 0, and thus 퐺: (0,∞)  →  (0,∞) is invertible. Furthermore, as is seen 
from (42), as 푢 → ∞ we have  

퐺(푢) = ln 푢 + 퐶  +  푅(푢),                                              (52) 
 where C0 is a constant and lim

→
푅(푢)  =  0. At this point we notice that, in terms of the 

function 푔(푢), we can re-express the conclusion of Proposition (4.2.18) in the form 

2푡푢  +
1

푔(푢)  ≥ 0. 

 Keeping in mind that 푔(푢)  =  퐺′(푢), we thus conclude  
푑퐺(푢)
푑푡

 =  퐺′(푢)푢푡  ≥ −
1
2푡

.                                       (53) 

From this identity we now obtain the following basic result. 
Corollary (4.2.19)[225]. Let 푓 ∈ 퐿 (푀), 0 ≤  푓 ≤ 1, then for any 푥 ∈ 푀 and 0 < 푠 <  푡, 

퐺 − ln푃 푓 (푥) ≥ 퐺 − ln푃 푓 (푥) −
1
2

ln
푡
푠

 . 
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Proof. If 푓 ∈ 퐴  for some 휖, the inequality is a straightforward consequence of the above 
results. In fact, keeping in mind that 푢(푥, 푡) = − ln푃 푓 (푥), in order to reach the desired 
conclusion all we need to do is to integrate (53) between s and t. Consider now 푓 ∈ 퐿 (푀),
0 ≤  푓 ≤ 1. Let ℎ ∈ 퐶 (푀), with 0 ≤ ℎ  ≤ 1, and ℎ  1. For 푛 ≥ 0, 휏 > 0 and 휖 > 0, 
the function 

 (1 − 휀)푃 (ℎ 푓 ) + 휀 ∈ 퐴 . 
Therefore, 

 퐺 − ln푃 푓 (1 − 휀)푃 (ℎ 푓 ) + 휀(푥)  

 ≥ 퐺 − ln푃 푓 (1 − 휀)푃 (ℎ 푓 ) + 휀(푥) −
1
2

ln
푡
푠

. 

Letting 휖 →  0, 휏 →  0 and finally 푛 → ∞, we obtain the desired conclusion for 푓. This 
completes the proof. 
     Combining Corollary (4.2.19) with Proposition (4.2.17) we obtain the following key 
estimate.  
Proposition (4.2.20)[225]. Let 푥 ∈ 푀 and 푟 >  0 be arbitrarily fixed. There exists 퐶∗ ∈  푅, 
independent of x and r, such that for any 푡 >  0,  

− ln푃 1 ( , ) (푥) ≥ ln
푟
√푡

+ 퐶∗ . 

Proof.  Re-write the inequality claimed in Corollary (4.2.19) as follows  
퐺 − ln푃 푓 (푥) ≥ 퐺 − ln푃 푓 (푥) + ln√s − ln√t, 

where we have presently let 푓(푦)  = 1 ( , ) (푦). Since for this function we have, from 
Proposition (4.2.17), 
 lim
→

(− ln푃 푓 (푥))  = ∞, using (52) we see that, for s→0+, the latter inequality is 

equivalent to 
퐺 − ln푃 푓 (푥) ≥ ln − ln푃 푓 (푥)−ln√푡  + 퐶  +  푅( − ln푃 푓 (푥)). 

 We now take the lim inf as 푠 → 0  of both sides of this inequality. Applying Proposition 
(4.2.17) we deduce  

퐺 − ln푃 푓 (푥) ≥ ln
푟
2

 −ln√푡  + 퐶 = ln
푟
√푡

 + 퐶∗, 

 where we have let 퐶∗ = 퐶 − ln 2. This establishes the desired conclusion.  
We are now in a position to prove the central result.  
Theorem (4.2.21)[225]. There exists a constant 퐴 >  0 such that for every 푥 ∈ 푀, and 푟 >
 0, 

 푃 1 ( , ) (푥) ≥
1
2

 . 

 Proof. By the stochastic completeness of 푀 we know that 푃 1 = 1. Therefore,  



119 
 

                           푃 1 ( , ) (푥)  = 1 −  푃 1 ( , ) (푥).                              
 We conclude that the desired estimate is equivalent to proving that there exists an absolute 
constant 퐴 > 0 such that  

√푙푛2 ≤ − ln푃 1 ( , ) (푥) , 

 or, equivalently, 

퐺 √푙푛2 ≤ 퐺 − ln푃 1 ( , ) (푥)                             (54) 

At this point we invoke Proposition (4.2.20), which gives  

퐺 − ln푃 1 ( , ) (푥) ≥ ln
1
√퐴

+ 퐶∗  

It is thus clear that, letting A → 0+, we can certainly achieve (54), thus completing the proof. 
  Theorem (4.2.22)[225]. (Global doubling property) The metric measure space (푀, 푑,휇) 
satisfies the global volume doubling property. More precisely, there exists a constant 퐶 =
퐶 (휌 , 휌 , 휅, 푑) > 0 such that for every 푥 ∈ 푀 and every 푟 > 0,  

휇(퐵(푥, 2푟))  ≤ 퐶 휇(퐵(푥, 푟)). 
Proof. The argument which shows how to obtain Theorem (4.2.22) from Theorem (4.2.21) 
was developed independently by Grigor’yan [197] and by Saloff-Coste [214], and it is by 
now well-known. However, since it is short for the sake of completeness in what follows 
we provide the relevant details. From the semigroup property and the symmetry of the heat 
kernel we have for any 푦 ∈ 푀 and 푡 >  0  

푝(푦, 푦, 2푡)  =  푝 (푦, 푧, 푡) 푑휇(푧). 

     Consider now a function ℎ ∈ 퐶 (푀) such that 0 ≤ ℎ ≤ 1,ℎ ≡ 1 on 퐵(푥,√푡/2) and ℎ ≡
0 outside 퐵(푥,√푡). We thus have 

 푃 ℎ(푦)  = 푝 (푦, 푧, 푡)ℎ(푧)푑휇(푧)  ≤  푝 (푦, 푧, 푡) 푑휇(푧)  ℎ (푧) 푑휇(푧)   

                   ≤  푝(푦, 푦, 2푡)  휇(퐵(푥,√푡))  . 
If we take 푦 =  푥, and 푡 = 푟 , we obtain 

 푃 1 ( , ) (푥) ≤ 푃 ℎ(푥) ≤  푝(푥,푥, 2푟 ) 휇(퐵(푥, 푟)).                       (55)  
At this point we use Theorem (4.2.21), which gives for some 0 <  퐴 <  1, (the fact that we 
can choose 퐴 < 1 is clear from the proof of Theorem (4.2.21) 
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푃 1 ( , / ) (푥) ≥
1
2

,           푥 ∈  푀,    푟 >  0. 

Combining this estimate with the Harnack inequality in Proposition (4.2.12) and with (56), 
we obtain the following on-diagonal lower bound 

 푝(푥, 푥, 2푟 ) ≥  
퐶∗

휇 퐵(푥, 푟)
  ,         푥 ∈  푀,          푟 > 0.                  (56) 

Applying Proposition (4.2.12) we find for every 푦 ∈ 퐵(푥,√푡),  
푝(푥, 푥, 푡)  ≤ 퐶푝(푥,푦, 2푡). 

Integration over 퐵(푥,√푡) gives 

푝(푥, 푥, 푡)휇(퐵(푥,√푡))  ≤ 퐶  푝
( ,√ )

(푥, 푦, 2푡)푑휇(푦)  ≤ 퐶, 

where we have used 푃 1 ≤  1. Letting 푡 =  푟 , we obtain from this the on-diagonal upper 
bound  

푝(푥, 푥, 푟 ) ≤
퐶

휇 퐵(푥, 푟)
.                                          (57) 

Combining (56) with (57) we finally obtain 

휇 퐵(푥, 2푟) ≤
퐶

푝(푥, 푥, 4푟2)  ≤
퐶퐶

푝(푥,푥, 2푟2)  ≤ 퐶∗∗휇 퐵(푥, 푟)  , 

 where we have used once more Proposition (4.2.12) (with 푦 =  푧 =  푥), which gives 
푝(푥,푥, 2푟2)
푝(푥,푥, 4푟2)  ≤ 퐶′  

and we have let 퐶∗∗ = 퐶퐶′(퐶∗) . This completes the proof.  
     It is well-known that Theorem (4.2.22) provides the following uniformity control at all 
scales. 
Theorem (4.2.23)[225]. With C1 being the constant in Theorem (4.2.22), let 푄 =  log 퐶  . 
For any 푥 ∈  푀 and 푟 >  0 one has 

휇(퐵(푥, 푡푟))  ≥ 퐶  푡 휇(퐵(푥, 푟)),        0 ≤ 푡 ≤ 1. 
          The purpose is to establish some optimal two-sided bounds for the heat kernel 
푝(푥, 푦, 푡) associated with the subelliptic operator L. Such estimates are reminiscent of those 
obtained by Li and Yau for complete Riemannian manifolds having 푅푖푐 ≥ 0. As a 
consequence of the two-sided Gaussian bound for the heat kernel, we will derive the 
Poincaré inequality and the local parabolic Harnack inequality thanks to well-known results 
in the works [193,197,198,214,216–218]. 



121 
 

        We assume, once again, that the assumptions (Hypothesis (4.2.3))–( Hypothesis (4.2.7)) 
be satisfied, and that the generalized curvature-dimension inequality 퐶퐷(휌 ,휌 , 휅,푚) hold, 
with 휌 ≥ 0. Here is the main result. 
Theorem (4.2.24)[225]. For any 0 < 휀 < 1 there exists a constant 퐶(휀) = 퐶(푚, 휅,휌 , 휀) >
0, which tends to ∞ as ε →0+, such that for every 푥, 푦 ∈  푀 and 푡 >  0 one has  

퐶(휀)

휇 퐵 푥,√푡
 푒푥푝 −

퐷푑(푥,푦)
푚(4 − 휀)푡

≤  푝(푥, 푦, 푡) ≤
퐶(휀)

휇 퐵 푥,√푡
 푒푥푝 −

푑(푥,푦)
(4 − 휀)푡

. 

 Proof. We begin by establishing the lower bound. First, from Proposition (4.2.12) we obtain 
for all 푦 ∈ 푀, 푡 >  0, and every 0 < 휀 < 1, 

푝(푥, 푦, 푡)  ≥  푝(푥, 푥, 휀푡)휀 푒푥푝 −
퐷
푚
푑(푥,푦)2

(4 − 휀)푡
. 

 We thus need to estimate 푝(푥,푥, 휀푡) from below. But this has already been done in (4.2.23). 
Choosing r > 0 such that 2푟  =  휀푡, we obtain from that estimate 

푝(푥, 푥, 휀푡)  ≥
퐶∗

휇(퐵(푥, 휀/2 √푡))
   , 푥 ∈  푀, 푡 >  0. 

On the other hand, since 휀/2   <  1, by the trivial inequality 휇(퐵(푥, 휀/2√푡 ))  ≤
 휇(퐵(푥,√푡)), we conclude 

푝(푥,푦, 푡)  ≥
퐶∗

휇(퐵(푥,√푡))
휀 푒푥푝 −

퐷
푚
푑(푥, 푦)2

(4 − 휀)푡
 

This proves the Gaussian lower bound. 
For the Gaussian upper bound, we first observe that the following upper bound is proved in 
[183]: 

푝(푥,푦, 푡)  ≥
퐶(푚, 휅, 휌 , 휀′)

휇(퐵(푥,√푡)) 휇(퐵(푥,√푡))
푒푥푝 −

푑(푥, 푦)2

(4 + 휀′)푡
 

At this point, by the triangle inequality and Theorem (4.2.23) we find.  
              휇(퐵(푥,√푡))  ≤  휇(퐵(푦, 푑(푥, 푦) + √푡))  

≤  퐶 휇(퐵(푦,√푡))  
푑(푥, 푦) + √푡

√푡 
  . 

This gives 
1

휇(퐵(푦,√푡))
   ≤

퐶
휇(퐵(푦,√푡))

 
푑(푥,푦)

√푡 
+ 1   . 

Combining this with the above estimate we obtain 

푝(푥,푦, 푡)  ≥
퐶 / (푚, 휅,휌 , 휀′)
휇(퐵(푦,√푡))

푑(푥,푦)
√푡 

+ 1
/

푒푥푝 −
푑(푥, 푦)2

(4 + 휀′)푡
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If now 0 < 휖 < 1, it is clear that we can choose 0 < 휀′ < 휀 such that 
퐶 / (푚, 휅,휌 , 휀′)
휇(퐵(푦,√푡))

푑(푥,푦)
√푡 

+ 1
/

푒푥푝 −
푑(푥, 푦)2

(4 + 휀′)푡
 

                                    ≤
퐶∗(푚, 휅,휌 , 휀)
휇(퐵(푦,√푡))

푒푥푝 −
푑(푥, 푦)2

(4 + 휀′)푡
 

where 퐶∗(푚, 휅,휌 , 휖) is a constant which tends to ∞ as 휖 → 0+. The desired conclusion 
follows by suitably adjusting the values of both 휀′ and of the constant in the right-hand side 
of the estimate.  
  With Theorems (4.2.22) and (4.2.24) in hands, we can now appeal to the results in 
[193,197,208,214,216-218]. From the developments it is by now well-known that strictly 
regular local Dirichlet spaces we have the equivalence between:  
 (i) A two sided Gaussian bounds for the heat kernel (like in Theorem 4.2.24); 
 (ii) The conjunction of the volume doubling property and the Poincaré inequality (see 
Theorem 4.2.25); 
(iii) The parabolic Harnack inequality (see Theorem 4.2.27).  
    For uniformly parabolic equations in divergence form the equivalence between (i) and 
(iii) was first proved in [193]. The fact that (i) implies the volume doubling property is 
almost straight forward, the argument may be found in [215]. The fact that (i) also implies 
the Poincaré inequality relies on a beautiful and general argument by Kusuoka and Stroock 
[208]. The equivalence between (ii) and (iii) originates from [197,214] and has been worked 
out of strictly local regular Dirichlet spaces in [218]. Finally, the fact that (ii) implies (i) is 
also proven in [218]. 
      We obtain the following weaker form of Poincaré inequality. We already know the 
volume doubling property since we proved it to obtain the Gaussian estimates.  
Theorem (4.2.25)[225]. There exists a constant 퐶 = 퐶(푚, 휅,휌 ) > 0 such that for every 
푥 ∈ 푀, 푟 > 0, and 푓 ∈ 퐶 (푀) one has 

|푓(푦) −  푓 |
( , )

푑휇(푦)  ≤ 퐶푟   (푓 )(푦)푑휇(푦)
( , )

, 

where we have let 푓 =
( ( , ))

 ∫ 퐵(푥, 푟) 푓푑휇( , ) .  

Since thanks to Theorem (4.2.22) the space (푀,휇, 푑), where 푑 = 푑(푥, 푦) indicates the sub-
Riemannian distance, is a space of homogeneous type, and it is also a length-space in the 
sense of Gromov, arguing as in [206] we now conclude with the following result.  
Corollary (4.2.26)[225]. There exists a constant 퐶∗ =  퐶∗(푚,휅,휌 ) > 0 such that for every 
푥 ∈ 푀, 푟 >  0, and 푓 ∈ 퐶 (푀) one has 
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|푓(푦) −  푓 |
( , )

푑휇(푦)  ≤ 퐶∗푟   (푓 )(푦)푑휇(푦)
( , )

, 

 Furthermore, the following scale invariant Harnack inequality for local solutions holds. 
Theorem (4.2.27)[225]. If u is a positive solution of the heat equation in a cylinder of the 
form 푄 =  (푠, 푠 + 훼푟 ) ×  퐵(푥, 푟) then 

sup푢  ≤ 퐶 inf 푢 ,                                                        (58) 

where for some fixed 0 < 훽 < 훾 < 훿 < 훼 < ∞ and 휂 ∈  (0,1),  
푄−= (푠 + 훽푟 , 푠 + 훾푟 ) ×  퐵(푥, 휂푟),   푄+= (푠 + 훿푟 , 푠 + 훼푟 ) ×  퐵(푥, 휂푟). 

Here, the constant C is independent of 푥, 푟 and u, but depends on the parameters 푚, 휅, 휌 , as 
well as on 훼,훽, 훾,훿 and η. 
       In [183] were able to establish a Yau type Liouville theorem stating that when 푀 is 
complete, and the generalized curvature dimension inequality 퐶퐷(휌 ,휌 , 휅,푚) holds for 
휌 ≥ 0, then there exist no bounded solutions of 퐿푓 = 0 on 푀 besides the constants. Note 
that this result is weaker thanYau’soriginal Riemannian result in [223] since this author only 
assumes a one-side bound. However, as a consequence of Theorems (4.2.22) and (4.2.25) 
we can now remove such limitation and obtain the following complete sub-Riemannian 
analogue of Yau’s Liouville theorem. 
Theorem (4.2.28)[225]. There exist no positive solutions of 퐿푓 = 0 on 푀 besides the 
constants.  
        We can now prove much more. In [190] Colding and  Minicozzi obtained a complete 
resolution of Yau’s famous conjecture that the space of harmonic functions with a fixed 
polynomial growth at infinity on an open manifold with 푅푖푐 ≥  0 is finite dimensional. A 
fundamental discovery is the fact that such property can be solely derived from the volume 
doubling condition and the Neumann–Poincaré inequality. However, at the time [190] was 
written the only application of such theorem that could be given was to Lie groups with 
polynomial volume growth.  
      If we combine Theorem (4.2.22) and Corollary (4.2.26) above, we can considerably 
broaden the scope of Colding and Minicozzi’s result and generalize it to the geometric 
framework covered. We obtain in fact the following generalization of Yau’s conjecture. 
Given a fixed base point 푥 ∈  푀, and a number 푁 ∈ ℕ, we will indicate with 퐻푁(푀, 퐿) the 
linear space of all solutions of 퐿푓 = 0 on 푀 such that there exist a constant 퐶 < ∞ for 
which 

|푓 (푥)| ≤ 퐶(1 + 푑(푥,푥 ) ), 푥 ∈  푀. 
Theorem (4.2.29)[225]. For every 푁 ∈ ℕ one has: dimℋ (푀, 퐿)  < ∞. 
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Corollary(4.2.30)[291]. For every 푥 ∈ 푀 and every 휖 ≥  0 there is a constant 퐶(1 + 휖, 1 +
휖, 1 + 2휖) > 0 such that, 

휇 퐵(푥, (푅 + 휖) ≤
퐶(1 + 휖, 1 + 휖, 1 + 2휖)

푅 푝(푥, 푥,푅 )
(푅 + 휖) ,       휖 ≥  0. 

Proof. Fix 푥 ∈  푀 and 휖 ≥  0. Applying to 푝(푥, 푥 + 휖, 1 + 휖) for every (푥 + 휖) ∈
퐵(푥,√1 + 휖) we find 

푝(푥, 푥, 1 + 휖)  ≤ 2  푒 ( ) 푝(푥, 푥 + 휖, 2(1 + 휖))  
= 퐶(1 + 휖, 1 + 휖, 2(1 + 휖))푝(푥, 푥 + 휖, 2(1 + 휖)). 

 Integration over 퐵(푥,√1 + 휖) gives 

푝(푥,푥, 푥 + 휖)휇(퐵(푥,√1 + 휖)  ≤ 퐶(1 + 휖, 1 + 휖, 1 + 휖)  푝(푥, 푥 + 휖, 2(1 + 휖))
( ,√ )

푑휇(푥 + 휖)  

≤ 퐶(1 + 휖, 1 + 휖, 2(1 + 휖)), 
where we have used 푃 1 ≤ 1. This gives the on-diagonal upper bound  

푝(푥, 푥, 푠 + 휖)  ≤  
퐶(1 + 휖, 1 + 휖, 1 + 2휖)

휇 퐵 푥,√푠 + 휖
 .                                          (59) 

Let now 휏 + 휖 > 0. Again, from the Harnack inequality, we have 

푝(푥, 푥, 휏 + 휖)  ≥  푝(푥, 푥, 휏)
휏

휏 + 휖
. 

Corollary(4.2.31)[291]. Let 휀 > 0 and the sequence 푓 ∈ 퐴 . For 푥 ∈  푀, 휏 + 휖 > 0, and 
퐶 ∈ 푅, one has 

휏
(1 + 2휖) 푃 (푓 (ln 푓 ))(푥) + 휏 푃 ( 푓  (ln 푓 ))(푥)  

+
1

1 + 휖
3 +

4퐶
1 + 휖

 [푃 (푓 ln 푓 )(푥) − 푃 푓 (푥) ln푃 푓 (푥)]  

≥  
2휏 + 휖

(1 + 2휖)   푃  푓 (푥)(ln 푃 푓 )(푥) + (2휏 + 휖) 푃  푓 (푥) (ln 푃  푓 )(푥) 

 +
4퐶

(1 + 2휖)  퐿 푃  푓 (푥) −
2퐶

(1 + 휖)(1 + 2휖) ln 1 +
휏 + 휖
휏

푃 푓 (푥). 

Proof. Let 푇, 휏 > 0 be arbitrarily fixed. With 휖 > 0, in which we choose  

(푎 + 휖)(1 + 휖) = (푇 + 휖) ,   푎(1 + 휖)  =
1

1 + 2휖
(푇 + 휖),    훾(휏 + 휖) =

퐶
푇 + 휖

  , 0

≤ 휏 + 휖 ≤  푇. 
With such choices we obtain  
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⎩
⎪⎪
⎨

⎪⎪
⎧푎 − 2(1 + 휖)    − 4 ( ) ≡ ( ) 1 + ( )

( )  + ( ) ,
(1 + 휖) + 2(1 + 2휖)푎 ≡ 0,                                                    
∫ ( ) = ( )( ),                                                     

푎푛푑                                                                         
−∫ ( ) = − ( )( ) ln 1 + .                    

       (60)                              

We obtain the sought for conclusion with T in place of 휏 + 휖. The arbitrariness of 푇 > 0 
finishes the proof. 
Corollary(4.2.32)[291]. Let 휖 > 0 and the sequence 푓 ∈ 퐴 . For 푥 ∈ 푀, 휖 ≥ −1 one has 
  (1 + 휖)푃 푓 (푥)(ln푃 푓 )(푥) + (1 + 2휖)(1 + 휖) 푃 푓  (푥) (ln 푃 푓 )(푥)  

≤ 1 +
2(1 + 휖)
(1 + 2휖) [푃 ( 푓  ln 푓  )(푥) −  푃 푓 (푥) ln푃 푓 (푥)]. 

Proof. We first apply with 퐶 = 0, and then we let 1 + 휖 →  0  in the resulting inequality. 
  We may actually improve Corollary (4.2.32) and obtain the following crucial dimension 
dependent reverse log-Sobolev inequality.  
Corollary(4.2.33)[291]. Let 휖 > 0 and the sequence 푓 ∈ 퐴 , then for every 퐶 ≥ 0 and 훿 >
0, one has for 푥 ∈  푀, 휖 ≥ −1,  

(1 + 휖)푃 푓 (푥)(ln푃 푓 )(푥) + (1 + 휖) 푃 푓  (푥) (ln 푃 푓 )(푥) 

≤ 1 +
2(1 + 휖)
(1 + 2휖) +

4퐶
(1 + 휖) [푃 (푓 ln 푓  )(푥) −  푃 푓 (푥) ln푃 푓 (푥)] 

−
4퐶

(1 + 2휖)
1

1 + 훿
 퐿푃 푓 (푥) +

2퐶
(1 + 2휖)(1 + 휖) ln 1 +

1
훿
푃 푓 (푥).               (61)  

Proof. For 푥 ∈  푀, 휖 ≥ −1, we apply to the function 푃 푓  instead of 푓 . Recalling that 
푃 (푃 푓 ) = 푃 ( )푓 , we obtain, for all 퐶 ∈ 푅,  

          ( )푃 (푃 푓 (ln푃 푓  )(푥) + (1 + 휖) 푃 (푃 푓  (ln 푃 푓 )(푥)  

+
1

(1 + 2휖) 1 +
2(1 + 휖)

휌 +
4퐶

(1 + 휖) [푃 ( 푃 푓 ln푃 푓  )(푥)−  푃 ( )푓 (푥) ln푃 ( ) 푓 (푥)] 

≥
푃 ( )

(1 + 2휖)푃 ( )(푓 (푥)(ln푃 ( ) 푓 )(푥) + 2(1 + 휖) 푃 ( )푓 (푥) (ln 푃 ( )푓 )(푥) 

+
4퐶

(1 + 2휖)(1 + 휖) (1 + 휖)퐿푃 ( )푓 (푥)−
2퐶

(1 + 2휖)(1 + 휖) ln
2 + 휖
1 + 휖 푃 ( )푓 (푥)       (62) 

We now find for every 푥 ∈  푀, 휖 ≥ −1,  
(1 + 휖)푃 푓 (푥)(ln푃 푓 )(푥) + (1 + 2휖)(1 + 휖) 푃 푓 (푥) (ln푃 푓 )(푥) 

≤ 1 +
2(1 + 휖)
1 + 2휖

[푃 ( 푓  ln 푓  )(푥) −  푃 푓 (푥) ln푃 푓 (푥)]. 

If we now apply 푃   to this inequality, we obtain 
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(1 + 휖)푃 푓 (푥)(ln푃 푓 )(푥) + (1
+ 2휖)(1 + 휖) 푃 (푃 푓  (ln푃 푓 )(푥)) 

≤ 1 +
2(1 + 휖)
(1 + 2휖) [푃 ( )( 푓  ln 푓 )(푥) −  푃 (푃 푓 ln푃 푓 ) (푥)]. 

We use this inequality to bound from above the first two terms, obtaining 

1 + 2(1 + 휖)
(1 + 2휖)

(1 + 2휖) 푃 ( )( 푓  ln 푓 )(푥) +
4퐶

(1 + 2휖)(1 + 휖) 푃 (푃 푓 ln푃 푓 ) (푥) 

−
1

(1 + 2휖) 1 +
2(1 + 휖)
(1 + 2휖) +

4퐶
(1 + 휖) 푃 ( )푓 (푥) ln푃 ( )푓 (푥)  

      ≥
2(1 + 휖)
(1 + 2휖) 푃 ( )푓 (푥)(ln푃 ( )푓 )(푥)

+ 2(1 + 휖) 푃 ( )푓 (푥) (ln푃 ( )푓 )(푥) 

             +
4퐶

(1 + 2휖)  퐿푃 ( )푓 (푥) −
2퐶

(1 + 2휖)(1 + 휖) ln
2 + 휖
1 + 휖

푃 ( )푓 (푥) 

Consider the convex function (1 + 휖) = (1 + 휖) ln 푠 ,   ϵ ≥ −1. Thanks to Jensen’s 
inequality, we have for any ϵ ≥ −1 and 푥 ∈  푀 

(푃 푓  (푥))  ≤ 푃 ((푓 ))(푥), 
which we can rewrite 

푃 푓  (푥) ln푃 푓 (푥)  ≤  푃 (푓 ln 푓 )(푥). 
 For 퐶 ≥ 0, applying 푃  to this inequality we find 

4퐶
(1 + 2휖)(1 + 휖)푃 (푃 푓 ln푃 푓 )(푥)  ≤

4퐶
(1 + 2휖)(1 + 휖)푃 ( )(푓 ln 푓 )(푥). 

We therefore conclude, for 퐶 ≥ 0, 
1

1 + 2휖
1 +

2(1 + 휖)
1 + 2휖

+
4퐶

1 + 휖
[푃 ( )( 푓 ln 푓  )(푥) −  푃 ( )푓 (푥) ln푃 ( ) 푓 (푥)] 

≥
2(1 + 휖)
(1 + 2휖)푃 ( )푓 (푥)(ln푃 ( ) 푓 )(푥) + 2(1 + 휖) 푃 ( )푓 (푥) (ln 푃 ( )푓 )(푥) 

+
4퐶

(1 + 2휖) 퐿푃 ( )푓 (푥) −
2퐶

(1 + 2휖)(1 + 휖) ln
2 + 휖
1 + 휖

푃 ( )푓 (푥)    

If in the latter inequality we now choose (1 + 휖) =  훿(1 + 휖), we find:  
1

(1 + 2휖) 2 + 휖 +
4퐶

(1 + 휖) [푃( ) ( )( 푓 ln 푓  )(푥)

−  푃( ) ( )푓 (푥) ln푃( ) ( ) 푓 (푥)] 



127 
 

≥
(1 + 휖) + 훿(1 + 휖)

(1 + 2휖) 푃( ) ( )푓 (푥)(ln푃( ) ( ) 푓 )(푥)

+ (1 + 휖) + 훿(1 + 휖) 푃( ) ( )푓 (푥) (ln 푃( ) ( )푓 )(푥) 

+
4퐶

(1 + 2휖)  퐿푃( ) ( )푓 (푥) −
2퐶

(1 + 2휖)(1 + 휖) ln
2 + 휖
1 + 휖

푃( ) ( )푓 (푥)    

Changing (1 + 훿)(1 + 휖) into (1 + 휖) in the latter inequality, we finally conclude: 

                 
1 + 휖

(1 + 2휖) 푃 푓 (푥)(ln푃 푓 )(푥) + (1 + 휖) 푃 푓 (푥) (ln 푃 푓 )(푥) 

                    ≤  
1

(1 + 2휖) 1 +
2(1 + 휖)
(1 + 2휖) +

4퐶
(1 + 휖) [푃 ( 푓 ln 푓  )(푥)

−  푃 푓 (푥) ln푃 푓 (푥)] 

                  − ( )  퐿푃 푓 (푥) − ( )( ) ln 1 + 푃 푓 (푥) . 

Corollary(4.2.34)[291]. Given 푥 ∈ 푀 and 휖 ≥ −1, let the sequence 푓 = 1 ( , ) . One 
has, 

lim
→

inf (−푠 ln푃 푓 (푥) ) ≥
(1 + 휖)

4
. 

Proof. To prove the proposition it will suffice to show that 

lim
→

inf (1 + 휖) ln푃 푓 (푥) ≥ −
(1 + 휖)

4
 

Let 0 < 휖 < 1. By the Harnack inequality of Proposition 2.2 and the symmetry of the heat 
kernel, we have for (푥 + 휖) ∈ 푀 and (푥 + 2휖) ∈ 퐵(푥, 휀) ,  

푝(푥,푥 + 휖, 1 + 휖) ≤  푝(푥 + 2휖, 푥 + 휖, (1 + 휖) )2 /  푒 ( )  . 
Therefore, multiplying the above inequality by푓 (푥 + 휖) = 1 ( , ) (푥 + 휖) and then 
integrating with respect to 푥 + 휖, we obtain 

 푃 푓 (푥) ≤ 푃( ) 푓 (푥 + 2휖)2 /  푒 ( ) . 
By integrating now with respect to (푥 + 2휖) ∈ 퐵(푥, 휀), we get 

푃 푓 (푥) ≤
2 /  푒 ( )

휇(퐵(푥, 휀))
 1 ( , ) (푥 + 2휖)(푃( ) 푓  )(푥 + 2휖)푑휇(푥 + 2휖). 

Now, (for which normalization differs from us by a factor 1/2 because he considers the 
semigroup 푒( ) / ), we obtain: 

lim
( )→

(1 + 휖) ln 1 ( , ) (푥 + 2휖) 푃( ) 푓 (푥 + 2휖)푑휇(푥 + 2휖) = −
1

4(1 + 휀)
 . 
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This yields therefore 

lim
( )→

inf ((1 + 휀) ln푃 푓 (푥) )  ≤
퐷휀 − 1

4(1 + 휖)
. 

We conclude by letting ε →0.  
 
Corollary(4.2.35)[291]. Let 휀 > 0, the sequence 푓 ∈ 퐴 , 휀 ≤ 푓 ≤ 1, and consider the 
function 푢(푥, 1 + 휀) =  − ln푃 푓 (푥) . Then, with the convention that  = +∞, we 
have 

2(1 + 휖)푢  + 푢 + 1 +
퐷∗

2
 푢 / +

퐷∗

2
푢 /  ≥ 0, 

where 

퐷∗  = (1 + 휖) 1 +
2(1 + 휖)
1 + 2휖

. 

Proof. Noting that we have 
1 + 휖

1 + 2휖
푃 푓 (푥)(ln푃 푓 )(푥) + (1 + 휖) 푃 푓 (푥) (ln 푃 푓 )(푥)  ≥ 0 

                    ≤  
1

1 + 2휖
1 +

2(1 + 휖)
1 + 2휖

+
4퐶

1 + 휖
[푃 (푓 ln 푓  )(푥)

−  푃 푓 (푥) ln푃 푓 (푥)] 

                  −
4퐶

1 + 2휖
1

1 + 훿
 퐿푃 푓 (푥) −

2퐶
(1 + 2휖)(1 + 휖)

ln 1 +
1
훿
푃 푓 (푥) 

we obtain that for all 퐶 ≥ 0, 
1 + 휖

2
1 +

2(1 + 휖)
1 + 2휖

+
4퐶

1 + 휖
푃 ( 푓 ln 푓  )(푥)

−  
1 + 휖

2
1 +

2(1 + 휖)
1 + 2휖

+
4퐶

1 + 휖
(푃 푓 ) ln푃 푓  

−
2퐶(1 + 휖)

1 + 훿
 퐿푃 푓 (푥) −

퐶
훿
푃 푓 ≥ 0, 

where we used the fact that  

ln 1 +
1
훿

≤
1
훿

 . 

On the other hand, the hypothesis 0 ≤ 푓 ≤ 1 implies 푓 ln 푓  ≤ 0. After dividing both 
sides of the above inequality by 푃 푓 , we thus find 

−
1 + 휖

2
1 +

2(1 + 휖)
1 + 2휖

+
4퐶

1 + 휖
ln푃 푓 −

2퐶(1 + 휖)
1 + 훿

퐿푃 푓
푃 푓

+
퐶
훿
≥ 0. 

Dividing both sides by 퐶 >  0, this may be re-written  
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−
퐷∗

2퐶
ln푃 푓 − 2 ln푃 푓 −

2(1 + 휖)
1 + 훿

퐿푃 푓
푃 푓

+
퐶
훿
≥ 0               (63) 

We now minimize the left-hand side of (63) with respect to 퐶. The minimum value is 
attained in 

퐶 = −
훿퐷∗

2
 ln푃 푓  . 

Substituting this value in (63), we obtain 

−
훿퐷∗

2
 − ln푃 푓 − 2푃 푓 −

2(1 + 휖)
1 + 훿

퐿푃 푓
푃 푓

+
퐶
훿
≥ 0. 

With 푢(푥, 1 + 휖) = − ln푃 푓 (푥), and noting that 푢  = −  , we can re-

write this inequality as follows, 

훿퐷∗

2훿
 + 푢 +

2(1 + 휖)
1 + 훿

푢 ≥ 0, 

 or equivalently, 

2(1 + 휖)푢  + 푢 + 훿푢 + (1 + 훿)
퐷∗

2훿
 ≥ 0. 

Finally, if we choose 

훿 =
1

푢 / , 

 we obtain the desired conclusion.  
      We now introduce the functions (푓 + 휖) ∶  (0,∞)  →  (0,∞) defined by 

(푓 + 휖)(푣)  =  
1

푣 + 1 + 퐷∗

2   푣 / + 퐷∗

2   푣 /
  .                        (64) 

One easily verifies that 

lim
→

퐷∗

2
  푣 (푓 + 휖)(푣) = 1,    lim

→
 푣(푓 + 휖)(푣)  = 1. 

 These limit relations show that the sequence (푓 + 휖) ∈ 퐿 (0, 1 + 휖) for every 휖 ≥ −1, but 
(푓 + 휖)퐿 (0,∞). Moreover, if we set 

퐺(푢)  = (푓 + 휖)(푣)푑푣, 
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then 퐺′(푢)  =  (푓 + 휖)(푢) > 0, and thus 퐺: (0,∞)  →  (0,∞) is invertible. Furthermore, 
as is seen from (64), as 푢 → ∞ we have  

퐺(푢) = ln 푢 + 퐶  +  푅(푢),                                              (65) 
 where 퐶  is a constant and lim

→
푅(푢)  =  0. At this point we notice that, in terms of the 

functions (푓 + 휖)(푢) we can re-express the conclusion of Corollary(4.2.35) in the form 

2(1 + 휖)푢  +
1

(푓 + 휖)(푢)  ≥ 0. 

 Keeping in mind that (푓 + 휖)(푢)  =  퐺′(푢), we thus conclude  
푑퐺(푢)
푑푡

 =  퐺′(푢)푢  ≥ −
1

2(1 + 휖).                                       (66) 

From this identity we now obtain the following basic result . 
Corollary(4.2.36)[291]. Let the sequence 푓 ∈ 퐿 (푀), 0 ≤ 푓 ≤ 1, then for any 푥 ∈ 푀 
and 0 < 푠 <  푠 + 휖, 

퐺 − ln푃 푓 (푥) ≥ 퐺 − ln푃 푓 (푥) −
1
2

ln
푠 + 휖
푠

 . 

Proof. If 푓 ∈ 퐴  for some ε, the inequality is a straightforward consequence of the above 
results. In fact, keeping in mind that 푢(푥, 푠 + 휖) = − ln푃 푓 (푥), in order to reach the 
desired conclusion all we need to do is to integrate (66) between s and 푠 + 휖. Consider now 
푓 ∈ 퐿 (푀), 0 ≤ 푓 ≤ 1. Let (푓 + 2휖) ∈ 퐶 (푀), with 0 ≤ (푓 + 2휖) ≤ 1, 
and(푓 + 2휖)  1. For 휖 ≥ 0 and 휀 > 0, the function 

 (1 − 휀)푃 ((푓 + 2휖) 푓  ) + 휀 ∈ 퐴 . 
Therefore, 

 퐺 − ln푃 푓 (1 − 휀)푃 ((푓 + 2휖) 푓  ) + 휀(푥)  

 ≥ 퐺 − ln푃 푓 (1 − 휀)푃 ((푓 + 2휖) 푓  ) + 휀(푥) −
1
2

ln
푠 + 휖
푠

. 

Letting 휀 →  0, and finally 휖  → ∞, we obtain the desired conclusion for 푓 .  
Corollary(4.2.37)[291].Let 푥 ∈ 푀 and 휖 ≥ −1 be arbitrarily fixed. There exists 퐶∗ ∈  푅, 
independent of x and 1 + 휖, such that for any 휖 ≥ −1,  

− ln푃 1 ( , ) (푥) ≥ ln√1 + 휖 + 퐶∗ . 

Proof.  Re-write the inequality claimed in Corollary (4.2.36) as follows  
퐺 − ln푃 푓 (푥) ≥ 퐺 − ln푃 푓 (푥) + ln√s − ln√푠 + 휖, 

where we have presently let 푓 (푥 + 휖)  = 1 ( , ) (푥 + 휖). Since for this function we 
have, from Corollary(4.2.34), 
 lim
→

(− ln푃 푓 (푥))  = ∞, using (65) we see that, for s→0+, the latter inequality is 

equivalent to 
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퐺 − ln푃 푓 (푥) ≥ ln − ln푃 푓 (푥)−ln√푠 + 휖  + 퐶  +  푅( − ln푃 푓 (푥)). 
 We now take the lim inf as 푠 → 0  of both sides of this inequality. Applying 
Corollary(4.2.34), we deduce  

퐺 − ln푃 푓 (푥) ≥ ln
1 + 휖

2
 −ln√푠 + 휖  + 퐶 = ln√1 + 휖 + 퐶∗ , 

 where we have let 퐶∗ = 퐶 − ln 2. This establishes the desired conclusion.  
We are now in a position to show the central result.  
Corollary(4.2.38)[291].. There exists a constant 휖 ≥ −1 such that for every 푥 ∈ 푀,  

 푃( ) 1 ( , ) (푥) ≥
1
2

 . 

 Proof. By the stochastic completeness of 푀 we know that 푃 1 = 1. Therefore,  
                           푃( ) 1 ( , ) (푥)  = 1 −  푃( ) 1 ( , ) (푥).                              
 We conclude that the desired estimate is equivalent to proving that there exists an absolute 
constant  휖 > 0 such that  

√ln2 ≤ − ln푃( ) 1 ( , ) (푥) , 

 or, equivalently, 

퐺 √ln2 ≤ 퐺 − ln푃( ) 1 ( , ) (푥)                             (67) 

At this point we which gives  

퐺 − ln푃( ) 1 ( , ) (푥) ≥ ln
1

√1 + 휖
+ 퐶∗  

It is thus clear that, letting 1 + 휖 → 0+, we can certainly achieve (67), thus completing the 
proof. 
We have the following , 
Corollary(4.2.39)[291]. (Global doubling property) The metric measure space (푀,푑, 휇) 
satisfies the global volume doubling property. More precisely, there exists a constant 퐶 =
퐶 (1 + 휖, 1 + 2휖, 1 + 휖, 1 + 휖) > 0 such that for every 푥 ∈ 푀 and every 휖 ≥ −1 ,  

휇(퐵(푥, 2(1 + 휖)))  ≤ 퐶 휇(퐵(푥, 1 + 휖)). 
Proof. The argument which shows was developed independently by Grigor’yan [197] and 
by Saloff-Coste [214], and it is by now well-known. However, since it is short for the sake 
of completeness in what follows we provide the relevant details. From the semigroup 
property and the symmetry of the heat kernel we have for any (푥 + 휖) ∈ 푀 and  휖 ≥ −1 

푝(푥 + 휖, 푥 + 휖, 2(푥 + 휖))  =  푝 (푥 + 휖,푥 + 2휖, 1 + 휖) 푑휇(푥 + 2휖). 
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     Consider now the functions (푓 + 2휖) ∈ 퐶 (푀) such that 0 ≤ 푓 + 2휖 ≤ 1, ( 푓 +
2휖) ≡ 1 on 퐵(푥,√1 + 휖/2) and (푓 + 2휖) ≡ 0 outside 퐵(푥,√1 + 휖). We thus have 

 푃 (푓 + 2휖)(푥 + 휖)  = 푝 (푥 + 휖, 푥 + 2휖, 1 + 휖)( 푓 + 2휖)(푥 + 2휖)푑휇(푥 + 2휖)  

≤  푝 (푥 + 휖,푥 + 2휖, 1 + 휖) 푑휇(푥 + 2휖)  (푓 + 2휖) (푥 + 2휖) 푑휇(푥 + 2휖)   

                   ≤  푝(푥 + 휖,푥 + 휖, 2(1 + 휖))  휇(퐵(푥,√1 + 휖))  . 
If we take 휖 =  0, and 휖 = −1, we obtain 

 푃( ) 1 ( , ) (푥) ≤ 푃( ) ( 푓 + 2휖)(푥) ≤  푝(푥, 푥, 2(1 + 휖) ) 휇(퐵(푥, 1 + 휖)).     (68)  
At this point we use Corollary(4.2.38) which gives for some 0 <  휖 <  1, (the fact that we 
can choose 휖 <  1 is clear from the proof of Corollary(4.2.38). 

푃( ) 1 ( , / ) (푥) ≥
1
2

,           푥 ∈  푀,    휖 ≥ −1. 

Combining this estimate with the Harnack, we obtain the following on-diagonal lower 
bound 

 푝(푥, 푥, 2(1 + 휖) ) ≥  
퐶∗

휇 퐵(푥, 1 + 휖)
  ,         푥 ∈  푀,         휖 ≥ −1.                  (69) 

we find for every 푥 + 휖 ∈ 퐵(푥,√1 + 휖),  
푝(푥, 푥, 1 + 휖)  ≤ 퐶푝(푥,푥 + 휖, 2(1 + 휖)). 

Integration over 퐵(푥,√1 + 휖) gives 

푝(푥,푥, 1 + 휖)휇(퐵(푥,√1 + 휖))  ≤ 퐶  푝
( ,√ )

(푥, 푥 + 휖, 2(1 + 휖))푑휇(푥 + 휖)  ≤ 퐶, 

where we have used 푃 1 ≤  1. Letting 휖 = −1, we obtain from this the on-diagonal 
upper bound  

푝(푥, 푥, (1 + 휖) ) ≤
퐶

휇 퐵(푥, 1 + 휖)
.                                          (70) 

Combining (69) with (70) we finally obtain 

휇 퐵 푥, 2(1 + 휖) ≤
퐶

푝(푥,푥, 4(1 + 휖) )  ≤
퐶퐶

푝(푥, 푥, 2(1 + 휖) )  ≤ 퐶∗∗휇 퐵(푥, 1 + 휖)  , 

(with 푥 + 휖 =  푥 + 2휖 =  푥), which gives 
푝(푥, 푥, 2(1 + 휖) )
푝(푥, 푥, 4(1 + 휖) )  ≤ 퐶′  

and we have let 퐶∗∗ = 퐶퐶′(퐶∗) . This completes the proof.  
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     It is well-known that Corollary(4.2.39) provides the following uniformity control at all 
scales. 
Corollary(4.2.40)[291].. For any 0 < 휀 < 1 there exists a constant 퐶(휀)  = 퐶(1 + 휖, 1 +
휖, 1 + 2휖, 휀) > 0, which tends to ∞ as ε →0+, such that for every 푥, (푥 + 휖) ∈  푀 and  휖 ≥
 0 one has  

퐶(휀)

휇 퐵 푥,√1 + 휖
 푒푥푝 −

퐷푑(푥, 푥 + 휖)
(1 + 휖) (4 − 휀) ≤  푝(푥, 푥 + 휖, 1 + 휖)

≤
퐶(휀)

휇 퐵 푥,√1 + 휖
 푒푥푝 −

푑(푥, 푥 + 휖)
(4 − 휀)(1 + 휖) . 

 Proof. We begin by establishing the lower bound. First, we obtain for all (푥 + 휖) ∈ 푀, 휖 ≥
 0, and every 0 < 휀 < 1, 

푝(푥, 푥 + 휖, 1 + 휖)  ≥  푝(푥,푥, 휖(1 + 휖))휀 푒푥푝 −
퐷

1 + 휖
푑(푥, 푥 + 휖)

(4 − 휀)(1 + 휖) . 

 We thus need to estimate 푝(푥,푥, 휖(1 + 휖)) from below. But this has already been done in 
(69). Choosing 휖 ≤ −1 such that 2(1 + 휖)  =  휖(1 + 휖), we obtain from that estimate 

푝(푥,푥, 휖(1 + 휖))  ≥
퐶∗

휇(퐵(푥, 휀/2 √1 + 휖))
   ,푥 ∈  푀,    휖 > −1 

On the other hand, since 휀/2   <  1, by the trivial inequality 휇(퐵(푥, 휀/2√1 + 휖 ))  ≤
 휇(퐵(푥,√1 + 휖)), we conclude 

푝(푥, 푥 + 휖, 1 + 휖)  ≥
퐶∗

휇(퐵(푥,√1 + 휖))
휀 푒푥푝 −

퐷
1 + 휖

푑(푥,푥 + 휖)
(4 − 휀)(1 + 휖)  

This proves the Gaussian lower bound. 
For the Gaussian upper bound, we first observe that the following upper bound is proved in 
[183]: 

푝(푥,푥 + 휖, 1 + 휖)  ≥
퐶(1 + 휖, 1 + 휖, 1 + 2휖, 휀′)

휇(퐵(푥,√1 + 휖)) 휇(퐵(푥,√1 + 휖))
푒푥푝 −

푑(푥, 푥 + 휖)
(4 + 휀′)(1 + 휖)  

At this point, by the triangle inequality we find.  
              휇(퐵(푥,√1 + 휖))  ≤  휇(퐵(푥 + 휖, 푑(푥, 푥 + 휖) + √1 + 휖))  

≤  퐶 휇(퐵(푥 + 휖,√1 + 휖))  
푑(푥, 푥 + 휖) + √1 + 휖

√1 + 휖 
  . 

This gives 
1

휇(퐵(푥 + 휖,√1 + 휖))
   ≤

퐶
휇(퐵(푥 + 휖,√1 + 휖))

 
푑(푥, 푥 + 휖)

√1 + 휖 
+ 1   . 
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Combining this with the above estimate we obtain 
푝(푥, 푥 + 휖, 1 + 휖)  

≥
퐶 / (1 + 휖, 1 + 휖, 1 + 2휖, 휀′)

휇(퐵(푥 + 휖,√1 + 휖))
푑(푥, 푥 + 휖)

√1 + 휖 
+ 1

/

푒푥푝 −
푑(푥, 푥 + 휖)

(4 + 휀′)(1 + 휖)  

If now 0 < 휀 < 1, it is clear that we can choose 0 < 휀′ < 휀 such that 
퐶 / (1 + 휖, 1 + 휖, 1 + 2휖, 휀′)

휇(퐵(푥 + 휖,√1 + 휖))
푑(푥, 푥 + 휖)

√1 + 휖 
+ 1

/

푒푥푝 −
푑(푥, 푥 + 휖)

(4 + 휀′)(1 + 휖)  

                                    ≤
퐶∗(1 + 휖, 1 + 휖, 1 + 2휖, 휀)
휇(퐵(푥 + 휖,√1 + 휖))

푒푥푝 −
푑(푥, 푥 + 휖)

(4 + 휀′)(1 + 휖)  

where 퐶∗(1 + 휖, 1 + 휖, 1 + 2휖, 휀s) is a constant which tends to ∞ as ε → 0+. The desired 
con- clusion follows by suitably adjusting the values of both 휀′ and of the constant in the 
right-hand side of the estimate.  
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Chapter 5 

Pinched Riemannian Manifolds and Geometric Inqualities with Sub 
Riemannian Balls 

We obtain a distribution theorem for the square norm of the second fundamental form 
of 푀 under the assumption that 푀 is a minimal submanifold with parallel second 
fundamental form in a Riemannian manifold. We give some geometric inequalities for a 
submanifold with parallel second fundamental form in a pinched Riemannian manifold and 
the distribution for the square norm of its second fundamental form. In particular, large sub-
Riemannian balls are comparable to Riemannian balls. 
 

Section (5-1): Closed Minimal Submanifolds  
Let 푀  be an 푛 −dimensional oriented closed minimal submanifold in an (푛 +

푝) −dimensional manifold 푁 . We denote the square norm of the second fundamental 
form of 푀 by 푆. In the case that the ambient manifold 푁 is the Euclidean sphere 푆 (1), 
it is well known [227] that if 푆 ≤  푛/(2 −  1/푝) on 푀, then either 푀 is the unit sphere 
푆 (1) , one of the Clifford minimal hypersurfaces in 푆 (1) , or the Veronese surface in 
푆 (1) . Further discussions in this regard have been carried out by many other 
([228,230,233,234,237], etc.). A. M. Li and J. M. Li [231] have improved the pinching 
constant above to 푛 for the case ≥  3 . But all these results were obtained under the 
assumption that the ambient manifolds possess very nice symmetry.  

We establish a generalized Simons integral inequality for minimal submanifolds in a 
Riemannian manifold, and prove a pinching theorem for minimal submanifolds in a 
complete simply connected pinched Riemannian manifold, which does not possess 
symmetry in general. The proof uses some equations and inequalities naturally associated 
to the second fundamental form of 푀, the curvature tensor of 푁, and their covariant 
derivatives. Since we do not assume that 푁  is a sphere, the maximum principle and the 
estimate for ∆푆 in [227, 231] cannot be applied here, and the trick of constructing a 
differentiable 1-form and using integral estimates seems essential. Finally, a distribution 
theorem for S is obtained under the assumption that 푀 is a minimal submanifold with 
parallel second fundamental form in a Riemannian manifold.  

Let 푀  be an n-dimensional Riemannian manifold immersed in an (푛 + 푝) −
 dimensional Riemannian manifold 푁 . We shall make use of the following convention 
on the range of indices: 

       1 < 퐴,퐵,퐶, . . . ,≤ 푛 + 푝,        1 < 푖, 푗, 푘, . . . ,≤ 푛, 
                 푛 +  1 <  훼,훽, 훾, . . . <  푛 +  푝. 
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Choose a local field of orthonormal frames {푒 } in N such that, restricted to M, the 푒 's are 
tangent to 푀. Let {휔 } and {휔 } be the field of dual frames and the connection 1-forms of 
N respectively. Restricting these forms to M, we have 

휔  =  ℎ 휔 ,       ℎ  =  ℎ ,                                        (1) 

ℎ = ℎ 휔
, ,

Ⓧ 휔  Ⓧe ,         =
1
푛

  ℎ
,

e ,                   (2)  

 푅 =  퐾  +  (ℎ ℎ − ℎ ℎ ),                   (3) 

푅 =  퐾  +  (ℎ ℎ − ℎ ℎ ),                   (4) 

where ℎ,  ,푅 ,푅 , and 퐾  are the second fundamental form, the mean curvature 
vector, the normal curvature tensor, the curvature tensor of 푀, and the curvature tensor of 
푁 respectively. We define 

푆 = ‖ℎ‖ ,       퐻 = ‖‖,        퐻  =  (ℎ ) × . 
 푀 is called minimal if 퐻 vanishes identically. Therefore, if 푀 is minimal, its scalar 
curvature is given by 

 푅 =   퐾
,

−   푆. 

Now we define the covariant derivatives of ℎ , denoted by ℎ  and ℎ  respectively, as  

ℎ 휔 = 푑ℎ + ℎ 휔 + ℎ 휔 + ℎ 휔 , 

ℎ 휔 = 푑ℎ + ℎ 휔 + ℎ 휔 + ℎ 휔 + ℎ 휔 , 

Then we have  
ℎ − ℎ =  퐾 ,                                                        (5) 

and the Ricci formula 

ℎ − ℎ = ℎ 푅 + ℎ 푅 + ℎ 푅                  (6) 

 Considering 퐾  as a section of 푇(푀) ⊗  푇∗(푀) ⊗  푇∗(푀) ⊗ 푇∗(푀), we also define its 
covariant derivative 퐾  as  

퐾 휔 = 푑퐾 + 퐾 휔 + 퐾 휔  
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+ 퐾 휔 + 퐾 휔  

M is called a submanifold with parallel second fundamental form if ℎ ≡ 0 for all 푖, 푗,푘,훼. 
The Laplacian ∆ℎ  of the second fundamental form h is defined by ∆ℎ = ∑ ℎ . In the 
next section, we sometimes also use ∇ ℎ  to denote ℎ , etc.  
       For a matrix  퐴 =  (푎 ) ×  we denote by 푁(퐴) the square norm of A , i.e., 푁(퐴) =
 푡푟(퐴 퐴) = ∑ 푎, . Then 푁(퐴)  =  푁(푇퐴 푇), for each orthogonal (푛 × 푛) −matrix T.  
Proposition (5.1.1)[238]. (see [307, 311]). Let 퐴 ,퐴 , . . . ,퐴  be symmetric (푛 × 푛)- 
matrices. Denote 푆 = 푡푟 퐴 퐴 , 푆 = 푆  =  푁(퐴 ), 푆 =  ∑ 푆  . Then 

푁 퐴 퐴 − 퐴 퐴 +
,

푆
,

≤ 1 +
1
2

 푠푔푛(푝 − 1) 푆 ,                     (7) 

where 푠푔푛(∙) is the standard sign function, and the equality holds if and only if at most two 
matrices 퐴  푎푛푑 퐴  are not zero and these two matrices can be transformed simultaneously 
by an orthogonal matrix into scalar multiples of 퐴  and 퐴  respectively, where  

퐴 =

1       0
                    0

0    − 1 
          0        0

 ,              퐴 =

0       1
                  0

1       0 
          0        0

 

 

Proposition  (5.1.2)[238]. (see [309]). Let N be an (푛 + 푝) −dimensional Riemannian 
manifold. If 푎 ≤  퐾 ≤  푏 at a point 푥 ∈  푁, then, at this point, 
(i) |퐾 | ≤ (푏 − 푎),   푓표푟 퐴 ≠ 퐵.  

(ii) |퐾 | ≤ (푏 −  푎), 푓표푟 퐴,퐵,퐶,퐷 distinct with each other. 
         From now on, we assume that 푀  is a minimal submanifold in 푁  . By (5), (6), 
and the minimality of M, we have  

∆ℎ = − 퐾 + 퐾 + ℎ 푅
,

 

+ ℎ 푅
,

+ ℎ 푅 .
,

                                         (8) 

Substituting (3) and (4) into the above, (8) becomes 

∆ℎ = − 퐾 + 퐾 + ℎ 푅 + ℎ 푅 )
,

+ ℎ 푅 .
,

 

+ (ℎ ℎ ℎ + 2
, ,

ℎ ℎ ℎ − ℎ ℎ ℎ − ℎ ℎ ℎ − ℎ ℎ ℎ ). 
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Therefore, 

                        
1
2
∆푆 = (ℎ )

, , ,

+ ℎ ∆ℎ
, ,

 

= (ℎ )
, , ,

− (ℎ 퐾 +
, , ,

ℎ 퐾 ) 

+ (ℎ ℎ 퐾 +
, , , ,

ℎ ℎ 퐾 )                                     (9) 

+ ℎ ℎ 퐾 − ℎ ℎ ℎ ℎ
, , , , ,, , , ,

 

− (ℎ ℎ − ℎ ℎ ) ℎ ℎ − ℎ ℎ .
, , , , ,

 

Put 

푆 = ℎ ℎ
,

 

Then the (푝 × 푝) −matrix (푆 ) is symmetric and can be assumed to be diagonal for a 
suitable choice of {e } , i.e.,  

푆 =  푆 훿     for all  α,β. 
By the definition, 푆 = ∑ 푆 From (9) we have 
Lemma (5.1.3)[238]. Denote  

                 퐴 = − 푁 퐻 퐻 − 퐻 퐻 +
,

푆 , 

               퐵 = (ℎ ℎ 퐾 +
, , , ,

ℎ ℎ 퐾 ) + ℎ ℎ 퐾 ,
, , , ,

 

              퐶 = (ℎ )
, , ,

− (ℎ 퐾 +
, , ,

ℎ 퐾 ) 

Then  
                                                 ∆푆 =  퐴 +  퐵 +  퐶.                                                      (10) 
 Let a(x) and b(x) denote the infimum and the supremum of the sectional curvature of N at 
a point x respectively. Now we derive a lower bound for B in terms of a, b, and S. 
Lemma (5.1.4)[238].  퐵 ≥ 푛푏푆 − [푛 + (푝 −  1)(푛 − 1) / ](푏 −  푎)푆.  
Proof. Fix a vector 푒 .  Let {e } be a frame diagonalizing the matrix (ℎ ) such that 

 ℎ =   훿 ,        1 ≤ 푖, 푗 ≤ 푛. 
Then  
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ℎ ℎ 퐾 + ℎ ℎ 퐾 + ℎ ℎ 퐾
, , ,, , ,, , ,

 

= ( )
, , ,

퐾 +   퐾 +
, , ,

ℎ
, ,

 퐾 .                (11) 

By Proposition (5.1.2), we have 
퐾 <  (푏 −  푎)      푓표푟   훼 ≠ 훽, 푖 ≠ 푘. 

 Hence, for fixed 훼, one sees  

           ℎ  퐾 ≥ −
  , .

(푏 −  푎)|ℎ  |
, ,

 

≥ −
  , .

(푏 −  푎)[(푛 − 1) / (ℎ ) + (푛 − 1) / ( ) ] 

                  ≥ −
1
3

(푛 − 1) /  (푏 − 푎) 푡푟 퐻 −
1
3

(푛 − 1)  (푝 − 1)(푏 − 푎)푡푟 퐻             (12) 

On the other hand, we have 

                ( )
,

퐾 +   퐾
, , ,

 

=
1
2

( −  )
,

퐾 ≥
1
2
푎 ( −  ) = 푛푎 푡푟퐻 .                 (13)

,

 

 Substituting (12) and (13) into (14), we obtain 

퐵 ≥ [푛푎 푡푟퐻 −
1
3

(푛 − 1) /  (푏 − 푎) 푡푟 퐻  

                                               − (푛 − 1) /  (푝 − 1)(푏 − 푎)푡푟퐻 ] 

                             = 푛푏푆 − [푛 + (푝 − 1)(푛 − 1) (푏 − 푎)푆.                                (14) 
     We shall next estimate the integral of C. 

Lemma (5.1.5).  ∫ 퐶 ≥ − 푝푛(푛 − 1)(26푛 − 25)∫ (푏 − 푎) . 
 Proof. Note that  

− (ℎ 퐾 +
, , ,

ℎ 퐾 ) 

= − ∇ (ℎ 퐾 +
, , ,

ℎ 퐾 ) + (ℎ 퐾 +
, , ,

ℎ 퐾 ). 

We define a differentiable 1- form as  

휔 = (ℎ 퐾 +
, , ,

ℎ 퐾 )휔 .                                      (15) 
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It follows that 

div 휔 = ∇ (ℎ 퐾 +
, , ,

ℎ 퐾 ). 

 Thus  

퐶 = (ℎ )
, , ,

− (ℎ 퐾 +
, , ,

ℎ 퐾 ) − div 휔. 

Since 푀 is minimal, we have  

ℎ = 0      for all 푗,훼.                                               (16) 

From (5), (16), and Proposition (5.1.2), we have 

ℎ 퐾 = (ℎ −
, , ,

퐾 )퐾 = − 퐾
,, , ,

         

≥ −
1
4
푝푛(푛 − 1) (푏 − 푎) .                            (17) 

On the other hand, by Proposition (5.1.2), we have 

                       (ℎ )
, , ,

− ℎ 퐾
, , ,

 

                                   ≥ −
1
4

(퐾 )
, , ,

 

                                    ≥ −
1
4

(퐾 )
, ,   

−
1
2

(퐾 )                (18) 

                                                ≥ −
1
4
푝푛(푛 − 1)(푛 − 2)(푏 − 푎) −

1
8
푝푛(푛 − 1)(푏 − 푎) . 

So  

퐶 ≥ −
1

72
푝푛(푛 − 1)(26푛 − 25)(푏 − 푎) − div 휔                     (19) 

and by using Green's divergence theorem, we get 

퐶 ≥ −
1

72
푝푛(푛 − 1)(26푛 − 25) (푏 − 푎) .                 (20) 

Lemma (5.1.5) follows. 
    Now we define 

 퐷(푛,푝) =  푛 +
2
3

(푝 − 1)(푛 − 1) / , 

퐸(푛,푝)  =
1

72
푃푛(푛 − 1)(26푛 −  25). 



141 
 

 Theorem (5.1.6)[238]. (Generalized Simons inequality). Let 푀  bean n-dimensional 
oriented closed minimal submanifold in an (푛 + 푝) −dimensional Riemannian manifold 
푁  . Denote the infimum and the supremum of the sectional curvature of N at a point x 
by a(x) and b(x) respectively. Then 

푛푏푆 – (1 +  푠푔푛(푝 − 1))푆 − 퐷(푛,푝)(푏 − 푎)푆 −  퐸(푛,푝)(푏 − 푎) ≤ 0. 

Proof. Combining Proposition (5.1.1), Lemma (5.1.3) and (5.1.4), we obtain 
∆푆 ≥ 푛푏푆 − 1 + 1

2
 푠푔푛(푝 − 1) 푆2 − 푛 + 2

3
 (푝 − 1)(푛 − 1)1/2 (푏 − 푎)푆 + 퐶.       (21) 

Integrating both sides of (21) and applying Lemma (5.1.5), we have 

푛푏푆 – (1 +  푠푔푛(푝 − 1))푆 − 퐷(푛,푝)(푏 − 푎)푆 −  퐸(푛,푝)(푏 − 푎) ≤ 0.     (22) 

This completes the proof of Theorem (5.1.6). 
Denote 

훼(푛, 푝) = 1

12
[푝푛(푛 − 1)(52푛 − 50)]1/2, 

훽(푛, 푝) = 푛 + 2

3
(푝 − 1)(푛 − 1) + 1

12
[푝푛(푛 − 1)(52푛 − 50)]1/2. 

We are now in a position to prove 
Theorem (5.1.7)[238]. There is a number 훿(푛, 푝)  푤푖푡ℎ  0 <  훿(푛, 푝)  <  1 such that if there 
exists an oriented closed minimal submanifold 푀  in a complete simply connected manifold 
푁  with 훿(푛,푝) <  퐾 <  1 and 
                  훼(푛, 푝)(1 − 푐) ≤ 푆 ≤ 푛 − 푛 푠푔푛(푝 − 1) − 훽(푛, 푝)(1 − 푐), 
 where c is the infimum of the sectional curvature of N, then either M is the unit sphere 

푆 (1), one of the Clifford minimal hypersurfaces 푆 ×  푆 푛 − 푘)/푛 , 푘 =  1, 2, . . . , 푛 −

1, 푖푛 푆 (1), or the Veronese surface in 푆 (1). Moreover, 푁 =  푆 (1).  
Proof. Since  

푐 ≤  푎(푥) ≤  푏(푥)  <  1, 
(22) gives 

푛푆 – (1 +  푠푔푛(푝 − 1))푆 − 퐷(푛,푝)(1 − 푐)푆 −  퐸(푛,푝)(1 − 푐) ≤ 0.       (23)  

Take 
훿(푛,푝)  = 1 − 푛(3 − sgn(푝 −   1))(3퐷(푛, 푝)  +  6퐸 / (푛,푝)) . 

 Then  

훼(푛, 푝)(1 − 푐) ≤ 푛 −
1
3
푛 sgn(푝 − 1) − 훽(푛,푝)(1 −  푐). 
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 From the assumption 

훼(푛, 푝)(푙 − 푐) ≤ 푆 ≤ 푛 −  
1
3
푛 sgn(푝 − 1) − 훽(푛,푝)(1 −  푐),               (24) 

we see that 
푛푆 – 1 +  푠푔푛(푝 − 1) 푆 − 퐷(푛,푝)(1 − 푐)푆 −  퐸(푛,푝)(1 − 푐) ≥ 0               (25) 

Therefore, all inequalities in (17), (18), (22), and (25) are actually equalities. This implies 
1— 푐 =  푏 — 푎  =  0 and 푁 is a complete simply connected Riemannian manifold with 
constant curvature 1. Hence 푁 =  푆 (1). This together with (23) and (25) gives 

 푆 =  0   표푟   푆 = 푛 −
1
3
푛 sgn(푝 − 1) . 

Furthermore, the previous inequalities become equalities, and it is not hard to see from 
Proposition (5.1.1) that either M is the unit sphere 푆 (1), one of the Clifford hypersurfaces 
푆 푘/푛 ×  푆 푛 − 푘)/푛 , 푘 =  1, 2, . . . , 푛 − 1,  or the Veronese surface. This proves Theorem 
(5.1.7). 
Theorem (5.1.8)[238]. Let 푀  be an oriented closed minimal submanifold with parallel 
second fundamental form in a Riemannian manifold 푁  . Then 
(i) 푆 ≤ 푝푛푑 +  퐹(푛,푝)(푑 − 푐), where 퐹(푛,푝) = 푝(푝 − 1)(푛 − 1) /  and d is the 

supremum of the sectional curvature of N, 
(ii)     if 훿′(푛, 푝)  ≤  퐾  ≤  1, here  

                훿 (푛,푝) =  1 −  푛 3 −  푠푔푛(푝 − 1) 3푛 +  2(푝 –  1)(푛 − 1) , 

then either 푀 is totally geodesic or 푛 − 푛 푠푔푛(푝 − 1) −  퐷(푛,푝)(1 − 푐)  ≤  푆 ≤  푝푛 +
 퐹(푛,푝)(1 − 푐).  
Proof. From the proof of Lemma (5.1.5) we have  

퐶 =  −  ∇
, , ,

ℎ 퐾 + ℎ 퐾 .  

It is easy to see from (5) that 퐾 = 0, for all 푖, 푗, 푘,훼. So  
퐶 =  0.                                                                    (26) 

 Since ∆푆 = ∑(ℎ ) + ∑ℎ ∆ℎ  =  0, S is a constant. This together with (10) and (16) 
implies 

퐴 +  퐵 =  0.                                                                 (27) 
Obviously, 

푁 퐻 퐻 − 퐻 퐻 +
,

푆 ≥ 푆 /푝                                    (28) 

For fixed 훼, similar to the estimate of lower bound for B , we have  
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퐿퐻푆 표푓 (11)  =  ( )
,

퐾 +   퐾 +
,

ℎ
, ,

 퐾  

≤ 푛푑 푡푟 퐻 + (푝 − 1)(푛 − 1) / (푑 − 푐)푡푟 퐻   

+ (푛 − 1) / (푑 − 푐) 푡푟  퐻 . 

This gives  
퐵 ≤ 푛 푑푆 + 푝(푝 − 1)(푛 − 1) / (푑 − 푐)푆.                          (29) 

It follows from (27), (28), and (29) that 
푛푑푆 + (푝 − 1)(푛 − 1) / (푑 − 푐)푆 ≥ 푆 /푝. 

This yields  
푆 ≤ 푝 푛푑 + 푝(푝 − 1)(푛 − 1) / (푑 − 푐).                                       (30) 

If 훿′(푛,푝)  <  퐾  ≤ 1, it is not hard to see from the definition of 훿′(푛, 푝)  that  
푛 − 푛 푠푔푛 (푝 − 1)퐷(푛, 푝)(1 − 푐) > 0.                                   (31) 

 By (27), Proposition (5.1.1), and Lemma (5.1.4), we get  
푛푆 – (1 +  푠푔푛(푝 −  1))푆  −  퐷(푛,푝)(1 − 푐)푆 ≤ 0,                     (32) 

which together with (30) implies that either S = 0 or 푛 − 푛 푠푔푛(푝 − 1) —  퐷(푛, 푝)(1 −
푐) ≤  푆 ≤  푝푛 + 퐹(푛,푝)(1 − 푐). This completes the proof of Theorem (5.1.8). 
  
Section(5-2). Certain Submanifolds in a Pinched Riemannian Manifold 

It seems interesting to generalize the famous Simons’ pinching theorem to general 
cases. It is well known [244] that if 푀  is a compact minimal submanifold of the sphere 
푆 (1) and if the square norm of the second fundamental form of 푀 , denoted by S, is 
everywhere less than   , then 푀  is totally geodesic. There are many further discussions 

in this regard in the literature [239, 240, 242, 243]. Yau [248,249] proved that if 푝 > 1 and 
<   

/  ( )
, , then 푀  lies in a totally geodesic 푆 (1). In [245], Xu proved that if 

푝 > 1 and 푆 <  min{ /   ,  
 ( )

}, then 푀  is a totally umbilical sphere which 

improves Yau’s result above. Thereafter, Xu also gave a sharp pinching constant 퐶(푛, 푝,퐻) 
in [246] which is larger than the ones in [245] and [248, 249]. Precisely, if 푀  is a compact 
submanifold with parallel mean curvature in 푆 (1)  and if 푆 < 퐶 (푛,푝,퐻), then 푀  is the 
totally umbilical sphere 푆 ( 

( ) /  ). Here the pinching constants are defined by 
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훼(푛,퐻) = 푛 +
푛

2(푛 − 1)
 퐻 −  

푛(푛 − 2)
2(푛 − 1)

 (푛 퐻  +  4(푛 − 1)퐻 )  , 

퐶(푛,푝,퐻) =
훼(푛,퐻), for 푝 = 1 , 표푟 푝 =  2 푎푛푑 퐻 ≠ 0 ,                                           
푚푖푛{훼(푛,퐻), (2푛 + 5푛퐻 )}, 푓표푟 푝 ≥ 3, 표푟 푝 =  2 푎푛푑퐻 = 0.    

 All these results were obtained under the condition that the ambient spaces possess very 
nice symmetry.  
        However, the existence of parallel second fundamental form imposes nice properties 
to submanifolds whatever the ambient spaces are. The aim is to obtain the distribution for 
the square norm of the second fundamental form of a submanifold with parallel second 
fundamental form in a pinched Riemannian manifold. We get the estimate of upper bound 
for the square norm of the second fundamental form under the above assumption. Moreover, 
we establish a generalized Simons-type inequality which derives a quantization 
phenomenon. 

We give a quick recall of some preliminaries of the geometry of submanifolds. Let 
푀  be an n-dimensional connected Riemannian manifold immersed in an (푛 +  푝) − 
dimensional Riemannian manifold 푁 . We shall make use of convention on the range of 
indices:  

1 ≤  퐴,퐵,퐶,···≤ 푛 +  푝,   1 ≤  푖, 푗,푘,···≤ 푛, 
                                   푛 + 1 ≤  훼,훽, 훾,···≤ 푛 +  푝. 
 Choose a local field of orthonormal frames {푒 } in N such that, restricted to M, the 

ei’s are tangent to M. Let{휔 } and {휔 } be the field of dual frames and the connection 1-
forms of N, respectively. Restricting these forms to M, we have 

 휔 =  ℎ 휔 ,    ℎ =  ℎ ,                                             (33) 

 ℎ =  ℎ 휔 ⊗휔 ⊗ 푒 ,        휉 =
1
푛

 ℎ 푒 ,                (34) 

 푅  =  퐾 + (ℎ ℎ − ℎ ℎ ),                                 (35) 

  푅  =  퐾 + (ℎ ℎ − ℎ ℎ ),                               (36)  

where h,ξ, 푅 , and 퐾  are the second fundamental form, the mean curvature vector, 
the normal curvature tensor, the curvature tensor of M, and the curvature tensor of N, 
respectively. We define 

푆 = ‖ℎ‖ ,       퐻 = ‖‖,        퐻  =  (ℎ ) × . 
Now we define the covariant derivatives of ℎ , denoted by ℎ  and ℎ , as  



145 
 

ℎ 휔 = 푑ℎ + ℎ 휔 + ℎ 휔 + ℎ 휔 , 

ℎ 휔 = 푑ℎ + ℎ 휔 + ℎ 휔 + ℎ 휔 + ℎ 휔 , 

respectively. Then we have  
ℎ − ℎ =  퐾 ,                                                    (37)  

and the Ricci formula 

ℎ − ℎ = ℎ 푅 + ℎ 푅 + ℎ 푅                  (38) 

Considering 퐾  as a section of 푇(푀)⊗  푇∗(푀)⊗  푇∗(푀)⊗ 푇∗(푀), we also define its 
covariant derivative 퐾  as  

퐾 휔 = 푑퐾 + 퐾 휔 + 퐾 휔 + 퐾 휔 + 퐾 휔  

       We say that 푀 is a submanifold with parallel second fundamental form if ℎ ≡ 0 for 
all 푖, 푗, 푘,훼. The Laplacian ∆ℎ  of the second fundamental form h is defined by ∆ℎ =
∑ ℎ . 
        For a matrix  퐴 = (푎 ) ×  we denote by 푁(퐴) the square norm of A ,that is, 푁(퐴) =
 푡푟(퐴 퐴) = ∑ 푎, . 
Moreover, we quote the following two propositions from [239,242] and [241], respectively. 
Proposition (5.2.1)[250]. Let 퐴 ,퐴 , . . . ,퐴  be symmetric (푛 × 푛)- matrices. 
Denote 푆 =  푡푟 퐴 퐴 , 푆 = 푆  =  푁(퐴 ), 푆 =  ∑ 푆  . Then 

푁 퐴 퐴 − 퐴 퐴 +
,

푆
,

≤ 1 +
1
2

 푠푔푛(푝 − 1) 푆 ,                     (39) 

where 푠푔푛(∙) is the standard sign function, 
Proposition (5.2.2) [250]. Let N be an (푛 + 푝) −dimensional Riemannian manifold. If 푎 ≤
 퐾 ≤  푏 at  point 푥 ∈  푁, then, at this point, 

(i) |퐾 | ≤ (푏 − 푎),   푓표푟 퐴 ≠ 퐵.  

(ii) |퐾 | ≤ (푏 −  푎), 푓표푟 퐴,퐵,퐶,퐷 distinct with each other. 
 

From now on, we assume that 푀  is a connected submanifold with parallel second 
fundamental form. We choose 푒  such that 푒  || ξ, 푡푟 퐻  =  푛퐻, and 푡푟퐻  =  0, 
푛 + 2 ≤  훽 ≤  푛 +  푝. Hence, 푀  has constant mean curvature since ∑ ℎ 휔 =  푛푑퐻 
(d here represents the exterior differential which is not the one in the pinching constants). 
By direct computation, we have  
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∆ℎ = − 퐾 + 퐾 + ℎ 푅 + ℎ 푅 )
,

+ ℎ 푅 .
,

   (40) 

Plugging (35) and (36) into (40), we get  

∆ℎ = − 퐾 + 퐾 + ℎ 푅 + ℎ 푅 )
,

+ ℎ 푅 .
,

    

+ (ℎ ℎ ℎ + 2
, ,

ℎ ℎ ℎ − ℎ ℎ ℎ − ℎ ℎ ℎ − ℎ ℎ ℎ ). 

Thus, 

                        
1
2
∆푆 = (ℎ )

, , ,

+ ℎ ∆ℎ
, ,

 

= (ℎ )
, , ,

− (ℎ 퐾 +
, , ,

ℎ 퐾 ) 

                   + (ℎ ℎ 퐾 +
, , , ,

ℎ ℎ 퐾 )  + ℎ ℎ 퐾
, , , ,

 

                   − ℎ ℎ ℎ ℎ
, , , , ,

− (ℎ ℎ − ℎ ℎ ) ℎ ℎ − ℎ ℎ .
, , , , ,

 

                                    + ℎ ℎ ℎ ℎ
, , , , ,

 

Set  

푆 = ℎ ℎ
,

 

Then the (푝 × 푝) −matrix (푆 ) is symmetric. Therefore, we have  
Lemma (5.2.3) [250]. Denote  

               퐴 = − 푁 퐻 퐻 − 퐻 퐻 +
,

푆
,

, 

               퐵 = (ℎ ℎ 퐾 +
, , , ,

ℎ ℎ 퐾 ) + ℎ ℎ 퐾 ,
, , , ,

 

              퐶 = (ℎ )
, , ,

− (ℎ 퐾 +
, , ,

ℎ 퐾 ) 

퐷 = ℎ ℎ ℎ ℎ = 푛퐻 ℎ ℎ ℎ .
, , ,, , , , ,

 

Then                      
∆푆 =  퐴 +  퐵 +  퐶 + 퐷.                                               (41) 

 It is easy to see from (37) that 퐾 = 0, for all 푖, 푗, 푘,훼. Hence, we have  
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Lemma (5.2.4) [250].     퐶 = 0 .  
    Let a(x) and b(x) be the infimum and the supremum of the sectional curvature of N at a 
point x, respectively. We shall estimate B. 

Lemma (5.2.5) [250]. 퐵 ≥ 푛푏푆 − (푝 −  1)(푛 − 1) ](푏 −  푎)푆 − 푛 푎퐻 .  
Proof. Fix a vector 푒 .  Let {e } be a frame diagonalizing the matrix (ℎ ) such that 

 ℎ =   훿 ,        1 ≤ 푖, 푗 ≤ 푛. 
Then  

ℎ ℎ 퐾 + ℎ ℎ 퐾 + ℎ ℎ 퐾
, , ,, , ,, , ,

 

= ( )
, , ,

퐾 +   퐾 +
, , ,

ℎ
, ,

 퐾 .                (42) 

By Proposition (5.2.2), 
퐾 <  (푏 −  푎)      for all   훼 ≠ 훽, 푖 ≠ 푘. 

 Hence, for fixed 훼,  

  ℎ  퐾 ≥ −
  , .

(푏 −  푎)|ℎ  |
, ,

 

                  ≥ −
  , .

(푏 −  푎)[(푛 − 1) / (ℎ ) + (푛 − 1) / ( ) ] 

                    ≥ − (푛 − 1) /  (푏 − 푎)∑ 푡푟 퐻  − (푛 − 1) /  (푝 − 1)(푏 − 푎)푡푟 퐻  
On the other hand, one sees  

                ( )
,

퐾 +   퐾
, , ,

 

=
1
2

( − 푘
훼)

,

퐾 ≥
1
2
푎 ( − 푘

훼) = 푛푎 푡푟퐻 − 푎(푡푟 퐻 )   
,

 

 Plugging the above two inequalities into (42), we obtain 

퐵 ≥ [푛푎 푡푟퐻 −
1
3

(푛 − 1) /  (푏 − 푎) 푡푟 퐻 − (푛 − 1)  (푝 − 1)(푏 − 푎)푡푟퐻 ] − 푛 푎퐻  

                              = 푛푏푆 − (푝 − 1)(푛 − 1) (푏 − 푎)푆 − 푛 푎퐻 .                                  (43) 
   For fixed α, similar to the estimate of lower bound for B, we have  

퐿퐻푆 표푓 (42)  =  ( )
,

퐾 +   퐾 +
,

ℎ
, ,

 퐾  

≤ 푛푑 푡푟 퐻 + (푝 − 1)(푛 − 1) / (푏 − 푎)푡푟 퐻   
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+ (푛 − 1) / (푏 − 푎) 푡푟  퐻 − 푛 푎퐻  

This gives 
Lemma (5.2.6) [250] .  퐵 ≤ 푛 푑푆 + 푝(푝 − 1)(푛 − 1) / (푏 − 푎)푆 − 푛 푎퐻 . 
 We next shall estimate D. 

 Lemma (5.2.7) [250]. | 퐷 | ≤  푛 | 퐻 | 푆  . 
Proof. Following the proof of Lemma (5.2.5), for fixed α, let{ei} be a frame diagonalizing 
the matrix (ℎ ) such that ℎ = 0 if 푖 ≠ 푗. Then we have 

ℎ ℎ ℎ
, ,

= ℎ ℎ                                 (44) 

The absolute value of this number is not greater than  

ℎ . (ℎ )  

by Schwarz inequality. In fact, for fixed α, this is less than 

( ℎ ) . ( (ℎ ) )
,

≤ ( ℎ ) √푆 = 푆 √푆.
,

 

Hence, 

| 퐷 | ≤  푛 | 퐻 |. | ℎ ℎ ℎ
, , ,

| ≤ 푛|퐻|. 푆훼√푆 = 푛|퐻|푆
3
2.

훼

 

Moreover, it is obvious that 

| 퐷 | ≤  푛푆(
푡퐻

2
+
푆
2푡

),                                                     (45) 

for any 푡 > 0. 
We define the pinching constants as follows. Set 

퐸(푝) = 1 +
1
2

sgn(푝 − 1), 

퐹(푛, 푝, 푐, 푑) = 푛푐 − (푝 − 1)(푛 − 1) / (푑 − 푐), 

퐺(푛,푝, 푐, 푑) = 푛푑 + (푝 − 1)(푛 − 1) / (푑 − 푐), 
퐽(푛,푑,퐻) = 푛 퐻 푑, 
퐾(푛, 푐,퐻) = 푛 퐻 푐, 

푄 (푛,푝, 푐, 푑,퐻) =
퐹 − 푛 |퐻|

4퐸  − 퐹 −  푛 |퐻|
4퐸  − 4(1 + | 퐻 |)퐸퐽

2(1 + | 퐻 |)퐸   
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푄 (푛, 푝, 푐,푑,퐻) =
퐹 − 푛 |퐻|

4퐸 + 퐹 −  푛 |퐻|
4퐸  − 4(1 + | 퐻 |)퐸퐽

2(1 + | 퐻 |)퐸  

푅(푛,푝, 푐, 푑,퐻) =
퐺 + 푛 푝(1 + |퐻|)|퐻|

4 + 퐺 −  푛 푝(1 + |퐻|)|퐻|
4  − 4퐾

(1 +|퐻|)푝
2

(1 +|퐻|)푝

. 

It is obvious that 푄 (푛, 푝, 푐, 푑,퐻) ≤ 푄 (푛, 푝, 푐, 푑,퐻).  
     We give an estimate of the upper bound of the square norm of the second fundamental 
form of the above submanifold.  
Theorem (5.2.8) [250]. Let 푀  be an n-dimensional submanifold with parallel second 
fundamental form in an (푛 + 푝) −dimensional Riemannian manifold 푁 . Denote by 푐 and 
푑 the infimun and the supremum of the sectional curvature of 푁 , respectively. If 
푅(푛,푝, 푐,푑,퐻)≥ 0, then S is bounded, that is, S ≤ 푅(푛,푝, 푐, 푑,퐻).  
Proof. It is obvious that 

 −퐴 =   푁 퐻 퐻 − 퐻 퐻 +
,

푆
,

≥
푆
푝

.                         (46) 

Under the assumption of ∆푆 =  0, Lemma (5.2.4) and Lemma (5.2.6), together with Lemma 
(5.2.7) give 

퐺푆 − 퐾 +  푛 | 퐻 | 푆 ≥
푆
푝

.                                        (47) 

In the case 푀  is minimal, this shows that 퐺푆 ≥  푆
2

푝
 which means 푆 ≤  퐺푝. For 퐻 ≠ 0, 

using (45), it follows that 

퐺푆 − 퐾 +  푛푆
푡퐻

2
+
푆
2푡

 ≥
푆2

푝
 , 

 that is, 
1
푝

 –
푛
2푡

푆2  − 퐺 +
푛푡퐻

2
푆 +  퐾 ≤ 0.                                          (48) 

Let t =  푝(1+|퐻|)

| |
. Then (48) becomes 

1
(1 + |퐻|)푝

푆2 − 퐺 −  
푛2푝(1 + |퐻|)|퐻|

4
 푆 + 퐾 ≤ 0                            (49) 

Therefore, we obtain that 
푆 ≤  푅(푛, 푝, 푐,푑,퐻). 

Xu’s previous result in [327] is recovered when 푀  is minimal. 
Corollary (5.2.9) [250]. Under the assumption of Theorem (5.2.8), if 푀  is minimal, then 
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푆 ≤  푝푛푑 +
2
3
푝(푝 − 1)(푛 − 1) / (푑 − 푐). 

In addition, we also establish a generalized Simons-type inequality. 
Theorem (5.2.10) [250]. (Generalized Pinching Theorem) Let 푀  be an n-dimensional 
submanifold with parallel second fundamental form in an (푛 +  푝) −dimensional 
Riemannian manifold 푁 . Denote by c and d the infimun and the supremum of the 
sectional curvature of 푁  respectively. If 푄 (푛,푝, 푐, 푑,퐻)  ≥  0 and 푆 < 푄 (푛,푝, 푐, 푑,퐻), 
then we have 푆 ≤  푄 (푛,푝, 푐, 푑,퐻). 
Proof.  Since 푀  is a submanifold with parallel second fundamental form, ∆푆 = 0 . From 
Proposition (5.2.1), we have  

퐴 ≥ −퐸푆 .                                                                   (50)  
Lemma (5.2.5) yields 

퐵 ≥ 푛푎푆 − (푝 − 1)(푛 − 1) / (푏 − 푎)푆 − 푛 푎퐻  

≥  푛푐푆 −− (푝 − 1)(푛 − 1) / (푑 − 푐)푆 − 푛 푑퐻  
 =  퐹푆 − 퐽.                                                                                                 (51) 

Therefore, we obtain  

0 = 퐴 +  퐵 +  퐶 +  퐷 ≥ −퐸푆  +  퐹푆 − 퐽 − 푛 | 퐻 | 푆  .              (52) 
 If 푀  is minimal, that is, 퐻 = 0, then 0 = 1

2
∆푆 ≥ −퐸푆 +  퐹푆.  

We claim that Theorem (5.2.10) holds in this case by direct check.  
For 퐻 ≠  0, using (45), we have 

0 =
1
2
∆푆 ≥ −퐸푆 +  퐹푆 − 푛푆

푡퐻
2

+
푆
2푡

− 퐽. 

Equivalently, 

퐸 +
푛
2푡

푆  − 퐹 −
푛푡퐻

2
푆 +  퐽 ≥  0.                              (53) 

Let 푡 = | | .  Then (53) becomes 

 (| 퐻 |  + 1)퐸푆 − (퐹 – 
푛 | 퐻 |

4퐸
)푆 +  퐽 ≥  0.                       (54) 

 The inequality (45) shows that 푆 ≤  푄 (푛, 푝, 푐,푑,퐻) or 푆 ≥ 푄 (푛,푝, 푐, 푑,퐻). We thus 
obtain that 0 ≤  푆 < 푄 (푛,푝, 푐, 푑,퐻) implies 0 ≤ 푆 ≤ 푄 (푛, 푝, 푐,푑,퐻).  
From Theorem (5.2.10), we have 
 Corollary (5.2.11) [250]. Under the assumption of Theorem (5.2.10), if 푀  is minimal, 
then 푀  is totally geodesic. 
 
 

Section(5-3). 푪푹 Sasakian Manifolds  
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Let 푀 be a complete strictly pseudo-convex 퐶푅 Sasakian manifold with real 
dimension 2푛 + 1. Let θ be a pseudo-hermitian form on 푀 with respect to which the Levi 
form 퐿  is positive definite. The kernel of θ determines a horizontal bundle 퐻. Now denote 
by 푇 the Reeb vector field on 푀, i.e., the characteristic direction of 휃. We denote by ∇ the 
Tanaka-Webster connection of 푀. 

 We recall that the 퐶푅 manifold (푀, 휃) is called Sasakian if the pseudo-hermitian 
torsion of ∇ vanishes, in the sense that 푇(푇,푋)  =  0, for every 푋 ∈ 퐻. For instance the 
standard 퐶푅 structures on the Heisenberg group 퐻  and the sphere 푆  are Sasakian. 
In every Sasakian manifold the Reeb vector field T is a sub-Riemannian Killing vector field 
. 

 We consider the family of scaled Riemannian metrics 푔 , 휏 > 0, such that for 푋,푌 ∈
퐻 ,  

푔 (푋,푌) = 푑휃(푋, 퐽푌), 푔 (푋,푇) = 0, 푔 (푇,푇) =
1
휏

 ,              (55) 

where J is the complex structure on 푀. We denote by 푑  the distance corresponding to the 
Riemannian structure 푔  and by d the sub-Riemannian distance on 푀. It is well known that 
푑 (푥, 푦)  →  푑(푥, 푦) when 휏 →  0. Our goal is to prove the following theorem: 
       To put things in perspective, estimates between the sub-Riemannian distance and 
Riemannian ones have been extensively studied (see [254], [255], [256], [257], [258]). But 
in these cited works, such estimates are local in nature. Theorem (5.3.1) is the first result 
that gives global and uniform estimates for a large class of sub-Riemannian metrics. It is 
consistent with the well known Nagel-Stein-Wainger estimate [257], which implies that, at 
small scales, (푥, 푦)  ≤  퐶푑 (푥, 푦) /  , and shows that, at large scales, due to curvature effects 
we have 푑(푥, 푦)  ≃  푑 (푥, 푦). 
      We first recall some results that will be needed in the sequel and that can be found in 
[251] and [252]. We denote by Δ the sub-Laplacian on 푀 and by ∇  the horizontal gradient. 
For smooth functions 푓 ∶  푀 →  푅, set  
                           Γ (푓) = [Δ‖∇ 푓‖ − 2〈∇ 푓,∇ 훥푓〉]               (56) 
and 
                            Γ (푓) = [Δ(푇푓)  − 2(푇푓)(푇Δ푓)].                                                   (57) 
  The following result was obtained in [252] by means of a Bochner type formula. Theorem 
(5.3.1) [259]. Assume that for every ∈ 퐻 ,  

푅(푋,푋) ≥  0. 
Then for every 푓 ∈ 퐶 (푀) and any 휈 > 0, 

 Γ (푓) + 휈Γ (푓) ≥
1

2푛
 (Δ푓)  –

1
휈
‖∇ 푓‖ +

푛
2

 (푇푓) . 
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We denote by 푝(푡, 푥, 푦) the heat kernel of 푀, that is, the fundamental solution of the heat 

equation  = Δ 푓. The following global lower and upper bounds were proved in [251]. 
Theorem (5.3.2) [259]. Assume that for every ∈ 퐻 , 

 푅(푋,푋) ≥  0. 
 For any 0 < 휖 ≤  1 there exists a constant 퐶(휀) = 퐶(푛, 휀)  >  0, which tends to ∞ as 휖→ 
0+, such that for every 푥,푦 ∈ 푀 and 푡 > 0 one has  

퐶(휀)
휇(퐵(푥,√푡)) 

exp − 1 +
3
푛

푑(푥, 푦)
(4 − 휀)푡

   

≤  푝(푡, 푥,푦) ≤  
퐶(휀)

휇(퐵(푥,√푡)) 
exp −

푑(푥, 푦)
(4 − 휀)푡

. 

 In the above theorem, d is the sub-Riemannian distance, 퐵(푥,√푡) is the sub- Riemannian 
ball with center x and radius √푡, and μ is the volume corresponding to the volume form 휃 ∧
(푑휃) . 
      From now on and in the sequel we assume that for every 푋 ∈ 퐻 ,푅(푋,푋)  ≥  0. We first 
have the following Li-Yau type estimatefor the heat kernel. 
Proposition (5.3.3) [259].   For 푡 > 0, 

‖∇ ln푃 ‖ +
푛
3

 푡(푇 ln푃 ) 1 +
3
푛

Δ푃
푃  

  +
푛 1 + 3

푛
푡

 . 

 Proof. The result is essentially proved in [252], but due to the simplicity of the ar- gument, 
we reproduce, without the details, the proof by sake of completeness. Fix 푇 > 0 and 
consider the functional 

Φ(푡) =
3
푛

(푇 − 푡) 푃  
‖∇ 푃 ‖

푃
 + (푇 − 푡) 푃

(푇푃 )
푃

,  

where 푃  is the heat semigroup associated with Δ. Since T is a Killing vector field, for any 
smooth function f we have 

〈∇ 푓,∇ (푇푓) 〉  = (푇푓)(푇‖∇ 푓‖ ). 
Differentiating Φ and using the above yield 

Φ′(푡) =
6
푛

 (푇 − 푡) 푃 (푃 (Γ (ln푃 ))  +  2(푇 − 푡) 푃 (푃 Γ (ln푃 )) 

−  
6
푛

 (푇 − 푡)푃
‖∇ 푃 ‖

푃
− 3(푇 − 푡) 푃

(푇푃 )
푃

. 

From Theorem (5.3.1), we have 
6
푛

 (푇 − 푡) 푃 Γ (ln푃 )  +  2(푇 − 푡) 푃 Γ (ln푃 ) 
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≥
3
푛

 (푇 − 푡) 푃 (Δ ln푃 ) −
18
푛

(T − t)푃 ‖∇ ln푃 ‖  

             + 3(푇 − 푡) 푃 (푇 ln푃 ) . 
 Therefore we obtain 

                      Φ′(푡) ≥
3
푛

(푇 − 푡) 푃 (푃 (Δ ln푃 ) ) 

−
18
푛

+
6
푛

(푇 − 푡)푃 (푃 ‖∇ ln푃 ‖ ). 

 Now, for every γ(t), we have  
((Δ ln푃 )) ≥  2γ(푡)Δ ln푃 − γ(푡)  

 ≥  2γ(t) 
Δ푃  
푃

− ‖∇ ln푃 ‖ − γ(푡) . 

Therefore we get  
 (푇 − 푡) 푃 (푃 (Δ ln푃 ) ) ≥  (푇 − 푡) 훾(푡)(Δ푃 − 푃 (푃 ‖∇ ln푃 ‖ ))  

−
3
푛

 (푇 − 푡) γ(푡)2푝푇 

This implies  

           Φ (푡) ≥
3
푛

(푇 − 푡) 훾(푡)Δ푃푇 −
3
푛2  (푇 − 푡)2γ(푡) 푝  

−
18
푛

+
6
푛

+
6
푛

(푇 − 푡)훾(푡) (푇 − 푡)푃푡(푃푇−푡‖∇퐻 ln푃푇−푡‖2) 

Choosing 훾(푡) = −   then leads to 

Φ′(푡)  ≥ −
6(푛 +  3)

푛
 (푇 − 푡)Δ푝  −

3
푛2  (푛 + 3)2. 

By integrating the last inequality from 0 to T, we obtain 

 −Φ(0)  ≥ −  
3(푛 +  3)

푛
  푇 Δ푝  −

3
푛2  (푛 + 3)2푇, 

which is the required inequality.  
    We can deduce from the previous Li-Yau type inequality the following Harnack 
inequality.   
Theorem (5.3.4) [259]. For  푥, 푦, 푧 ∈  푀, 푠 < 푡 ,  

푝(푠,푥, 푦) ≤  푝(푡,푥, 푧)
푡
푠 푒푥푝 1 +

3
푛

1
4(푡 − 푠)  +

3
푛 휏 ln 푡푠

4(푡 − 푠)  푑 (푥,푦) , 푠 < 푡,  

where 푑  denotes the Riemannian metric introduced in (55). 
Proof. From Proposition (5.3.3) 
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‖∇ ln푃 ‖ ≤ 1 +
3
푛

 
Δ푃
푃

+
1 + 3

푛
푡  

and 

3
푛
푡(푇 ln푃푡)   ≤ 1 +

3

푛
 
Δ푃푡
푃푡

+
1 + 3

푛
2

푡
. 

Therefore we have that for every 휏 > 0,  

‖∇ ln푃 ‖ +  휏2(푇 ln푃 )2 ≤ 1 +
3휏2

푛푡  1 +
3
푛

Δ푃
푃

+
1 + 3

푛
푡 1 +

3휏2

푛푡 .    (58) 

Now let 푥,푦, 푧 ∈ 푀 and let 훾: [푠, 푡]  →  푀, 푠 < 푡, be an absolutely continuous path such that 
γ(푠) = 푦, γ(푡) = 푧. We first write (58) in the form  

푔 (∇ ln 푝 ,∇ ln 푝 ) ≤  푎(푢)
Δ푃푡
푃푡

 +  푏(푢),                                  (59)  

where ∇  denotes the Riemannian gradient of the metric 푔 ; that is,  
푔 (∇ ln 푝 ,∇ ln 푝 ) = ‖∇퐻 ln푃푡‖2 +  휏2(푇 ln푃푡)  

and 

푎(푢) =  1 +
3휏2

푛푢
 1 +

3
푛

, 

푏(푢) =  
푛 1 + 3

푛
2

푢
1 +

3휏2

푛푢
 . 

Let us now consider 
φ(푢)  =  ln 푝 (푥, γ(푡)). 

We compute 
휑′(푢) = ( 휕 ln 푝 (푥, γ(푢))  +  푔 (∇ ln 푝 (푥, γ(푢)), γ′(푢)). 

Now, for every 휆 > 0, we have  

푔 ∇ ln푝 푥, γ(푢) , γ (푢) ≥ −
1

2휆
 푔 (∇ ln푝 ,∇ ln푝 ) −

휆
2

 푔 (훾 (푢), 훾′(푢)).  

Choosing 휆 = ( ) and then using (59) yield  

휑 (푢) ≥ −
푏(푢)
푎(푢)  –

1
4

 푎(푢)푔 (γ′(푢), γ′(푢)). 

By integrating this inequality from s to t we get as a result: 

ln 푝(푡,푥, 푦) − ln 푝(푠, 푥, 푧)  ≥ −
푏(푢)
푎(푢)  푑푢 −

1
4

푎(푢)푔 (γ′(푢), γ′(푢))푑푢. 
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We now minimize the quantity ∫ 푎(푢)푔 (γ′(푢), γ′(푢))푑푢 over the set of absolutely 
continuous paths such that 훾(푠) = 푦, 훾(푡) = 푧. By using reparametrization of paths, it is seen 
that 

푎(푢)푔 γ (푢), γ (푢) 푑푢 ≥
푑 (푥,푦)

∫ 푑푣
푎(푣)

, 

with equality achieved for 훾(푢) = 휎 
∫ ( )

∫ ( )

 , where 휎: [0 ,1]  →  푀 is a unit geodesic for 

the distance 푑  that joins 푦 푎푛푑 푧. As a conclusion we get 

푝(푠, 푥, 푦) ≤ exp
푏(푢)
푎(푢)  푑푢 +

푑휏
2(푦, 푧)

4∫ 푑푣
푎(푣)

푡
푠

푝(푡, 푥, 푧). 

 Finally, from Cauchy-Schwarz inequality, we have 

푑푣
푎(푣)  ≥

(푡 − 푠)2

∫ 푎(푣)푑푣푡
푠

, 

and thus  

푝(푠,푥, 푦) ≤ exp
푏(푢)
푎(푢)  푑푢 +

푑휏
2(푦, 푧)∫ 푎(푣)푑푣푡

푠

4(푡 − 푠)2 푝(푡, 푥, 푧). 

Theorem (5.3.5) [259]. Let R be the Ricci curvature of the Webster-Tanaka connection ∇. 
If for every ∈ 퐻 , 

푅(푋,푋) ≥  0, 
then for every 푥,푦 ∈  푀, 

 푑 (푥,푦)  ≤  푑(푥,푦)  ≤  퐴 푑 (푥, 푦) + 퐵 √휏푑 (푥, 푦) / , 
where 퐴  and 퐵  are two positive universal constants depending only on n. 
Proof. The inequality 푑 (푥, 푦)  ≤  푑(푥, 푦)  is straightforward. We now prove the second 
inequality. From Theorem (5.3.4) and Theorem (5.3.2), 

푝(푠, 푥, 푦) ≥
1

2
 푝(푡/2, 푥, 푥)푒푥푝 − 1 +

3
푛

1
2푡

 +
3 ln 2휏
푛푡

 푑 (푥, 푦) ,   

            ≥
1

2
 

퐶 (푛) 
휇(퐵(푥,√푡))

푒푥푝 − 1 +
3
푛

1
2푡

 +
3 ln 2휏
푛푡

 푑 (푥, 푦) . 

From the Gaussian upper bound of Theorem (5.3.2) and the previous lower bound, we 
deduce that for all 푡 > 0, 
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ln
2 퐶(휀)
퐶 (푛)

+
1
2

1 +
3
푛

 푑 (푥, 푦) −
푑(푥, 푦)

4 + 휀
1
푡

  

               + 1 +
3
푛

3 ln 2
푛

 휏 푑 (푥, 푦)
1
푡
≥ 0.   

We now choose 푡 =  휏푑 (푥,푦) and obtain 

푑(푥,푦) ≤ (4 + 휀) ln
2 퐶(휀)
퐶 (푛) + + 1 +

3
푛

3 ln 2
푛

τ푑 (푥,푦) 
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Chapter 6 
Connection and Curvature with Volume and Distance 

We establish Bianchi Identities and symmetries for the associated curvatures. Next 
we study subRiemannian notions of the Ricci curvature and horizontal Laplacian, 
establishing general Bochner type identities. Finally we explore sub Riemannian 
generalizations of the Bonnet-Myers theorem, providing some new results and some new 
proofs and  interpretations of existing results. As a consequence, we obtain a Gromov type 
precompactness theorem for the class of sub-Riemannian manifolds whose generalized 
Ricci curvature is bounded from below . 
 

Section(6-1). Subriemannian Geometry  
A fundamental tool in Riemannian geometry is the Levi-Civita connection. As the 

device which permits us to glue local differential equations into global ones, it is the key 
ingredient in most modern descriptions of curvature and geodesics and underlies many 
computational methods in differential geometry. The Tanaka-Webster connection, ([265], 
[266]) plays a similar role in the study of strictly pseudo convex 퐶푅 manifolds.  

There has been much recent effort to define such geometrically useful connections in 
sub-Riemannian geometry. All work, including this one, has operated under the assumption 
that the subRiemannian metric on the horizontal bundle has been extended to a Riemannian 
metric on the whole space. This allows us to define a vertical bundle. Previous work has 
been inherently local, depending on a choice of frame. Usually some additional geometric 
and topological restrictions have been required. In [261], [262] a subRiemannian connection 
was defined under the assumption of a global frame for the vertical bundle. In [260], a 
connection is defined under a strong tensorial condition, referred to as strict normality the 
assumption of the existence of a frame of vertical Killing fields. All of these examples 
required a a priori choice of frame for the vertical bundle and so do not define global 
connections in general. 
          This lack of a global covariant derivative scheme means that the study of the 
relationships between subelliptic PDE and subRiemannian manifolds has been by necessity 
local in nature. Recently there has been some effort addressing this need. 

In [260], several global curvature results such as Myer’s theorem have been extended 
to certain step 2 subRiemannian manifolds. 

 We propose a new globally defined connection to facilitate this process. We shall 
work assumption that a global complement to the horizontal bundle has been chosen. For 
any Riemannian metric extending the sub Riemannian metric and preserving this 
decomposition, we shall define a canonical, global metric compatible connection such that 
the horizontal and vertical bundles are parallel. In the special cases of Riemannian and 
strictly pseudoconvex pseudohermitian manifolds, this connection will coincides with the 
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Levi-Civita and the Tanaka-Webster connections respectively. Furthermore any covariant 
derivative of any horizontal vector field will be seen to be independent of the choice of 
Riemannian extension. Thus for a subRiemannian manifold with vertical complement, there 
is a canonical method for taking covariant derivatives of horizontal vector fields. 

We define the connection and explore its basic properties and how they relate to 
bracket structures of the underlying horizontal and vertical bundles. We introduce a tool 
similar to Riemannian normal coordinates, to aid computation.We consider the associated 
curvature tensors and their symmetries. SubRiemannian equivalents of the Bianchi identities 
are introduced and proved. We establish some Bochner-type formulas for general 
subRiemannian manifolds and show how the analytic framework developed by Baudoin and 
Garofalo generalizes to the category strictly normal subRiemannian manifolds. We compare 
the sub Riemannian connection to the Levi-Civita connection for metric extensions. We then 
use this to provide a new interpretation and proof of an existing subRiemannian Bonnet-
Myers theorem as well as providing new results. 
     We shall use the following definition: 
Definition (6.1.1) [269]. A sub Riemannian manifold is a smooth manifold 푀, a smooth 
constant rank distribution 퐻푀 ⊂  푇푀 and a smooth inner product 〈∙,∙〉 on 퐻푀. The bundle 
퐻푀 is known as the horizontal bundle. 
     We should remark here that we are not assuming any conditions on the horizontal bundle 
other than constant rank. Unless otherwise stated, we are not even assuming that it bracket 
generates. 
Definition (6.1.2) [269]. A subRiemannian manifold with complement, henceforth sRC- 
manifold, is a subRiemannian manifold together with a smooth bundle 푉푀 such that 퐻푀 ⊕
 푉 푀 =  푇푀. The bundle 푉푀 is known as the vertical bundle. 
     Two sRC-manifolds 푀,푁 are sRC-isometric if there exists a diffeomorphism 휋: 푀 →
 푁 such that 휋∗퐻푀 =  퐻푁,휋∗푉 푀 =  푉푁 and 〈휋∗푋 ,휋∗푌〉   =  〈푋 ,푌〉   for all horizontal 
vectors 푋,푌 . 
Definition  (6.1.3) [269]. A sRC-manifold (푀,퐻푀,푉 푀, 〈∙,∙〉) is r-graded if there are smooth 
constant rank bundles 푉( ), 0 <  푗 ≤  푟, such that  

푉푀 =  푉( )  ⊕ ··· ⊕  푉( ) 
퐻푀 ⊕  푉( ) ⊕ 퐻푀,푉( ) ⊆  퐻푀 ⊕푉( ) ⊕푉( )                  (1) 

for all 0 ≤  푗 ≤  푟. Here we have adopted the convention that 푉( )  =  퐻푀 and 푉( ) =
 0  푓표푟   푘 >  푟.  
The grading is j-regular if  

퐻푀 ⊕ 푉( ) ⊕ 퐻푀,푉( ) =  퐻푀 ⊕푉( ) ⊕  푉( )                     (2) 
and equiregular if is j-regular for all 0 ≤  푗 ≤  푟.  
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     A metric extension for an r-graded vertical complement is a Riemannian metric g of 〈∙,∙〉 
that makes the split  

푇푀 =  퐻푀 ⊕ 푉( )    

orthogonal.  
We shall denote a section of 푉( ) by 푋( )and set  

푉( )  =⊕ 푉( ). 

If a metric extension has been chosen then b 푉( )= 푉( ) 
. the orthogonal com-plement of 

푉( ). For convenience, we shall often also extend the notation 〈∙,∙〉 to whole tangent space 
using it interchangeably with g. 
Definition (6.1.4) [269]. The unique 1-grading on each sRC-manifold,  

푉( ) =  푉 푀 
is known as the basic grading. 
Example (6.1.5) [269]. A Carnot group (of step r) is a Lie group, whose Lie algebra g is 
stratified in the sense that 

푔 =  푔 ⊕ . . .푔 ,        [푔 ,푔 ]  =  푔         푗 =  1. . . 푟,       푔 =  0 
together with a left-invariant metric 〈∙,∙〉on HM, the left-translates of 푔 .   
    The vertical bundle 푉 푀 consists of the left-translates of 푔 ⊕. . .푔 . In addition to the 
basic grading, there is then a natural equiregular 푟 − 1 −grading defined by setting 푉( ) to 
be the left-translates of 푔 . 
Definition (6.1.6) [269]. If a metric extension g has been chosen, we define 

퐵(푋,푌,푍)  =  (퐿푔푧)(푋,푌 )  =  푍푔(푋,푌 )  +  푔([푋,푍],푌 )  +  푔([푌,푍],푋) 
for vector fields 푋,푌,푍 
Unfortunately 퐵 is not tensorial in general and so cannot be viewed as a map on vectors 
rather than vector fields. However, we can define a symmetric tensor 퐵( ) by setting  

퐵( )(푋,푌,푇)  =  퐵(푋,푌,푇) 
for 푋,푌 ∈ 푉( ),푇 ∈ 푏 푉( ) and declaring 퐵( ) to be zero on the orthogonal complement of 
푉( ) × 푉( ) × 푉( ). We can then contract these to tensors 퐶( ) ∶  푇푀 × 푇푀 → 푉( )defined 
by 

  푔 퐶( )(푋,푌 ),푍( ) =  퐵( ) 푋,푍( ),푌                             (3) 
Additionally, we can define j-traces, by  

푡푟( )퐵( )(푍)  = 퐵( ) (퐸( ) ,퐸( ) ,푍) 

 where {퐸( )} are (local) orthonormal frames for 푉( ). 
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Definition (6.1.7) [269]. Suppose that M is an r-graded sRC-manifold with metric extension 
푔. 
 (i) The metric extension is j-normal with respect to the grading if 퐵( ) ≡ 0.  
 (ii) The metric extension is strictly normal with respect to the grading if it is j-normal for 
all 0 ≤  푗 ≤  푟.  
Example (6.1.8) [269]. Let 푀 be the 4 dimensional Carnot group with Lie algebra induced 
by the global left invariant vector fields 푋,푌,푇,푆 with bracket structures 

[푋,푌 ]  =  푇, [푋,푇]  =  푆 
and all others being zero. Then 퐵(푇, 푆,푋)  =  −1 with all others vanishing. Now 푀 admits 
an equiregular 2-grading defined by 

푉( ) =  〈푇〉 ,      푉( )  =  〈푆〉. 
Let 푔 be the metric making the global frame orthonormal. Then 푔 is strictly normal with 
respect to this 2-grading.  
      It should be remarked that this metric is not 1-regular with respect to the basic grading. 
For then we get 퐵( )  ≡  0 푏푢푡 퐵( )(푇, 푆,푋)  =  −1. Thus the metric is 0-normal but not 
strictly normal with respect to the basic grading. 
Example (6.1.9) [269]. Any step r Carnot group with a bi-invariant metric extension is 
strictly normal with respect to the equiregular 푟 −  1 −grading, but is only 0-normal with 
respect to the basic grading.  
Example (6.1.10) [269]. Let (푀, 퐽, 휂) be a strictly pseudoconvex pseudohermitian manifold, 
(see [265]) with characteristic vector field T such that 휂(푇) =  1, 푇푑휂 =  0. The horizontal 
bundle 퐻푀 is defined to be the kernel of the 1-form η. An immediate consequence of the 
defining properties of T is that [푇,퐻푀]  ⊂  퐻푀. When J is extended to TM by defining 퐽푇 =
 0, the Levi metric 

푔(퐴,퐵)  =  푑휂(퐴, 퐽퐵)  +  휂(퐴)휂(퐵) 
can be viewed as an extension of the subRiemannian metric 〈푋 ,푌〉  =  푑휃(푋, 퐽푌 ) with 
푉푀 =  〈푇〉. As 푉푀 is one dimensional, the basic grading is the only grading admitted and 
since [푇,퐻푀]  ⊂  퐻푀 we see 퐵( )  =  0 trivially. Thus the Levi metric is always 1-normal 
and so strict normality is equivalent to 0-normality. However, the Jacobi Identity coupled 
with [푇,퐻푀]  ⊂  퐻푀 implies 

〈[푇,푋],푌〉   =  −〈[[푇,푋], 퐽푌 ],푇 〉 =  〈[[푋, 퐽푌 ],푇],푇〉 +  〈[[퐽푌,푇],푋],푇〉  
                                 =  푇〈푋 ,푌〉  +  〈[퐽푌,푇], 퐽푋〉  
This implies that 0-normality is equivalent to 〈[푌,푇],푋〉  =  −〈[푇, 퐽푌 ], 퐽푋〉. But this 
equivalent to [T,JY ] = J[T,Y ] which is Tanaka’s definition of normal for a strictly 
pseudoconvex pseudohermitian manifold, [265].  
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The tensors 퐶( ) provide the essential ingredient for the definition of our connections. The 
idea boils down to using the Levi-Civita connection on each component 푉( ) and using 
projections of the Lie derivative for mixed components. In general, this will not produce a 
metric compatible connection, but we can use the tensors 퐶( ) to adjust appropriately. 
Lemma (6.1.11) [269]. If 푔 is an extension of an r-graded sRC-manifold, then there exists 
a unique connection ∇( ) such that  
  (i) 푔 is metric compatible  
  (ii) 푉( ) is parallel for all j 
 (iii)  푇표푟( )(푉( ),푉( ))  ⊆ 푉( ) 푓표푟 푎푙푙 푗  
  (iv) 〈푇표푟( ) 푋( ),푌( ) ,푍( )〉,  =  〈푇표푟( ) 푍( ),푌( ) ,푋( )〉푓표푟 푎푙푙 푗, 푘  
Furthermore, if 푋,푌 are horizontal vector fields, then ∇( )X and 푇표푟( )(푋,푌) are 
independent of the choice of grading and extension 푔. (They do however depend on choice 
of 푉푀) 
Proof. For a vector field 푍, we denote the orthogonal projections of 푍 to 푉( ) by 푍  . Define 
a new connection ∇( ) as follows: for 푋,푌,푍 sections of 푉( ) and T a section of 푉( )set 
       〈∇ 푌 ,푉( )〉   =  0  

             〈∇ 푌 ,푍〉  =
1
2

(푋〈푌 ,푍〉   +  푌 〈푍 ,푋〉   −  푍〈푋 ,푌〉)  

                                 − 〈푋 , [푌,푍] 〉 −  〈푌 , [푋,푍]〉  +  〈푍 , [푋,푌 ]〉 
                         ∇ 푌 =  [푇,푌 ]푗 +  퐶( )(푌,푇)  
 for 푋,푌,푍 horizontal vector fields and 푇,푈,푊 vertical vector fields. It’s easy to check that 
this defines a connection with the desired properties. Futhermore if ∇ is the Levi-Civita 
connection for 푔, then for sections 푋,푌 of 푉( ),  

∇ 푌 = (∇ 푌)   
For uniqueness, suppose that connections ∇ and ∇′ satisfy the required properties and set 
퐴(푊,푍)  =  ∇  푍 −  ∇′  푍. Then for sections 푋,푌,푍 of 푉( ), since the torsion terms are 
inb 푉( ) we see  
〈퐴(푋,푌 ),푍〉  =  −〈푌 ,퐴(푋,푍)〉  =  −〈푌 ,퐴(푍,푋)〉   
                      = 〈퐴(푍,푌 ),푋 〉  =  〈퐴(푌,푍),푋〉  
                     =  −〈푍 ,퐴(푋,푌 )〉 
Similarly if T is a section of 푉( ),  

〈퐴(푇,푋),푌  〉 =  −〈푋 ,퐴(푇,푌 )〉  =  −〈푋 ,푇표푟(푇,푌 )  −  푇표푟′(푇,푌 )〉  
                                 =  −〈푇표푟(푇,푋)  −  푇표푟′(푇,푋),푌〉   
                                 =  −〈퐴(푇,푋),푌〉  
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Thus A = 0. Thus this connection ∇ is the unique connection with the desired properties. 
The required independence from g follows easily from (4). 
 Corollary (6.1.12) [269]. If M admits an r-grading, then   
 (i) 푇표푟( )(푉( ),푉( ))   =  0 푖푓 푎푛푑 표푛푙푦 푖푓 푉( ) 푖푠 푖푛푡푒푔푟푎푏푙푒. 
 (ii) 푇표푟( )(퐻푀,푉( ))  ⊂  퐻푀 ⊕  푉( ) ⊕  푉( ) 푓표푟 푎푙푙 푗 
 If the r-grading is j-normal then 

푇표푟( )(푇푀,푉( ))  ⊂ 푉( ) 
If the r-grading is 0-normal and j-normal then 

푇표푟( )(퐻푀,푉( ))   ⊆  푉( ) 
with equality holding if and only if the grading is j-regular. 
Example (6.1.13) [269]. Suppose that HM has global orthonormal frame {Xi} and 푉푀 has 
global orthonormal frame {Tβ} with the following bracket identities:  

[푋 ,푋 ]  =  푐 푋  +  푐 푇  
[푋 ,푋 ]  =  푐 푋  +  푐 푇  
[푋 ,푋 ]  =  푐 푋  +  푐 푇  

Then using the basic grading and connection we have 
i.  푉푀 is normal if and only if 푐  = − 푐  

ii.  푔 is strictly normal if and only if 푐 = −푐 and 푐 = − 푐   

iii.  푔 is vertically rigid if and only if ∑푐 =  0 
 and  

iv.  ∇ 푋  = 푐  +  푐 +  푐 푋 ,   푇표푟(푋 ,푋 )  =  −푐 푇  

v. ∇ 푋 =  푐  +  푐 푋  

vi.  ∇ 푇 =  푐  +  푐 푇  

vii.  ∇ 푇  = 푐  +  푐 +  푐 푇 ,   푇표푟(푇 ,푇 )  =  −푐 푋  

viii.  푇표푟(푋 ,푇훽) =  − 푐  +  푐 푋  −  푐  +  푐 푇 . 
     To illustrate some important behavior, we shall highlight a group particular cases of the 
previous example 
 Example (6.1.14) [269]. Let 푀 be the 4 dimensional Carnot group of Example (6.1.8). 
Using the basic grading, we can easily compute that 

∇ 푇 =  푆 −
1
2
푆 =

1
2
푆,∇ 푆 =  0 −

1
2
푇 =  −

1
2
푇, 

푇표푟(푋,푌 )  =  −푇,     푇표푟(푋,푇)  =  −
1
2
푆,    푇표푟(푋, 푆)  =  −

1
2
푇 
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All other covariant derviatives of frame elements vanish. That the basic covariant 
derivatives of the natural vertical frame do not vanish is typical of non-step 2 Carnot groups. 
       However if we use the more refined 2-grading, then all covariant derivatives of the 
frame elements vanish and the only non-trivial behavior occurs in the torsion 
 Tor( )(푋,푌 )  =  −푇,       Tor( )(푋,푇)  =  −푆,        Tor( )(푋, 푆)  =  0 
Example (6.1.15) [269]. Let 푀 =  푅  with the following global orthonormal frames for 
퐻푀 and 푉푀 

푋 =
휕
휕푥

,     푌 =
휕
휕푦

+ sin 푥
휕
휕푡

 – cos 푥
휕
휕푠

 

푇 =  cos푥
휕
휕푠

+  sin 푥
휕
휕푡

, 푆 =  − sin 푥
휕
휕푡

+ cos푥
휕
휕푠

 

 푇ℎ푒푛 [푋,푌 ]  =  푇 =  −[푋, 푆], [푋,푇]  =  푆 with all other commutators vanishing. It’s then 
easy to check that this is a strictly normal extension for the basic grading and that the only 
non-trivial covariant derivatives are then ∇ 푇 =  푆 and ∇ 푆 =  푇. This is an example of a 
flat, equiregular, strictly normal sRC-manifold with step size > 2. 
Example (6.1.16) [269]. Let (푀, 퐽, 휂) be a strictly pseudoconvex pseudohermitian manifold. 
The Tanaka-Webster connection is the unique connection such that 휂, 푑휂 and 퐽 are parallel 
and the torsion satisfies 

Tor(푋,푌 ) =  푑휂(푋,푌 )푇,        Tor(푇, 퐽푋)  =  −퐽Tor(푇,푋)  
The only defining property of the basic connection not clearly satisfied by the Tanaka-
Webster connection is torsion symmetry. But if we pick 푋,푌 as any horizontal vector fields 
then the Jacobi identity implies  
         0 =  휂 ([푇, [푋, 퐽푌 ]]  +  [퐽푌, [푇,푋]]  +  [푋, [퐽푌,푇]])  
              =  −푇〈푋 ,푌〉  +  〈[푇,푋],푌〉  +  〈[퐽푌,푇], 퐽푋〉  
              =  −〈푋 ,∇ 푌〉   +  〈Tor(푇,푋),푌〉  −  〈∇  퐽푌 , 퐽푋 〉 +  〈Tor(푇, 퐽푌 ), 퐽푋〉  
              =  〈Tor(푇,푋),푌〉   +  〈Tor(푇, 퐽푌 ), 퐽푋〉  
              =  〈푇표푟(푇,푋),푌〉  −  〈Tor(푇,푌 ),푋〉. 
Thus the Tanaka-Webster connection satisfies the requirements of the basic connection.  

One of the key computational tools when using the Levi-Civita connection is the 
existence of Riemannian normal coordinates in a neighborhood of any given point. As HM 
is non-integrable in every interesting example, we cannot expect to find a similarly useful 
coordinate system in the subRiemannian case. However, when the extension is normal, we 
can guarantee the existence of a local orthonormal horizontal frame with computationally 
nice properties at any particular point p. 
Definition (6.1.17) [269]. If 푀 is r-graded, then an orthonormal frame {퐸( )} for 푉( ), 0 ≤
 푗 ≤  푟, defined in a neighborhood of p is ∇( )-normal at p if  
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∇( )퐸( )

|
 =  0  

Lemma (6.1.18) [269]. Suppose g is a j-normal r-grading. Then there exists a ∇( )-normal 
frame for 푉( ) at every 푝 ∈ 푀. 
 Proof. Let 푣( ) , . . . ,푣( ) be orthonormal vectors spanning 푣( ) and let {푥( )} be the 
coordinates near p induced by the exponential map of ∇( ) at p using this frame. Then 
certainly ∇( ) (푐 휕 )  =  0 at p whenever the coefficients 푐  are constant. Considering 

∇( ) (휕 + 휕 ) in particular, this implies that for all 푖, 푗 at p 

0 =  ∇( )휕 + ∇( )휕  =  2∇ 휕  + Tor( )(휕 , 휕 ). 

Now 휕
( ) |

∈ 푣( ) . Since torsion is tensorial and Tor( )(푇푀,푉( ))  ⊂ 푉( ) by Corollary 

(6.1.12), this implies that  

∇( )휕
( ) |

 ∈ 푉( )                                                   (5) 

for all i. 
 Now in a small neighbourhood of p define 푍( )  =  (휕 ( )) , i.e. the orthogonal projection 

of 휕 ( ) onto 푉( ). Set 푇( ) =  휕 ( ) −  푍( ) . We clearly have linear independence near p and 

푠표 푍( ) , . . . ,푍( ) is a local frame for 푉( ).  
     Now for any vector field Y ,  

∇( ) 푍( ) =  ∇( )(휕 ( )  −  푇( ))  = ∇( ) 휕 ( )  −  ∇( ) 푇( )  

The first term on the right is in 푉( ) by (5). The last term is in 푉( ) everywhere as 푇( ) is a 

section of 푉( )  which is parallel. But ∇  푍( ) is in 푉( ) as 푉( ) is parallel. This implies that 

∇( )푍( )  =  0 at p. 

      Now from metric compatibility, we see that 푌 〈푍( ) ,푍( )〉|  =  0 for each 푖,푘, so an 
easy induction argument shows that if we apply the Gram-Schmidt algorithm to 
푍( ) , . . . ,푍( ) we obtain an orthonormal frame with the same property at p.  
Corollary (6.1.19) [269]. If the grading is strictly normal, then near any point 푝 ∈ 푀, there 

is a graded orthonormal frame 푋( ) for 푇푀 such that ∇푋( )

|
= 0. 

Definition (6.1.20) [269]. The sub Riemannian curvature tensors for a sRC-manifold with 
extension 푔 are defined by 

 푅(퐴,퐵)퐶 =  ∇ ∇ 퐶 −  ∇ ∇ 퐶 −  ∇[ , ]퐶 
 and  
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푅푚 (퐴,퐵,퐶,퐷)  =  〈푅(퐴,퐵)퐶 ,퐷〉 
We note that for any vectors 퐴,퐵 ∈  푇푀, the restriction of the (1,1)-tensor 푅(퐴,퐵) to 퐻푀 
is independent of the choice of extension 푔. 
      This definition immediately yields notions of flatness in subRiemannian geometry.  
Definition (6.1.21) [269]. We say that an M is horizontal flat if 푅푚 (·,·,퐻푀,·)  =  0 for any 
extension 푔. A particular extension is vertically flat if 푅푚 (·,·,푉 푀,·)  =  0 or flat if 푅푚 =
 0. 
Lemma (6.1.22) [269]. A sRC-manifold is horizontally flat if and only if in a neighborhood 
of every point 푝 ∈ 푀 there is a local orthonormal frame {퐸 } for 퐻푀 such that ∇퐸  =  0. If 
퐻푀 is integrable, this local frame can be chosen to be a coordinate frame.  
     A similar result holds for a vertically flat extension 푔 and 푉푀. 
Example (6.1.23) [269]. Every step r Carnot group is horizontally flat for the basic grading 
and flat for the r −1-grading. The sRC-manifolds considered in Example (6.1.8) and 
Example (6.1.15) are both flat.  
      It is useful to define the following  
Definition (6.1.24) [269]. If S is any set and 퐹:  푆 →  퐿 is any map into a vector space L, 
we define ℓ퐹 to be the sum of all cyclic permutations of F. For example if k = 3, then  

ℓ퐹(푋,푌,푍)  =  퐹(푋,푌,푍)  +  퐹(푌,푍,푋)  +  퐹(푍,푋,푌 ) 
An example of the cyclic construction in action is a compressed form of the Jacobi Identity 
for vector fields, namely 

ℓ[푋, [푌,푍]]  =  0  
We shall use it primarily to efficiently describe symmetries of the curvature tensor.  
     We also introduce 
Definition (6.1.25) [269]. The second-order torsion of ∇ is the (3,1)-tensor  

TOR (퐴,퐵,퐶)  =  푇표푟(퐴,푇표푟(퐵,퐶)) 
We are now in a position to discuss the fundamental questions of curvature symmetries. 
Many of the properties of the Riemannian curvature tensor go through unchanged, with 
exactly the same proof. In particular, 
Lemma (6.1.26) [269]. The subRiemannian curvature tensor always has the following sym- 
metries  

ix.  푅푚 (퐴,퐵,퐶,퐷)  =  −푅푚 (퐴,퐵,퐷,퐶)  
x. 푅푚 (퐴,퐵,퐶,퐷)  =  −푅푚 (퐵,퐴,퐶,퐷) 
xi.  푅푚 (푇푀,푇푀,퐻푀,푉푀)  =  0 

However, many symmetry properties of the Riemannian curvature tensor require additional 
assumptions in the subRiemannian case. Most of these symmetries are naturally related to 
the Bianchi Identities. 
Lemma (6.1.27) [269]. (Algebraic Bianchi Identites). For any vector fields 푋,푌,푍,  
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ℓ푅(푋,푌 )푍 =  −ℓTOR (푋,푌,푍)  +  ℓ (∇Tor)(푋,푌,푍). 
 Furthermore  

(a) if 푋,푌,푍 ∈  푉( ) then 
 ℓ(∇Tor)(푋,푌,푍)  ∈ 푉( )  

(b) if 푋,푌,푍 ∈ 푉( ) and the grading is j-normal, then  
−ℓ TOR (푋,푌,푍)  ∈ 푉( ) 

(c) if 푋,푌 ∈ 푉( ), the grading is j-normal and 푉( ) is integrable then 
−ℓ TOR (푋,푌,푍)  ∈ 푉( ) 

Proof. The first part of the lemma is a standard result from differential geometry, but for 
completeness we shall present a short proof  
ℓ푅(푋,푌 )푍 = ℓ(∇ ∇  푍 −  ∇ ∇ 푍 −  ∇[ , ]푍)  
               =  ℓ(∇ ∇ 푌 −  ∇ ∇  푋 −  ∇[ , ]푍  
               =  ℓ(∇ ([푋,푌 ]  +  Tor(푋,푌 ))  −  ∇[ , ]푍)  
               =  ℓ ([푍, [푋, 푌 ]]  +  Tor(푍, [푋,푌 ])  + (∇ Tor(푋,푌 ))  
                =  ℓ (Tor(푍, [푋,푌])  +  Tor((∇ 푋, 푌 )  +  Tor(푋, (∇ 푌 ))  +  ℓ(∇Tor)(푋,푌,푍)  
               =  ℓ (Tor(푍, [푋,푌]  −  (∇ 푌 −  (∇ 푋))  +  ℓ (∇Tor)(푋,푌,푍) 
               =  −ℓ TOR (푋,푌,푍)  +  ℓ(∇Tor)(푋,푌,푍) 
 The remaining parts consist of analyzing the terms ℓ TOR  and ℓ(∇Tor). Since these are 
tensorial, we can compute using normal and seminormal frames. First let 푋,푌,푍 be elements 
of a seminormal frame for 푉( ) at p, then  

ℓ(∇Tor)(푋,푌,푍)  =  ℓ(∇ Tor(푌,푍))  
But each torsion piece must be in 푉( ). As this is bundle parallel, we have established (a). 
Now, if we assume the frame is j-normal, then we can instead use a normal frame at p. If 푋 
is an element of this frame then 푇표푟(푋,푇푀)  ⊂ 푉( ) and it is easy to check that (b) holds.  
      Assume a j-normal grading and that 푋,푌 are elements of a j-normal frame at p, but Z is 
an arbitrary vector field. Then 
 −ℓ TOR (푋,푌,푍)  =  ℓTor(푋, Tor(푌,푍))  =  Tor(푍, Tor(푋,푌 ))  
But 
 (Tor(푍, Tor(푋,푌))) =  −[푍 ̂ , Tor(푋,푌 )]   
which vanishes if  푉( )is integrable. Thus (c) holds. 
Corollary (6.1.28) [269]. (Horizontal Algebraic Bianchi Identity). If 푋,푌,푍,푊 are 
horizontal vector fields and 푉 푀 is normal, then 

〈ℓ푅(푋,푌 )푍 ,푊〉   =  0  
If 푉 푀 is also integrable, then this can be relaxed to any three of 푋,푌,푍,푊 horizontal. 
Corollary (6.1.29) [269]. If 푉푀 is normal and 푋,푌,푍,푊 are horizontal vector fields then 

 푅푚 (푋,푌,푍,푊)  =  푅푚 (푍,푊,푋,푌 ) 
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 If V M is also integrable, then this can be relaxed to any three of X,Y,Z,W horizontal. 
Proof. A straightforward computation shows that 

  2푅푚 (퐶,퐴,퐵,퐷)  −  2푅푚 (퐵,퐷,퐶,퐴)  =  ℓ〈ℓ푅(퐴,퐵)퐶 ,퐷〉  
 The result then follows from the horizontal algebraic Bianchi Identity, 
Lemma (6.1.30) [269]. (Differential Horizontal Bianchi Identites). For any vector fields 
푋,푌,푍,푉 

 ℓ(∇ 푅(푋,푌 ))푍 =  ℓ(푅(Tor(푋,푉 ),푌 ))푍  
Furthermore, if 푉푀 is normal and integrable and 푋,푌,푍,푊,푉 ∈ 퐻푀 then 

∇푅푚 (푋,푌,푍,푊,푉 )  +  ∇푅푚 (푋,푌,푊,푉,푍)  +  ∇푅푚 (푋,푌,푉,푍,푊)  =  0 
Proof. Again, the first part is a standard result that can be derived as follows 
     (∇ 푅)(푋,푌 )푍  =  ∇ 푅(푋,푌 )푍 −  푅(∇  푋,푌 )푍 −  푅(푋,∇  푌 )푍   
                                     − 푅(푋,푌 )∇ 푍 
                                  =  [∇  ,푅(푋,푌 )]푍 −  푅(∇  푋,푌 )푍 −  푅(푋,∇ 푌 )푍  
Thus, recalling the Jacobi identity applies to operators, we see 
ℓ ((∇ )푅(푋,푌 ))푍 =  ℓ ([∇  ,푅(푋,푌 )])푍 
                                      − ℓ (푅(∇ 푋,푌 ))푍 −  ℓ (푅(푋,∇ 푌 ))푍 

 =  ℓ( ∇  , [∇ ,∇  ] −  ∇  ,훻[푋,푌 ] )푍 
       − ℓ(푅(∇  푋,푌 ))푍 +  ℓ(푅(∇ 푉,푌 ))푍 

                               =  −ℓ( ∇  ,∇[ , ] )푍 +  ℓ(푅([푋,푉 ]  +  푇표푟(푋,푉 ),푌 ))푍 
          =  −ℓ( ∇  ,∇[ , ] )푍 + ℓ (푅(푇표푟(푋,푉 ),푌 ))푍 

 + ℓ([∇[ , ],∇  ]  −  ∇[ , ], ])푍 
               =  −ℓ([∇  ,∇[ , ]])푍 +  ℓ(푅(Tor(푋,푉 ),푌 ))푍 

                                        + ℓ( ∇[ , ],∇  푍) 
                                  =  ℓ (푅(Tor(푋,푉 ),푌 ))푍  
 To see the second part, we note that as 푉푀 is normal Corollary (6.1.29) implies that the 
required identity is equivalent to 

∇푅푚 (푍,푊,푋,푌,푉 )  +  ∇푅푚 (푊,푉,푋,푌,푊,푍)  +  ∇푅푚 (푉,푍,푋,푌 푊)  =  0 
Choose 푋,푌,푍,푊,푉 to be elements of a normal from for 퐻푀 =  푉( ) at p, then  

∇푅푚 (푍,푊,푋,푌,푉 )  +  ∇푅푚 (푊,푉,푋,푌,푊,푍)  +  ∇푅푚 (푉,푍,푋,푌 푊)  
=   〈ℓ ((∇  )푅(푍,푊))푋 ,푌〉  

                                           =  〈ℓ (푅(Tor(푍,푉 ),푊))푋 ,푌 〉  
But by Corollary (6.1.29)  

푅푚 (Tor(푍,푉 ),푊,푋,푌 )  = 푅푚 (푋,푌, Tor(푍,푉 ),푊)  =  0  
as 푇표푟(푍,푊) is vertical. 
Definition (6.1.31) [269]. We define the subRiemannian Ricci curvature of ∇ by 
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푅푐 (퐴,퐵)  = 푅푚 (퐴,푋 ,푋 ,퐵) 

where {푋 } is any horizontal orthonormal frame. The horizontal scalar curvature is defined 
by 

 푆  =  푡푟( )푅푐 =  푅푐 (푋 ,푋 )  
It should be noted that the scalar curvature is independent of the choice of extension g as is 
the Ricci curvature restricted to horizontal vector fields. 
        It should be remarked here, that in general the Ricci curvature for the canonical 
connection is not symmetric. However, using Corollary (6.1.29) and elementary properties 
of the connection, we can immediately deduce 
Lemma (6.1.32) [269]. If 푉푀 is normal and 푋,푌 ∈  퐻푀 then  

푅푐 (푋,푌 )  =  푅푐 (푌,푋)  
If 푉푀 is normal and integrable then 

푅푐 (푉푀,퐻푀)  =  0 
Proof. The first follows from the corollary to the horizontal Bianchi Identity. For the second, 
we apply the corollary to the horizontal Bianchi Identity, to see that 

푅푐 (푈,푋)  =  푅푚 (퐸 ,푈,푋,퐸 )  =  푅푚 (푋,퐸 ,퐸 ,푈)  =  0. 
Lemma (6.1.33) [269]. (Contracted Bianchi Identity). Suppose 푉푀 is normal and 
integrable, then for any horizontal 푋  

∇ 푆   =  2 (∇푅푐 ) (퐸 ,푋,퐸 ) 

where 퐸  is an orthonormal frame for 퐻푀. Equivalently  
∇ 푆 =  2푡푟( )(∇푅푐 ) 

Proof. Let 푋 be any element of a normal frame at p. Apply the differential Bianchi Identity 
to 퐸 , 퐸 , 퐸 , 퐸 ,푋 and sum over 푖 푎푛푑 푗. 
       As a quick and easy consequence of this identity, we get a subRiemannian version of a 
result of Schur, that whenever the Ricci tensor is conformally equivalent to the metric then 
the manifold is Einstein. 
Corollary  (6.1.34) [269]. Suppose that 푀 is a connected sRC-manifold such that 퐻푀 
bracket generates, 푑푖푚(퐻푀)  =  푑 >  2 and that 푉푀 is normal and integrable. If  

푅푐 (푋,푌 )  =  휆〈푋 ,푌〉  
 for horizontal all vectors 푋,푌 then λ must be constant. 
Proof. Let 퐸  be a normal frame at 푝 ∈ 푀. Then at p,  

푆 =  푅푐 (퐸 ,퐸 )  =  휆푑  
But 

 2푡푟( )(∇푅푐 )(퐸 )  =  2∇ 푅푐 (퐸 ,퐸 )  =  2퐸 휆  
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Since 퐸 푆  = 2푡푟( )(∇푅푐 )(퐸 ), we must have 푑 =  2 or 퐸 휆 = 0. Thus all horizontal vector 
fields annihilate λ. As 퐻푀 bracket generates, this implies that λ is constant 
          One of our purposes is to use Bochner type results to study the relationships between 
curvature, geometry and topology on subRiemannian manifolds. To use this theory, we shall 
need a geometrically defined subelliptic Laplacian. 
Definition (6.1.35) [269]. For a tensor τ, the horizontal gradient of τ is defined by  

∇ 휏 =  ∇ 휏 ⊗  퐸 , 
where 퐸∗ is the dual to 퐸 . 
     The horizontal Hessian of τ is defined by 

 ∇ 휏(푋,푌 )  =  (∇ ∇  −  ∇∇  )휏 
 for 푋,푌 ∈ 퐻푀 and zero otherwise.  
The symmetric horizontal Hessian of τ is defined by 

 ∇ , 휏(푋,푌 ) =
1
2
∇ 휏(푋,푌 ) + ∇ 휏(푋,푌 )  

Finally, the horizontal Laplacian of τ is defined by 
 △( ) 휏 =  푡푟( )(∇ 휏) = (∇ ∇ − ∇∇ 퐸 )휏 

       The Laplacian on a Riemannian manifold has a rich and interesting 퐿 -theory. To 
replicate this for sRC-manifolds, it is necessary to choose a metric extension. This metric 
extension then yields a volume form and we have meaningful 퐿 - adjoints. Unfortunately, 
the horizontal Laplacian defined here, does not always behave as nicely as the Riemannian 
operator. However, if we make a mild assumption on the metric extension, much of the 
theory can be generalized. 
Definition (6.1.36). For a metric extension of an r-grading we define a 1-form 푅  by 

 푅 (푣)  =  퐵( ) (퐸( ),퐸( ) , 푣 )  

where 퐸( ) is an orthonormal frame for 푉( ).  
      We say that a complement 푉푀 is vertically rigid if there exists a metric extension g such 
that 

푅 ≡  0. 
Lemma (6.1.37) [269]. For an orientable sRC-manifold, the following are equivalent  
 (i) 푉푀 is vertically rigid 
 (ii) There exists a volume form dV on M such that for any horizontal vector field  

  푑푖푣 푋 =  푡푟 ∇푋 =  〈∇ 푋 , 푒  〉  
where 푒  is an orthonormal frame for HM. 
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 (iii) Every metric extension g is vertically conformal to a metric 푔 with 푅  ≡  0 
Furthermore, if HM bracket generates, then the volume form in (b) is unique up to constant 
multiplication. 
Proof. To show that (a) implies (b), we first note that for the particular metric extension g 
with푅 ≡  0, we have  

〈푇표푟(퐸( ),푋,퐸( )〉   =  0. 

 Now we recall the standard result (see [263]) that since ∇ is metric compatible and 퐻푀 is 
parallel, the divergence operator for the metric volume form g satisfies 
               div 푋 =  푡푟(∇  +  Tor)(푋) 

                           =  푡푟 ∇푋 + ∑ ∑ 〈푇표푟(퐸( ),푋,퐸( )〉 
                           =  푡푟 ∇푋 −  푅 (푋) 
                            =  푡푟 ∇푋 
Thus we can set 푑푉 =  푑푉 . 
 To show (ii) implies (iii), we consider metrics vertically conformal to an arbitrary extension 
푔,  

푔휆 =
푔,            표푛 퐻푀
푒 푔,       표푛 푉 푀      . 

 Now if 푉 =  푒 푑푉 , then set 휆 =  −  
(  )

 so 푑푉  =  푑푉 . Then for horizontal 푋 

푡푟 ∇푋 −  푅 (푋) =  div 푋 =  div 푋 =  푡푟 ∇푋 
so 푅  ≡  0. 
    Since (c) trivially implies (a), the equivalence portion of the proof is complete. 
 For the uniqueness portion, we note that if Ω =  푒 푑푉 then for any horizontal X, we have 

 divΩ푋 =  div 푋 −  푋(휆). 
If the two divergences agree on horizontal vector fields and HM bracket generates, this 
immediately implies that λ is a constant.  
       For an orientable, vertically rigid sRC-manifold, there is then a 1-dimensional family 
of volume forms for which div 푋 =  푡푟 ∇푋. We shall often refer to such a volume form as 
a rigid volume form. Vertical rigidity therefore gives us a canonical notion of integration on 
a sRC-manifold that does not depend on the choice of metric extension. 
 As an immediate consequence, we have 
Lemma (6.1.38) [269]. Suppose that 푀 is orientable and 푉푀 is vertically rigid. Then on 
functions, 

△( ) =  퐸  +  푑푖푣 퐸  =  −∇∗∇  
where the divergence and 퐿  adjoint are taken with respect to a rigid volume form. 
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      Thus on a vertically rigid sRC-manifold, the horizontal Laplacian behaves qualitatively 
in a similar fashion to the Riemannian Laplacian. 
Theorem (6.1.39) [269]. If F is a closed vector field and 퐹  is the projection of F to 푉( ) 
then  
            △( ) |퐹 | =  푅푐 (퐹 ,퐹 )  + | △( ) 퐹 |  
                                   +∑  ( 〈퐸 ,∇ 퐹 (퐹 ,퐸 )〉 
                                   − 2〈∇ 퐹 ,푇표푟(퐸 ,퐹 )〉  +  〈퐹 , (∇Tor)(퐹 ,퐸 ,퐸 )〉  
                                   −〈퐹 , TOR (퐸 ,퐸 ,퐹 )〉) 
where {퐸 } is any orthonormal horizontal frame. 
Before we prove this result, we introduce some terms and notation. Firstly, we define 퐽 ∶
 푇푀 ×  푇푀 →  푇푀 by 

〈퐽(퐴,푍),퐵〉  =  〈Tor(퐴,퐵),푍 〉                                    (7) 
Next we recall that a vector field F is closed if 

퐴 →  〈퐹 ,퐴〉 
is a closed 1-form. It is then easy to check that F is closed if and only if for all vector fields 
퐴,퐵 

〈∇ 퐹 ,퐴〉 =  〈∇ 퐹 ,퐵〉  −  〈퐽(퐵,퐹),퐴〉  =  〈∇ 퐹 ,퐵〉  +  〈퐽(퐴,퐹),퐵〉  
Proof. Set 푢 = |퐹 |  , then  

〈△( ) 푢,푌〉  =  〈∇ 퐹  ,퐹 〉  =  〈∇  퐹 ,퐹 〉  
=  〈∇ 퐹  ,푌〉  +  〈퐽(퐹 ,퐹),푌〉                                                (8) 

 So 
△( ) 푢 =  ∇ 퐹  +  퐽(퐹 ,퐹) . 

Next we need some preliminaries. Firstly, for horizontal 푋,푌  
∇ 푢(푋,푌 )  =  푋〈푌 ,∇ 푢〉  −  〈∇ 푌 ,∇〉  =  〈푌 ,∇ ∇ 푢〉 

                                               =  〈푌 ,∇ ∇( )푢〉                                                                            (9) 
Secondly,  
               〈∇ 퐽(퐹 ,퐹),푋 〉  =  푋〈퐽(퐹 ,퐹),푋〉   − 〈 퐽(퐹 ,퐹),∇ 푋〉   
                                         =  푋〈퐹 ,푇표푟(퐹 ,푋)〉  −  〈퐽(퐹 ,퐹),∇ 푋〉  
                                         =  〈∇ 퐹 ,푇표푟 퐹 ,푋 〉  + 〈 퐹 ,∇ 푇표푟(퐹 ,푋)〉 
                                             − 〈퐹 ,푇표푟(퐹 ,∇ 푋)〉 
Now we can begin the main computation. For horizontal 푋  
∇ 푢(푋,푌 )   =  〈 ∇ ∇ 푢,푋〉  =  〈∇ ∇ 퐹  ,푋〉   +  〈∇ 퐽(퐹 ,퐹),푋〉   
                    =  푅(푋,퐹 ,퐹 ,푋)  +  〈∇ ∇ 퐹  ,푋〉  +  〈∇[ , ]퐹  ,푋〉   
                         + 〈∇ 퐽(퐹 ,퐹),푋〉  
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                    =  푅(푋,퐹 ,퐹 ,푋)  +  〈∇ ∇ 퐹  ,푋  〉 
                         + 〈∇∇ ∇  ( , )퐹 ,푋 〉  +  〈∇ 퐽(퐹 ,퐹),푋〉  

                    =  푅(푋,퐹 ,퐹 ,푋)  +  〈∇ ∇ 퐹 −  ∇∇ 퐹  ,푋〉  

                         + 〈∇ 퐹  ,∇ 퐹 〉   + 〈 퐹 ,푇표푟(푋,∇ 퐹 )〉  
                         − 〈∇ 퐹 ,푇표푟(푋,퐹 )〉  −  〈퐹 ,푇표푟(푋,푇표푟(푋,퐹 ))〉 
                         + 〈∇ 퐽(퐹 ,퐹),푋〉   
                   =  푅(푋,퐹 ,퐹 ,푋)  +  〈푋 ,∇ 퐹 (퐹 ,푋)〉 +  |∇ 퐹 |  
                        − 2〈∇ 퐹 ,푇표푟(푋,퐹 )〉  +  〈퐹 , (∇푇표푟)(퐹 ,푋,푋)〉 
                        − 〈퐹 ,푇푂푅 (푋,푋,퐹 )〉 
 Now we let X range over the frame Ei and take a sum. 
To apply this theorem, we make the following observations 
Lemma (6.1.40) [269]. If 퐹 =  훻푓 then  

〈퐸  ,∇ 퐹 (퐹 ,퐸 )〉 =  ∇( )푓 ,  ∇( )∆( )푓  
Proof. By (9),  
      (∇ ∇ 푓)(푋,푋)  =  푍〈푋 ,∇ 퐹 〉   −  〈∇ 푋 ,∇ 퐹 〉   −  〈푋 ,∇∇ 퐹 〉  
                                =  〈푋 ,∇ ∇ 퐹 〉   −  〈푋 ,∇∇ 퐹 〉   
                                 =  〈푋 ,∇ 퐹 (푍,푋)〉 
 so 

 퐸  ,∇ 퐹 (퐹 ,퐸 ) =  (∇ ∇ 푓) (퐸 ,퐸 )  

                                          = 〈∇푓 ,푈( )〉  (∇ ( )∇( )푓  

                                                   − 〈∇ ( )  퐸  ,퐸 〉
,

(∇ 푓(퐸 ,퐸 )  +  ∇ 푓(퐸 ,퐸 )))  

                                      =  ∇( )푓 ,  ∇( )∆( )푓  
as the latter term is skew-symetric in i and m. 
Definition (6.1.41) [269]. The Baudoin-Garofalo tensor for an sRC-manifold with metric 
extension is the unique symmetric 2-tensor such that 

 푅(퐴,퐴)  =  푅푐 (퐴 ,퐴 )  +  〈퐴, 푡푟( )(∇푇표푟)(퐴 )〉 

+
1
4

 |〈Tor(퐸 ,퐸 ),퐴〉|
,

                                               (10) 

Note that from standard polarization arguments this defines 

푅(퐴,퐵)  =
1
4

(푅(퐴 +  퐵,퐴 +  퐵)  −  푅(퐴 −  퐵,퐴 −  퐵)) 
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Corollary (6.2.42) [269]. If g is strictly normal with respect to the basic grading and 푉푀 is 
integrable then  
1
2

 ∆( ) ∇( )푓  −  〈∇( )푓 ,∇( )∆( )푓〉  = 

                         푅(∇푓,∇푓)  +  ∇( )
,  푓 −  2〈∇ ∇( )푓 ,푇표푟(퐸 ,∇( )푓) 〉 

1
2
∆( ) ∇( )푓  −  〈∇( )푓 ,∇( )∆( )푓〉  =  ∇( )∇( )푓  

Proof. Most of this result follows immediately from noticing that the strictly normal 
condition eliminates many of the torsion terms from Theorem (6.1.39) and then applying 

Lemma (6.1.40). The rest consists of analyzing the ∇( ) 푓 . First note  
∇ 푓(퐸 ,퐸 )  =  퐸 퐸 푓 −  (∇ 퐸 )푓 

                    = 퐸 퐸 푓 −  ∇ 퐸 푓 + (퐸 퐸 푓 −  (∇ 퐸 )푓) 

                         + ( 퐸 ,퐸 푓 +  ∇ 퐸 푓 −  ∇ 퐸 푓) 

                    = ∇ 푓 퐸 ,퐸 +  ∇ 푓 퐸 ,퐸 − Tor(퐸 ,퐸 )푓 
From this we immediately obtain, 

 ∇( ) 푓 =  ∇( )
,  푓 +  +

1
4

 |〈Tor(퐸 ,퐸 ),∇푓〉|
,

 

Definition (6.1.43) [269]. The torsion bounds of M are the defined by 

 휅 = sup |Tor 푋( ),푋( ) | ∶ |푋( )|, |푋( )| ≤  1  
Noting that 0 ≤   휅 ≤  +∞.  
      To obtain topological and geometric information from this result, we follow the 
technique developed by Baudoin and Garofalo in [340]. We define symmetric bilinear forms 
by 
 Γ( )(푓,푔)  =  〈∇( )푓 ,∇( )푔〉  
 Γ( )(푓,푔)  =  ∆( )Γ( )(푓,푔)  −  Γ( )(∆( )푓,푔)  − Γ( )(푓,∆( )푔) 
 If g is strictly normal then it is easy to check that 

  Γ( ) 푓, Γ( )(푓, 푓) = Γ( ) 푓, Γ( )(푓, 푓)                         (11) 
and we obtain the following result 
Theorem (6.1.44) [269]. Suppose g is strictly normal for the basic grading and 푉푀 is 
integrable. If  

휅  <  ∞  
and there exist constants 휌  ∈  푅 and 휌  > 0 such that 

 푅(퐴,퐴)  ≥  휌 ‖퐴 ‖  +  휌 ‖퐴 ‖  
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then for 휅 =  푑푖푚(퐻푀)휅 , the generalized curvature-dimension inequality 

 Γ( ) +  휈Γ( ) ≥
1

dim퐻푀
(∆( )푓)  + 휌  –

휅
휈
Γ( )(푓, 푓)  +  휌 Γ( )(푓,푓) 

holds for every 푓 ∈ 퐶 (푀) and ν > 0 . 
Proof. As 

∇( )
,  푓 ≥ (∇ 푓(퐸 ,퐸 ))  ≥

1
dim퐻푀

(∆( )푓)   

this follows immediately from Corollary (6.1.42) and the elementary identity that  

2 ∇ ∇( )푓 , Tor 퐸 ,∇( )푓 ≤  휈 ∇( )∇( ) 푓 +
휅
휈

 ∇( )푓  

         It was shown in [340], that under the additional mild hypothesis that there exists a 
sequence ℎ ∈  퐶 (푀) of increasing functions that converge pointwise to 1 everywhere and 
satisfy 

Γ( )(ℎ , ℎ )  + Γ( )(ℎ , ℎ )  →  0, 
 the generalized curvature inequality has a wide variety of topological, geometric and 
analytical consequences. In our case, this hypothesis is automatically satisfied as 
Γ( )(푓, 푓)  +  Γ( )(푓, 푓)  =  |∇푓| . We shall focus on their subRiemannian generalization of 
the Bonnet-Myers theorem. 
Theorem (6.1.45) [269]. (Baudoin-Garofalo). If the generalized curvature inequality is 
satisfied with ρ1 > 0 and the above hypothesis holds together with (11) then 푀 is compact. 
Combining this with Theorem (6.1.44), provides the following generalization of the 
examples considered in [260] 
Theorem (6.1.46) [269]. Under the same conditions as Theorem (6.1.44), if ρ1 > 0 then 푀 
is compact. 

A common theme in the early development of sub Riemannian geometry was the use 
of Riemannian approximations. More precisely, a Riemannian extension 푔 = 푔  ⊕푔   was 
chosen and then re-scaled as 푔 =  λ⊕ 휆 푔 . The behavior of these Riemannian metrics 
was then studied as 휆 →  ∞. The idea is that blowing up the vertical directions makes 
movement in these direction prohibitively expensive so the Riemannian geodesics should 
converge to the subRiemannian geodesics. Unfortunately, this is problematic for the study 
of the effects of curvature as this re-scaling makes the vertical curvatures much larger than 
the horizontal ones. However, useful information can be derived from this approach if 
instead we let 휆 →  0.  

We compute the Ricci and sectional curvatures of these scaled Riemannian metrics 
in terms of the basic connection. For simplicity, we shall specialize to the case where dim 
푉푀 =  1 and so the only basic grading applies. We shall be able to provide alternative 
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proofs to some of the results above and see the nature of the obstructions when the conditions 
are weakened.  
      To proceed, we fix a sRC-manifold 푀 and choose a Riemannian extension 푔 =  푔 ⊕푔  . 
The basic connection will always be in terms of this metric. Throughout, 퐸 , . . . ,퐸  will 
represent an orthonormal frame for 퐻푀 with respect to g and 푈 will represent a unit length 
vector in 푉푀, again with respect to 푔.  
We refine the 퐽 operator introduced earlier by defining 
                                        〈퐽 (퐴,퐵),퐶 〉  =  〈푇표푟(퐴,퐶),퐵 〉 ,    
                                        〈퐽 (퐴,퐵),퐶 〉  =  〈푇표푟(퐴,퐶),퐵 〉                                            (12) 
Lemma (6.1.47) [269]. For any sRC-manifold (with no restriction on dim푉푀) the Levi- 
Civita connection associated to g can be computed from the basic connection for 푔 as 
follows 
                         ∇ 푌 =  ∇ 푌 − 푇표푟(푋,푌 )  +  퐽 (푋,푌 ) 

                         ∇ 푇 =  ∇ 푇 − 퐽 (푇,푇)              

                         ∇  푋 =  ∇ 푋 + 퐽 (푋,푇)  −  푇표푟(푇,푋)                                            (13) 

                         ∇ 푇 =  ∇ 푇 + 퐽 (푋,푇)  −  푇표푟(푋,푇)  
From these it is a straightforward, if brutal, computation to show that 
Corollary (6.1.48) [269]. If 푋,푌 are horizontal vector fields and 푇 is a vertical vector field 
then  
         푅푚(푋,푌,푌,푋) =  푅푚 (푋,푌,푌,푋)–  |푇표푟(푋,푌 )|    
                                   −〈퐽 (푌,푌 ), 퐽 (푋,푋)〉 + |퐽 (푋,푌)|                                              (14) 
         푅푚(푇,푋,푋,푇) =  푅푚 (푇,푋,푋,푇) + |퐽 (푋,푇)|  
                                  + 〈∇ Tor(푇,푋,푋)  −  푇표푟(푋, Tor(푋,푇)),푇〉   
                                  +〈 ∇ Tor(푋,푇,푇),푋〉   −  |Tor(푋,푇) |                                        (15) 
        푅푚(푋,푌,푇,푋) =  푅푚 (푋,푌,푇,푋) +  〈∇ Tor(푌,푋,푋),푇〉  
                                    + 〈∇푇표푟(푋,푇,푌 )  −  ∇푇표푟(푌,푇,푋),푋〉                                    (16) 
        While this is far from a complete list of curvature terms, if we use properties of both 
Riemannian and subRiemannian curvatures and polarization identities, it is suffcient to 
compute all sectional and Ricci curvatures for the case dim 푉푀 =  1. 
        Provided that we only use constants for our re-scaling, it is easy to verify that the 
covariant derivatives for the basic connection associated to the re-scaled metric are 
unchanged from the base metric. Thus, paying careful attention to how each term scales, we 
can compute the Riemannian Ricci curvatures for the metrics 푔 =  λ⊕ 휆 푔 .  
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For 푌 ∈  퐻푀 and 푇 ∈  푉 푀, with inner products and norms computed in the unscaled 
metric  

Rc   (푌,푌 )  =  휆  [푅푐(푌,푌 )  +  〈∇Tor(푈,푌,푌 ),푈 〉 −  〈TOR (푌,푌,푈),푈〉]  

                                     + 휆 −
1
2

 |Tor(퐸 ,푌 )|   

                                +휆 [〈∇ Tor(푌,푈,푈),푌 〉 −  |Tor(푌,푈) |                                     (17)  

    + (|J (퐸 ,푌 )| − 〈J (퐸 ,퐸 ), 퐽1(푌,푌 )〉)]  

 Rc  (푌,푇) =  휆  〈∇Tor(퐸 ,푇,푌 )– ∇ Tor(푌,푇,퐸 ),퐸 〉    

                                              + 휆  〈푡푟 ∇ Tor(푌),푇〉                                                    (18) 

Rc (푇,푇)  =  휆 〈∇ Tor(퐸 ,푇,푇),퐸 〉 −  |Tor(퐸 ,푇) |  

                         + 휆 〈∇ Tor(푇,퐸 ,퐸 )  −  TOR (퐸 ,퐸 ,푇),푇〉   

                                      + 휆 |J (퐸 ,푇 )|                                                                       (19) 
For the case of a strictly normal sRC-manifold, these formulae greatly simplify 
to 

Rc (푌,푌 ) =  휆 푅푐(푌,푌 ) −
휆
2

 |푇표푟(퐸 ,푌)|  

                          Rc (푌,푇) = 〈푡푟 ∇ 푇표푟(푌 ),푇〉                                                          (20) 

Rc (푇,푇) =
휆
4

|퐽 (퐸 ,푇)|  =  
휆
4

|푇표푟(퐸 ,퐸 )|
,

 

and so 
푅(푇 +  푌,푇 +  푌 ) =  lim

→
Rc (푌 +  휆 푇,푌 +  휆 푇)                    (21) 

Next we note that if T is unit length with respect to the base metric then for any smooth 
function  

∇ 푓 =  ∇ 푓 + 휆 (푇 푓)푇 
which means that the Baudoin-Garofalo tensor applied to ∇f can expressed as a limit of 
Riemannian Ricci curvatures as follows: 

 푅(∇푓,∇푓)  =  lim
→

Rc (∇ 푓,∇ 푓) 
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Theorem (6.1.49) [269]. Under the same conditions as Theorem (6.1.4) and the added 
assumption that dim 푉푀 = 1, there are constants λ,c > 0 such that 

Rc (퐴,퐴)  ≥  푐푔 (퐴,퐴) 
for all vectors A. 
Proof. Split 퐴 =  퐴  +  퐴  and then note that 

Rc (퐴,퐴) =  푅(퐴  +  휆 퐴 ,퐴  +  휆 퐴 ) −
휆
2

|푇표푟(퐸 ,퐴 )|  

≥ 휌  −
휆 휅

2
푔 (퐴 ,퐴 )  +  휌 휆 푔 (퐴 ,퐴 )  

Thus for very small λ > 0, we can take 푐 = min 휆 휌 , 휌  −  >  0.  
Combining this with the classical Myers theorem yields 
Corollary (6.1.50) [269]. Under the same conditions as Theorem (6.1.44) and the added 
assumption that dim 푉푀 =  1, 푀 is compact and has finite fundamental group. 
       If we do not restrict to the strictly normal case, then this Riemannian approach 
immediately has problems. If we send 휆 →  ∞, we see that Rc (푌,푌 )  →  −∞, so any 
Riemannian results for positive Ricci curvature will immediately be lost. Since there are 
very few topological consequences of negative Ricci curvature, this approach is unlikely to 
bear fruit. If however we let 휆 →  0, then we run into the issue that the subRiemannian Ricci 
curvature for the horizontal terms isn’t the dominant term. Instead we must deal with the 
symmetric 2-tensors 

퐵(푋,푌 )  =  〈∇푇표푟(푋,푈,푈),푌 〉  −  푇표푟(푋,푈)  ,푇표푟(푌,푈)  

퐾(푋,푌 ) = (〈퐽 (퐸 ,푋), 퐽 (퐸 ,푌 )〉  −  〈퐽 (퐸 ,퐸 ), 퐽 (푋,푌 )〉)        (23) 

 where again U is a unit length vertical vector. The tensor B is a genuine sRC- invariant 
when dim푉푀 =  1, but has no good invariant generalization when dim푉푀 =  1. However 
K is only a vertically conformal sRC-invariant. With these caveats in mind, we do however 
obtain the following theorem 
Theorem (6.1.51) [269]. Let 푀 be an sRC-manifold with dim푉푀 =  1 and bounded 
curvature and torsion. If there are constants 푎, 푏 > 0 such that for all horizontal vectors Y ,  

푡푟 퐵 ≥  푎 
 퐵(푌,푌 ) +  퐾(푌,푌 ) ≥  푏|푌|                                            (24)  

then 푀 is compact and has finite fundamental group. 
Proof. The condition of bounded curvature implies that for small λ there will be some, 
possibly large, constant M such that 
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2Rc (푇,푌 ) ≤  2푀 |푇||푌 | ≤
푎
4

|푇|  +
4푀
푎

|푌|  . 

Since 푡푟 퐵 ≥  푎 globally, for suffciently small λ, we will have 

Rc (푇,푇)  ≥
푎
2

|푇|  

and since 퐾(푌,푌 )  +  퐵(푌,푌 )  ≥  푏|푌| , again for small λ, we have 

Rc (푌,푌 )  ≥
푏

2휆
|푌|  

But then for small enough λ 

Rc (푇 +  푌,푇 +  푌 ) ≥
푏

2휆
−

4푀
푎

|푌| +
푎
4

|푇|  

For very small λ, both coeffcients will be postive, so 
Rc (푇 +  푌,푇 +  푌 )  ≥  푐|푇 + 푌|   

for some positive constant c. The result then follows from the classical Myers theorem.  
       This is a purely sub Riemmanian result as the conditions are trivially false when 
restricted to Riemannian manifolds. However, it is somewhat unsatisfactory in nature. It 
would seem reasonable to conjecture that for sRC-manifolds (or at least those that are in 
some sense nearly strictly normal ) that there would be some sort of analogue of Theorem 
(6.1.46) where the dominant terms are genuine subRiemannian Ricci tensors. However, it 
appears that to prove it will be necessary to create new subRiemannian techniques such as 
the heat kernel methods of [340] rather than fall back on existing Riemannian methods. we 
expect the basic connection developed to provide a solid computational foundation for such 
techniques. 
 

Section(6-2): Comparison Theorems for Sub-Riemannian Manifolds 
          We study volume and distance comparison estimates on sub-Riemannian manifolds 
that satisfy the generalized curvature dimension inequality introduced in [270]. We in 
particular prove a global doubling property in the possibly negative curvature case which 
complements the volume estimates obtained in [269], where the curvature was always 
supposed to be non negative. The distance estimates we obtain, and the methods to prove 
them are new, but in the non negatively curved Sasakian case that was treated in [268]. As 
a consequence of the global doubling property, we obtain a Gromov type precompactness 
theorem for the class of sub-Riemannian manifolds that satisfy the generalized curvature 
dimension inequality and, as a consequence of the distance comparison theorem, we obtain 
Fefferman-Phong type subelliptic estimates. 
To put the results we obtain in perspective, let us point out that distance and volume 
estimates in sub-Riemannian geometry have been extensively studied. But most of the 
obtained results are of local nature. Let (푀,푔) be a smooth and connected Riemannian 
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manifold. Let us assume that there exists on 푀 a family of vector fields {푋 ,··· 푋 } that 
satisfy the bracket generating condition. We are interested in the sub-Riemannian structure 
on 푀 which is given by the vector fields {푋 ,··· 푋 }. In sub-Riemannian geometry the 
Riemannian distance 푑  of 푀 is most of the times confined to the background. There is 
another distance on 푀, that was introduced by Caratheodory in his seminal paper [275], 
which plays a central role. A piecewise 퐶  curve 훾 ∶  [0,푇]  →  푀 is called subunitary at x 
if for every 휉 ∈ 푇∗ 푀 one has  

푔(훾′(푡), 휉) ≤  푔(푋 (훾(푡)), 휉) . 

We define the subunit length of γ as ℓ (훾)  =  푇. If we indicate with 푆(푥,푦) the family of 
subunit curves such that 훾(0)  =  푥 and 훾(푇)  =  푦, the fundamental accessibility theorem 
of Chow-Rashevsky the connectedness of 푀 implies that 푆(푥, 푦)  ≠  ∅ for every 푥, 푦 ∈ 푀, 
see [276], [285]. This allows to define the sub-Riemannian distance on 푀 as follows  

푑(푥,푦) = inf{ℓ (γ) | γ ∈  푆(푥, 푦)}. 
We refer to the cited contribution of Gromov to [272], by Bellaiche in the same volume. 
Another elementary consequence of the Chow-Rashevsky theorem is that the identity map 
푖 ∶  (푀,푑)  →  (푀, 푑 ) is continuous and thus, the topologies of 푑  and 푑 coincide. Several 
fundamental properties of the metric d have been discussed by Nagel, Stein and Wainger 
[283]. The following local distance comparison theorem was proved in [283].  
Theorem (6.2.1)[290]. (Nagel-Stein-Wainger, [283]). For any connected set Ω ⊂ 푀 which 
is bounded in the distance 푑  there exist 퐾 = 퐾(Ω) > 0, and 휖 =  휖(Ω) > 0, such that 

 푑(푥, 푦) ≤  퐶푑 (푥,푦) ,      푥, 푦 ∈  Ω. 
The following result also proved in [283] provides a uniform local control of the growth of 
the metric balls in (푀, 푑). 
Theorem (6.2.2) [290]. (Nagel-Stein-Wainger, [283]). For any 푥 ∈ 푀 there exist constants 
퐶(푥),푅(푥)  >  0 such that with 푄(푥)  =  log 퐶(푥) one has 

μ(퐵(푥, 푡푟)) ≥  퐶(푥) 푡 ( )μ(퐵(푥, 푟)),      0 ≤  푡 ≤  1, 0 <  푟 ≤  푅(푥). 
 Given any compact set 퐾 ⊂  푀 one has  

inf
∈

 퐶(푥) > 0 ,    inf
∈

 푅(푥) > 0 . 

These theorems and the methods used to prove them are local in nature. The goal is to obtain 
global analogues for a large class of sub-Riemannian manifolds. 
To fix the ideas, let us present the main results of Sasakian manifolds but we stress that the 
class of sub-Riemannian structures to which our results apply is much larger than the class 
of Sasakian manifolds. 
 Let 푀 be a complete strictly pseudo convex 퐶푅 manifold with real dimension 2푛 + 1. Let 
θ be a pseudo-Hermitian form on 푀 with respect to which the Levi form 퐿  is positive 
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definite and thus defines a Riemannian metric 푔 on 푀 (the Webster metric). The kernel of θ 
defines a horizontal bundle ℋ. The triple (푀,ℋ,푔) is a sub-Riemannian manifold. The 퐶푅 
structure on 푀 is said to be Sasakian if the Reeb vector field of 휃 is a sub-Riemannian Killing 
vector field. Let us denote by 푅푖푐∇ the Ricci curvature tensor of the Tanaka-Webster 
connection on 푀. We prove the following global version of Theorems (6.2.1) and (6.2.2) 
Theorem (6.2.3) [290]. Let 푀 be a complete Sasakian manifold. Let us assume that there 
exists 퐾 ∈ 푅, such that for every 푉 ∈ 퐻, 

 푅푖푐∇(푉,푉 )  ≥ −퐾‖푉‖ , 
then:  

(i) Distance comparison theorem) There exists a constant 퐶 = 퐶(푛,퐾)  >  0, such that 
for every 푥,푦 ∈  푀,  

푑(푥,푦)  ≤  퐶 푚푎푥{푑 (푥, 푦), 푑 (푥, 푦)}. 
    (ii) Uniform local volume doubling property) For every 푅 >  0, there exists a constant  
 퐶 =  퐶(푅,푛,퐾)  >  0 such that for any 푥 ∈ 푀, with 푄 = log 퐶 one has  

μ(퐵(푥, 푡푟))  ≥ 퐶 푡 μ(퐵(푥, 푟)),   0 ≤  푡 ≤  1, 0 <  푟 ≤  푅. 
The dependency of the constant C on R in the volume estimate is described more precisely 
in Theorem (6.2.23).  
The method we use to approach these types of results are heat equation techniques and sharp 
Gaussian bounds for the heat kernel relying on the methods developed in [269] and [270]. 
We find it convenient to work in the context of a local Dirichlet space associated to a 
subelliptic diffusion operator. This abstract presentation has the advantage to encompass in 
the same framework many relevant examples of different nature. 

We introduce the framework of [270] and recall the generalized curvature dimension 
inequality that is going to be our main device. We study sharp Harnack inequalities for 
solutions of the sub-Riemannian heat equations. The main novelty here with respect to [270] 
and [269] is that these Harnack inequalities involve a family of distances that interpolate 
between the sub-Riemannian distance and the Riemannian one. We devoted to the proof of 
the uniform volume doubling property. We skip most of the details in some of the proofs 
since the methods are close to the methods of [269]. However, due to the more general 
setting, several computations are more involved.  We establish through sharp upper 
Gaussian bounds for the heat kernel the distance comparison theorem. And shows how the 
distance comparison theorem is used to prove subelliptic estimates. The fact that the sub-
Riemannian distance behaves as 푑 (푥, 푦) for close 푥, 푦 implies that the operator L is 
subelliptic of order 1/2. Finally we establishes a sub-Riemannian Gromov type 
precompactness theorem which is obtained as a consequence of our volume estimates. 
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     We consider a measure metric space (푀, 푑, μ), where 푀 is 퐶  connected manifold 
endowed with a 퐶  measure µ, and d is a metric canonically associated with a 퐶  second-
order diffusion operator L on 푀 with real coefficients. We assume that L is locally subelliptic 
on 푀 in the sense of [277], and that moreover:  

(i) L1 = 0; 

(ii) ∫ 푓 퐿푔푑μ =  ∫ 푔 퐿푓푑μ;  

(iii)  ∫ 푓 퐿푓푑μ ≤  0, 
 for every 푓,푔 ∈  퐶 (푀). The quadratic functional 훤(푓)  =  훤(푓, 푓), where  

 Γ(푓,푔) =
1
2

 (퐿(푓푔) − 푓퐿푔 − 푔퐿푓), 푓,푔 ∈ 퐶 (푀),                 (25) 

 is known as le carr´e du champ. Notice that Γ(푓) ≥  0 and that 훤(1) = 0.  
An absolutely continuous curve 훾 ∶  [0,푇]  →  푀 is said to be subunit for the operator Γ if 
for every smooth function 푓 ∶  푀 →  푅 we have  | 푓(훾(푡)) ≤ (Γ푓)(훾(푡)). We then 
define the subunit length of γ as ℓ (훾)  =  푇. Given 푥,푦 ∈ 푀, we indicate with 

푆(푥, 푦)  =  {훾 ∶  [0,푇]  →  푀 |γ is subunit for Γ, 훾(0)  =  푥, 훾(푇)  =  푦}. 
We assume that  

푆(푥,푦)  ≠ ∅,         for every     푥,푦 ∈  푀. 
Under such assumption it is easy to verify that 
                             푑(푥, 푦) = inf{ℓ (훾)  | 훾 ∈  푆(푥,푦)},                                             (26) 
defines a true distance on 푀. Furthermore, it is known that 

푑(푥,푦) = sup{|푓(푥) − 푓(푦)||푓 ∈ 퐶 (푀), ‖Γ(푓)‖ ≤  1} , 푥, 푦 ∈  푀.           (27) 
 Throughout we assume that the metric space (푀, 푑) is complete. 
In addition to Γ, we assume that there exists another first-order bilinear form ΓZ satisfying 
for 푓,푔,ℎ ∈ 퐶∞((푀):  
    (i) Γ (푓푔,ℎ)  =  푓Γ (푔, ℎ)  +  푔Γ (푓, ℎ);  
    (ii) Γ (푓)  =  Γ (푓,푓) ≥  0. 
We introduce the following second-order differential forms: 

Γ (푓,푔)  =
1
2

[퐿훤(푓,푔) − 훤(푓, 퐿푔) − 훤(푔,퐿푓)], 

Γ (푓,푔)  =
1
2
퐿Γ (푓,푔) − Γ  (푓, 퐿푔) − Γ (푔, 퐿푓) 

and we let Γ (푓) =  Γ (푓, 푓),    Γ (푓)  = Γ (푓, 푓).  
We also introduce a family of control distances 푑휏 for 휏 ≥  0. Given 푥,푦 ∈ 푀, let us consider 

푆 (푥,푦) =  {훾 ∶ [0,푇]  →  푀 |훾 is subunit for Γ +  휏 Γ , 훾(0)  =  푥, 훾(푇)  =  푦}. 
 A curve which is subunit for Γ is obviously subunit for Γ +  휏2ΓZ, therefore 푆 (푥,푦)  ≠  ∅. 
We can then define 



182 
 

푑 (푥, 푦) =  inf{ℓ (훾)|훾 ∈ 푆 (푥,푦)}.                             (28) 
Note that 푑(푥,푦)  =  푑 (푥, 푦) and that, clearly: 푑 (푥,푦)  ≤  푑(푥,푦).  
The following definition was introduced in [270].  
Definition (6.2.4) [290]. We shall say that 푀 satisfies the generalized curvature-dimension 
inequality 퐶퐷(휌 , 휌 ,휅, 푑) if there exist constants 휌 ∈  푅,휌 >  0, 휅 ≥  0, and 푑 >  0 such 
that the inequality 

 Γ (푓) +  휈Γ  (푓) ≥
1
푑

 (퐿푓)  + 휌 −
휅
휈
Γ(푓) +  휌 ΓZ(푓)                  (29) 

holds for every 푓 ∈ 퐶 (푀) and every 휈 >  0. 
Let us observe right-away that if 휌′ ≥  휌 , then 퐶퐷(휌′ ,휌 , 휅,푑) 퐶퐷(휌 ,휌 , 휅, 푑). To 
provide with some perspective on Definition (6.2.4) we refer to [270] but point out that it 
constitutes a generalization of the so-called curvature-dimension inequality 퐶퐷(휌 , 푛) from 
Riemannian geometry. We recall that the latter is said to hold on a n-dimensional 
Riemannian manifold 푀 with Laplacian ∆ if there exists 휌 ∈ R such that for every 푓 ∈
퐶 (푀) one has  

 Γ (푓) ≥
1
푛

 (∆푓)  +  휌 |∇푓|                                    (30) 

where 

Γ (푓)  =
1
2

(∆|∇푓| − 2〈∇푓,∇(∆푓)〉). 

To see that (29) contains (30) it is enough to take 퐿 =  ∆, Γ  =  0, 휅 =  0, and 푑 =  푛, and 
notice that (25) gives Γ(푓)  =  |∇푓|  (also note that in this context the distance (27) is simply 
the Riemannian distance on 푀). It is worth emphasizing at this moment that, remarkably, 
on a complete Riemannian manifold the inequality (30) is equivalent to the lower bound 
푅푖푐 ≥  휌 .  
The essential new aspect of the generalized curvature-dimension inequality 퐶퐷(휌 ,휌 , 휅, 푑) 
with respect to the Riemannian inequality 퐶퐷(휌 ,푛) in (30) is the presence of the a priori 
non-intrinsic forms Γ  and Γ  . In the non-Riemannian framework the form Γ plays the role 
of the square of the length of a gradient along the (horizontal) directions canonically 
associated with the operator L, whereas the form ΓZ should be thought of as the square of 
the length of a gradient in the missing (vertical) directions.  
In Definition (6.2.4) the parameter 휌  plays a special role. For the results such parameter 
represents the lower bound on a sub-Riemannian generalization of the Ricci tensor. The case 
when 휌  ≥ 0 is, in our framework, the counterpart of the Riemannian Ric ≥ 0. For this reason, 
when we say that 푀 satisfies the curvature dimension inequality 퐶퐷(휌 , 휌 ,휅,푑) with 휌  ≥ 
0, we will routinely avoid repeating at each occurrence the sentence “for some 휌  > 0, 휅 ≥
0 and 푑 > 0”. 
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 Before stating our main result we need to introduce further technical assumptions on the 
forms Γ and ΓZ:  
Hypothesis (6.2.5) [290]. There exists an increasing sequence ℎ ∈C (M) such that ℎ 1 
on 푀,and 

  |Γ(ℎ )|  + Γ (ℎ )  →  0,           푎푠 푘 → ∞. 

Hypothesis (6.2.6) [290]. For any 푓 ∈ 퐶 (푀) one has 
    훤(푓, Γ (푓))  =  Γ (푓,훤(푓)). 

Hypothesis (6.2.7) [290]. The heat semigroup generated by L, which will be denoted by 푃  
throughout the section, is stochastically complete that is, for 푡 ≥  0,푃 1 =  1, and for every 
푓 ∈ C (M) and 푇 ≥ 0,one has  
                                 sup    ‖Γ(푃 푓)‖   Γ (푃 푓) <  +∞.  
                                t∈[0,T] 
The hypothesis (6.2.5) and hypothesis (6.2.6) will be in force throughout. Let us notice 
explicitly that when 푀 is a complete Riemannian manifold with 퐿 =  ∆, then hypothesis 
(6.2.5) and hypothesis (6.2.6) are fulfilled. In fact, hypothesis (6.2.6) is trivially satisfied 
since we can take Γ ≡  0, whereas hypothesis (6.2.5) follows from (and it is in fact 
equivalent to) the completeness of (푀, 푑). Actually, in the geometric examples 
encompassed by the framework (as we have said before, for a detailed discussion of these 
examples should consult the preceding section [270]), hypothesis (6.3.5) is equivalent to 
assuming that (푀, 푑) be a complete metric space. The reason is that in those examples Γ +
 Γ  is the carr´e du champ of the Laplace-Beltrami of a Riemannian structure whose 
completeness is equivalent to the completeness of (푀, 푑). The hypothesis (6.2.7) has been 
shown in [270] to be a consequence of the curvature-dimension inequality CD(휌 , 휌 ,κ,d) 
only in many examples. We mention the following results from [270]. 
Theorem (6.2.8) [290]. Let (푀,휃) be a complete CR manifold with real dimension 2푛 + 1 
and vanishing Tanaka-Webster torsion, i.e., a Sasakian manifold. If for every 푥 ∈ 푀 the 
Tanaka-Webster Ricci tensor satisfies the bound 

 푅푖푐 (푣, 푣)  ≥  휌 |푣| , 
for every horizontal vector 푣 ∈ 퐻 , then, for the CR sub-Laplacian of 푀 the curvature-
dimension inequality 퐶퐷(휌 , 푑 4,1,푑) holds, with 푑 = 2푛. Furthermore, the Hypothesis 
(6.2.5), (6.2.6) and (6.2.7) are satisfied. 
Theorem (6.2.9) [290]. Let G be a Carnot group of step two, with d being the dimension of 
the horizontal layer of its Lie algebra. Then, G satisfies the generalized curvature-dimension 
inequality 퐶퐷(0, 휌 ,휅, 푑) (with respect to any sub-Laplacian L on G), where 휌  and κ are 
appropriately (and explicitly) determined in terms of the group constants. Moreover, the 
Hypothesis (6.2.5), (6.2.6) and (6.2.7) are satisfied. 
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Theorem (6.2.9) says, in particular, that in our framework, every Carnot group of step two 
is a sub- Riemannian manifold with nonnegative Ricci curvature. CR Sasakian manifolds 
and Carnot groups of step two are included in, but do not exhaust, the class of sub-
Riemannian manifolds with transverse symmetries of Yang-Mills type. Such wide class was 
extensively analyzed, and we refer to that source for the relevant notions. In view of 
Theorems (6.2.8) and Theorem (6.2.9) it should be clear that our approach allows for the 
first time to extend the Li-Yau program, and many of its fundamental consequences, to 
situations which are genuinely non-Riemannian. As a further comment, we mention that, if 
we assume that the generalized curvature-dimension inequality 퐶퐷(휌 ,휌 , 휅, 푑) is satisfied, 
then the assumption (6.2.7) should not be seen as restrictive. As we mentioned above, it was 
shown in [270] that (6.2.7) is fulfilled for all sub- Riemannian manifolds with transverse 
symmetries of Yang-Mills type. 
Theorem (6.2.10) [290]. Suppose that the generalized curvature-dimension inequality hold 
for some 휌 ∈ 푅. Then, there exist constants 퐶 ,퐶 >  0, depending only on 휌 , 휌 , 휅, 푑, for 
which one has for every 푥, 푦 ∈ 푀 and every 푟 >  0:  

μ 퐵(푥, 2푟) ≤  퐶 exp(퐶 푟 ) μ 퐵(푥, 푟) ;                             (31)  
Theorem (6.2.11) [290]. Suppose that the generalized curvature-dimension inequality hold 
for some 휌 ∈ 푅. Let 휏 ≥ 0. Then, there exists a constant 퐶(휏) > 0, depending only on 
휌 , 휌 ,휅, 푑 and τ for which one has for every 푥, 푦 ∈ 푀: 

 푑(푥, 푦)  ≤  퐶(휏)푚푎푥{ 푑 (푥,푦), 푑 (푥, 푦)}.                          (32) 
       In the sequel, we assume that besides the assumptions specified in the previous section 
the generalized curvature dimension of Definition (6.2.4) is satisfied for some parameters 
휌 , 휌 ,휅, 푑. We will denote 

 퐷 =  푑 1 +
3휅
2휌

.                                                     (33) 

The main tool to prove the fore mentioned theorems, is the heat semigroup 푃 =  푒 , which 
is defined using the spectral theorem. Thanks to the hypoellipticity of 퐿, for 푓 ∈ 퐿 (푀), 1 ≤
 푝 ≤ ∞, the function (푡,푥) →  푃 푓(푥) is smooth on 푀 × (0,∞) and  

푃 푓(푥) =  푝 (푥,푦, 푡)푓(푦)푑μ(푦)  

where 푝(푥, 푦, 푡) =  푝(푦, 푥, 푡)  >  0 is the so-called heat kernel associated to 푃 . It was 
proved in [270] that the generalized curvature dimension inequality implies a Li-Yau type 
estimate for the heat semigroup. Let 푓 ≥  0, be a non zero smooth and compactly supported 
function then the following inequality holds for 푡 >  0: 

Γ(ln푃 푓) +
2휌

3
푡Γ (ln푃 푓) ≤

퐷
푑

+
2휌̅

3
푡
퐿푃 푓
푃 푓

+
푑(휌̅ )

6
푡 +

휌̅ 퐷
2

+
퐷
2푑푡

 ,        (34) 
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where 휌̅ =  푚푎푥(−휌 , 0). A consequence of the Li-Yau inequality is the parabolic Harnack 
inequality for the heat semigroup as it was established in [270]. The distance used in [270] 
to control the heat kernel is the sub-Riemannian distance 푑. Purpose is to take advantage of 
the upper bound on ΓZ (ln푃 푓) that is also provided by the Li-Yau inequality in order to 
deduce a control of the heat kernel by a family of Riemannian distances. This control of the 
heat kernel in terms of Riemannian distances is the key point to prove the distance 
comparison theorem. 
 As a first step, we observe that as a straightforward consequence of (34) we obtain that for 
every τ ≥ 0 and t > 0,  

1 +
3휏

2휌 푡 (Γ(ln푃푡 푓) + 휏 Γ  (ln푃푡 푓) ≤
퐷
푑

+
2휌1

3
푡
퐿푃푡푓
푃푡푓

+
푑 휌1

2

6
푡 +

휌1퐷
2

+
퐷2

2푑푡
.  (35) 

Theorem (6.2.12) [290]. (Harnack inequality). Let 푓퐶 (푀) be such that 푓 ≥ 0, and 
consider 푣(푥, 푡)  = 푃 푓(푥). For every (푥, 푠), (푦, 푡)  ∈  푀 × (0,∞) with 푠 < 푡 one has with 
D as in (33) 

푣(푥, 푠)
푣(푦, 푡)   ≤

푡
푠 exp

푑휌̅1(푡 − 푠)

4 exp
푑 (푥,푦)
4(푡 − 푠) 

퐷

푑
+ 휏2

2휌̅1

휌2

+
휌̅1

3
(푡 + 푠) +

3휏2퐷

2(푡 − 푠)휌2푑
ln

푡
푠   

 Proof. We can assume 휌 ≤ 0. Otherwise, if 휌 > 0 then 퐶퐷(0, 휌 ,휅, 푑) anyhow also holds. 
We can rewrite the Li-Yau type inequality in the form 

Γ(ln푃 푓) +  휏 Γ (ln푃 푓) ≤  푎 (푢)
퐿푃 푓
푃 푓

 +  푏 (푢)                (36) 

 Where 

 푎 (푢) = 1 +
3휏
2휌2푢

퐷

푑
+

2휌1

3
푢  

and 

푏 (푢) = 1 +
3휏

2휌 푢
푑(휌̅ )

6
푢 +

휌̅ 퐷
2

+
퐷

2푑푢
. 

Let now 푥, 푦 ∈  푀 and let 휎: [0,푇]  →  푀 be a subunit curve for Γ + 휏 Γ  such that 휎(0)  =
 푥,휎(푇)  =  푦. For 푠 ≤  푢 ≤  푡, we denote  

훾(푢)  =  휎
푢 − 푠
푡 − 푠

 푇 . 

Let us now consider 
휑(푢) = ln푃 (푓)(훾(푢)). 

We compute 

 휑 (푢) =
1

푃 푓 훾(푢)
퐿푃 푓 훾(푢) +

푑
푑푢

(푃 푓(훾(푢))) . 

Since σ is subunit for Γ + 휏 Γ , we have  
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푑
푑푢

 (푃 푓(훾(푢))))  ≥ −   
푇

푡 − 푠
Γ(푃 푓)(훾(푢)) + 휏 Γ (푃 푓)(훾(푢)) 

 Now, for every λ > 0, we have 

 Γ(푃 푓)(훾(푢)) + 휏 Γ (푃 푓)(훾(푢))  ≤
1

2휆
 +

휆
2

(Γ(푃 푓) 훾(푢) + 휏 Γ (푃 푓) 훾(푢) ). 

Therefore we obtain 

 휑 (푢) ≥
1

푃 푓 훾(푢)
퐿푃 푓 훾(푢) −

푇
푡 − 푠

1
2휆

 +
휆
2

(Γ(푃푢푓) 훾(푢) + 휏2ΓZ(푃푢푓) 훾(푢)  

      ≥
1

푃 푓 훾(푢)
퐿푃 푓 훾(푢) −

푇
푡 − 푠

1
2휆

 +
휆
2

(푎휏(푢)(퐿푃푢푓) 훾(푢) (푃푢푓) 훾(푢) + 푏휏(푢)(푃푢푓)2 훾(푢)  

Choosing 휆 = ( )
( )푃푢 ( ( ))

  yields 

휑 (푢) ≥ −
푎 (푢)푇
4(푡 − 푠)   −

푏 (푢)
푎 (푢) . 

By integrating this inequality from 푠 푡표 푡 we infer 

ln푃 푓(푦) − ln푃 푓(푥) ≥ −
∫ 푎 (푢)푑푢

4(푡 − 푠) 푇   −
푏 (푢)
푎 (푢) 푑푢, 

Minimizing over sub-unit curves gives  

ln푃 푓(푦) − ln푃 푓(푥) ≥ −
∫ 푎 (푢)푑푢

4(푡 − 푠) 푑휏(푥,푦)   −
푏 (푢)
푎 (푢) 푑푢, 

which is the claimed result after tedious computations.  
Corollary (6.2.13) [290]. Let 푝(푥, 푦, 푡) be the heat kernel on 푀. For every 푥, 푦, 푧 ∈ 푀, every 
0 ≤  푠 ≤  푡 <  ∞ and every 휏 ≥ 0, one has  

푝(푥,푦, 푠) 
푝(푥,푧, 푡)   ≤

푡
푠 exp

푑휌̅1(푡 − 푠)

4 exp
푑 (푥, 푦)
4(푡 − 푠) 

퐷

푑
+ 휏2

2휌̅1

휌2

+
휌̅1

3
(푡 + 푠) +

3휏2퐷

2(푡 − 푠)휌2푑
ln

푡
푠  

The following proposition provides a pointwise estimate of the volume of the balls, for the 
proof see [282].  
Proposition (6.2.14) [290]. There exists a constant 퐶(푑,휅, 휌 ) > 0 such that, given 푅 >
0, for every 푥 ∈ 푀 and every 푅 ≥ 푅  one has  

μ(퐵(푥,푅)) ≤ 퐶(푑,휅, 휌 )
exp(2푑휌̅ 푅 )
푅 푝(푥, 푥,푅 )

푅  exp(2푑휌̅ 푅 ) . 

We now turn to the proof of Theorem (6.2.10). Though, some new ideas and more careful 
estimates are required, the proof mainly follows the lines of [269] where the results is proved 
when 휌 =  0. Therefore, several results are stated without proof and we only justify the 
statements involving these new ideas and careful estimates. The results given without 
justification may be proved as in [269] by keeping track of the term 휌̅  .  
Henceforth in the sequel we denote 
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 퐶 (푀)  =  퐶 (푀) ∩ 퐿 (푀). 
 For ε > 0 we also denote by 퐴  the set of functions 푓 ∈ 퐶 (푀) such that 

 푓 =  푔 +  휀, 
for some 휀 > 0 and some 푔 ∈ 퐶 (푀),푔 ≥  0, such that 푔, 훤(푔), Γ (푔) ∈ 퐿 (푀). As 
shown in[270], this set is stable under the action of Pt, i.e., if 푓 ∈ 퐴 , then 푃 푓 ∈ 퐴 . 
The first ingredient to prove the doubling property is the following reverse log-Sobolev 
inequality. 
Theorem (6.2.15) [290]. Let 휀 >  0 and 푓 ∈ 퐴 , then for every 퐶 ≥ 0, one has for 푥 ∈
푀, 푡 >  0,  
  푃 푓 (푥)Γ(ln푃 푓)(푥)  +  푡 푃 푓(푥)Γ (ln푃 푓)(푥) 

 ≤   
1
휌 1 +

2휅
휌 +

4퐶
푑  +  2푡휌̅ [푃  (푓 ln푓)(푥)− 푃 푓(푥) ln  푃 푓 (푥)]−

4퐶
푑휌

푡
1 + 훿   퐿푃 푓(푥)

+
2퐶
푑휌 ln 1 +

1
훿  푃 푓 (푥). 

This inequality admits the following corollary. 
 Proposition (6.2.16) [290]. Let 휀 > 0, 푓 ∈ 퐴  such that 휀 ≤  푓 ≤  1 and consider the 
function 푢(푥, 푡)  = −ln푃 푓 (푥). Then, 

 2푡푢 + 푢 +  1 +
퐷∗

2
 푢 /  +

퐷∗

2
 푢 / 1 + 푑휌1 푡 ≥ 0, 

 Where 

퐷∗ =  푑 1 +
2휅
휌2

. 

Introduce the function 푔: (0,∞)  →  (0,∞) defined by 

푔(푣) =
1

푢 +  1 + 퐷∗
2  푣1/3  + 퐷∗

2  푣−1/3

 

Note that g verifies 

lim
→

퐷∗

2
 푣−1/3 푔(푣)  =  1,     lim

→
 푣푔(푣)  =  1.  

Therefore, we have 푔 ∈ 퐿  (0,퐴) for every 퐴 > 0, but 푔퐿 (0, +∞). If we set 

 퐺(푢)  =  푔  (푣)푑푣, 

 then 퐺′(푢) = 푔(푢) > 0, and thus 퐺: (0,∞)  →  (0,∞) is invertible. Furthermore, we can 
write 
                               퐺(푢) = ln(푢) +  퐶 +  푅(푢),   푢 >  0                                              (37)  
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 where 퐶  is a constant and 푅: (0, +∞)  →  푅 a function such that lim
→

푅(푢) = 0. Proposition 

(6.2.16) can be re-written in terms of 푔 as follows 

2푡푢 +
1 + 푡푑휌1

푔(푢)   ≥ 0. 

Since 푔(푢)  =  퐺′(푢), we conclude 

                                         ( ) =  퐺′(푢)푢 ≥ −  −  휌1

푡
                                        (38) 

Integrating this differential inequality leads to the following result: 
Corollary (6.2.17) [290]. Let 푓 ∈ 퐿 (푀), 0 ≤ 푓 ≤ 1, then for any 푥 ∈ 푀 and 0 < 푠 < 푡, 

퐺 − ln푃 푓(푥) ≥ 퐺 − ln푃 푓(푥) −
1
2

ln
푡
푠
− 푑휌1(√푡 − √푠). 

The second ingredient in our proof is the following small time asymptotics.  
Proposition (6.2.18) [290]. Given 푥 ∈ 푀 and 푟 > 0, let 푓 = 1 ( , ) . One has, 

lim
푠→0+

inf  (−푠 ln푃 푓(푥)) ≥
푟
4

 

We are now ready for the following estimate.  
Proposition (6.2.19) [290]. Let 푥 ∈ 푀 and 푟 > 0 be arbitrarily fixed. There exists a constant 
퐶∗ ∈ 푅 independent of x and r, such that for any 푡 > 0, 

퐺 − ln푃 1 ( , ) (푥) ≥ ln
푟
√푡

+ 퐶∗ − 푑휌1푡 

Proof. Let 푓 = 1 ( , ) . Corollary (6.2.17) and (38) give 

퐺 − ln푃 푓(푥) ≥ 퐺 − ln푃 푓(푥) −
1
2

ln√푡 − 푑휌1(√푡 − √푠) 

= ln −푠 ln푃 푓(푥) + 퐶 + 푅 − ln푃 푓(푥) − ln√푡 − 푑휌1푡 + 푑휌1푠. 

 Since lim
→

(− ln푃푠푓(푥)) = ∞, we infer lim
→

푅 − ln푃 푓(푥) = 0. Letting s→0+, 

Proposition (6.2.18) yields we obtain 

 퐺 − ln푃푠푓(푥) ≥ ln
푟
2

 – ln√푡 + 퐶0 − 푑휌̅1푡  =  ln
푟
√푡

− 푑휌̅1푡 + 퐶∗, 

 with 퐶∗ = 퐶0 − ln 2. 
The following uniform lower bound on the heat content of balls, which is already interesting 
in itself, will imply the volume doubling property. 
Theorem (6.2.20) [290]. Set 퐶∗∗ =  퐺(√ln 2) − 퐶∗ and for 푅 ≥ 0, define 푈(푅) =
Ψ (퐶∗∗) where Ψ  is the inverse function of 

Ψ (푢) = ln
1
푢

− 푑휌̅1푡 푅푢, 푢 ∈ (0,∞). 
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 Then for every 푥 ∈ 푀 and every function 퐴: [0, +∞)  →  (0,∞) such that 퐴(푅) ≤ 푈(푅), 
we have for 푟 > 0, 

 푃 ( ) 1 ( , ) (푥) ≥
1
2

 . 

 Proof. By the stochastic completeness of 푀 
푃 ( ) 1 ( , ) (푥) =  1 − 푃 ( ) 1 ( , ) (푥) 

The desired estimate is equivalent to prove 

 √ln 2  ≤ −푃 ( ) 1 ( , ) (푥) 

or equivalently, 

퐺(√ln 2 ≤  퐺 −푃 ( ) 1 ( , ) (푥) .                           (39) 

At this point Proposition (6.2.19) gives 

    퐺 −푃 ( ) 1 ( , ) (푥) ≥ ln
( )

 +  퐶∗  − 푑휌̅ 퐴(푟)푟  

                                                     ≥ ln ( ) +  퐶∗ − 푑휌̅ 푟푈(푟)  =  퐺(√ln 2). 

We now give some estimates for the function 푈(푅) appearing in Theorem (6.2.20).  
Proposition (6.2.21) [290]. The function 푈 is non-increasing and satisfies, for 푅 ≥ 0,  

푈(푅) ≥
1

푑휌̅  푅 +  푒 ∗∗   . 

Proof. First notice that 푈(0) = 푒 ∗∗and U is positive. Since Ψ (푈(푅)) is constant, taking 
derivative yields:  

푈 (푅) =  −  
푑휌̅  푈(푅)

푑휌̅  푅 + 1
푈(푅)

  ≥ − 푑휌̅ 푈(푅) . 

Therefore 푈 is non-increasing and integrating the above inequality we infer that 

푈(푅)  ≥
1

푑휌1 푅 + 푈−1(0)
 

Henceforth, in the sequel, for 푟 ≥  0, we set 

                        퐴(푟) = min(푈(푟) , 1) ≥ min
   

∗∗ , 1 .                              (40)  

There exists a constant 퐶 >  0 such that, for all 푅 ≥  0, 
퐶

1 + 푑휌̅ 푅
 ≤  퐴(푅) ≤  1.                                                 (41) 
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 A first consequence of the uniform estimate we obtained are the following lower bounds 
for the heat kernel. Observe, and this is another main novelty with respect to [269] that these 
bounds are written with respect to the distance 푑  (we recall that 푑  is the sub-Riemannian 
distance). 
Theorem (6.2.22) [290]. Set 퐶 =  . For 푡 > 0 and 푥 ∈ 푀, then 

 푝(푥, 푥, 푡) ≥
퐴 푡

2 exp −푑휌̅ 푡
4

4μ 퐵 푥, 푡
2

≥  
퐶

4μ 퐵 푥, 푡
2

 
exp −푑휌̅ 푡

4

1 + 푑휌̅ 푡
2

.                        (42) 

  
As a consequence, for 푥, 푦 ∈ 푀, 푡 >  0 and 휏 ≥ 0,  

푝(푥, 푥, 푡) ≥
퐴 푡

2 2 exp −푑휌̅ 푡
4

4μ 퐵 푥, 푡
2

exp −
푑 (푥,푦)

2푡
퐷
푑

+
휌̅
2
푡 +

2휏
푡

휌̅
휌

+
3퐷

2휌 d
ln(2)  

≥
2 퐶

4μ 퐵 푥, 푡
2

exp −푑휌̅ 푡
4

1 +
푑휌1푡

2

퐷
2

exp −
푑 (푦,푥)

2푡
퐷
푑

+
휌̅
2
푡 +

2휏
푡

휌̅
휌

+
3퐷

2휌 d
ln(2) .         (43) 

Proof. With the same notations as in Theorem (6.2.20), for 푅 > 0,  

푃 ( ) (1 ( , ))(푥) ≥
1
2

 .      

Thus, 
                         ≤ 푃 ( ) (1 ( , ))(푥)  

                             = ∫  푝 (푥,푦,퐴(푅)푅 )(1 ( , )푑μ(푦)  

                             ≤ ∫ 푝 (푥, 푦,퐴(푅)푅 )2푑μ(푦)∫ 1 ( , )푑μ(푦) 
                              =  푝(푥,푥, 2퐴(푅)푅 )μ(퐵(푥,푅)). 
Now since 0 < 퐴(푅) ≤ 1, Harnack inequality in Corollary (6.2.13) gives 

푝(푥, 푥, 2퐴(푅)푅 ≤  푝(푥, 푥, 2푅 ) 퐴(푅) exp
1
2
푑휌1푅 .                 (44) 

Therefore, we proved  

푝(푥, 푥, 2푅 ) ≥  
퐴(푅) exp − 1

2 푑휌1푅
4 μ(퐵(푥,푅))

 .                           (45)  

The first point follows by setting 푡 =  2푅 . 
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 For the second point, we recall that Harnack inequality with the distance dτ reads, for 푡 >
0, 푠 = ,  

푃 푥, 푥,
푡
2

≤  푝(푥,푦, 푡)2
퐷
2 exp

푑휌1푡

8
exp −

푑휏(푦, 푥)2

2푡

퐷

푑
+
휌1

2
푡 +

2휏2

푡

휌1

휌2

+
3퐷

2휌2d
ln(2)  

Using the first point the conclusion follows directly.  
Theorem (6.2.23) [290]. There exist constants 퐶 >  0 and 퐶  > 0 depending only on 푑, 휅 
and 휌  such that for all 푥 ∈ 푀 and all 푅 > 0, we have 
                              μ 퐵(푥, 2푅) ≤ 퐶 exp 퐶 휌1푅 μ(퐵(푥,푅))                                      (46) 
Proof. Due to Proposition (6.2.14), we have for R > 0 

μ(퐵(푥, 2푅)) ≤ 퐶(푑, 휅,휌 )2 / exp 12휌1푅
푝(푥, 푥, 2푅 )

 

Combining this inequality with the lower bound for the heat kernel (45) gives the desired 
result: 

μ(퐵(푥, 2푅))  ≤ 퐶(푑, 휅, 휌 )2  exp
25
2
휌1푅 퐴(푅) / μ(퐵(푥,푅)). 

       We prove a global version of the celebrated Nagel-Stein-Wainger estimate, Theorem 
(6.2.1) . We need the following optimal upper bound for the heat kernel 푝(푥, 푦, 푡). 
Theorem (6.2.24) [290]. For all 휀 > 0, there exist some constants 퐶 ,퐶 >  0, depending 
only on 푑, 휌 , 휅 푎푛푑 휀 >  0, such that for 푡 > 0 and 푥, 푦 ∈ 푀, one has  

푝(푥,푦, 푡) ≤
퐶 (휀)

μ(퐵(푥,√푡)) / μ(퐵(푦,√푡)) /
 푒푥푝 퐶 (휀)휌1푡 exp −

푑 (푥, 푦)
(4 +  휀)푡

 .     (47) 

Proof. This proof follows the lines in Cao-Yau [274] and Baudoin-Garofalo [270]. Let α > 
0, then by the Harnack inequality in Corollary (6.2.13) with τ = 0, 

푝(푥, 푦, 푡) ≤
(1 + 훼) exp 퐷

2훼푑
μ(퐵(푦,√푡))

  exp 휌̅1푡
2 + 훼

6훼 +
푑훼
2 푝

,√
(푥, 푧, (1 + 훼)푡) 푑μ(푧) 

= (
(1 + 훼)퐷 exp

퐷
2훼푑

μ 퐵 푦,√푡
  exp 휌 ̅

1
푡

2 + 훼

6훼
+
푑훼

2
 푃( ) 푝(푥,·, (1 + 훼)푡)1 ( ,√ ) (푥). 

Applying the Harnack inequality in Theorem (6.2.12) once again, we have 
 푃( ) 푝(푥,·, (1 + 훼)푡)1 ( ,√ ) (푥)  =  푃( ) (퐹 )(푥)  

≤
(1 + 훼) exp 퐷

2훼(훼 + 1)푑
μ(퐵(푥,√푡))

  exp 휌̅ 푡
2 + 훼

6훼
+
푑훼(훼 + 1)

2
푃( )

,√
(퐹 )(푧) 푑μ(푧) 

with Ft(.) = 푝(푥,·, (1 + 훼)푡)1 ,√ (∙).  
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By using now an argument of the proof of Theorem 8.1 in [270] and the fact that for 푧 ∈
퐵(푦,√푡),  

푑 (푥, 푧) ≥
푑 (푥,푦)

1 + 훼
 –
푡
훼

 , 

we have for 0 < (1 + 훼)2푡 <  푇,  

푃( )
,√

(퐹 )(푧) 푑μ(푧) 

≤ exp
푡

2(푇 − (1 + 훼)2푡)
푒 ((1+훼)2 , )푃( ) (퐹 )(푧) 푑μ(푧) 

= exp
푡

2(푇 − (1 + 훼)2푡)
푒 ( , )(퐹 )(푧) 푑μ(푧) 

≤ exp
푡

2(푇 − (1 + 훼)2푡)
exp −

푑 (푥, 푧)
2푇퐵 푥,√푡

푃(1+훼)푡(푥, 푧)2푑μ(푧) 

≤ exp
푡

2(푇 − (1 + 훼)2푡)
+

푡
2αT

−
푑 (푥, 푧)

2(1 + 훼)푇
푃(1+훼)푡(푥, 푧)2푑μ(푧)

퐵 푥,√푡
 

= exp
푡

2(푇 − (1 + 훼)2푡)
+

푡
2αT

−
푑 (푥, 푧)

2(1 + 훼)푇
푃(1+훼)푡(퐹 )(푥) 

  where for 0 ≤  푠 < T and 푧 ∈ 푀, the function g is defined by 

 푔(푠, 푧) =  −
푑 (푥, 푧)
2(푇 − 푠)

 . 

 Finally, 

푝(푥, 푦, 푡)  ≤
(1 + 훼) exp 퐷(훼 + 2)

4훼(훼 + 1)푑
μ(퐵(푥,√푡)) / μ(퐵(푦,√푡)) /

  exp 휌̅ (2 + 훼)
1

6훼
+
푑훼
4

 

exp
푡

4(푇 − (1 + 훼)2푡)
+

푡
4αT

−
푑 (푥,푦)

4(1 + 훼)푇
. 

 Hence the result follows by choosing T = (1 + α)3t.  
Theorem (6.2.25) [290]. There exists a constant 퐶 > 0 which depends only on 푑,휅 and 휌  
such that for all 푥 푎푛푑 푦 푖푛 푀 and all 0 < 휏 ≤ 1,  

푑(푥,푦) ≤ 퐶 1 + 휌̅ max 푑 (푥, 푦),푑 (푥,푦) . 
 Proof. Using the symmetry of the heat kernel, combining the lower estimate (43) for the 
heat kernel with the distance 푑  and the upper estimate (47) for the sub-elliptic distance d 
gives 



193 
 

퐴 푡
2 2 exp −푑휌̅ 푡

4

4μ(퐵(푥,√푡))
1/2
4μ(퐵(푦,√푡))

1/2 exp −
푑 (푥,푦)

2푡
퐷
푑

+
휌̅
2
푡 +

2휏
푡

휌̅
휌

+
3퐷

2휌 d
ln(2)  

≤
퐶 (휀)

μ(퐵(푥,√푡)) / μ(퐵(푦,√푡)) /
 푒푥푝 퐶 (휀)휌1푡 exp −

푑 (푥,푦)
(4 +  휀)푡

 

Therefore we have  

퐴
푡
2

2 exp −
푑휌̅ 푡

4
exp −

푑 (푥, 푦)
2푡

퐷
푑

+
휌̅
2
푡 +

2휏
푡

휌̅
휌

+
3퐷

2휌 d
ln(2)  

≤ 퐶 (휀) exp(퐶 (휀)휌푡) exp −
푑2(푥,푦)

(4 +  휀)푡
. 

Thus for all t > 0: 

 0 ≤ −
퐷
2

ln퐴
√푡
2

+
퐷
2

+  2 ln 2 + ln 퐶5(휀) + 퐶6(휀)(1 + 휌1)푡 +
푑휌1푡

4
 

−
푑 (푥, 푦)
(4 + 휀)푡

+
푑휏(푥, 푦)2

2푡

퐷

푑
+
휌1

2
푡 +

2휏2

푡

휌1

휌2
+

3퐷

2휌2d
ln(2) . 

Since − ln퐴 √ ≤ ln 1 + 휌1 − ln퐶 ≤ 휌1 − ln퐶 , fixing ε = 1, there exist some 

constants E1,E2 which only depend on d,κ and 휌  such that for all 푡 > 0, we have for all 
푥,푦 ∈ 푀, 푡 >  0 and τ > 0 

 0 ≤  퐸 + 퐸 휌1푡 −
푑2(푥, 푦)
(4 + 휀)푡

+  
푑휏(푥, 푦)2

2푡

퐷

푑
+
휌1

2
푡 +

2휏2

푡

휌1

휌2

+
3퐷

2휌2d
ln(2) . 

Therefore, for some positive constants 퐴 , 1 ≤  푖 ≤  3 which only depend on d,κ and 휌 ,  

푑(푥,푦) ≤  퐴 (1 + 휌̅ 푡)푡 + 퐴 (1 + 휌̅ 푡)푑 (푥, 푦) + 퐴 (1 + 휌̅ ) ( , )  .  
Since 휏 ≤ 1, if 푑 (푥, 푦)≤ 1, choosing 푡 =  휏푑 (푥, 푦)  ≤  1 yields  

푑(푥, 푦) ≤ (1 + 휌̅ 푡)(퐴 + 퐴 )휏푑 (푥,푦)  +  퐴 푑 (푥,푦) ≤  (퐴 + 퐴 + 퐴 )(1 + 휌̅ 푡)푑 (푥, 푦). 
 If 푑 (푥, 푦) ≥ 1, choosing 푡 = 휏 ≤ 1, we infer  

푑(푥,푦) ≤ (1 + 휌̅ 푡)퐴 휏 + 퐴 푑 (푥,푦) + 퐴 휏푑 (푥,푦) ≤  (퐴 + 퐴 + 퐴 )(1 + 휌̅ 푡)푑 (푥,푦) . 
           We investigate some consequences of the curvature-dimension inequality. We show 
that if an operator L is an Hormander type operator and if it satisfies some curvature-
dimension inequality 퐶퐷(휌 , 휌 , 휅, 푑), then it is necessarly a rank 2 operator. The proof is 
based on the distance comparison theorem (Theorem 6.2.25). Actually, only a local distance 
comparison is needed. The notions of Hormander type operator and rank 2 operator are 
explained below. 
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First, the comparison principle of Fefferman and Phong between sub-elliptic and elliptic 
balls (see [277]) implies the following local sub-elliptic estimate: 
Theorem (6.2.26) [290]. Assume the operator L satisfies the condition 퐶퐷(휌 , 휌 , 휅, 푑)  for 
some 휌 ∈ R, 휌 > 0,휅 ≥ 0, and 푑 ≥ 2. Assume moreover that the metric associated to 푑  is 
a Riemannian metric 푔  on 푀 for some τ. Let Ω be a bounded domain in 푀 and a chart 
휑:푈 ⊂ 푅 →  Ω. Then there exist some constants 푐 = 푐(Ω,휑)  >  0 and 퐶 = 퐶(Ω,휑)  >
 0 such that 

  ‖퐿푢‖ +  퐶‖푢‖ ≥  푐‖푢‖( ),푢 ∈ 퐶 휑(푈) ,                        (48) 
where ‖∙‖ denotes the usual L2(µ) norm in Ω and where ‖∙‖( ) is the standard Sobolev norm. 

Proof. By Theorem (6.2.25), there exists a constant A such that 푑(푥, 푦)  ≤  퐴 푑 (푥,푦) for 
all 푥,푦 ∈ Ω. Therefore, 퐵 (푥,푅) ⊂ 퐵(푥,퐴√푅). Since Ω is a compact set, the metric 푔  is 
comparable with geucl the metric obtained from the Euclidean one in U by the map φ. If we 
pull back the result in U, we thus have, 퐵 (푥,푅) ⊂ 퐵(푥,퐴 √푅) for some constant 퐴′ >
0.  
We call an H¨ormander type operator an operator L which satisfies the general assumptions 
above and which can be written locally as 퐿 = ∑ 푋∗푋  for some 퐶  vector fields 푋 .  
We say it is an operator of rank k if the vector fields and their commutators up to order k: 

푋 , . . . ,푋 , [푋 ,푋 ], . . . , [푋 , [푋 , [. . . ,푋 ]]. . . ], 푖푗 =  1. . . 푟  
span the tangent space in each point of 푀. 
The following theorem is a direct consequence of an important result of Rothschild and 
Stein [288] and of the local subelliptic estimate (48). 
Theorem (6.2.27) [290]. In addition of the hypothesis of Theorem (6.2.26), assume that the 
operator L is an H¨ormander type operator. Then L is a rank 2 operator. 
     The goal is to establish a generalisation Gromov’s precompactness theorem for our class 
of subriemannian manifolds. Initially, the Gromov’s precompactness theorem states that the 
space of Riemannian manifolds with Ricci curvature bounded below by k, dimension 
bounded by 푁 and diameter less 퐷 is precompact for the Gromov-Hausdorff convergence. 
Moreover the result can be extended for the (pointed) measured Gromov-Hausdorff 
convergence by endowing the Riemannian manifolds with their Riemannian volume. In our 
generality, contrary to the Riemannian case, the measure µ is only defined up to a positive 
constant. Here, we need to normalize the measure. Let 푀 be a compact smooth manifold 
and µ be a smooth measure on 푀 such that there exists a smooth second order sub-elliptic 
differential operator 퐿 which satisfies the general assumptions described in above. Let us 
assume that the measure satisfies the normalisation property μ(푀) = 1. We say the compact 
metric measured space 푀 = (푀, μ) belongs to 푀 (휌 , 휌 ,휅, 푑),푅 > 0 if moreover 퐿 
satisfies CD(휌 , 휌 , 휅, 푑) and the (sub-Riemannian) diameter of 푀 is bounded above by 푅.  
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Theorem (6.2.28) [290]. Let 휌 ∈  푅, 휌  > 0,휅 ≥ 0, and 푑 ≥ 2,푅 > 0. The set of metric 
measured spaces 푀 (휌 ,휌 , 휅,푑) is precompact for the measured Gromov-Hausdorff 
convergence.  
Proof. The proof is an easy consequence of Theorem 27.31  in [289] and of the doubling 
property of Theorem (6.2.23).  
 
 
 
Corollary (6.2.29) [291]. (Harnack inequality). Let 푓퐶 (푀) be such that 푓 ≥ 0, and 
consider 푣 (푥 , 1 − 휖)  = 푃 푓(푥 ). For every (푥 , 푠), (푥 + 휖, 1 − 휖)  ∈  푀 × (0,∞) 
with 푠 < 1 − 휖 one has with 퐷  

푣 (푥 , 푠)
푣 (푥 + 휖, 1 − 휖)   

≤
1 − 휖
푠 exp

(1 + 휖)휌̅ ((1− 휖) − 푠)
4 exp

푑 (푥 ,푥 + 휖)
4((1− 휖) − 푠) 

퐷
(1 + 휖)

+ (1 + 휖)
2휌̅
휌 +

휌̅
3

((1− 휖) + 푠) +
3(1 − 휖) 퐷

2((1− 휖) − 푠)휌 (1 + 휖) ln
1 − 휖
푠  (48)  

 Proof. We can assume 휌 ≤ 0. Otherwise, if 휌 > 0 then 퐶 퐷(0, 휌 , 1 + 휖, 1 + 휖) any 
how also holds. We can rewrite the Li-Yau type inequality in the form 

Γ ln푃 푓 + (1 + 휖) Γ ln푃 푓 ≤  푎 (푢 )
퐿푃 푓
푃 푓

 +  푏 (푢 )                (50) 

 Where 

 푎 (푢 ) = 1 +
3(1 + 휖)
2휌 푢

퐷
1 + 휖

+
2휌̅

3
푢  

and 

푏 (푢 ) = 1 +
3(1 + 휖)
2휌 푢

(1 + 휖)(휌̅ )
6

푢 +
휌̅ 퐷

2
+

퐷
2(1 + 휖)푢

. 

Let now 푥 , (푥 + 휖) ∈  푀 and let 휎: [0,푇]  →  푀 be a subunit curve for Γ + (1 + 휖) Γ  
such that 휎(0)  =  푥 ,휎(푇)  =  푥 + 휖. For 푠 ≤ 푢 ≤  1 − 휖, we denote  

훾(푢 )  =  휎
푢 − 푠

(1 + 휖) − 푠
 푇 . 

Let us now consider 
휑(푢 ) = ln푃 (푓)(훾(푢 )). 

We compute 
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 휑 (푢 ) =
1

푃 푓 훾(푢 )
퐿푃 푓 훾(푢 ) +

푑
푑푢

(푃 푓(훾(푢 ))) . 

Since σ is subunit for Γ + (1 + 휖) Γ , we have  
푑

푑푢
 (푃 푓(훾(푢 )))  

≥ −   
푇

(1 − 휖) − 푠
Γ(푃 푓)(훾(푢 )) + (1 + 휖) Γ (푃 푓)(훾(푢 )) 

 Now, for every 휖 ≥  0, we have 

 Γ(푃 푓)(훾(푢 )) + (1 + 휖) Γ (푃 푓)(훾(푢 ))  

≤
1 + (1 + 휖)

2(1 + 휖)
 Γ 푃 푓 훾(푢 ) + (1 + 휖) Γ 푃 푓 훾(푢 ) . 

Therefore we obtain  

 휑 (푢 ) ≥
1

푢 푓 훾(푢 )
퐿푃 푓 훾(푢 )

−
푇

(1 − 휖) − 푠
1 + (1 + 휖)

2(1 + 휖) Γ 푃 푓 훾(푢 ) + (1 − 휖) Γ 푃 푓 훾(푢 )  

      ≥
1

푃 푓 훾(푢 )
퐿푃 푓 훾(푢 )

−
푇

(1 − 휖) − 푠
1 + (1 + 휖)

2(1 + 휖) 푎 (푢 ) 퐿푃 푓 훾(푢 ) 푃 푓 훾(푢 )

+ 푏 (푢 ) 푃 푓 훾(푢 )  

Choosing (1 + 휖)  = ( )
( ) ( ( ))

  yields 

휑 (푢 ) ≥ −
푎 (푢 )푇

4((1 + 휖) − 푠)   −
푏 (푢 )
푎 (푢 ) . 

By integrating this inequality from 푠 푡표 1 + 휖 we infer 
ln푃 푓(푥 + 휖) − ln푃 푓(푥 )

≥ −
∫ 푎 ∓ (푢 )푑푢

4((1 + 휖) − 푠) 푇   −
푏 (푢 )
푎 (푢 )푑푢 , 

Minimizing over sub-unit curves gives  
ln푃 푓(푥 + 휖) − ln푃 푓(푥 )

≥ −
∫ 푎 (푢 )푑푢

4((1 + 휖) − 푠) 푑 (푥 , 푥 + 휖)   −
푏 (푢 )
푎 (푢 )푑푢 , 
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which is the claimed result after tedious computations.  
Corollary (6.2.30) [291]. Let 푥 ∈ 푀 and 휖 > −1 be arbitrarily fixed. There exists a 
constant 퐶∗ ∈ 푅 independent of 푥  and (1 + 휖), such that for any 휖 > 0, 

퐺 − ln푃 1 ( , ) (푥 ) ≥ ln√1 + 휖 + 퐶∗ − 휌̅ (1 + 휖)  

Proof. Let 푓 = 1 ( , ) .  

퐺 − ln푃 푓(푥 )

≥ 퐺 − ln푃 푓(푥 ) + ln √푠 − ln√1 + 휖 − (1 + 휖)휌̅ (√1 + 휖 − √푠) 

= ln −푠 ln푃 푓(푥 ) + 퐶 + 푅 − ln푃 푓(푥 ) − ln√1 + 휖 − 휌̅ (1 + 휖)

+ (1 + 휖)휌̅ 푠. 
 Since lim

→
(− ln푃 푓(푥 )) = ∞, we infer lim

→
푅 − ln푃 푓(푥 ) = 0. Letting s→0+, yields 

we obtain 

 퐺 − ln푃 푓(푥 ) ≥ ln
1 + 휖

2
 – ln (1 + 휖) + 퐶 − 휌̅ (1 + 휖)  

=  ln√1 + 휖 − 휌̅ (1 + 휖) + 퐶∗ , 
 with 퐶∗ = 퐶 − ln 2. 
The following uniform lower bound on the heat content of balls, which is already interesting 
in itself, will imply the volume doubling property. 
Corollary (6.2.31) [291]. Set 퐶∗∗ =  퐺(√ln 2) − 퐶∗  and for 휖 ≥ 0, define 푈 (1 +
휖) = Ψ (퐶∗∗ ) where Ψ  is the inverse function of 

Ψ (푢 ) = ln
1

푢
− (1 + 휖)휌̅  (1 + 휖)푢 , 푢 ∈ (0,∞). 

 Then for every 푥 ∈ 푀 and every function 퐴 : [0, +∞)  →  (0,∞) such that 
퐴 (1 + 휖) ≤ 푈 (1 + 휖), we have for 휖 > −1, 

 푃 ( ) ( ) 1 ( , ) (푥 ) ≥
1
2

 . 

 Proof. By the stochastic completeness of 푀 
푃 ( ) ( ) 1 ( , ) (푥 ) =  1 − 푃 ( ) ( ) 1 ( , ) (푥 ) 

The desired estimate is equivalent to prove 

 √ln 2  ≤ −ln 푃 ( ) ( ) 1 ( , ) (푥 ) 

or equivalently, 

퐺(√ln 2 ≤  퐺 −s 푃 ( ) ( ) 1 ( , ) (푥 ) .                           (51) 

At this point Corollary (6.2.31) gives 
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    퐺 −푃 ( ) ( ) 1 ( , ) (푥 ) ≥ ln
( )

 +  퐶∗  −

(1 + 휖)휌̅ 퐴 (1 + 휖) (1 + 휖)  

                                                     ≥ ln ( ) +  퐶∗ − (1 + 휖)휌̅ (1 + 휖)푈 (1 +

휖)  =  퐺(√ln 2). 
We now give some estimates for the function 푈 (1 + 휖) appearing in Corollary (6.2.30). 
Corollary (6.2.32) [291]. The function 푈  is non-increasing and satisfies, for 휖 ≥ 0,  

푈 (1 + 휖) ≥
1

(1 + 휖)휌̅  (1 + 휖)  +  푒 ∗∗   . 

Proof. First notice that 푈 (0) = 푒 ∗∗ and 푈  is positive. Since Ψ( )(푈 (1 + 휖)) 
is constant, taking derivative yields:  

푈 (1 + 휖) =  −  
(1 + 휖)휌̅  푈 (1 + 휖)

(1 + 휖)휌̅  (1 + 휖) + 1
푈 (1 + 휖)

  ≥ − (1 + 휖)휌̅ 푈 (1 + 휖) . 

Therefore 푈  is non-increasing and integrating the above inequality we infer that 

푈 (1 + 휖)  ≥
1

(1 + 휖)휌̅  (1 + 휖) + 푈 (0)
 

Henceforth, in the sequel, for 휖 ≥  0, we set 
                                                              

 퐴 (1 + 휖) = min(푈 (1 + 휖) , 1) ≥ min
1

(1 + 휖)휌̅  (1 + 휖)  +  푒 ∗∗ , 1 .          (52)  

There exists a constant 퐶 >  0 such that, for all 휖 ≥  0, 
퐶

1 + 휌̅ (1 + 휖)
 ≤  퐴 (1 + 휖) ≤  1.                                                 (53) 

 A first consequence of the uniform estimate we obtained are the following lower bounds 
for the heat kernel. Observe, and this is another main novelty with respect that these bounds 
are written with respect to the distance 푑  (we recall that 푑  is the sub-Riemannian 
distance). 
Corollary (6.2.33) [291]. Set 퐶 =  . For 휖 > 0 and 푥 ∈ 푀, then 
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 푝(푥 ,푥 , 1 + 휖) ≥
퐴 1 + 휖

2 exp − 휌̅ (1 + 휖)
4

4μ 퐵 푥 , 1 + 휖
2

≥  
퐶

4μ 퐵 푥 , 1 + 휖
2

 
exp − 휌̅ (1 + 휖)

4

1 + 휌̅ (1 + 휖)
2

.  (54) 

 As a consequence, for 푥 , (푥 + 휖) ∈ 푀, 휖 > 0 and 휖 ≥ −1,  
 

 푝(푥 , 푥 + 휖, 1 + 휖) ≥ 
( )

,
exp − ( , )

( ) ( )
+ (1 + 휖) + 2(1 + 휖) +

( )
ln(2)   

          

≥
2 퐶

4μ 퐵 푥 , 1 + 휖
2

exp − 휌̅ (1 + 휖)
4

1 + 휌̅ (1 + 휖)
2

exp −
푑 (푥 + 휖, 푥 )

2(1 + 휖)
퐷

1 + 휖
+
휌̅
2

(1 + 휖)

+ 2(1

+ 휖)
휌̅
휌

+
3퐷

2휌 (1 + 휖)
ln(2) .                                                                (55) 

Proof. With the same notations, for 휖 ≥ 0,  

푃 (( ))( ) (1 ( ,( )))(푥 ) ≥
1
2

 .      

Thus, 
       ≤ 푃 (( ))( ) (1 ( ,( )))(푥 )  

         = ∫  푝 (푥 , 푥 + 휖,퐴 (1 + 휖)(1 + 휖) )(1 ( ,( ))푑μ(푥 + 휖)  

         ≤ ∫ 푝 (푥 , 푥 + 휖,퐴 ((1 + 휖))(1 + 휖) 2푑μ(푥 + 휖)∫ 1 ( ,( ))푑μ(푥 + 휖) 
                              =  푝(푥 ,푥 , 2퐴 ((1 + 휖))(1 + 휖) )μ(퐵 (푥 , 1 + 휖)). 
Now since 0 < 퐴 (1 + 휖) ≤ 1, Harnack inequality in Corollary 1 gives 

푝(푥 ,푥 , 2퐴 ((1 + 휖))(1 + 휖) ≤  푝(푥 ,푥 , 2(1 + 휖) ) 퐴 (1 + 휖) exp
1
2 휌̅

(1 + 휖) .     (56) 

Therefore, we proved  
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푝(푥 , 푥 , 2(1 + 휖) ) ≥  
퐴 (1 + 휖) exp − 1

2 휌̅ (1 + 휖)

4 μ(퐵 (푥 , (1 + 휖))
 .                           (57)  

The first point follows by setting 휖 =  −1/2 . 
 For the second point, we recall that Harnack inequality with the distance 푑  reads, for 
휖 > −1, 푠 = ,  

푃 푥 , 푥 ,
1 + 휖

2
≤  

푝(푥 ,푥 + 휖, 1 + 휖)2 exp
휌̅ (1 + 휖)

8 exp −
푑 (푥 + 휖, 푥 )

2(1 + 휖)
퐷

1 + 휖 +
휌̅
2 (1 + 휖) + 2(1

+ 휖)
휌̅
휌 +

3퐷
2휌 (1 + 휖) ln(2)  

Using the first point the conclusion follows directly. 
Corollary (6.2.34) [291]. There exist constants 퐶 >  0 and 퐶  > 0 depending only on 
1+휖 and 휌  such that for all 푥 ∈ 푀 and all 휖 ≥ 0, we have 
                                    μ 퐵 (푥 , 2(1 + 휖)) ≤ 퐶 exp(퐶 휌̅ (1 +
휖) ) μ(퐵 (푥 , 1 + 휖))                      (58) 
Proof. We have for 휖 ≥ 0 

μ(퐵 (푥 , 2(1 + 휖))) ≤ 퐶 (1 + 휖, 1 + 휖, 휌 )2 / exp(12휌̅ (1 + 휖) )
푝(푥 , 푥 , 2(1 + 휖) )

 

Combining this inequality with the lower bound for the heat kernel gives the desired result: 
μ(퐵 (푥 , 2(1 + 휖)))  

≤ 퐶 (1 + 휖, 1 + 휖, 휌 )2  exp
25
2 휌̅ (1 + 휖) 퐴 (1 + 휖) / μ(퐵 (푥 , 1

+ 휖)). 
Corollary (6.2.35) [291]. For all 휖 > 0, there exist some constants 퐶 ,퐶 >  0, 
depending only on 1 + 휖,휌 , 1 + 휖 푎푛푑 휀 >  0, such that for 휖 > −1 and 푥 , (푥 + 휖) ∈
푀, one has  

 

푝(푥 ,푥 + 휖, 1 + 휖) ≤
퐶 (휀)

μ(퐵 (푥 ,√1 + 휖)) / μ(퐵 (푥 + 휖,√1 + 휖)) /
 푒푥푝(퐶 (휀)휌̅ (1 + 휖)) exp −

푑 (푥 ,푥 + 휖)
(4 +  휀)(1 + 휖) (59) 

 

Proof. This proof follows the lines in Cao-Yau [182] and Baudoin-Garofalo [178]. Let 휖 > 
0, then by the Harnack inequality with 휖 = -1, 

푝(푥 , 푥 + 휖, 1 + 휖)  
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≤
(2 + 휖) exp 퐷

2(1 + 휖)
μ(퐵 (푥 + 휖,√1 + 휖))

  exp 휌̅ (1 + 휖)
(3 + 휖)

6(1 + 휖)
+

(1 + 휖)
2

푝
,√

(푥 , 푥

+ 2휖, (2 + 휖)(1 + 휖)) 푑μ(푥 + 2휖) 

=
(2 + 휖) exp 퐷

2(1 + 휖)
μ 퐵 푥 + 휖,√1 + 휖

  exp 휌̅ (1 + 휖)
3 + 휖

6(1 + 휖)
+

(1 + 휖)
2

 푃( )( ) 푝(푥 ,

·, (2 + 휖)(1 + 휖))1 ( ,√ ) (푥 ). 
Applying the Harnack inequality in Corollary (6.2.29) once again, we have 

 푃( )( ) 푝( )( )(푥 ,·)1 ( ,√ ) (푥 )  =  푃( )( )(퐹 )(푥 )  

≤
(2 + 휖) exp 퐷

2(1 + 휖) (2 + 휖)
μ(퐵(푥 ,√1 + 휖))

  exp 휌̅ (1

+ 휖)
3 + 휖

6(1 + 휖)
+

(1 + 휖) ((2 + 휖))
2

푃( ) ( )
,√

(퐹 )(푥 + 2휖) 푑μ(푥 + 2휖) 

with 퐹 (∙)  = 푝(푥 ,·, (2 + 휖)(1 + 휖))1 ,√ (∙).  

By using now an argument of the proof of Theorem 8.1 in [178] and the fact that for (푥 +

2휖) ∈ 퐵 (푥 + 휖,√1 + 휖), 푑 (푥 ,푥 + 2휖) ≥ ( , )  – 1 , 
we have for 0 < (2 + 휖) (1 + 휖) <  푇,  

푃( ) ( )
,√

(퐹 )(푥 + 2휖) 푑μ(푥 + 2휖) 

≤ exp
1 + 휖

2(푇 − (2 + 휖) (1 + 휖))
푒( )( ) ( ),( )푃( ) ( )(퐹 )(푥

+ 2휖) 푑μ(푥 + 2휖) 

= exp
1 + 휖

2(푇 − (2 + 휖) (1 + 휖))
푒( )( , )(퐹 )(푥 + 2휖) 푑μ(푥 + 2휖) 

≤ exp
1 + 휖

2(푇 − (2 + 휖) (1 + 휖))
exp −

푑 (푥 , 푥 + 2휖)
2푇,√

푃( )( )(푥 ,푥

+ 2휖) 푑μ(푥 + 2휖) 

≤ exp
1 + 휖

2(푇 − (2 + 휖) (1 + 휖))
+

1
2T

−
푑 (푥 , 푥 + 휖)

2(2 + 휖)푇
푃( )( )(푥 ,푥 + 2휖) 푑μ(푥 + 2휖)

,√
 

= exp
1 + 휖

2(푇 − (2 + 휖) (1 + 휖))
+

1
2T

−
푑 (푥 , 푥 + 휖)

2(2 + 휖)푇
푃( )( )(퐹 )(푥 ) 
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  where for 0 ≤  푠 < T and (푥 + 2휖) ∈ 푀, the function (푓 − 휖) is defined by 

 (푓 − 휖)(푠, 푥 + 2휖) =  −
푑 (푥 , 푥 + 2휖)

2(푇 − 푠)
 . 

 Finally, 
푝(푥 , 푥 + 휖, 1 + 휖)  

≤
(2 + 휖) exp 퐷(휖 + 3)

4(1 + 휖) (2 + 휖)
μ(퐵 (푥 ,√1 + 휖)) / μ(퐵 (푥 + 휖,√1 + 휖)) /

  exp 휌̅ (3 + 휖)
1

6(1 + 휖)
+

(2 + 휖)
4

 

exp
1 + 휖

4(푇 − (2 + 휖) (1 + 휖))
+

1
4T

−
푑 (푥 , 푥 + 휖)

4(2 + 휖)푇
. 

 Hence the result follows by choosing T = (2+휖)3(1 + 휖).  
Corollary (6.2.36) [291]. There exists a constant 퐶 > 0 which depends only on 1 + 휖 
and 휌  such that for all 푥  푎푛푑 푥 + 휖 푖푛 푀 and all −1 < 휖 ≤ 0,  

푑(푥 , 푥 + 휖) ≤ 퐶 1 + 휌̅ max 푑 (푥 ,푥 + 휖), 푑 (푥 , 푥 + 휖) . 
 Proof. Using the symmetry of the heat kernel, combining the lower estimate (55) for the 
heat kernel with the distance 푑  and the upper estimate (59) for the sequance of sub-
elliptic distance 푑 gives 

퐴 1 + 휖
2 2 exp − 휌̅ (1 + 휖)

4

4μ(퐵 (푥 ,√1 + 휖
2 )) / 4μ(퐵 (푥 + 휖,√1 + 휖

2 )) /
exp −

푑 (푥 ,푥 + 휖)
2(1 + 휖)

퐷
1 + 휖 +

휌̅
2 (1 + 휖)

+ 2(1 + 휖)
휌̅
휌 +

3퐷
2휌 (1 + 휖) ln(2)  

≤
퐶 (휀)

μ(퐵 (푥 ,√1 + 휖)) / μ(퐵 (푥 + 휖,√1 + 휖)) /
 푒푥푝(퐶 (휀)휌̅ (1 + 휖)) exp −

푑 (푥 ,푥 + 휖)
(4 +  휀)(1 + 휖)  

Therefore we have  

퐴
√1 + 휖

2 2 exp −
휌̅ (1 + 휖)

4 exp −
푑 (푥 ,푥 + 휖)

2(1 + 휖)
퐷

1 + 휖 +
휌̅
2 (1 + 휖) + 2(1

+ 휖)
휌̅
휌 +

3퐷
2휌 (1 + 휖) ln(2)  

≤ 퐶 (휀) exp(퐶 (휀)휌̅ (1 + 휖) exp −
푑 (푥 , 푥 + 휖)

(4 +  휀)(1 + 휖)
. 

Thus for all 휖 > -1: 

 0 ≤ −
퐷
2 ln퐴

√1 + 휖
2 +

퐷
2 +  2 ln 2 + ln퐶 (휀) + 퐶 (휀)(1 + 휌̅ )(1 + 휖) +

휌̅ (1 + 휖)
4  
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−
푑 (푥 ,푥 + 휖)
(4 + 휀)(1 + 휖) +

푑 (푥 ,푥 + 휖)
2(1 + 휖)

퐷
1 + 휖 +

휌̅
2 (1 + 휖) + 2(1 + 휖)

휌̅
휌 +

3퐷
2휌 (1 + 휖) ln(2) . 

Since − ln퐴 √ ≤ ln 1 + ( ) − ln퐶 ≤ ( ) − ln퐶 , fixing 휖 =  1, there 

exist some constants 퐸 ,퐸  which only depend on 1 + 휖 and 휌  such that for all 휖 >
−1, we have for all 푥 , (푥 + 휖) ∈ 푀, 휖 >  −1 . 

 0 ≤  퐸 + 퐸 휌̅ (1 + 휖) −
푑 (푥 ,푥 + 휖)
(4 + 휀)(1 + 휖)

+  
푑 (푥 ,푥 + 휖)

2(1 + 휖)
퐷

1 + 휖 +
휌̅
2 (1 + 휖) + 2(1 + 휖)

휌̅
휌 +

3퐷
2휌 (1 + 휖) ln(2) . 

Therefore, for some positive constants (퐴 ) , 1 ≤ 푖 ≤ 3 which only depend on 1 + 휖 and 
휌 ,  
푑(푥 ,푥 + 휖) ≤  퐴 (1 + 휌̅ (1 + 휖))(1 + 휖) + 퐴 (1 + 휌̅ (1 + 휖))푑 (푥 , 푥 + 휖) +
퐴 (1 + 휌̅ )(1 + 휖)푑 (푥 , 푥 + 휖)  .  
Since 휖 ≤ 0, if 푑 (푥 ,푥 + 휖)≤ 1, choosing 1 =  푑 (푥 ,푥 + 휖)  ≤  1 yields  

푑(푥 ,푥 + 휖) ≤ (1 + 휌̅ (1 + 휖))(퐴 + 퐴 )(1 + 휖)푑 (푥 ,푥 + 휖)  +  퐴 푑 (푥 ,푥 + 휖)
≤  (퐴 + 퐴 + 퐴 )(1 + 휌̅ (1 + 휖))푑 (푥 ,푥 + 휖). 

 If 푑 (푥 , 푥 + 휖) ≥ 1, choosing 휖 ≤ 0, we infer  
푑(푥 , 푥 + 휖)

≤ (1 + 휌̅ (1 + 휖))퐴 (1 + 휖)  + 퐴 푑 (푥 , 푥 + 휖) +  퐴 (1
+ 휖)푑 (푥 , 푥 + 휖) ≤  (퐴 + 퐴 + 퐴 )(1 + 휌̅ (1 + 휖))푑 (푥 , 푥 + 휖) . 

 
Corollary (6.2.37) [291]. Assume the operator L satisfies the condition 퐶 퐷(휌 , 휌 , 2 +
휖, 1 + 휖)  for some 휌 ∈ R, 휌 > 0,휖 ≥ −1, and 휖 ≥ 0. Assume moreover that the metric 
associated to 푑  is a Riemannian metric 푔  on 푀 for some (1 + 휖). Let Ω be a bounded 
domain in 푀 and a chart 휑:푈 ⊂ 푅 →  Ω. Then there exist some constants 푐 =
푐 (Ω,휑)  >  0 and 퐶 = 퐶 (Ω,휑)  >  0 such that 

  ‖퐿푢 ‖ +  퐶 ‖푢 ‖ ≥  푐 ‖푢 ‖( ), 푢 ∈ 퐶 휑(푈 ) ,                        (60) 
where ‖∙‖ denotes the usual L2(µ) norm in Ω and where ‖∙‖( ) is the standard Sobolev norm. 

Proof. there exists a constant 퐴  such that 푑(푥 , 푥 + 휖)  ≤  퐴 푑 (푥 , 푥 + 휖) for 
all 푥 , (푥 + 휖) ∈ Ω. Therefore, 퐵 (푥 , 1 + 휖) ⊂ 퐵 (푥 ,퐴 √1 + 휖). Since Ω is a 
compact set, the metric 푔  is comparable with 푔  the metric obtained from the 
Euclidean one in 푈  by the map φ. If we pull back the result in 푈 , we thus have, 
(퐵 ) (푥 ,푅) ⊂ 퐵 (푥 ,퐴 √1 + 휖) for some constant 퐴 > 0. The result then 
follows from Theorem 1 in [185]. 
We call a Hormander type operator an operator L which satisfies the general assumptions 
and which can be written locally as 퐿 = ∑ 푋∗푋  for some 퐶  vector fields 푋 .  
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We say it is an operator of rank k if the vector fields and their commutators up to order k: 
푋 , . . . ,푋 , [푋 ,푋 ], . . . , [푋 , [푋 , [. . . ,푋 ]]. . . ], 푖  =  1. . .1 + 휖  

span the tangent space in each point of 푀. 
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