Dedication

To the spirit of my father,
As well as my mother, wife,
brothers, sisters and My SON.

I dedicate this Research

Acknowledgments

Thanks and gratitudes to those who cooperated to complete this study,
and in particular, the main supervisor Professor; Dr. Alnazer Osman
Mohammed Hamzah, for his follow up, encouragements, advice and
guidance
I would like to extend my thanks to engineers in Khartoum Hospitals, for their helps and support. I also do not forget to thank the staff of the selected Khartoum Hospitals, who facilitated the data acquisition.

Thanks also are extended to my colleagues; especially Rashad Abdullah, Isam Othman, and Abdullah Hassan for their cooperation in the statistical study and language review, also thanks, love, and gratitude to my lovely wife for her support and patience with me. Finally I thank my dear friends for their encouragements.

Abstract

The Importance of this study is presented in discussing the availability of electrical safety requirements at the healthcare facilities according to the directions and recommended standards by organizations and associations in field of electrical safety such as NFPA, IEC, NEC, and AMMI, because the not available of electrical safety...
requirements and absence of awareness, and knowledge about the electrical safety lead to electrical hazards (burns, electrical shock, misdiagnosis, inadequate therapy) which effect on patient, medical equipment, and medical staff.

The main purpose of study is evaluation of electrical safety implementation in medical departments (ICU, operating room, medical imaging, and hemodialysis) in Khartoum Hospitals, and investigates if the level of safety is different between departments according to the priority. The number of surveyed departments is 41 in 15 Hospitals (state, military, and non-state).

The data was collected by many methods which include direct visits to Hospitals, visual inspection for electrical installations by using electrical safety checklist, as well as making interviews with engineers and technicians.

SPSS program is used to analyze the results. The results indicated that the level of electrical safety in Khartoum Hospitals was middle in terms of power system and power distribution, grounding system, and application of electrical safety program. The level of electrical safety was low and may be absent in terms of using testing and protective devices, and the safety level was high in terms of electrical cords and extension cords. Also, the results revealed that the level of electrical safety doesn't differ between the medical departments in Khartoum Hospitals according to the priority.
المستخلص

تأتي أهمية هذه الدراسة كونها تناقش توفر متطلبات السلامة الكهربائية في مرافق الرعاية الصحية بناءً على التوجيهات والمعايير العالمية الموصى بها من قبل المنظمات والجمعيات في مجال السلامة الكهربائية مثل NFPA , IEC, NEC, AMMI، حيث ان عدم توفرها وغياب الوعي والمعرفة ينتج عنه أضرار ومخاطر كهربائية (حروق، صعقات كهربائية، تشخيصات خاطئة، والعلاج غير المناسب) والتي تؤثر سلبًا على كل من المرضى والطقم الطبي والعاملين في المستشفى.

الغرض من هذه الدراسة هو تقييم تطبيق السلامة الكهربائية في الأقسام الطبية (العناية المكثفة، العمليات، التصوير الطبي، وتفصيل الكلوي) بمستشفيات ولاية الخرطوم، والتحقق فيما إذا كان مستوى السلامة الكهربائية متفاوت فيما بين الأقسام الطبية بالمستشفى حسب الأولوين للقسم. وقد تم معالجة أدوات لجميع البيانات تمثلت في الزيارة الميدانية إلى المستشفيات والقيام بالفحص المرئي للتركيبات الكهربائية وجمع المعلومات عن السلامة الكهربائية باستخدام قائمة فحص من تصميم الباحث، إضافة إلى إجراء بعض المقابلات الشخصية مع المهندسين والتقنيين والموظفين. وقد تم تحليل النتائج بإستخدام البرنامج الإحصائي SPSS.

أوضح النتائج أن مستوى السلامة الكهربائية كان متوسطاً فيما يتعلق بأنظمة الطاقة الكهربائية وتوسيعها وتنسيق التأريض وتطبيق برنامج السلامة الكهربائية في الأقسام الطبية بالمستشفيات. وكان المستوى ضعيفًا ويكاد يكون معدوماً بالنسبة لاستخدام أدوات الحماية الكهربائية وادوات اجراء اختبارات السلامة. بينما كان المستوى عالي ومقبولاً فيما يتعلق بالاسلاك والوصلات الكهربائية ولكن ليس بالشكل المثالي. و أوضح النتائج أن مستوى السلامة الكهربائية لا يتفاوت بين الأقسام الطبية في مستشفيات الخرطوم حسب الأولوين ونوع الإجراءات الكهربائية في القسم الطبي.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Complete words</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute.</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge.</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance.</td>
</tr>
<tr>
<td>AAMI</td>
<td>Association for the Advancement of Medical Instrumentation.</td>
</tr>
<tr>
<td>ATS</td>
<td>Automatic Transfer Switch.</td>
</tr>
<tr>
<td>CCU</td>
<td>Coronary Care Unit.</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval.</td>
</tr>
<tr>
<td>DF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>ESPIME</td>
<td>Electrical Safety Priority Index for Medical Equipment</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram.</td>
</tr>
<tr>
<td>EPSS</td>
<td>Emergency Power Supply System.</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration.</td>
</tr>
<tr>
<td>GFCIs</td>
<td>Ground Fault Circuit Interrupters.</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineering.</td>
</tr>
<tr>
<td>IPEM</td>
<td>Institute of Physics and Engineers in Medicine.</td>
</tr>
<tr>
<td>IMD</td>
<td>Insulation Resistance Monitoring Device</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit.</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous.</td>
</tr>
<tr>
<td>IPS</td>
<td>Isolation Power Systems.</td>
</tr>
<tr>
<td>IT</td>
<td>Isolation Transformer.</td>
</tr>
<tr>
<td>JCAHO</td>
<td>Joint Commission on the Accreditation of Healthcare Organizations.</td>
</tr>
<tr>
<td>kVA</td>
<td>Kilovolt-ampere.</td>
</tr>
<tr>
<td>LIMs</td>
<td>Line Isolation Monitors</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampere.</td>
</tr>
<tr>
<td>MCBs</td>
<td>Mini Circuit Breakers.</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electrical Code.</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Page</th>
<th>Table name</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Physiological effects of electrical current in human body.</td>
<td>3.1</td>
</tr>
<tr>
<td>33</td>
<td>American Wire Gauge (AWG) of wire size and its</td>
<td>3.2</td>
</tr>
<tr>
<td>76</td>
<td>Level of safety according to likart scale.</td>
<td>4.1</td>
</tr>
<tr>
<td>78</td>
<td>Distribution of the answer of protection of flexible cords from damage</td>
<td>5.1</td>
</tr>
<tr>
<td>79</td>
<td>Distribution of the answer of prohibition of using extension cords and adapters (3-prong to 2-prong adapters).</td>
<td>5.2</td>
</tr>
<tr>
<td>80</td>
<td>Distribution of the answer of using the right gauge and type of wire size.</td>
<td>5.3</td>
</tr>
<tr>
<td>82</td>
<td>Distribution of the answer of using extension cords with three-wire type and with grounded plugs.</td>
<td>5.4</td>
</tr>
<tr>
<td>83</td>
<td>Distribution of the answer of using an alternate source of power.</td>
<td>5.5</td>
</tr>
<tr>
<td>85</td>
<td>Distribution of the answer of using an emergency power systems in Hospital.</td>
<td>5.6</td>
</tr>
<tr>
<td>86</td>
<td>Distribution of the answer of using un-interrupted power system in Hospital.</td>
<td>5.7</td>
</tr>
<tr>
<td>87</td>
<td>Distribution of the answer of Installation power cables and electrical wires according to color code.</td>
<td>5.8</td>
</tr>
<tr>
<td>88</td>
<td>Distribution of the answer of using medical isolated power systems (IPS).</td>
<td>5.9</td>
</tr>
<tr>
<td>90</td>
<td>Distribution of the answer of using grounded power systems.</td>
<td>5.1</td>
</tr>
<tr>
<td>91</td>
<td>Distribution of the answer of using grounding type receptacles.</td>
<td>5.1</td>
</tr>
<tr>
<td>92</td>
<td>Distribution of the answer of receptacles which installed in damp locations are protected by GFCl.</td>
<td>2</td>
</tr>
<tr>
<td>93</td>
<td>Distribution of the answer of All Plugs, outlets, and switches are in good condition and working properly.</td>
<td>5.1</td>
</tr>
<tr>
<td>95</td>
<td>Distribution of the answer of an adequate number of outlets/circuits provided to avoid overloading of circuits.</td>
<td>5.1</td>
</tr>
<tr>
<td>96</td>
<td>Distribution of the answer of any medical electrical device has receptacle.</td>
<td>5.1</td>
</tr>
<tr>
<td>97</td>
<td>Distribution of the answer of availability panel box for operating room, CCU and ICU.</td>
<td>5.1</td>
</tr>
<tr>
<td>99</td>
<td>Distribution of the answer of shielding of cables which operating on high volts.</td>
<td>5.1</td>
</tr>
<tr>
<td>100</td>
<td>Distribution of the answer of effectively grounding for all medical electrical equipment.</td>
<td>5.1</td>
</tr>
<tr>
<td>101</td>
<td>Distribution of the answer of grounding of patient's environment and metal fixed electrical equipment.</td>
<td>5.1</td>
</tr>
<tr>
<td>103</td>
<td>Distribution of the answer of bonding all electrical components together in grounding system.</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Distribution of the answer of using 3-pin plug with all protectively earthed equipment.
Distribution of the answer of using an adequate size of grounding electrode conductor.
Distribution of the answer of using the residual current devices (RCD).
Distribution of the answer of using line isolation monitors (LIMs) with IPS systems.
Distribution of the answer of using proper personal protective equipments (PPE).
Distribution of the answer of using defibrillator tester (analyzer).
Distribution of the answer of using electrical safety analyzer.
Distribution of the answer of using ground fault circuit interrupters (GFCI), and tested periodically.
Distribution of the answer of protection all outlets protected by a GFCI.
Distribution of the answer of availability of appropriate fire extinguishers in good condition.
Distribution of the answer of periodically tests for grounding wire continuity.
Distribution of the answer of bedrails and bed frame are made of plastic or covered in insulating material.
Distribution of the answer of visually inspection of electrical equipment before use.
Distribution of the answer of inspection of instrumentations in all intensive care areas, operating room, and special procedures room at bimonthly intervals.
Distribution of the answer of training of employees to think and react to electrical safety hazards, and become aware of the hazards associated with power electronic equipment.
Distribution of the answer of Technicians are available all the time to emergency situation’s related to patient safety.
Distribution of the answer of all monitoring and patient care equipment in special care area’s are checked for proper performance and calibration periodically.
Distribution of the answer of the Hospital has inspection, testing and evidence of maintenance
program, in place to ensure that electrical apparatus is safe to use.

129 Distribution of the answer of testing of protectively earthed equipment every 6 months, and double insulated equipment every 12 months.

130 Distribution of the answer of inspection of all electrical equipment for electrical safety before initial use, after repair, or when a problem is suspected.

131 Distribution of the answer of inspection of electrical equipment according to manufacturer’s instructions.

134 The results of t-distribution test (One-Sample Test) in terms of electrical cords and extension cords.

136 The results of t-distribution test (One-Sample Test) in terms of power system and power distribution.

137 The results of t-distribution test (One-Sample Test) in terms of grounding system.

138 The results of t-distribution test (One-Sample Test) in terms of testing and Protective devices.

139 The results of t-distribution test (One-Sample Test) in terms of evaluation of electrical safety program.

140 The results of ANOVA test (F test) between arithmetic means of five sections in the checklist.

List of Figures

<table>
<thead>
<tr>
<th>Page</th>
<th>Figure name</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Physiological effects of electricity.</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Effect of entry points on current distribution, (a): Macroshock, and (b): Microshock.

Microshock leakage-current pathways.

The origin and path of leakage current.

Classification of equipment and applied parts.

Classification of medical locations.

Dangerous electrical hazard in using of electrical cords

Simplified electric-power distribution for 115 V circuits.

Power-isolation-transformer with a line-isolation monitor in isolated power system.

General isolated power system (IPS) in medical location.

Isolation Transformer (IT) in IPS.

Isolated patient circuit.

Line Isolation Monitor (LIM) as a component of IPS

Uninterruptible power supply (UPS) system.

Emergency Power Supply System EPSS.

Automatic Transfer Switch (ATS) as a part of EPSS.

Ground-fault circuit interrupters (GFCIs) components.

Ground-fault circuit interrupters, (a) Schematic diagram of a solid-state (three-wire, two-pole, 6 mA) GFCI. (b) Ground-fault current versus trip time for a GFCI.

Portable ground-fault circuit interrupter.

Typical grounding system in patient environment.

Typical grounding system with equipotential bonding conductors. Reproduced with permission from NFPA 76B-T.

Grounded electrodes as a part of grounding system.

Residual current device (RCD).

Hospital Residual Current Device (RCD).
The letters and symbols on the fire extinguisher
Fuse as overcurrent protective device.
Mini circuit breaker (MCB).
Device under test connections to the analyzer.
Defibllirator analyzer connection.
Earth Leakage Current Test Schematic
Enclosure Leakage Current Test Schematic.
Patient Leakage Current Test Schematic with applied parts connected together.
Patient Leakage Current Test Schematic for each applied part in turn.
Patient Auxiliary Leakage Current Test Schematic.
Measurement of protective earth continuity.
Measurement of insulation resistance for class I equipment.
Measurement of insulation resistance for class II equipment.
Distribution of the answer of protection of flexible cords from damage
Distribution of the answer of prohibition of using extension cords and adapters (3-prong to 2-prong adapters).
Distribution of the answer of using the right gauge and type of wire size.
Distribution of the answer of using extension cords with three-wire type and with grounded plugs.
Distribution of the answer of using an alternate source of power.
Distribution of the answer of using an emergency power systems in Hospital.
Distribution of the answer of using un-interrupted power system in Hospital.
Distribution of the answer of Installation power cables and electrical wires according to color
code.

89 Distribution of the answer of using medical isolated power systems (IPS).

90 Distribution of the answer of using grounded power systems.

91 Distribution of the answer of using grounding type receptacles.

93 Distribution of the answer of receptacles which installed in damp locations are protected by GFCI.

94 Distribution of the answer of all Plugs, outlets, and switches are in good condition and working properly.

95 Distribution of the answer of an adequate number of outlets/circuits provided to avoid overloading of circuits.

97 Distribution of the answer of any medical electrical device has receptacle.

98 Distribution of the answer of availability panel box for operating room, CCU and ICU.

99 Distribution of the answer of shielding of cables which operating on high volts.

101 Distribution of the answer of effectively grounding for all medical electrical equipment.

102 Distribution of the answer of grounding of patient's environment and metal fixed electrical equipment.

103 Distribution of the answer of bonding all electrical components together in grounding system.

105 Distribution of the answer of using 3-pin plug with all protectively earthed equipment.

106 Distribution of the answer of using an adequate size of grounding electrode conductor.

107 Distribution of the answer of using the residual current devices (RCD).

108 Distribution of the answer of using line isolation monitors (LIMs) with IPS systems.

110 Distribution of the answer of using proper personal protective equipments (PPE).

111 Distribution of the answer of using defibrillator tester (analyzer).

112 Distribution of the answer of using electrosurgical tester.

113 Distribution of the answer of using electrical safety analyzer.
Distribution of the answer of using ground fault circuit interrupters (GFCI), and tested periodically.

Distribution of the answer of protection all outlets protected by a GFCI.

Distribution of the answer of availability of appropriate fire extinguishers in good condition.

Distribution of the answer of periodically tests for grounding wire continuity.

Distribution of the answer of bedrails and bed frame are made of plastic or covered in insulating material.

Distribution of the answer of visually inspection of electrical equipment before use.

Distribution of the answer of inspection of instrumentations in all intensive care areas, operating room, and special procedures room at bimonthly intervals.

Distribution of the answer of training of employees to think and react to electrical safety hazards, and become aware of the hazards associated with power electronic equipment.

Distribution of the answer of Technicians are available all the time to emergency situation’s related to patient safety.

Distribution of the answer of all monitoring and patient care equipment in special care area’s are checked for proper performance and calibration periodically.

Distribution of the answer of the Hospital has inspection, testing and evidence of maintenance program, in place to ensure that electrical apparatus is safe to use.

Distribution of the answer of testing of protectively earthed equipment every 6 months, and double insulated equipment every 12 months.

Distribution of the answer of inspection of all electrical equipment for electrical safety before initial use, after repair, or when a problem is suspected.

Distribution of the answer of inspection of electrical equipment according to manufacturer’s instructions.
List of Appendixes

<table>
<thead>
<tr>
<th>Page</th>
<th>Appendix name</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>APPENDIX A: Tables of electrical safety level in terms of checklist's sections.</td>
<td>1</td>
</tr>
<tr>
<td>158</td>
<td>APPENDIX B: Table showing probabilities (areas) under the probability density function of the t distribution for different degrees of freedom (df).</td>
<td>2</td>
</tr>
<tr>
<td>159</td>
<td>APPENDIX C: Table of critical values for the F distribution (for use with ANOVA).</td>
<td>3</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acknowledgments</td>
</tr>
<tr>
<td>1</td>
<td>Abstract</td>
</tr>
<tr>
<td>11</td>
<td>Abbreviations</td>
</tr>
<tr>
<td>V</td>
<td>List of tables</td>
</tr>
<tr>
<td>1V</td>
<td>List of figures</td>
</tr>
<tr>
<td>11</td>
<td>List of appendixes</td>
</tr>
<tr>
<td>V1</td>
<td>Contents</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1

- **General introduction** 1.1

1

- Problem statement 1.2

2

- The research objective 1.3

2

- The general objective 1.3.1

2

- The specific objectives 1.3.2

2

- The research hypothesis 1.4

3

- (The study justification (Rational Study outline 1.5

3

- Study outline 1.6

4

CHAPTER TWO: LITERATURE REVIEW

5

- Electrical safety in the Hospital 2.1
CHAPTER THREE: THEORETICAL BACKGROUND

Introduction 3.1
Physiological effects of electricity 3.2
Macroshock and microshock 3.3
Macroshock 3.3.1
Microshock 3.3.2
Electrical hazards in hospitals 3.4
Burns caused by electricity 3.4.1
Arc blasts 3.4.2
Overload hazards 3.4.3
Leakage currents 3.5
Causes of leakage currents 3.5.1

Types of leakage currents 3.5.2

Classes and types of medical electrical equipment

Equipments classification 3.6.1

Class I equipments 3.6.1.1

Class II equipments 3.6.1.2

Class III equipments 3.6.1.3

(Types of equipments (Designation type 3.6.2

Type B equipment 3.6.2.1

Type BF equipment 3.6.2.2

Type CF equipment 3.6.2.3

Classification area in Hospitals 3.7

General care areas 3.7.1

Critical care areas 3.7.2

Wet locations 3.7.3

Medical locations 3.8

Group 0 locations 3.8.1

Group 1 locations 3.8.2

Group 2 locations 3.8.3
Electrical safety codes and standards 3.9

Electrical cords and extension cords 3.10

Power supplies in medical locations 3.11

Distribution of electrical power 3.12

Electrical power systems in the healthcare facilities 3.14

Grounded power systems 3.14.1

Ground circuits and equipment 3.14.1.1

Isolation power system (IPS) 3.14.2

Isolation transformer (IT) 3.14.2.1

Isolated (floating) circuits 3.14.2.2

Line isolation monitor (LIM) 3.14.2.3

Uninterruptible Power Supply (UPS) 3.14.3

Emergency power supply system (EPSS) 3.14.4

Automatic Transfer Switch (ATS) 3.14.4.1

Ground-fault circuit interrupters (GFCIs) 3.14.5

Receptacles and outlets 3.15

Power line color codes 3.16

Grounding system 3.17
3.17.1 Equipotential grounding

3.17.2 Grounding electrodes

3.18 Electrical protective device in healthcare facilities

3.18.1 Residual current device (RCD)

3.18.2 Ground fault circuit interrupter (GFCI)

3.18.3 Fire extinguisher

3.18.4 Personal protective equipment (PPE)

3.18.5 Protecting from overload hazards short circuit

3.19 Electrical safety testers in healthcare facilities

3.19.1 Electrical safety analyzers

3.19.2 Defibrillator analyzer

3.20 Electrical safety tests

3.20.1 Leakage currents test

3.20.2 Protective earth continuity

3.20.3 Insulation tests

3.21 Electrical safety program
3.21.1 Establishing an electrical safety program
3.21.2 Electrical safety model
3.21.3 Electrical safety program procedures

CHAPTER FOUR: RESEARCH METHODOLOGY
4.1 Study area (study population)
4.2 Samples (Surveying samples)
4.3 Methods of Data Collection
4.3.1 Design Electrical safety checklist
4.3.2 Visual inspection and observation
4.3.3 Direct visits and interviews
4.4 Validation
4.5 Statistical analysis
4.5.1 Likart scale
4.6 The research duration

CHAPTER FIVE: RESULTS AND DISCUSSIONS
5.1 The results of checklist items
5.1.1 Electrical cords and extension cords
5.1.2 Power system and power distribution
CHAPTER SIX: CONCLUSIONS & RECOMMENDATIONS

Conclusions 6.1

Recommendations 6.2

REFERENCES

APPENDIXES