Structures of Inner Functions on Hardy Spaces via the Least Harmonic Majorants

Emad Aldeen A. A. Rahim

Sudan University of Science and Technology - College of Science-Department of Mathematics

ABSTRACT: In this work we showed that the inner functions on Hardy space can be written in the canonical factorization form as exponential of least harmonic majorants.

KEYWORDS: Hardy space, Inner functions, Harmonic and least Harmonic majorant.

Definition of \(H^p \)

For \(1 \leq p < \infty \) the Hardy space \(H^p \) is defined as the space of all analytic functions \(\varphi \) in the unit disk \(\mathbb{D} = \{ z \in \mathbb{C}; |z| < 1 \} \)

\[
\| \varphi \|_p = \sup_{r < 1} \left[\frac{1}{2\pi} \int_0^{2\pi} |\varphi(re^{it})|^p \right]^{\frac{1}{p}}
\]

(1)

is finite. The space \(H^\infty \) (Banach space) consist of all bounded analytic functions \(\varphi \) on the disk, and the norm is now

\[
\| \varphi \| = \sup_{|z| < 1} |\varphi(z)|
\]

(2)

For function \(\varphi \) in \(H^p \), for \(1 \leq p < \infty \), the radial limit

\[
\phi(e^{it}) = \lim_{r \to 1^-} \varphi(re^{it})
\]

(3)

exists almost everywhere in \(t \) (Fatou’s Theorem), and needed , \(\hat{\varphi} \in L^p(T) \), where \(T \) denotes the unit circle which we equip with normalized Lebesque measure; moreover:

\[
\| \varphi \|_H = \| \hat{\varphi} \|_L^p.
\]

We normally identify \(\varphi \) with \(\hat{\varphi} \), and can thus regard \(H^p \) as a closed subspace of \(L^p(T) \). It is also possible to start by defining \(H^p \) directly as the subspace of those \(L^p(T) \) functions for which the negative Fourier coefficients vanish, that is:

\[
\frac{1}{2\pi} \int_0^{2\pi} \phi(e^{it})e^{-int} dt = 0
\]

(4)

for all \(n < 0 \).
It is classical that $\varphi \in H^\infty$ has the factorizations

$$\varphi = BSO$$

(5)

where B is a Blaschke product, S is a singular function, and O is an outer function. Specifically, these factors are.\(^{(1)}\)

$$B(z) = z^m \prod \lambda_k \frac{z_k - z}{1 - z_k z}$$

(6)

where m is the order of the zeros of φ at the origin and z_1, z_2, \ldots are the zeros of φ in $D \setminus \{0\}$;

$$S(z) = \exp \left\{ -\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \, d\nu(t) \right\}$$

(7)

where ν is a non-negative measure singular with respect to Lebesgue measure, and

$$O(z) = \lambda \exp \left\{ \frac{1}{2\pi i} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} k(t) \, dt \right\}$$

(8)

where λ is a unimodular constant and k is real-valued integrable function. Also φ has the factorization (canonical factorization)

$$\varphi = IO$$

(9)

where I is an inner function (has a unit modulus a.e on D), and O as in Eq.(5).\(^{(1,2)}\)

It is well-known that if φ is an inner function, then $\frac{v - \varphi(z)}{1 - \varphi(z)v}$ is a Blaschke product for all $w \in D$ with the exception at most of a set of capacity zero\(^{(3)}\).

Theorem A\(^{(3)}\):

Let N_* denote the set of all analytic functions f on the unit disk such that the functions $\log^+ |f_n|$ have uniformly absolutely continuous integrals, and let $\varphi \in N_*$, then the set of points w for which $\varphi(z) - w$ has non-trivial singular inner factor has logarithmic capacity zero. Conversely, given any compact set E of logarithmic capacity zero, there is a bounded analytic function F such that $\varphi(z) - w$ has a non-trivial singular inner factor if and only if $w \in E$.

The converse statement is well-known. Let E be a compact set of capacity zero in D, the covering map F of the domain $D \setminus E$ is an inner function since E has capacity zero. For each $w \in E$, $\frac{F(z) - w}{1 - \overline{w}F(z)}$ is a non-vanishing inner function and so is singular. Thus since $1 - \overline{w}F(z)$ is an outer function, $F(z) - w$ is a function with non-trivial singular inner factor for all $w \in E$.

Note that for mutually prime inner functions u and v which have no zero in common and that there is singular inner function S with $u = Su_i$ and $v = Sv_i$ for inner functions u_i and v_i, and $\rho > 0$, the function $\frac{u(z) + \rho e^{it} v(z)}{1 - \rho e^{it} \varphi(z)}$ has a trivial singular inner factor for almost all (w.r.to Lebesgue measure) real t.
The generalization of the above concept is given in the following Theorem.

Theorem B: Let \(f, g \in H^p \), \(0 < p < \infty \), have mutually prime singular inner factors. Then the set of points \(w \) for which \(f(z) - w g(z) \) has a non-trivial singular inner factor has logarithmic capacity zero \(^{(3)}\).

In Theorem B above, we see that if \(g \) is an outer function, then the lack of a singular factor in \(f(z) - w g(z) \) is equivalent to the lack of a singular factor in the decomposition of the function \(\frac{f(z)}{g(z)} - w \) in \(N_* \), and is thus covered in Theorem A.

Now let \(\varphi \in H^2 \), then there exist a harmonic function \(h \) in \(D \), such that

\[
|\varphi(z)|^2 \leq h(z) \quad (10)
\]

and \(h \) is called the harmonic majorant of \(\varphi \) \(^{(4-6)}\). It is well known that if \(\varphi \) has harmonic majorant in \(D \), then there exist a least harmonic majorant, hence there exist a harmonic function \(h_\varphi \) in \(D \), such that:

\[
|\varphi(z)|^2 \leq h_\varphi(z) \quad (11)
\]

and such that \(h_\varphi \leq h \). Also if \(\varphi \in H^2 \), then for a fixed \(z_0 \in D \) there is a norm on \(H^2 \) defined by:

\[
\|\varphi\| = \inf \left\{ h(z)^{\frac{1}{2}} : h \text{ is a harmonic majorant of } |\varphi|^2 \right\}
\]

Now, one can make the following definitions:

Definition 1: for \(\varphi \in H^2 \), we say that \(h \) is the harmonic majorant of \(\varphi \) in \(D \) if \(h \) is harmonic function in \(D \), such that \(\varphi \leq h \).

Definition 2: let \(\varphi \in H^2 \), and \(h \) is the harmonic majorant of \(\varphi \) in \(D \), we say that \(h_\varphi \) is least harmonic majorant of \(\varphi \) in \(D \) if \(h_\varphi \) is harmonic function in \(D \), such that \(\varphi \leq h_\varphi \), and such that \(h_\varphi \leq h \).

Now let \(\varphi \) and \(\varphi' \) be two functions in \(H^2 \). We say that \(\varphi \) divides \(\varphi' \) (or \(\varphi|\varphi' \)), if \(\varphi' \) can be written as \(\varphi' = \varphi u \), for some \(u \in H^2 \).

Now we need the following lemma.

Lemma C\(^{(3)}\):

If \(\varphi_1 \) and \(\varphi_2 \) are inner functions without a common factor, then:

\[
\lim_{r \to 1} \int_{\Gamma} \log \left(\max \left\{ |\varphi_1(re^{i\theta})|, |\varphi_2(re^{i\theta})| \right\} \right) d\sigma(\theta) = 0
\]
where \(d\sigma \) is the normalized Lebesgue measure on the unit circle \(T \).

proof: The limit on the left side is the value at the origin of the least harmonic majorant in \(D \) of the subharmonic function \(\max\{\log|\varphi_1|, \log|\varphi_2|\} \). So it remains to show that this least harmonic majorant is the constant function \(0 \). Let \(h \) denote this least harmonic majorant. Then

\[
\log|\varphi_1| \leq h \leq 0.
\]

This implies that \(h \) has radial limits \(0 \) almost everywhere on \(T \).

So, if \(h \) is not identically zero, then \(h \) is the Poisson integral of a negative singular measure on \(T \). Hence \(\varphi = e^{h+i\theta} \) is a singular inner function (here \(\tilde{h} \) denotes the harmonic conjugate of \(h \) in \(D \)).

Since \(|\varphi_1| \leq |e^{h+i\theta}| \), the inner function \(\varphi \) divides \(\varphi_1 \). But \(|\varphi_2| \leq |e^{h+i\theta}| \) implies that \(\varphi \) also divides \(\varphi_2 \), contradicting our assumption about \(\varphi_1 \) and \(\varphi_2 \). Thus \(h \equiv 0 \). This completes the proof of the lemma.

RESULTS

Now we arrive to the following theorem which gives the principle result of this paper.

THEOREM 1: If \(\varphi_1 \) and \(\varphi_2 \) are inner functions with a common factor, say \(\varphi \), then \(\varphi = e^{h+i\theta} \), where \(\tilde{h} \) denotes the harmonic conjugate of \(h \) in \(D \), and \(h \) is the least harmonic majorant of the subharmonic function \(\max\{\log|\varphi_1|, \log|\varphi_2|\} \).

Proof:

By lemma C above, if \(h \) denotes the least harmonic majorant of the subharmonic function \(\max\{\log|\varphi_1|, \log|\varphi_2|\} \), then \(\log|\varphi_1| \leq h \leq 0 \). This implies that \(h \) has radial limits \(0 \) almost everywhere on \(T \).

So, if \(h \) is not identically zero, then \(h \) is the Poisson integral of a negative singular measure on \(T \). Hence \(\varphi = e^{h+i\theta} \) is a singular inner function.

Since \(|\varphi_1| \leq |e^{h+i\theta}| \), the inner function \(\varphi \) divides \(\varphi_1 \). But \(|\varphi_2| \leq |e^{h+i\theta}| \) implies that \(\varphi \) also divides \(\varphi_2 \), morever this representation of inner function \(\varphi \) is similar to that one in Eq. (9), i.e. \(\varphi = e^{h+i\theta} = e^h.e^{i\theta} \), where \(e^h \) determine the inner factor, and \(e^{i\theta} \) determine the outer factor, and the theorem is proved.

REFERENCES:

