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Abstract: The proportional-integral-derivative (PID) controller is tuned to find its 
parameters values. Generally most of the tuning methods depend mainly on the 
experimental approach of open-loop unit step response. The controller parameters can be 
found if the system truly can be approximated by First Order Plus-Dead Time (FOPDT). 
The problem with such type of controllers is that: the performance of most of them 
deteriorates as the ratio (TL ) of approximated equivalent delay L to the overall time 
constant T changes. The optimum tuning always checks this ratio and considers it in its 
formulae. The performances of different PID tuning techniques are simulated for different 
systems and analyzed based on the transient responses. MATLAB simulation results are 
presented and compared for different higher order systems. For the same characterization 
procedure, optimally tuned PID controller shows better performances over Ziegler-
Nicholas (Z-N) and Cohn-Coon tuned. Superiority of the optimal PID tuning techniques 
sustained for variety of higher order systems. 
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تَعتمد بشكل  تنغيمِعموماً أغلب طرق ال. التفاضلية لإيجاد قيم عناصرها- التكاملية- الحاكمة النسبية  يتم تنغيم أو ضبط
ويمكن إيجاد عناصر هذه الحاكمة . الدالة الدرجيةوحدة ة لالحلقة المفتوحلإستجابة نظام التجريبي  هج رئيسي على الن

المشكلة مع هذا النوع من الحواكم هى أكثرها . لأى نظام يمكن تقريبه بنظام من الدرجة الأولى زائداً زمن تأخُر
الحاكمة دائماً هذه التنغيم الأمثل ل. رت نسبة زمن التأخُر التقريبى إلى الثابت الزمنى الكلى للنظامه كلما تغيأداء تدهوري

للأنظمة  تمت محاكاتها وتحليلهامختلفة  تنغيم إن أداء تقنيات. معادلاته الأساسية نسبة وتَعتبرها فييفحص هذه ال
من . محاكاة بالماتلاب لأنظمة ذات رتب عليا مختلفة تمت مقارنتهانتائج ال. العابرة ستجابةالمختلفة مستندة على الإ

-نيكولس وطريقة كوهين- المحاكاة إتضح ان حاكمة التنغيم الأمثل ذات أداء أفضل من الحاكمة المنغمة بطريقة زيقلر
  .كوون ودت خصائص أداء ثابتة لمدى واسع من أنظمة الرتب العليا

      
Introduction: 

The PID controller has several important 
functions; it provides feedback, has the 
ability to eliminate steady state offsets 
through integral action, and it can 
anticipate the future through derivative 
action. PID controllers are the largest 
number of controllers found in industries 
sufficient for solving many control 
problems.  

The determination of the controller 
parameters is called the controller tuning 
or design. Many approaches have been 
developed for tuning PID controller and 
getting its parameters for single input 
single output (SISO) systems. Among the 
well-known approaches are the Ziegler-
Nichols (Z-N) method (1), the Cohen-Coon 
(C-C) method (2), integral of squared time 
weighted error rule (ISTE) (3), integral of 
absolute error criteria (IAE) (4), internal-
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model-control (IMC) based method (5), and 
gain-phase margin method (6). This paper 
focuses on studying the optimum tuning 
method and comparing it with Z-N which 
has been explored since 1942 and is still 
used in industry and C-C. 
The PID control law is the sum of three 
types of control actions: a proportional, an 
integral and a derivative control actions. 
Mathematically PID controller in the time-
domain is given by the following equation: 
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Where u (t) is the controller output (input 
signal to the plant model), the error signal 
e(t) is defined as e(t) =r (t) − y (t), and r (t) 
is the reference input signal while y(t) is 
the output. The controller parameters are 
proportional gain Kp, integral time Ti, and 
derivative time Td 

(7). 
If a mathematical model of the PID-
controlled plant can be derived, then 
various design techniques for determining 
the controller parameters can be applied. 
However, if the plant is so complex that its 
mathematical model cannot easily be 
obtained, then analytical approach to 
design PID controller is not possible(8). 
Then we must resort to experimental 
approaches for tuning of PID controllers. 
In this work the open-loop step response of 
the given system is obtained and the three 
characterizing parameters (K, L, and T) are 
determined from this response. Then 
according to the tuning method, the 
controller parameters (Kp, Ti, and Td) can 
be obtained. The transient step responses 
of the simulated closed-loop are then 
compared for different tuning rules. 

OPTIMUM PID CONTROLLER DESIGN: 

Optimum setting algorithms for a PID 
controller were proposed by Zhuang and 
Atherton (9) for various criteria. The 
methods involve searching for minimum 
of the cost function )(ϕnJ in its general 
form: 

∫
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Where e (ϕ , t) is the error signal, with ϕ  
as PID controller parameters. The 
optimum controller parameters are found 
when the partial derivative of )(ϕnJ  with 

respect to ϕ  equals zero. The error signal 
used for optimization can be a result set-
point or of load disturbance. Therefore, it 
is possible to obtain two sets of 
parameters: one for the set-point input and 
the other for the disturbance signal. In 
particular, three values of n (n = 0, 1, 2) 
are discussed. These three cases 
correspond, respectively, to three different 
optimum criteria: the integral squared error 
(ISE) criterion, integral squared time 
weighted error (ISTE) criterion, and the 
integral squared time-squared weighted 
error (IST2E) criterion. The expressions 
given were obtained by fitting curves to 
the optimum theoretical results (9,10). 
A large number of industrial plants can 
approximately be modeled by the first 
order plus dead time (FOPDT) model with 
transfer function as follows (11): 
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Sometimes one may want to design a 
controller having good rejection 
performances on the disturbance signal. 
The parameters equations to design 
controllers for disturbance rejection using 
the optimal method are different than the 
set point used here. 
PID controller equation suggested by Z-N 
is: 
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And C-C suggested gains setting as: 














−
−=

−
−=

−
+=

LT

LT

a
K

d

i

p

τ
τ

τ
τ

τ
τ

81.01

37.037.0
39.01

25.2

)
1

18.0
1(

25.1

             (5) 



June 2012   
Journal of Science and Technology  vol. 13 
ISSN 1605 – 427X 
Engineering  and Computer Sciences (E C S No. 1) 
www.sustech.edu 

 

 50

Where; TLka p=  & )( TLL +=τ . 

While the gains of optimal PID controller 
can be set as follows (9): 
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Where the parameters (a, b) should be 
determined according to Table A1 in 
appendix A. the selection of (a, b) depends 
mainly on the value of (L/T). 

Tuning Rules of PID Controllers for 
Set-Point Changes: 

The key feature in the optimum methods 
for PID controller tuning is to obtain the 
response of the plant to a unit step input. If 
it involves neither integrator nor dominant 
complex-conjugate poles, then such an 
open-loop unit step response curve may be 
characterized by three constants, gain K 
delay time L and time constant T (7).  
The following is an example of PID-
controlled systems and their responses for 
different ratios when tuned using Z-N and 
C-C methods. 
These constants are either to be found 
experimentally or instead of experimental 
approaches, a simulation may be used to 
get these parameters. In the following are 
different systems examined to illustrate the 
method for tuning the controllers. 
 

)36(

120
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2 ++ ss
System       (7) 

From the step response we obtained the 
parameters (K, L, and T) as (K = 40, L = 

0.174, T =1.826). The range of (L/T) from 
the given transfer function is equal to

095.0
1.826

0.174=  

 
 

Table 1: The Controller Parameters of 
System1 

 PID Controller 
Parameters 

Criterion Kp Ti Td 
Z-N 0.3143 0.3485 0.0871 
C-C 0.3330 0.507 0.0633 
ISE 0..2155 1.574 0.111 

IST2E 0.2024 1.92 0.071 
  

)6)(4)(1(

200
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From the step response we obtained the 
parameters (K, L, and T) as (K = 8.333, L 
= 0.3725, T = 1.0442). The range of (L/T) 
from the given transfer function is equal to 

3567.0
1.0442

0.3725=  

The parameters of the controller are 
obtained as in Table 2:  

 
 Table 2. The Controller Parameters of 

System2 
 PID Controller Parameters 

Criterion Kp Ti Td 
Z-N 0.4036 0.7450 0.1863 
C-C 0.4475 0.8600 0.1291 
ISE 0.3170 0.9816 0.2044 

IST2E 0.2949 1.1775 0.1316 
4

3 )1/(4)(;3 += ssGSystem             (9) 
From the step response we obtained the 
parameters (K, L, and T) as (K=2, L=2, 
T=2). The range of (L/T) from the given 
transfer function is equal to 1. Table 3 
shows the parameters of the different 
controllers. 

Table 3: The Controller Parameters of 
System 3 

 PID Controller Parameters 
Criterion Kp Ti Td 

Z-N 0.3 4 1 
C-C 0.3687 3.500 0.622 
ISE 0.262 2.418 0.978 

IST2E 0.2420 2.762 0.632 

64 )1)(2(

3
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=

ss
sGSystem        (10) 
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From the step response we obtained the 
parameters (K, L, and T) as (K =1.5, L =4, 

T=2.5), 6.1=
T

L
; Therefore the parameters 

of the controller are obtained as in Table 4. 
Table 4: The Controller Parameters of 

System 4 
 PID Controller Parameters 

Criterion Kp Ti Td 
Z-N 0.500 8 2 
C-C 0.671 6.177 1.135 
ISE 0.590 3.600 1.710 

IST2E 0.5378 3.981 1.164 

 

Simulation Results and Discussions: 

In this section, a simulation for the four 
different systems is carried out to obtain 
their transient responses. The comparison 
is based on the rise time (tr), the settling 
time (ts), and the peak over shoot (MP) of 
the closed-loop step response for each 
method as shown in Figures 1 - 4 and the 
results are tabulated in Table 5. 
For the different tested systems, the 
optimally tuned controller gives accepted 
rise time, generally the best settling time 
and they perform very much better than 
others in the overshoot behavior. For some 
systems the responses of both Z-N and C-
C result in longer settling time and 
approaching critically damped systems 
which considered as their shortcoming.  

 
Figure 1: System1 Step Response 

 
Figure 2: System 2 Step Response 

 

 

Figure 3: System 3 Step Response 
 

 
         Figure 4: System 4 Step Response 
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Table 5: Comparison of Transient Responses 
System Criteria tr (Sec) ts (Sec) % O.s 

 
G1(s) 

Z-N 0.24 1.74 30.8 
C-C 0.24 1.44 26.5   
ISE 0.435 1.39 3.07 

IST2E 0.437 1.11 3.2 
 

G2(s) 
Z-N 0.496 2.15 18.0 
C-C 0.465 2.48 22.0 
ISE 0.675 2.65 6.52 
IST2E 0.715 2.05 5.62 

 
G3(s) 

Z-N 6.86 14.2 ≅ Critical 
C-C 2.51 11.5 8.08 
ISE 3.25 11.0 6.33 

IST2E 3.51 09.1 4.05 
 

G4(s) 
Z-N 23.8 47.7 ≅ Critical 
C-C 4.38 28.6 ≅ Critical 
ISE 4.10 19.8 8.2 
IST2E 4.72 14.8 7.6 

Conclusions: 

From the results obtained, it could be 
conclude that PID control is still of great 
interest, and is a promising control 
strategy that deserves further research and 
investigation. These tuning methods are 
only valid for open loop and those can be 
described by the first order plus dead-time 
model and for 'ideal' PID control structure 
case. Optimally tuned PID controllers 
show better results than Z-N and C-C. 
The responses of both the later deteriorate 
as the approximated equivalent delay L to 
the overall time constant T changes. 
Optimally tuned controller sustain for 
wide range of systems due to their 
consideration to L/T. However, among the 
optimum PID tuning methods, IST2E was 
shown to be the best for the transient 
response specifications. 
References: 
1. J. G. Ziegler and N. B. Nichols, 

(1942). Optimum settings for 
automatic controllers Transactions of 
American Society of Mechanical 
Engineers, 64. 

2. G. H. Cohen and G. A. Coon, (1953). 
Theoretical investigation of retarded 

control. Transactions of American 
Society of Mechanical Engineers, 75. 

3. M. Zhuang and D. P. Atherton, (1993). 
Automatic tuning of optimum PID 
controllers, IEE Proceedings on 
Control and Applications, 140. 

4. D. W. Pessen, (1994). A new look at 
PID-controller tuning, Journal of 
Dynamical Systems Measures and 
Control, 116. 

5. M. Morari and E. Zafiriou (1989) 
"Robust Process Control, Prentice-
Hall, Englewood Cliffs, New Jersey,. 

6. W. K. Ho, C. C. Hang, and L. S. Cao, , 
(1995). Tuning of PID controllers 
based on gain and phase margin 
specifications. Automatica, 31. 

7. Karl J.Astrom and Tore Hagglund, 
(1995), PID Controllers: Theory, 
Design, and Tuning..Instrument 
Society of America. 

8. Katsuhiko Ogata. (1997), Modern 
Control Engineering 3rd Edition. 
Prentice-Hall, Inc, Simon &Schuster/A 
Viacom Company,. 

9. Dingyu Xue, Yang Quan Chen, and 
Derek P. Atherton., (2007),  Linear 
Feedback Control. The Society for 
Industrial and Applied Mathematics,. 

10. L. Eriksson, (2005) A PID Tuning 
Tool for Networked Control Systems. 
WSEAS Transactions on Systems, 4:  
91-97. 

11. Saeed Tavakoli and Mahdi Tavakoli. 
(2003), Optimal  tuning of PID 
controllers for first order plus time 
delay  models sing dimensional 
Analysis" International Conference 
on Control and Automation 
(ICCA’03),. 



June 2012   
Journal of Science and Technology  vol. 13 
ISSN 1605 – 427X 
Engineering  and Computer Sciences (E C S No. 1) 
www.sustech.edu 

 

 53

APPENDIX A: 
 

Table A1: Set-point PID controller parameters 

TL  0.1-1 1.1-2 

 ISE  ISTE  EIST 2  ISE  ISTE  EIST 2  

a1 1.048 1.042 0.968 1.154 1.142 1.061 
b1 −.897 −.897 −.904 −.567 −.579 −.583 
a2 1.195 0.987 0.977 1.047 0.919 0.892 
b2 −.368 −.238 −.253 −.220 −.172 −.165 
a3 0.489 0.385 0.316 0.490 0.384 0.315 
b3 0.888 0.906 0.892 0.708 0.839 0.832 

 
 
APPENDIX B: 
h=feedbackM-File: 
G=tf(--, [-----]) 
[K,L,T]=getfod(G,1) 
a=K*L/T; GP=feedback(G,1); 
step(GP,'b-',50) 
for n=1:4 
switch n 
case 1 
   kp=1.2/a 
   Ti=2*L 
   Td=0.5*L 
gc=tf(kp*[Ti*Td Ti 1],[Ti 0]) 
GZ=series(gc,G); Zeig=feedback(GZ,1); 
step(Zeig,'r--') 
    case 2 
   tao=L/(L+T);   kp=(1.25/a)*(1+((0.18*tao)/(1-tao)))   
  Ti=((3.3-tao)/(1+1.2*tao))*L 
   Td=((0.37-0.37*tao)/(1-0.81*tao))*L 
  gc=tf(kp*[Ti*Td Ti 1],[Ti 0]) 
GCC=series(gc,G); coh=feedback(GCC,1); 
hold on 
step(coh,'b:') 
    case 3 

   % kp=(1.048/K)*((L/T)^(-0.897)) %L/T<1 
   % Ti=T/(1.195-0.368*(L/T)) 
   % Td=0.489*T*((L/T)^0.888) 
  kp=(1.154/K)*((L/T)^(-0.567))     %L/T>1 
  Ti=T/(1.047-0.22*(L/T)) 
  Td=0.49*T*((L/T)^0.708) 
   gc=tf(kp*[Ti*Td Ti 1],[Ti 0]) 
GO1=series(gc,G); ISE=feedback(GO1,1); 
step(ISE,'m:') 
    case 4 
  % kp=(0.968/K)*((L/T)^(-0.904))   %L/T<1 
  % Ti=T/(0.977-0.253*(L/T)) 
  % Td=0.316*T*((L/T)^0.892) 
       kp=(1.061/K)*((L/T)^(-0.583))       %L/T>1 
       Ti=T/(0.892-0.165*(L/T)) 
       Td=0.315*T*((L/T)^0.832) 
      gc=tf(kp*[Ti*Td Ti 1],[Ti 0]) 
GO2=series(gc,G); IST2E=feedback(GO2,1); 
hold on 
step(IST2E,'g-.')  
end 

 
  


