Sudan University of Sciences and Technology
College of Agriculture Studies
Department of Plant Protection

The Antifungal Activity of Garlic Extracts against *Nattrassia mangiferae*

A graduation project submitted in partial fulfillment of the requirements for the degree of B.Sc. in Plant Protection.

By:

Ahmed Khalid Abakar

Supervisor:

Dr. Ekhlass Hussein

Department of Plant Protection
College of Agricultural Studies, Shambat
Sudan University of Science and Technology (SUST).

Sep. 2016
الآية

بسم الله الرحمن الرحيم

(واضَرِبُ لَهُمْ مِثْلَ الْحَيَاةِ الدُّنْيَا كَمَاءٍ أَنْزَلْنَاهُ مِنْ السَّمَاءِ فَاخْتَلَطَ بِهِ نَبَاتُ الأَرْضِ فَأَصْبِحَ هَشِيمًا تَذْرَّى الزِّيَاحُ وَكَانَ اللَّهُ عَلَى كُلِّ شَيْءٍ مُقْتَدِرًا)

صدق الله العظيم

سورة الكهف الآية (45)
DEDICATION

To my father

And mother

To my brothers, Sisters,

And to my friend Aziza,

Madiha and Mohammed Younis
ACKNOWLEDGEMENT

Firstly, thanks to God for giving me health and kept me well to finish this work.

Grateful thanks are due to my supervisor Dr. EKHLASS HUSSIEN for mentoring me and participation throughout the study.

My earnest thanks to Moeed Ali, USTAZ saif-eldien and Mowada for thier sincere prompting and valuable help to finish this work.

And thankful are due to staff member of Plant Protection, Department, and College of Agricultural studies.
List of contents

Thesis ... I
Inception .. II
Dedication .. III
Acknowledgment ... IV
List of contents ... V
List of tables ... VI
List of figures .. VIII
Abstract .. IX
Arabic abstract .. X

CHAPTER ONE

1.1. Introduction ... 1-2

CHAPTER TWO

LITRATUREVIEW

2.1. Neofusicoccum mangiferae ... 3
2.1.1 Classification ... 3
2.1.2 Synonyms .. 4
2.1.3 Biology ... 4-5
2.1.4 Life cycle .. 5
CHAPTER THREE
MATERIAL AND METHODS
3.1. Location of the study ... 11
3.2. Collection of infected plant material 11
3.3. Collection of botanical and chemicals, materials 11
3.4. Isolation characterization and identification of Neofusicoccum mangifera ... 12
3.5. Preparation of fungicide concentrations 13
3.6. Test procedure .. 13-14
3.7. Experimental design .. 14
3.8. Statistical analyses ... 14

CHAPTER FOUR
RESULTS

4.1 Identification of the pathogen Neofusicoccum mangiferin vi 15
4.2 The Effects of Garlic extractsand Fungicide on the liner growth of N. mangiferin vitro two days after incubation 15
4.3 The Effects of Garlic extractsand Fungicide on the liner growth of N. mangiferin vitro four days after incubation 17
4.4 The Effects of Garlic extractsand Fungicide on the liner growth of N.mangiferin vitro six days after incubation 17
ABSTRACT

Nattrassia mangiferae (Neofusicoccum) considered as one of most important disease of forest and horticulture trees in worldwide and Sudan. The present investigation was undertaken under laboratory condition of plant production Department, college of Agricultural study, Sudan university of science and technology, to study the anti fungal activity of alcoholic of leaves extracts of bulbs of garlic plant, and efficacy of fungicide (score) on growth, of the fungus *nattrassia mangiferae*. Three concentration of alcoholic extract of garlic and fungicide, each of 25, 50 and 100%, at were used in addition to control. The results showed that all concentrations of the alcoholic extract of garlic tested and fungicide exhibited significantly high inhibitory effect against the linear growth of test fungus compared to control. However, the effect of both fungicide and garlic extracts was more pronounced against test fungus. The high concentration of the fungicide score, garlic extract. At gave significantly higher inhibition among the plant extracts tested that of garlic was invariably the most effective in suppressing the fungus growth than fungicide. Generally, the results showed that the anti fungal activity increase with increase in extract concentration.
ملخص البحث

يعتبر مرض النتراسيا (نيوفز كوك مانفديرا) من أهم امراض الأشجار الغابية و البستانيه في العالم.

أجرت هذه الدراسة تحت ظروف المختبر بقسم وقاية النبات (معامل امراض النبات) كلية الدراسات الزراعية جامعه السودان للعلوم والتكنولوجيا (شملهات) لدراسة تأثير المستخلص الكحولي لبصليات نبات الثوم والمبيد الفطري (سكور) علي نمو فطر نتراسيا مانفديرا. استخدمت ثلاث تركيز من المستخلص الكحولي للثوم والمبيد الفطري (25, 50, 100%) اضافه الي الشاهد تم تقييم الاثر التثبيطي لهذه التراكيز بتسلج نسبة تثبيط نمو الفطر. اوصحت النتائج ان كل تراكيز المستخلص الكحولي والمبيد قد اظهرت تأثير معنوي ضد الفطر المختبر مقارنة بالشاهد. علي اي حال كلتي المبيد الفطري ومستخلص الثوم كااكثر وضوحا ضد الفطر المختبر. التركيز الأعلي في كل من المستخلص الكحولي للثوم (100%) اعط اعلي نسبة تثبيط مقارنته بالشاهد. فيما بين المستخلص النباتي الكحولي للثوم دمما الأكثر فعاليه في تثبيط نمو الفطر من المبيد. عموما اظهرت النتائج ان الفعاليه ضد الفطر تزداد بزياده تركيز المستخلص.
CHAPTER ONE
INTRODUCTION

Neofusicoccum mangiferae (Sutton and Dyko, 1989) is a cosmopolitan fungus of the family Botryosphaeriaceae for which asexual stage has not been described (Elliott and Edmonds, 2004) Neofusicoccum was originally described by Nattrass (1933) in Egypt as the main cause of die back on deciduous trees based on cultural Characteristics and reproductive morphology of the fungus then colavan and Wallace (1949), Punithalingam and Waterston (1970). The Name *Nattrassia mangiferae* has been given by Sutton and Dyko (1989) who revised the genus Hendersonula. Neofusicoccum is a polymorphic fungus that has two spore stage, the pycnidial and the arthroconidial scytalidium state (Sutton and Dyko, 1989). Earlier names for this fungus have been Dothiorellathere mangiferae, Exosporinafawcettii, Fusicoccum eucalypti, Hendersonulacypria, H. agathidis, and H. torulaidea. The syanamorph is known by the name scytalidium dimidiatum, also toruladimidiata, and S. lignicola. More recently this species has been reclassified in to mangiferae (Elliott and Edmonds, 2004). The fungus Neofusicoccum is a polyphagus fungus that attacks different types of trees. The earliest reports of plant diseases caused by *N. mangiferae* were from India on mango tree in (1908), and on citrus in California in (1923) (Sutton and Dyko, 1989). Recently, the disease was reported on Eucalyptys spp. In Iraq (Alzarari et al, 1979), on madrone (Arbutus menziesii) in USA (Elliott, et al, 2002), on strawberry trees (Arbutus unedo) in Europe (tsahouridou and thanassouloupoules, 2000) and on cassava in west Africa (misikta et al, 1993).
According to FAO (2007), symptoms caused by Neofusicoccum differ depending on the part of the plant affected. The disease is mostly documented to cause stem and branch dieback, cankers with external crack are produced on stems and branches from which oozing exudates may be observed. Blossom blight and asymptomatic trees can produce fruit which develop stem end rot or soft brown rot after ripening (Ahmed, 2005). In Sudan, Neofusicoccum is an introduced disease that firstly reported by Giha (1975) on ficusbenghalensis L. since the disease has spread all over the country, and was reported in as many as 29 different plant species that include shade, ornamented, timber and orchard trees (Ahmed and Yassin 1992, Nour 1996, Mohamed 2000 and Ahmed 2005).

Neofusicoccum has a wide host range, occurring on many trees in forests, orchards, ornamental, and shade trees including ficus spp., Acassia spp., baobab spp., Apple spp., citrus spp., Eucalyptus spp., mangifera Spp., and arbutus spp., Giha, 1975 and abbasher et al, 2013). Based on the foregoing, Neofusicoccum is one of the most hazardous disease that spread widely. There is limited information or lack of effective control measures about the disease control accordingly, on effective control measures should be developed to control this devastating disease that represent real threat to fruit, forest and ornamented trees. The aim of this study is to explore the potential of some higher plants extracts and systemic fungicide in suppressing the growth of this fungus with the following objectives:

1-To explore the potentials of crude aqueous extract of some plant in inhibiting the growth of Neofusicoccum mangiferae.

2-TO evaluate the efficacy of systemic fungicide in suppressing the growth of the fungus Neofusicoccum mangiferae.
CHAPTER TWO
LITRATUREREVIEW

2.1. *Neofusicoccum mangiferae*

Nattrassia is a genus of fungi in the family Botryosphaeriaceae for which there is a single species *Nattrassia mangiferae* (Sutton and Dyko, 1989). The fungus is a cosmopolitan and polyphagous that attacks a multitude of tree flora. More recently this species has been reclassified into the family Neofusicoccum as *Neofusicoccum mangiferae* (Crous, et al., 2006).

2.1.1 Classification

Kingdom: fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Botryosphaeriales
Family: Botryosphaeriaceae
Genus: Neofusicoccum
Species: mangiferae (Sutton and Dyko 1989).

Neofusicoccum mangiferae is an anamorphic species of fungus in Ascomycota. It is plant pathogen. Originally the fungus was named *Dothiorella mangiferae* by (Sydow *et al*., 1916). It was given its current name Neofusicoccum mangifusicoccum by (Crous *et al*., 2006).

2.1.2 Synonyms

There is great confusion regarding the taxonomy, classification and identification of this anamorph species as reported by U.S. Department of agricultural Research Service Systematic Mycology and Microbiology Laboratory-Nomenclature fact sheet, March 9, 2015. Dothiorella mangiferae Syd, and Synder (1916).

Fusicoccum eucalypti Sousa da Camara, (1929)
2.1.3 Biology

The fungus is able to grow on temperatures ranging from 20-40°C with an optimum between 30-35°C. Mycelia growth was best at pH 6. The best medium for mycelial growth was potato dextrose agar (PDA).

Maximum conidial germination occurred at relative humidity higher than 90%. It was also reported that systemic fungicide Benomyl (Benlate) was less effective than the non-systemic fungicide: Mancozeb (Dithane M45) and Maneb (manebe80) (Calavan, and Wallace 1954., Nori, 1972., Giha, 1975., Davison, 1996 and Elshikh, 2004). On PDA N. mangiferae grows readily and formed whitish mat which within 2-3 days turned to blackish in color.

The arthro spores were spherical to cylindrical in shape (Nori, 1996). Pyno-sproes were biseptate with terminal cells hyaline to subhyline and the middle cell light to dark brown (Calavan and Wallace, 1954). The colony is effuse and dark blackish brown to black Hyphae were mid to dark brown and septated. Arthroconidia was mid to dark brown, smooth mostly a septated but occasionally with one or more very dark transverse septa (Ellis, 1971 and Mohammed et al., 2009).

2.1.4 Life cycle
The fungus has a very simple life cycle. The conidia are produced in black powdery masses under bark, and are easily wind disseminated. These spores which arise from segment hyphae carried to damage bark tissue where they germinate and initiate infection most active fungal growth occurs during summer where the temperature is very high and the trees are prone to infection under drought condition (Giha, 1975).

The mycelium grows into living tissues infecting sap wood which become stained grey to black in colour. Research in Califfornia simulated sunburn damage on bark of walnut trees with use of a blowtorch to induce infection (Olsen, 1998).

2.1.5 Epidemiology

Elliot and Edmonds (2003) demonstrated that *N. mangiferae* attacked drought-stressed trees.

They also indicted that the fungus is primarily wound – invading. According to (Mirzaee, *et al.*, 2002) this fungus attack trees growing in high humidity or high temperature where the temperature are not as extreme but high humidity is common and disease is not as prevailing in Claremont, Whittier and other more inland localities.

2.1.6 Distribution and host Range in Sudan

The fungus was found on citrus spp. And other fruit such as mangoes and date palm in River nile and northern states (Giha, 1975; Elshikh, 2004; and Mohammed Elamein, *et al.*, 2009).

It was also observed on shade and ornamental trees like Ficusspp, Neem, rain tree (samaniasaman) in Khartoum state and wed medani town in Elgezira state (Giha, 1975, Giha 1996; Nori, 1996, Elatta and nori, 1999). The host range fungus also included to forest trees such as *acacia Senegal*, *Eucalypusca maldulensis* and *Khayase neglensis* (Nori, 1996; ElAtt and Nori, 1999, Elshafie and Ali, 2005).
2.1.7 Symptom
The characteristic symptom of *N. mangiferae* on the host plant is bark cracking and, peeling off beneath the sooty layer are seen. (Giha, 1975; Nori, 1996; Mohukker and Yassin, 2001; Elshikh, 2004 and Mohammed Elamein, *et al.*, 2009). Initially *N. mangiferae* causes leaf chlorosis, necrosis, blight defoliation and die back (Nori, 1996). Brown rot was observed on white yam tuber (Sangoyomi, *et al.*, 2002) and mango fruit (Lonsdale, 1996). It causes fruit rot in banana and sweed orange (Giha, 1996). However, mangiferae is considered as a facultative parasite that often grows on dead branches or wound parasite (Paxon *et al.*; 1964; Giha, 1975; and Polizzi *et al.*, 2009).

2.1.8 Effect on the Human
The fungus *N. mangiferae* was defined previously as Hendersonul atoruloidea which cause onychomycosis (nail infection) and superficial skin infection especially in tropical region. Scytilidium dimidiatum is synanamorph (Medical dictionary, 2009).

The fungus has been also implicated in case of eye infection (endophthamistis) in a healthy 34 year old man, resident in Spain. The infection was due to corneal penetrating Trauma in the left eye with a vegetal foreign body (wooden mallet) (Blazquez *et al.*, 2000).

The infection was also observed on a 60-year old immune competent patient, due to injury by a piece of grass in Zimbabwe (Gumbo *et al.*, 2002). It was also reported the case of backbone discs infection (Spondylodiscitis) and granular skin lesions due to *N. mangiferae* in a 62 year old male of Turkish origin had been living in Austria (Willinger *et al.*, 2004).
2.2 Control Measures

2.2.1. Chemical Control

Themis et al; (2005) mentioned the effective fungicide against *N. mangiferae* that infects limb dieback of figs in California such as Tebuconazole, propiconazole. Elshikh (2004) demonstrated that Tilt completely inhibited *N. mangifera et at* 200 ppm. And 100 ppm.

2.2.2. Cultural practices

In Arizona State (2007), it was recommended for control of sooty canker disease in citrus to apply the following methods:

1-preveting sunburn of the bark is usually accomplished by avoided over-pruning of trees.

2-Good pruning practices, it is observed that the correct pruning should be employed to conserve collar trees e.g. ficus spp. And other

3-Good sanitation by removing all infested materials

4-Maintenance of vigor with proper fertilizer and watering, (Calavan and Wallace, 1949) found that the blight on marsh grapefruit was more severe on weak trees than healthy ones. Downer (2008) recommended removal and replacement of the dead trees of Ficusnitida in California.

2.2.3. Bio-control

It was reported that *Trichoderma viride* had inhibitory effect on radial growth of *N. mangiferae* (Nori, 1996; El-shikh, 2004 and Mohammed Elamien, et al; 2009). On the other hand, Taheri et al.,(2005).mentioned that no antagonistic mechanism i.e. coiling , vacuolization and lyses occurred but when the added the volatile metabolism of *Trichoderma spp* It did not inhibit growth of *N.mangiferae* Bioactivity of soil-borne Streptomyces sp. against *N. mangiferae* had shown antifungal properties (Sadeghy and Hatami, 2013).
2.2.4. Resistance of *N. mangiferae*

Resistance plant to the fungus infections are due to:

1- The callus tissues formation (Elliot and Edmond, 2008).

2- Phenolic and related compounds (Prabha and Choudhary 1998, Zine El Aabidine et al., 2010; and Hassan *et al.*, 2011).

3- Alkaloids compounds (Rakoto -Ratsimanga *et al.*, 1997).

4- Cuticle thickness (*Curtis*, 1928).

2.3 Botanical extract:

2.3.1 Garlic (*Allium sativum*)

2.3.1.1 Scientific classification

Kingdom: Plantae
Clade: Angiosperms
Clade: Monocots
Order: Asparagales
Family: Amaryllidaceae
Subfamily: Allioideae
Genus: Allium
Species: *A. sativum*
Binomial name
Allium sativum(NGRP, 2006).

The crop which is commonly as garlic is a species in the onion genus, Allium of the family Alliaceae. Its close relatives include the onion, shallot, leek, chive (Block, 2010) With a history of human use of over 7,000 years garlic is native to central Asia, and has long been a staple in the Mediterranean region, as well as a frequent seasoning in Asia, Africa, and Europe. It was known to Ancient Egyptians, and has been used for both culinary and medicinal purposes.

2.3.1.2 Uses

Garlic is central to cuisines of Mexico, the Caribbean, South America, the Middle East, India and China and can impart flavor to many different type of dishes.
Economically, garlic is used in commercial food flavoring (Wiersema et al 1999). Garlic is also used in folk medicine including treatment of bronchitis and respiratory problems, gastrointestinal problems, flatulence, leprosy, menstrual cramps, high blood pressure, diabetes and externally for warts, corns, arthritis, muscle pain, neuralgia and sciatica (Grieve and Mrs. M., 1971; Simon et al., 1984; Heinerman and John, 1995 and PFAF, 2002). Sangoyomi (2004) reported that aqueous extract of garlic effectively inhibited mycelia growth, conidia, pycnidia and sclerotial production of *Butryodiplodia theobromae*, *Aspergillus niger*, *Sclerotium rolfsii*, *Rhizoctonia solani* and *Neofusicoccum mangiferae* fungal pathogen in yam storage.

2.4.2 Uses

It is used as a fabric softener in laundry. Sodium bicarbonate is used also as BC dry chemical fire extinguishers and as an alternative to the corrosive ammonium phosphate in extinguishers. The alkali nature of sodium bicarbonate makes the agent forms a crust over the surface similar to the effect of wet cosmetic; it is also used as a cleaning agent and as absorbent for moisture and odor. In the insects pest control, the product is used repeatedly to kill fleas, ants and other insect pest (GUN, 2007). In study by Prasannath and Mahendran (2013), the results that potassium or sodium bicarbonate showed high inhibitory effect on the mycelia growth of *A. solani*, where complete inhibition was obtained.
CHAPTER THREE
MATERIAL AND METHODS

3.1. Location of the study
This study was conducted under laboratory of Plant Pathology department college of Agriculture studies “Shambat, Sudan university of science and technology within the period of September to December 2014, this study was investigate the effect of aqueous extracts of Garlic (Allium satavim), and efficacy of fungicide (Score Ec250) /against the growth of Neofusicoccum mangiferin vitro.

3.2. Collection of infected plant material
Random samples were collected from bark and leave of infected mango trees (Mangifera indica) showing typical symptoms of canker on stem and necrosis of leaves at the college form at Shambat area. Collected samples were kept in plastic bags and brought to laboratory for further isolation and identification of the fungus Neofusicoccum.

3.3. Collection of botanical and chemicals, materials
Garlic leaves were collected from Shambat area and brought to the laboratory where they were shade dried after complete drying, plant samples were crushed separately to obtain fine powder for extraction .the garlic sample was collected from local market.

3.4. Isolation characterization and identification of Neafusicoccum mangifera
Previously collected sample of infected stem bark and mango leaves typical symptoms of the disease were cut into small part approximately 0.5 to 1.2 cm , washed thoroughly with the top water surface sterilized Rinsed three times in
sterilized distal water then dried on sterilized filter paper. The sterilized stem and leaves sections were then plated at the rate of 5 sections per plate on sterilized Petri-dishes containing palate dextrose ager medium (PDA). The inoculated Petri-dishes were incubated at 25°C for 7 days.

Growing fungus was further subculture on PDA medium for further purification of the fungus. Purified growing fungus was examined under compound microscopic based on the method of (Gina, 1975 and Nori, 1996) to confirm that the fungus in Neafusicoccum mangifera.

The identification of the fungus growth was habit character and spores using microscopic examination to confirm Sutton and Dyko (1989). Gina,(1996) and abbashem et.al, (2013).

Standard books and research paper were also consulted during the examination of this fungus (Elliott, 2004).

The purified isolates were maintained on PDA medium for further studies. Aqueous extracts of each of the plant materials were prepared as recommended by Okigbo (2006). The obtained fine powder form grinded garlic bulb plant was weighed (25, 50 and 100gm) and placed in 100ml conical flask each and completed to 75-50 and 100ml sterilized distilled water respectively to obtain the three concentrations and it was placed in a shaker for 4hrs. The extracts were filtered overnight to obtain 25,50 and 100% concentrations.

3.5. Preparation of fungicide concentrations

The recommended of the commercial product, 2ml l1 which represent 100% as higher dose and two lower other concentrations (50% middle 25 Lower dose) were used according (two ml) of the Scorefungicide was distilled water to obtain highest (H) concentrations 100% and it was diluted to give middle (M)50% and lower 25%(L) concentrations.
3.6. Test procedure

Poisoning Plating Technique was used in this study (Rao and Srivastava, 1994) to evaluate the effect of each concentration on linear growth of the fungal. Pure culture of the fungal growth was prepared from previously maintained culture of *neofusicoccum mangfera* prepared PDA medium was amended with the required concentration from garlic and fungicide revues before being solidified in a conical flask of H 100ml, agitated and poured into sterilized glass petri dishes.

Three plates, containing 30 ml of PDA, were assigned for each concentration and left to solidify. The other three plates with PDA medium served as control.

One mycelial disc of the fungus was placed in the back of the plate and incubated at 25°C in incubated and radial growth of pathogen was measured at 24 n intervals.

The petri dishes of each concentration were arranged in a complete block design in incubator and incubator at 25°C for 5 days as mean growth along two axes on the two pre-drawn perpendicular line on the reverses side of the plate the growth of the fungus was measured and calculated successively after 3, 4 and 5 days after inoculation.

The effect of each extract concentration An liner fungal growth was calculated as percentage of inhibition in diameter of fungal growth according to awuan (1989)

$$MP = M1 - M2$$

Where $MP = \text{percentage inhibition of mycelial growth}$, $M1 = \text{mycelial growth in central petri dishes without extract fungicide}$, $M2 = \text{mycelial growth in extract fungicide petri dishes}$.

3.7. Experimental design

The plate were arranged in a complete Randomied block Design with three replications
3.8. Statistical analyses

The obtained data was statistically analyzed by computer software Statistix 08 according to analyses of variance (ANOVA), Duncan multiple Range test was used for mean separation.
CHAPTER FOUR

RESULTS

This study was conducted under laboratory conditions of plant protection Department, College of Agricultural Studies, Sudan University of science and Technology (During March and April 2016). The aim of this study was to investigate the effect of aqueous extracts of Garlic (*Allium satavim*), and efficacy of fungicide (Score) against the growth of *Neofusicoccum mangiferin vitro*.

4.1 Identification of the pathogen *Neofusicoccum mangiferin vitro*

Isolation of *Neofusicoccum mangifer* from mango trees (*mangifera indica*) was carried out from naturally infected leaves showing symptoms and identified on basis of cultural and morphological characteristics as *Neofusicoccum mangifer* according to the shape of spores and conidia.

4.2 The Effects of Garlic extracts and Fungicide on the linear growth of *N. mangiferin vitro* two days after incubation.

The results (Table 1) showed that the garlic aqueous extracts of all concentration and fungicide exhibited an inhibitory effect on the fungal growth 2 days after inoculation. The percentage inhibition ranged from (0.65, 0.73 and 0.00%) at the three concentrations (25, 50 and 100%) respectively. Moreover, the fungicide Tilt demonstrated 100% inhibition. The inhibitory effect from all concentrations tested was significantly different from control (1.8%).
Table 1 Effects of aqueous extract of Garlic and fungicide (Score) on the linear growth of *Neofusicoccum mangiferin vitro*.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Concentration (%)</th>
<th>Inhibition zone (%)</th>
<th>2<sup>th</sup> day</th>
<th>4<sup>th</sup> day</th>
<th>6<sup>th</sup> day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic</td>
<td>25</td>
<td>0.65<sup>bc</sup></td>
<td>0.95<sup>B</sup></td>
<td>1.01<sup>B</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.73<sup>B</sup></td>
<td>1.1<sup>B</sup></td>
<td>1.21<sup>B</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.00<sup>c</sup></td>
<td>0.00<sup>c</sup></td>
<td>0.00<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Fungicide (Score)</td>
<td></td>
<td></td>
<td>0<sup>C</sup></td>
<td>0<sup>C</sup></td>
<td>0<sup>C</sup></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td>1.8<sup>A</sup></td>
<td>4.4<sup>A</sup></td>
<td>4.6<sup>A</sup></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td></td>
<td>0.54</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>SE±</td>
<td></td>
<td></td>
<td>0.121</td>
<td>0.28</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Means followed by the same letter are not significantly different (P< 0.05). Data in parenthesis are transformed using square root transformation (√(x + 0.5)) before analysis.
Fig. 1 Effects of aqueous extract of Garlic and fungicide (Score) on the linear growth of *Neofusicoccum mangiferin vitro*.
4.3 The Effects of Garlic extracts and Fungicide on the liner growth of *N. mangiferin vitro* four days after incubation.

Four days after incubation, all concentration of garlic extracts as well as that of the fungicide were invariably continued exhibiting suppressing effects against the fungal growth. The percentage inhibition ranged from (0.95, 1.1 and 0.00%) at the three concentrations (25, 50 and 100%) respectively. Moreover, the fungicide Tilt demonstrated 100% inhibition. The inhibitory effect from all concentrations tested was significantly different from control (4.4%).

4.4 The Effects of Garlic extracts and Fungicide on the liner growth of *N. mangiferin vitro* six days after incubation.

Six days after incubation, the results showed that all concentration as well as the fungicide in suppressing the fungal growth (1.01, 1.21 and 0.00) respectively and the fungicide gave (0.00).

In fact, all tested concentrations of Garlic continued inducing a significant inhibition zone percentage against the test fungus compared to control (Table, 1). Obviously, *N. mangifer* differs in its response to the different concentrations but on the whole, growth inhibition increased with increasing concentration. This inhibitory effect from all concentrations was significantly different from control.
CHAPTER FIVE

DISCUSSION

Nattrassia mangiferae (*Neofusicoccum*) is cosmopolitan and polyphagas genus of fungi that attacks a multitude of fruits and forest trees (*crocus*, *et al.*, 2006). The damage caused by the fungus *Neofusicoccum mangiferae* differ depending on the part of the plant affected – In Sudan the disease has spread all over the country, and was reported in as many as 29 different plant species that include, ornamental, timber and orchard trees (Ahmed and Yassin 1992; Nouri 1996; Mohamed, 2000; Ahmed, 2005; and Abbasher*et al.*; 2013). Limited success in controlling this disease which poses a threat to wide range of fruit, ornamental and forest trees emphasizes the need and importance of developing an alternative and effective control measures – this study was conducted under laboratory condition of plant pathogen, college of agricultural studies, Sudan University of Science and Technology during the period from Après to may (2016). To investigate the effect of garlic bulbs alcoholic extract and fungicide score efficacy against the fungus *Neofusicoccum mangiferae*.

A number of control strategies were presented to combat this disease (Karabulut *et al.*, 2003; Sangoyomi, 2004; Themis, *et al*, 2009 and Muntasir .2014). Historically, numerous phytochemicals have been isolated from different plant which is now being prescribed by medical partitions all around the world (Newman, *et al.*, 2000).

In fact, higher plants are extremely abundant with biologically active secondary metabolites.

Over 80% of all known Alkaloids, terpenioid, phenols and other secondary metabolite were produced by higher plants (Siddig, 1993) pest control strategies,
therefore need to proper regulation in the interest of human health and environment.
In recent years there has been considerable pressure on consumers to reduce or eliminate chemical fungicide in the food.
There is increased the public awareness over the level of pesticide residue in food. This concern to encouraged researchers to look for alternative solutions to synthetic pesticide (Sharma and Meshram, 2006).
The results of this study (Tables and Figures) revealed that the garlic alcoholic extract and fungicide score consistently throughout the course of the experiment exhibited an inhibitory effect on mycelial radial growth of the fungus with significantly higher inhibition tones percent compared to control.
Similar studies which explored the effect of extract of many higher plants have been reported to exhibit antifungal properties under laboratory condition.
In fact this finding is in agreement with (Muntasir, 2014). Who tested the bioactivity of basil extract to control Neofusicoccum mangiferae the cause of sooty canker in date palm similar results of garlic antifungal properties demonstrated by this study were also reported by (Saangoyomi, 2004). Who proved that alcoholic extract of garlic effectively inhibited mycelia growth, conidia, Pycnidia and Scleromae, production of Butryodiplodia Theobromae, Aspergillus sniger, Sclerotiumrolgsii, Rhizoctonia solani and Neofusicoccum mangiferae, fungal pathogens of yam in Storage?
These results also confirm the findings of (Islam et al., 2001) who reported the control of Colletrichum spp and M. phaseolina in jute using garlic extract at rational 1:2. the result suggest common white garlic extract a suitable bio fungicide against cowpea fungal pathogens.
It also explains the inter-species bio diversity among the garlic spp.
Generally, uses of synthetic fungicide considerably reduce the impact of this disease.

In this study the fungicide score consistently inhibited the radial mycelia growth of *Nattrassia mangiferae* and its suppressing effect was more pronounced at all concentration tested throughout the time of the investigation. These result confirm that which reported by (Themis *et al.*, 2005) who indicated the effectiveness of fungicides against *Nattrassia mangiferae* that infects limb die back of figs in California (Elshik 2004) as well demonstrated that the fungicide Score completely inhibited *Nattrassia mangiferae* at 200PPm and 100PPm.
CONCLUSION

The isolated fungus from mango tree showing typical symptoms of branch wilt, and leaves necrosis presents typical shape of spore and conidia of the fungus is *Neofuscoccum mangiferae* as described by Giha(1996); (Sutton and Dyco, 1989) and Abbasher, *et al.*, (2013).

The crude alcoholic extract of garlic and fungicide score top at all concentrations exhibiting inhibiting effects against the radial mycelia growth of the test fungus. The percentages zone of inhibition was significantly high compared to the control. Among all treatments Garlic extract and fungicide at all concentrations tested (25, 50, and 100%) exhibited consistently the highest inhibitory effect throughout the test period than the other equivalents.

The screened concentrations of all treatments differ in their reactions to test fungus. Likewise the test organism responded differently to the different concentrations of extract.
RECOMMENDATIONS

Based on the foregoing results the following studies are recommended:

1- To further investigates the antimicrobial properties in a group of medicinal plants and fungicide score against targets organism to determine their potentials as pesticide.

2- Further research may be needed to look into on-field trial of the garlic ssp. Before embarking on large scale production of the active concentrations as bio pesticide

3- The variability in response which expressed by test organism towards the different concentrations of treatments could be investigated to adjust an optimum dose for controlling Nattrassia mangiferae.
REFERENCES

Sadeghya B and N. Hatamia N. (2013). Bioactivity of soil. Borne *streptomycetes* sp. Against *N. magnifier* Department of Agriculture, payomnoor university (PNU) of Kerman ,Iran. Published online: 02 sep (2013).

Sangoyomi (2002) TE and find all citations by this anther (default). Or filter your weren’t search EKPO EJA. (2002). First report of *Nattarassiamangiferae* as a postharvest fungal pathogen of white yam (Dioscorearotundata) in Nigeria. Plant Disease. 86 (8): Pg 919.

