Chapter 3

Homotopy and Result of Equivalence Approximate

Let C be a unital separable amenable simple C^{*}-algebra with tracial rank no more than one which also satisfies the UCT. Suppose that $\phi: C \rightarrow A$ is a unital monomorphism and suppose that $v \in A$ is a unitary with $[v]=0$ in $K_{1}(A)$ such that v almost commutes with ϕ. It is shown that there is a continuous path of nitaries $\{v(t): t \in[0,1]\}$ in A with $v(0)=v$ and $v(1)=1$ such that the entire path $v(t)$ almost commutes with ϕ, provided that an induced Bott map vanishes. Other versions of the so-called Basic Homotopy Lemma are also presented.

Section (3.1) Homotopy of Unitaries in Simple C^{*}-Algebras with Tracial Rank One

Fix a positive number $\epsilon>0$. Can one find a positive number δ such that, for any pair of unitary matrices u and $v\left(K_{1}\left(M_{n}\right)=\{0\}\right.$ for any integer $\left.n \geq 1\right)$ with $\|u v-v u\|<\delta$, there exists a continuous path of unitary matrices $\{v(t): t \in[0,1]\}$ for which $v(0)=$ $v, v(1)=1$ and $\|u v(t)-v(t) u\|<\epsilon$ for all $t \in[0,1]$? The answer is negative in general. A Bott element associated with the pair of unitary matrices may appear. The hidden topological obstruction can be detected in a limit process. This was first found by Dan Voiculescu [29]. On the other hand, it has been proved that there is such a path of unitary matrices if an additional condition, bott $1(u, v)=0$, is provided (see, for example, [57] and also in [70]).
It was recognized by Bratteli, Elliott, Evans and Kishimoto [57] that the presence of such continuous path of unitaries in general simple C^{*}-algebras played an important role in the study of classification of simple C^{*}-algebras and perhaps plays important roles in some other areas such as the study of automorphism groups (see, for example, [12,24,21]). They proved what they called the Basic Homotopy Lemma: For any $\epsilon>0$, there exists $\delta>0$ satisfying the following:
For any pair of unitaries u and v in A with $\operatorname{sp}(u) \delta$-dense in \mathbb{T} and $[v]=0$ in $K_{1}(A)$ for which

$$
\|u v-v u\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

there exists a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that

$$
v(0)=v, \quad v(1)=1_{A} \text { and }\|v(t) u-u v(t)\|<\epsilon
$$

for all $t \in[0,1]$, where A is a unital purely infinite simple C^{*}-algebra or a unital simple C^{*}-algebra with real rank zero and stable rank one. Define $\phi: C(\mathbb{T}) \rightarrow A$ by $\phi(f)=$ $f(u)$ for all $f \in C(\mathbb{T})$. Instead of considering a pair of unitaries, one may consider a unital homomorphism from $C(\mathbb{T})$ into A and a unitary $v \in A$ for which v almost commutes with ϕ.
In the study of asymptotic unitary equivalence of homomorphisms from an $A H$-algebra to a unital simple C^{*}-algebra, as well as the study of homotopy theory in simple C^{*}-algebras, one considers the following problem: Suppose that X is a compact metric space and ϕ is a unital homomorphism from $C(X)$ into a unital simple C^{*}-algebra A. Suppose that there is a unitary $u \in A$ with $[u]=0$ in $K_{1}(A)$ and u almost commutes with ϕ. When can one find a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ with $u(0)=u$ and $u(1)=1$ such that $u(t)$ almost commutes with ϕ for all $t \in[0,1]$?

Let C be a unital $A H$-algebra and let A be a unital simple C^{*}-algebra. Suppose that ϕ, ψ : $C \rightarrow A$ are two unital monomorphisms. Let us consider the question when ϕ and ψ are asymptotically unitarily equivalent, i.e., when there is a continuous path of unitaries $\{w(t): t \in[0, \infty)\} \subset A$ such that

$$
\lim _{t \rightarrow \infty} w(t)^{*} \phi(c) w(t)=\psi(c) \text { for all } c \in C
$$

We study the case that A is no longer assumed to have real rank zero, or tracial rank zero. The result of W. Winter in [30] provides the possible classification of simple finite C^{*}-algebras far beyond the cases of finite tracial rank. However, it requires to understand much more about asymptotic unitary equivalence in those unital separable simple C^{*}-algebras which have been classified. An immediate problem is to give a classification of monomorphisms (up
to asymptotic unitary equivalence) from a unital separable simple $A H$-algebra into a unital separable simple C^{*}-algebra with tracial rank one. For that goal, it is paramount to study the Basic Homotopy Lemmas in a simple separable C^{*}-algebras with tracial rank one. This is the main purpose.
A number of problems occur when one replaces C^{*}-algebras of tracial rank zero by those of tracial rank one. First, one has to deal with contractive completely positive linear maps from $C(X)$ into a unital C^{*}-algebra C with the form $C\left([0,1], M_{n}\right)$ which are not homomorphisms but almost multiplicative. Such problem is already difficult when $C=M_{n}$ but it has been proved that these above mentioned maps are close to homomorphisms if the associated K-theoretical
data of these maps are consistent with those of homomorphisms. It is problematic when one tries to replace M_{n} by $C\left([0,1], M_{n}\right)$. In addition to the usual K-theory and trace information, one also has to handle the maps from $U(C) / C U(C)$ to $U(A) / C U(A)$, where $C U(C)$ and $C U(A)$ are the closure of the subgroups of $U(C)$ and $U(A)$ generated by commutators, respectively.
Other problems occur because of lack of projections in C^{*}-algebras which are not of real rank zero.

The main theorem is stated as follows: Let C be a unital separable simple amenable C^{*}-algebra with tracial rank one which satisfies the Universal Coefficient Theorem. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta>0$, a finite subset $\mathcal{G} \subset C$ and a finite subset $\mathcal{P} \subset K(C)$
satisfying the following:
Suppose that A is a unital simple C^{*}-algebra with tracial rank no more than one, suppose that $\phi: C \rightarrow A$ is a unital homomorphism and $u \in U(A)$ such that

$$
\begin{equation*}
\|[\phi(c), u]\|<\delta \text { for all } c \in \mathcal{G} \text { and } \operatorname{Bott}(\varphi, u) \mid P=0 \tag{1}
\end{equation*}
$$

Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
\begin{equation*}
u(0)=u, u(1)=1 \text { and }\|[\varphi(c), u(t)]\|<\epsilon \text { for all } c \in \mathcal{F} \tag{2}
\end{equation*}
$$

and for all $t \in[0,1]$.
We also give the following Basic Homotopy Lemma in simple C^{*}-algebras with tracial rank one.

Let $\epsilon>0$ and let $\Delta:(0,1) \rightarrow(0,1)$ be a non-decreasing map.We show that there exist $\delta>0$ and $\eta>0$ (which does not depend on Δ) satisfying the following:

Given any pair of unitaries u and v in a unital simple C^{*}-algebra A with tracial rank no more than one such that $[v]=0$ in $K_{1}(A)$,

$$
\|[u, v]\|<\delta, \quad \operatorname{bott}_{1}(u, v)=0 \quad \text { and } \quad \mu_{\tau \circ l}\left(I_{a}\right) \geq \Delta(a)
$$

for all open $\operatorname{arcs} I_{a}$ with length $a \geq \eta$, there exists a continuous path of unitaries $\{v(t): t \in$ $[0,1]\} \subset A$ such that

$$
v(0)=v, \quad v(1)=1 \text { and }\|[u, v(t)]\|<\epsilon \text { for all } t \in[0,1],
$$

where $\imath: C(T) \rightarrow A$ is the homomorphism defined by $\imath(f)=f(u)$ for all $f \in C(\mathbb{T})$ and $\mu_{\tau \circ l}$ is the Borel probability measure induced by the state $\tau \circ l$. It should be noted that, unlike the case that A has real rank zero, the length of $\{v(t)\}$ cannot be controlled. In fact, it could be as long as one wishes.

In a subsequent paper [23], we use the main homotopy result Theorem (3.1.34) and the results in [22] to establish a K-theoretical necessary and sufficient condition for homomorphisms from unital simple AH-algebras into a unital separable simple C^{*}-algebra with tracial rank no more than one to be asymptotically unitarily equivalent which, in turn, combining with a result of W. Winter, provides a classification theorem for a class of unital separable simple amenable C^{*}-algebras which properly contains all unital separable simple amenable C^{*}-algebras with tracial rank no more than one which satisfy the UCT as well as some projectionless C^{*}-algebras such as the Jiang-Su algebra.
Let A be a unital C^{*}-algebra. Denote by $T(A)$ the tracial state space of A and denote by $\operatorname{Aff}(T(A))$ the set of affine continuous functions on $T(A)$.
Let $C=C(X)$ for some compact metric space X and let $L: C \rightarrow A$ be a unital positive linear map. Denote by $\mu_{\tau \circ l}$ the Borel probability measure induced by the state $\tau \circ l$, where $\tau \in T(A)$.
Let a and b be two elements in a C^{*}-algebra A and let $\epsilon>0$ be a positive number. We write $a \approx_{\epsilon} b$ if $\|a-b\|<\epsilon$. Let $L_{1}, L_{2}: A \rightarrow C$ be two maps from A to another C^{*}-algebra C and let $\mathcal{F} \subset A$ be a subset. We write

$$
L_{1} \approx_{\epsilon} L_{2} \text { on } \mathcal{F},
$$

if $L_{1}(a) \approx_{\epsilon} L_{2}(a)$ for all $a \in \mathcal{F}$.
Suppose that $B \subset A$. We write $a \in_{\epsilon} B$ if there is an element $b \in B$ such that $\|a-b\|<$ ϵ..
Let $\mathcal{G} \subset A$ be a subset. We say L is $\epsilon-\mathcal{G}$-multiplicative if, for any $a, b \in \mathcal{G}$,

$$
L(a b) \approx_{\epsilon} L(a) L(b)
$$

For all $a, b \in \mathcal{G}$.
Let A be a unital C^{*}-algebra. Denote by $U(A)$ the unitary group of A. Denote by $U_{0}(A)$ the normal subgroup of $U(A)$ consisting of those unitaries in the path connected component of $U(A)$ containing the identity. Let $u \in U_{0}(A)$. Define

$$
\begin{gathered}
\operatorname{cel}_{A}(u)=\inf \left\{\text { length }(\{u(t)\}): u(t) \in C\left([0,1], U_{0}(A)\right),\right. \\
\left.u(0)=u \text { and } u(1)=1_{A}\right\}
\end{gathered}
$$

We use $\operatorname{cel}(u)$ if the C^{*}-algebra A is not in question.

Denote by $C U(A)$ the closure of the subgroup generated by the commutators of $U(A)$. For $u \in U(A)$, we will use. u for the image of u in $U(A) / C U(A)$. If . $\bar{u} \cdot \bar{v} \in U(A) / C U(A)$, define

$$
\operatorname{dist}(\bar{u}, \bar{v})=\inf \{\|x-y\|: x, y \in U(A) \text { such that } \bar{x}=\bar{u}, \bar{y}=\bar{v} .
$$

If $u, v \in U(A)$, then

$$
\operatorname{dist}(\bar{u}, \bar{v})=\inf \left\{\left\|u v^{*}-x\right\|: x \in C U(A)\right\} .
$$

Let A and B be two unital C^{*}-algebras and let $\phi: A \rightarrow B$ be a unital homomorphism.
It is easy to check that ϕ maps $C U(A)$ to $C U(B)$. Denote by ϕ^{\ddagger} the homomorphism from $U(A) / C U(A)$ into $U(B) / C U(B)$ induced by ϕ. We also use ϕ^{\ddagger} for the homomorphism from $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$ into $U\left(M_{k}(B)\right) / C U\left(M_{k}(B)\right)(k=1,2, \ldots)$.
Let A and C be two unital C^{*}-algebras and let $F \subset U(C)$ be a subgroup of $U(C)$. Suppose that $L: F \rightarrow U(A)$ is a homomorphism for which $L(F \cap C U(C)) \subset C U(A)$. We will use $L^{\ddagger}: F / C U(C) \rightarrow U(A) / C U(A)$ for the induced map.
Let A and B be as in 2.6, let $1>\epsilon>0$ and let $\mathcal{G} \subset A$ be a subset. Suppose that L is a $\epsilon-\mathcal{G}$ multiplicative unital completely positive linear map. Suppose that $u, u^{*} \in \mathcal{G}$. Define $\langle L\rangle(u)=L(u) L\left(u^{*} u\right)^{-1 / 2}$.
Definition (3.1.1)[84]:
Let A and B be two unital C^{*}-algebras. Let $h: A \rightarrow B$ be a homomorphism and let $v \in$ $U(B)$ such that
$h(g) v=v h(g)$ for all $g \in A$.
Thus we obtain a homomorphism. $\bar{h}: A \otimes C\left(S^{1}\right) \rightarrow B$ by $\bar{h}(f \otimes g)=$ $h(f) g(v)$ for $f \in A$ and $g \in C\left(S^{1}\right)$. From the following splitting exact sequence

$$
\begin{equation*}
0 \rightarrow S A \rightarrow A \otimes C\left(S^{1}\right) \leftrightarrows A \rightarrow 0 \tag{3}
\end{equation*}
$$

and the isomorphisms $K_{i}(A) \rightarrow K_{1-i}(S A)(i=0,1)$ given by Bott periodicity, one obtains two injective homomorphisms

$$
\begin{align*}
& \beta^{(0)}: K_{0}(A) \rightarrow K_{1}\left(A \otimes C\left(S^{1}\right)\right) \tag{4}\\
& \beta^{(1)}: K_{1}(A) \rightarrow K_{0}\left(A \otimes C\left(S^{1}\right)\right) \tag{5}
\end{align*}
$$

Note, in this way, one can write $K_{i}\left(A \otimes C\left(S^{1}\right)\right)=K_{i}(A) \oplus \beta^{(1-i)}\left(K_{1-i}(A)\right)$. We use $\widehat{\beta^{(i)}}: K_{i}\left(A \otimes C\left(S^{1}\right)\right) \rightarrow \beta^{(1-i)}\left(K_{1-i}(A)\right)$ for the projection to the summand $\beta^{(1-i)}\left(K_{1-i}(A)\right)$ For each integer $k \geq 2$, one also obtains the following injective homomorphisms

$$
\begin{equation*}
\beta_{k}^{(i)}: K_{i}(A, \mathbb{Z} / k \mathbb{Z}) \rightarrow K_{1-i}\left(A \otimes C\left(S^{1}\right), \mathbb{Z} / k \mathbb{Z}\right), \quad i=0,1 \tag{6}
\end{equation*}
$$

Thus we write

$$
\begin{equation*}
K_{1-i}\left(A \otimes C\left(S^{1}\right), \mathbb{Z} / k \mathbb{Z}\right),=K_{1-i}(A, \mathbb{Z} / k \mathbb{Z}) \otimes \beta_{k}^{(i)}\left(K_{i}(A, \mathbb{Z} / k \mathbb{Z})\right), i=0,1 \tag{7}
\end{equation*}
$$

Denote by $\widehat{\beta_{k}^{(i)}}: K_{i}\left(A \otimes C\left(S^{1}\right)\right) \rightarrow \beta_{k}^{(1-i)} K_{1-i}(A, \mathbb{Z} / k \mathbb{Z}) \quad$ similarly to $\widehat{\beta^{(i)}}, i=1.2$.. If $x \in \underline{K}(A)$, we use $\boldsymbol{\beta}(x)$ for $\beta^{(i)}(x)$ if $x \in K_{i}(A)$ and for $\beta_{k}^{(i)}(x)$ if $x \in K_{i}(A, \mathbb{Z} / k \mathbb{Z})$. Thus we have a $\operatorname{map} \boldsymbol{\beta}: \underline{K}(A) \rightarrow \underline{K}\left(A \otimes C\left(S^{1}\right)\right)$ as well as $\boldsymbol{\beta}: \underline{K}\left(A \otimes C\left(S^{1}\right)\right) \rightarrow \boldsymbol{\beta}(\underline{K}(A))$. Thus one may write $K(A \oplus C(S 1))=K(A) \oplus \boldsymbol{\beta}(K(A))$.

On the other hand.h induces homomorphisms . $\bar{h}_{* i, k}: K_{i}\left(A \otimes C\left(S^{1}\right), \mathbb{Z} / k \mathbb{Z}\right) \rightarrow$ $K_{i}(B, \mathbb{Z} / k \mathbb{Z}), k=0,2, \ldots$, and $i=0,1$. We use $\operatorname{Bott}(h, v)$ for all homomorphisms. $\bar{h}_{* i, k} \circ$ $\beta_{k}^{(i)}$. We write

$$
\operatorname{Bott}(h, v)=0
$$

if . $\bar{h}_{* i, k} \circ \beta_{k}^{(i)}=0$ for all $k \geq 1$ and $i=0,1$.
We will use $\operatorname{bott}_{1}(h, v)$ for the homomorphism $. \bar{h}_{1,0} \circ \beta^{(1)}: K_{1}(A) \rightarrow K_{0}(B)$, and $\operatorname{bott}_{0}(h, u)$ for the homomorphism $\bar{h}_{0,0} \circ \beta^{(0)}: K_{0}(A) \rightarrow K_{1}(B)$.

Since A is unital, if $\operatorname{bott}_{0}(h, v)=0$, then $[v]=0$ in $K_{1}(B)$.
For a fixed finite subset $\mathcal{P} \subset K(A)$, there exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ such that, if $v \in B$ is a unitary for which

$$
\|h(a) v-v h(a)\|<\delta \text { for all } a \in \mathcal{G}
$$

then $\operatorname{Bott}(h, v) \mid P$ is well defined. In what follows, whenever we write $\operatorname{Bott}(h, v) \mid P$, we mean that δ is sufficiently small and \mathcal{G} is sufficiently large so it is well defined.

Now suppose that $K_{i}(A)$ is finitely generated $(i=0,1)$. For example, $A=C(X)$, where X is a finite $C W$ complex. When $K_{i}(A)$ is finitely generated, $\operatorname{Bott}(h, v) \mid P_{0}$ defines $\operatorname{Bott}(h, v)$ for some sufficiently large finite subset P_{0}. In what follows such P_{0} may be denoted by P_{a} Suppose that $P \subset K(A)$ is a larger finite subset, and $\mathcal{G} \supset \mathcal{G}_{0}$ and $0<\delta<\delta_{0}$.
$\operatorname{Bott}(h, v) \mid P$ defines the same map $\operatorname{Bott}(h, v)$ as $\operatorname{Bott}(h, v) \mid P_{0}$ defines, if

$$
\|h(a) v-v h(a)\|<\delta \text { for all } a \in \mathcal{G}
$$

when $K_{i}(A)$ is finitely generated. In what follows, in the case that $K_{i}(A)$ is finitely generated, whenever we write $\operatorname{Bott}(h, v)$, we always assume that δ is smaller than δ_{0} and \mathcal{G} is larger than \mathcal{G}_{0} so that $\operatorname{Bott}(h, v)$ is well defined (see [70] for more details).
In the case that $A=C\left(S^{1}\right)$, there is a concrete way to visualize bott ${ }_{1}(h, v)$. It is perhaps helpful to describe it here. The map $\operatorname{bott}_{1}(h, v)$ is determined by bott $_{1}(h, v)([z])$ where z is the identity map on the unit circle.
Denote $u=h(z)$ and define

$$
\begin{gathered}
f\left(e^{2 \pi i t}\right)= \begin{cases}1-2 t, & \text { if } 0 \leq t \leq 1 / 2 \\
-1+2 t, & \text { if } 1 / 2 \leq t \leq 1\end{cases} \\
\mathrm{g}\left(e^{2 \pi i t}\right)= \begin{cases}\left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2,}, & \text { if } 0 \leq t \leq 1 / 2 \\
0, & \text { if } 1 / 2<t \leq 1\end{cases}
\end{gathered}
$$

and

$$
\mathrm{h}\left(e^{2 \pi i t}\right)= \begin{cases}0, & \text { if } 0 \leq t \leq 1 / 2 \\ \left(f\left(e^{2 \pi i t}\right)-f\left(e^{2 \pi i t}\right)^{2}\right)^{1 / 2} & , \text { if } 1 / 2<t \leq 1\end{cases}
$$

These are non-negative continuous functions defined on the unit circle. Suppose that $u v=$ vu.
Define

$$
b(u, v)=\left(\begin{array}{cc}
f(v) & g(v)+h(v) u^{*} \tag{8}\\
g(v)+u h(v) & 1-f(v)
\end{array}\right) .
$$

Then $b(u, v)$ is a projection. There is $\delta_{0}>0$ (independent of unitaries u, v and A) such that if $\|[u, v]\|<\delta_{0}$, the spectrum of the positive element $p(u, v)$ has a gap at $1 / 2$. The

Bott element of u and v is an element in $K_{0}(A)$ as defined in [9,8] which may be represented by

$$
\operatorname{bott}_{1}(u, v)=[\chi[1 / 2, \infty) b(u, v)]-\left[\left(\begin{array}{ll}
1 & 0 \tag{9}\\
0 & 0
\end{array}\right)\right] .
$$

Note that $\chi[1 / 2, \infty)$ is a continuous function on $\operatorname{sp}(b(u, v))$. Suppose that $\operatorname{sp}(b(u, v)) \subset$ $(-\infty, a] \cup[1-a, \infty)$ for some $0<a<1 / 2$. Then $\chi[1 / 2, \infty)$ can be replaced by any other positive continuous function F for which $F(t)=0$ if $t \leq a$ and $F(t)=1$ if $t \geq 1 / 2$. Definition (3.1.2)[84]:

Let A and C be two unital C^{*}-algebras. Let $N: C_{+} \backslash\{0\} \rightarrow N$ and $K: C_{+} \backslash\{0\} \rightarrow$ $\mathbb{R}_{+} \backslash\{0\}$ be two maps. Define $T=N \times K: C_{+} \backslash\{0\} \rightarrow N \times \mathbb{R}_{+} \backslash\{0\}$ by $T(c)=$ $(N(c), K(c))$ for $c \in C_{+} \backslash\{0\}$. Let $L: C \rightarrow A$ be a unital positive linear map. We say L is T-full if for any $c \in C_{+} \backslash\{0\}$, there are $x_{1}, x_{2}, \ldots, x_{N(c)} \in A$ with $\left\|x_{i}\right\| \leq K(c)$ such that

$$
\sum_{i=1}^{N(c)} x_{i}^{*} L(c) x_{i}=I_{A} .
$$

Let $H \subset C+\backslash\{0\}$. We say that L is $T-H-$ full if

$$
\sum_{i=1}^{N(c)} x_{i}^{*} L(c) x_{i}=I_{A}
$$

for all $c \in H$.
Definition (3.1.3)[84]:
Denote by I the class of unital C^{*}-algebras with the form $\otimes_{i=1}^{m} C\left(X_{i}, M_{n(i)}\right)$, where $X_{i}=$ $[0,1]$ or X_{i} is one point
Definition (3.1.4)[84]:
Let $k \geq 0$ be an integer. Denote by I_{k} the class of all C^{*}-algebras B with the form $=$ $P M_{m}(C(X)) P$, where X is a finite $C W$ complex with dimension no more than k, P is a projection in $M_{m}(C(X))$.
Recall that a unital simple C^{*}-algebra A is said to have tracial rank no more than k (write $T R(A) \leq k$) if the following holds: For any $\epsilon>0$, any positive element $a \in A_{+} \backslash\{0\}$ and any finite subset $\mathcal{F} \subset A$, there exist a non-zero projection $p \in A$ and a C^{*}-subalgebra $B \in$ I_{k} with $1_{B}=p$ such that
(i) $\|x p-p x\|<\epsilon$ for all $x \in \mathcal{F}$;
(i) $p x p \in_{\epsilon} B$ for all $x \in \mathcal{F}$; and
(iii) $1-p$ is von Neumann equivalent to a projection in $\overline{a A a}$.

If $T R(A) \leq k$ and $T R(A) \neq k-1$, we say A has tracial rank k and write $T R(A)=k$. It has been shown that if $T R(A)=1$, then, in the above definition, one can replace B by a C^{*}-algebra in I (see [91]). All unital simple AH-algebra with slow dimension growth and real rank zero have tracial rank zero (see [31] and also [88]) and all unital simple AHalgebras with no dimension growth have tracial rank no more than one (see [51], or, Theorem 2.5 of [89]). Note that all $A H$-algebras satisfy the Universal Coefficient Theorem. There is unital separable simple C^{*}-algebra A with $T R(A)=0$ (and $T R(A)=1$) which is not amenable.

The following is taken from an argument of N.C. Phillips [25].
Lemma (3.1.5)[84]:
Let $H>0$ be a positive number and let $N \geq 2$ be an integer. Then, for any unital C^{*}-algebra A, any projection $\mathrm{e} \in \mathrm{A}$ and any $u \in U_{0}(e A e)$ with $\operatorname{cel}_{e A e}(u)<H$,

$$
\begin{equation*}
\operatorname{dist}(\overline{u+(1-e)}, \overline{1})<H / N, \tag{10}
\end{equation*}
$$

if there are mutually orthogonal and mutually equivalent projections $e_{1}, e_{2}, \ldots, e_{2 N} \in(1-$ $e) A(1-e)$ such that e 1 is also equivalent to e.

Proof:

Since $\operatorname{cel}_{e A e}(u)<H$, there are unitaries $u_{0}, u_{1} \ldots, u_{N} \in e A e$ such that

$$
\begin{equation*}
u_{0}=u, \quad u_{N}=1 \text { and }\left\|u_{i}-u_{i-1}\right\|<H / N, \quad i=1,2, \ldots, N . \tag{11}
\end{equation*}
$$

We will use the fact that

$$
\left(\begin{array}{cc}
v & 0 \\
0 & v^{*}
\end{array}\right)=\left(\begin{array}{ll}
v & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
v^{*} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

In particular, $\left(\begin{array}{cc}v & 0 \\ 0 & v^{*}\end{array}\right)$ is a commutator. Note that

$$
\begin{equation*}
\left\|\left(u \oplus u_{1}^{*} \oplus u_{1} \oplus u_{2}^{*} \oplus \ldots \oplus u_{N}^{*} \oplus u_{N}\right)-\left(u \oplus u^{*} \oplus u_{1} \oplus u_{1}^{*} \oplus \ldots \oplus u_{N-1}^{*} \oplus u_{N}\right)\right\| \tag{12}
\end{equation*}
$$ $<H / N$.

Since $u_{N}=1, u \oplus u^{*} \oplus u_{1} \oplus u_{1}^{*} \oplus \ldots \oplus u_{N-1}^{*} \oplus u_{N}$ is a commutator
Now we write

$$
\begin{aligned}
& u \oplus e_{1} \oplus \ldots \oplus e_{2 N} \\
&=\left(u \oplus u_{1}^{*} \oplus u_{1} \oplus u_{2}^{*} \oplus \ldots \oplus u_{N}^{*} \oplus u_{N}\right)\left(e \oplus u_{1} \oplus u_{1}^{*} \oplus \ldots \oplus u_{N-1}^{*} \oplus u_{N}\right)
\end{aligned}
$$

We obtain $z \in \operatorname{CU}\left(\left(e+\sum_{i=1}^{2 N} e_{i}\right) A\left(e+\sum_{i=1}^{2 N} e_{i}\right)\right.$ such that

$$
\left\|u \oplus e_{1} \oplus \ldots \oplus e_{2 N}-z\right\|<H / N
$$

It follows that

$$
\operatorname{dist}(\overline{u+(1-e)}, \overline{1})<H / N .
$$

Definition (3.1.6)[84]:
Let $=P M_{k}(C(X)) P$, where X is a compact metric space and $P \in M_{k}(C(X))$ is a projection. Let $u \in U(C)$. Recall (see [27]) that

$$
D_{c}(u)=\inf \left\{\|a\|: a \in C_{\text {s.a }} . \text { such that } \operatorname{det}(\exp (i a) . u)(x)=1 \text { for all } x \in X\right\} .
$$

If no self-a djoint element $a \in A_{\text {s.a }}$. exists for which $\operatorname{det}(\exp (i a) . u)(x)=1$ for all $x \in$ X, define $D_{c}(u)=\infty$.
Lemma (3.1.7)[84]:
Let $K \geq 1$ be an integer. Let A be a unital simple C^{*}-algebra with $T R(A) \leq 1$, let $e \in$ A be a projection and let $u \in U_{0}(e A e)$. Suppose that $w=u+(1-e)$ and suppose $\eta>0$. Suppose also that

$$
\begin{equation*}
[1-e] \leq K[e] \text { in } K_{0}(A) \text { and } \operatorname{dist}(\bar{w}, \overline{1})<\eta . \tag{13}
\end{equation*}
$$

Then, if $\eta<2$,

$$
\operatorname{cel}_{e A e}(u)<\left(\frac{k \pi}{2}+1 / 16\right) \eta+8 \pi \text { and } \operatorname{dist}(\bar{u}, \bar{e})<(k+1 / 8) \eta .
$$

and if $\eta=2$,

$$
\operatorname{cel}_{e A e}(u)<\frac{k \pi}{2} \operatorname{cel}(\mathrm{w})+1 / 16+8 \pi .
$$

Proof:

We assume that (13) holds. Note that $\eta \leq 2$. Put $L=\operatorname{cel}(w)$.
We first consider the case that $\eta<2$. There is a projection $e^{\prime} \in M_{2}(A)$ such that

$$
\left[(1-e)+e^{\prime}\right]=k[e] .
$$

To simplify notation, by replacing A by $\left(1_{A}-e^{\prime}\right) M_{2}(A)\left(1_{A}-e^{\prime}\right)$ and w by $w+e^{\prime}$, without loss of generality, we may now assume that

$$
\begin{equation*}
(1-e)=k[e] \text { and } \operatorname{dist}(\bar{w}, \overline{1})<\eta \tag{14}
\end{equation*}
$$

There is $R_{1}>1$ such that $\max \left\{L / R_{1}, 2 / R_{1}, \eta \pi / R_{1}\right\}<\min \{\eta / 64,1 / 16 \pi\}$.
For any $\frac{\eta}{32 K(K+1) \pi}>\epsilon>0$ with $\epsilon+\eta<2$, since $T R(A) \leq 1$, there exist a projection $p \in$ A and a C^{*} - subalgebra $D \in I$ with $1_{D}=p$ such that
(i) $\|[p, x]\|<\epsilon$ for $x \in\{u, w, e,(1-e)\}$;
(ii) $p w p, p u p, p e p, p(1-e) p \in_{\epsilon} D$;
(iii) there is a projection $q \in D$ and a unitary $z_{1} \in q D q$ such that $\|q-p e p\|<\epsilon$, $\left\|z_{1}-q u q\right\|<\epsilon,\left\|z_{1} \oplus(p-q)-p w p\right\|<\epsilon$ and $\left\|z_{1} \oplus(p-q)-c_{1}\right\|<\epsilon+\eta$;
(iv) there is a projection $q_{0} \in(1-p) A(1-p)$ and a unitary $z_{0} \in q_{0} A_{q_{0}}$ such that $\| q_{0}-$ $(1-p) e(1-p)\|<\epsilon, \quad\| z_{0}-(1-p) u(1-p)\|<\epsilon, \quad\| z_{0} \oplus\left(1-p-q_{0}\right)-$ $(1-p) w(1-p)\|<\epsilon, \quad\| z_{0} \oplus\left(1-p-q_{0}\right)-c_{0} \|<\epsilon+\eta$;
(v) $[p-q]=K[q]$ in $K_{0}(D),\left[(1-p)-q_{0}\right]=K\left[q_{0}\right]$ in $K_{0}(A)$;
(vi) $2(K+1) R_{1}[1-p]<[p]$ in $K_{0}(A)$;
(vii) $\operatorname{cle}_{(1-p) A(1-p)}\left(z_{0} \oplus\left(1-p-q_{0}\right)\right) \leq \mathrm{L}+\epsilon$,
where $c_{1} \in C U(D)$ and $c_{0} \in C U((1-p) A(1-p))$.
Note that $D_{D}\left(c_{1}\right)=0$. Since $\epsilon+\eta<2$, there ish $\in D_{\text {s.a }}$. with $\|h\| \leq$ $2 \arcsin \left(\frac{\epsilon+\eta}{2}\right)$ such that (by (iii) above)

$$
\begin{equation*}
\left(z_{1} \oplus(p-q)\right) \exp (i h)=c_{1} . \tag{15}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
D_{D}\left(z_{1} \oplus(p-q)\right) \exp (i h)=0 \tag{16}
\end{equation*}
$$

By (v) above and applying in [27], one obtains that

$$
\begin{equation*}
\left|D_{q D_{D}} z_{1}\right| \leq k 2 \arcsin \left(\frac{\epsilon+\eta}{2}\right) \tag{17}
\end{equation*}
$$

If $2 k \arcsin \left(\frac{\epsilon+\eta}{2}\right) \geq \pi$, then

$$
2 k\left(\frac{\epsilon+\eta}{2}\right) \frac{\pi}{2} \geq \pi .
$$

It follows that

$$
\begin{equation*}
k(\epsilon+\eta) \geq 2 \geq \operatorname{dist}\left(\overline{z_{1}}, \overline{\mathrm{q}}\right) \tag{18}
\end{equation*}
$$

Since those unitaries in D with $\operatorname{det}(u)=1$ (for all points) are in $C U(D)$ from (3.17), one computes that, when $2 k \arcsin \left(\frac{\epsilon+\eta}{2}\right)<\pi$,

$$
\begin{equation*}
\operatorname{dist}\left(\overline{z_{1}}, \overline{\mathrm{q}}\right)<2 \sin \left(k \arcsin \left(\frac{\epsilon+\eta}{2}\right)\right) \leq \mathrm{k}(\epsilon+\eta) \tag{19}
\end{equation*}
$$

By combining both (18) and (19), one obtains that

$$
\begin{equation*}
\operatorname{dist}\left(\overline{z_{1}}, \overline{\mathrm{q}}\right) \leq \mathrm{k}(\epsilon+\eta) \leq \mathrm{k} \eta+\frac{\eta}{32(k+1) \pi} \tag{20}
\end{equation*}
$$

By (17), it follows in [27] that

$$
\begin{gather*}
\operatorname{cel}_{\mathrm{q}} \mathrm{D}_{\mathrm{q}} \leq 2 k \arcsin \frac{\epsilon+\eta}{2}+6 \pi \leq \mathrm{k}(\epsilon+\eta) \frac{\pi}{2}+6 \pi \\
\leq\left(k \frac{\pi}{2}+\frac{1}{64(\mathrm{k}+1)}\right) \eta+6 \pi \tag{21}
\end{gather*}
$$

By (v) and (vi) above,

$$
(K+1)[q]=[p-q]+[q]=[p]>2(K+1) R_{1}[1-p] .
$$

Since $K_{0}(A)$ is weakly unperforated, one has

$$
\begin{equation*}
2 R_{1}[1-p]<[q] . \tag{22}
\end{equation*}
$$

There is a unitary $v \in A$ such that

$$
\begin{equation*}
v^{*}\left(1-p-q_{0}\right) v \leq q \tag{23}
\end{equation*}
$$

Put $v_{1}=q_{0} \oplus\left(1-p-q_{0}\right) v$. Then

$$
\begin{equation*}
v_{1}^{*}\left(z_{0} \oplus\left(1-p-q_{0}\right)\right) v_{1}=z_{0} \oplus v^{*}\left(1-p-q_{0}\right) v \tag{24}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left\|\left(z_{0} \oplus v^{*}\left(1-p-q_{0}\right) v\right) v_{1}^{*} c_{0}^{*} v_{1}-q_{0} \oplus v^{*}\left(1-p-q_{0}\right) v\right\|<\epsilon+\eta \tag{25}
\end{equation*}
$$

Moreover, by (vii) above

$$
\begin{equation*}
\operatorname{cel}\left(z_{0} \oplus v^{*}\left(1-p-q_{0}\right) v\right) \leq L+\epsilon \tag{26}
\end{equation*}
$$

It follows from (22) and Lemma (4.1.8) of [89] that

$$
\begin{equation*}
\operatorname{cel}_{\left(q_{0}+\mathrm{q}\right) \mathrm{A}\left(q_{0}+\mathrm{q}\right)}\left(z_{0} \oplus \mathrm{q}\right) \leq 2 \pi+(L+\epsilon) / R_{1} . \tag{27}
\end{equation*}
$$

Therefore, combining (21),

$$
\begin{align*}
& \operatorname{cel}_{\left(q_{0}+\mathrm{q}\right) \mathrm{A}\left(q_{0}+\mathrm{q}\right)}\left(z_{0}+z\right) \\
& \quad \leq 2 \pi+\frac{L+\epsilon}{R_{1}}+\left(k \frac{\pi}{2}+\frac{1}{64(\mathrm{k}+1)}\right) \eta+6 \pi . \tag{28}
\end{align*}
$$

$\mathrm{By}(26),(22)$, in $U_{0}\left(\left(q_{0}+\mathrm{q}\right) \mathrm{A}\left(q_{0}+\mathrm{q}\right)\right) / C U\left(\left(q_{0}+\mathrm{q}\right) \mathrm{A}\left(q_{0}+\mathrm{q}\right)\right)$,

$$
\begin{equation*}
\operatorname{dist}\left(\overline{z_{0}+\mathrm{q}}, \overline{q_{0}+\mathrm{q}}\right)<\frac{(L+\epsilon)}{R_{1}} . \tag{29}
\end{equation*}
$$

Therefore, by (19) and (29),

$$
\begin{equation*}
\operatorname{dist}\left(\overline{z_{0} \oplus z_{1}}, \overline{q_{0}+\mathrm{q}}\right)<\frac{(L+\epsilon)}{R_{1}}+k \eta+\frac{\eta}{32(\mathrm{k}+1) \pi}<(\mathrm{k}+1 / 6) \eta . \tag{30}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\left\|e-\left(q_{0}+q\right)\right\|<2 \epsilon \text { and }\left\|u-\left(z_{0}+z_{1}\right)\right\|<2 \epsilon \tag{31}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{cel}_{\mathrm{eAe}}(u) & \leq 4 \epsilon \pi+2 \pi+(L+\epsilon) / R_{1}+\left(k \frac{\pi}{2}+\frac{1}{64(\mathrm{k}+1)}\right) \eta+6 \pi \tag{32}\\
& <\left(k \frac{\pi}{2}+1 / 16\right) \eta+8 \pi \tag{33}
\end{align*}
$$

This proves the case that $\eta<2$.
Now suppose that $\eta=2$. Define $R=[\operatorname{cel}(w)+1]$. Note that $\frac{\operatorname{cel}(w)}{R}<1$. There is a projection $e^{\prime} \in M_{R+1}(A)$ such that

$$
\left[(1-e)+e^{\prime}\right]=(K+R K)[e] .
$$

It follows that

$$
\begin{equation*}
\operatorname{dist}\left(\overline{\mathrm{w} \oplus e^{\prime}}, \overline{1_{A}+\mathrm{e}^{\prime}}\right)<\frac{\operatorname{cel}(w)}{R+1} \tag{35}
\end{equation*}
$$

Put $K_{1}=K(R+1)$. To simplify notation, without loss of generality, we may now assume that

$$
\begin{equation*}
[1-e]=K_{1}[e] \text { and } \operatorname{dist}(\bar{w}, \overline{1})<\frac{\operatorname{cel}(w)}{R+1} \tag{36}
\end{equation*}
$$

It follows from the first part of the lemma that

$$
\begin{align*}
\operatorname{cel}_{\mathrm{eAe}}(u) & <\left(\frac{K_{1} \pi}{2}+\frac{1}{16}\right) \frac{\operatorname{cel}(w)}{R+1}+8 \pi \tag{37}\\
& \leq \frac{k \pi \operatorname{cel}(w)}{2}+\frac{1}{16}+8 \pi \tag{38}
\end{align*}
$$

Theorem (3.1.8)[84]:

Let A be a unital simple C^{*}-algebra with $T R(A) \leq 1$ and let $e \in A$ be a non-zero projection. Then the map $u \mapsto u+(1-e)$ induces an isomorphism j from $U(e A e) /$ $C U(e A e)$ onto $U(A) / C U(A)$.

Proof:

It was shown in in[89] that j is a surjective homomorphism. So it remains to show that it is also injective. To do this, fix a unitary $u \in e A e$ so that. $u \in \operatorname{ker} j$. We will show that $u \in$ $C U(e A e)$.
There is an integer $K \geq 1$ such that

$$
K[e] \geq[1-e] \text { in } K_{0}(A) .
$$

Let $1>\epsilon>0$. Put $v=u+(1-e)$.Since. $u \in \operatorname{ker} j, v \in C U(A)$.In particular $\operatorname{dist}(\bar{v}, \overline{1})<\epsilon /(K \pi / 2+1)$.
It follows from Lemma (4.1.7)that

$$
\operatorname{dist}(\bar{v}, \overline{1})<\left(\frac{k \pi}{2}+1 / 16\right)(\epsilon /(K \pi / 2+1))<\epsilon
$$

It then follows that

$$
u \in C U(e A e)
$$

Corollary (3.1.9)[84]:

Let A be a unital simple C^{*}-algebra with $T R(A) \leq 1$. Then the map $j: a \rightarrow$ $\operatorname{diag}(a, \overparen{1,1, \ldots, 1})$ from A to $M_{n}(A)$ induces an isomorphism from $U(A) / C U(A)$ onto $U\left(M_{n}(A)\right) / C U\left(M_{n}(A)\right)$ for any integer $n \geq 1$

Lemma(3.1.10)[84]:

Let X be a path connected finite $C W$ complex, let $C=C(X)$ and $\operatorname{let} A=$ $C\left([0,1], M_{n}\right)$ for some integer $n \geq 1$. For any unital homomorphism $\phi: C \rightarrow A$, any finite subset $\mathcal{F} \subset C$ and any $\epsilon>0$, there exists a unital homomorphism $\psi: C \rightarrow B$ such that

$$
\begin{gather*}
\|\phi(c)-\psi(c)\|<\epsilon \text { for all } c \in \mathcal{F} \tag{39}\\
\psi(f)(t)=W(t)^{*}\left(\begin{array}{lll}
f\left(s_{1}(t)\right) & & \\
& \ddots & \\
& & f\left(s_{n}(t)\right)
\end{array}\right) w(t) \tag{40}
\end{gather*}
$$

where $W \in U(A), s_{j} \in C([0,1], X), j=1,2, \ldots, n$, and $t \in[0,1]$.

Proof:

To simplify the notation, without loss of generality, we may assume that \mathcal{F} is in the unit ball of C. Since X is also locally path connected, choose $\delta_{1}>0$ such that, for any point $x \in$ $X, B\left(x, \delta_{1}\right)$ is path connected. Put $d=2 \pi / n$. Let $\delta_{1}>0$ (in place of δ) be as required [69] for $\epsilon / 2$.
We will also apply in [28], there exists a finite subset \mathcal{H} of positive functions in $C(X)$ and $\delta_{3}>0$ satisfying the following: For any pair of points and $\left\{y_{i}\right\}_{i=1}^{n}$, if $\left\{h\left(x_{i}\right)\right\}_{i=1}^{n}$ and $\left\{h\left(y_{i}\right)\right\}_{i=1}^{n}$ can be paired to within δ_{3} one by one, in increasing order, counting multiplicity, for all $h \in \mathcal{H}$, then $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}, i=1$ can be paired to within $\delta_{3} / 2$, one by one.
Put $\epsilon_{1}=\min \left\{\epsilon / 16, \delta_{1} / 16, \delta_{2} / 4, \delta_{3} / 4\right\}$. There exists $\eta>0$ such that

$$
\begin{equation*}
\left|f(t)-f\left(t^{\prime}\right)\right|<\epsilon_{1} / 2 \quad \text { for all } \quad f \in \phi(\mathcal{F} \cup \mathcal{H}) \tag{41}
\end{equation*}
$$

provided that $\left|t-t^{\prime}\right|<\eta$. C $\left\{x_{i}\right\}_{i=1}^{n}$ hoose a partition of the interval: $0=t_{0}<t_{1}<\cdots<t_{N}=1$.

Such that $\left|t_{i}-t_{i-1}\right|<\eta, i=1,2, \ldots, N$. Then

$$
\begin{equation*}
\left\|\phi(f)\left(t_{i}\right)-\phi(f)\left(t_{i-1}\right)\right\|<\epsilon_{1} \text { for all } f \in \mathcal{F} \cup \mathcal{H} . \tag{42}
\end{equation*}
$$

$i=1,2, \ldots, N$. There are unitaries $U_{i} \in M_{n}$ and $\left\{x_{i, j}\right\}_{j=1}^{n}, i=1,2, \ldots, N$, such that

$$
\phi(f)\left(t_{i}\right)=U_{i}^{*}\left(\begin{array}{lll}
f\left(x_{i, 1}\right) & & \tag{43}\\
& \ddots & \\
& & f\left(x_{i, n}\right)
\end{array}\right) U_{i}
$$

By the Weyl spectral variation inequality (see [69]), the eigenvalues of $\left\{h\left(x_{i, j}\right)\right\}_{i=1}^{n}$ and $\left\{h\left(x_{i-1, j}\right)\right\}_{i=1}^{n} j=1$ can be paired to within δ_{3}, one by one, counting multiplicity, in decreasing order. It follows in [28] that $\left\{x_{i, j}\right\}_{i=1}^{n} j=1$ and $\left\{x_{i-1, j}\right\}_{i=1}^{n}$ can be paired within $\delta_{3} / 2$. We may assume that

$$
\begin{equation*}
\operatorname{dist}\left(x_{i, \sigma_{i}(j)}, x_{i-1, j}\right)<\delta_{3} / 2 \tag{44}
\end{equation*}
$$

where $\sigma_{i}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ is a permutation. By the choice of δ_{3}, there is a continuous path $\left\{x_{i-1,1} j(t): t \in\left[t_{i}-1,\left(t_{i}+t_{i-1}\right) / 2\right]\right\} \subset B\left(x_{i-1,}, \delta 3 / 2\right)$ such that

$$
\begin{equation*}
x_{i-1, j}\left(t_{i-1}\right)=x_{i-1, j} \quad \text { and } \quad x_{i-1, j}\left(\left(t_{i-1}+t_{i}\right) / 2\right)=x_{i, \sigma_{i}(j)} \tag{45}
\end{equation*}
$$

$j=1,2, \ldots, n$. Put

$$
\psi(f)(t)=U_{i-1}^{*}\left(\begin{array}{lll}
f\left(x_{i, 1}(t)\right) & & \tag{46}\\
& \ddots & \\
& & f\left(x_{i, n}(t)\right)
\end{array}\right) U_{i-1}
$$

for $t \in\left[t_{i-1},\left(t_{i-1}+t_{i}\right) / 2\right]$ and for $f \in C(X)$. In particular,

$$
\psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right)=U_{i-1}^{*}\left(\begin{array}{lll}
f\left(x_{i, 1}(t)\right) & & \tag{47}\\
& \ddots & \\
& & f\left(x_{i, n}(t)\right)
\end{array}\right) U_{i-1}
$$

for $f \in C(X)$. Note that

$$
\begin{gather*}
\left\|\phi(f)\left(t_{i-1}\right)-\psi(f)(t)\right\|<\delta_{2} / 4 \text { and }\left\|\psi(f)(t)-\phi(f)\left(t_{i}\right)\right\|<\delta_{2} / 4+\epsilon_{1} / 2 \\
<\delta_{2} / 2 \tag{48}
\end{gather*}
$$

for all $f \in \mathcal{F}$ and $t \in\left[t_{i-1}, \frac{t_{i-1}+t_{i}}{2}\right]$. There exists a unitary $W_{i} \in M_{n}$ such that

$$
\begin{equation*}
w_{i}^{*} \psi(f)=\left(\frac{t_{i-1}+t_{i}}{2}\right) w_{i}=\phi(f)\left(t_{i}\right) \tag{49}
\end{equation*}
$$

for all $f \in C(X)$. It follows from (48) and (49) that

$$
\begin{equation*}
\left\|w_{i} \psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right)-\psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right) w_{i}\right\|<\delta_{2} \tag{50}
\end{equation*}
$$

for all $f \in \mathcal{F}$. By the choice of δ_{2} and by applying in [69], we obtain $h_{i} \in M_{n}$ such that $W_{i}=\exp \left(\sqrt{-1} h_{i}\right)$ and

$$
\begin{equation*}
\left\|h_{i} \psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right)-\psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right) h_{i}\right\|<\epsilon / 4 \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\exp \left(\sqrt{-1} t h_{i}\right) \psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right)-\psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right) \exp \left(\sqrt{-1 t} h_{i}\right)\right\|<\epsilon / 4 \tag{52}
\end{equation*}
$$

for all $f \in \mathcal{F}$. and $t \in[0,1]$. From this we obtain a continuous path of unitaries $\left\{W_{i}(t): t \in\left[\frac{t_{i-1}+t_{i}}{2}, t_{i}\right]\right\} \subset M_{n}$ such that

$$
\begin{equation*}
W_{i}\left(\frac{t_{i-1}+t_{i}}{2}\right)=1, \quad W_{i}\left(t_{i}\right)=W_{i} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|w_{i} \psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right)-\psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right) w_{i}\right\|<\epsilon / 4 \tag{54}
\end{equation*}
$$

for all $f \in \mathcal{F}$ and $t \in\left[\frac{t_{i-1}+t_{i}}{2}, t_{i}\right]$. Define $\psi(f)(t)=w_{i}^{*}(t) \psi\left(\frac{t_{i-1}+t_{i}}{2}\right) w_{i}(t)$ for $t \in$ $\left[\frac{t_{i-1}+t_{i}}{2}, t_{i}\right], i=1,2, \ldots, N$. Note that $\psi: C(X) \rightarrow A$. We conclude that

$$
\begin{equation*}
\|\phi(f)-\psi(f)\|<\epsilon \text { for all } \mathcal{F} \tag{55}
\end{equation*}
$$

Define

$$
\begin{equation*}
U(t)=U_{0} \text { for } t \in\left[0, \frac{t_{1}}{2}\right), U(t)=U_{0} W_{1}(t) \text { for } t \in\left[\frac{t_{1}}{2}, t_{2}\right) \tag{56}
\end{equation*}
$$

$$
\begin{align*}
& U(t)=U\left(t_{i}\right) \quad \text { for } \quad t \in\left[t_{i}, \frac{t_{i}+t_{i-1}}{2}\right) \\
& U(t)=U\left(t_{i}\right) W_{i+1}(t) \quad \text { for } t \in\left[\frac{t_{i}+t_{i-1}}{2}, t_{i+1}\right] \tag{57}
\end{align*}
$$

$i=1,2, \ldots, N-1$ and define

$$
\begin{gather*}
s_{j}=x_{0, j}(t) \text { for } t \in\left[0, \frac{t_{1}}{2}\right), s_{j}(t)=s_{j}\left(\frac{t_{1}}{2}\right) \text { for } t \in\left[\frac{t_{1}}{2}, t_{2}\right), \tag{58}\\
s_{j}=x_{i, \sigma_{i}(j)}(t) \text { for } t \in\left[t_{i}, \frac{t_{i}+t_{i+1}}{2}\right), \\
s_{j}(t)=s_{j}\left(\frac{t_{i}+t_{i+1}}{2}\right) \quad \text { for } t \in\left[\frac{t_{i}+t_{i+1}}{2}, t_{i+1}\right], \tag{59}
\end{gather*}
$$

$i=1,2, \ldots, N-1$. Thus $U(t) \in A$ and, by (45), $s_{j}(t) \in C([0,1], X)$.
One then checks that ψ has the form

$$
\psi(f)=U(t)^{*}\left(\begin{array}{ccc}
f\left(s_{1}(t)\right) & & \tag{60}\\
& \ddots & \\
& & f\left(s_{n}(t)\right)
\end{array}\right) U(t)
$$

for $f \in C(X)$. In fact, for $t \in\left[0, t_{1}\right]$, it is clear that (60) holds. Suppose that (60) holds for $t \in$ [$\left.0, t_{i}\right]$. Then, by (49), for $f \in C(X)$,

$$
\begin{align*}
\psi(f)\left(t_{i}\right) & =U\left(t_{i}\right)^{*}\left(\begin{array}{llll}
f\left(x_{i, \sigma_{i}(1)}\right) & & \\
& & & \\
& =U_{I}^{*}\left(\begin{array}{lll}
f\left(x_{i, 1}\right) & & \\
& \ddots & \\
& & f\left(x_{i, n}\right)
\end{array}\right) U\left(t_{i}\right)
\end{array}\right) U_{i}
\end{align*}
$$

Therefore, for $t \in\left[t_{i}, \frac{t_{i}+t_{i+1}}{2}\right]$,

$$
\left.\begin{array}{rl}
\psi(f)(t) & =U_{I}^{*}\left(\begin{array}{llll}
f\left(x_{i, 1}(t)\right) & & & \\
& \ddots & & \\
& & f\left(x_{i, n}(t)\right)
\end{array}\right) U_{i} \\
& =U\left(t_{i}\right)^{*}\left(\begin{array}{llll}
f\left(x_{i, \sigma_{i}(1)}(t)\right) & & \\
& & \ddots & \\
& & & \\
& & f\left(x_{i, \sigma_{i}(n)}(t)\right)
\end{array}\right) U\left(t_{i}\right) \tag{63}\\
&
\end{array} \begin{array}{llll}
f\left(s_{1}(t)\right) & & \\
& \ddots & \\
& & & f\left(s_{n}(t)\right)
\end{array}\right) U(t)
$$

For $t \in\left[\frac{t_{i}+t_{i+1}}{2}, t_{i+1}\right]$,

$$
\begin{equation*}
\psi(f)(t)=W_{i+1}(t)^{*} \psi\left(\frac{t_{i}+t_{i+1}}{2}\right) W_{i+1}(t) \tag{65}
\end{equation*}
$$

$$
\begin{gather*}
=W_{i+1}(t)^{*} U\left(t_{i}\right)^{*}\left(\begin{array}{llll}
f\left(s_{1}\left(\frac{t_{i}+t_{i+1}}{2}\right)\right) & & \\
& \ddots & & \\
& & f\left(s_{n}\left(\frac{t_{i}+t_{i+1}}{2}\right)\right)
\end{array}\right) U\left(t_{i}\right) W_{i+1}(t) \tag{66}\\
=U(t)^{*}\left(\begin{array}{lll}
f\left(s_{1}(t)\right) & & \\
& & \ddots \\
& & \\
& f\left(s_{n}(t)\right)
\end{array}\right) U(t) \tag{67}
\end{gather*}
$$

This verifies (60).
Lemma (3.1.11)[84]:
Let X be a finite $C W$ complex and let $A \in$. Suppose that $\phi: C(X) \otimes C(T) \rightarrow A$ is a unital homomorphism. Then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C(X)$, there exists a continuous path of unitaries $\{u(t): t \in[0,1]\}$ in A such that

$$
\begin{equation*}
u(0)=\phi(1 \otimes z), \quad u(1)=1 \quad \text { and } \quad\|[\phi(f \otimes 1), u(t)]\|<\epsilon \tag{68}
\end{equation*}
$$

for $f \in \mathcal{F}$ and $t \in[0,1]$.

Proof:

It is clear that the general case can be reduced to the case that $A=C\left([0,1], M_{n}\right)$. Let $q_{1}, q_{2}, \ldots, q_{n}$ be projections of $C(X)$ corresponding to each path connected component of X. Since $\phi\left(q_{i}\right) A \phi\left(q_{i}\right) \cong C\left([0,1], M_{n_{i}}\right)$ for some $1 \leq n_{i} \leq n, i=1,2, \ldots$, we may reduce the general case to the case that X is path connected and $A=C\left([0,1], M_{n}\right)$.

Note that we use z for the identity function on the unit circle.
For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C(X)$, obtains a unital homomorphism ψ : $C(X) \otimes C(T) \rightarrow A$ such that

$$
\begin{gather*}
\|\phi(\mathrm{g})-\psi(\mathrm{g})\|<\epsilon \text { for all } g \in\{f \otimes 1: f \in \mathcal{F}\} \cup\{1 \otimes z\} \tag{69}\\
\psi(f) t=U(t)^{*}\left(\begin{array}{lll}
f\left(s_{1}(t)\right) & & \\
& \ddots & \\
& & f\left(s_{n}(t)\right)
\end{array}\right) U(t), \tag{70}
\end{gather*}
$$

for all $f \in C(X \times \mathbb{T})$, where $U(t) \in U\left(C\left([0,1], M_{n}\right)\right), s_{j}:[0,1] \rightarrow X \times \mathbb{T}$ is a continuous map, $j=1,2, \ldots, n$, and for all $t \in[0,1]$. There are continuous paths of unitaries $\left\{u_{j}(r): r \in[0,1]\right\} \subset C([0,1])$ such that

$$
\begin{equation*}
u_{j}(0)(t)=(1 \otimes z)\left(s_{j}(1)\right), \quad u_{j}(1)=1, j=1,2, \ldots, n \tag{71}
\end{equation*}
$$

Define

$$
u(r) t=U(t)^{*}\left(\begin{array}{lll}
u_{j}(r)(t) & & \tag{72}\\
& \ddots & \\
& & u_{n}(r)(t)
\end{array}\right) U(t)
$$

Then

$$
u(r) \psi(f \otimes 1)=\psi(f \otimes 1) u(r) \text { for all } r \in[0,1]
$$

It follows that
$\|[\phi(f \otimes 1), u(r)]\|<\epsilon$ for all $r \in[0,1]$ and for all $f \in \mathcal{F}$.

Definition (3.1.12)[84]:
Let X be a compact metric space. We say that X satisfies property (H) if the following holds:

For any $\epsilon>0$, any finite subsets $\mathcal{F} \subset C(X)$ and any non-decreasing map $\Delta:(0,1) \rightarrow$ $(0,1)$, there exists $\eta>0$ (which depends on ϵ and F but not Δ), $\delta>0$, a finite subset $\mathcal{G} \subset$ $C(X)$ and a finite subset $\mathcal{P} \subset \underline{K}(C(X))$ satisfying the following:
Suppose that $\phi: C(X) \rightarrow \bar{C}\left([0,1], M_{n}\right)$ is a unital $\delta-G-$ multiplicative contractive completely positive linear map for which

$$
\begin{equation*}
\mu_{\tau \circ \phi}\left(O_{a}\right) \geq \Delta(a) \tag{73}
\end{equation*}
$$

for any open ball O_{a} with radius $a \geq \eta$ and for all tracial states τ of $C\left([0,1], M_{n}\right)$, and

$$
\begin{equation*}
[\phi]|P=[\Phi]| P \tag{74}
\end{equation*}
$$

where Φ is a point-evaluation.
Then there exists a unital homomorphism $h: C(X) \rightarrow C\left([0,1], M_{n}\right)$ such that for all $f \in \mathcal{F}$.

It is a restricted version of some relatively weakly semi-projectivity property. It has been shown in [22] that any k-dimensional torus has the property (H). So do those finite CW complexes X with torsion free $K_{0}(C(X))$ and torsion $K_{1}(C(X))$, any finite CW complexes with form $Y \times \mathbb{T}$ where Y is contractive and all one-dimensional finite CW complexes. Corollary (3.1.13)[84]:
Let $C=C\left(X, M_{n}\right)$ where $X=[0,1]$ or $X=\mathbb{T}$ and $\Delta:(0,1) \rightarrow(0,1)$ be a nondecreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exists $\delta>0, \eta>0$ and there exists a finite subset $\mathcal{G} \subset C$ satisfying the following:

Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1, \phi: C \rightarrow A$ is a unital monomorphism and $u \in A$ is a unitary and suppose that

$$
\begin{gather*}
\|[\phi(c), u]\|<\delta \text { for all } c \in \mathcal{G}, \tag{75}\\
\operatorname{bott}_{0}(\phi, u)=\{0\} \text { and } \operatorname{bott}_{1}(\phi, u)=\{0\} \tag{76}
\end{gather*}
$$

Suppose also that there exists a unital contractive completely positive linear map $L: C \otimes$ $C(T) \rightarrow A$ such that (with z the identity function on the unit circle)

$$
\|L(c \otimes 1)-\phi(c)\|<\delta, \quad\|L(c \otimes z)-\phi(c) u\|<\delta \text { for all } c \in \mathcal{G}
$$

and
for all open balls O_{a} of $[0,1] \times \mathbb{T}$ with radius $1>a \geq \eta$, where $\mu_{\tau \circ L}$ is the Borel probability measure defined by restricting L on the center of $C \otimes C(\mathbb{T})$. Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\}$ such that

$$
\begin{equation*}
u(0)=u, \quad u(1)=1 \quad \text { and } \quad\|[\phi(c), u(t)]\|<\epsilon \tag{78}
\end{equation*}
$$

for all $c \in \mathcal{F}$ and for all $t \in[0,1]$. Corollary (3.1.14)[84]:

Let $C=C\left([0,1], M_{n}\right)$ and let $T=N \times K:(C \otimes C(\mathbb{T}))_{+} \backslash\{0\} \rightarrow N \times \mathbb{R}_{+} \backslash\{0\}$ be a map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta>0$, a finite subset H $\subset(C \otimes C(T))_{+} \backslash\{0\}$ and there exists a finite subset $\mathcal{G} \subset C$ satisfying the following:
Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1, \phi: C \rightarrow A$ is a unital monomorphism and $u \in A$ is a unitary and suppose that

$$
\begin{equation*}
\|[\phi(c), u]\|<\delta \quad \text { for all } \quad c \in \mathcal{G} \tag{79}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{bott}_{0}(\phi, u)=\{0\} . \tag{80}
\end{equation*}
$$

Suppose also that there exists a unital contractive completely positive linear map $L: C$ $C(T) \rightarrow A$ which is $T-H$-full such that (with z the identity function on the unit circle)

$$
\begin{equation*}
\|L(c \otimes 1)-\phi(c)\|<\delta, \quad\|L(c \otimes z)-\phi(c) u\|<\delta \text { for all } c \in \mathcal{G} \tag{81}
\end{equation*}
$$

Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\}$ in A such that

$$
\begin{equation*}
u(0)=u, \quad u(1)=1 \quad \text { and }\|[\phi(c), u(t)]\|<\epsilon \tag{82}
\end{equation*}
$$

for all $c \in \mathcal{F}$ and for all $t \in[0,1]$.

Proof:

Fix $T=N \times K: N \times \mathbb{R}_{+} \backslash\{0\}$. Let $\Delta:(0,1) \rightarrow(0,1)$ be the non-decreasing map associated with T as in [22]. Let $\mathcal{G} \subset C, \delta>0$ and >0, for ϵ and \mathcal{F} given and the above Δ.
It follows in [22] that there exists a finite subset $H \subset(C \otimes C(T))_{+} \backslash\{0\}$ such that for any unital contractive completely positive linear map $L: C \otimes C(T) \rightarrow A$ which is $T-H$-full, one has that

$$
\begin{equation*}
\mu_{\tau \circ L}\left(O_{a}\right) \geq \Delta(a) \tag{83}
\end{equation*}
$$

For all open balls O_{a} of $X \times \mathbb{T}$ with radius $a \geq \eta$.
Lemma (3.1.15)[84]:
Let $C=M_{n}$. Then, for any $\epsilon>0$ and any finite subset \mathcal{F}, there exist $\delta>0$ and a finite subset $\mathcal{G} \subset C$ satisfying the following: For any unital C^{*}-algebra A with $K_{1}(A)=$ $U(A) / U_{0}(A)$ and any unital homomorphism $\varphi: C \rightarrow A$ and any unitary $u \in A$ if

$$
\begin{equation*}
\|[\phi(c), u]\|<\delta \quad \text { and } \quad \operatorname{bott}_{0}(\phi, u)=\{0\} \tag{84}
\end{equation*}
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
\begin{equation*}
u(0)=u, u(1)=1 \text { and }\|[\phi(c), u]\|<\epsilon \tag{85}
\end{equation*}
$$

for all $c \in \mathcal{F}$ and $t \in[0,1]$.

Proof:

First consider the case that $\phi(c)$ commutes with u for all $c \in C$. Then one has a unital homomorphism $\Phi: \mathrm{M}_{\mathrm{n}} \otimes \mathrm{C}(\mathbb{T}) \rightarrow$ A defined by $\Phi(c \otimes g)=\phi(c) g(u)$ for all $c \in C$ and $g \in C(\mathbb{T})$. Let $\left\{e_{i, j}\right\}$ be a matrix unit for M_{n}. Let $u_{j}=e_{j}, j \otimes z, j=1,2, \ldots, n$. The assumption $\operatorname{bott}_{0}(\varphi, u)=\{0\}$ implies that $\Phi_{* 1}=\{0\}$. It follows that $u_{j} \in U_{0}(A), j=$ $1,2, \ldots, n$. One then obtains a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
u(0)=u, \quad u(1)=1 \quad \text { and } \quad\|[\phi(c), u(t)]\|=0
$$

for all $c \in C(\mathbb{T})$ and $t \in[0,1]$.
The general case follows from the fact that $C \otimes C(\mathbb{T})$ is weakly semi-projective.
Lemma (3.1.16)[84]:
Let $n<64$ be an integer. Let $\epsilon>0$ and $1 / 2>\epsilon_{1}>0$. There exist $\frac{\pi}{2 n}>\delta>0$ and a finite subset $\mathcal{G} \subset D \sim=M_{n}$ satisfying the following: Suppose that A is a unital C^{*}-algebra with $T(A) \neq \emptyset, D \subset A$ is a C^{*}-subalgebra with $1_{D}=1_{A}$, suppose that $\mathcal{F} \subset A$ is a finite subset and suppose that $u \in U(A)$ such that

$$
\begin{equation*}
\|[f, x]\|<\delta \quad \text { for all } f \in \mathcal{F} \text { and } x \in \mathcal{G} \tag{86}
\end{equation*}
$$

and

$$
\begin{equation*}
\|[u, x]\|<\delta \quad \text { for all } x \in \mathcal{G}, \tag{87}
\end{equation*}
$$

Then, there exist a unitary $v \in D$ and a continuous path of unitaries $\{w(t): t \in[0,1]\} \subset D$ such that

$$
\begin{align*}
& \|u, w(t)\|<n \delta<\epsilon, \quad\|u, w(t)\|<n \delta<\frac{\epsilon}{2} \tag{88}\\
& \quad \text { for all } f \in \mathcal{F} \text { and for all } t \in[0,1], \tag{89}\\
& w(0)=1, \quad w(1)=v \text { and } \mu_{\tau \circ \phi}\left(I_{a}\right)=\frac{2}{3 n^{2}} \tag{90}
\end{align*}
$$

for all open $\operatorname{arcs} I_{a}$ of \mathbb{T} with length a $4 \pi / \mathrm{n}$ and for all $\tau \in T(A)$, where $t: C(\mathbb{T}) \rightarrow A$ is defined by $l(f)=f \quad$ (vu) for all $f \in C(T)$.
Moreover,

$$
\begin{equation*}
\text { length }(\{w(t)\}) \leq \pi \tag{91}
\end{equation*}
$$

If, in addition, $\pi>b_{1}>b_{2}>\cdots>b_{m}>0$ and $1=d_{0}>d_{1}>d_{2}>\cdots>d_{m}>0$ are given so that

$$
\begin{equation*}
\mu_{\tau o l}\left(I_{b_{i}}\right) \geq d_{i} \text { for all } \tau \in T(A), \quad i=1,2, \ldots, m \tag{92}
\end{equation*}
$$

where $l_{0}: C(\mathbb{T}) \rightarrow A$ is defined by $t_{0}(f)=f(u)$ for all $f \in C(\mathbb{T})$, then one also has that

$$
\begin{equation*}
\mu_{\tau o l}\left(I_{c_{i}}\right) \geq\left(1-\epsilon_{1}\right) d_{i} \text { for all } \tau \in T(A) \tag{93}
\end{equation*}
$$

where $I_{b_{i}}$ and $I_{c_{i}}$ are any open arcs with length bi and c_{i}, respectively, and where $c_{i}=b_{i}+$ $\epsilon_{1}, i=1,2, \ldots, m$.

Proof:

Let

$$
0<\delta_{0}<\min \left\{\frac{\epsilon_{1} d_{i}}{16 n^{2}}: 1 \leq i \leq m\right\} .
$$

Let $\left\{e_{i, j}\right\}$ be a matrix unit for D and let $\mathcal{G}=\left\{e_{i, j}\right\}$. Define

$$
\begin{equation*}
v=\sum_{j=1}^{n} e^{2 \sqrt{-1} j \pi / n} e_{i, j} \tag{94}
\end{equation*}
$$

Let $f_{1} \in C(\mathbb{T})$ with $f_{1}(t)=1$ for $\left|t-e^{2 \sqrt{-1} \pi / n}\right|<\pi / n$ and $f_{1}(t)=0$ if $\left|t-e^{2 \sqrt{-1} \pi / n}\right| \geq$ $2 \pi / n$ and $1 \geq f_{1}(t) \geq 0$. Define $f_{j+1}(t)=f_{1}\left(e^{2 \sqrt{-1} j \pi / n} t\right), j=1,2, \ldots, n-1$. Note that

$$
\begin{equation*}
f_{i}\left(e^{2 \sqrt{-1} j \pi / n}\right)=f_{i+j}(t) \quad \text { for all } t \in \mathbb{T} \tag{95}
\end{equation*}
$$

where $i, j \in \mathbb{Z} / n \mathbb{Z}$.
Fix a finite subset $\mathcal{F}_{0} \subset C(\mathbb{T})_{+}$which contains $f_{i}, i=1,2, \ldots, n$.
Choose δ so small that the following hold:
(i) there exists a unitary $u_{i} \in e_{i, i} A_{e_{i, i}}$ such that $\left\|e^{2 \sqrt{-1} i \pi / n} e_{i, i} u e_{i, i}-u_{i}\right\|<\delta_{0}^{2} /$ $16 n^{2}, i=1,2, \ldots, n$.
(ii) ;
(iii) $\quad\left\|e_{i, i} f(v u)-e_{i, i} f\left(e^{2 \sqrt{-1} i \pi / n} u\right)\right\|<\delta_{0}^{2} / 16 n^{2}$ for all $f \in \mathcal{F}_{0}$; and

$$
\left\|e_{i, j}^{*} f(u) e_{i, j}-e_{j, j} f(u) e_{j, j}\right\|<\delta_{0}^{2} / 16 n^{2} \text { for all } f \in \mathcal{F}_{0} .
$$

Fix k. For each $\tau \in T(A)$, by (i), (iii) and (iv) above, there is at least one i such that

$$
\begin{equation*}
\tau\left(e_{j, j} f_{i}(u)\right) \geq \frac{1}{n^{2}}-\frac{\delta_{0}^{2}}{16 n^{2}} . \tag{96}
\end{equation*}
$$

Choose j so that $k+j=\operatorname{imod}(n)$. Then,

$$
\begin{align*}
\tau\left(f_{k}(v u)\right) \geq & \geq \tau\left(e_{j, j} f_{k}(v u)\right) \tag{97}\\
& \geq \tau\left(e_{j, j} f_{k}\left(e^{2 \sqrt{-1} i \pi / n} u\right)\right)-\frac{\delta_{0}^{2}}{16 n^{2}} \tag{98}\\
= & \tau\left(e_{j, j} f_{i}(u)\right)-\frac{\delta_{0}^{2}}{16 n^{2}} \geq \frac{1}{n^{2}}-\frac{2 \delta_{0}^{2}}{16 n^{2}} . \tag{99}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\mu_{\tau \circ l}\left(B\left(e^{2 \sqrt{-1} i \pi / n}, \pi / n\right)\right) \geq \frac{1}{n^{2}}-\frac{2 \delta_{0}^{2}}{16 n^{2}} \quad \text { for all } \tau \in T(A) \tag{100}
\end{equation*}
$$

and for $k=1,2, \ldots, n$.
It is then easy to compute that

$$
\begin{equation*}
\mu_{\tau \circ l}\left(I_{a}\right) \geq \frac{2}{3 n^{2}} \quad \text { for all } \tau \in T(A) \tag{101}
\end{equation*}
$$

and for any open arc with length $a \geq 2\left(\frac{2 \pi}{n}\right)=\frac{4 \pi}{n}$.
Note that if $\left\|\left[x, e_{i, i}\right]\right\|<\delta$, then

$$
\left\|\left[x, \sum_{i=1}^{n} \lambda_{i} e_{i, i}\right]\right\|<n \delta<\frac{\epsilon}{2} \text { and }\left\|\left[u, \sum_{i=1}^{n} \lambda_{i} e_{i, i}\right]\right\|<n \delta<\epsilon / 2
$$

for any $\lambda_{i} \in \mathbb{T}$. Thus, one obtains a continuous path $\{w(t): t \in[0,1]\} \subset D$ with $\operatorname{length}(\{w(t)\}) \leq \pi \quad$ and with $\quad w(0)=1 \quad$ and $\quad(1)=v$
Let $\left\{x_{1}, x_{2}, \ldots, x_{K}\right\}$ be an $\epsilon_{1} / 64$-dense set of \mathbb{T}. Let $I_{i, j}$ be an open arc with center x_{j} and length $b_{i}, j=1,2, \ldots, K$ and $i=1,2, \ldots, m$. For each j and i, there is a positive function $g_{j, i} \in C(\mathbb{T})_{+}$with $0 \leq g_{j, i} \leq 1$ and $g_{j, i}(t)=1$ if $\left|t-x_{j}\right|<d_{i}$ and $g_{j, i}(t)=0$ if $\left|t-x_{j}\right| \geq$ $d_{i}+\epsilon_{1} / 64, j=1,2, \ldots, K, i=1,2, \ldots, m$. Put $g_{i, j, k}(t)=g_{j, i}\left(e^{2 \sqrt{-1} i \pi / n} \cdot t\right)$ for all $t \in$ $\mathbb{T}, k=1,2, \ldots, n$. Suppose that \mathcal{F}_{0} contains all $g_{j, i}$ and $g_{i, j, k}$. We have, by (ii), (iii) and (iv) above,

$$
\begin{equation*}
\tau\left(g_{j, i}(u), e_{l, l}\right), \tau\left(g_{j, i, k}(u), e_{l, l}\right) \geq \frac{d_{i}}{n}-\frac{\delta^{2}}{16 n^{2}} \quad \text { for all } \tau \in T(A) \tag{102}
\end{equation*}
$$

$l=1,2, \ldots, n, j=1,2, \ldots, K$ and $i=1,2, \ldots, m$. Thus

$$
\begin{align*}
\tau\left(e_{k, k} g_{j, i}(v u)\right) \geq & \tau\left(e_{k, k} g_{j, i}\left(e^{2 \sqrt{-1} i \pi / n} u\right)\right)-n \frac{\delta_{0}^{2}}{16 n^{2}} \tag{103}\\
& \geq \frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{n}}-\frac{\delta_{0}^{2}}{8 \mathrm{n}^{2}} \quad \text { for all } \tau \in \mathrm{T}(\mathrm{~A}), \tag{104}\\
k=1,2, \ldots, n, j=1,2, \ldots, K \text { and } i= & 1,2, \ldots, m . \text { Therefore }
\end{align*}
$$

$$
\begin{equation*}
\tau\left(e_{k, k} g_{j, i}(v u)\right) \geq d_{i}-\frac{\delta_{0}^{2}}{8 n^{2}} \geq\left(1-\epsilon_{1}\right) d_{i} \quad \text { for all } \tau \in T(A) \tag{105}
\end{equation*}
$$

$j=1,2, \ldots, K$ and $i=1,2, \ldots, m$.
It follows that

$$
\begin{equation*}
\mu_{\tau \circ l}\left(I_{i, j}\right) \geq\left(1-\epsilon_{1}\right) d_{i} \quad \text { for all } \tau \in T(A) \tag{106}
\end{equation*}
$$

$j=1,2, \ldots, K$ and $i=1,2, \ldots, m$. Since $\left\{x_{1}, x_{2}, \ldots, x_{K}\right\}$ is $\epsilon_{1} / 64$-dense in \mathbb{T}, it follows that

$$
\begin{equation*}
\mu_{\tau o l}\left(I_{c_{i}}\right) \geq\left(1-\epsilon_{1}\right) d_{i} \quad \text { for all } \tau \in T(A), \mathrm{i}=1,2, \ldots, \mathrm{~m} . \tag{107}
\end{equation*}
$$

Lemma (3.1.17)[84]:
Let $n \geq 64$ be an integer. Let $\epsilon>0$ and $1 / 2>\epsilon_{1}>0$. There exist $\frac{\epsilon}{2 n}>\delta>0$ and a finite subset $G \subset D \cong M_{n}$ satisfying the following:
Suppose that X is a compact metric space, $\mathcal{F} \subset C(X)$ is a finite subset and $1>b>0$. Then there exists a finite subset $\mathcal{F}_{1} \subset C(X)$ satisfying the following: Suppose that A is a unital C^{*}-algebra with $T(A) \neq \emptyset, D \subset A$ is a C^{*}-subalgebra with $1_{D}=$ $1_{A}, \phi: C(X) \rightarrow A$ is a unital homomorphism and suppose that $u \in U(A)$ such that

$$
\begin{equation*}
\|[x, u]\|<\delta \quad \text { and } \quad\|[x, \phi(f)]\|<\delta \quad \text { for all } x \in \mathcal{G} \text { and } f \in \mathcal{F}_{1} . \tag{108}
\end{equation*}
$$

Suppose also that, for some $\sigma>0$,

$$
\begin{equation*}
\tau(\phi(f)) \sigma \quad \text { for all } \tau \in T(A) \quad \text { and } \tag{109}
\end{equation*}
$$

for all $f \in C(X)$ with $0 \leq f \leq 1$ whose support contains an open ball of X with radius b. Then, there exist a unitary $v \in D$ and a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset D$ such that

$$
\begin{gather*}
\|u, v(t)\|<n \delta<\epsilon, \quad\|\phi(f), v(t)\|<n \delta<\epsilon \tag{110}\\
\text { for all } f \in \mathcal{F} \text { and } t \in[0,1] \tag{111}\\
v(0)=1, \quad v(1)=v \tag{112}
\end{gather*}
$$

and

$$
\begin{equation*}
\tau(\phi(f) g(v u)) \geq \frac{2 \sigma}{3 n^{2}} \quad \text { for all } \tau \in T(A) \tag{113}
\end{equation*}
$$

for any pair of $f \in C(X)$ with $0 \leq f \leq 1$ whose support contains an open ball with radius $2 b$ and $g \in C(\mathbb{T})$ with $0 \leq g \leq 1$ whose support contains an open arc of \mathbb{T} with length at least

Moreover,

$$
\begin{equation*}
\text { length }(v(t)) \leq \pi \tag{114}
\end{equation*}
$$

If, in addition, $1>b_{1}>b_{2}>\cdots>b_{k}>0,1>d_{1} \geq d_{2} \geq \cdots d_{k}>0$ are given and

$$
\begin{equation*}
\tau\left(\phi\left(f^{\prime}\right) g^{\prime}(u)\right) \geq d_{i} \quad \text { for all } \tau \in T(A) \tag{115}
\end{equation*}
$$

for any functions $f^{\prime} \in C(X)$ with $0 \leq f^{\prime} \leq 1$ whose support contains an open ball of X with radius $b_{i} / 2$ and $g^{\prime} \in C(\mathbb{T})$ with $0 \leq g^{\prime} \leq 1$ whose support contains an arc with length b_{i}, then one also has that

$$
\begin{equation*}
\tau\left(\phi\left(f^{\prime \prime}\right) g^{\prime \prime}(v u)\right) \geq\left(1-\epsilon_{1}\right) d_{i} \quad \text { for all } \tau \in T(A) \tag{116}
\end{equation*}
$$

where $f^{\prime \prime} \in C(X)$ with $0 \leq f^{\prime \prime} \leq 1$ whose support contains an open ball of radius c_{i} and $g^{\prime \prime} \in C(T)$ with $0 \leq g^{\prime \prime} \leq 1$ whose support contains an arc with length $2 c_{i}$ with $c_{i}=c_{i}+$ $1, i=1,2, \ldots, k$.

Proof:

Let $\quad 0<\delta_{0}=\min \left\{\frac{\epsilon_{1} d_{i}}{16 n^{2}}: i=1,2, \ldots, k\right\}$.
Let $\left\{e_{i, j}\right\}$ be a matrix unit for D and let $G=\left\{e_{i, j}\right\}$. Define

$$
\begin{equation*}
v=\sum_{j=1}^{n} e^{2 \sqrt{-1} j \pi / n} e_{j, j} \tag{117}
\end{equation*}
$$

Let $g_{j} \in C(\mathbb{T})$ with $g_{j}(t)=1$ for $\left|t-e^{2 \sqrt{-1} j \pi / n}\right|<\pi / n$ and $g_{j}(t)=0$ if $\mid t-$ $e^{2 \sqrt{-1} j \pi / n} \mid \geq 2 \pi / n$ and $1 \geq g_{j}(t) \geq 0, j=1,2, \ldots, n$. As in the proof of 5.1 , we may also assume that

$$
\begin{equation*}
g_{i}\left(e^{2 \sqrt{-1} j \pi / n} t\right)=g_{i+1}(t) \quad \text { for all } t \in \mathbb{T} \tag{118}
\end{equation*}
$$

where $i, j \in \mathbb{Z} / n \mathbb{Z}$.
Let $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be a $b / 2$-dense subset of X. Define $f_{i} \in C(X)$ with $f_{i}(x)=1$ for $x \in$ $B\left(x_{i}, b\right)$ and $f_{i}(x)=0$ if $x \notin B\left(x_{i}, 2 b\right)$ and $0 \leq f_{i} \leq 1, i=1,2, \ldots, m$.
Note that

$$
\begin{equation*}
\tau\left(\phi\left(f_{i}\right)\right) \geq \sigma \quad \text { for all } \tau \in T(A), \quad i=1,2, \ldots, m \tag{119}
\end{equation*}
$$

Fix a finite subset $\mathcal{F}_{0} \subset C(\mathbb{T})$ which at least contains $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ and a finite subset $\mathcal{F}_{1} \subset C(X)$ which at least contains \mathcal{F} and $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$.

Choose δ so small that the following hold:
(i) there exists a unitary $u_{i} \in e_{i, i} A e_{i, i}$ such that $\left\|e^{2 \sqrt{-1} i \pi / n} e_{i, i} u e_{i, i}-u_{i}\right\|<\delta_{0}^{2} /$ $16 n^{4}, i=1,2, \ldots, n$;
(ii) $\left\|e_{i, j} g(u)-g(u) e_{i, j}\right\|<\delta_{0}^{2} / 16 n^{4},\left\|e_{i, j} \phi(f)-\phi(f) e_{i, j}\right\|<\delta_{0}^{2} / 16 n^{4}$, for $f \in \mathcal{F}_{1}$ and $g \in \mathcal{F}_{0}, j, k=1,2, \ldots, n$ and $s=1,2, \ldots, m$;
(iii)

$$
\begin{align*}
& \left\|e_{i, i} g(v u)-e_{i, i} g\left(e^{2 \sqrt{-1} i \pi / n} u\right)\right\|<\delta_{0}^{2} / 16 n^{4} \text { for all } g \in \mathcal{F}_{0} ; \text { and } \\
& \left\|e_{i, j}^{*} g(u) e_{i, j}-e_{i, j} g(u) e_{i, j}\right\|<\delta_{0}^{2} / 16 n^{4},\left\|e_{i, j}^{*} \phi(f) e_{i, j}-e_{j, j} \phi(f) e_{j, j}\right\|< \tag{iv}
\end{align*}
$$

$\delta_{0}^{2} / 16 n^{4}$ for all $f \in \mathcal{F}_{1}$ and $g \in \mathcal{F}_{0}, j, k=1,2, \ldots, n$ and $s=1,2, \ldots, m$.
It follows from (iv) that, for any $k_{0} \in\{1,2, \ldots, m\}$,

$$
\begin{equation*}
\tau\left(\phi\left(f_{k_{0}}\right) e_{j, j}\right) \geq \frac{\sigma}{n}-\frac{\delta_{0}^{2}}{16 n^{4}} \tag{120}
\end{equation*}
$$

Fix k_{0} and k. For each $\tau \in T(A)$, there is at least one i such that

$$
\begin{equation*}
\tau\left(\phi\left(f_{k_{0}}\right) e_{j, j} g_{i}(u)\right) \geq \frac{\sigma}{n}-\frac{\delta_{0}^{2}}{16 n^{4}} \tag{121}
\end{equation*}
$$

Choose j so that $k+j=i \bmod (n)$. Then,

$$
\begin{align*}
\tau\left(\phi\left(f_{k_{0}}\right) g_{k}(v u)\right) & \geq \tau\left(\phi\left(f_{k_{0}}\right) e_{j, j} g_{k}\left(e^{2 \sqrt{-1} i \pi / n} u\right)\right)-\frac{\delta_{0}^{2}}{16 n^{4}} \tag{122}\\
= & \tau\left(\phi\left(f_{k_{0}}\right) e_{j, j} g_{i}(u)\right)-\frac{\delta_{0}^{2}}{16 n^{4}} \tag{123}\\
& \geq \frac{\sigma}{n^{2}}-\frac{\delta_{0}^{2}}{16 n^{4}} \quad \text { for all } \tau \in T(A) . \tag{124}
\end{align*}
$$

It is then easy to compute that

$$
\begin{equation*}
\tau(\phi(f) g(v u)) \geq \frac{2 \sigma}{3 n^{2}} \quad \text { for all } \tau \in T(A) \tag{125}
\end{equation*}
$$

and for any pair of $f \in C(X)$ with $0 \leq f \leq 1$ whose support contains an open ball with radius $2 b$ and $g \in C(\mathbb{T})$ with $0 \leq g \leq 1$ whose support contains an open arc of length at least $8 \pi / n$.
Note that if $\left\|\left[\phi(f), e_{i, i}\right]\right\|<\delta$, then

$$
\left\|\left[\phi(f), \sum_{i=1}^{n} \lambda_{i} e_{i, i}\right]\right\|<n \delta<\epsilon
$$

for any $\lambda_{i} \in \mathbb{T}$ and $f \in \mathcal{F}_{1}$. We then also require that $\delta<\epsilon / 2 n$. Thus, one obtains a continuous path $\{v(t): t \in[0,1]\} \subset D$ with length $(\{v(t)\}) \leq \pi$ and with $v(0)=1$ and (1) $=v$.

Now we consider the last part of the lemma. Note also that, if $f \in \mathcal{F}_{1}$ and $g \in \mathcal{F}_{0}$ with $0 \leq$ $f, g \leq 1$,

$$
\begin{align*}
& \tau(\phi(f) g(v u)) \geq \sum_{j=1}^{n} \tau\left(\phi(f) e_{j, j} g(v u)\right)-\frac{\delta_{0}^{2}}{16 n^{4}} \tag{126}\\
& \geq \sum_{j=1}^{n} \tau\left(\phi(f) e_{j, j} g^{(j)}(v u)\right)-\frac{\delta_{0}^{2}}{16 n^{4}} \quad \text { for all } \tau \in T(A), \tag{127}
\end{align*}
$$

where $g^{(j)}(t)=g\left(e^{2 \sqrt{-1} j \pi / n} \cdot t\right)$ for $t \in \mathbb{T}$. If the support of f contains an open ball with radius $b_{i} / 2$ and that of g contains open arcs with length at least b_{i}, so does that of $g^{(j)}$. So, if \mathcal{F}_{0} and \mathcal{F}_{1} are sufficiently large, by the assumptions of the last part of the lemma, we have

$$
\begin{equation*}
\tau(\phi(f) g(v u)) \geq d_{i}-\frac{\delta_{0}^{2}}{16 n^{4}} \quad \text { for all } \tau \in T(A) \tag{128}
\end{equation*}
$$

for all $\tau \in T(A)$. As in the proof of (3.1.16), this lemma follows when we choose \mathcal{F}_{0} and \mathcal{F}_{1} large enough to begin with.

Lemma (3.1.18)[84]:
Let C be a unital separable simple C^{*}-algebra with $T R(C) \leq 1$ and let $n \geq 1$ be an integer. For any $\epsilon>0, \eta>0$, any finite subset $\mathcal{F} \subset C$, there exist $\delta>0$, a projection $p \in A$ and a C^{*}-subalgebra $D \cong M_{n}$ with $1_{D}=p$ such that

$$
\begin{align*}
& \|[p x p, y]\|<\epsilon \quad\|[x, p]\|<\epsilon \quad \text { for all } x \in \mathcal{F} ; \tag{129}\\
& \text { for all } x \in \mathcal{F} \text { and } y \in D \text { with }\|y\| \leq 1 \tag{130}
\end{align*}
$$

and

$$
\begin{equation*}
\tau(1-p)<\eta \quad \text { for all } \tau \in T(C) \tag{131}
\end{equation*}
$$

Proof:

Choose an integer $N \geq 1$ such that $1 / N<\eta / 2 n$ and $N \geq 2 n$. It follows from (the proof of) Theorem (3.1.18) of [89] that there is a projection $q \in C$ and there exists a C^{*}-subalgebra B of C with $1_{B}=q$ and $B \cong \bigoplus_{i=1}^{L} M_{K_{i}}$ with $K_{i} \geq N$ such that

$$
\begin{equation*}
\|[x, p]\|<\eta / 4 \quad \text { for all } x \in \mathcal{F} ; \tag{132}
\end{equation*}
$$

$$
\begin{equation*}
\|[p x p, y]\|<\epsilon / 4 \quad \text { for all } x \in \mathcal{F} \text { and } y \in B \text { with }\|y\| \leq 1 \tag{133}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(1-p)<\eta / 2 n \quad \text { for all } \tau \in T(C) \tag{134}
\end{equation*}
$$

Write $K_{i}=k_{i} n+r_{i}$ with $k_{i} \geq 1$ and $0 \leq r_{i}<n$ for some integers k_{i} and $r_{i}, i=1,2, \ldots, L$. Let $p \in B$ be a projection such that the rank of p is k_{i} in each summand $M K_{i}$ of B. Take $D_{1}=$ $p B p$.
We have

$$
\begin{array}{ll}
\|[x, p]\|<\frac{\epsilon}{2} \quad \text { for all } x \in \mathcal{F} ; \\
\|[p x p, y]\|<\epsilon & \text { for all } x \in \mathcal{F} \text { and } y \in D_{1} \text { with }\|y\| \leq 1 \tag{136}
\end{array}
$$

and

$$
\begin{equation*}
\tau(1-p)<\frac{\eta}{2 n}+\frac{n}{N}<\frac{\eta}{2 n}+\frac{\eta}{2}<\eta \quad \text { for all } \tau \in T(C) . \tag{137}
\end{equation*}
$$

Note that there is a unital C^{*}-subalgebra $D \subset D_{1}$ such that $D \cong M_{n}$. Lemma (3.1.19)[84]:

Let $n \geq 1$ be an integer with $n \geq 64$. Let $\epsilon>0$ and $1 / 2>\epsilon_{1}>0$. Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1$, suppose that $\mathcal{F} \subset A$ is a finite subset and suppose that $u \in U(A)$. Then, for any $\epsilon>0$, there exist a unitary $v \in A$ and a continuous path of unitaries $\{w(t): t \in[0,1]\} \subset A$ such that

$$
\begin{gather*}
\|[x, w(t)]\|<\epsilon \quad \text { for all } f \in \mathcal{F} \text { and for all } t \in[0,1], \tag{138}\\
w(0)=1, \quad w(1)=v \tag{139}
\end{gather*}
$$

and

$$
\begin{equation*}
\mu_{\tau \circ l}\left(I_{a}\right) \geq \frac{15}{24 n^{2}} \tag{140}
\end{equation*}
$$

for all open arcs I_{a} of \mathbb{T} with length $a \geq 4 \pi / n$ and for all $\tau \in T(A)$, where $l: C(\mathbb{T}) \rightarrow A$ is defined by $l(f)=f(v u)$. Moreover,

$$
\begin{equation*}
\text { length }(\{w(t)\}) \leq \pi . \tag{141}
\end{equation*}
$$

If, in addition, $\pi>b_{1}>b_{2}>\cdots>b_{m}>0$ and $1=d_{0}>d_{1}>d_{2}>\cdots>d_{m}>0$ are given so that

$$
\begin{equation*}
\mu_{\tau o l_{0}}\left(I_{b_{i}}\right) \geq d_{i} \quad \text { for all } \tau \in T(A), \quad I=1,2, \ldots, m \tag{142}
\end{equation*}
$$

where $l_{0}: C(\mathbb{T}) \rightarrow A$ is defined by $l_{0}(f)=f(u)$ for all $f \in C(\mathbb{T})$, then one also has that

$$
\begin{equation*}
\mu_{\tau o l}\left(I_{c_{i}}\right) \geq\left(1-\epsilon_{1}\right) d_{i} \quad \text { for all } \tau \in T(A) \tag{143}
\end{equation*}
$$

where $I_{b_{i}}$ and $I_{c_{i}}$ are any open arcs with length b_{i} and c_{i}, respectively, and where $c_{i}=b_{i}+1$, $i=1,2, \ldots, m$.

Proof:

Let $\epsilon>0$, and let $n \geq 64$ be an integer. Put $\epsilon_{2}=\min \left\{\epsilon_{1} / 16,1 / 64 n^{2}\right\}$. Let $\mathcal{F} \subset A$ be a finite subset and let $u \in U(A)$. Let $\delta_{1}>0$ (in place of δ) for, ϵ, ϵ_{2} (in place of ϵ_{1}) and let $G=\left\{e_{i, j}\right\} \subset D \cong M_{n}$.
Put $\delta=\delta_{1} / 16$, there is a projection $p \in A$ and a C^{*}-subalgebra $D \cong M_{n}$ with $1_{D}=p$ such that

$$
\begin{gather*}
\|[x, p]\|<\delta \text { for all } x \in \mathcal{F} ; \tag{144}\\
\|[p x p, y]\|<\delta \quad \text { for all } x \in \mathcal{F} \text { and } y \in D \text { with }\|y\| \leq 1 \tag{145}
\end{gather*}
$$

and

$$
\begin{equation*}
\tau(1-p)<\epsilon_{2} \text { for all } \tau \in T(C) \tag{146}
\end{equation*}
$$

There is a unitary $u_{0} \in(1-p) A(1-p)$ and a unitary $u_{1} \in p A p$. Put $A_{1}=p A p$ and $\mathcal{F}_{1}=$ $\{p x p: x \in \mathcal{F}\}$. The A_{1}, \mathcal{F}_{1} and u_{1}.
Lemma (3.1.20)[84]:
Let $n \geq 64$ be an integer. Let $\epsilon>0$ and $1 / 2>\epsilon_{1}>0$. Suppose that A is a unital simple C^{*} algebra with $T R(A) \leq 1, X$ is a compact metric space, $\phi: C(X) \rightarrow A$ is a unital homomorphism, $\mathcal{F} \subset C(X)$ is a finite subset and suppose that $u \in U(A)$. Suppose also that, for some $\sigma>0$ and $1>b>0$,

$$
\begin{equation*}
\tau(\phi(f)) \in \sigma \quad \text { for all } \tau \in T(A) \text { and } \tag{147}
\end{equation*}
$$

for all $f \in C(\mathbb{T})$ with $0 \leq f \leq 1$ whose supports contain an open ball with radius at least b. Then, there exist a unitary $v \in A$ and a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that $v(0)=1, v(1)=v$,

$$
\begin{gather*}
\|[\phi(f), v(t)]\|<\epsilon \text { and }\|[u, v(t)]\|<\epsilon \quad \text { for all } f \in \mathcal{F} \text { and } t \in[0,1] \tag{148}\\
\tau(\phi(f) g(v u)) \geq \frac{15 \sigma}{24 n^{2}} \quad \text { for all } \tau \in T(A) \tag{149}
\end{gather*}
$$

for any $f \in C(X)$ with $0 \leq f \leq 1$ whose support contains an open ball of radius at least $2 b$ and any $g \in C(\mathbb{T})$ with $0 \leq g \leq 1$ whose support contains an open arc of \mathbb{T} with length $a \geq$ $8 \pi / n$.
Moreover,

$$
\begin{equation*}
\text { length }(\{v(t)) \leq \pi . \tag{150}
\end{equation*}
$$

If, in addition, $1>b_{1}>b_{2}>\cdots>b_{k}>0,1>d_{1}>d_{2}>\cdots>d_{k}>0$ are given and

$$
\begin{equation*}
\tau\left(\phi\left(f^{\prime}\right) g^{\prime}(u)\right) \geq d_{i} \quad \text { for all } \tau \in T(A) \tag{151}
\end{equation*}
$$

for any functions $f^{\prime} \in C(X)$ with $0 \leq f^{\prime} \leq 1$ whose support contains an open ball with radius $b_{i} / 2$ and any function $g^{\prime} \in C(\mathbb{T})$ with $0 \leq g^{\prime} \leq 1$ whose support contains an arc with length b_{i}, then one also has that

$$
\begin{equation*}
\tau\left(\phi\left(f^{\prime \prime}\right) g^{\prime \prime}(u)\right) \geq\left(1-\epsilon_{1}\right) d_{i} \quad \text { for all } \tau \in T(A) \tag{152}
\end{equation*}
$$

where $f^{\prime \prime} \in C(X)$ with $0 \leq f^{\prime \prime} \leq 1$ whose support contains an open ball with radius c_{i} and $g^{\prime \prime} \in C(\mathbb{T})$ with $0 \leq g^{\prime \prime}$ whose support contains an arc with length $2 c_{i}$, where $c_{i}=b_{i}+$ $1, i=1,2, \ldots, k$.
Define

$$
\begin{equation*}
\Delta_{00}(r)=\frac{1}{2(n+1)^{2}} \text { if } 0<\frac{8 \pi}{n+1}+\frac{4 \pi}{2^{n+2}(n+1)}<r \leq \frac{8 \pi}{n}+\frac{4 \pi}{2^{n+1} n} \tag{153}
\end{equation*}
$$

for $n \geq 64$ and

$$
\begin{equation*}
\Delta_{00}(r)=\frac{1}{2(65)^{2}} \quad \text { if } r \geq \frac{8 \pi}{64}+\frac{4 \pi}{2^{65}(64)} \tag{154}
\end{equation*}
$$

Let $\Delta:(0,1) \rightarrow(0,1)$ be a non-decreasing map. Define

$$
\begin{equation*}
\text { if } 0<\frac{8 \pi}{n+1}+\frac{4 \pi}{2^{n+2}(n+1)}<r \leq \frac{8 \pi}{n}+\frac{4 \pi}{2^{n+1} n} \tag{155}
\end{equation*}
$$

for $n \geq 64$ and

$$
\begin{equation*}
D_{0}(\Delta)(r)=D_{0}(\Delta)(4 \pi / 64) \text { if } r \geq \frac{8 \pi}{64}+\frac{4 \pi}{2^{65}(64)} \tag{156}
\end{equation*}
$$

Lemma (3.1.21)[84]:
Suppose that A is a unital separable simple C^{*}-algebra with $T R(A) \leq 1$, suppose that $\mathcal{F} \subset A$ is a finite subset and suppose that $u \in U(A)$. For any $\epsilon>0$ and any $\eta>0$, there exist a unitary $v \in U_{0}(A)$ and a continuous path of unitaries $\{w(t): t \in[0,1]\} \subset$ $U_{0}(A)$ such that

$$
\begin{equation*}
w(0)=1, \quad w(1)=v, \quad\|[f, w(t)]\|<\epsilon \text { for all } f \in \mathcal{F} \text { and } t \in[0,1] \tag{157}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{\tau o l}\left(I_{a}\right) \geq \Delta_{00}(a) \text { for all } \tau \in T(A) \tag{158}
\end{equation*}
$$

for any open arc I_{a} with length $a \geq \eta$, where $l: C(\mathbb{T}) \rightarrow A$ is defined by $l(g)=g(v u)$ for all $g \in C(\mathbb{T})$ and Δ_{00}.
Corollary (3.1.22)[84]: Let C be a unital separable simple amenable C^{*}-algebra with $T R(C) \leq 1$ which satisfies the $U C T$. Let $\epsilon>0, \mathcal{F} \subset C$ be a finite subset and let $1>\eta>0$.

Suppose that A is a unital simple C^{*}-algebra with $\operatorname{TR}(A) \leq 1, \phi: C \rightarrow A$ is a unital homomorphism and $u \in U(A)$ is a unitary with

$$
\begin{equation*}
\|\phi(c), u\|<\epsilon \text { for all } c \in \mathcal{F} \tag{159}
\end{equation*}
$$

Then there exist a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset U(A)$ such that

$$
\begin{equation*}
u(0)=u, \quad u(1)=w \text { and }\|\phi(f), u(t)\|<2 \epsilon \tag{160}
\end{equation*}
$$

for all $f \in \mathcal{F}$ and $t \in[0,1]$. Moreover, for any open $\operatorname{arc} I_{a}$ with length a,

$$
\begin{equation*}
\mu_{\tau o l}\left(I_{a}\right) \geq \Delta_{00}(r) \text { for all } a \geq \eta, \tag{161}
\end{equation*}
$$

where $l: C(\mathbb{T}) \rightarrow A$ is defined by $l(f)=f(w)$ for all $f \in C(\mathbb{T})$.

Proof:

Let $\epsilon>0$ and $\mathcal{F} \subset C$ be as described. Put $\mathcal{F}_{1}=\phi(\mathcal{F})$. The corollary follows by taking $u(t)=w(t) u$.
Lemma (3.1.23)[84]: Let $\Delta:(0,1) \rightarrow(0,1)$ be a non-decreasing map, let $\eta>0$, let X be a compact metric space and let $\mathcal{F} \subset C(X)$ be a finite subset. Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1$, suppose that $\phi: C(X) \rightarrow A$ is a unital homomorphism and suppose that $u \in U(A)$ such that

$$
\begin{equation*}
\mu_{\tau \circ \phi}\left(O_{a}\right) \geq \Delta(r) \quad \text { for all } \tau \in T(A) \tag{162}
\end{equation*}
$$

for any open ball with radius $a \leq \eta$. For any $\epsilon>0$, there exist a unitary $v \in U_{0}(A)$ and a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset U_{0}(A)$ such that

$$
\begin{equation*}
v(0)=1, \quad v(1)=v \tag{163}
\end{equation*}
$$

$$
\begin{equation*}
\|\phi(f), v(t)\|<\epsilon, \quad\|u, v(t)\|<\epsilon, \quad \text { for all } f \in \mathcal{F} \text { and } t \in[0,1] \tag{164}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(\phi(f) g(v u)) \geq D_{0}(\Delta)(a) \quad \text { for all } \tau \in T(A) \tag{165}
\end{equation*}
$$

for any $f \in C(X)$ with $0 \leq f \leq 1$ whose support contains an open ball with radius $a \geq 4 \eta$ and any $g \in C(\mathbb{T})$ with $0 \leq g \leq 1$ whose support contains an open arc with length $a \geq 4 \eta$, where $D_{0}(\Delta)$.

We will prove Theorem (3.1.25) below. We will apply the results of the previous section to produce the map L which was required by using a continuous path of unitaries. Lemma (3.1.24)[84]: Let X be a compact metric space, let $\Delta:(0,1) \rightarrow(0,1)$ be a nondecreasing map, let $\epsilon>0$, let $\eta>0$ and let $\mathcal{F} \subset C(X)$ be a finite subset. There exist $\delta>0$ and a finite subset $G \subset C(X)$ satisfying the following:

Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1$, suppose that $\phi: C(X) \rightarrow A$ and suppose that $u \in U(A)$ such that

$$
\begin{equation*}
\|\phi(f), u\|<\delta \text { for all } f \in \mathcal{G} \tag{166}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\mu_{\tau \circ \phi}\left(O_{b}\right) \geq \Delta(a) \text { for all } \tau \in T\right) \tag{167}
\end{equation*}
$$

for any open balls O_{b} with radius $b \geq \eta / 2$. There exist a unitary $v \in U_{0}(A)$, a unital completely positive linear map $L: C(X \times \mathbb{T}) \rightarrow A$ and a continuous path of unitaries $\{v(t): t \in$ $[0,1]\} \subset U_{0}(A)$ such that

$$
\begin{equation*}
v(0)=u, v(1)=v,\|\phi(f), v(t)\|<\epsilon, \text { for all } f \in \mathcal{F} \text { and } t \in[0,1] \tag{168}
\end{equation*}
$$

$$
\begin{equation*}
\|L(f \otimes z)-\phi(f) v\|<\epsilon, \quad\|L(f \otimes 1)-\phi(f)\|<\epsilon \quad \text { for all } f \in \mathcal{F} \tag{169}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\mu_{\tau \circ L}\left(O_{a}\right) \geq(2 / 3) D_{0} \Delta\left(\frac{a}{2}\right) \text { for all } \tau \in T\right) \tag{170}
\end{equation*}
$$

for any open balls O_{a} of $X \times \mathbb{T}$ with radius $a \geq 5 \eta$.

Proof:

Fix $\epsilon>0, \eta>0$ and a finite subset $\mathcal{F} \subset C(X)$. Let $\mathcal{F}_{1} \subset C(X)$ be a finite subset containing \mathcal{F}. Let $0=\min \left\{\epsilon / 2, D_{0}(\Delta)(\eta) / 4\right\}$. Let $\mathcal{G} \subset C(X)$ be a finite subset containing $\mathcal{F}, 1_{C(X)}$ and z. There is $\delta_{0}>0$ such that there is a unital completely positive linear map $L^{\prime}: C(X \times \mathbb{T}) \rightarrow$ B (for unital C^{*}-algebra B) satisfying the following:

$$
\begin{equation*}
\left\|L^{\prime}(f \otimes z)-\phi^{\prime}(f) u^{\prime}\right\|<\epsilon_{0} \quad \text { for all } f \in \mathcal{F}_{1} \tag{171}
\end{equation*}
$$

for any unital homomorphism $\phi^{\prime}: C(X) \rightarrow B$ and any unitary $u^{\prime} \in B$ whenever

$$
\begin{equation*}
\left\|\left[\phi^{\prime}(g), u^{\prime}\right]\right\|<\delta_{0} \quad \text { for all } g \in \mathcal{G} \tag{172}
\end{equation*}
$$

Let $0<\delta<\min \left\{\delta_{0} / 2, \epsilon / 2, \epsilon_{0} / 2\right\}$ and suppose that

$$
\begin{equation*}
\|[\phi(g), u]\|<\delta \quad \text { for all } g \in \mathcal{G} \tag{173}
\end{equation*}
$$

It follows that there is a continuous path of unitaries $\{z(t): t \in[0,1]\} \subset U_{0}(A)$ such that

$$
\begin{equation*}
z(0)=1, z(1)=v_{1}, \tag{174}
\end{equation*}
$$

$$
\begin{equation*}
\|[\phi(f), z(t)]\|<\frac{\delta}{2} \quad\|[u, z(t)]\|<\frac{\delta}{2} \quad \text { for all } t \in[0,1] \tag{175}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau\left(\phi(f) g\left(v_{1} u\right)\right) \geq D_{0}(\Delta)(a) \tag{176}
\end{equation*}
$$

for any $f \in C(X)$ with $0 \leq f \leq 1$ whose support contains an open ball with radius 4η and $g \in C(\mathbb{T})$ with $0 \leq g \leq 1$ whose support contains open arcs with length $a \geq 4 \eta$.

Put $v=v_{1} u$. Then we obtain a unital completely positive linear map $L: C(X \times \mathbb{T}) \rightarrow A$ such that

$$
\begin{equation*}
\|L(f \otimes z)-\phi(f) v\|<\epsilon_{0} \text { and }\|L(f \otimes 1)-\phi(f)\|<\epsilon_{0} \text { for all } f \in \mathcal{F}_{1} \tag{177}
\end{equation*}
$$

If \mathcal{F}_{1} is sufficiently large (depending on η only), we may also assume that

$$
\begin{equation*}
\mu_{\tau \circ L}\left(B_{a} \times J_{a}\right) \geq\left(\frac{2}{3}\right) D_{0} \Delta\left(\frac{a}{2}\right) \tag{178}
\end{equation*}
$$

for any open ball B_{a} with radius a and open arcs with length a, where $a \geq 5 \eta$.
Theorem (3.1.25)[84]:
Let X be a finite $C W$ complex so that $X \times \mathbb{T}$ has the property (H). Let $C=P C\left(X, M_{n}\right) P$ for some projection $P \in C\left(X, M_{n}\right)$ and let $\Delta:(0,1) \rightarrow(0,1)$ be a nondecreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta>0, \eta>0$ and there exists a finite subset $\mathcal{G} \subset C$ satisfying the following:

Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1, \phi: C \rightarrow A$ is a unital homomorphism and $u \in A$ is a unitary and suppose that

$$
\begin{equation*}
\|[\phi(c), u]\|<\delta \text { for all } c \in \mathcal{G} \text { and } \operatorname{Bott}(\phi, u)=\{0\} \tag{179}
\end{equation*}
$$

Suppose also that

$$
\begin{equation*}
\mu_{\tau \circ \phi}\left(O_{a}\right) \geq \Delta(a) \tag{180}
\end{equation*}
$$

for all open balls O_{a} of X with radius $1>a \geq \eta$, where $\mu_{\tau \circ \phi}$ is the Borel probability measure defined by restricting ϕ on the center of C. Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\}$ in A such that

$$
\begin{equation*}
u(0)=u, \quad u(1)=1 \text { and }\|[\phi(c), u(t)]\|<\epsilon \tag{181}
\end{equation*}
$$

For all $c \in \mathcal{F}$ and for all $t \in[0,1]$.

Proof:

First it is easy to see that the general case can be reduced to the case that $C=C\left(X, M_{n}\right)$. It is then easy to see that this case can be further reduced to the case that $C=C(X)$.
Corollary (3.1.26)[84]:
Let $k \geq 1$ be an integer, let $\epsilon>, 0$ and let $\Delta:(0,1) \rightarrow(0,1)$ be any nondecreasing map. There exist $\delta>0$ and $\eta>0$ (η does not depend on Δ) satisfying the following:
For any k mutually commutative unitaries $u_{1} u_{2}, \ldots, u_{k}$ and a unitary $v \in U(A)$ in a unital separable simple C^{*}-algebra A with tracial rank no more than one for which

$$
\left\|\left[u_{i}, v\right]\right\|<\delta, \quad \operatorname{bott}_{j}\left(u_{i}, v\right)=0, \quad j=0,1, \quad i=1,2, \ldots, k
$$

and

$$
\mu_{\tau \circ \phi}\left(O_{a}\right) \geq \Delta(a) \quad \text { for all } \tau \in T(A)
$$

for any open ball O_{a} with radius $a \geq \eta$, where $\phi: C\left(\mathbb{T}^{k}\right) \rightarrow A$ is the homomorphism defined by $\phi(f)=f\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ for all $f \in C\left(\mathbb{T}^{k}\right)$, there exists a continuous path of unitaries $\{v(t): t \in[0,1]\} \subset A$ such that $v(0)=v, v(1)=1$ and

$$
\left\|\left[u_{i}, v(t)\right]\right\|<\epsilon \quad \text { for all } t \in[0,1], \quad i=1,2, \ldots, k .
$$

Section (3.2) Result of Equivalence Approximate Unitary with Tracial Rank One

Theorem (3.2.1)[84]:

Let C be a unital separable amenable C^{*}-algebra satisfying the $U C T$. Let $b \geq 1$, let $T: \mathbb{N}^{2} \rightarrow \mathbb{N}, L: U\left(M_{\infty}(C)\right) \rightarrow \mathbb{R}_{+}, E: \mathbb{R}_{+} \times \mathbb{N} \rightarrow \mathbb{R}_{+}$and $T_{1}=N \times K: C_{+} \backslash\{0\} \rightarrow \mathbb{N} \times \mathbb{R}_{+} \backslash\{0\}$ be four maps. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta>0$, a finite subset $\mathcal{G} \subset C$, a finite subset $\mathcal{H} \subset C_{+} \backslash\{0\}$, a finite subset $\mathcal{P} \subset \underline{K}(C)$, a finite subset $\mathcal{U} \subset$ $U\left(M_{\infty}(C)\right)$, an integer $l>0$ and an integer $k>0$ satisfying the following:

For any unital C^{*}-algebra A with stable rank one, K_{0}-divisible rank T, exponential length divisible $\operatorname{rank} E$ and $\operatorname{cer}\left(M_{m}(A)\right.$) b (for all m), if $\phi, \psi: C \rightarrow A$ are two unital δ Gmultiplicative contractive completely positive linear maps with

$$
\begin{equation*}
\left.[\phi]\right|_{\mathcal{P}}=\left.[\psi]\right|_{\mathcal{P}} \text { and } \operatorname{cel}\left(\langle\phi\rangle(u)^{*}\langle\psi\rangle(u)\right) \leq L(u) \tag{182}
\end{equation*}
$$

for all $u \in U$, then for any unital $\delta-\mathcal{G}$-multiplicative contractive completely positive linear map $\theta: C \rightarrow M_{l}(A)$ which is also $T-\mathcal{H}$-full, there exists a unitary $u \in M_{l k+1}(A)$ such that

$$
\|u^{*} \operatorname{diag}(\phi(a), \overbrace{\theta(a), \theta(a), \ldots, \theta(a)}^{k}) u-\operatorname{diag}(\psi(a), \overbrace{\theta(a), \theta(a), \ldots, \theta(a)}^{k})\|
$$

$$
\begin{equation*}
<\epsilon \quad \text { for all } a \in \mathcal{F} \tag{183}
\end{equation*}
$$

Theorem (3.2.2)[84]: Let C be a unital separable simple amenable C^{*}-algebra with $T R(C) \leq 1$ satisfying the $U C T$ and let $D=C \otimes C(\mathbb{T})$. Let $T=N \times K: D_{+} \backslash\{0\} \rightarrow \mathbb{N}_{+} \times$ $\mathbb{R}_{+} \backslash\{0\}$.
Then, for any >0 and any finite subset $\mathcal{F} \subset D$, there exist $\delta>0$, a finite subset $\mathcal{G} \subset D$, a finite subset $\mathcal{H} \subset D_{+} \backslash\{0\}$, a finite subset $\mathcal{P} \subset \underline{K}(C)$ and a finite subset $U \subset U(D)$ satisfying the following: Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1$ and $\phi, \psi: D \rightarrow A$ are two unital δ - \mathcal{G}-multiplicative contractive completely positive linear maps such that ϕ, ψ are $T-\mathcal{H}$-full,

$$
\begin{equation*}
|\tau \circ \phi(g)-\tau \circ \psi(g)|<\delta \text { for all } g \in \mathcal{G} \tag{184}
\end{equation*}
$$

for all $\tau \in T(A)$,

$$
\begin{equation*}
\left.[\phi]\right|_{\mathcal{P}}=\left.[\psi]\right|_{\mathcal{P}} \tag{185}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dist}\left(\phi^{\ddagger}(\bar{w}), \psi^{\ddagger}(\bar{w})\right)<\delta \tag{186}
\end{equation*}
$$

for all $w \in \mathcal{U}$. Then there exists a unitary $u \in U(A)$ such that

$$
\begin{equation*}
\text { and } u \circ \psi \approx_{\epsilon} \phi \text { on } \mathcal{F} . \tag{187}
\end{equation*}
$$

Corollary (3.2.3)[84]:

Let C be a unital separable amenable simple C^{*}-algebra with $T R(C) \leq 1$ which satisfies the $U C T$, let $D=C \otimes C(\mathbb{T})$ and let A be a unital simple C^{*}-algebra with $T R(A) \leq$ 1. Suppose that $\phi, \psi: D \rightarrow A$ are two unital monomorphisms. Then ϕ and ψ are
approximately unitarily equivalent, i.e., there exists a sequence of unitaries $\left\{u_{n}\right\} \subset A$ such that

$$
\lim _{n \rightarrow \infty} a d u_{n} \circ \psi(d)=\phi(d) \quad \text { for all } d \in D,
$$

if and only if

$$
\begin{gathered}
{[\phi]=[\psi] \text { in } K L(D, A),} \\
\tau \circ \phi=\tau \circ \psi \text { for all } \tau \in T(A) \text { and } \psi^{\ddagger}=\phi^{\ddagger} .
\end{gathered}
$$

Lemma (3.2.4)[84]:
Let C be a unital separable simple C^{*}-algebra with $T R(C) \leq 1$ and let $\Delta:(0,1) \rightarrow(0,1)$ be a non-decreasing map. There exists a map $T=N \times K: D_{+} \backslash\{0\} \rightarrow \mathbb{N}_{+} \times \mathbb{R}_{+} \backslash\{0\}$, where $D=C \otimes C(\mathbb{T})$, satisfying the following:

For any $\epsilon>0$, any finite subset $\mathcal{F} \subset C$ and any finite subset $\mathcal{H} \subset D_{+} \backslash\{0\}$, there exist $\delta>0, \eta>0$ and a finite subset $\mathcal{G} \subset C$ satisfying the following: for any unital separable unital simple C^{*}-algebra A, any unital homomorphism $\phi: C \rightarrow A$ and any unitary $u \in A$ such that

$$
\begin{equation*}
\|[\phi(c), u]\|<\delta \text { for all } c \in \mathcal{G} \tag{188}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{\tau o l}\left(O_{a}\right) \geq \Delta(a) \quad \text { for all } \tau \in T(A) \tag{189}
\end{equation*}
$$

and for all open balls O_{a} with radius $a \geq \eta$, where $l: C(\mathbb{T}) \rightarrow A$ is defined by $l(f)=f(u)$, there is a unital completely positive linear map $L: D \rightarrow A$ such that

$$
\begin{equation*}
\|L(c \otimes 1)-\phi(c)\|<\epsilon\|L(c \otimes z)-\phi(c) u\|<\epsilon \text { for all } c \in \mathcal{F} \tag{190}
\end{equation*}
$$

and L is $T-\mathcal{H}$-full.

Proof:

We identify D with $C(\mathbb{T}, C)$. Let $f \in D_{+} \backslash\{0\}$. There is positive number $b \geq 1, g \in D_{+}$ with $0 \leq g \leq b \cdot 1$ and $f_{1} \in D_{+} \backslash\{0\}$ with $0 \leq f_{1} \leq 1$ such that

$$
\begin{equation*}
g f g f_{1}=f_{1} . \tag{191}
\end{equation*}
$$

There is a point $t_{0} \in \mathbb{T}$ such that $f_{1}\left(t_{1}\right) \neq 0$. There is $r>0$ such that

$$
\tau\left(f_{1}(t)\right) \geq \tau\left(f_{1}\left(t_{0}\right)\right) / 2
$$

for all $\tau \in T(C)$ and for all t with $\operatorname{dist}\left(t, t_{0}\right)<r$.
Define $\Delta_{0}(f)=\inf \left\{\tau\left(f_{1}\left(t_{0}\right)\right) / 4: \tau \in T(C)\right\} \cdot(r)$. There is an integer $n \geq 1$ such that

$$
\begin{equation*}
\text { n. } \Delta_{0}(f)>1 . \tag{192}
\end{equation*}
$$

Define $T(f)=(n, b)$. Put

$$
\eta=\inf \left\{\Delta_{0}(f): f \in \mathcal{H}\right\} / 2 \text { and } \epsilon_{1}=\min \{\epsilon, \eta\}
$$

We claim that there exists an $\epsilon_{1}-\mathcal{F} \cup \mathcal{H}$-multiplicative contractive completely positive linear map $L: D \rightarrow A$ such that

$$
\begin{equation*}
\|L(c \otimes 1)-\phi(c)\|<\epsilon \text { for all } c \in \mathcal{F} \quad\|L(1 \otimes z)-u\|<\epsilon \tag{193}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\tau \circ L\left(f_{1}\right)-\int_{\mathbb{T}} \tau\left(\phi\left(f_{1}(s)\right)\right) d \mu_{\tau \circ l}(s)\right|<\eta \text { for all } \tau \in T(A) \tag{194}
\end{equation*}
$$

and for all $f \in \mathcal{H}$. Otherwise, there exists a sequence of unitaries $\left\{u_{n}\right\} \subset U(A)$ for which $\mu_{\tau \circ l_{n}}\left(O_{a}\right) \geq \Delta(a)$ for all $\tau \in T(A)$ and for any open balls O_{a} with radius $a \rightarrow a_{n}$ with $a_{n} \rightarrow$ 0 , and for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left[\phi(c), u_{n}\right]\right\|=0 \tag{195}
\end{equation*}
$$

for all $c \in C$ and suppose for any sequence of contractive completely positive linear maps $L_{n}: D \rightarrow A$ with

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left\|L_{n}(a b)-L_{n}(a) L_{n}(b)\right\|=0 \text { for all } a, b \in D \tag{196}\\
\lim _{n \rightarrow \infty}\left\|L_{n}(c \otimes f)-\phi(c) f\left(u_{n}\right)\right\|=0 \tag{197}
\end{gather*}
$$

for all $c \in C, f \in C(\mathbb{T})$ and

$$
\begin{equation*}
\liminf \left\{\max \left\{\left|\tau \circ L_{n}\left(f_{1}\right)-\int_{\mathbb{T}} \tau\left(\phi\left(f_{1}(s)\right)\right) d \mu_{\tau \circ l_{n}}(s)\right|: f \in \mathcal{H}\right\}\right\} \geq \eta \tag{198}
\end{equation*}
$$

for some $\tau \in T(A)$, where $l_{n}: C(\mathbb{T}) \rightarrow D$ is defined by $l_{n}(f)=f\left(u_{n}\right)$ for $f \in C(T)$ (or no contractive completely positive linear maps L_{n} exists so that (196), (197) and (197)).

Put $A_{n}=A, n=1,2, \ldots$, and $Q(A)=\prod_{n} A_{n} / \oplus_{n} A_{n}$. Let $\pi: \prod_{n} A_{n} \rightarrow Q(A)$ be the quotient map. Define a linear map $L^{\prime}: D \rightarrow \prod_{n} A_{n}$ by $L(c \otimes 1)=\{\phi(c)\}$ and $L^{\prime}(1 \otimes z)=$ $\left\{u_{n}\right\}$. Then $\pi \circ L^{\prime}: D \rightarrow Q(A)$ is a unital homomorphism. It follows from a theorem of Effros and Choi [69] that there exists a contractive completely positive linear map $L: D \rightarrow \prod_{n} A_{n}$ such that $\pi \circ L=\pi \circ L^{\prime}$. Write $\mathrm{L}=\left\{L_{n}\right\}$, where $L_{n}: D \rightarrow A_{n}$ is a contractive completely positive linear map. Note that

$$
\lim _{n \rightarrow \infty}\left\|L_{n}(a) L_{n}(b)-L_{n}(a b)\right\|=0 \text { for all } a b \in D
$$

Fix $\tau \in T(A)$, define $t_{n}: \prod_{n} A_{n} \rightarrow \mathbb{C}$ by $t_{n}\left(\left\{d_{n}\right\}\right)=\tau\left(d_{n}\right)$. Let t be a limit point of $\left\{t_{n}\right\}$. Then t gives a state on $\prod_{n} A_{n}$. Note that if $\left\{d_{n}\right\} \in \bigoplus_{n} A_{n}$, then $t_{m}\left(\left\{d_{n}\right\}\right) \rightarrow 0$. It follows that t gives a state \bar{t} on $Q(A)$. Note that (by (267))

$$
\bar{t}(\pi \circ L(c \otimes 1))=\tau(\phi(c))
$$

for all $c \in C$. It follows that

$$
\begin{align*}
\bar{t}(\pi \circ L(f)) & =\int_{\mathbb{T}} \bar{t}(\pi \circ L(f(s) \otimes 1)) d \mu_{\left.\bar{t} \circ \pi \circ L\right|_{t \otimes C(\mathbb{T})}} \\
& =\int_{\mathbb{T}} \tau(\phi(f(s))) d \mu_{\left.\bar{t} \circ \pi \circ L\right|_{t \otimes C(\mathbb{T})}} \tag{199}
\end{align*}
$$

for all $f \in C(\mathbb{T}, C)$. Therefore, for a subsequence $\{n(k)\}$,

$$
\begin{equation*}
\left|\tau \circ L_{n}\left(f_{1}\right)-\int_{\mathbb{T}} \tau(\phi(f(s))) d \mu_{\left.\bar{t} \circ \pi \circ L\right|_{t \otimes C(\mathbb{T})}}\right|<\frac{\eta}{2} \tag{200}
\end{equation*}
$$

for all $f \in \mathcal{H}$. This contradicts with (268). Moreover, from this, it is easy to compute that

$$
\mu_{\left.\bar{t} \circ \pi \circ L\right|_{t \otimes C(\mathbb{T})}}\left(O_{a}\right) \geq \Delta(a)
$$

for all open balls O_{a} of t with radius $1>a$. This proves the claim.
Note that

$$
\int_{\mathbb{T}} \tau \circ \phi\left(f_{1}(s)\right) d \mu_{\tau \circ l} \geq\left(\tau\left(\phi\left(f_{1}\left(t_{0}\right) / 2\right)\right)\right) \cdot \Delta(r)
$$

for all $\tau \in T(A)$. It follows that

$$
\begin{equation*}
\tau\left(L\left(f_{1}\right)\right) \geq \inf \left\{t\left(f_{1}\left(t_{0}\right)\right) / 2: t \in T(C)\right\}-\frac{\eta}{2} \geq\left(\frac{4}{3}\right) \Delta_{0}(f) \tag{201}
\end{equation*}
$$

for all $f \in \mathcal{H}$.
In [22], there exists a projection $e \in \overline{L\left(f_{1}\right) A L\left(f_{1}\right)}$ such that

$$
\begin{equation*}
\tau(e) \geq \Delta_{0}(f) \quad \text { for all } \tau \in T(A) \tag{202}
\end{equation*}
$$

It follows from (262) that there exists a partial isometry $w \in M_{n}(A)$ such that

$$
w^{*} \operatorname{diag}(\overbrace{e, e, \ldots, e}^{n}) w \geq 1_{A}
$$

Thus there $x_{1}, x_{2}, \ldots, x_{n} \in A$ with $\left\|x_{i}\right\| \leq 1$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{*} e x_{i} \geq 1 \tag{203}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{*} g f g x_{i} \geq 1 \tag{204}
\end{equation*}
$$

It then follows that there are $y_{1}, y_{2}, \ldots, y_{n} \in A$ with $\left\|y_{i}\right\| \leq b$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i}^{*} f y_{i}=1 \tag{205}
\end{equation*}
$$

Therefore L is T - \mathcal{H}-full.
Lemma (3.2.5)[84]:
Let C be a unital separable amenable simple C^{*}-algebra with $T R(C) \leq 1$ satisfying the $U C T$. For $1 / 2>\sigma>0$, any finite subset \mathcal{G}_{0} and any projections $p_{1}, p_{2}, \ldots, p_{m} \in C$. There is $\delta_{0}>0$, a finite subset $\mathcal{G} \subset C$ and a finite subset of projections $P_{0} \subset C$ satisfying the following: Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1, \phi: C \rightarrow A$ is a unital homomorphism and $u \in U_{0}(A)$ is a unitary such that

$$
\begin{equation*}
\|\phi(c), u\|<\delta<\delta_{0} \text { for all } c \in \mathcal{G} \cup \mathcal{G}_{0} \text { and }\left.\operatorname{bott}_{0}(\phi, u)\right|_{\mathcal{P}_{0}}=\{0\} \tag{206}
\end{equation*}
$$

where \mathcal{P}_{0} is the image of \mathcal{P}_{0} in $K_{0}(C)$. Then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\}$ in A with $u(0)=u$ and $u(1)=w$ such that

$$
\begin{equation*}
\|\phi(c), u\|<3 \delta \quad \text { for all } c \in \mathcal{G} \cup \mathcal{G}_{0} \tag{207}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{j} \oplus\left(1-\phi\left(p_{j}\right)\right) \in C U(A) \tag{208}
\end{equation*}
$$

where $w_{j} \in U_{0}\left(\phi\left(p_{j}\right) A \phi\left(p_{j}\right)\right)$ and

$$
\begin{equation*}
\left\|w_{j}-\phi\left(p_{j}\right) w \phi\left(p_{j}\right)\right\|<\sigma \tag{209}
\end{equation*}
$$

$j=1,2, \ldots, m$.
Moreover,

$$
\begin{equation*}
\operatorname{cel}\left(w_{j} \oplus\left(1-\phi\left(p_{j}\right)\right)\right) \leq 8 \pi+\frac{1}{4}, \quad j=1,2, \ldots, m \tag{210}
\end{equation*}
$$

Lemma (3.2.6)[84]:

Let C be a unital separable simple amenable C^{*}-algebra with $T R(C) \leq 1$ satisfying the $U C T$. Let $\Delta:(0,1) \rightarrow(0,1)$ be a non-decreasing map. Then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta>0, \eta>0$, a finite subset $\mathcal{G} \subset C$ and a finite subset $\mathcal{P} \subset \underline{K}(C)$ satisfying the following:

For any unital simple C^{*}-algebra A with $T R(A) \leq 1$, any unital homomorphism $\phi: C \rightarrow A$ and any unitary $u \in U(A)$ with

$$
\begin{equation*}
\|\phi(f), u\|<\delta,\left.\quad \operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=\{0\} \tag{211}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{\tau \circ l}\left(O_{a}\right) \geq \Delta(a) \text { for all } a \geq \eta \tag{212}
\end{equation*}
$$

where $l: C(\mathbb{T}) \rightarrow A$ is defined by $l(f)=f(u)$ for all $f \in C(\mathbb{T})$, there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
\begin{equation*}
u(0)=u, u(1)=1 \text { and }\|\phi(f), u(t)\|<\epsilon \tag{213}
\end{equation*}
$$

for all $f \in \mathcal{F}$ and $t \in[0,1]$.
Theorem (3.2.7)[84]:
Let C be a unital separable amenable simple C^{*}-algebra with $T R(C) \leq 1$ which satisfies the $U C T$. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta>0$, a finite subset $\mathcal{G} \subset C$ and a finite subset $\mathcal{P} \subset K(C)$ satisfying the following:

Suppose that A is a unital simple C^{*}-algebra with $T R(C) \leq 1$, suppose that $\phi: C \rightarrow A$ is a unital homomorphism and $u \in U(A)$ such that

$$
\begin{equation*}
\|[\phi(c), u]\|<\delta \text { for all } c \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=0 \tag{214}
\end{equation*}
$$

Then there exists a continuous and piece-wise smooth path of unitaries $\{u(t): t \in[0,1]\}$ such that

$$
\begin{gather*}
u(0)=u, u(1)=1 \text { and }\|[\phi(c), u(t)]\|<\epsilon \text { for all } c \in \mathcal{F} \tag{215}\\
\text { and for all } t \in[0,1]
\end{gather*}
$$

Proof:

Fix $\epsilon>0$ and a finite subset $\mathcal{F} \subset C$. Let $\delta_{1}>0$ (in place of δ), $\eta>0, \mathcal{G}_{1} \subset C$ (in place of \mathcal{G} be a finite subset and $\mathcal{P} \subset \underline{K}(C)$ be finite subset, for ϵ, \mathcal{F} and $\Delta=\Delta_{00}$. We may assume that $\delta_{1}<\epsilon$.
Let $\delta=/ 2$. Suppose that ϕ and u satisfy the conditions in the theorem for the above δ, \mathcal{G} and \mathcal{P}. It follows that there is a continuous path of unitaries $\left\{v(t): t \in\left[\delta_{1} 0,1\right]\right\} \subset$ $U(A)$ such that

$$
\begin{equation*}
v(0)=u, \quad v(1)=u_{1} \quad \text { and } \quad\|[\phi(c), v(t)]\|<\delta_{1} \tag{216}
\end{equation*}
$$

for all $c \in \mathcal{G}_{1}$ and for all $t \in[0,1]$, and

$$
\begin{equation*}
\mu_{\tau \circ \iota}\left(O_{a}\right) \geq \Delta(a) \text { for all } \tau \in T(A) \tag{217}
\end{equation*}
$$ and for all open balls of radius $a \geq \eta$.

There is a continuous path of unitaries $\{w(t): t \in[0,1]\} \subset A$ such that

$$
\begin{equation*}
w(0)=u_{1}, \quad v(1)=1 \quad \text { and }\|[\phi(c), w(t)]\|<\epsilon \tag{218}
\end{equation*}
$$

for all $c \in \mathcal{F}$ and $t \in[0,1]$. Put

$$
u(t)=v(2 t) \text { for all } t \in[0,1 / 2) \text { and } u(t)=w(2 t-1 / 2) \text { for all } t \in[1 / 2,1] .
$$

