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Chapter 3 

Homotopy and Result of   Equivalence  Approximate 

Let 𝐶 be a unital separable amenable simple 𝐶∗-algebra with tracial rank no more than 

one which also satisfies the UCT. Suppose that 𝜙: 𝐶 → 𝐴 is a unital monomorphism and 

suppose that 𝑣 ∈ 𝐴 is a unitary with [𝑣] = 0  in 𝐾1(𝐴) such that v almost commutes with 𝜙. 

It is shown that there is a continuous path of nitaries {𝑣(𝑡): 𝑡 ∈ [0,1]} in 𝐴 with 𝑣(0) = 𝑣 and 

𝑣(1) = 1 such that the entire path 𝑣(𝑡) almost commutes with 𝜙, provided that an induced 

Bott map vanishes. Other versions of the so-called Basic Homotopy Lemma are also 

presented. 

Section (3.1) Homotopy of Unitaries in Simple 𝑪∗-Algebras with Tracial Rank One 

Fix a positive number 𝜖 >  0. Can one find a positive number 𝛿 such that, for any pair of 

unitary matrices 𝑢 and 𝑣 (𝐾1(𝑀𝑛)  =  {0} for any integer 𝑛 ≥  1) with ‖𝑢𝑣 −  𝑣𝑢‖  <  𝛿, 

there exists a continuous path of unitary matrices {𝑣(𝑡): 𝑡 ∈  [0, 1]} for which 𝑣(0)  =
 𝑣, 𝑣(1)  =  1 and ‖𝑢𝑣(𝑡)  −  𝑣(𝑡)𝑢‖ <  𝜖 for all 𝑡 ∈  [0, 1]? The answer is negative in 

general. A Bott element associated with the pair of unitary matrices may appear. The hidden 

topological obstruction can be detected in a limit process. This was first found by Dan 

Voiculescu [29]. On the other hand, it has been proved that there is such a path of unitary 

matrices if an additional condition, bott1(𝑢, 𝑣)  =  0, is provided (see, for example, [57] and 

also in [70]). 

   It was recognized by Bratteli, Elliott, Evans and Kishimoto [57] that the presence of such 

continuous path of unitaries in general simple 𝐶∗ −algebras played an important role in the 

study of classification of simple 𝐶∗ −algebras and perhaps plays important roles in some 

other areas such as the study of automorphism groups (see, for example, [12,24,21]). They 

proved what they called the Basic Homotopy Lemma: For any 𝜖 >  0, there exists 𝛿 >  0 

satisfying the following: 

For any pair of unitaries 𝑢 and 𝑣 in 𝐴 with sp(𝑢) 𝛿 −dense in 𝕋 and [𝑣]  =  0 in 𝐾1(𝐴) for 

which 

‖𝑢𝑣 −  𝑣𝑢‖ <  𝛿   and   bott1(𝑢, 𝑣)  =  0, 
there exists a continuous path of unitaries {𝑣(𝑡): 𝑡 ∈  [0, 1]}  ⊂  𝐴 such that 

𝑣(0) =  𝑣, 𝑣(1) =  1 𝐴   𝑎𝑛𝑑  ‖𝑣(𝑡)𝑢 −  𝑢𝑣(𝑡)‖ <  𝜖 
for all 𝑡 ∈  [0, 1], where 𝐴 is a unital purely infinite simple 𝐶∗ −algebra or a unital simple 

𝐶∗ −algebra with real rank zero and stable rank one. Define 𝜙 ∶  𝐶(𝕋) → 𝐴  by  𝜙(𝑓 )  =
 𝑓 (𝑢) for all 𝑓 ∈  𝐶(𝕋). Instead of considering a pair of unitaries, one may consider a unital 

homomorphism from 𝐶(𝕋) into 𝐴 and a unitary 𝑣 ∈  𝐴 for which 𝑣 almost commutes with 𝜙. 

   In the study of asymptotic unitary equivalence of homomorphisms from an 𝐴𝐻 −algebra to 

a unital simple 𝐶∗ −algebra, as well as the study of homotopy theory in simple 𝐶∗ −algebras, 

one considers the following problem: Suppose that 𝑋 is a compact metric space and 𝜙 is a 

unital homomorphism from 𝐶(𝑋) into a unital simple 𝐶∗ −algebra 𝐴. Suppose that there is a 

unitary 𝑢 ∈  𝐴 with [𝑢]  =  0 in 𝐾1(𝐴) and u almost commutes with 𝜙. When can one find a 

continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]}  ⊂  𝐴 with 𝑢(0)  =  𝑢 and 𝑢(1)  =  1 such 

that 𝑢(𝑡) almost commutes with 𝜙 for all 𝑡 ∈  [0, 1]? 
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   Let 𝐶 be a unital 𝐴𝐻 −algebra and let 𝐴 be a unital simple 𝐶∗ −algebra. Suppose that 𝜙,𝜓 ∶
 𝐶 →  𝐴 are two unital monomorphisms. Let us consider the question when 𝜙 and 𝜓 are 

asymptotically unitarily equivalent, i.e., when there is a continuous path of unitaries 

{𝑤(𝑡): 𝑡 ∈  [0,∞)}  ⊂  𝐴 such that 

lim
𝑡→∞

 𝑤(𝑡)∗ 𝜙(𝑐)𝑤(𝑡) =  𝜓(𝑐)   for all  𝑐 ∈  𝐶. 

We study the case that 𝐴 is no longer assumed to have real rank zero, or tracial rank 

zero. The result of W. Winter in [30] provides the possible classification of simple finite 

𝐶∗ −algebras far beyond the cases of finite tracial rank. However, it requires to understand 

much more about asymptotic unitary equivalence in those unital separable simple 

𝐶∗ −algebras which have been classified. An immediate problem is to give a classification of 

monomorphisms (up 

to asymptotic unitary equivalence) from a unital separable simple 𝐴𝐻 −algebra into a unital 

separable simple 𝐶∗ −algebra with tracial rank one. For that goal, it is paramount to study the 

Basic Homotopy Lemmas in a simple separable 𝐶∗ −algebras with tracial rank one. This is 

the main purpose. 

   A number of problems occur when one replaces 𝐶∗ −algebras of tracial rank zero by those 

of tracial rank one. First, one has to deal with contractive completely positive linear maps 

from 𝐶(𝑋) into a unital 𝐶∗ −algebra 𝐶 with the form 𝐶([0, 1],𝑀𝑛) which are not 

homomorphisms but almost multiplicative. Such problem is already difficult when 𝐶 = 𝑀𝑛 

but it has been proved that these above mentioned maps are close to homomorphisms if the 

associated K-theoretical 

data of these maps are consistent with those of homomorphisms. It is problematic when one 

tries to replace 𝑀𝑛 by 𝐶([0, 1],𝑀𝑛). In addition to the usual K-theory and trace information, 

one also has to handle the maps from 𝑈(𝐶)/𝐶𝑈(𝐶) to 𝑈(𝐴)/𝐶𝑈(𝐴), where 𝐶𝑈(𝐶) and 

𝐶𝑈(𝐴) are the closure of the subgroups of 𝑈(𝐶) and 𝑈(𝐴) generated by commutators, 

respectively. 

Other problems occur because of lack of projections in 𝐶∗ −algebras which are not  of real 

rank zero. 

    The main theorem is stated as follows: Let 𝐶 be a unital separable simple amenable 

𝐶∗ −algebra with tracial rank one which satisfies the Universal Coefficient Theorem. For any 

𝜖 >  0 and any finite subset ℱ ⊂  𝐶, there exist𝛿 > 0, a finite subset 𝒢 ⊂  𝐶 and a finite 

subset 𝒫 ⊂  𝐾(𝐶) 
satisfying the following: 

    Suppose that A is a unital simple 𝐶∗ −algebra with tracial rank no more than one, suppose 

that 𝜙 ∶  𝐶 → 𝐴 is a unital homomorphism and 𝑢 ∈  𝑈(𝐴) such that 

 

‖[𝜙(𝑐), 𝑢]‖ <  𝛿    for all   𝑐 ∈  𝒢   and    Bott(𝜑, 𝑢)|𝑃 =  0.             (1) 
Then there exists a continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]}  ⊂  𝐴 such that 

𝑢(0) =  𝑢, 𝑢(1) =  1  and   ‖[𝜑(𝑐), 𝑢(𝑡)]‖ < 𝜖   for all   𝑐 ∈ ℱ       (2) 
and for all 𝑡 ∈  [0, 1]. 
    We also give the following Basic Homotopy Lemma in simple 𝐶∗ −algebras with tracial 

rank one.  
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    Let 𝜖 > 0 and let ∆: (0, 1) → (0, 1) be a non-decreasing map.We show that there exist 

𝛿 > 0 and 𝜂 > 0 (which does not depend on ∆) satisfying the following: 
    Given any pair of unitaries 𝑢 and 𝑣 in a unital simple 𝐶∗ −algebra 𝐴 with tracial rank no 

more than one such that [𝑣]  =  0 in 𝐾1(𝐴), 
‖[𝑢, 𝑣]‖ <  𝛿, bott1(𝑢, 𝑣) =  0    and    𝜇𝜏○𝑙(𝐼𝑎)  ≥ ∆(𝑎) 

for all open arcs 𝐼𝑎 with length 𝑎 ≥  𝜂, there exists a continuous path of unitaries {𝑣(𝑡): 𝑡 ∈
 [0, 1]}  ⊂  𝐴 such that 

𝑣(0) =  𝑣, 𝑣(1) =  1 and  ‖[𝑢, 𝑣(𝑡)]‖ < 𝜖  for all  𝑡 ∈  [0, 1], 
where 𝚤 ∶  𝐶(𝑇) → 𝐴 is the homomorphism defined by 𝚤(𝑓 )  =  𝑓 (𝑢) for all 𝑓 ∈  𝐶(𝕋) and 

 𝜇𝜏○𝑙 is the Borel probability measure induced by the state 𝜏 ○ 𝑙. It should be noted that, 

unlike the case that 𝐴 has real rank zero, the length of {𝑣(𝑡)} cannot be controlled. In fact, it 

could be as long as one wishes. 

    In a subsequent paper [23], we use the main homotopy result Theorem (3.1.34) and the 

results in [22] to establish a 𝐾 −theoretical necessary and sufficient condition for 

homomorphisms from unital simple AH-algebras into a unital separable simple 𝐶∗ −algebra 

with tracial rank no more than one to be asymptotically unitarily equivalent which, in turn, 

combining with a result of W. Winter, provides a classification theorem for a class of unital 

separable simple amenable 𝐶∗ −algebras which properly contains all unital separable simple 

amenable 𝐶∗ −algebras with tracial rank no more than one which satisfy the UCT as well as 

some projectionless 𝐶∗ −algebras such as the Jiang–Su algebra. 

Let 𝐴 be a unital 𝐶∗ −algebra. Denote by 𝑇(𝐴) the tracial state space of 𝐴 and denote by 

Aff(𝑇(𝐴)) the set of affine continuous functions on 𝑇(𝐴). 
 Let 𝐶 =  𝐶(𝑋) for some compact metric space 𝑋 and let 𝐿 ∶  𝐶 → 𝐴 be a unital positive 

linear map. Denote by 𝜇𝜏○𝑙 the Borel probability measure induced by the state  𝜏 ○ 𝑙, where 

𝜏 ∈  𝑇(𝐴). 
Let a and b be two elements in a 𝐶∗ −algebra 𝐴 and let 𝜖 > 0 be a positive number. We write 

𝑎 ≈𝜖b if ‖𝑎 − 𝑏‖ <  𝜖.  𝐿𝑒𝑡 𝐿1, 𝐿2 ∶  𝐴 → 𝐶 be two maps from A to another 𝐶∗ −algebra 

𝐶 and let ℱ ⊂  𝐴 be a subset. We write 

𝐿1 ≈𝜖 𝐿2   on    ℱ, 
if 𝐿1(𝑎) ≈𝜖 𝐿2(𝑎) for all 𝑎 ∈  ℱ. 
 Suppose that 𝐵 ⊂  𝐴. We write 𝑎 ∈𝜖  𝐵 if there is an element 𝑏 ∈  𝐵 such that ‖𝑎 − 𝑏‖ <
 𝜖.. 
 Let 𝒢 ⊂  𝐴 be a subset. We say 𝐿 is 𝜖 − 𝒢 −multiplicative if, for any 𝑎, 𝑏 ∈  𝒢, 

𝐿(𝑎𝑏) ≈𝜖 𝐿(𝑎)𝐿(𝑏) 
For all 𝑎, 𝑏 ∈  𝒢. 
Let 𝐴 be a unital 𝐶∗ −algebra. Denote by 𝑈(𝐴) the unitary group of 𝐴. Denote by 𝑈0(𝐴) the 

normal subgroup of 𝑈(𝐴) consisting of those unitaries in the path connected component of 

𝑈(𝐴)containing the identity. Let 𝑢 ∈  𝑈0(𝐴). Define 

cel𝐴(𝑢)  =  inf { length ({𝑢(𝑡)}): 𝑢(𝑡)  ∈  𝐶 ([0, 1], 𝑈0(𝐴)),  

𝑢(0)  =  𝑢 and 𝑢(1)  =  1𝐴} 
 We use 𝑐𝑒𝑙(𝑢) if the 𝐶∗ −algebra A is not in question. 
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Denote by 𝐶𝑈(𝐴) the closure of the subgroup generated by the commutators of 𝑈(𝐴). For 

𝑢 ∈  𝑈(𝐴), we will use. 𝑢 for the image of 𝑢 in 𝑈(𝐴)/𝐶𝑈(𝐴). If . �̅� . �̅�  ∈  𝑈(𝐴)/𝐶𝑈(𝐴), 
define 

dist(�̅� , �̅�)  =  inf { ‖𝑥 −  𝑦‖: 𝑥, 𝑦 ∈  𝑈(𝐴) such that  �̅�  =  �̅�, �̅�  =  �̅�. 
If 𝑢, 𝑣 ∈  𝑈(𝐴), then 

dist( �̅� , �̅�) =  𝑖𝑛𝑓 {‖𝑢𝑣∗ −  𝑥‖: 𝑥 ∈  𝐶𝑈(𝐴)}. 
Let 𝐴 and 𝐵 be two unital 𝐶∗ −algebras and let 𝜙: 𝐴 → 𝐵 be a unital homomorphism. 

It is easy to check that 𝜙 maps 𝐶𝑈(𝐴) to 𝐶𝑈(𝐵). Denote by 𝜙‡ the homomorphism from 

𝑈(𝐴)/𝐶𝑈(𝐴) into 𝑈(𝐵)/𝐶𝑈(𝐵) induced by 𝜙. We also use 𝜙‡ for the homomorphism from 

𝑈(𝑀𝑘(𝐴))/𝐶𝑈(𝑀𝑘(𝐴)) into 𝑈(𝑀𝑘(𝐵))/𝐶𝑈(𝑀𝑘(𝐵)) (𝑘 =  1, 2, . . . ). 
Let 𝐴 and 𝐶 be two unital 𝐶∗ −algebras and let 𝐹 ⊂  𝑈(𝐶) be a subgroup of 𝑈(𝐶). Suppose 

that 𝐿 ∶  𝐹 → 𝑈(𝐴) is a homomorphism for which 𝐿(𝐹 ∩  𝐶𝑈(𝐶))  ⊂  𝐶𝑈(𝐴). We will use 

𝐿‡ : 𝐹/𝐶𝑈(𝐶) → 𝑈(𝐴)/𝐶𝑈(𝐴) for the induced map. 

Let 𝐴 and 𝐵 be as in 2.6, let 1 > 𝜖 > 0 and let 𝒢 ⊂  𝐴 be a subset. Suppose that 𝐿 is a 𝜖 −𝒢 

multiplicative unital completely positive linear map. Suppose that 𝑢, 𝑢∗ ∈  𝒢. Define 

〈𝐿〉(𝑢) = 𝐿(𝑢)𝐿( 𝑢∗𝑢)−1 2⁄ . 
Definition (3.1.1)[84]: 

    Let 𝐴 and 𝐵 be two unital 𝐶∗ −algebras. Let ℎ ∶  𝐴 → 𝐵 be a homomorphism and let 𝑣 ∈
 𝑈(𝐵) such that 

ℎ(𝑔)𝑣 =  𝑣ℎ(𝑔) for all 𝑔 ∈  𝐴. 
Thus we obtain a homomorphism.  ℎ̅ ∶  𝐴 ⊗  𝐶(𝑆1) → 𝐵 by ℎ̅(𝑓 ⊗  𝑔)  =
 ℎ(𝑓 )𝑔(𝑣) for 𝑓 ∈  𝐴 and  𝑔 ∈  𝐶(𝑆1). From the following splitting exact sequence 

0 → 𝑆𝐴 → 𝐴⊗ 𝐶(𝑆1) ⇆ 𝐴 → 0                                        (3) 
and the isomorphisms 𝐾𝑖(𝐴) → 𝐾1−𝑖(𝑆𝐴) (𝑖 =  0, 1) given by Bott periodicity, one obtains 

two injective homomorphisms 

𝛽(0) ∶  𝐾0(𝐴) → 𝐾1(𝐴⊗ 𝐶 (𝑆1))                                      (4)  

𝛽(1) ∶  𝐾1(𝐴) → 𝐾0(𝐴⊗ 𝐶 (𝑆1))                                       (5) 

Note, in this way, one can write 𝐾𝑖(𝐴 ⊗  𝐶(𝑆1))  =  𝐾𝑖(𝐴)  ⊕ 𝛽(1−𝑖)(𝐾1−𝑖(𝐴)). We use 

𝛽(𝑖)̂ ∶  𝐾𝑖(𝐴 ⊗  𝐶(𝑆1))  →  𝛽(1−𝑖)(𝐾1−𝑖(𝐴)) for the projection to the summand 

𝛽(1−𝑖)(𝐾1−𝑖(𝐴))For each integer 𝑘 ≥  2, one also obtains the following injective 

homomorphisms 

𝛽𝑘
(𝑖)
: 𝐾𝑖(𝐴, ℤ/𝑘ℤ) → 𝐾1−𝑖  (𝐴 ⊗  𝐶(𝑆1), ℤ/𝑘ℤ),   𝑖 =  0, 1.       (6) 

Thus we write 

𝐾1−𝑖  (𝐴 ⊗  𝐶(𝑆1), ℤ/𝑘ℤ),= 𝐾1−𝑖  (𝐴 , ℤ/𝑘ℤ)⊗ 𝛽𝑘
(𝑖)
( 𝐾𝑖(𝐴, ℤ/𝑘ℤ)), 𝑖 =  0, 1.   (7) 

Denote by 𝛽𝑘
(𝑖)̂
∶  𝐾𝑖(𝐴 ⊗  𝐶(𝑆1))  → 𝛽𝑘

(1−𝑖)
𝐾1−𝑖  (𝐴 , ℤ/𝑘ℤ) similarly to 𝛽(𝑖)̂ , 𝑖 = 1.2.. If 

𝑥 ∈  𝐾(𝐴), we use 𝜷(𝑥) for 𝛽(𝑖)(𝑥) if 𝑥 ∈  𝐾𝑖(𝐴) and for 𝛽𝑘
(𝑖)
(𝑥)if 𝑥 ∈  𝐾𝑖(𝐴, ℤ/𝑘ℤ). Thus 

we have a map 𝜷 ∶  𝐾(𝐴) → 𝐾(𝐴 ⊗  𝐶(𝑆1)) as well as 𝜷 ∶  𝐾(𝐴 ⊗  𝐶(𝑆1)) → 𝜷(𝐾(𝐴)). 
Thus one may write K(A⊕C(S1)) = K(A) ⊕β(K(A)). 
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 On the other hand .ℎ induces homomorphisms . ℎ̅∗𝑖,𝑘 ∶  𝐾𝑖(𝐴⊗ 𝐶(𝑆1), ℤ/𝑘ℤ) →

𝐾𝑖(𝐵, ℤ/𝑘ℤ), 𝑘 =  0, 2, … , and 𝑖 =  0, 1. We use Bott(ℎ, 𝑣) for all homomorphisms. ℎ̅∗𝑖,𝑘  ○

 𝛽𝑘
(𝑖)
.  We write 

Bott(ℎ, 𝑣) = 0, 

if . ℎ̅∗𝑖,𝑘  ○  𝛽𝑘
(𝑖)
= 0  for all 𝑘 ≥  1 and 𝑖 =  0, 1. 

 We will use bott1(ℎ, 𝑣) for the homomorphism . ℎ̅1,0  ○ 𝛽
(1) ∶  𝐾1(𝐴) → 𝐾0(𝐵), and 

bott0(ℎ, 𝑢) for the homomorphism ℎ̅0,0  ○ 𝛽
(0) ∶  𝐾0(𝐴) → 𝐾1(𝐵).  

    Since A is unital, if  bott0(ℎ, 𝑣) = 0, then [𝑣]  =  0 in 𝐾1(𝐵). 
    For a fixed finite subset 𝒫 ⊂  𝐾(𝐴), there exist 𝛿 >  0 and a finite subset 𝒢 ⊂  𝐴 such that, 

if 𝑣 ∈  𝐵 is a unitary for which 

‖ℎ(𝑎)𝑣 −  𝑣ℎ(𝑎)‖ <  𝛿 for all  𝑎 ∈  𝒢, 
then 𝐵𝑜𝑡𝑡(ℎ, 𝑣)|𝑃 is well defined. In what follows, whenever we write 𝐵𝑜𝑡𝑡(ℎ, 𝑣)|𝑃, we 

mean that 𝛿 is sufficiently small and 𝒢 is sufficiently large so it is well defined. 

    Now suppose that 𝐾𝑖(𝐴) is finitely generated (𝑖 =  0, 1). For example, 𝐴 =  𝐶(𝑋), where 

𝑋 is a finite 𝐶𝑊 complex. When 𝐾𝑖(𝐴) is finitely generated, Bott(ℎ, 𝑣)|𝑃0 defines Bott(ℎ, 𝑣) 
for some sufficiently large finite subset 𝑃0. In what follows such 𝑃0 may be denoted by 𝑃𝑎 

Suppose that 𝑃 ⊂  𝐾(𝐴) is a larger finite subset, and 𝒢 ⊃  𝒢0 and 0 <  𝛿 <  𝛿0. 
      𝐵𝑜𝑡𝑡(ℎ, 𝑣)|𝑃 defines the same map 𝐵𝑜𝑡𝑡(ℎ, 𝑣) as Bott(ℎ, 𝑣)|𝑃0 defines, if 

‖ℎ(𝑎)𝑣 −  𝑣ℎ(𝑎)‖ <  𝛿 for all  𝑎 ∈  𝒢, 
when 𝐾𝑖(𝐴) is finitely generated. In what follows, in the case that 𝐾𝑖(𝐴)is finitely generated, 

whenever we write Bott(ℎ, 𝑣), we always assume that 𝛿 is smaller than 𝛿0 and 𝒢 is larger 

than 𝒢0 so that Bott(ℎ, 𝑣) is well defined (see [70] for more details). 

In the case that 𝐴 =  𝐶(𝑆1), there is a concrete way to visualize bott1(ℎ, 𝑣). It is perhaps 

helpful to describe it here. The map bott1(ℎ, 𝑣) is determined by bott1(ℎ, 𝑣)([𝑧])where 𝑧 is 

the identity map on the unit circle. 

   Denote 𝑢 =  ℎ(𝑧) and define 

𝑓(𝑒2𝜋𝑖𝑡) = {
1 − 2𝑡,        if 0 ≤ 𝑡 ≤ 1 2,⁄  
−1 + 2𝑡,     if 1 2⁄ ≤ 𝑡 ≤ 1,

 

g(𝑒2𝜋𝑖𝑡) = { (𝑓(𝑒
2𝜋𝑖𝑡) − 𝑓(𝑒2𝜋𝑖𝑡)

2
)
1 2,⁄

,      if 0 ≤ 𝑡 ≤ 1 2,⁄  

 0 ,                                                    if 1 2⁄ < 𝑡 ≤ 1,
 

and 

h(𝑒2𝜋𝑖𝑡) = {
 0,                                                  if 0 ≤ 𝑡 ≤ 1 2,⁄  

  (𝑓(𝑒2𝜋𝑖𝑡) − 𝑓(𝑒2𝜋𝑖𝑡)
2
)
1 2⁄

 , if 1 2⁄ < 𝑡 ≤ 1,
 

These are non-negative continuous functions defined on the unit circle. Suppose that 𝑢𝑣 =
 𝑣𝑢. 

Define 

𝑏(𝑢, 𝑣) = (
𝑓(𝑣) g(𝑣) + ℎ(𝑣)𝑢∗

g(𝑣) + 𝑢ℎ(𝑣) 1 − 𝑓(𝑣)
).                       (8) 

    Then 𝑏(𝑢, 𝑣) is a projection. There is 𝛿0  >  0 (independent of unitaries 𝑢, 𝑣 and A) such 

that if ‖[𝑢, 𝑣] ‖ <  𝛿0, the spectrum of the positive element 𝑝(𝑢, 𝑣) has a gap at 1/2. The 
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Bott element of 𝑢 and 𝑣 is an element in 𝐾0(𝐴) as defined in [9,8] which may be represented 

by 

bott1(𝑢, 𝑣) = [𝜒[1/2,∞)𝑏(𝑢, 𝑣)] − [(
1 0
0 0

)].                         (9) 

    Note that 𝜒[1/2,∞) is a continuous function on sp(𝑏(𝑢, 𝑣)). Suppose that sp(𝑏(𝑢, 𝑣)) ⊂
(−∞, 𝑎] ∪ [1 − 𝑎,∞) for some 0 < 𝑎 < 1/2. Then 𝜒[1/2,∞) can be replaced by any other 

positive continuous function 𝐹 for which 𝐹(𝑡)  =  0 if 𝑡 ≤  𝑎 and 𝐹(𝑡)  =  1 if 𝑡 ≥  1/2. 
Definition (3.1.2)[84]: 

     Let 𝐴 and 𝐶 be two unital 𝐶∗ −algebras. Let 𝑁 ∶  𝐶+ \ {0}  →  𝑁 and 𝐾 ∶  𝐶+ \ {0}  →
 ℝ+\ {0} be two maps. Define 𝑇 =  𝑁 ×  𝐾 ∶  𝐶+ \ {0}  →  𝑁 × ℝ+ \ {0} by 𝑇 (𝑐)  =
 (𝑁(𝑐), 𝐾(𝑐)) for 𝑐 ∈  𝐶+ \ {0}. Let 𝐿 ∶  𝐶 → 𝐴 be a unital positive linear map. We say 𝐿 is 

𝑇 −full if for any 𝑐 ∈  𝐶+\ {0}, there are 𝑥1, 𝑥2, . . . , 𝑥𝑁(𝑐)  ∈  𝐴 with ‖𝑥𝑖‖ ≤ 𝐾(𝑐) such that 

∑𝑥𝑖
∗

𝑁(𝑐)

𝑖=1

𝐿(𝑐)𝑥𝑖 = 𝐼𝐴. 

Let 𝐻 ⊂  𝐶 + \ {0}. We say that 𝐿 is 𝑇 − 𝐻 −full if 

∑𝑥𝑖
∗

𝑁(𝑐)

𝑖=1

𝐿(𝑐)𝑥𝑖 = 𝐼𝐴. 

for all 𝑐 ∈ 𝐻. 
Definition (3.1.3)[84]: 

   Denote by 𝐼 the class of unital 𝐶∗ −algebras with the form ⊗𝑖=1
 𝑚 𝐶(𝑋𝑖 ,𝑀𝑛(𝑖)), where 𝑋𝑖 =

 [0, 1] or 𝑋𝑖 is one point 

Definition (3.1.4)[84]: 

   Let 𝑘 ≥  0 be an integer. Denote by 𝐼𝑘 the class of all 𝐶∗ −algebras 𝐵 with the form  =

𝑃𝑀𝑚(𝐶(𝑋))𝑃, , where 𝑋 is a finite 𝐶𝑊 complex with dimension no more than 𝑘, 𝑃 is a 

projection in  𝑀𝑚(𝐶(𝑋)). 
   Recall that a unital simple 𝐶∗ −algebra 𝐴 is said to have tracial rank no more than 𝑘 (write 

𝑇𝑅(𝐴)  ≤  𝑘) if the following holds: For any 𝜖 >  0, any positive element 𝑎 ∈  𝐴+ \ {0} and 

any finite subset ℱ ⊂  𝐴, there exist a non-zero projection 𝑝 ∈  𝐴 and a 𝐶∗ −subalgebra 𝐵 ∈
 𝐼𝑘 with 1𝐵  =  𝑝 such that 

(i)       ‖𝑥𝑝 − 𝑝𝑥‖ <  𝜖  for all 𝑥 ∈  ℱ; 
(i)𝑝𝑥𝑝 ∈ϵ 𝐵 for all 𝑥 ∈  ℱ;  and 
(iii)        1 − 𝑝 is von Neumann equivalent to a projection in 𝑎𝐴𝑎̅̅ ̅̅ ̅.  
If 𝑇𝑅(𝐴)  ≤  𝑘 and 𝑇𝑅(𝐴)  ≠  𝑘 − 1, we say 𝐴 has tracial rank 𝑘 and write 𝑇𝑅(𝐴)  =  𝑘. It 
has been shown that if 𝑇𝑅(𝐴)  =  1, then, in the above definition, one can replace 𝐵 by a 

𝐶∗ −algebra in 𝐼 (see [91]). All unital simple AH-algebra with slow dimension growth and 

real rank zero have tracial rank zero (see [31] and also [88]) and all unital simple AH-

algebras with no dimension growth have tracial rank no more than one (see [51], or, Theorem 

2.5 of [89]). Note that all 𝐴𝐻 −algebras satisfy the Universal Coefficient Theorem. There is 

unital separable simple 𝐶∗ −algebra 𝐴 with 𝑇𝑅(𝐴)  =  0 (and 𝑇𝑅(𝐴)  =  1) which is not 

amenable. 
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The following is taken from an argument of N.C. Phillips [25]. 

Lemma (3.1.5)[84]: 

Let 𝐻 > 0 be a positive number and 𝑙𝑒𝑡 𝑁 ≥ 2 be an integer. Then, for any unital 

𝐶∗ −algebra A, any projection e ∈ A and any 𝑢 ∈  𝑈0(𝑒𝐴𝑒) with cel𝑒𝐴𝑒(𝑢)  <  𝐻, 

dist(𝑢 + (1 −  𝑒)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 1̅) < 𝐻/𝑁,                                   (10) 
if there are mutually orthogonal and mutually equivalent projections 𝑒1, 𝑒2, . . . , 𝑒2𝑁 ∈ (1 −
𝑒)𝐴(1 −  𝑒) such that e1 is also equivalent to 𝑒. 

Proof: 

   Since cel𝑒𝐴𝑒(𝑢)  <  𝐻, there are unitaries 𝑢0, 𝑢1. . . , 𝑢 𝑁 ∈  𝑒𝐴𝑒 such that 

𝑢0  =  𝑢, 𝑢𝑁  =  1 𝑎𝑛𝑑 ‖𝑢𝑖  − 𝑢𝑖−1‖ < 𝐻/𝑁, 𝑖 =  1, 2, . . . , 𝑁.   (11) 
We will use the fact that 

(
𝑣 0
0 𝑣∗

) = (
𝑣 0
0 1

) (
0 1
1 0

) (
𝑣∗ 0
0 1

) (
0 1
1 0

). 

In particular, (
𝑣 0
0 𝑣∗

) is a commutator. Note that 

‖(𝑢 ⊕ 𝑢1
∗⊕𝑢1⊕𝑢2

∗ ⊕…⊕𝑢𝑁
∗ ⊕𝑢𝑁) − (𝑢 ⊕ 𝑢∗⊕𝑢1⊕𝑢1

∗⊕…⊕𝑢𝑁−1
∗ ⊕𝑢𝑁)‖

< 𝐻/𝑁.                   (12) 
Since 𝑢𝑁 = 1, 𝑢 ⊕ 𝑢∗⊕𝑢1⊕𝑢1

∗⊕…⊕𝑢𝑁−1
∗ ⊕𝑢𝑁 is a commutator 

Now we write 

𝑢 ⊕ 𝑒1⊕…⊕ 𝑒2𝑁
= (𝑢 ⊕ 𝑢1

∗⊕𝑢1⊕𝑢2
∗ ⊕…⊕𝑢𝑁

∗ ⊕𝑢𝑁)(𝑒 ⊕ 𝑢1⊕𝑢1
∗⊕…⊕𝑢𝑁−1

∗ ⊕𝑢𝑁) 

We obtain 𝑧 ∈  𝐶𝑈((𝑒 + ∑ 𝑒𝑖
2𝑁
𝑖=1 )𝐴(𝑒 + ∑ 𝑒𝑖

2𝑁
𝑖=1 ) such that 

‖𝑢 ⊕ 𝑒1⊕…⊕ 𝑒2𝑁 − 𝑧‖ < 𝐻/𝑁. 
It follows that 

dist(𝑢 + (1 −  𝑒)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 1̅) < 𝐻/𝑁. 
Definition (3.1.6)[84]:  

   Let = 𝑃𝑀𝑘(𝐶(𝑋))𝑃 , where 𝑋 is a compact metric space and 𝑃 ∈ 𝑀𝑘(𝐶(𝑋)) is a 

projection. Let 𝑢 ∈  𝑈(𝐶). Recall (see [27]) that 

𝐷𝑐(𝑢) = inf{ ‖𝑎‖: 𝑎 ∈ 𝐶𝑠.𝑎. such that det (exp(𝑖𝑎). 𝑢)(𝑥) =  1 for all 𝑥 ∈  𝑋} . 
If no self-a djoint  element 𝑎 ∈  𝐴𝑠.𝑎. exists  for  which  det(exp(𝑖𝑎). 𝑢)(𝑥)  =  1 for all 𝑥 ∈
 𝑋, define 𝐷𝑐(𝑢) = ∞. 
Lemma (3.1.7)[84]: 

    Let 𝐾 ≥  1 be an integer. Let A be a unital simple 𝐶∗ −algebra with 𝑇𝑅(𝐴) ≤  1, let 𝑒 ∈
 𝐴 be  a projection  and  let u ∈  𝑈0(𝑒𝐴𝑒). Suppose  that 𝑤 =  𝑢 + (1 −  𝑒) and  suppose 

𝜂 >  0. Suppose  also  that 

[1 − 𝑒] ≤  𝐾[𝑒]  in  𝐾0(𝐴)    and   dist(�̅�, 1̅) < 𝜂.                   (13) 
Then, if 𝜂 < 2, 

cel𝑒𝐴𝑒(𝑢) < (
𝑘𝜋

2
+ 1 16⁄ )𝜂 + 8𝜋    and   dist(�̅�, �̅�) < (𝑘 + 1 8⁄ )𝜂.    

and if 𝜂 =  2, 

cel𝑒𝐴𝑒(𝑢) <
𝑘𝜋

2
cel(w) + 1 16⁄ + 8𝜋 . 

Proof: 
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   We assume that (13) holds. Note that 𝜂 ≤  2. Put 𝐿 =  cel(𝑤). 
We first consider the case that 𝜂 < 2. There is a projection 𝑒′ ∈ 𝑀2(𝐴) such that 

[(1 − 𝑒) + 𝑒′ ] = 𝑘[𝑒]. 
To simplify notation, by replacing 𝐴 by (1𝐴 − 𝑒′)𝑀2(𝐴)(1𝐴 − 𝑒′) and 𝑤 by 𝑤 + 𝑒′, without 

loss of generality, we may now assume that 

(1 − 𝑒) = 𝑘[𝑒]   and  dist(�̅�, 1̅) < 𝜂.                                (14)  
There is 𝑅1  >  1 such that 𝑚𝑎𝑥 {𝐿/𝑅1, 2/𝑅1, 𝜂𝜋/𝑅1}  <  𝑚𝑖𝑛{𝜂/64, 1/16𝜋}. 

For any 
𝜂

32𝐾(𝐾+1)𝜋
>  𝜖 > 0 with 𝜖 + 𝜂 < 2, since 𝑇𝑅(𝐴)  ≤  1, there exist a projection 𝑝 ∈

 𝐴 and a 𝐶∗ − subalgebra 𝐷 ∈  𝐼 with 1𝐷 =  𝑝 such that 

(i)   ‖[𝑝, 𝑥]‖ < 𝜖  for 𝑥 ∈ {𝑢,𝑤, 𝑒, (1 − 𝑒)}; 
(ii)   𝑝𝑤𝑝, 𝑝𝑢𝑝, 𝑝𝑒𝑝, 𝑝(1 − 𝑒)𝑝 ∈𝜖 𝐷; 
(iii)   there is a projection 𝑞 ∈  𝐷 and a unitary 𝑧1 ∈  𝑞𝐷𝑞 such that ‖𝑞 − 𝑝𝑒𝑝‖ < 𝜖,
‖ 𝑧1 − 𝑞𝑢𝑞‖ < 𝜖, ‖ 𝑧1⊕ (𝑝 − 𝑞) − 𝑝𝑤𝑝‖ < 𝜖   and    ‖ 𝑧1⊕ (𝑝 − 𝑞) − 𝑐1‖ < 𝜖 + 𝜂;  
(iv)  there is a projection 𝑞0 ∈ (1 − 𝑝)𝐴(1 − 𝑝)   and a unitary 𝑧0 ∈ 𝑞0𝐴𝑞0 such that‖𝑞0 −

(1 − 𝑝)𝑒(1 − 𝑝)‖ < 𝜖,   ‖𝑧0 − (1 − 𝑝)𝑢(1 − 𝑝)‖ < 𝜖,   ‖𝑧0⊕ (1 − 𝑝 − 𝑞0) −
(1 − 𝑝)𝑤(1 − 𝑝)‖ < 𝜖,   ‖𝑧0⊕ (1 − 𝑝 − 𝑞0) − 𝑐0‖  < 𝜖 + 𝜂; 
(v)       [𝑝 − 𝑞] =  𝐾[𝑞] in 𝐾0(𝐷), [(1 − 𝑝) − 𝑞0] = 𝐾[𝑞0]  in  𝐾0(𝐴) ; 
(vi)       2(𝐾 + 1)𝑅1[1 −  𝑝]  <  [𝑝] in 𝐾0(𝐴); 

(vii)       cle(1−𝑝)𝐴(1−𝑝) (𝑧0⊕ (1 − 𝑝 − 𝑞0)) ≤ L + ϵ, 

where 𝑐1  ∈  𝐶𝑈(𝐷) and 𝑐0 ∈ 𝐶𝑈((1 −  𝑝)𝐴(1 − 𝑝)). 
   Note that 𝐷𝐷(𝑐1)  =  0 . Since 𝜖 + 𝜂 < 2, there is ℎ ∈  𝐷𝑠.𝑎. with ‖ℎ‖ ≤

 2arcsin ( 
𝜖+𝜂

2
) such that (by (iii) above) 

(𝑧1⊕ (𝑝 – 𝑞))exp(𝑖ℎ) =  𝑐1.                                            (15) 
It follows that 

𝐷𝐷(𝑧1⊕ (𝑝 – 𝑞))exp(𝑖ℎ) =  0.                                      (16) 
By (v) above and applying in [27], one obtains that 

|𝐷𝑞𝐷𝐷𝑧1| ≤ 𝑘2arcsin ( 
𝜖 + 𝜂

2
).                                    (17) 

If 2𝑘arcsin ( 
𝜖+𝜂

2
) ≥ π, then 

2𝑘 ( 
𝜖 + 𝜂

2
)
π

2
≥ π. 

It follows that 

𝑘( 𝜖 + 𝜂) ≥ 2 ≥ dist(𝑧1̅, q̅).                                (18) 
Since those unitaries in 𝐷 with 𝑑𝑒𝑡(𝑢)  =  1 (for all points) are in 𝐶𝑈(𝐷) from (3.17), one 

computes that, when 2𝑘arcsin ( 
𝜖+𝜂

2
) < π, 

dist(𝑧1̅, q̅) < 2sin (𝑘arcsin ( 
𝜖 + 𝜂

2
)) ≤ k(𝜖 + 𝜂).            (19) 

By combining both (18) and (19), one obtains that 

dist(𝑧1̅, q̅) ≤ k(𝜖 + 𝜂) ≤ k 𝜂 +
𝜂

32(𝑘 + 1)π
.                    (20) 
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By (17), it follows in [27] that 

celqDq ≤ 2𝑘arcsin 
𝜖 + 𝜂

2
+ 6π ≤ k(𝜖 + 𝜂)

π

2
+ 6π 

≤ (𝑘
π

2
+

1

64(k + 1)
) 𝜂 + 6π                                              (21) 

By (v) and (vi) above, 

(𝐾 + 1)[𝑞]  =  [𝑝 − 𝑞]  +  [𝑞]  =  [𝑝]  >  2(𝐾 + 1)𝑅1[1 − 𝑝]. 
Since 𝐾0(𝐴) is weakly unperforated, one has 

2𝑅1[1 − 𝑝]   < [𝑞].                                                  (22) 
There is a unitary 𝑣 ∈  𝐴 such that 

𝑣∗(1 − 𝑝 − 𝑞0)𝑣 ≤  𝑞.                                           (23) 
Put 𝑣1 = 𝑞0⊕ (1 − 𝑝 − 𝑞0)𝑣. Then 

𝑣1
∗(𝑧0⊕ (1 − 𝑝 − 𝑞0))𝑣1 = 𝑧0⊕𝑣∗(1 − 𝑝 − 𝑞0)𝑣.            (24) 

Note that 

‖(𝑧0⊕𝑣∗(1 − 𝑝 − 𝑞0)𝑣)𝑣1
∗𝑐0
∗𝑣1 − 𝑞0⊕𝑣∗(1 − 𝑝 − 𝑞0)𝑣‖ < 𝜖 + 𝜂.   (25) 

Moreover, by (vii) above 

cel(𝑧0⊕𝑣∗(1 − 𝑝 − 𝑞0)𝑣) ≤ 𝐿 + 𝜖.                               (26) 
It follows from (22) and Lemma (4.1.8) of [89] that 

cel(𝑞0+q)A(𝑞0+q)(𝑧0⊕q) ≤ 2π + (𝐿 + 𝜖)/𝑅1.                 (27) 

Therefore, combining (21), 

cel(𝑞0+q)A(𝑞0+q)(𝑧0 + 𝑧)                   

≤ 2𝜋 +
𝐿 + 𝜖

𝑅1
+ (𝑘

π

2
+

1

64(k + 1)
) 𝜂 + 6π .                 (28) 

By (26), (22), in 𝑈0((𝑞0 + q)A(𝑞0 + q))/𝐶𝑈((𝑞0 + q)A(𝑞0 + q)), 

dist(𝑧0 + q̅̅ ̅̅ ̅̅ ̅̅ , 𝑞0 + q̅̅ ̅̅ ̅̅ ̅̅ ) <
(𝐿 + 𝜖)

𝑅1
.                                       (29) 

Therefore, by (19) and (29), 

dist(𝑧0⊕𝑧1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑞0 + q̅̅ ̅̅ ̅̅ ̅̅ ) <
(𝐿 + 𝜖)

𝑅1
+ 𝑘 𝜂 +

𝜂

32(k + 1)π
< (k + 1 6⁄ )𝜂.   (30) 

We note that 

‖𝑒 − (𝑞0 + q)‖ < 2𝜖   and   ‖𝑢 − (𝑧0 + 𝑧1)‖ <  2𝜖.               (31) 
It follows that 

dist(�̅�, �̅�) <  4𝜖 + (𝐾 + 1 16⁄ ) 𝜂 <  (𝐾 + 1 8⁄ )𝜂 .               (32) 

celeAe(𝑢) ≤ 4𝜖𝜋 + 2𝜋 + (𝐿 + 𝜖) 𝑅1⁄ + (𝑘
π

2
+

1

64(k + 1)
) 𝜂 + 6π     (33) 

< (𝑘
π

2
+ 1 16⁄ )𝜂 + 8π.                                                               (34) 

    This proves the case that 𝜂 < 2. 

    Now suppose that 𝜂 = 2. Define 𝑅 =  [cel(𝑤) + 1]. Note that 
cel(𝑤)

𝑅
 <  1. There is a 

projection 𝑒′ ∈ 𝑀𝑅+1(𝐴) such that 
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[(1 − 𝑒) + 𝑒′] =  (𝐾 +  𝑅𝐾)[𝑒]. 
It follows that 

dist(w⊕ 𝑒′̅̅ ̅̅ ̅̅ ̅̅ ̅, 1𝐴 + e̅̅ ̅̅ ̅̅ ̅̅ ′) <
cel(𝑤)

𝑅 + 1
.                                (35) 

Put 𝐾1 =  𝐾(𝑅 +  1). To simplify notation, without loss of generality, we may now assume 

that 

[1 − 𝑒] = 𝐾1[𝑒]  and   dist(w̅, 1̅) <
cel(𝑤)

𝑅 + 1
.              (36)  

It follows from the first part of the lemma that 

celeAe(𝑢) < (
𝐾1𝜋

2
+
1

16
)
cel(𝑤)

𝑅 + 1
+ 8𝜋                          (37) 

≤
𝑘𝜋cel(𝑤)

2
+
1

16
+ 8𝜋                                (38) 

 

Theorem (3.1.8)[84]: 

     Let A be a unital simple 𝐶∗ −algebra with 𝑇𝑅(𝐴)  ≤ 1 and let 𝑒 ∈  𝐴 be a non-zero 

projection. Then the map 𝑢 ↦  𝑢 + (1 −  𝑒) induces an isomorphism 𝑗 from 𝑈(𝑒𝐴𝑒)/
𝐶𝑈(𝑒𝐴𝑒) onto 𝑈(𝐴)/𝐶𝑈(𝐴). 
 

Proof: 

   It was shown in in[89] that 𝑗 is a surjective homomorphism. So it remains to show that it is 

also injective. To do this, fix a unitary 𝑢 ∈  𝑒𝐴𝑒 so that. 𝑢 ∈  𝑘𝑒𝑟 𝑗 . We will show that 𝑢 ∈
 𝐶𝑈(𝑒𝐴𝑒). 
   There is an integer 𝐾 ≥ 1 such that 

𝐾[𝑒]  ≥ [1 −  𝑒] in 𝐾0(𝐴). 
Let 1 >  𝜖 > 0. Put 𝑣 = 𝑢 + (1 − 𝑒).Since. 𝑢 ∈  𝑘𝑒𝑟 𝑗 , 𝑣 ∈  𝐶𝑈(𝐴).In particular 

dist(�̅�, 1̅)  < 𝜖/(𝐾𝜋/2 + 1). 
It follows from Lemma (4.1.7)that 

dist(�̅�, 1̅)  < (
𝑘𝜋

2
+ 1 16⁄ ) (𝜖/(𝐾𝜋/2 + 1)) < 𝜖. 

It then follows that 

𝑢 ∈  𝐶𝑈(𝑒𝐴𝑒). 
 

 

Corollary (3.1.9)[84]: 

      Let 𝐴 be a unital simple 𝐶∗ −algebra with 𝑇𝑅(𝐴)  ≤  1. Then the map  𝑗 ∶  𝑎 →

diag(𝑎, 1, 1, . . . , 1⏞      
𝑚

)  from 𝐴 to 𝑀𝑛(𝐴) induces an isomorphism from 𝑈(𝐴)/𝐶𝑈(𝐴) onto 

 𝑈(𝑀𝑛(𝐴))/𝐶𝑈(𝑀𝑛(𝐴)) for any integer  𝑛 ≥ 1 

Lemma( 3.1.10)[84]: 

    Let 𝑋 be a path connected finite 𝐶𝑊 complex, let 𝐶 =  𝐶(𝑋) and 𝑙𝑒𝑡 𝐴 =
𝐶([0, 1],𝑀𝑛) for some integer 𝑛 ≥ 1. For any unital homomorphism 𝜙: 𝐶 → 𝐴, any finite 

subset ℱ ⊂  𝐶 and any 𝜖 > 0, there exists a unital homomorphism 𝜓 ∶  𝐶 → 𝐵 such that 
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‖𝜙(𝑐) − 𝜓(𝑐)‖ < 𝜖  for all 𝑐 ∈  ℱ                                     (39) 
 

𝜓(𝑓 )(𝑡) =  𝑊(𝑡)∗(
𝑓(𝑠1(𝑡))   

 ⋱  
  𝑓(𝑠𝑛(𝑡))

)𝑤(𝑡),                    (40) 

where 𝑊 ∈  𝑈(𝐴), 𝑠𝑗  ∈  𝐶([0, 1], 𝑋), 𝑗 =  1, 2, . . . , 𝑛, and 𝑡 ∈  [0, 1]. 

 

Proof:  

    To simplify the notation, without loss of generality, we may assume that ℱ is in the unit 

ball of 𝐶. Since 𝑋 is also locally path connected, choose 𝛿1  >  0 such that, for any point 𝑥 ∈
 𝑋, 𝐵(𝑥, 𝛿1) is path connected. Put 𝑑 =  2𝜋/𝑛. Let 𝛿1 >  0 (in place of 𝛿) be as required [69] 

for𝜖/2. 
   We will also apply  in [28], there  exists  a finite  subset ℋ  of  positive  functions  in 

𝐶(𝑋) and 𝛿3  >  0 satisfying the following: For any pair of points and {𝑦𝑖}𝑖=1
𝑛 , if 

{ℎ(𝑥𝑖)}𝑖=1
𝑛 and {ℎ(𝑦𝑖)}𝑖=1   

𝑛 can  be  paired  to  within 𝛿3 one by one, in increasing order, 

counting multiplicity, for all ℎ ∈ ℋ, 𝑡ℎ𝑒𝑛 {𝑥𝑖}𝑖=1
𝑛 and {𝑦𝑖}𝑖=1

𝑛 ,i=1  can be paired to within 

𝛿3/2, one by one. 

Put 𝜖1 =  𝑚𝑖𝑛{𝜖/16, 𝛿1/16, 𝛿2/4, 𝛿3/4}. There exists 𝜂 > 0 such that 

|𝑓 (𝑡) − 𝑓(𝑡′)| < 𝜖1 /2     for all    𝑓 ∈ 𝜙(ℱ ∪ℋ).                   (41) 

provided that |𝑡 – 𝑡′| < 𝜂. C{𝑥𝑖}𝑖=1   
𝑛 hoose  a partition  of  the  interval: 

0 =  𝑡0 < 𝑡1 < · · · < 𝑡𝑁  =  1. 

 

Such  that |𝑡𝑖  −  𝑡𝑖−1| < 𝜂, 𝑖 =  1, 2, . . . , 𝑁.  Then 

‖𝜙(𝑓 )(𝑡𝑖  ) −  𝜙(𝑓 )(𝑡𝑖−1)‖ <  𝜖1 for all  𝑓 ∈ ℱ ∪ℋ.            (42) 

𝑖 =  1, 2, . . . , 𝑁. There are unitaries 𝑈𝑖 ∈ 𝑀𝑛 and {𝑥𝑖,𝑗}𝑗=1
𝑛
, 𝑖 =  1, 2, . . . , 𝑁, such that 

𝜙(𝑓 )(𝑡𝑖  ) = 𝑈𝑖
∗(
𝑓(𝑥𝑖,1)   
 ⋱  
  𝑓(𝑥𝑖,𝑛)

)𝑈𝑖                             (43) 

    By the Weyl spectral variation inequality (see [69]), the eigenvalues of {ℎ(𝑥𝑖,𝑗)}𝑖=1
𝑛

 and 

{ℎ(𝑥𝑖−1,𝑗)}𝑖=1
𝑛

j=1 can be paired to within 𝛿3, one by one, counting multiplicity, in decreasing 

order. It follows in [28] that {𝑥𝑖,𝑗}𝑖=1
𝑛

j=1 and {𝑥𝑖−1,𝑗}𝑖=1
𝑛

can be paired within 𝛿3/2. We may 

assume that 

dist(𝑥𝑖,𝜎𝑖(𝑗), 𝑥𝑖−1,𝑗) < 𝛿3 2⁄ ,                                           (44) 

where 𝜎𝑖: {1, 2, . . . , 𝑛}  →  {1, 2, . . . , 𝑛} is a permutation. By the choice of 𝛿3, there is a 

continuous path {𝑥𝑖−1,𝑗 (𝑡): 𝑡 ∈  [𝑡𝑖 − 1, (𝑡𝑖  + 𝑡𝑖−1)/2]}  ⊂  𝐵(𝑥𝑖−1,, 𝛿3/2) such that 

𝑥𝑖−1,𝑗(𝑡𝑖−1) = 𝑥𝑖−1,𝑗           and         𝑥𝑖−1,𝑗((𝑡𝑖−1 + 𝑡𝑖) 2⁄ ) = 𝑥𝑖,𝜎𝑖(𝑗)       (45) 

𝑗 =  1, 2, . . . , 𝑛. Put 
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𝜓(𝑓 )(𝑡) = 𝑈𝑖−1
∗ (

𝑓(𝑥𝑖,1(𝑡))   
 ⋱  
  𝑓(𝑥𝑖,𝑛(𝑡))

)𝑈𝑖−1                       (46) 

for 𝑡 ∈  [𝑡𝑖−1, (𝑡𝑖−1 + 𝑡𝑖)/2] and for 𝑓 ∈  𝐶(𝑋). In particular, 

𝜓(𝑓 ) (
𝑡𝑖−1 + 𝑡𝑖

2
) = 𝑈𝑖−1

∗ (
𝑓(𝑥𝑖,1(𝑡))   

 ⋱  
  𝑓(𝑥𝑖,𝑛(𝑡))

)𝑈𝑖−1                   (47) 

for 𝑓 ∈  𝐶(𝑋). Note that 

‖𝜙(𝑓 )(𝑡𝑖−1) − 𝜓(𝑓 )(𝑡)‖ < 𝛿2/4 and  ‖𝜓(𝑓 )(𝑡)–𝜙(𝑓 )(𝑡𝑖  )‖ <  𝛿2/4 + 𝜖1/2 
<  𝛿2/2                                                                                                                         (48) 

for all 𝑓 ∈  ℱ and 𝑡 ∈  [𝑡𝑖−1,
 𝑡𝑖−1+𝑡𝑖

2
]. There exists a unitary 𝑊𝑖 ∈ 𝑀𝑛 such that 

𝑤𝑖
∗𝜓(𝑓 ) = (

𝑡𝑖−1 + 𝑡𝑖
2

)𝑤𝑖 = 𝜙(𝑓 )(𝑡𝑖  )                                      (49) 

for all 𝑓 ∈  𝐶(𝑋). It follows from (48) and (49) that 

‖𝑤𝑖𝜓(𝑓 ) (
𝑡𝑖−1 + 𝑡𝑖

2
) − 𝜓(𝑓 ) (

𝑡𝑖−1 + 𝑡𝑖
2

)𝑤𝑖‖ < 𝛿2                (50) 

for all 𝑓 ∈  ℱ. By the choice of 𝛿2 and by applying in [69], we obtain ℎ𝑖 ∈ 𝑀𝑛 such that 

𝑊𝑖  =  exp(√−1ℎ𝑖) and 

‖ℎ𝑖𝜓(𝑓 ) (
𝑡𝑖−1 + 𝑡𝑖

2
) − 𝜓(𝑓 ) (

𝑡𝑖−1 + 𝑡𝑖
2

) ℎ𝑖‖ < 𝜖/4                (51) 

and 

‖exp(√−1𝑡ℎ𝑖)𝜓(𝑓 ) (
𝑡𝑖−1 + 𝑡𝑖

2
) − 𝜓(𝑓 ) (

𝑡𝑖−1 + 𝑡𝑖
2

) exp(√−1𝑡ℎ𝑖)‖ < 𝜖/4    (52) 

for all 𝑓 ∈  ℱ. and 𝑡 ∈  [0, 1]. From this we obtain a continuous path of unitaries 

{𝑊𝑖  (𝑡): 𝑡 ∈  [
𝑡𝑖−1+𝑡𝑖

2
, 𝑡𝑖  ]}  ⊂ 𝑀𝑛 such that 

𝑊𝑖 (
𝑡𝑖−1 + 𝑡𝑖

2
) = 1,      𝑊𝑖(𝑡𝑖) = 𝑊𝑖                                        (53) 

and 

 

‖𝑤𝑖𝜓(𝑓 ) (
𝑡𝑖−1 + 𝑡𝑖

2
) − 𝜓(𝑓 ) (

𝑡𝑖−1 + 𝑡𝑖
2

)𝑤𝑖‖ < 𝜖/4                (54) 

for all 𝑓 ∈  ℱ and 𝑡 ∈  [
𝑡𝑖−1+𝑡𝑖

2
, 𝑡𝑖  ]. Define 𝜓(𝑓 )(𝑡) = 𝑤𝑖

∗(𝑡)𝜓 (
𝑡𝑖−1+𝑡𝑖

2
)𝑤𝑖(𝑡) for 𝑡 ∈

 [
𝑡𝑖−1+𝑡𝑖

2
, 𝑡𝑖  ], 𝑖 =  1, 2, . . . , 𝑁. Note that 𝜓 ∶  𝐶(𝑋) → 𝐴. We conclude that  

‖𝜙(𝑓 )  − 𝜓(𝑓 )‖ <  𝜖 for all ℱ                                       (55)             
 

Define 

𝑈(𝑡) =  𝑈0   for    𝑡 ∈ [0,
𝑡1
2
) ,   𝑈(𝑡) =  𝑈0𝑊1(𝑡)  for   𝑡 ∈ [

𝑡1
2
, 𝑡2),        (56) 

 



919 
 

            𝑈(𝑡) =  𝑈(𝑡𝑖  )        for    𝑡 ∈ [𝑡𝑖 ,
𝑡𝑖 + 𝑡𝑖−1

2
), 

𝑈(𝑡) =  𝑈(𝑡𝑖  )𝑊𝑖+1(𝑡)    for  𝑡 ∈ [
𝑡𝑖 + 𝑡𝑖−1

2
, 𝑡𝑖+1],                  (57) 

𝑖 =  1, 2, . . . , 𝑁 −  1 and define 

𝑠𝑗 = 𝑥0,𝑗(𝑡)   for    𝑡 ∈ [0,
𝑡1
2
),    𝑠𝑗(𝑡) = 𝑠𝑗 (

𝑡1
2
)   for   𝑡 ∈ [

𝑡1
2
, 𝑡2),       (58) 

𝑠𝑗 = 𝑥𝑖,𝜎𝑖(𝑗)(𝑡)     for    𝑡 ∈ [𝑡𝑖 ,
𝑡𝑖 + 𝑡𝑖+1

2
),  

𝑠𝑗(𝑡) = 𝑠𝑗 (
𝑡𝑖 + 𝑡𝑖+1

2
)        for  𝑡 ∈ [

𝑡𝑖 + 𝑡𝑖+1
2

, 𝑡𝑖+1],           (59) 

𝑖 =  1, 2, . . . , 𝑁 −  1. Thus 𝑈(𝑡) ∈ 𝐴 and, by (45), 𝑠𝑗(𝑡) ∈ 𝐶([0, 1], 𝑋). 

One then checks that 𝜓 has the form 

𝜓(𝑓 ) = 𝑈(𝑡)∗(
𝑓(𝑠1(𝑡))   

 ⋱  
  𝑓(𝑠𝑛(𝑡))

)𝑈(𝑡)                       (60) 

for 𝑓 ∈ 𝐶(𝑋). In fact, for 𝑡 ∈ [0, 𝑡1], it is clear that (60) holds. Suppose that (60) holds for 𝑡 ∈
[0, 𝑡𝑖]. Then, by (49), for 𝑓 ∈ 𝐶(𝑋), 

𝜓(𝑓 )(𝑡𝑖) = 𝑈(𝑡𝑖)
∗(

𝑓(𝑥𝑖,𝜎𝑖(1))   
 ⋱  
  𝑓(𝑥𝑖,𝜎𝑖(𝑛))

)𝑈(𝑡𝑖)                          

 

     = 𝑈𝐼
∗(
𝑓(𝑥𝑖,1)   
 ⋱  
  𝑓(𝑥𝑖,𝑛)

)𝑈𝑖 ,                                        (61) 

Therefore, for 𝑡 ∈ [𝑡𝑖 ,
𝑡𝑖+𝑡𝑖+1

2
], 

𝜓(𝑓 )(𝑡)  = 𝑈𝐼
∗(
𝑓(𝑥𝑖,1(𝑡))   

 ⋱  
  𝑓(𝑥𝑖,𝑛(𝑡))

)𝑈𝑖                              (62) 

= 𝑈(𝑡𝑖)
∗(

𝑓(𝑥𝑖,𝜎𝑖(1)(𝑡))   
 ⋱  
  𝑓(𝑥𝑖,𝜎𝑖(𝑛)(𝑡))

)𝑈(𝑡𝑖)    (63)  

= 𝑈(𝑡)∗(
𝑓(𝑠1(𝑡))   

 ⋱  
  𝑓(𝑠𝑛(𝑡))

)𝑈(𝑡)                       (64) 

For  𝑡 ∈ [
𝑡𝑖 + 𝑡𝑖+1

2
, 𝑡𝑖+1], 

𝜓(𝑓 )(𝑡) = 𝑊𝑖+1(𝑡)
∗𝜓(

𝑡𝑖 + 𝑡𝑖+1
2

)𝑊𝑖+1(𝑡)                                           (65) 
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= 𝑊𝑖+1(𝑡)
∗𝑈(𝑡𝑖)

∗

(

 
 
𝑓(𝑠1(

𝑡𝑖 + 𝑡𝑖+1
2

))   

 ⋱  

  𝑓(𝑠𝑛(
𝑡𝑖 + 𝑡𝑖+1

2
))
)

 
 
𝑈(𝑡𝑖)𝑊𝑖+1(𝑡)  (66) 

= 𝑈(𝑡)∗(
𝑓(𝑠1(𝑡))   

 ⋱  
  𝑓(𝑠𝑛(𝑡))

)𝑈(𝑡)                       (67) 

This verifies (60). 

Lemma (3.1.11)[84]: 

    Let 𝑋 be a finite 𝐶𝑊 complex and let 𝐴 ∈. Suppose that 𝜙: 𝐶(𝑋)⊗ 𝐶(𝑇) → 𝐴 is a unital 

homomorphism. Then, for any  𝜖 >  0 and any finite subset ℱ ⊂ 𝐶(𝑋), there exists a 

continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]} in 𝐴 such that 

𝑢(0) = 𝜙(1⊗ 𝑧),         𝑢(1) = 1     𝑎𝑛𝑑    ‖[𝜙(𝑓 ⊗ 1), 𝑢(𝑡)]‖ < 𝜖      (68) 
for 𝑓𝜖 ℱ and 𝑡 ∈  [0, 1]. 
Proof: 

    It is clear that the general case can be reduced to the case that 𝐴 =  𝐶([0, 1],𝑀𝑛). Let 

𝑞1, 𝑞2, . . . , 𝑞𝑛 be projections of 𝐶(𝑋) corresponding to each path connected component of 𝑋. 
Since 𝜙(𝑞𝑖)𝐴𝜙(𝑞𝑖) ≅ 𝐶([0, 1],𝑀𝑛𝑖) for some 1 ≤ 𝑛𝑖 ≤ 𝑛,   𝑖 =  1, 2, . . ., we may reduce the 

general case to the case that 𝑋 is path connected and  𝐴 = 𝐶([0, 1],𝑀𝑛). 
    Note that we use 𝑧 for the identity function on the unit circle. 

    For any 𝜖 > 0 and any finite subset ℱ ⊂ 𝐶(𝑋), obtains a unital homomorphism 𝜓 ∶
 𝐶(𝑋)⊗ 𝐶(𝑇) → 𝐴 such that 

‖𝜙(g) − 𝜓(g)‖ < 𝜖   for all  𝑔 ∈ {𝑓 ⊗ 1 ∶ 𝑓𝜖 ℱ} ∪ {1⊗ 𝑧}           (69) 

𝜓(𝑓)𝑡 = 𝑈(𝑡)∗(
𝑓(𝑠1(𝑡))   

 ⋱  
  𝑓(𝑠𝑛(𝑡))

)𝑈(𝑡),                       (70) 

for all 𝑓 ∈  𝐶(𝑋 × 𝕋), where 𝑈(𝑡)  ∈  𝑈(𝐶([0, 1],𝑀𝑛)), 𝑠𝑗 ∶  [0, 1] → 𝑋 × 𝕋 𝑖s a continuous 

map, 𝑗 =  1, 2, . . . , 𝑛, and for all 𝑡 ∈  [0, 1]. There are continuous paths of unitaries 

{𝑢𝑗  (𝑟): 𝑟 ∈  [0, 1]}  ⊂ 𝐶([0, 1]) such that 

𝑢𝑗(0)(𝑡) = (1⊗ 𝑧) (𝑠𝑗(1)),    𝑢𝑗(1) = 1,   𝑗 =  1, 2, . . . , 𝑛,     (71)  

Define  

𝑢(𝑟)𝑡 = 𝑈(𝑡)∗ (
𝑢𝑗(𝑟)(𝑡)   

 ⋱  
  𝑢𝑛(𝑟)(𝑡)

)𝑈(𝑡).                       (72) 

Then 

𝑢(𝑟)𝜓(𝑓 ⊗ 1)  =  𝜓(𝑓 ⊗ 1)𝑢(𝑟)   for all  𝑟 ∈ [0, 1]. 
It follows that 

 

 

‖[𝜙(𝑓 ⊗ 1), 𝑢(𝑟)]‖ < 𝜖   for all   𝑟 ∈ [0, 1]   and  for all   𝑓 ∈ ℱ. 
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Definition (3.1.12)[84]:  

    Let 𝑋 be a compact metric space. We say that 𝑋 satisfies property (H) if the following 

holds: 

    For any 𝜖 > 0, any finite subsets ℱ ⊂ 𝐶(𝑋) and any non-decreasing map ∆: (0, 1) →
(0, 1), there exists 𝜂 > 0 (which depends on 𝜖 and F but not ∆), 𝛿 > 0, a finite subset 𝒢 ⊂
 𝐶(𝑋) and a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the following: 

    Suppose that 𝜙: 𝐶(𝑋) → 𝐶([0, 1],𝑀𝑛) is a unital 𝛿 − 𝐺 −multiplicative contractive 

completely positive linear map for which 

𝜇𝜏○𝜙(𝑂𝑎) ≥ ∆(𝑎)                                                        (73) 

for any open ball 𝑂𝑎 with radius 𝑎 ≥ 𝜂 and for all tracial states 𝜏 of 𝐶([0, 1],𝑀𝑛), and 

[𝜙]|𝑃 =  [Φ]|𝑃,                                                        (74) 
where 𝛷 is a point-evaluation. 

    Then there exists a unital homomorphism ℎ: 𝐶(𝑋) → 𝐶([0, 1],𝑀𝑛) such that 

for all 𝑓 ∈  ℱ. 
    It is a restricted version of some relatively weakly semi-projectivity property. It has been 

shown in [22] that any 𝑘 −dimensional torus has the property (H). So do those finite CW 

complexes 𝑋 with torsion free 𝐾0(𝐶(𝑋)) and torsion 𝐾1(𝐶(𝑋)), any finite CW complexes 

with form 𝑌 × 𝕋 where 𝑌 is contractive and all one-dimensional finite CW complexes. 

Corollary( 3.1.13)[84]: 

   Let 𝐶 =  𝐶(𝑋,𝑀𝑛) where 𝑋 =  [0, 1] 𝑜𝑟 𝑋 =  𝕋 and ∆: (0, 1) → (0, 1) be a nondecreasing  

map.  For any 𝜖 >  0 and  any  finite  subset ℱ ⊂  𝐶, there  exists 𝛿 >  0, 𝜂 >  0 and  there  

exists  a finite  subset 𝒢 ⊂  𝐶 satisfying  the  following: 

    Suppose that A is a unital simple 𝐶∗ −algebra with 𝑇𝑅(𝐴)  ≤ 1, 𝜙 ∶  𝐶 →  𝐴 is a unital  

monomorphism  and 𝑢 ∈ 𝐴 is  a unitary  and  suppose  that 

‖[𝜙(𝑐), 𝑢]‖ < 𝛿    for all     𝑐 ∈ 𝒢,                            (75) 
bott0(𝜙, 𝑢) = {0}    𝑎𝑛𝑑    bott1(𝜙, 𝑢) = {0}                 (76) 

Suppose also that there exists a unital contractive completely positive linear map 𝐿 ∶  𝐶 ⊗
𝐶(𝑇) → 𝐴 such  that  (with 𝑧 the identity function on the unit circle) 

‖𝐿(𝑐 ⊗ 1) − 𝜙(𝑐)‖ < 𝛿, ‖𝐿(𝑐 ⊗ 𝑧) − 𝜙(𝑐)𝑢‖ < 𝛿 for all 𝑐 ∈ 𝒢 

and 

for  all  open  balls 𝑂𝑎 of [0, 1]  ×  𝕋 with  radius 1 > 𝑎 ≥  𝜂, where 𝜇𝜏○𝐿 is the Borel 

probability measure defined by restricting L on the center of 𝐶 ⊗ 𝐶(𝕋). Then there exists a 

continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]} such that 

𝑢(0) = 𝑢,    𝑢(1) = 1    and     ‖[𝜙(𝑐), 𝑢(𝑡)]‖ < 𝜖             (78) 
for all 𝑐 ∈  ℱ and for all 𝑡 ∈  [0, 1]. 
Corollary (3.1.14)[84]: 

    Let 𝐶 =  𝐶([0, 1],𝑀𝑛) and let 𝑇 =  𝑁 ×  𝐾 ∶  (𝐶 ⊗ 𝐶(𝕋))+ \ {0} → 𝑁 × ℝ+ \ {0} be a 

map. For any 𝜖 >  0 and any finite subset ℱ ⊂  𝐶, there exist 𝛿 >  0, a finite subset H 

⊂(𝐶 ⊗ 𝐶(𝑇))+ \ {0} and there exists a finite subset 𝒢 ⊂ 𝐶 satisfying the following: 

   Suppose that A is a unital simple 𝐶∗ −algebra with 𝑇𝑅(𝐴) ≤ 1, 𝜙: 𝐶 →  𝐴 is a unital  

monomorphism  and   𝑢 ∈  𝐴  is   a unitary  and  suppose  that 
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‖[𝜙(𝑐), 𝑢]‖ < 𝛿    for all     𝑐 ∈ 𝒢,                            (79) 
and 

bott0(𝜙, 𝑢) = {0}.                                                    (80) 
 

Suppose also that there exists a unital contractive completely positive linear map 𝐿: 𝐶 ⊗
𝐶(𝑇) → 𝐴 which is 𝑇 − 𝐻 −full such that (with z the identity function on the unit circle) 

‖𝐿(𝑐 ⊗ 1) − 𝜙(𝑐)‖ < 𝛿, ‖𝐿(𝑐 ⊗ 𝑧) − 𝜙(𝑐)𝑢‖ < 𝛿 for all 𝑐 ∈ 𝒢        (81) 
Then there exists a continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]} in 𝐴 such that 

𝑢(0) = 𝑢,    𝑢(1) = 1    and     ‖[𝜙(𝑐), 𝑢(𝑡)]‖ < 𝜖             (82) 
for all 𝑐 ∈  ℱ and for all 𝑡 ∈  [0, 1]. 
 

Proof: 

   Fix 𝑇 =  𝑁 × 𝐾 ∶  𝑁 × ℝ+ \ {0}. 𝐿𝑒𝑡 Δ: (0, 1) → (0, 1) be  the  non-decreasing  map 

associated  with  𝑇  as  in  [22].  Let 𝒢 ⊂  𝐶, 𝛿 >  0 and  >  0 , for 𝜖  and ℱ  given  and  the  

above Δ. 

 It follows in [22] that there exists a finite subset 𝐻 ⊂ (𝐶 ⊗ 𝐶(𝑇))+\ {0} such  that  for  any 

unital contractive completely positive linear map 𝐿 ∶  𝐶 ⊗ 𝐶(𝑇) → 𝐴 which is 𝑇 − 𝐻 −full, 

one has that 

𝜇𝜏○𝐿(𝑂𝑎) ≥ Δ(𝑎)                                                          (83) 
For  all  open  balls  𝑂𝑎  of 𝑋 × 𝕋 with  radius 𝑎 ≥ 𝜂. 

Lemma (3.1.15)[84]: 

    Let 𝐶 = 𝑀𝑛. Then, for any 𝜖 > 0 and any finite subset ℱ, there exist 𝛿 > 0 and a finite 

subset 𝒢 ⊂ 𝐶 satisfying the following: For any unital 𝐶∗-algebra 𝐴 with 𝐾1(𝐴) =
𝑈(𝐴)/𝑈0(𝐴) and any unital homomorphism 𝜑 ∶  𝐶 → 𝐴 and any unitary 𝑢 ∈  𝐴 if 

                             ‖[𝜙(𝑐), 𝑢]‖ < 𝛿      𝑎𝑛𝑑        𝑏𝑜𝑡𝑡0(𝜙, 𝑢) = {0},                        (84) 
then there exists a continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]} ⊂ 𝐴 such that 

                             𝑢(0) = 𝑢,   𝑢(1) = 1     𝑎𝑛𝑑  ‖[𝜙(𝑐), 𝑢]‖ < 𝜖                           (85) 
for all 𝑐 ∈ ℱ 𝑎𝑛𝑑 𝑡 ∈  [0, 1]. 
Proof: 

    First consider the case that ϕ(c) commutes with u for all c ∈  C. Then one has a unital 

homomorphism Φ:Mn⊗C(𝕋) → A defined by Φ(𝑐 ⊗  𝑔)  =  𝜙(𝑐)𝑔(𝑢) for all 𝑐 ∈  𝐶 and 

𝑔 ∈  𝐶(𝕋). Let {𝑒 𝑖,𝑗} be a matrix unit for Mn. Let 𝑢𝑗 = 𝑒𝑗 , 𝑗 ⊗ 𝑧, 𝑗 = 1, 2, . . . , 𝑛. The 

assumption 𝑏𝑜𝑡𝑡0(𝜑, 𝑢) = {0} implies that Φ∗1 = {0}. It follows that 𝑢𝑗 ∈  𝑈0(𝐴), 𝑗 =

 1, 2, . . . , 𝑛. One then obtains a continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]}  ⊂  𝐴 such that 

𝑢(0) = 𝑢, 𝑢(1) = 1   𝑎𝑛𝑑     ‖[𝜙(𝑐), 𝑢(𝑡)]‖ = 0 

for all 𝑐 ∈  𝐶(𝕋) and 𝑡 ∈  [0, 1]. 
The general case follows from the fact that 𝐶 ⊗ 𝐶(𝕋) is weakly semi-projective. 

Lemma (3.1.16)[84]: 

     Let 𝑛 < 64 be an integer. Let 𝜖 > 0 and 1/2 >  𝜖1 >  0. There exist 
𝜋

2𝑛
> 𝛿 > 0  and a 

finite subset 𝒢 ⊂  𝐷 ∼= 𝑀𝑛 satisfying the following: Suppose that 𝐴 is a unital 𝐶∗-algebra 

with 𝑇(𝐴) ≠ ∅,𝐷 ⊂  𝐴 is a 𝐶∗-subalgebra with 1𝐷 = 1𝐴, suppose that ℱ ⊂ 𝐴 is a finite 

subset and suppose that 𝑢 ∈  𝑈(𝐴) such that 
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                                   ‖[𝑓, 𝑥]‖ < 𝛿     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ 𝑎𝑛𝑑 𝑥 ∈ 𝒢,                             (86) 
and 

                                               ‖[𝑢, 𝑥]‖ < 𝛿     𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 ∈ 𝒢,                                     (87)  
Then, there exist a unitary 𝑣 ∈  𝐷 and a continuous path of unitaries {𝑤(𝑡): 𝑡 ∈ [0, 1]} ⊂ 𝐷 

such that 

 

                           ‖𝑢, 𝑤(𝑡)‖ < 𝑛𝛿 < 𝜖,   ‖𝑢, 𝑤(𝑡)‖ < 𝑛𝛿 <
𝜖

2
                                 (88) 

                                        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1],                                (89) 

                           𝑤(0) = 1, 𝑤(1) = 𝑣  𝑎𝑛𝑑  𝜇𝜏∘𝜙(𝐼𝑎) =
2

3𝑛2
                         (90) 

for all open arcs 𝐼𝑎 of 𝕋 with length a  4π/n and for all 𝜏 ∈  𝑇(𝐴), where 𝚤: 𝐶(𝕋) → 𝐴 is 

defined by 𝚤(𝑓 )  =  𝑓 (vu) for all 𝑓 ∈  𝐶(𝑇).                                                       
   Moreover, 

                                                           𝑙𝑒𝑛𝑔𝑡ℎ ({𝑤(𝑡)}) ≤ 𝜋.                                        (91) 
If, in addition, 𝜋 > 𝑏1 > 𝑏2 > ··· > 𝑏𝑚 > 0 and 1 = 𝑑0 > 𝑑1 > 𝑑2 >  ··· > 𝑑𝑚 >  0 are 

given so that 

                  𝜇𝜏∘𝑙(𝐼𝑏𝑖) ≥ 𝑑𝑖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),   𝑖 = 1,2,… ,𝑚,                               (92) 

where 𝚤0: 𝐶(𝕋)  →  𝐴 is defined by 𝚤0(𝑓 ) = 𝑓 (𝑢) for all 𝑓 ∈ 𝐶(𝕋), then one also has that 

                                 𝜇𝜏∘𝑙(𝐼𝑐𝑖) ≥ (1 − 𝜖1)𝑑𝑖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),                              (93) 

where 𝐼𝑏𝑖 and 𝐼𝑐𝑖  are any open arcs with length bi and 𝑐𝑖, respectively, and where 𝑐𝑖 = 𝑏𝑖 +

𝜖1, 𝑖 =  1, 2, . . . , 𝑚. 

Proof: 

     Let 

0 < 𝛿0 < min {
𝜖1𝑑𝑖
16𝑛2

: 1 ≤ 𝑖 ≤ 𝑚}. 

Let {𝑒𝑖,𝑗} be a matrix unit for 𝐷 and let 𝒢 =  {𝑒𝑖,𝑗}. Define 

                                                      𝑣 =∑𝑒2√−1𝑗𝜋/𝑛𝑒𝑖,𝑗

𝑛

𝑗=1

.                                            (94) 

Let 𝑓1 ∈ 𝐶(𝕋) with 𝑓1(𝑡)  =  1 for |𝑡 − 𝑒2√−1𝜋/𝑛| <  𝜋/𝑛 and 𝑓1(𝑡) = 0 if |𝑡 − 𝑒2√−1𝜋/𝑛| ≥

2𝜋/𝑛 and 1 ≥ 𝑓1(𝑡) ≥ 0. Define 𝑓𝑗+1(𝑡) = 𝑓1(𝑒
2√−1𝑗𝜋/𝑛𝑡), 𝑗 =  1, 2, . . . , 𝑛 −  1. Note that 

                       𝑓𝑖(𝑒
2√−1𝑗𝜋/𝑛) = 𝑓𝑖+𝑗(𝑡)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋                                      (95) 

where 𝑖, 𝑗 ∈ ℤ/𝑛ℤ. 
Fix a finite subset ℱ0 ⊂ 𝐶(𝕋)+ which contains 𝑓𝑖 , 𝑖 =  1, 2, . . . , 𝑛.                                 
Choose 𝛿 so small that the following hold: 

(i) there exists a unitary 𝑢𝑖 ∈ 𝑒𝑖,𝑖𝐴𝑒𝑖,𝑖 such that ‖𝑒2√−1𝑖𝜋/𝑛𝑒𝑖,𝑖𝑢𝑒𝑖,𝑖 − 𝑢𝑖‖ <  𝛿0
2/

16𝑛2, 𝑖 =  1, 2, . . . , 𝑛. 
(ii)     ; 

(iii)  ‖𝑒𝑖,𝑖𝑓 (𝑣𝑢)  − 𝑒𝑖,𝑖𝑓 (𝑒
2√−1𝑖𝜋/𝑛𝑢)‖  < 𝛿0

2/16𝑛2 for all 𝑓 ∈ ℱ0; and 
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(iv)   ‖𝑒𝑖,𝑗
∗  𝑓 (𝑢)𝑒𝑖,𝑗  −  𝑒𝑗,𝑗𝑓 (𝑢)𝑒𝑗,𝑗‖  < 𝛿0

2/16𝑛2 for all 𝑓 ∈ ℱ0. 

 

    Fix 𝑘. For each 𝜏 ∈  𝑇(𝐴), by (i), (iii) and (iv) above, there is at least one 𝑖 such that 

                                      𝜏(𝑒𝑗,𝑗𝑓𝑖  (𝑢)) ≥
1

𝑛2
−

𝛿0
2

16𝑛2
.                                                    (96) 

 

Choose 𝑗 so that 𝑘 +  𝑗 =  𝑖𝑚𝑜𝑑 (𝑛). Then, 

 

                                          𝜏(𝑓𝑘 (𝑣𝑢)) ≥ 𝜏(𝑒𝑗,𝑗𝑓𝑘 (𝑣𝑢))                                              (97) 

                                                                ≥ 𝜏(𝑒𝑗,𝑗𝑓𝑘(𝑒
2√−1𝑖𝜋/𝑛𝑢)) −

𝛿0
2

16𝑛2
              (98) 

                                                          = 𝜏(𝑒𝑗,𝑗𝑓𝑖(𝑢)) −
𝛿0
2

16𝑛2
≥
1

𝑛2
−
2𝛿0

2

16𝑛2
.             (99) 

 

It follows that 

          𝜇𝜏∘𝑙 (𝐵(𝑒
2√−1𝑖𝜋/𝑛, 𝜋/𝑛)) ≥

1

𝑛2
−
2𝛿0

2

16𝑛2
     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                   (100) 

 

and for 𝑘 =  1, 2, . . . , 𝑛.                                                                                                         
   It is then easy to compute that 

 

                                       𝜇𝜏∘𝑙(𝐼𝑎) ≥
2

3𝑛2
           𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                              (101) 

 

and for any open arc with length 𝑎 ≥ 2(
2𝜋

𝑛
) =

4𝜋

𝑛
.                                                  

   Note that if ‖[𝑥, 𝑒𝑖,𝑖]‖ <  𝛿, then 

 

‖[𝑥,∑𝜆𝑖𝑒𝑖,𝑖

𝑛

𝑖=1

]‖ < 𝑛𝛿 <
𝜖

2
  𝑎𝑛𝑑     ‖[𝑢,∑𝜆𝑖𝑒𝑖,𝑖

𝑛

𝑖=1

]‖ < 𝑛𝛿 < 𝜖/2 

 

for any 𝜆𝑖 ∈ 𝕋. Thus, one obtains a continuous path {𝑤(𝑡): 𝑡 ∈  [0, 1]}  ⊂  𝐷 with 

𝑙𝑒𝑛𝑔𝑡ℎ({𝑤(𝑡)}) ≤ 𝜋 and with 𝑤(0) = 1 and (1) = 𝑣 . 

   Let {𝑥1, 𝑥2, . . . , 𝑥𝐾} be an 𝜖1/64-dense set of 𝕋. Let 𝐼𝑖,𝑗 be an open arc with center 𝑥𝑗 and 

𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑖 , 𝑗 =  1, 2, . . . , 𝐾 and 𝑖 =  1, 2, . . . , 𝑚. For each 𝑗 and 𝑖, there is a positive function 

𝑔𝑗,𝑖 ∈ 𝐶(𝕋)+ with 0 ≤ 𝑔𝑗,𝑖 ≤ 1 and 𝑔𝑗,𝑖(𝑡) = 1 if |𝑡 − 𝑥𝑗| < 𝑑𝑖 and 𝑔𝑗,𝑖(𝑡) = 0 if |𝑡 − 𝑥𝑗| ≥

𝑑𝑖 + 𝜖1/64, 𝑗 = 1, 2, . . . , 𝐾, 𝑖 = 1, 2, . . . , 𝑚. Put 𝑔𝑖,𝑗,𝑘(𝑡) = 𝑔𝑗,𝑖(𝑒
2√−1𝑖𝜋/𝑛 · 𝑡) for all 𝑡 ∈

𝕋, 𝑘 = 1, 2, . . . , 𝑛. Suppose that ℱ0 contains all 𝑔𝑗,𝑖 and 𝑔𝑖,𝑗,𝑘. We have, by (ii), (iii) and (iv) 

above, 
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        𝜏(𝑔𝑗,𝑖(𝑢), 𝑒𝑙,𝑙), 𝜏(𝑔𝑗,𝑖,𝑘(𝑢), 𝑒𝑙,𝑙) ≥
𝑑𝑖
𝑛
−

𝛿2

16𝑛2
    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),            (102) 

 

𝑙 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝐾 and 𝑖 =  1, 2, . . . , 𝑚. Thus 

                      𝜏 (𝑒𝑘,𝑘𝑔𝑗,𝑖(𝑣𝑢)) ≥ 𝜏 (𝑒𝑘,𝑘𝑔𝑗,𝑖(𝑒
2√−1𝑖𝜋/𝑛𝑢)) − 𝑛

𝛿0
2

16𝑛2
                 (103) 

 

                                                     ≥
di
n
−
δ0
2

8n2
    for all τ ∈ T(A),                            (104) 

𝑘 =  1, 2, . . . , 𝑛, 𝑗 =  1, 2, . . . , 𝐾 and 𝑖 =  1, 2, . . . , 𝑚. Therefore 

        𝜏 (𝑒𝑘,𝑘𝑔𝑗,𝑖(𝑣𝑢)) ≥ 𝑑𝑖 −
𝛿0
2

8𝑛2
≥ (1 − ϵ1)𝑑𝑖          𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),         (105) 

𝑗 =  1, 2, . . . , 𝐾 𝑎𝑛𝑑 𝑖 =  1, 2, . . . , 𝑚. 
   It follows that 

                                     𝜇𝜏∘𝑙(𝐼𝑖,𝑗) ≥ (1 − ϵ1)𝑑𝑖         𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),                  (106) 

 

𝑗 =  1, 2, . . . , 𝐾 and 𝑖 =  1, 2, . . . , 𝑚. Since {𝑥1, 𝑥2, . . . , 𝑥𝐾} is 𝜖1/64-dense in 𝕋, it follows 

that 

              𝜇𝜏∘𝑙(𝐼𝑐𝑖) ≥ (1 − ϵ1)𝑑𝑖          𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴), i = 1,2,… ,m.                 (107) 

Lemma (3.1.17)[84]: 

    Let 𝑛 ≥ 64 be an integer. Let 𝜖 > 0 and 1/2 > 𝜖1 >  0. There exist 
𝜖

2𝑛
> 𝛿 > 0 and a 

finite subset 𝐺 ⊂ 𝐷 ≅ 𝑀𝑛 satisfying the following:                                 
 Suppose that 𝑋 is a compact metric space, ℱ ⊂ 𝐶(𝑋) is a finite subset and 1 > 𝑏 > 0. Then 

there exists a finite subset ℱ1 ⊂ 𝐶(𝑋) satisfying the following: 

Suppose that 𝐴 is a unital 𝐶∗-algebra with 𝑇(𝐴) ≠ ∅, 𝐷 ⊂ 𝐴 is a 𝐶∗-subalgebra with 1𝐷 =
1𝐴, 𝜙: 𝐶(𝑋) → 𝐴 is a unital homomorphism and suppose that 𝑢 ∈ 𝑈(𝐴) such that 

      ‖[𝑥, 𝑢]‖ < 𝛿    𝑎𝑛𝑑   ‖[𝑥, 𝜙(𝑓)]‖ < 𝛿     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝒢 𝑎𝑛𝑑 𝑓 ∈ ℱ1.           (108) 
Suppose also that, for some 𝜎 >  0, 

                                       𝜏(𝜙(𝑓))𝜎        𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)             𝑎𝑛𝑑                      (109) 
for all 𝑓 ∈ 𝐶(𝑋) with 0 ≤ 𝑓 ≤ 1 whose support contains an open ball of 𝑋 with radius 𝑏. 

Then, there exist a unitary 𝑣 ∈ 𝐷 and a continuous path of unitaries {𝑣(𝑡): 𝑡 ∈  [0, 1]}  ⊂  𝐷 

such that 

                               ‖𝑢, 𝑣(𝑡)‖ < 𝑛𝛿 < 𝜖,   ‖𝜙(𝑓), 𝑣(𝑡)‖ < 𝑛𝛿 < 𝜖                        (110) 
                                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ   𝑎𝑛𝑑  𝑡 ∈ [0, ,1],                                               (111) 
                                                   𝑣(0) = 1,     𝑣(1) = 𝑣                                                (112) 

and 

                                  𝜏(𝜙(𝑓)𝑔(𝑣𝑢)) ≥
2𝜎

3𝑛2
        𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                         (113) 

for any pair of 𝑓 ∈ 𝐶(𝑋) with 0 ≤ 𝑓 ≤ 1 whose support contains an open ball with radius 2𝑏 

and 𝑔 ∈ 𝐶(𝕋) with 0 ≤ 𝑔 ≤ 1 whose support contains an open arc of 𝕋 with length at least 
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8𝜋

𝑛
.                                                                                                         

   Moreover, 

                                                  𝑙𝑒𝑛𝑔𝑡ℎ(𝑣(𝑡)) ≤ 𝜋.                                                       (114) 
   If, in addition, 1 > 𝑏1 > 𝑏2 > ··· > 𝑏𝑘 > 0, 1 >  𝑑1 ≥ 𝑑2 ≥···  𝑑𝑘 > 0 are given 

and 

                                𝜏(𝜙(𝑓′)𝑔′(𝑢)) ≥ 𝑑𝑖      𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                               (115) 
for any functions 𝑓′ ∈ 𝐶(𝑋) with 0 ≤ 𝑓′ ≤ 1  whose support contains an open ball of  𝑋 with 

radius 𝑏𝑖/2 𝑎𝑛𝑑 𝑔′ ∈  𝐶(𝕋) with 0 ≤ 𝑔′ ≤ 1 whose support contains an arc with length 𝑏𝑖, 
then one also has that 

                       𝜏(𝜙(𝑓′′)𝑔′′(𝑣𝑢)) ≥ (1 − 𝜖1)𝑑𝑖          𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),                (116) 
where 𝑓′′ ∈ 𝐶(𝑋) with 0 ≤ 𝑓′′ ≤ 1 whose support contains an open ball of radius 𝑐𝑖 and 

𝑔′′ ∈ 𝐶(𝑇) with 0 ≤ 𝑔′′ ≤ 1 whose support contains an arc with 𝑙𝑒𝑛𝑔𝑡ℎ 2𝑐𝑖 with 𝑐𝑖 = 𝑐𝑖 +
 1, 𝑖 = 1, 2, . . . , 𝑘. 

Proof: 

    Let 0 < 𝛿0 =  𝑚𝑖𝑛 {
𝜖1𝑑𝑖

16𝑛2
: 𝑖 =  1, 2, . . . , 𝑘}.                                                                    

   Let {𝑒𝑖,𝑗} be a matrix unit for 𝐷 and let 𝐺 =  {𝑒𝑖,𝑗}. Define 

                                                     𝑣 =∑𝑒2√−1𝑗𝜋/𝑛
𝑛

𝑗=1

𝑒𝑗,𝑗 .                                              (117) 

Let 𝑔𝑗 ∈ 𝐶(𝕋) with 𝑔𝑗(𝑡) = 1 for |𝑡 − 𝑒2√−1𝑗𝜋/𝑛| < 𝜋/𝑛 and 𝑔𝑗(𝑡) = 0 if |𝑡 −

 𝑒2√−1𝑗𝜋/𝑛| ≥ 2𝜋/𝑛 and 1 ≥ 𝑔𝑗(𝑡) ≥ 0, 𝑗 =  1, 2, . . . , 𝑛. As in the proof of 5.1, we may also 

assume that 

                         𝑔𝑖(𝑒
2√−1𝑗𝜋/𝑛𝑡) = 𝑔𝑖+1(𝑡)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋                                     (118) 

where 𝑖, 𝑗 ∈ ℤ/𝑛ℤ. 
   Let {𝑥1, 𝑥2, . . . , 𝑥𝑚} be a 𝑏/2-dense subset of 𝑋. Define 𝑓𝑖 ∈ 𝐶(𝑋) with 𝑓𝑖(𝑥) = 1 for 𝑥 ∈
𝐵(𝑥𝑖 , 𝑏) and 𝑓𝑖(𝑥) = 0 if 𝑥 ∉ 𝐵(𝑥𝑖 , 2𝑏) and 0 ≤ 𝑓𝑖 ≤ 1, 𝑖 =  1, 2, . . . , 𝑚. 

Note that 

                        𝜏(𝜙(𝑓𝑖)) ≥ 𝜎     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴), 𝑖 = 1,2,… ,𝑚.                  (119) 
   Fix a finite subset ℱ0 ⊂  𝐶(𝕋) which at least contains {𝑔1, 𝑔2, . . . , 𝑔𝑛} and a finite subset 

ℱ1 ⊂ 𝐶(𝑋) which at least contains ℱ and {𝑓1, 𝑓2, . . . , 𝑓𝑚}.  
    Choose 𝛿 so small that the following hold: 

(i) there exists a unitary 𝑢𝑖 ∈ 𝑒𝑖,𝑖𝐴𝑒𝑖,𝑖 such that ‖𝑒2√−1𝑖𝜋/𝑛𝑒𝑖,𝑖𝑢𝑒𝑖,𝑖 − 𝑢𝑖‖ < 𝛿0
2/

16𝑛4, 𝑖 = 1, 2, . . . , 𝑛; 

(ii) ‖𝑒𝑖,𝑗𝑔(𝑢) − 𝑔(𝑢)𝑒𝑖,𝑗‖ < 𝛿0
2/16𝑛4, ‖𝑒𝑖,𝑗𝜙(𝑓 ) − 𝜙(𝑓 )𝑒𝑖,𝑗‖ < 𝛿0

2/16𝑛4, for 𝑓 ∈  ℱ1 

and 𝑔 ∈  ℱ0, 𝑗, 𝑘 =  1, 2, . . . , 𝑛 and 𝑠 =  1, 2, . . . , 𝑚; 

(iii) ‖𝑒𝑖,𝑖𝑔(𝑣𝑢) − 𝑒𝑖,𝑖𝑔(𝑒
2√−1𝑖𝜋/𝑛𝑢)‖ < 𝛿0

2/16𝑛4 for all 𝑔 ∈ ℱ0; and 

(iv) ‖𝑒𝑖,𝑗
∗ 𝑔(𝑢)𝑒𝑖,𝑗 − 𝑒𝑖,𝑗𝑔(𝑢)𝑒𝑖,𝑗‖ <  𝛿0

2/16𝑛4, ‖𝑒𝑖,𝑗
∗ 𝜙(𝑓 )𝑒𝑖,𝑗 − 𝑒𝑗,𝑗𝜙(𝑓 )𝑒𝑗,𝑗‖ <

𝛿0
2/16𝑛4 for all 𝑓 ∈ ℱ1 and 𝑔 ∈ ℱ0, 𝑗, 𝑘 =  1, 2, . . . , 𝑛 and 𝑠 =  1, 2, . . . , 𝑚. 

It follows from (iv) that, for any 𝑘0 ∈  {1, 2, . . . , 𝑚}, 
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                                                      𝜏(𝜙(𝑓𝑘0)𝑒𝑗,𝑗) ≥
𝜎

𝑛
−

𝛿0
2

16𝑛4
.                                   (120) 

Fix 𝑘0 and 𝑘. For each 𝜏 ∈ 𝑇(𝐴), there is at least one 𝑖 such that 

                                           𝜏 (𝜙(𝑓𝑘0)𝑒𝑗,𝑗𝑔𝑖(𝑢)) ≥
𝜎

𝑛
−

𝛿0
2

16𝑛4
.                                   (121) 

Choose 𝑗 so that 𝑘 + 𝑗 = 𝑖 𝑚𝑜𝑑 (𝑛). Then, 

          𝜏 (𝜙(𝑓𝑘0)𝑔𝑘(𝑣𝑢)) ≥ 𝜏 (𝜙(𝑓𝑘0)𝑒𝑗,𝑗𝑔𝑘(𝑒
2√−1𝑖𝜋/𝑛𝑢)) −

𝛿0
2

16𝑛4
                  (122) 

                                         = 𝜏 (𝜙(𝑓𝑘0)𝑒𝑗,𝑗𝑔𝑖(𝑢)) −
𝛿0
2

16𝑛4
                                          (123) 

                                             ≥
𝜎

𝑛2
−

𝛿0
2

16𝑛4
        𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴).                            (124) 

It is then easy to compute that 

                                   𝜏(𝜙(𝑓)𝑔(𝑣𝑢)) ≥
2𝜎

3𝑛2
         𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                       (125) 

and for any pair of 𝑓 ∈ 𝐶(𝑋) with 0 ≤ 𝑓 ≤ 1 whose support contains an open ball with 

radius 2𝑏 and 𝑔 ∈ 𝐶(𝕋) with 0 ≤ 𝑔 ≤ 1 whose support contains an open arc of length at 

least 8𝜋/𝑛. 

   Note that if ‖[𝜙(𝑓 ), 𝑒𝑖,𝑖]‖ < 𝛿, then 

‖[𝜙(𝑓),∑𝜆𝑖

𝑛

𝑖=1

𝑒𝑖,𝑖]‖ < 𝑛𝛿 < 𝜖 

for any 𝜆𝑖 ∈ 𝕋 and 𝑓 ∈ ℱ1. We then also require that 𝛿 < 𝜖/2𝑛. Thus, one obtains a 

continuous path {𝑣(𝑡): 𝑡 ∈ [0, 1]} ⊂ 𝐷 with 𝑙𝑒𝑛𝑔𝑡ℎ({𝑣(𝑡)}) ≤ 𝜋 and with 𝑣(0) = 1 and 

(1)  =  𝑣 . 

   Now we consider the last part of the lemma. Note also that, if 𝑓 ∈ ℱ1 and 𝑔 ∈ ℱ0 with 0 ≤
𝑓, 𝑔 ≤ 1, 

                          𝜏(𝜙(𝑓)𝑔(𝑣𝑢)) ≥∑𝜏 (𝜙(𝑓)𝑒𝑗,𝑗𝑔(𝑣𝑢))

𝑛

𝑗=1

−
𝛿0
2

16𝑛4
                       (126) 

                         ≥∑𝜏 (𝜙(𝑓)𝑒𝑗,𝑗𝑔
(𝑗)(𝑣𝑢))

𝑛

𝑗=1

−
𝛿0
2

16𝑛4
     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),           (127) 

 

where 𝑔(𝑗)(𝑡)  =  𝑔(𝑒2√−1𝑗𝜋/𝑛 · 𝑡) for 𝑡 ∈ 𝕋. If the support of 𝑓 contains an open ball with 

radius 𝑏𝑖/2 and that of 𝑔 contains open arcs with length at least 𝑏𝑖, so does that of 𝑔(𝑗). So, if 

ℱ0 and ℱ1 are sufficiently large, by the assumptions of the last part of the lemma, we have 

                                 𝜏(𝜙(𝑓)𝑔(𝑣𝑢)) ≥ 𝑑𝑖 −
𝛿0
2

16𝑛4
     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                 (128) 

 

for all 𝜏 ∈  𝑇(𝐴). As in the proof of (3.1.16), this lemma follows when we choose ℱ0 and ℱ1 

large enough to begin with. 
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Lemma (3.1.18)[84]: 

    Let 𝐶 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐶) ≤ 1 and let 𝑛 ≥ 1 be an integer. 

For any 𝜖 > 0, 𝜂 > 0, any finite subset ℱ ⊂ 𝐶, there exist 𝛿 > 0, a projection 𝑝 ∈ 𝐴 and a 

𝐶∗-subalgebra 𝐷 ≅ 𝑀𝑛 with 1𝐷 =  𝑝 such that 

                                           ‖[𝑥, 𝑝]‖ < 𝜖      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ;                           (129) 
       ‖[𝑝𝑥𝑝, 𝑦]‖ < 𝜖      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ 𝑎𝑛𝑑 𝑦 ∈ 𝐷 𝑤𝑖𝑡ℎ ‖𝑦‖ ≤ 1            (130) 

and 

                                            𝜏(1 − 𝑝) < 𝜂                𝑓𝑜𝑟 𝑎𝑙𝑙𝜏 ∈ 𝑇(𝐶).                        (131) 
 

Proof: 

   Choose an integer 𝑁 ≥ 1 such that 1/𝑁 <  𝜂/2𝑛 and 𝑁 ≥ 2𝑛. It follows from (the proof 

of) Theorem (3.1.18) of [89] that there is a projection 𝑞 ∈  𝐶 and there exists a 𝐶∗-subalgebra 

𝐵 of 𝐶 with 1𝐵 = 𝑞 and 𝐵 ≅⊕𝑖=1
𝐿 𝑀𝐾𝑖 with 𝐾𝑖 ≥ 𝑁 such that 

                                       ‖[𝑥, 𝑝]‖ < 𝜂/4      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ;                           (132) 
   ‖[𝑝𝑥𝑝, 𝑦]‖ < 𝜖/4      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ 𝑎𝑛𝑑 𝑦 ∈ 𝐵 𝑤𝑖𝑡ℎ ‖𝑦‖ ≤ 1           (133) 

and 

                                    𝜏(1 − 𝑝) < 𝜂/2𝑛                𝑓𝑜𝑟 𝑎𝑙𝑙𝜏 ∈ 𝑇(𝐶).                        (134) 
Write 𝐾𝑖 = 𝑘𝑖𝑛 + 𝑟𝑖 with 𝑘𝑖 ≥ 1 and 0 ≤ 𝑟𝑖 < 𝑛 for some integers 𝑘𝑖 and 𝑟𝑖 , 𝑖 = 1, 2, . . . , 𝐿. 

Let 𝑝 ∈ 𝐵 be a projection such that the rank of 𝑝 is 𝑘𝑖 in each summand 𝑀𝐾𝑖 of 𝐵. Take 𝐷1 =
𝑝𝐵𝑝. 

   We have 

                                          ‖[𝑥, 𝑝]‖ <
𝜖

2
     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ;                            (135) 

       ‖[𝑝𝑥𝑝, 𝑦]‖ < 𝜖      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ 𝑎𝑛𝑑 𝑦 ∈ 𝐷1 𝑤𝑖𝑡ℎ ‖𝑦‖ ≤ 1          (136) 
and 

               𝜏(1 − 𝑝) <
𝜂

2𝑛
+
𝑛

𝑁
<
𝜂

2𝑛
+
𝜂

2
< 𝜂                𝑓𝑜𝑟 𝑎𝑙𝑙𝜏 ∈ 𝑇(𝐶).              (137) 

   Note that there is a unital 𝐶∗-subalgebra 𝐷 ⊂ 𝐷1 such that 𝐷 ≅ 𝑀𝑛. 

Lemma (3.1.19)[84]: 

    Let 𝑛 ≥ 1 be an integer with 𝑛 ≥ 64. Let 𝜖 > 0 and 1/2 > 𝜖1 > 0. Suppose that 𝐴 is a 

unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, suppose that ℱ ⊂ 𝐴 is a finite subset and suppose 

that 𝑢 ∈ 𝑈(𝐴). Then, for any 𝜖 > 0, there exist a unitary 𝑣 ∈ 𝐴 and a continuous path of 

unitaries {𝑤(𝑡): 𝑡 ∈  [0, 1]}  ⊂  𝐴 such that 

                   ‖[𝑥, 𝑤(𝑡)]‖ < 𝜖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1],                   (138) 
                                                 𝑤(0) = 1,      𝑤(1) = 𝑣                                                (139) 

and 

                                                          𝜇𝜏∘𝑙(𝐼𝑎) ≥
15

24𝑛2
                                                   (140) 

 

for all open arcs 𝐼𝑎 of 𝕋 with 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎 ≥ 4𝜋/𝑛 and for all 𝜏 ∈ 𝑇(𝐴), where 𝑙: 𝐶(𝕋) → 𝐴 is 

defined by 𝑙(𝑓 )  =  𝑓 (𝑣𝑢). Moreover, 

                                                      𝑙𝑒𝑛𝑔𝑡ℎ ({𝑤(𝑡)}) ≤ 𝜋.                                           (141) 
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   If, in addition, 𝜋 > 𝑏1 > 𝑏2 > ··· > 𝑏𝑚 >  0 and 1 = 𝑑0 > 𝑑1 > 𝑑2 >··· >  𝑑𝑚 > 0 are 

given so that 

                     𝜇𝜏∘𝑙0(𝐼𝑏𝑖) ≥ 𝑑𝑖      𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴), 𝐼 = 1,2,… ,𝑚,                   (142) 

where 𝑙0: 𝐶(𝕋) → 𝐴 is defined by 𝑙0(𝑓) = 𝑓(𝑢) for all 𝑓 ∈ 𝐶(𝕋), then one also has that 

                                      𝜇𝜏∘𝑙(𝐼𝑐𝑖) ≥ (1 − 𝜖1)𝑑𝑖      𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),                       (143) 

where 𝐼𝑏𝑖 and 𝐼𝑐𝑖  are any open arcs with length 𝑏𝑖 and 𝑐𝑖, respectively, and where 𝑐𝑖 = 𝑏𝑖 + 1,

𝑖 = 1, 2, . . . , 𝑚. 

Proof: 

    Let 𝜖 > 0, and let 𝑛 ≥ 64 be an integer. Put 𝜖2 = 𝑚𝑖𝑛{𝜖1/16, 1/64𝑛
2}. Let ℱ ⊂ 𝐴 be a 

finite subset and let 𝑢 ∈ 𝑈(𝐴). Let 𝛿1 > 0 (in place of 𝛿) for , 𝜖, 𝜖2 (in place of 𝜖1) and let 

𝐺 = {𝑒𝑖,𝑗} ⊂ 𝐷 ≅ 𝑀𝑛 . 

   Put 𝛿 = 𝛿1/16, there is a projection 𝑝 ∈ 𝐴 and a 𝐶∗-subalgebra 𝐷 ≅ 𝑀𝑛 with 1𝐷 = 𝑝 such 

that 

                                                    ‖[𝑥, 𝑝]‖ < 𝛿   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ;                                  (144) 
               ‖[𝑝𝑥𝑝, 𝑦]‖ < 𝛿   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ 𝑎𝑛𝑑 𝑦 ∈ 𝐷 𝑤𝑖𝑡ℎ ‖𝑦‖ ≤ 1;                 (145) 

and 

                                             𝜏(1 − 𝑝) < 𝜖2   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐶).                                 (146) 
There is a unitary 𝑢0 ∈ (1 −  𝑝)𝐴(1 −  𝑝) and a unitary 𝑢1 ∈ 𝑝𝐴𝑝. Put 𝐴1 = 𝑝𝐴𝑝 and ℱ1 =
{𝑝𝑥𝑝: 𝑥 ∈ ℱ}. The 𝐴1, ℱ1 𝑎𝑛𝑑 𝑢1. 

Lemma (3.1.20)[84]: 

 Let 𝑛 ≥ 64 be an integer. Let 𝜖 > 0 and 1/2 > 𝜖1 > 0. Suppose that 𝐴 is a unital simple 𝐶∗-
algebra with 𝑇𝑅(𝐴) ≤ 1, 𝑋 is a compact metric space, 𝜙: 𝐶(𝑋) → 𝐴 is a unital 

homomorphism, ℱ ⊂ 𝐶(𝑋) is a finite subset and suppose that 𝑢 ∈  𝑈(𝐴). Suppose also that, 

for some 𝜎 > 0 and 1 >  𝑏 >  0, 

                                            𝜏(𝜙(𝑓)) ∈ 𝜎    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)   𝑎𝑛𝑑                          (147) 
for all 𝑓 ∈  𝐶(𝕋) with 0 ≤ 𝑓 ≤ 1 whose supports contain an open ball with radius at least 𝑏. 

Then, there exist a unitary 𝑣 ∈ 𝐴 and a continuous path of unitaries {𝑣(𝑡): 𝑡 ∈ [0, 1]} ⊂ 𝐴 

such that 𝑣(0) = 1, 𝑣(1) = 𝑣, 

   ‖[𝜙(𝑓), 𝑣(𝑡)]‖ < 𝜖   𝑎𝑛𝑑  ‖[𝑢, 𝑣(𝑡)]‖ < 𝜖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ 𝑎𝑛𝑑 𝑡 ∈ [0,1]    (148) 

                                𝜏(𝜙(𝑓)𝑔(𝑣𝑢)) ≥
15𝜎

24𝑛2
        𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                        (149) 

for any 𝑓 ∈ 𝐶(𝑋) with 0 ≤ 𝑓 ≤ 1 whose support contains an open ball of radius at least 2𝑏 

and any 𝑔 ∈ 𝐶(𝕋) with 0 ≤ 𝑔 ≤ 1 whose support contains an open arc of 𝕋 with length 𝑎 ≥
8𝜋/𝑛. 

  Moreover, 

                                                              𝑙𝑒𝑛𝑔𝑡ℎ({𝑣(𝑡)) ≤ 𝜋.                                         (150) 
If, in addition, 1 > 𝑏1 > 𝑏2 >···> 𝑏𝑘 > 0, 1 > 𝑑1 > 𝑑2 >···> 𝑑𝑘 >  0 are given and 

                                        𝜏(𝜙(𝑓′)𝑔′(𝑢)) ≥ 𝑑𝑖       𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                         (151) 
for any functions 𝑓′ ∈ 𝐶(𝑋) with 0 ≤ 𝑓′ ≤ 1 whose support contains an open ball with radius 

𝑏𝑖/2 and any function 𝑔′ ∈ 𝐶(𝕋) with 0 ≤ 𝑔′ ≤ 1 whose support contains an arc with 

𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑖, then one also has that 

                          𝜏(𝜙(𝑓′′)𝑔′′(𝑢)) ≥ (1 − 𝜖1)𝑑𝑖       𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                     (152) 
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where 𝑓′′ ∈ 𝐶(𝑋) with 0 ≤ 𝑓′′ ≤ 1 whose support contains an open ball with radius 𝑐𝑖 and 

𝑔′′ ∈  𝐶(𝕋) with 0 ≤ 𝑔′′ whose support contains an arc with length 2𝑐𝑖, where 𝑐𝑖 = 𝑏𝑖 +
1, 𝑖 =  1, 2, . . . , 𝑘. 

  Define 

   ∆00(𝑟) =
1

2(𝑛 + 1)2
  𝑖𝑓 0 <

8𝜋

𝑛 + 1
+

4𝜋

2𝑛+2(𝑛 + 1)
< 𝑟 ≤

8𝜋

𝑛
+

4𝜋

2𝑛+1𝑛
      (153) 

for 𝑛 ≥ 64 and 

                                     ∆00(𝑟) =
1

2(65)2
   𝑖𝑓 𝑟 ≥

8𝜋

64
+

4𝜋

265(64)
.                          (154) 

Let  ∆: (0, 1) → (0, 1) be a non-decreasing map. Define 

                              𝑖𝑓 0 <
8𝜋

𝑛 + 1
+

4𝜋

2𝑛+2(𝑛 + 1)
< 𝑟 ≤

8𝜋

𝑛
+

4𝜋

2𝑛+1𝑛
                    (155) 

for 𝑛 ≥ 64 and 

                    D0(∆)(r) = D0(∆)(4π/64)  if r ≥
8π

64
+

4π

265(64)
.                          (156) 

Lemma (3.1.21)[84]: 

   Suppose that 𝐴 is a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, suppose 

that ℱ ⊂ 𝐴 is a finite subset and suppose that 𝑢 ∈  𝑈(𝐴). For any 𝜖 >  0 and any 𝜂 > 0, 

there exist a unitary 𝑣 ∈ 𝑈0(𝐴) and a continuous path of unitaries {𝑤(𝑡): 𝑡 ∈  [0, 1]}  ⊂
 𝑈0(𝐴) such that 

   𝑤(0) = 1,    𝑤(1) = 𝑣,     ‖[𝑓, 𝑤(𝑡)]‖ < 𝜖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ 𝑎𝑛𝑑 𝑡 ∈ [0,1],    (157) 
and 

                                           𝜇𝜏∘𝑙(𝐼𝑎) ≥ ∆00(𝑎)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                             (158) 
for any open arc 𝐼𝑎 with length 𝑎 ≥ 𝜂, where 𝑙: 𝐶(𝕋) → 𝐴 is defined by 𝑙(𝑔) = 𝑔(𝑣𝑢) for all 

𝑔 ∈ 𝐶(𝕋) and ∆00. 

Corollary (3.1.22)[84]: Let 𝐶 be a unital separable simple amenable 𝐶∗-algebra with 

𝑇𝑅(𝐶) ≤ 1 which satisfies the 𝑈𝐶𝑇. Let 𝜖 > 0, ℱ ⊂ 𝐶 be a finite subset and let 1 > 𝜂 > 0. 

Suppose that 𝐴 is a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, 𝜙: 𝐶 → 𝐴 is a unital 

homomorphism and 𝑢 ∈  𝑈(𝐴) is a unitary with 

                                             ‖𝜙(𝑐), 𝑢‖ < 𝜖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ ℱ.                                       (159) 
   Then there exist a continuous path of unitaries {𝑢(𝑡): 𝑡 ∈ [0, 1]} ⊂ 𝑈(𝐴) such that 

                         𝑢(0) = 𝑢,    𝑢(1) = 𝑤   𝑎𝑛𝑑    ‖𝜙(𝑓), 𝑢(𝑡)‖ < 2𝜖                        (160) 
for all 𝑓 ∈ ℱ and 𝑡 ∈  [0, 1]. Moreover, for any open arc 𝐼𝑎 with 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎, 

                              𝜇𝜏∘𝑙(𝐼𝑎) ≥ ∆00(𝑟)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≥ 𝜂,                                             (161) 
where 𝑙: 𝐶(𝕋) → 𝐴 is defined by 𝑙(𝑓) = 𝑓(𝑤) for all 𝑓 ∈  𝐶(𝕋). 
Proof: 

   Let 𝜖 > 0 and ℱ ⊂ 𝐶 be as described. Put ℱ1 = 𝜙(ℱ). The corollary follows by taking 

𝑢(𝑡)  =  𝑤(𝑡)𝑢. 

Lemma (3.1.23)[84]:    Let ∆: (0, 1) → (0, 1) be a non-decreasing map, let 𝜂 > 0, let 𝑋 be a 

compact metric space and let ℱ ⊂ 𝐶(𝑋) be a finite subset. Suppose that 𝐴 is a unital simple 

𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, suppose that 𝜙: 𝐶(𝑋) → 𝐴 is a unital homomorphism and 

suppose that 𝑢 ∈  𝑈(𝐴) such that 
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                                      𝜇𝜏∘𝜙(𝑂𝑎) ≥ ∆(𝑟)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                                 (162) 

for any open ball with radius 𝑎 ≤ 𝜂. For any 𝜖 > 0, there exist a unitary 𝑣 ∈ 𝑈0(𝐴) and a 

continuous path of unitaries {𝑣(𝑡): 𝑡 ∈ [0,1]} ⊂ 𝑈0(𝐴) such that 

                                         𝑣(0) = 1,         𝑣(1) = 𝑣,                                                     (163) 
          ‖𝜙(𝑓), 𝑣(𝑡)‖ < 𝜖,       ‖𝑢, 𝑣(𝑡)‖ < 𝜖,      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ 𝑎𝑛𝑑 𝑡 ∈ [0,1]     (164) 

and 

                                𝜏(𝜙(𝑓)𝑔(𝑣𝑢)) ≥ 𝐷0(∆)(𝑎)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                    (165) 
for any 𝑓 ∈ 𝐶(𝑋) with 0 ≤ 𝑓 ≤ 1 whose support contains an open ball with radius 𝑎 ≥ 4𝜂 

and any 𝑔 ∈ 𝐶(𝕋) with 0 ≤ 𝑔 ≤ 1 whose support contains an open arc with length 𝑎 ≥ 4𝜂, 

where 𝐷0(∆). 
We will prove Theorem (3.1.25) below. We will apply the results of the previous 

section to produce the map 𝐿 which was required by using a continuous path of unitaries. 

Lemma (3.1.24)[84]: Let 𝑋 be a compact metric space, let ∆: (0, 1) → (0,1) be a non-

decreasing map, let 𝜖 >  0, let 𝜂 > 0 and let ℱ ⊂ 𝐶(𝑋) be a finite subset. There exist 𝛿 >  0 

and a finite subset 𝐺 ⊂  𝐶(𝑋) satisfying the following:  

    Suppose that 𝐴 is a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, suppose that 𝜙: 𝐶(𝑋) → 𝐴 

and suppose that 𝑢 ∈  𝑈(𝐴) such that 

                                            ‖𝜙(𝑓), 𝑢‖ < 𝛿   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝒢                                        (166) 
and 

                                              𝜇𝜏∘𝜙(𝑂𝑏) ≥ ∆(𝑎)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇)                                (167) 

for any open balls 𝑂𝑏 with radius 𝑏 ≥ 𝜂/2. There exist a unitary 𝑣 ∈ 𝑈0(𝐴), a unital 

completely positive linear map 𝐿: 𝐶(𝑋 × 𝕋) → 𝐴 and a continuous path of unitaries {𝑣(𝑡): 𝑡 ∈
[0, 1]} ⊂ 𝑈0(𝐴) such that 

𝑣(0) = 𝑢,   𝑣(1) = 𝑣,   ‖𝜙(𝑓), 𝑣(𝑡)‖ < 𝜖,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ 𝑎𝑛𝑑 𝑡 ∈ [0,1],       (168) 
       ‖𝐿(𝑓 ⊗ 𝑧) − 𝜙(𝑓)𝑣‖ < 𝜖,   ‖𝐿(𝑓 ⊗ 1) − 𝜙(𝑓)‖ < 𝜖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ     (169) 

and 

                                  𝜇𝜏∘𝐿(𝑂𝑎) ≥ (2/3)𝐷0∆(
𝑎

2
)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇)                          (170) 

for any open balls 𝑂𝑎 of 𝑋 × 𝕋 with radius 𝑎 ≥ 5𝜂. 

Proof: 

   Fix 𝜖 > 0, 𝜂 > 0 and a finite subset ℱ ⊂ 𝐶(𝑋). Let ℱ1 ⊂ 𝐶(𝑋) be a finite subset containing 

ℱ. Let 0 = 𝑚𝑖𝑛{𝜖/2, 𝐷0(∆)(𝜂)/4}. Let 𝒢 ⊂ 𝐶(𝑋) be a finite subset containing ℱ, 1𝐶(𝑋) and 

𝑧. There is 𝛿0 > 0 such that there is a unital completely positive linear map 𝐿′: 𝐶(𝑋 × 𝕋) →
𝐵 (for unital 𝐶∗-algebra 𝐵) satisfying the following: 

                                ‖𝐿′(𝑓 ⊗ 𝑧) − 𝜙′(𝑓)𝑢′‖ < 𝜖0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ1                        (171) 
for any unital homomorphism 𝜙′: 𝐶(𝑋)  →  𝐵 and any unitary 𝑢′ ∈  𝐵 whenever 

                                        ‖[𝜙′(𝑔), 𝑢′]‖ < 𝛿0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝒢.                                  (172) 
Let 0 < 𝛿 < 𝑚𝑖𝑛{𝛿0/2, 𝜖/2, 𝜖0/2} and suppose that 

                                          ‖[𝜙(𝑔), 𝑢]‖ < 𝛿      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝒢.                                   (173) 
It follows that there is a continuous path of unitaries {𝑧(𝑡): 𝑡 ∈  [0, 1]}  ⊂  𝑈0(𝐴) such that 

                                                         𝑧(0) = 1,   𝑧(1) = 𝑣1,                                          (174) 
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               ‖[𝜙(𝑓), 𝑧(𝑡)]‖ <
𝛿

2
         ‖[𝑢, 𝑧(𝑡)]‖ <

𝛿

2
     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1]              (175) 

and 

                                      𝜏(𝜙(𝑓)𝑔(𝑣1𝑢)) ≥ 𝐷0(∆)(𝑎)                                                 (176) 
for any 𝑓 ∈ 𝐶(𝑋) with 0 ≤ 𝑓 ≤ 1 whose support contains an open ball with radius 4𝜂 and 

𝑔 ∈ 𝐶(𝕋) with 0 ≤ 𝑔 ≤ 1 whose support contains open arcs with length 𝑎 ≥ 4𝜂.  

    Put 𝑣 = 𝑣1𝑢. Then we obtain a unital completely positive linear map 𝐿: 𝐶(𝑋 × 𝕋)  →  𝐴 

such that 

‖𝐿(𝑓 ⊗ 𝑧) − 𝜙(𝑓)𝑣‖ < 𝜖0 𝑎𝑛𝑑 ‖𝐿(𝑓 ⊗ 1) − 𝜙(𝑓)‖ < 𝜖0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ1.  (177) 
If ℱ1 is sufficiently large (depending on 𝜂 only), we may also assume that 

                                            𝜇𝜏∘𝐿(𝐵𝑎 × 𝐽𝑎) ≥ (
2

3
)𝐷0∆ (

𝑎

2
)                                         (178) 

for any open ball 𝐵𝑎 with radius a and open arcs with 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎, where 𝑎 ≥ 5𝜂. 

Theorem   (3.1.25)[84]:     

     Let 𝑋 be a finite 𝐶𝑊 complex so that 𝑋 × 𝕋 has the property (H). Let 

𝐶 =  𝑃𝐶(𝑋,𝑀𝑛)𝑃 for some projection 𝑃 ∈  𝐶(𝑋,𝑀𝑛) and let ∆: (0, 1) → (0, 1) be a non-

decreasing map. For any 𝜖 >  0 and any finite subset ℱ ⊂ 𝐶, there exist 𝛿 > 0, 𝜂 > 0 and 

there exists a finite subset 𝒢 ⊂ 𝐶 satisfying the following: 

    Suppose that 𝐴 is a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, 𝜙: 𝐶 → 𝐴 is a unital 

homomorphism and 𝑢 ∈  𝐴 is a unitary and suppose that 

           ‖[𝜙(𝑐), 𝑢]‖ < 𝛿  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ 𝒢  𝑎𝑛𝑑  𝐵𝑜𝑡𝑡(𝜙, 𝑢) = {0}.                           (179) 
Suppose also that 

                                                          𝜇𝜏∘𝜙(𝑂𝑎) ≥ ∆(𝑎)                                                  (180) 

for all open balls 𝑂𝑎 of 𝑋 with radius 1 > 𝑎 ≥ 𝜂, where 𝜇𝜏∘𝜙 is the Borel probability measure 

defined by restricting 𝜙 on the center of 𝐶. Then there exists a continuous path of unitaries 

{𝑢(𝑡): 𝑡 ∈  [0, 1]} in 𝐴 such that 

                         𝑢(0) = 𝑢,    𝑢(1) = 1   𝑎𝑛𝑑  ‖[𝜙(𝑐), 𝑢(𝑡)]‖ < 𝜖                           (181) 
For all 𝑐 ∈ ℱ and for all 𝑡 ∈ [0,1]. 
Proof: 

  First it is easy to see that the general case can be reduced to the case that 𝐶 = 𝐶(𝑋,𝑀𝑛). It is 

then easy to see that this case can be further reduced to the case that 𝐶 = 𝐶(𝑋). 
Corollary (3.1.26)[84]:     

     Let 𝑘 ≥ 1 be an integer, let 𝜖 >, 0 and let ∆: (0, 1) → (0, 1) be any nondecreasing map. 

There exist 𝛿 > 0 and 𝜂 > 0 (𝜂 does not depend on ∆) satisfying the following:  

For any 𝑘 mutually commutative unitaries 𝑢1𝑢2, . . . , 𝑢𝑘 and a unitary 𝑣 ∈  𝑈(𝐴) in a unital 

separable simple 𝐶∗-algebra 𝐴 with tracial rank no more than one for which 

‖[𝑢𝑖 , 𝑣]‖ < 𝛿,   𝑏𝑜𝑡𝑡𝑗(𝑢𝑖 , 𝑣) = 0,   𝑗 = 0,1, 𝑖 = 1,2,… , 𝑘, 

and 

𝜇𝜏∘𝜙(𝑂𝑎) ≥ ∆(𝑎)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴), 

for any open ball 𝑂𝑎 with radius 𝑎 ≥  𝜂, where 𝜙 ∶  𝐶(𝕋𝑘) →  𝐴 is the homomorphism 

defined by 𝜙(𝑓) =  𝑓 (𝑢1, 𝑢2, . . . , 𝑢𝑘) for all 𝑓 ∈ 𝐶(𝕋𝑘), there exists a continuous path of 

unitaries {𝑣(𝑡): 𝑡 ∈ [0, 1]} ⊂ 𝐴 such that 𝑣(0)  =  𝑣, 𝑣(1)  =  1 and 
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‖[𝑢𝑖 , 𝑣(𝑡)]‖ < 𝜖     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1], 𝑖 = 1,2,… , 𝑘. 
 

 

 

Section (3.2) Result of Equivalence Approximate Unitary with Tracial Rank One 

  

Theorem (3.2.1)[84]:     

    Let 𝐶 be a unital separable amenable 𝐶∗-algebra satisfying the 𝑈𝐶𝑇. Let 𝑏 ≥ 1, let 

𝑇:ℕ2 → ℕ, 𝐿: 𝑈(𝑀∞(𝐶)) → ℝ+, 𝐸: ℝ+ × ℕ → ℝ+ and 𝑇1 = 𝑁 × 𝐾: 𝐶+\{0} →  ℕ × ℝ+\{0} 
be four maps. For any 𝜖 > 0 and any finite subset ℱ ⊂ 𝐶, there exist 𝛿 >  0, a finite subset 

𝒢 ⊂ 𝐶, a finite subset ℋ ⊂ 𝐶+\{0}, a finite subset 𝒫 ⊂ 𝐾(𝐶), a finite subset 𝒰 ⊂
𝑈(𝑀∞(𝐶)), an integer 𝑙 >  0 and an integer 𝑘 > 0 satisfying the following: 

    For any unital 𝐶∗-algebra 𝐴 with stable rank one, 𝐾0-divisible rank 𝑇, exponential length 

divisible 𝑟𝑎𝑛𝑘 𝐸 and 𝑐𝑒𝑟(𝑀𝑚(𝐴))  b (for all 𝑚), if 𝜙,𝜓: 𝐶 → 𝐴 are two unital 𝛿-

Gmultiplicative contractive completely positive linear maps with 

                               [𝜙]|𝒫 = [𝜓]|𝒫   𝑎𝑛𝑑 𝑐𝑒𝑙(〈𝜙〉(𝑢)
∗〈𝜓〉(𝑢)) ≤ 𝐿(𝑢)                  (182) 

for all 𝑢 ∈ 𝑈, then for any unital 𝛿 − 𝒢-multiplicative contractive completely positive linear 

map 𝜃: 𝐶 → 𝑀𝑙(𝐴) which is also 𝑇 −ℋ-full, there exists a unitary 𝑢 ∈  𝑀𝑙𝑘+1(𝐴) such that 

 

‖𝑢∗𝑑𝑖𝑎𝑔(𝜙(𝑎), 𝜃(𝑎), 𝜃(𝑎), … , 𝜃(𝑎)⏞            
𝑘

)𝑢 − 𝑑𝑖𝑎𝑔 (𝜓(𝑎), 𝜃(𝑎), 𝜃(𝑎),… , 𝜃(𝑎)⏞            
𝑘

)‖

< 𝜖       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℱ.                                                                                              (183) 
Theorem (3.2.2)[84]:   Let 𝐶 be a unital separable simple amenable 𝐶∗-algebra with 

𝑇𝑅(𝐶) ≤ 1 satisfying the 𝑈𝐶𝑇 and let 𝐷 =  𝐶 ⊗  𝐶(𝕋). Let 𝑇 = 𝑁 × 𝐾:𝐷+\{0} → ℕ+ ×
 ℝ+\{0}.  
    Then, for any > 0 and any finite subset ℱ ⊂  𝐷, there exist 𝛿 >  0, a finite subset 𝒢 ⊂ 𝐷, a 

finite subset ℋ ⊂ 𝐷+\{0}, a finite subset 𝒫 ⊂ 𝐾(𝐶) and a finite subset 𝑈 ⊂ 𝑈(𝐷) satisfying 

the following: Suppose that 𝐴 is a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1 and 𝜙,𝜓: 𝐷 → 𝐴 

are two unital 𝛿- 𝒢-multiplicative contractive completely positive linear maps such that 𝜙,𝜓 

are 𝑇 - ℋ-full, 

                       |𝜏 ∘ 𝜙(𝑔) − 𝜏 ∘ 𝜓(𝑔)| < 𝛿  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝒢                                       (184) 
for all 𝜏 ∈  𝑇(𝐴), 

                                                            [𝜙]|𝒫 = [𝜓]|𝒫                                                  (185) 
and 

                                            𝑑𝑖𝑠𝑡 (𝜙‡(𝑤), 𝜓‡(𝑤)) < 𝛿                                                (186) 

for all 𝑤 ∈ 𝒰. Then there exists a unitary 𝑢 ∈  𝑈(𝐴) such that 

                                                     𝑎𝑛𝑑 𝑢 ∘ 𝜓 ≈𝜖 𝜙   𝑜𝑛 ℱ.                                            (187) 
Corollary (3.2.3)[84]: 

     Let 𝐶 be a unital separable amenable simple 𝐶∗-algebra with 𝑇𝑅(𝐶) ≤ 1 which 

satisfies the 𝑈𝐶𝑇, let 𝐷 = 𝐶 ⊗ 𝐶(𝕋) and let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤
1. Suppose that 𝜙,𝜓:𝐷 → 𝐴 are two unital monomorphisms. Then 𝜙 and 𝜓 are 
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approximately unitarily equivalent, i.e., there exists a sequence of unitaries {𝑢𝑛} ⊂ 𝐴 such 

that   

lim
𝑛→∞

𝑎𝑑 𝑢𝑛 ∘ 𝜓(𝑑) = 𝜙(𝑑)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑 ∈ 𝐷, 

if and only if 

[𝜙] = [𝜓]   𝑖𝑛 𝐾𝐿(𝐷, 𝐴), 
𝜏 ∘ 𝜙 = 𝜏 ∘ 𝜓     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)  𝑎𝑛𝑑 𝜓‡ = 𝜙‡. 

Lemma (3.2.4)[84]:     

    Let 𝐶 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐶) ≤ 1 and let ∆: (0, 1) → (0, 1) be 

a non-decreasing map. There exists a map 𝑇 =  𝑁 ×  𝐾 ∶  𝐷+\ {0}  → ℕ+ ×ℝ+\ {0}, where 

𝐷 =  𝐶 ⊗  𝐶(𝕋), satisfying the following: 

    For any 𝜖 >  0, any finite subset ℱ ⊂ 𝐶 and any finite subset ℋ ⊂ 𝐷+\{0}, there exist 

𝛿 >  0, 𝜂 >  0 and a finite subset 𝒢 ⊂ 𝐶 satisfying the following: for any unital separable 

unital simple 𝐶∗-algebra 𝐴, any unital homomorphism 𝜙: 𝐶 → 𝐴 and any unitary 𝑢 ∈  𝐴 such 

that 

                                      ‖[𝜙(𝑐), 𝑢]‖ < 𝛿   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ 𝒢                                            (188) 
and 

                                             𝜇𝜏∘𝑙(𝑂𝑎) ≥ ∆(𝑎)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                            (189) 
and for all open balls 𝑂𝑎 with radius 𝑎 ≥ 𝜂, where 𝑙: 𝐶(𝕋) → 𝐴 is defined by 𝑙(𝑓 ) = 𝑓 (𝑢), 
there is a unital completely positive linear map 𝐿: 𝐷 → 𝐴 such that 

        ‖𝐿(𝑐 ⊗ 1) − 𝜙(𝑐)‖ < 𝜖‖𝐿(𝑐 ⊗ 𝑧) − 𝜙(𝑐)𝑢‖ < 𝜖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ ℱ           (190) 
and 𝐿 is 𝑇 −ℋ-full. 

Proof: 

    We identify 𝐷 with 𝐶(𝕋, 𝐶). Let 𝑓 ∈ 𝐷+\{0}. There is positive number 𝑏 ≥ 1, 𝑔 ∈  𝐷+ 

with 0 ≤ 𝑔 ≤ 𝑏 · 1 and 𝑓1 ∈ 𝐷+\{0} with 0 ≤ 𝑓1 ≤ 1 such that 

                                                            𝑔𝑓𝑔𝑓1 = 𝑓1.                                                          (191) 
There is a point 𝑡0 ∈ 𝕋 such that 𝑓1(𝑡1) ≠ 0. There is 𝑟 >  0 such that 

𝜏(𝑓1(𝑡)) ≥ 𝜏(𝑓1(𝑡0))/2 

for all 𝜏 ∈  𝑇 (𝐶) and for all 𝑡 with 𝑑𝑖𝑠𝑡(𝑡, 𝑡0) < 𝑟. 

   Define ∆0(𝑓) = 𝑖𝑛𝑓{𝜏(𝑓1(𝑡0))/4: 𝜏 ∈  𝑇 (𝐶)} · (𝑟). There is an integer 𝑛 ≥ 1 such that 

                                                                𝑛. ∆0(𝑓) > 1.                                                   (192) 
Define 𝑇(𝑓) = (𝑛, 𝑏). Put 

𝜂 = 𝑖𝑛𝑓{∆0(𝑓): 𝑓 ∈ ℋ}/2   𝑎𝑛𝑑  𝜖1 = min{𝜖, 𝜂}. 
   We claim that there exists an 𝜖1 − ℱ ∪ℋ-multiplicative contractive completely positive 

linear map 𝐿 ∶  𝐷 →  𝐴 such that 

          ‖𝐿(𝑐 ⊗ 1) − 𝜙(𝑐)‖ < 𝜖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ ℱ   ‖𝐿(1⊗ 𝑧) − 𝑢‖ < 𝜖              (193) 
and 

                |𝜏 ∘ 𝐿(𝑓1) − ∫𝜏(𝜙(𝑓1(𝑠)))

 

𝕋

𝑑𝜇𝜏∘𝑙(𝑠)| < 𝜂  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)             (194) 

and for all 𝑓 ∈ ℋ. Otherwise, there exists a sequence of unitaries {𝑢𝑛} ⊂ 𝑈(𝐴) for which 

𝜇𝜏∘𝑙𝑛(𝑂𝑎) ≥ ∆(𝑎) for all 𝜏 ∈ 𝑇(𝐴) and for any open balls 𝑂𝑎 with radius 𝑎 → 𝑎𝑛 with 𝑎𝑛 →

0, and for which 
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                                                         lim
𝑛→∞

‖[𝜙(𝑐), 𝑢𝑛]‖ = 0                                           (195) 

for all 𝑐 ∈  𝐶 and suppose for any sequence of contractive completely positive linear maps 

𝐿𝑛: 𝐷 → 𝐴 with 

                       lim
𝑛→∞

‖𝐿𝑛(𝑎𝑏) − 𝐿𝑛(𝑎)𝐿𝑛(𝑏)‖ = 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐷,                   (196) 

                                        lim
𝑛→∞

‖𝐿𝑛(𝑐 ⊗ 𝑓) − 𝜙(𝑐)𝑓(𝑢𝑛)‖ = 0,                               (197) 

for all 𝑐 ∈  𝐶, 𝑓 ∈  𝐶(𝕋) and 

       lim
 
inf
𝑛
{max

 
{|𝜏 ∘ 𝐿𝑛(𝑓1) − ∫ 𝜏(𝜙(𝑓1(𝑠)))

 

𝕋

𝑑𝜇𝜏∘𝑙𝑛(𝑠)| : 𝑓 ∈ ℋ}} ≥ 𝜂       (198) 

for some 𝜏 ∈  𝑇(𝐴), where 𝑙𝑛: 𝐶(𝕋) → 𝐷 is defined by 𝑙𝑛(𝑓) = 𝑓(𝑢𝑛) for 𝑓 ∈ 𝐶(𝑇) (or no 

contractive completely positive linear maps 𝐿𝑛 exists so that (196), (197) and (197)). 

   Put 𝐴𝑛 = 𝐴, 𝑛 =  1, 2, . .., and 𝑄(𝐴)  = ∏ 𝐴𝑛
 
𝑛 /⊕𝑛 𝐴𝑛. Let 𝜋:∏ 𝐴𝑛

 
𝑛 → 𝑄(𝐴) be the 

quotient map. Define a linear map 𝐿′: 𝐷 → ∏ 𝐴𝑛
 
𝑛  by 𝐿(𝑐 ⊗ 1) = {𝜙(𝑐)} and 𝐿′(1⊗ 𝑧) =

{𝑢𝑛}. Then 𝜋 ∘ 𝐿′: 𝐷 → 𝑄(𝐴) is a unital homomorphism. It follows from a theorem of Effros 

and Choi [69] that there exists a contractive completely positive linear map 𝐿:𝐷 → ∏ 𝐴𝑛
 
𝑛  

such that 𝜋 ∘ 𝐿 = 𝜋 ∘ 𝐿′. Write L= {𝐿𝑛}, where 𝐿𝑛: 𝐷 → 𝐴𝑛 is a contractive completely 

positive linear map. Note that 

 lim
𝑛→∞

‖𝐿𝑛(𝑎)𝐿𝑛(𝑏) − 𝐿𝑛(𝑎𝑏)‖ = 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑏 ∈ 𝐷. 

Fix 𝜏 ∈ 𝑇(𝐴), define 𝑡𝑛: ∏ 𝐴𝑛
 
𝑛 → ℂ by 𝑡𝑛({𝑑𝑛}) = 𝜏(𝑑𝑛). Let 𝑡 be a limit point of {𝑡𝑛}. 

Then 𝑡 gives a state on ∏ 𝐴𝑛
 
𝑛 . Note that if {𝑑𝑛} ∈⊕𝑛 𝐴𝑛, then 𝑡𝑚({𝑑𝑛}) → 0. It follows that 

𝑡 gives a state 𝑡̅ on 𝑄(𝐴). Note that (by (267)) 

𝑡̅(𝜋 ∘ 𝐿(𝑐 ⊗ 1)) = 𝜏(𝜙(𝑐)) 
for all 𝑐 ∈  𝐶. It follows that 

 

𝑡̅(𝜋 ∘ 𝐿(𝑓)) = ∫ 𝑡̅(𝜋 ∘ 𝐿(𝑓(𝑠) ⊗ 1))

 

𝕋

𝑑𝜇𝑡̅∘𝜋∘𝐿|𝑡⊗𝐶(𝕋)

= ∫𝜏 (𝜙(𝑓(𝑠)))

 

𝕋

𝑑𝜇𝑡̅∘𝜋∘𝐿|𝑡⊗𝐶(𝕋)                                                                            (199) 

for all 𝑓 ∈  𝐶(𝕋, 𝐶). Therefore, for a subsequence {𝑛(𝑘)}, 
 

              |𝜏 ∘ 𝐿𝑛(𝑓1) − ∫𝜏 (𝜙(𝑓(𝑠)))

 

𝕋

𝑑𝜇𝑡̅∘𝜋∘𝐿|𝑡⊗𝐶(𝕋)| <
𝜂

2
                                   (200) 

for all 𝑓 ∈ ℋ. This contradicts with (268). Moreover, from this, it is easy to compute that 

𝜇𝑡̅∘𝜋∘𝐿|𝑡⊗𝐶(𝕋)(𝑂𝑎) ≥ ∆(𝑎) 

for all open balls 𝑂𝑎 of 𝑡 with radius 1 >  𝑎. This proves the claim. 

Note that 

∫𝜏

 

𝕋

∘ 𝜙(𝑓1(𝑠))𝑑𝜇𝜏∘𝑙 ≥ (𝜏(𝜙(𝑓1(𝑡0)/2))) . ∆(𝑟) 
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for all 𝜏 ∈  𝑇(𝐴). It follows that 

      𝜏(𝐿(𝑓1)) ≥ inf{𝑡(𝑓1(𝑡0))/2: 𝑡 ∈ 𝑇(𝐶)} −
𝜂

2
≥ (

4

3
)∆0(𝑓)                          (201) 

for all 𝑓 ∈ ℋ. 

   In [22], there exists a projection 𝑒 ∈ 𝐿(𝑓1)𝐴𝐿(𝑓1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ such that 

                                        𝜏(𝑒) ≥ ∆0(𝑓)     for all 𝜏 ∈  𝑇(𝐴).                                    (202) 
It follows from (262) that there exists a partial isometry 𝑤 ∈ 𝑀𝑛(𝐴) such that 

𝑤∗𝑑𝑖𝑎𝑔 (𝑒, 𝑒, … , 𝑒⏞    
𝑛

)𝑤 ≥ 1𝐴. 

Thus there 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐴 with ‖𝑥𝑖‖ ≤ 1 such that 

                                                             ∑𝑥𝑖
∗

𝑛

𝑖=1

𝑒𝑥𝑖 ≥ 1.                                                 (203) 

Hence 

                                                          ∑𝑥𝑖
∗

𝑛

𝑖=1

𝑔𝑓𝑔𝑥𝑖 ≥ 1.                                                 (204) 

   It then follows that there are 𝑦1, 𝑦2, . . . , 𝑦𝑛 ∈ 𝐴 with ‖𝑦𝑖‖ ≤ 𝑏 such that 

                                                             ∑𝑦𝑖
∗

𝑛

𝑖=1

𝑓𝑦𝑖 = 1.                                                 (205) 

Therefore 𝐿 is 𝑇 - ℋ -full. 

Lemma (3.2.5)[84]:     

    Let 𝐶 be a unital separable amenable simple 𝐶∗-algebra with 𝑇𝑅(𝐶) ≤ 1 satisfying the 

𝑈𝐶𝑇. For 1/2 > 𝜎 > 0, any finite subset 𝒢0 and any projections 𝑝1, 𝑝2, . . . , 𝑝𝑚 ∈ 𝐶. There is 

𝛿0 > 0, a finite subset 𝒢 ⊂ 𝐶 and a finite subset of projections 𝑃0 ⊂ 𝐶 satisfying the 

following: Suppose that 𝐴 is a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, 𝜙: 𝐶 → 𝐴 is a unital 

homomorphism and 𝑢 ∈ 𝑈0(𝐴) is a unitary such that 

   ‖𝜙(𝑐), 𝑢‖ < 𝛿 < 𝛿0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ 𝒢 ∪ 𝒢0  𝑎𝑛𝑑  𝑏𝑜𝑡𝑡0(𝜙, 𝑢)|𝒫0 = {0}.           (206) 

where 𝒫0 is the image of 𝒫0 in 𝐾0(𝐶). Then there exists a continuous path of unitaries 

{𝑢(𝑡): 𝑡 ∈  [0, 1]} in 𝐴 with 𝑢(0)  =  𝑢 and 𝑢(1)  =  𝑤 such that 

                                   ‖𝜙(𝑐), 𝑢‖ < 3𝛿     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ 𝒢 ∪ 𝒢0                                    (207) 
and 

                                                  𝑤𝑗⊕(1 − 𝜙(𝑝𝑗)) ∈ 𝐶𝑈(𝐴),                                    (208) 

where 𝑤𝑗 ∈ 𝑈0(𝜙(𝑝𝑗)𝐴𝜙(𝑝𝑗)) and 

                                                     ‖𝑤𝑗 − 𝜙(𝑝𝑗)𝑤𝜙(𝑝𝑗)‖ < 𝜎,                                     (209) 

𝑗 =  1, 2, . . . , 𝑚. 

  Moreover, 

 

                      𝑐𝑒𝑙 (𝑤𝑗⊕(1 − 𝜙(𝑝𝑗))) ≤ 8𝜋 +
1

4
, 𝑗 = 1,2,… ,𝑚.                (210) 

Lemma (3.2.6)[84]:     



911 
 

   Let 𝐶 be a unital separable simple amenable 𝐶∗-algebra with 𝑇𝑅(𝐶) ≤ 1 satisfying the 

𝑈𝐶𝑇. Let △: (0, 1) → (0, 1) be a non-decreasing map. Then, for any 𝜖 > 0 and any finite 

subset ℱ ⊂ 𝐶, there exist 𝛿 >  0, 𝜂 >  0, a finite subset 𝒢 ⊂ 𝐶 and a finite subset 𝒫 ⊂ 𝐾(𝐶) 
satisfying the following: 

    For any unital simple𝐶∗-algebra A with 𝑇𝑅(𝐴) ≤ 1, any unital homomorphism 𝜙: 𝐶 →  𝐴 

and any unitary 𝑢 ∈  𝑈(𝐴) with 

                                  ‖𝜙(𝑓), 𝑢‖ < 𝛿,    𝐵𝑜𝑡𝑡(𝜙, 𝑢)|𝒫 = {0}                                     (211) 
and 

                                                𝜇𝜏∘𝑙(𝑂𝑎) ≥ ∆(𝑎)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≥ 𝜂,                              (212) 
where 𝑙: 𝐶(𝕋) → 𝐴 is defined by 𝑙(𝑓) = 𝑓(𝑢) for all 𝑓 ∈ 𝐶(𝕋), there exists a continuous path 

of unitaries {𝑢(𝑡): 𝑡 ∈ [0, 1]} ⊂ 𝐴 such that 

                 𝑢(0) = 𝑢,   𝑢(1) = 1   𝑎𝑛𝑑   ‖𝜙(𝑓), 𝑢(𝑡)‖ < 𝜖                                    (213) 
for all 𝑓 ∈ ℱ and 𝑡 ∈ [0, 1]. 
Theorem (3.2.7)[84]: 

      Let C be a unital separable amenable simple 𝐶∗ −algebra with 𝑇𝑅(𝐶)  ≤  1 which 

satisfies the 𝑈𝐶𝑇. For any 𝜖 >  0 and any finite subset ℱ ⊂  𝐶, there exist 𝛿 > 0, a finite 

subset 𝒢 ⊂  𝐶 and a finite subset 𝒫 ⊂  𝐾(𝐶) satisfying the following: 

    Suppose that A is a unital simple 𝐶∗ −algebra with 𝑇𝑅(𝐶)  ≤  1, suppose that  𝜙: 𝐶 → 𝐴 is 

a unital homomorphism and 𝑢 ∈  𝑈(𝐴) such that 

‖[𝜙(𝑐), 𝑢]‖ < 𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈  𝒢 𝑎𝑛𝑑 Bott(𝜙, 𝑢)|𝒫  =  0.            (214) 
Then there exists a continuous and piece-wise smooth path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]} 
such that 

 𝑢(0) = 𝑢,   𝑢(1) = 1    𝑎𝑛𝑑    ‖[𝜙(𝑐), 𝑢(𝑡)]‖ < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ ℱ          (215) 
 𝑎𝑛𝑑   𝑓𝑜𝑟 𝑎𝑙𝑙    𝑡 ∈ [0, 1] 

Proof:  

     Fix  𝜖 >  0 and a finite subset ℱ ⊂  𝐶. Let 𝛿1 >  0 (in place of 𝛿), 𝜂 > 0, 𝒢1 ⊂  𝐶 (in place 

of 𝒢 be a finite subset and 𝒫 ⊂ 𝐾(𝐶) be finite subset ,for 𝜖, ℱ and  ∆= ∆00. 

We may assume that 𝛿1 < 𝜖.  
   Let 𝛿 = /2. Suppose that 𝜙 and 𝑢 satisfy the conditions in the theorem for the above 

𝛿, 𝒢 and 𝒫. It follows that there is a continuous path of unitaries {𝑣(𝑡): 𝑡 ∈  [𝛿10, 1]} ⊂
 𝑈(𝐴) such that 

 𝑣(0) = 𝑢,   𝑣(1) = 𝑢1    𝑎𝑛𝑑    ‖[𝜙(𝑐), 𝑣(𝑡)]‖ < 𝛿1                  (216) 
for all 𝑐 ∈  𝒢1 and for all 𝑡 ∈ [0, 1], and 

𝜇𝜏○𝑖(𝑂𝑎) ≥  ∆(𝑎)   for all   𝜏 ∈  𝑇(𝐴)                               (217) 
and for all open balls of radius 𝑎 ≥ 𝜂. 

There is a continuous path of unitaries {𝑤(𝑡): 𝑡 ∈ [0, 1]}  ⊂  𝐴 such that 

𝑤(0) = 𝑢1,   𝑣(1) = 1    𝑎𝑛𝑑    ‖[𝜙(𝑐), 𝑤(𝑡)]‖ < 𝜖                  (218) 
for all 𝑐 ∈ ℱ and 𝑡 ∈ [0, 1]. Put 

𝑢(𝑡) = 𝑣(2𝑡) for all 𝑡 ∈ [0, 1/2) 𝑎𝑛𝑑 𝑢(𝑡)  =  𝑤(2𝑡 − 1/2) for all 𝑡 ∈ [1/2, 1]. 


