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Chapter 2 

Exponential Rank and Approximate Unitary Equivalence in  Simple 

𝑪∗-Algebras 

Let  𝐶𝑈(𝐴) be the closure of the commutator subgroup of the unitary group of 𝐴 

and let 𝑢 ∈ 𝐶𝑈(𝐴). We prove that there exists aself-adjoint element ℎ ∈ 𝐴 such that 

‖𝑢 − exp(𝑖ℎ)‖ < 𝜖 𝑎𝑛𝑑 ‖ℎ‖ ≤ 2𝜋. Examples are given that the bound 2𝜋 for ‖ℎ‖ is 

optimal in general and let 𝐶 be a unital 𝐴𝐻-algebra and 𝐴 be a unital separable simple 𝐶∗-

algebra with tracial rank no more than one. Suppose that 𝜙,𝜓: 𝐶 → 𝐴, are two unital 

monomorphisms. With some restriction on 𝐶. 

Section (2.1): Exponential Rank and Exponential Length for  Z-Stable Simple 𝐂∗-

Algebras 

Let 𝐴 be a unital 𝐶∗- algebra and let 𝑈0(𝐴) be the connected component of unitary 

group of 𝐴containing  the  identity.  It is   well   known  that  every   𝑢 ∈ 𝑈0(𝐴). Is  a finite 

product of exponentials, that is  𝑢 = ∏ exp(𝑖ℎ𝑘) ,
𝑛
𝑘=1  where ℎ𝑘is a self-adjoint element 

in𝐴. One of the interesting questions that one can ask about 𝑈0(𝐴) is “ are all  its element 

expressible as single exponentials? ”.Or moer interesting “are singl exponentials dense 

in𝑈0(𝐴) ?”. If 𝑢 ∈ 𝑈0(𝐴) one may also ask “how long the length of the path connecting 𝑢 

to the identity” the first questions concern the exponential rank of 𝐴  and the last questions 

is related to the exponential length𝑢  and 𝐴.  

Exponential rank and exponential length had been extensively studied see [121], [114], 

[109], [113], [145], [143], [47], [111], [110], [79], [112] and [132]. 

Exponential length and rank have played, inevitably, important roles in the study of 

structureof 𝐶∗-algebras, in particular, in the Elliott program, the classification of amenable 

𝐶∗-algebras by 𝐾-theoretic invariant. The renew interest and direct motivation of this 

study is the recent research project to study the Jiang-Su algebra and its multiplier algebra. 

It turns out that exponential length again plays an essential role. 

 Let us briefly summarize some facts about exponential rank and length for unital 

(simpleand amenable)𝐶∗ −algebras in the center of the Elliott program. It was shown by 

N. C. Phillips([113]) that the exponential rank of a unital purely infinite simple 

𝐶∗ −algebra is 1 +  𝜖 and itsexponential length is𝜋. In fact, this holds for any  unital 

𝐶∗ −algebras of real rank zero ([79]). Inother words, if𝑢 ∈ 𝑈0(𝐴), where 𝐴is a unital 

𝐶∗ −algebra of real rank zero, then, for any𝜖 > 0, there exists a self-adjoint element ℎ ∈

𝐴with‖ℎ‖ ≤ 𝜋such that 

‖𝑢 − exp (𝑖ℎ)‖ < 𝜖. 

Here 𝜋 is the smallest numbers that one can get. When 𝐴is not of real rank zero, the 

situationis very different. For example, if 𝐴is a unital simple AH-algebra with slow 

dimension growth,then cer(𝐴)  =  1 + 𝜖. Butn cel(𝐴)  =  ∞, whenever 𝐴does not have 

real rank zero (see [112]). Recently it was shown ([94]) that 𝑐𝑒𝑟(𝐴)  ≤ 1 + 𝜖 for any 

unital simple 𝐶∗ −algebra 𝐴with tracial rank at most one (without assuming the 

amenability). 
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   The classification of unital  simple amenable 𝐶∗ −algebras now includes classes of 

𝐶∗ −algebra far beyond 𝐶∗ −algebras mentioned above. In fact unital separable simple 

amenable 𝑍 −stable 𝐶∗ −algebras which are rationally tracial rank at most one and satisfy 

the UCT can be classified by the Elliott invariant ([73]), we show that, if 𝐴is 𝑍 −stable, 

i.e., 𝐴⊗ 𝑍 ≅ 𝐴, has rational tracial rank at most one, i.e., 𝐴⊗𝑈has tracial rank at most 

one for some infinite dimensional UHF algebra𝑈, and𝑢 ∈ 𝑈0(𝐴), then, for any𝜖 > 0, there 

exists a self-adjoint 

elementℎ ∈ 𝐴such that 

‖𝑢 − exp (𝑖ℎ)‖ < 𝜖.                                            (1) 

However, in general, there is no control of the norm of ℎ. In fact,𝑐𝑒𝑙(𝐴)  =  ∞,i.e., the 

exponential length of 𝐴is infinite. 

   In the study of classification of simple amenable 𝐶∗ −algebras, one relies on a fact that 

exponential length for unitaries in 𝐶𝑈(𝐴), the closure of the commutator subgroup of 

𝑈0(𝐴) isoften bounded. It seems to suggest that, for exponential length of a 

unital𝐶∗ −algebra, it is theexponential length of unitaries in 𝐶𝑈(𝐴) that needs to be 

computed. So the question is what isthe norm bound for the above ℎwhen 𝑢is in 𝐶𝑈(𝐴). 

We show that, if 𝐴is a unital separablesimple 𝐶∗ −algebra with tracial rank at most one, 

and 𝑢 ∈ 𝐶𝑈(𝐴),then (1) holds and ℎcan be chosen so that‖ℎ‖ ≤ 2 𝜋. Furthermore, we also 

prove this holds for any unital separablesimple 𝑍 −stable 𝐶∗ −algebra 𝐴such that 𝐴⊗

𝑈hastracial rank at most one. We struggled at first to reduce this bound to 𝜋 but eventually  

realized  that we were not facing technical difficulty in the proof  but that  2𝜋 is indeed  

   We show in general, for a unital simple AH-algebra (or even AI-algebra) 𝐴, for any 𝜎 >

0,there are unitaries 𝑢 ∈ 𝑈0(𝐴) such that ‖ℎ‖ ≤ 2 𝜋 − 𝜎 holds for some sufficiently small 

𝜖. What is more surprising at the first was the answer to the question how long the 

exponential length of unitaries in 𝑈0(𝑍) is, where 𝑍is the Jiang-Su algebra, the 

projectionless simple ASH-algebra with 𝑘0(𝑍)  =  𝑍 and 𝑘1(𝑍)  =  {0}.It seems that, 

among experts, one expects the exponential length of 𝑍to be infinite since 𝑍does not have 

real rank zero. However, we find that 𝑐𝑒𝑙(𝑍)  ≤ 3𝜋. In fact, we prove that for any unitary 

𝑢 ∈ 𝑈0(𝑧), there exists −𝜋 < 𝑡 < 𝜋satisfying the following: for any 𝜖 > 0, there exists a 

self-adjoint element ℎ ∈ 𝑍with ‖ℎ‖ ≤ 2 𝜋such that 

‖𝑒𝑖𝑡𝑢 − exp (𝑖ℎ)‖ < 𝜖.                              

Definition (2.1.1)[80]: Let 𝐴 be a unital 𝐶∗ −algebra. We denote by 𝑈(𝐴) the unitary 

group of𝐴.We denote by 𝑈0(𝐴) the connected component of 𝑈(𝐴) containing the identity 

and 𝐶𝑈(𝐴) the closure of the commutator subgroup of 𝑈0(𝐴). If 𝑢 ∈ 𝑈(𝐴),we use the 

notation �̅�for its image in 𝑈(𝐴)/𝐶𝑈(𝐴). 

Let 𝑢 ∈ 𝑈0(𝐴).Denote by 𝑐𝑒𝑙(𝑢) the exponential length of 𝑢in 𝐴. In fact, 

𝑐𝑒𝑙(𝑢) = 𝑖𝑛𝑓 {∑‖ℎ𝑘‖

𝑛

𝑘=1

: 𝑢 =∏exp(𝑖ℎ𝑘):

𝑛

𝑘=1

ℎ𝑘 ∈ 𝐴𝑠,𝑎}. 

Define 
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cel(𝐴)  =  sup{cel(𝑢) ∶  𝑢 ∈ 𝑈0(𝐴)}. 

Define 

cel𝐶𝑈(𝐴)  =  sup{cel(𝑢) ∶  𝑢 ∈ 𝐶𝑈(𝐴)}. 

If 𝑢 = lim𝑛→∞𝑢𝑛, where 𝑢𝑛 = ∏ exp(𝑖ℎ𝑛,𝑗)
𝑘
𝑗=1 for some self-adjoint elements ℎ𝑛,𝑗 ∈

𝐴.then we write 

cer(𝑢) ≤ 𝑘 + 𝜖. 

If 𝑢 = ∏ exp(𝑖ℎ𝑗)
𝑘
𝑗=1  for some ℎ1, ℎ2, … , ℎ𝑘 ∈ 𝐴𝑠,𝑎, we write  

cer(𝑢) ≤ 𝑘. 

If cer(𝑢)  ≤ 𝑘 +  𝜖butcer(𝑢)  ≰ 𝑘, we write cer(𝑢)  =  𝑘 +  𝜖.If cer(𝑢)  ≤ 𝑘but cer(𝑢) ≰

(𝑘 − 1) +  𝜖, we writecer(𝑢)  =  𝑘. 

   By 𝑇(𝐴), we mean the tracial state space of 𝐴and by Aff(𝑇(𝐴)) the space of all real 

affinecontinuous functions on 𝑇(𝐴). Let𝜏 ∈ 𝑇(𝐴). We also use 𝜏for the trace 𝜏 ⊗

𝑇𝑟on𝐴⊗𝑀𝑛, where 𝑇𝑟is the standard trace on𝑀𝑛. 

   Denote by 𝜌𝐴: 𝐾0(𝐴)  → Aff(𝑇(𝐴)) the positive homomorphisms defined by 𝜌𝐴([𝑝]) =

 𝜏(𝑝)for all projections 𝑝 ∈ 𝑀𝑛(𝐴), 𝑛 =  1, 2, . . .. 

Definition(2.1.2)[80]: Let 𝐴be a unital𝐶∗-algebra with 𝑇(𝐴)  ≠ ∅.Let 𝑢 ∈ 𝑈0(𝐴).Suppose 

that{𝑢(𝑡) ∶  𝑡 ∈ [0, 1]}is a continuous path of unitaries which is also piece-wisely smooth 

such that𝑢(0)  =  𝑢and 𝑢(1)  =  1.Define de la Harp-Skandalis determinant as follows: 

𝐷𝑒𝑡(𝑢):= 𝐷𝑒𝑡(𝑢(𝑡)) ≔ ∫ 𝜏

[0,1]

(
𝑑𝑢(𝑡)

𝑑𝑡
𝑤(𝑡)∗)𝑑𝑡    for all𝜏 ∈ 𝑇(𝐴)         (2) 

Note that, if 𝑢1(𝑡) is another continuous path which is piece-wisely smooth with 𝑢1(0)  =

 𝑢and 𝑢1(1)  =  1, Then𝐷𝑒𝑡((𝑢(𝑡))  − 𝐷𝑒𝑡(𝑢1(𝑡))  ∈ 𝜌𝐴 (𝐾0(𝐴)).Suppose that 𝑢, 𝑣 ∈

𝑈(𝐴) and𝑢𝑣∗ ∈ 𝑈0(𝐴).Let {𝑤(𝑡) ∶  𝑡 ∈ [0, 1]}  ⊂ 𝑈(𝐴) be a piece-wisely smooth and 

continuous path suchthat 𝑤(0)  =  𝑢and𝑤(1)  =  𝑣.Define 

𝑅𝑢,𝑣(𝜏) = 𝐷𝑒𝑡(𝑤(𝑡))(𝜏) = ∫ 𝜏

[0,1]

(
𝑑𝑢(𝑡)

𝑑𝑡
𝑤(𝑡)∗)𝑑𝑡    for all𝜏 ∈ 𝑇(𝐴) 

Note that𝑅𝑢,𝑣is well-defined (independent of the choices of the path) up to elements 

in𝜌𝐴 (𝐾0(𝐴)). 

Definition (2.1.3)[80]: Denote by ℚthe group of rational numbers. Let r be a supernatural 

number. Denote by 𝑀𝑟 the UHF-algebra associated with r. Denote by ℚ𝑟 the group 

𝐾0(𝑀𝑟) with orderas a subgroup ofℚ. 

   Denote by 𝑍the Jiang-Su algebra ([55]) which is a unital separable simple ASH-algebra 

with𝐾0(𝑍)  =  ℤand 𝐾1(𝑍)  =  {0}.Let 𝑝, 𝑞 be two relatively prime supernatural numbers 

of infinitetype. Denote by 

𝑍𝑝,𝑞 = {𝑓 ∈ 𝐶([0,1],𝑀𝑝𝑞): 𝑓(0) ∈ 𝑀𝑝and  𝑓(1) ∈ 𝑀𝑞}. 

Here we identify 𝑀𝑟with 𝑀𝑟⊗1 as a subalgebra of 𝑀𝑝𝑞. One may write 𝑍as a 

stationaryinductive limit of 𝑍𝑝,𝑞 (see [124]). 
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Definition (2.1.4)[80]:  Let 𝐴be a unital simple 𝐶∗ −algebra. We write 𝑇𝑅(𝐴)  =  0 if 

tracial rank of 𝐴is zero. We write 𝑇𝑅(𝐴)  ≤ 1,if the tracial rank of 𝐴is either zero or one 

(see [91]). 

Denote by 𝐴0 the class of unital separable simple 𝐶∗ −algebras 𝐴such that 𝑇𝑅(𝐴⊗𝑈) =

 0for some infinite dimensional UHF-algebra𝑈. Note that 𝑍 ∈ 𝐴0. 

Denote by 𝐴1 the class of unital simple separable 𝐶∗ −algebras 𝐴such that 𝑇𝑅(𝐴⊗𝑈)  ≤

1, see ([141]), ([86]), ([99]), ([100]), ([85]), ([73]) and ([95]) for some further discussion 

of these 𝐶∗ −algebras. 

Definition (2.1.5)[80]: Let 𝐴 be a unital 𝐶∗ −algebra and 𝐶 =  𝐶([0, 1], 𝐴). Denote by 

𝜋𝑡: 𝐶 → 𝐴thepoint-evaluation: 𝜋𝑡(𝑓)  =  𝑓(𝑡) for all 𝑓 ∈ 𝐶. 

Definition (2.1.6)[80]: Let 𝑋be a compact metric space and let 𝜓: 𝐶(𝑋)  → 𝐶 be a state. 

Denoteby     𝜇𝜓   the    probability      Borel   measure   induced   by     𝜓. 

The  following  could be easily proved directly.                                                   . 

Lemma(2.1.7)[80]:  Let𝜖 > 0. There exists 𝛿 > 0 satisfying the following: Suppose that 

𝐴is a unital separable simple 𝐶∗ −algebra with 𝑇𝑅(𝐴)  ≤ 1 and suppose that 𝑢 ∈ 𝑈(𝐴) 

with 𝑠𝑝(𝑢)  =  𝕋. Then,for any 𝑥 ∈ 𝐾0(𝐴) with‖𝜌𝐴(𝑥)‖ < 𝛿, there exists a unitary 𝑣 ∈

𝐴such that 

‖[𝑈, 𝑉]‖ < 𝜖    𝑎𝑛𝑑   bott1(𝑢, 𝑣) = 𝑥.                                   (3) 

The following is also known and we state here for the convenience. 

Lemma (2.1.8)[80]: Let 𝐴be a unital 𝐶∗ −algebra with 𝑇(𝐴)  ≠ ∅.Let 𝑢and 𝑣be two 

unitaries in 𝐴with [𝑢]  =  [𝑣] 𝑖𝑛𝐾1(𝐴).Suppose that there is a unitary 𝑤 ∈ 𝐴such that 

‖𝑢𝑤∗𝑣 𝑤∗‖ < 2.                                               (4) 

Then, 

𝑅𝑢,𝑣(𝜏) −
1

2𝜋𝑖
𝜏(log(𝑢𝑤∗𝑣 𝑤∗)) ∈ 𝜌𝐴(𝐾0(𝐴)).                        (5) 

proof:  It suffices to show that there is one piece-wisely smooth and continuous 

path{𝑈(𝑡) ∶  𝑡 ∈ [0, 1]}  ∈ 𝑀2(𝐴) such that 𝑈(0)  =  diag(𝑢, 1), 𝑈(1)  =  diag(𝑣, 1) and 

1

2𝜋𝑖
∫𝜏

1

0

(𝑈(𝑡)′𝑈(𝑡)∗)𝑑𝑡 =
1

2𝜋𝑖
𝜏(log(𝑢𝑤∗𝑣 𝑤∗)). 

To see this, let ℎ =
1

2𝜋𝑖
𝜏(log(𝑢𝑤∗𝑣𝑤∗)). Define 𝑈(𝑡)  =  diag(𝑢exp(𝑖4𝜋ℎ𝑡), 1) for𝑡 ∈

[0, 1/2]. Define 𝑈1(𝑡)  =  𝑈(2𝑡) 𝑓𝑜𝑟𝑡 ∈ [0, 1].Let 𝑊 =  diag(𝑤, 𝑤∗).Then 𝑊 =

∏ exp(𝑖2𝜋ℎ𝑗)
𝑘
𝑗=1 for some self- adjoint elements ℎ1, ℎ2, . . . , ℎ𝑚 ∈ 𝑀2(𝐴).Define 𝑊(0)  =

 1 and 

𝑊(𝑡) = (∏exp(𝑖2𝜋ℎ𝑗)

𝑘−1

𝑗=1

)exp(𝑖2𝜋𝑚ℎ𝑘𝑡)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ (𝑘 − 1 𝑚, 𝑘 𝑚⁄⁄ ],            (6) 

𝑘 =  1, 2, . . . , 𝑚. Let 𝑍(𝑡)  =  𝑊(𝑡)∗diag(𝑣, 1)𝑊(𝑡) for 𝑡 ∈ [0, 1].Then 𝑍(𝑡) is a piece-

wisely smooth and continuous path with 𝑍(0)  =  diag(𝑣, 1) and 𝑍(1)  =
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 𝑊∗diag(𝑣, 1)𝑊. It is straightforward to compute that the de la Harpe-Skandalis 

determinant 

𝐷𝑒𝑡(𝑊(𝑡)) = 0. 

Define 𝑈(𝑡)  =  𝑍(1 − 2𝑡) for 𝑡 ∈ (1/2, 1] and define 𝑈2(𝑡)  =  𝑍(1 − 𝑡) for 𝑡 ∈

[0, 1].Now𝑈(𝑡) is a continuous and piece-wisely continuous path with 𝑈(0)  =  diag(𝑢, 1) 

and 𝑈(1)  =  diag(𝑣, 1).We then compute that 

1

2𝜋
∫𝜏

1

0

(
𝑑𝑈(𝑡)

𝑑𝑡
𝑈(𝑡)∗)𝑑𝑡 = 𝐷𝑒𝑡(𝑈(𝑡))                                                                              (7) 

= 𝐷𝑒𝑡(𝑈1(𝑡)) +  𝐷𝑒𝑡(𝑈2(𝑡))                                              (8) 

= 𝐷𝑒𝑡(𝑈1(𝑡)) + 0                                                                (9) 

=
1

2𝜋𝑖
𝜏(log(𝑢𝑤∗𝑣 𝑤∗))                                                        (10) 

for all𝜏 ∈ 𝑇(𝐴). 

Lemma (2.1.9)[80]: Let 𝐴be a unital separable 𝐶∗ −algebra of stable rank one. Suppose 

that 𝑢, 𝑣 ∈ 𝑈(𝐴)with 𝑢𝑣∗ ∈ 𝐶𝑈(𝐴).Then, for any 𝛿 > 0,there exists 𝑎 ∈ 𝐴𝑠.𝑎.with ‖𝑎‖ <

𝛿such that 

�̂� − 𝑅𝑢,𝑣 ∈ 𝜌𝐴 (𝐾0(𝐴)). 

Proof:   This follows from the fact that 𝑅𝑢,𝑣 ∈ 𝜌𝐴 (𝐾0(𝐴)).̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Lemma (2.1.10)[80]:   Let 𝜖 > 0 and let ∆∶  (0, 1) → (0, 1) be a non-decreasingfunction. 

There exists 𝛿 > 0 and 𝜎 > 0 satisfying the following: For any unital separable 

simple 𝐶∗ −algebra  𝐴 with 𝑇𝑅(𝐴)  ≤ 1 and 𝑢, 𝑣 ∈ 𝑈(𝐴) such that 

𝜇𝜏○𝜑(𝐼𝑎) ≥ ∆(𝑎)for all𝜏 ∈ 𝑇(𝐴)                         (11) 

and for all arc 𝐼𝑎with length at least 𝑎 ≥ 𝜎, where 𝜙: 𝐶(𝕋)  → 𝐴is the homomorphism 

defined by 𝜙(𝑓)  =  𝑓(𝑢) for all 𝑓 ∈ 𝐶(𝕋), 

‖[𝑢, 𝑣]‖ < 𝛿     [𝑣] = 0   𝑖𝑛  𝑘1(𝐴)    𝑎𝑛𝑑   bott1(𝑢, 𝑣) = 0,          (12)  

there exists a continuous path of unitaries{𝑣(𝑡) ∶  𝑡 ∈ [0, 1]}  ⊂ 𝑈0(𝐴) such that 

‖[𝑣(𝑡), 𝑢]‖ < 𝜖   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ [0,1],   𝑣(0) = 𝑣  𝑎𝑛𝑑  𝑣(1) = 1.        (13)  

The following is a variation of a special case of 5.1 of [98]. 

Lemma (2.1.11)[80]: Let 𝜖 > 0 and let ∆: (0, 1)  → (0, 1) be a non-decreasing function. 

There is 𝛿 > 0, 𝜂 > 0, 𝜎 > 0 and there is a finite subset𝒢 ⊂ 𝐶(𝑇)𝑠.𝑎. satisfying the 

following: For any  unital  separable simple 𝐶∗ −algebra 𝐴with 𝑇𝑅(𝐴)  ≤ 1, any pair of 

unitary s 𝑢, 𝑣 ∈ 𝐴𝑠𝑝(𝑢)  =  𝑇and [𝑢]  =  [𝑣] 𝑖𝑛𝐾1(𝐴), 

𝜇𝜏○𝜑(𝐼𝑎) ≥ ∆(𝑎)for all𝜏 ∈ 𝑇(𝐴) 

for all intervals 𝐼𝑎with length at least 𝜂, where 𝜙: 𝐶(𝑇)  → 𝐴is the homomorphism defined 

𝑏𝑦𝜙(𝑓)  =  𝑓(𝑢) for all𝑓 ∈ 𝐶(𝕋), 

|𝜏(g(𝑢)) − 𝜏(g(𝑣))| < 𝛿      for all𝜏 ∈ 𝑇(𝐴)                   (14) 

𝑎𝑛𝑑𝑓𝑜𝑟𝑎𝑙𝑙g ∈ 𝒢, 

𝑢𝑣∗ ∈ 𝐶𝑈(𝐴).                                                        (15) 
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and for any 𝑎 ∈ Aff(𝑇(𝐴)) with 𝑎 − 𝑅𝑢,𝑣 ∈ 𝜌𝐴(𝐾0(𝐴)) and ‖𝑎‖ < 𝜎 and any 𝑦 ∈

𝐾1(𝐴),there is a unitary 𝑤 ∈ 𝐴such that[𝑤] = 𝑦,  

‖𝑢 − 𝑤∗𝑣 𝑤∗‖ < 𝜖   𝑎𝑛𝑑                                     (16) 

= 𝑎(𝜏)for all𝜏 ∈ 𝑇(𝐴)                (17) 

proof: Let 𝜖 > 0 and ∆ be given. Choose 𝜖 > 𝜃 > 0 such that, log(𝑢1), log(𝑢2) 

andlog(𝑢1𝑢2) are well defined and 

𝜏 (
1

2𝜋𝑖
𝜏(log( 𝑢∗𝑤∗𝑣𝑤))log(𝑢1𝑢2)) = 𝜏(log(𝑢1)) + 𝜏(log(𝑢2))                 (18) 

for all𝜏 ∈ 𝑇(𝐴)and for any unitaries 𝑢1, 𝑢2 such that 

‖𝑢𝑗 − 1‖ < 𝜃,        𝑗 = 1,2. 

Let 𝛿 ′ > 0 (in place of𝛿) be required by Lemma(2.1.7)for 𝜃/2 (in place of𝜖). Put 𝜎 =

 𝛿 ′/2.Let𝛿 > 0 and 𝜂be required by 4.3 for min{𝜎, 𝜃, 1}(in place of𝜖) and∆. Suppose that 

𝐴is a unitalseparable simple 𝐶∗ −algebra with 𝑇𝑅(𝐴)  ≤ 1 and 𝑢, 𝑣 ∈ 𝑈(𝐴) satisfy the 

assumption for theabove𝛿 ,𝜂and𝜎.Then, there exists a unitary 𝑧 ∈ 𝑈(𝐴) such that 

‖𝑢 − 𝑧∗𝑣𝑧‖ < min{𝜎, 𝜃, 1}                                     (19) 

Let 𝑏 =
1

2𝜋𝑖
𝜏(log(𝑢∗𝑧∗𝑣𝑧))Then‖𝑏‖ < 𝑚𝑖𝑛{𝜎, 𝜃, 1}. �̂� − 𝑅𝑢,𝑣 ∈ 𝜌𝐵(𝐾0(𝐴)).let 𝑎 ∈

Aff(𝑇(𝐴)) be such that ‖𝑎‖ < 𝜎and 𝑎 − 𝑅𝑢,𝑣 ∈ 𝜌𝐴(𝐾0(𝐴)) as given by the lemma. It 

follows that 𝑎 − �̂� ∈ 𝜌𝐴(𝐾0(𝐴)). Moreover, ‖𝑎 − �̂�‖ < 2𝜎 < 𝛿′.It   follows   that there   

exists  a unitary  𝑧1 ∈ A  s uch  that 

[𝑧1] = −𝑦 − [𝑧],   ‖[𝑢, 𝑧1]‖ < 𝜃 2⁄  andbott1(𝑢, 𝑧1)(𝜏) = 𝑎(𝜏) + 𝜏(𝑏)              (20) 

for all𝜏 ∈ 𝑇(𝐶). 

Define 𝑤 =  𝑧𝑧1
∗Then 

[𝑤] = 𝑦  and‖𝑢 − 𝑤∗𝑣𝑤‖ < 𝜃 < 𝜖                   (21) 

We compute that 

1

2𝜋𝑖
𝜏(log( 𝑢∗𝑤∗𝑣𝑤)) =

1

2𝜋𝑖
𝜏(log( 𝑢∗𝑧1𝑧

∗𝑣𝑧𝑧1
∗))            (22) 

=
1

2𝜋𝑖
𝜏(log( 𝑢∗𝑧1𝑢𝑢

∗𝑧∗𝑣𝑧𝑧1
∗))                                     (23) 

=
1

2𝜋𝑖
𝜏(log(𝑧1

∗ 𝑢∗𝑧1𝑢𝑢
∗𝑧∗𝑣𝑧))                                    (24) 

=
1

2𝜋𝑖
(𝜏(log(𝑧1𝑢

∗𝑧1
∗𝑢)) +   𝜏(log(𝑢∗𝑧∗𝑣𝑧)))          (25) 

= bott1(𝑢, 𝑧1)(𝜏) + 𝜏(𝑏)                                               (26) 

= 𝑎(𝜏)for all𝜏 ∈ 𝑇(𝐴),                                              (27) 

where we use the Exel’s formula for bott element in the second lastequality. 

Lemma (2.1.12)[80]: Let 𝜖 > 0 and let ∆∶  (0, 1)  → (0, 1) be a non-decreasing map. 

There exists𝜂 > 0, 𝛿 > 0 and a finite subset𝐺 ∈ 𝐶(𝕋)𝑠.𝑎. satisfying the following: 

Suppose that 𝐴is a 𝑍 −stable unital separable simple 𝐶∗ −algebra in 𝐴1 and suppose that 

𝑢, 𝑣 ∈ 𝑈(𝐴) are two unitariessuch that 𝑠𝑝(𝑢)  =  𝕋, 

𝜇𝜏○𝜑(𝐼𝑎) ≥ ∆(𝑎)for all𝜏 ∈ 𝑇(𝐴)               (28) 
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and for all arcs 𝐼𝑎with length at least 𝑎 ≥ 𝜂, where 𝜑: 𝐶(𝕋)  → 𝐴is defined by 𝜙(𝑓)  =

 𝑓(𝑢) for all 𝑓 ∈ 𝐶(𝕋) and 

|𝜏(g(𝑢)) − 𝜏(g(𝑣))| < 𝛿     𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎 ∈ 𝒢 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙𝜏 ∈ 𝑇(𝐴)      (29) 

[𝑢] = [𝑣]  𝑖𝑛  𝑘1(𝐴)    𝑎𝑛𝑑    𝑢𝑣
∗ ∈ 𝐶𝑈(𝐴).  

Then there exists a unitary 𝑤 ∈ 𝑈(𝐴) such that 

‖ 𝑤∗𝑢𝑤 − 𝑣‖ < 𝜖.                                        (30) 

Proof:  We first note, by [100], that 𝑇𝑅(𝐴⊗𝑀𝑟)  ≤ 1 for any supernatural number 𝑟. Let 

𝜑: 𝐶(𝕋)  → 𝐴be the monomorphism defined by 𝜑(𝑓)  =  𝑓(𝑢).For any 𝑎 ∈ (0, 1), denote 

by 

∆(𝑎) = inf {𝜇𝑟○𝜓(𝑂𝑎);  𝜏 ∈ 𝑇(𝐴), 𝐼𝑎an open arcs of length 𝑎in 𝕋}. 

Since 𝐴 is simple, one has that 0 < ∆(𝑎)  ≤ 1 (for all𝑎 ∈ (0, 1)) and ∆(𝑎)  → 0 𝑎𝑠𝑎 → 0. 

𝜇𝜏○𝜑(𝐼𝑎) ≥ ∆(𝑎)for all𝜏 ∈ 𝑇(𝐴)               (31) 

and all arcs with length 𝑎 > 0. Let𝜖 > 0. 

Let 𝑝 and 𝑞 be a pair of relatively prime supernatural numbers of infinite type withℚ𝑝 +

ℚ𝑞 = ℚ. Denote by 𝑀𝑝 and 𝑀𝑞 the UHF-algebras associated to𝑝 and 𝑞 respectively. 

Let𝜄𝑟: 𝐴 → 𝐴⊗𝑀𝑟be the embedding defined by 𝜄𝑟(𝑎)  =  𝑎 ⊗ 1 for all 𝑎 ∈ 𝐴,where 𝑟 is 

asupernatural number. Define 𝑢𝑟 = 𝜄𝑟(𝑢) and𝑣𝑟  =  𝜄𝑟(𝑣).Denote by 𝜑𝑟 ∶  𝐶(𝕋)  → 𝐴⊗

𝑀𝑟 thehomomorphism given by 𝜑𝑟(𝑓)  =  𝑓(𝑢𝑟) for all𝑓 ∈ 𝐶(𝕋). 

For any supernatural number 𝑟 =  𝑝, 𝑞, the 𝐶∗ −algebra𝐴⊗𝑀𝑟 has tracial rank at most 

one.  

Let 𝛿1 > 0 (in place of𝛿) and 𝑑1 > 0 (in place of𝜎)  for 𝜖/6. 

Without loss of generality, we may assume that 𝛿1 < 𝜖/12 and is small enough and 𝒢is 

largeenough so that bott1(𝑢1, 𝑧𝑗) and bott1(𝑢1, 𝑤𝑗) are well defined and 

bott1(𝑢1, 𝑤𝑗) = bott1(𝑢1, 𝑧1) + ⋯+ bott1(𝑢1, 𝑧𝑗)                    (32) 

if𝑢1 is a unitary and 𝑧𝑗is any unitaries with ‖[𝑢1, 𝑧𝑗]‖ < 𝛿1,where 𝑤𝑗 = 𝑧1 ··· 𝑧𝑗 , 𝑗 =

 1, 2, 3, 4. 

Let  𝛿2 > 0 (in place𝛿)  for 𝛿1/8 (in place of𝜖). 

Furthermore, one may assume that 𝛿2 is sufficiently small such that for any unitaries 

𝑧1, 𝑧2in a 𝐶∗ −algebra with tracial states, 𝜏 (
1

2𝜋𝑖
log(𝑧𝑖𝑧𝑗

∗)) (𝑖, 𝑗 =  1, 2, 3) is well defined 

and 

𝜏 (
1

2𝜋𝑖
log(𝑧1𝑧2

∗)) = 𝜏 (
1

2𝜋𝑖
log(𝑧1𝑧𝑗

∗)) + 𝜏 (
1

2𝜋𝑖
log(𝑧3𝑧2

∗)) 

for any tracial state 𝜏, whenever‖𝑧1 − 𝑧3‖ < 𝛿2 and ‖𝑧2 − 𝑧3‖ < 𝛿2. We may further 

assume that 𝛿2 < min{𝛿1, 𝜖/6, 1}. 

Let 𝛿 > 0, 𝑑2 > 0 (in place of𝜂) and 𝛿3 > 0 (in place of 𝜎) required by (3) for 𝛿2 (in place 

of 𝜖). Let 𝜂 =  min{𝑑1, 𝑑2}. 

   Now assume that 𝑢and 𝑣are two unitaries which satisfy the assumption of the lemma 

with above 𝛿and𝜂. Since 𝑢𝑣∗ ∈ 𝐶𝑈(𝐴), 𝑅𝑢,𝑣 ∈ 𝜌𝐴(𝐾0(𝐴)).It follows that there is 𝑎 ∈

𝐴𝑓𝑓(𝑇(𝐴)) with ‖𝑎‖ < 𝛿3/2 such that 𝑎 − 𝑅𝑢,𝑣 ∈ 𝜌𝐴(𝐾0(𝐴)).Then the image of 𝑎𝑝 −
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𝑅𝑢𝑝,𝑣𝑝 is in 𝜌𝐴⊗𝑀𝑃(𝐾0(𝐴⊗𝑀𝑃))), where 𝑎𝑝 is the image of 𝑎under the map induced 

by 𝜄𝑃. The same holds for 𝑞. Note that 

𝜇(𝜏⊗𝑡)○𝜑𝜏(𝐼𝑎) ≥ ∆(𝑎)for all𝜏 ∈ 𝑇(𝐴)               (33) 

where𝑡is the unique tracial state on 𝑀𝑟, and for all 𝑎 > 0, 𝑟 =  𝑝, 𝑞.By Lemma 

(2.1.11)there exist unitaries𝑧𝑃 ∈ 𝐴⊗𝑀𝑃𝑎𝑛𝑑𝑧𝑞 ∈ 𝐴⊗𝑀𝑞 such that 

‖𝑢𝑝 − 𝑧𝑝
∗𝑣𝑝𝑧𝑝‖ < 𝛿2and‖𝑢𝑞 − 𝑧𝑞

∗𝑣𝑞𝑧𝑞‖ < 𝛿2. 

Moreover, 

𝜏 (
1

2𝜋𝑖
log(𝑢𝑝

∗𝑧𝑝
∗𝑣𝑝𝑧𝑝)) = 𝑎𝑝(𝜏)for all𝜏 ∈ 𝑇(𝐴𝑝)and            (34) 

𝜏 (
1

2𝜋𝑖
log(𝑢𝑞

∗𝑧𝑞
∗𝑣𝑞𝑧𝑞)) = 𝑎𝑞(𝜏)for all𝜏 ∈ 𝑇(𝐴𝑞)                     (35) 

We then identify 𝑢𝑝, 𝑢𝑞with 𝑢 ⊗ 1 and 𝑧𝑝 and 𝑧𝑞 with the elements in 𝐴⊗𝑀𝑃⊗𝑀𝑞  =

 𝐴 ⊗ 𝑄. 

In the following computation, we also identify 𝑇(𝐴) with 𝑇(𝐴𝑝), 𝑇(𝐴𝑞),and 𝑇(𝐴𝑝), or 

𝑇(𝐴𝑞)with 𝑇(𝐴⊗𝑄) by identify 𝜏with𝜏 ⊗ 𝑡,where 𝑡is the unique tracial state on 𝑀𝑃, or 

𝑀𝑞, or 𝑄. 

In particular, 

𝑎𝑝(𝜏 ⊗ 𝑡) = 𝜏(𝑎)for all𝜏 ∈ 𝑇(𝐴)and              (36) 

𝑎𝑞(𝜏 ⊗ 𝑡) = 𝜏(𝑎)for all𝜏 ∈ 𝑇(𝐴).                          (37) 

We compute that by the Exel formula (see Lemma (2.1.11)), 

(𝜏 ⊗ 𝑡) (bott1(𝑢 ⊗ 1, 𝑧𝑝
∗𝑧𝑞)) = (𝜏 ⊗ 𝑡) (

1

2𝜋𝑖
log (𝑧𝑝

∗𝑧𝑞(𝑢
∗⊗1)) 𝑧𝑞

∗𝑧𝑝(𝑢 ⊗ 1)) 

(38) 

= (𝜏 ⊗ 𝑡) (
1

2𝜋𝑖
log(𝑧𝑞(𝑢

∗⊗1)𝑧𝑞
∗𝑧𝑝(𝑢 ⊗ 1)𝑧𝑝

∗))         (39) 

= (𝜏 ⊗ 𝑡) (
1

2𝜋𝑖
log (𝑧𝑞(𝑢

∗⊗1)𝑧𝑞
∗(𝑢 ⊗ 1)))                 (40) 

+(𝜏 ⊗ 1) (
1

2𝜋𝑖
log ((𝑣∗⊗1)𝑧𝑞(𝑢 ⊗ 1)𝑧𝑝

∗))            (41) 

= (𝜏 ⊗ 𝑡) (
1

2𝜋𝑖
log(𝑢𝑞

∗𝑧𝑞
∗𝑣𝑞𝑧𝑞)) (42) 

+(𝜏 ⊗ 𝑡) (
1

2𝜋𝑖
log(𝑢𝑝

∗𝑧𝑝
∗𝑣𝑝𝑧𝑝))                                (43) 

= 𝜏(𝑎) − 𝜏(𝑎) = 0                                                                (44) 

for all𝜏 ∈ 𝑇(𝐴). It follows that 

𝜏 (bott1(𝑢 ⊗ 1, 𝑧𝑝
∗𝑧𝑞)) = 0                                       (45) 

for all𝜏 ∈ 𝑇(𝐴⊗ 𝑄) 

Let y = bott1(𝑢 ⊗ 1, 𝑧𝑝
∗𝑧𝑞) ∈ 𝑘𝑟𝑒 𝜌𝐴⊗𝑄.Since ℚ ,ℚ𝑃𝑎𝑛𝑑ℚ𝑞are flat ℤ modules,  

𝑘𝑟𝑒 𝜌𝐴⊗𝑄 = 𝑘𝑟𝑒 𝜌𝐴⊗ℚ                                           (46) 
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𝑘𝑟𝑒 𝜌𝐴⊗𝑀𝑟 = 𝑘𝑟𝑒 𝜌𝐴⊗ℚ𝑟     𝑟 = 𝑝   𝑎𝑚𝑑  𝑟 = 𝑞                (47) 

Itfollows that there are 𝑥1, 𝑥2, . . . , 𝑥𝑙 ∈ 𝜌𝐴(𝑘0(𝐴)) and 𝑟1, 𝑟2, . . . , 𝑟𝑙 ∈ ℚ such that 

𝑦 =∑𝑥𝑗⊗𝑟𝑗

𝑙

𝑗=1

 

Since ℚ = ℚ𝑝 + 𝑄𝑞 , one has 𝑟𝑗,𝑝 ∈ ℚ𝑝and 𝑟𝑗,𝑞 ∈ ℚ𝑞such that 𝑟𝑗 = 𝑟𝑗,𝑝 − 𝑟𝑗,𝑞 .So 

𝑦 =∑𝑥𝑗⊗𝑟𝑗,𝑝

𝑙

𝑗=1

−∑𝑥𝑗⊗𝑟𝑗,𝑞

𝑙

𝑗=1

 

Put 𝑦𝑝  = ∑ 𝑥𝑗⊗𝑟𝑗,𝑝
𝑙
𝑗=1  and 𝑦𝑞  = ∑ 𝑥𝑗⊗𝑟𝑗,𝑞 .

𝑙
𝑗=1 Then, by (47), 𝑦𝑝 ∈ 𝑘𝑟𝑒 𝜌𝐴⊗𝑀𝑝and 𝑦𝑞 ∈

𝑘𝑟𝑒 𝜌𝐴⊗𝑀𝑞 .It follows that there are unitaries 𝑤𝑝 ∈ 𝐴⊗𝑀𝑝 and 𝑤𝑞 ∈ 𝐴⊗𝑀𝑞 such that 

‖[𝑢𝑝, 𝑤𝑝]‖ < 𝛿1 8⁄ ,      ‖[𝑢𝑞 , 𝑤𝑞]‖ < 𝛿1 8⁄                              (48) 

bott1(𝑢𝑝, 𝑤𝑝) = 𝑦𝑝     𝑎𝑛𝑑   bott1(𝑢𝑞 , 𝑤𝑞) = 𝑦𝑞            (49) 

Put 𝑊𝑝 = 𝑧𝑝𝑤𝑝 ∈ 𝐴⊗𝑀𝑝 and 𝑊𝑞 = 𝑧𝑞𝑤𝑞 ∈ 𝐴⊗𝑀𝑞 .Then 

‖𝑢𝑝 −𝑊𝑝
∗𝑣𝑝𝑤𝑝‖ < 𝛿2 + 𝛿1 8⁄ < 𝜖 6 ⁄  and  

‖𝑢𝑝 −𝑊𝑝
∗𝑣𝑝𝑤𝑝‖ < 𝛿2 + 𝛿1 8⁄ < 𝜖 6 ⁄                                     (50) 

Note, again, that 𝑢𝔯 =  𝑢 ⊗ 1 and 𝑣𝔯  =  𝑣 ⊗ 1, 𝔯 =  𝑝, 𝑞.With identification of 𝑊𝔯, 𝑤𝔯, 𝑧𝔯 

with unitaries in 𝐴⊗𝑄,we also have 

‖[𝑢 ⊗ 1,𝑊𝑝
∗𝑊𝑞]‖ < 𝛿1 4⁄                                             (51) 

 

and 

bott1(𝑢 ⊗ 1,𝑊𝑝
∗𝑊𝑞) = bott1(𝑢 ⊗ 1,𝑤𝑝

∗𝑧𝑝
∗𝑧𝑞𝑤𝑞)                                             (52) 

= bott1(𝑢 ⊗ 1,𝑤𝑝
∗) + bott1(𝑢 ⊗ 1, 𝑧𝑝

∗𝑧𝑞) + bott1(𝑢 ⊗ 1,𝑤𝑞)       (53) 

= −𝑦𝑝 + (𝑦𝑝 − 𝑦𝑞) + 𝑦𝑞 = 0                                                                            (54) 

Let 𝑍0  =  𝑊𝑝
∗𝑊𝑞 .Then it follows from the choice of 𝛿1, (33) that there is a continuouspath 

of unitaries{𝑍(𝑡) ∶  𝑡 ∈ [0, 1]}  ⊂ 𝐴⊗𝑄such that 𝑍(0)  =  𝑍0𝑎𝑛𝑑𝑍(1)  =  1 and 

‖[𝑢 ⊗ 1, 𝑍(𝑡)]‖ < 𝜖 6 ⁄      for all 𝑡 ∈ [0,1]                             (55) 

Define 𝑈(𝑡)  =  𝑤𝑝𝑍(𝑡).Then 𝑈(0)  =  𝑤𝑝 and𝑈(1)  =  𝑤𝑞. So, in particular, 𝑈(0)  ∈

𝐴⊗𝑀𝑃 and𝑈(1) ∈ 𝐴⊗𝑀𝑞. So, 𝑈 ∈ 𝐴⊗ 𝑍𝑝,𝑞 ⊂ 𝐴⊗ 𝑍is a unitary and, by (50) and 

(55), 

‖𝑢 ⊗ 1 − 𝑈∗(𝑣 ⊗ 1)𝑈‖ < 𝜖 3.       ⁄                            (56) 

Note that we assume that 𝐴⊗ 𝑍 ≅ 𝐴.Let 𝑙: 𝐴 → 𝐴⊗ 𝑍be the embedding defined 

by𝑙(𝑎)  =  𝑎 ⊗ 1 for all 𝑎 ∈ 𝐴and 𝑗: 𝐴 ⊗ 𝑍 → 𝐴such that 𝑗 ○ 𝑙is approximately inner. Let 

𝑉 ∈ 𝐴be a unitary such that 

‖𝑐 − 𝑉∗𝑗 ○ 𝑙(𝑐)𝑉‖ < 𝜖 3.   ⁄   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ {𝑢, 𝑣}.                         (57) 

Then, let 𝑤 =  𝑉𝑗(𝑈)𝑉∗ ∈ 𝑈(𝐴). 

‖𝑢 − 𝑤∗𝑢𝑤‖ ≤ ‖𝑢 − 𝑉∗𝑗(𝑢 ⊗ 1)𝑉‖ 

+‖𝑉∗𝑗(𝑢 ⊗ 1)𝑉 − 𝑉∗𝑗(𝑈)∗𝑗(𝑣 ⊗ 1)𝑗(𝑈)𝑉‖                                (58) 
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+‖𝑉∗𝑗(𝑈)∗𝑗(𝑣 ⊗ 1)𝑗(𝑈)𝑉 − 𝑉∗𝑗(𝑈)∗𝑉𝑣𝑉
∗𝑗(𝑈)𝑉‖                     (59) 

< 𝜖 3 + ‖𝑢 ⊗ 1 − 𝑈∗(𝑣 ⊗ 1)𝑈‖ + ‖𝑗 ○ 𝑙(𝑣) − 𝑉∗𝑣𝑉‖⁄ (60) 

< 𝜖 3 + 𝜖 3 + 𝜖 3 = 𝜖.⁄⁄⁄                                                              (61) 

Lemma (2.1.13)[80]: Let 𝐴 be a unital separable simple 𝐶∗ −algebra in 𝐴1. Then every 

quasi-trace on 𝐴 extends to a trace. Moreover, if in addition, 𝐴 is 𝑍 −stable, then 

𝑊(𝐴) = 𝑉(𝐴)⨆LAff(𝑇(𝐴)), 

where 𝑊(𝐴) is the Cuntz semi-group of 𝐴, 𝑉(𝐴) is the equivalence classes of projections 

in⋃ 𝑀𝑛(𝐴)
∞
𝑛=1  and LAff(𝑇(𝐴)) is the set of all bounded real lower-semi-continuous affine 

functions on 𝑇(𝐴). 

proof:  Note that 𝑇𝑅(𝐴⊗𝑄) ≤ 1 .Therefore every quasi-trace on 𝐴 ⊗ 𝑄is a trace. 

Suppose that 𝑠  is a quasi-trace on 𝐴,then 𝑠 ⊗ 𝑡is a trace on 𝐴, where 𝑡 is the unique tracial 

state of 𝑄. 

Therefore 𝑠 ⊗ 𝑡 on 𝐴⊗ ℂ1𝑄is a trace. This implies that 𝑠 is a trace. 

The second part of the statement, 𝐴 is assumed to be also exact. But that was only used so 

that every quasi-trace is a trace. 

Lemma (2.1.14)[80]: Let 𝐴 ∈ 𝐴1 be a unital separable simple 𝑍 −stable 𝐶∗ −algebra. Let 

Γ ∶  𝐶([0, 1])𝑠.𝑎. → Aff(𝑇(𝐴)) be a continuous affine map with Γ(1)(𝜏)  =  1 for all 𝜏 ∈

𝑇(𝐴) for some 𝑎 ∈ 𝐴+ with ‖𝑎‖ ≤ 1.Then there exists a 

unitalmonomorphism𝜑: 𝐶([0, 1])  → 𝐴such that 

𝜏(𝜑(𝑓))  =  Γ(𝑓)(𝜏)    𝑓𝑜𝑟 𝑎𝑙𝑙  𝜏 ∈ 𝑇(𝐴) 

𝑎𝑛𝑑 𝑓 ∈ 𝐶([0, 1]). 

  Let 𝑝and 𝑞be relatively prime supernatural numbers with ℚ𝑝  +  ℚ𝑞  =  ℚ.Let 𝑀𝔯 bethe 

UHF-algebra associated with the supernatural number 𝑟, 𝑟 =  𝑝, 𝑞. Let 𝑄be the UHF-

algebra such that (𝐾0(𝑄), (𝐾0(𝑄)+, [1ℚ])  =  (ℚ,ℚ+, 1).By the assumption 𝑇𝑅(𝐴⊗

𝑀𝔯)  ≤ 1 and𝑇𝑅(𝐴⊗𝑄)  ≤ 1, ℎ𝔯 ∈ (𝐴⊗𝑀𝔯)𝑠.𝑎.such that sp(ℎ)  =  [0, 1]and (𝜏 ⊗ 𝑡)  ○

𝜑𝔯(𝑓)  =  Γ(𝑓)(𝜏)for all𝜏 ∈ 𝑇(𝐴) and𝑓 ∈ 𝐶([0, 1])𝑠.𝑎.,where tis the unique 

tracial state on 𝑀𝔯, 𝔯 =  𝑝, 𝑞.We use the same notation for𝜑𝔯 for the unital 

monomorphisms𝐶([0, 1]) → 𝐴⊗𝑀𝔯 → 𝐴⊗𝑄composed by𝜑𝔯and the embedding from 

𝐴⊗𝑀𝔯 → 𝐴⊗𝑄.Note that𝐾0(𝐶([0, 1])) =  ℤ 

and𝐾1(𝐶([0, 1]))  =  {0}.Then [𝜑𝑝]  =  [𝜑𝑞] 𝑖𝑛𝐾𝐾(𝐶([0, 1]), 𝐴 ⊗ 𝑄) and,𝜑𝑝 and 𝜑𝑞 

induce the same map from 𝑇(𝐴⊗𝑄) into 𝑇(𝐶([0, 1])) as well as the same map from 

𝑈(𝐶([0, 1])/𝐶𝑈(𝐶([0, 1]) into 𝐶𝑈(𝐴⊗𝑄)/𝐶𝑈(𝐴⊗𝑄).Moreover since 

𝐾1(𝐶([0, 1]))  =  {0}.They induce zero rotation map. 𝜑𝑝and𝜑𝑞 are strongly asymptotically 

unitarily equivalent, i.e., there exists a continuous path of unitaries{𝑢(𝑡): 𝑡 ∈ [0, 1)} ⊂

𝐴⊗𝑄such that 

lim
𝑡→∞

𝑢(𝑡)∗𝜑𝑝(𝑓)𝑢(𝑡) = 𝜑𝑞(𝑓)    𝑓𝑜𝑟 𝑎𝑙𝑙  𝑓 ∈ 𝐶([0,1]) 

Define 𝜓: 𝐶([0, 1]) → 𝐴⊗ 𝑍𝑝,𝑞 by 

𝜓(𝑓)(𝑡) =  𝑢(𝑡)∗𝜑𝑝(𝑓)𝑢(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 1) and 
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𝜓(𝑓)(1) =  𝜑𝑞(𝑓)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐶([0, 1]).                   

Note 𝜓(𝑓)(0) =  𝜑𝑝(𝑓) ∈ 𝐴⊗𝑀𝑝and 𝜓(𝑓)(1)  =  𝜑𝑞(𝑓)  ∈ 𝐴⊗𝑀𝑞 for all 𝑓 ∈

𝐶([0, 1]).Byembedding 𝐴⊗ 𝑍𝑝,𝑞into 𝐴⊗ 𝑍,  we obtain a unital             

monomorphism𝜑: 𝐶([0, 1]) → 𝐴⊗ 𝑍 ≅ 𝐴.It is easy to check that so defined 𝜑 meets the 

requirements. 

Let 𝐴be a unital simple 𝐶∗ −algebra with 𝑇(𝐴) ≠ ∅. Let 𝑢 ∈ 𝑈(𝐴)be a unitary 

withsp(𝑢)  =  𝑇.For each𝜏, let 𝜇𝜏be the Borel probability measure on T induced by state 

𝜏 ○ 𝑓(𝑢)(for all 𝑓 ∈ 𝐶(𝑇)) on 𝑇. Fix𝑛 ≥ 1, let log: {𝑒𝑖𝑡: 𝑡 ∈ [−𝜋 +  𝜋/𝑛, 𝜋]}  → [−𝜋 +

 𝜋/𝑛, 𝜋] be theusual logarithm map. Consider the measure 𝜈𝜏,𝑛𝑜𝑛 (−𝜋, 𝜋] defined by 

𝜈𝜏,𝑛(𝐸)  = 𝜇𝜏({𝑒
𝑖𝑡: 𝑡 ∈ 𝐸 ∩ [−𝜋 +  𝜋/𝑛, 𝜋]}) 

for all Borel sets 𝐸 ⊂ (−𝜋, 𝜋].Define 

𝜈𝑣(𝐸) = lim
𝑡→∞

𝜇𝜏,𝑛(𝐸) 

for all Borel sets 𝐸 ⊂ (−𝜋, 𝜋]. It is easy to check that 𝜈𝜏is a measure on (−𝜋, 𝜋].Let 𝑓 ∈

𝐶0((−𝜋, 𝜋])𝑠.𝑎.defined 

Γ(𝑓)(𝜏) = ∫ 𝑓 𝑑𝜈𝜏.

(−𝜋,𝜋]

 

Note that 

Γ(𝑓)(𝜏) = ∫ 𝑓 ○ log 𝑑𝜇𝜏.

(−𝜋+𝜋/𝑛,𝜋]

 

Let g𝑛(𝑡) =  1 𝑖𝑓𝑡 ∈ [−𝜋 +
𝜋

𝑛
, 𝜋] , g𝑛(𝑡) =  0 𝑖𝑓𝑡 ∈ [−𝜋,−𝜋 +

𝜋

2𝑛
] and g(𝑡) is linear 

in(−𝜋 +
𝜋

2𝑛
, −𝜋 +

𝜋

𝑛
). Note that 0 ≤ g𝑛 ≤ 1 andg𝑛 ∈ 𝐶(𝕋)+. It is clear that Γ(g𝑛) ∈

Aff(𝑇(𝐴))and Γ(g𝑛) ≤ Γ(g𝑛+1)andΓ(g𝑛)(𝜏) → 1 for each 

𝜏 ∈ Aff(𝑇(𝐴)).It follows from the Dini theorem that Γ(g𝑛) converges to 1 uniformly on 

𝑇(𝐴). On the other hand 

| ∫ 𝑓(1 − g𝑛) 𝑑𝜈𝜏
(−𝜋,𝜋)

| ≤ ∫ |𝑓|2 𝑑𝜈𝜏
(−𝜋,𝜋]

∫ (1 − g𝑛)
2  𝑑𝜈𝜏

(−𝜋,𝜋]

              (62) 

≤ ∫ |𝑓|2 𝑑𝜈𝜏
(−𝜋,𝜋]

∫ (1 − g𝑛)
2  𝑑𝜈𝜏  → 0

(−𝜋,𝜋]

     (63) 

uniformly on 𝑇(𝐴).This implies that Γ(𝑓) is continuous on 𝑇(𝐴). Ifg ∈ 𝐶([−𝜋, 𝜋])𝑠.𝑎., we 

maywrite g(𝑡)  =  g(0)  + (g(𝑡)  − g(0)).Define Γ(g)  =  g(0)  + Γ(g − g(0)).This 

provides an affine continuous map from 𝐶([−𝜋, 𝜋])𝑠.𝑎. 𝑡𝑜Aff(𝑇(𝐴)). 

We check that 

𝜏(𝑓(𝑢)) = ∫ 𝑓 ○ exp(it) 𝑑𝑣𝜏(𝑡)

(−𝜋,𝜋]

= Γ(𝑓 ○ exp(it))(𝜏)for all 𝑓 ∈ 𝐶(𝕋)𝑠.𝑎. 
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   In the above, we can replace −𝜋 by 0 and  𝜋 by 2𝜋. We will keep this notation in the 

next proof. 

Theorem (2.1.15)[80]: Let 𝐴 ∈ 𝐴1 be a unital separable simple 𝑍 −stable 𝐶∗ −algebra. 

Let 𝑢 ∈ 𝑈0(𝐴)be a unitary. Then, for any 𝜖 > 0,there exists a self-adjoint element ℎ ∈

𝐴such that 

‖𝑢 − exp (𝑖ℎ)‖ < 𝜖                                                    (64) 

In the other words 

cer(𝐴)  ≤ 1 +  𝜖. 

Proof: Let 𝑢 ∈ 𝑈0(𝐴).If 𝑠𝑝(𝑢)  ≠ 𝕋,then 𝑢is an exponential. So we may assume that 

𝑠𝑝(𝑢)  =  𝕋. 

Let 𝜖 > 0.Let 𝜑: 𝐶(𝕋)  → 𝐴be defined by 𝜑(𝑓)  =  𝑓(𝑢) for all𝑓 ∈ 𝐶(𝑇). It is a unital 

monomorphism. The a non-decreasing function∆1∶  (0, 1)  → (0, 1) such that 

𝑀𝜏(𝑂𝑎) ≥ ∆1(𝑎)for all𝜏 ∈ 𝑇(𝐴)                                  (65) 

for all arcs 𝐼𝑎of T with length 𝑎 ∈ (0, 1).Define ∆= (1/2)∆1. 

   Let 𝜂 > 0, 𝛿 > 0 and let 𝒢 ⊂ 𝐶(𝑇) be a finite subset required by (4) for 𝜖/2 (in place 

of 𝜖). 

Without loss of generality, we may assume that ‖g‖ ≤ 1 for allg ∈ 𝒢. Let 𝜎 =

 min{𝜂/2, 𝛿/2}. 

   Let Γ: 𝐶([0, 2𝜋])𝑠.𝑎. → Aff(𝑇(𝐴)) be the map defined in (7) (using [0, 2𝜋] instead 

of[−𝜋, 𝜋]).Define Γ1 ∶  𝐶([0, 2𝜋])𝑠.𝑎. → Aff(𝑇(𝐴)) as follows: define 

Γ1(𝑓)(𝜏) = (1 − 𝜎)Γ(𝑓)(𝜏)for all𝜏 ∈ 𝑇(𝐴) 

and for 𝑎𝑙𝑙𝑓 ∈ 𝐶0((0, 2𝜋]) and define 

Γ1(𝑓)  =  𝑓(0)  +  Γ1(𝑓 − 𝑓(0))(𝜏)    for all𝜏 ∈ 𝑇(𝐴) 

and for all 𝑓 ∈ 𝐶([0, 2𝜋])𝑠.𝑎.It follows that, for any𝑓 ∈ 𝐶(𝑇)𝑠.𝑎. With ‖𝑓‖ ≤ 1, 

|𝜏(𝑓) − Γ1(𝑓 ○ exp)| = |Γ(𝑓 ○ exp) − Γ1(𝑓 ○ exp)| < 𝜎for all 𝜏 ∈ 𝑇(𝐴),           (66) 

whereexp ∶  [0, 2𝜋]  → 𝑇 is defined by exp(𝑡)  =  𝑒𝑖𝑡for all 𝑡 ∈ [0, 2𝜋]. Note since 𝐴is 

simple and sp(𝑢)  =  𝑇,Γ1 is strictly positive. It follows(6) that there is a self-adjoint 

element 𝑏 ∈ 𝐴such that sp(𝑏)  =  [0, 2𝜋] and 𝜏(𝑓(𝑏))  =  Γ1(𝑓)(𝜏) for all𝑓 ∈

𝐶0((0, 2𝜋]). It follows that 

𝑑𝜏(𝑏) =  lim
𝑡→∞

𝜏(𝑏1 𝑛⁄ ) ≤ (1 − 𝜎)for all𝜏 ∈ 𝑇(𝐴).               (67) 

Note that since 𝐴is also 𝑍 −stable, by (5), 𝑊(𝐴)  =  𝑉(𝐴)  ⊔ LAff(𝑇(𝐴)).There are 

mutuallyorthogonal elements 𝑎1, 𝑐1, 𝑐2 ∈ 𝑀𝐾(𝐴)+with 0 ≤ 𝑎1, 𝑐1, 𝑐2 ≤ 1 for some integer 

𝐾 ≥ 1 such that 

𝑑𝜏(𝑎1)  =  1 − 𝜎/2,      𝑑𝜏(𝑐1)  = 𝑑𝜏(𝑐2)  =  𝜎/5  for all𝜏 ∈ 𝑇(𝐴).      (68) 

Put 𝑎2 = 𝑎1 + 𝑐1 + 𝑐2. Note that 0 ≤ 𝑎2 ≤ 1 and 

𝑑𝜏(𝑎2) = 1 −
9𝜎

10
< 1   for all𝜏 ∈ 𝑇(𝐴).                   (69) 

By the strict comparison, (67), (69) and the fact that A has stable rank one, we 

mayassume, without loss of generality, that 

𝑎2 ∈ 𝐴   𝑎𝑛𝑑   𝑏 ∈ 𝑎1𝑀𝐾(𝐴)𝑎1.̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
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Suppose that 

Det(𝑢)(𝜏) =  𝑠(𝜏)  for all𝜏 ∈ 𝑇(𝐴)(70) 

for some 𝑠 ∈ Aff(𝑇(𝐴)). 

The above argument also shows that there are 𝑏1 ∈ 𝑎1𝐴 𝑐1.̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑏2 ∈ 𝑎2𝐴 𝑐2.̅̅ ̅̅ ̅̅ ̅̅ ̅ such that 

𝜏(𝑏1)  =  𝜎𝑠(𝜏)/6 and𝜏(𝑏2)  =  𝜎𝜏(𝑏)/6  for all𝜏 ∈ 𝑇(𝐴).               (71) 

Let 

ℎ1 =
−6𝑏2
𝜎

+
6𝑏1
𝜎
+ 𝑏. 

Note that 

𝜏(ℎ1)  =  (6/𝜎)𝜏(𝑏1)  =  𝑠(𝜏) for all𝜏 ∈ 𝑇(𝐴).            (72) 

Define𝑣 =  exp(𝑖ℎ1). One checks, by (72), that 

Det(𝑣) =  Det(𝑢).                                                       (73) 

Therefore 

𝑢𝑣∗ ∈ 𝐶𝑈(𝐴).                                                       (74) 

Let sp(ℎ1)  ⊂ [−𝑚1𝜋,𝑚2𝜋] for some integers𝑚1, 𝑚2 ≥ 0. Note that 𝑓(𝑏𝑗) ∈ 𝑐𝑗𝐴𝑐𝑗̅̅ ̅̅ ̅̅ if𝑓 ∈

𝐶 (sp(𝑏𝑗)) , 𝑗 =  1, 2. So, if, in addition, ‖𝑓‖ ≤ 1, by (68), 

                           |𝜏(𝑓(𝑏𝑗))|  < 𝜎/5    for all  𝜏 ∈ 𝑇(𝐴).                                 (75) 

We have, for any 𝑓 ∈ 𝐶([−𝑚1𝜋,𝑚2𝜋])𝑠.𝑎. with ‖𝑓‖ ≤ 1, by (75), 

|𝜏(𝑓(ℎ1)) − Γ1(𝑓|[0,2𝜋])| = |𝜏(𝑓(𝑏)) + 𝜏(𝑓(𝑏1)) + 𝜏(𝑓(𝑏2)) − Γ1(𝑓|[0,2𝜋])|      (76)  

= 𝜎/5 + 𝜎/5 + |𝜏(𝑓(𝑏)) − Γ1(𝑓|[0,2𝜋])| = 2𝜎/5                                  (77) 

For all 𝜏 ∈ 𝑇(𝐴). Therefore, by (66), (76), and (77), we have that  

|𝜏(𝑔(𝑣)) − 𝜏(𝑔(𝑢))| < 𝜎 + 2𝜎/5 < 𝛿       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝒢.              (78) 

It follows from (4) that there exits a unitary 𝑤 ∈ 𝑈(𝐴) such that 

‖𝑢 − 𝑤∗𝑣𝑤‖ < 𝜖. 

Let ℎ =  𝑤∗ℎ1𝑤. Then 

‖𝑢 − exp(𝑖ℎ)‖ < 𝜖. 

Corollary (2.1.16)[80]: Let 𝒵 be the Jiang-Su algebra. Then 

𝑐𝑒𝑟(𝒵) = 1 + 𝜖. 

We will prove much stronger result than the above for 𝒵.The following is known 

(something similar could be found in [129] and [109]). We state here forthe convenience. 

Lemma (2.1.17)[80]:   Let 𝑢 be a unitary in 𝐶([0, 1],𝑀𝑛). Then, for any 𝜖 >  0, there 

exist continuous functions ℎ𝑗 ∈ 𝐶([0, 1])𝑠.𝑎. such that 

‖𝑢 − 𝑢1‖ < 𝜖, 

where𝑢1 =  𝑒𝑥𝑝(𝑖𝜋𝐻),𝐻 = ∑ ℎ𝑗𝑝𝑗
𝑛
𝑗=1  𝑎𝑛𝑑 {𝑝1, 𝑝2, . . . , 𝑝𝑛} is a set of mutually orthogonal 

rankone projections in 𝐶([0, 1],𝑀𝑛), and 𝑒𝑥𝑝(𝑖𝜋ℎ𝑗(𝑡)) ≠ 𝑒𝑥𝑝(𝑖𝜋ℎ𝑘(𝑡)) if 𝑗 ≠ 𝑘 for all 

𝑡 ∈ [0, 1].Moreover, suppose that 𝑢(0) = ∑ exp (𝑖𝑎𝑗)
𝑛
𝑗=1 𝑝𝑗(0) for some real number 𝑎𝑗 

which are distinct, we may assume that ℎ𝑗(0) = 𝑎𝑗. 
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    Furthermore, if 𝑑𝑒𝑡(𝑢(𝑡)) = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 1], then we may also assume that 

𝑑𝑒𝑡(𝑢1(𝑡))  =  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 1]. 

Proof: 

   The last part of the statement follows from  [109]. By Lemma (2.1.5), if𝑑𝑒𝑡(𝑢(𝑡)) =

1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 1], then we can choose 𝑢1 such that ‖𝑢 − 𝑢1‖ < 𝜖and 𝑑𝑒𝑡(𝑢1(𝑡)) =

1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 1] and 𝑢(𝑡) has distinct eigenvalues. Therefore 𝑢1 = ∑ 𝑧𝑗(𝑡)
𝑘
𝑗=1 𝑝𝑗(𝑡), 

where𝑝𝑗(𝑡) ∈ 𝐶([0, 1],𝑀𝑛) is a rank one projection,∑ 𝑝𝑗(𝑡)
𝑘
𝑗=1 = 1 and 𝑧𝑗(𝑡) ∈ 𝐶([0, 1]) 

with |𝑧𝑗(𝑡)| = 1for all 𝑡 ∈ [0, 1]Let 𝑧𝑗(𝑡) = 𝑒
𝑖𝑎(0)for some real number 𝑎(0). But 𝑧𝑗(𝑡) =

𝑒𝑖𝑏𝑗(𝑡) for some real 𝑏𝑗 ∈ 𝐶([0, 1]), 𝑗 = 1, 2, . . . , 𝑛. Notethat 𝑎𝑗(0) − 𝑏𝑗(0) = 2𝑘𝜋 for 

some integer 𝑘. By replacing 𝑏𝑗by 𝑎𝑗(𝑡) = ℎ𝑗(𝑡) + (𝑎𝑗(0) − ℎ𝑗(0)).Then 𝑧𝑗(𝑡) =

𝑒𝑖𝑎𝑗(0)and 𝑧𝑗(0) = 𝑎𝑗(0), 𝑗 = 1, 2, . . . , 𝑛. In particular, 

𝑢1(𝑡) =∑𝑒𝑖𝑎𝑗(𝑡)
𝑛

𝑗=1

𝑝𝑗(𝑡)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1]. 

Lemma (2.1.18)[80]:   Let 𝑢 ∈ 𝐶([0, 1],𝑀𝑛) be a unitary with 𝑑𝑒𝑡(𝑢)(𝑡) = 1 for 

each𝑡 ∈ [0, 1]. Then, for any 𝜖 > 0, there exists a self-adjoint element ℎ ∈  𝐶([0, 1],𝑀𝑛) 

such that‖ℎ‖ ≤  1, 𝜏(ℎ) = 0 for each 𝜏 ∈  𝑇(𝐶([0, 1],𝑀𝑛) and 

‖𝑢 − exp (𝑖2𝜋ℎ)‖ < 𝜖. 

In particular 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢) ≤ 2𝜋. 

Proof:  First, without loss of generality, wemay assume that 𝑢(0) has distinct 

eigenvalues. Suppose that 

𝑢(0) =∑exp(𝑖2𝜋𝑏𝑗)

𝑛

𝑗=1

𝑝𝑗(0), 

where𝑏𝑗 ∈ (−1/2, 1/2], 𝑗 = 1, 2, . . . , 𝑛. 

Then∑ 𝑏𝑗
𝑛
𝑗=1 =  𝑘 for some integer 𝑘. Since 𝑏𝑗 ∈ (−1/2, 1/2], 𝑘 ≤ 𝑛. Keep in mind that𝑏𝑗 

aredistinct. If 𝑘 ≥ 1, to simplify notation, we may assume that 𝑏𝑗 > 0, 𝑗 =

 1, 2, . . . , 𝑘, 𝑏𝑘+𝑙 < 𝑏𝑘 < 𝑏𝑗for 𝑗 <  𝑘 and 𝑙 >  0. Define 𝑎𝑗 = 𝑏𝑗 −  1, 𝑗 =  1, 2, . . . , 𝑘and 

𝑎𝑗 = 𝑏𝑗 , 𝑗 > 𝑘. Then 

∑𝑎𝑗

𝑛

𝑗=1

= 0    𝑎𝑛𝑑 |𝑎𝑗| < 1.                                         (79) 

Note that 𝑚𝑎𝑥𝑗𝑎𝑗 < 𝑏𝑘. Since 𝑏𝑗 > −1/2, 𝑚𝑖𝑛𝑗𝑎𝑗 = 𝑏𝑘 −  1. Therefore, we also have 

max
𝑗
𝑎𝑗 −min

𝑗
𝑎𝑗 < 1.                                             (80) 

If 𝑘 < −1, we may assume that 𝑏𝑗 <  0, 𝑗 = 1, 2, . . . , 𝑘, 𝑏𝑘+𝑙 ≥ 𝑏𝑘 > 𝑏𝑗 for 𝑗 ≤  𝑘 and 

𝑙 >  0. Define𝑎𝑗 = 𝑏𝑗 +  1, 𝑗 =  1, 2, . . . , 𝑘 and 𝑎𝑗 = 𝑏𝑗if 𝑗 >  𝑘. Then (79) and (80) also 

hold in this case. 

 We may assume, without loss of generality, that 
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                                     𝑢(𝑡) =∑exp(𝑖2𝜋ℎ𝑗(𝑡))

𝑛

𝑗=1

𝑝𝑗(𝑡),                                              (81) 

whereℎ𝑗(𝑡) ∈ 𝐶([0, 1])𝑠.𝑎. and {𝑝1, 𝑝2, . . . , 𝑝𝑛} is a set of mutually orthogonal rank one 

projections.Moreover, we may assume that 𝑑𝑒𝑡(𝑢(𝑡))  =  1 for all 𝑡 ∈  [0, 1] and 𝑢(𝑡) has 

distinct eigenvaluesat each point 𝑡 ∈  [0, 1]. We may also assume that ℎ𝑗(0) = 𝑎𝑗 , 𝑗 =

 1, 2, . . . , 𝑛.We also have that |ℎ𝑗(0)|  <  1, 

∑ℎ𝑗

𝑛

𝑗=1

(0) = 0   𝑎𝑛𝑑   max
𝑗
𝑎𝑗 −min

𝑗
𝑎𝑗 < 1.                           (84) 

Since 𝑑𝑒𝑡(𝑢(𝑡))  =  1 for all 𝑡 ∈  [0, 1], 

∑ℎ𝑗

𝑛

𝑗=1

(𝑡) ∈ ℤ    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1].                                                  (83) 

Since∑ ℎ𝑗
𝑛
𝑗=1 (𝑡) ∈  𝐶([0, 1]), it follows that it is a constant. By (81), 

∑ℎ𝑗

𝑛

𝑗=1

(𝑡) = 0       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1].                                             (84) 

Since 𝑢(𝑡) has distinct eigenvalues, ℎ𝑗(𝑡) − ℎ𝑘(𝑡) ∉ ℤ, for any 𝑡 ∈ [0, 1] when 𝑗 ≠ 𝑘. We 

also havemax
𝑗
ℎ𝑗(𝑡) − min

𝑗
ℎ𝑗(𝑡) is a continuous function. It follows from (82) that 

                         0 < max
𝑗
ℎ𝑗(𝑡) − min

𝑗
ℎ𝑗(𝑡) < 1          𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1].                 (85) 

Now by (84), eitherℎ𝑗(𝑡)  =  0 for all 𝑗, which is not possible, since 𝑢(𝑡) has 𝑛 

distincteigenvalues, or, for some 𝑗, ℎ𝑗(𝑡) < 0 and for some other 𝑗′, ℎ𝑗′ >  0, it follows 

from (85) that 

|ℎ𝑗| < 1       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,1].                                             (86) 

Now let ℎ = ∑ ℎ𝑗
𝑛
𝑗=1 ∈ 𝐶([0, 1],𝑀𝑛)𝑠.𝑎.. Then 

‖ℎ‖ < 1,   𝜏(ℎ) = 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)     𝑎𝑛𝑑  𝑢 = exp(𝑖2𝜋ℎ).                   (87) 

We will use the following theorem . 

Theorem (2.1.19)[80]:  Let 𝐴 ∈ 𝒜1 be a unital separable simple 𝒵-stable 𝐶∗-algebra. 

Suppose that𝑢 ∈  𝐶𝑈(𝐴). Then, for any 𝜖 > 0, there exists a self-adjoint element ℎ ∈  𝐴 

with ‖ℎ‖ <  1 suchthat 

‖𝑢 − exp(𝑖2𝜋ℎ)‖ < 𝜖.                                                   (88) 

In particular, 𝑐𝑒𝑙𝐶𝑈(𝐴)  ≤  2𝜋. 

Proof:     We may assume that 𝑠𝑝(𝑢)  = 𝕋. Let 𝜖 > 0. Let 𝜑 ∶  𝐶(𝕋)  →  𝐴 be defined by 

𝜑(𝑓)  =  𝑓(𝑢).It is a unitalmonomorphism. That there is a non-decreasing function 

∆: (0, 1)  →  (0, 1) such that 

𝜇𝜏(𝑂𝑎) ≥ ∆(𝑎)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                                 (89) 

for all open balls 𝑂𝑎 of 𝕋 with radius 𝑎 ∈  (0, 1). 
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Note, by [95], for any supernatural number 𝑝 of infinite type, 𝑇𝑅(𝐴⊗𝑀𝑝) ≤ 1. 

Consider𝑢 ⊗  1. Denote by up for 𝑢 ⊗  1in 𝐴⊗𝑀𝑝. For any 𝜖/2 > 𝜖0 >  0, there is a 

self-adjointelement ℎ𝑝 ∈  𝐴 ⊗𝑀𝑝 with 𝑠𝑝(ℎ𝑝)  =  [−2𝜋, 2𝜋] such that 

‖𝑢𝑝 − exp(𝑖ℎ𝑝)‖ < 𝜖0    𝑎𝑛𝑑  𝜏(ℎ𝑝) = 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴⊗𝑀𝑝).         (90) 

Let 𝜓0: 𝐶(𝑇) → 𝐴⊗𝑀𝑝 be the homomorphism defined by 𝜓0(𝑓) = 𝑓(𝑒𝑥𝑝(𝑖ℎ𝑃)) for all 

𝑓 ∈  𝐶(𝑇).Let 𝜂 >  0, 𝛿 >  0 and let 𝒢 be a finite subset as required by (4) for 𝜖/2 (in 

place of 𝜖) and ∆.Choose 𝜖0 sufficiently small, so the following holds: For any unitary 

𝑣 ∈ 𝐴⊗𝑀𝑝, if ‖𝑢𝑝 − 𝑣‖ < 𝜖0,then 

|𝜏 (𝑔(𝑢𝑝)) − 𝜏(𝑔(𝑣))| < 𝛿  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴)                         (91) 

and for all 𝑔 ∈ 𝒢. Note each 𝜏 ∈ 𝐴⊗𝑀𝑝 may be written as 𝑠 ⊗ 𝑡, where 𝑠 ∈ 𝑇(𝐴) is any 

tracialstate and 𝑡 ∈  𝑇(𝑀𝑝) is the unique tracial state. 

Let Γ ∶  𝐶([−2𝜋, 2𝜋])𝑠.𝑎. →  𝐴𝑓𝑓(𝑇(𝐴) be defined by 

                   Γ(𝑓)(𝜏) = (𝜏 ⊗ 𝑡)(𝑓(ℎ𝑝))   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑓 ∈ 𝐶([−2𝜋, 2𝜋])𝑠.𝑎.             (92) 

and for all 𝜏 ∈  𝑇(𝐴), where t is the unique tracial state on 𝑀𝑝. 

It follows from (6) that there exists a self-adjoint element ℎ ∈  𝐴 with 𝑠𝑝(ℎ)  =

 [−2𝜋, 2𝜋] suchthat 

     𝜏(𝑓(ℎ)) = Γ(𝑓)(𝜏) = (𝜏 ⊗ 𝑡)(𝑓(ℎ𝑝))    𝑓𝑜𝑟 𝑎𝑙𝑙  𝑓 ∈ 𝐶([−2𝜋, 2𝜋])(93) 

and for all 𝜏 ∈  𝑇(𝐴). In particular, 

                                                    𝜏(ℎ) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙  𝜏 ∈ 𝑇(𝐴).                                 (94) 

Define 𝑣1 = 𝑒𝑥𝑝(𝑖ℎ)  ∈  𝐴. Note that, by (92), 

                  𝜏(𝑔(𝑣1)) = (𝜏 ⊗ 𝑡)𝑔(exp (𝑖ℎ𝑝))     𝑓𝑜𝑟 𝑎𝑙𝑙  𝜏 ∈ 𝑇(𝐴)                      (95) 

and for all 𝑓 ∈  𝐶(𝑇). By the choice of 𝜖0, as in (91), 

|𝜏(𝑔(𝑢)) − 𝜏(𝑔(𝑣1))| = |(𝜏 ⊗ 𝑡)(𝑔(𝑢𝑝)) − (𝜏 ⊗ 𝑡) (𝑔(exp (𝑖ℎ𝑝)))| < 𝛿  (96) 

for all 𝜏 ∈  𝑇(𝐴) and for all 𝑔 ∈ 𝒢. We also have [𝑣1]  =  [𝑢]  =  0in 𝐾1(𝐴). Furthermore, 

𝑣1 ∈  𝐶𝑈(𝐴 ⊗  𝑍). Thus, by applying (4), there exists a unitary 𝑤 ∈  𝐴 such that 

‖𝑢 − 𝑤∗ exp(𝑖ℎ)𝑤‖ < 𝜖/2.                                          (97) 

Theorem (2.1.20)[80]:  Let 𝐴 be a unital separable simple 𝒵-stable 𝐶∗-algebra in 𝒜0 

with a uniquetracial state. Then, for any unitary 𝑢 ∈ 𝑈0(𝐴), there exists a real number 

−𝜋 < 𝑎 < 𝜋 suchthat, for any 𝜖 >  0, there exists a self-adjoint element ℎ ∈  𝐴 

with‖ℎ‖ ≤ 2𝜋 and 

‖𝑢 − exp(𝑖(ℎ + 𝑎))‖ < 𝜖. 

Consequently 

𝑐𝑒𝑙 (𝐴) ≤ 3𝜋. 

Proof:    Let 𝑢 ∈ 𝑈0(𝐴) and let 𝜖 >  0. Since 𝐴 has a unique tracial state 𝜏, 𝑈0(𝐴)/

𝐶𝑈(𝐴)  = ℝ/𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Therefore there is 𝑡 ∈  (−1, 1) such that 

                                                𝐷𝑒𝑡(𝑢) = 𝑡 + 𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.                                       (98) 

Consequently 
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𝑒−𝜋𝑡𝑢 ∈ 𝐶𝑈(𝐴).                                                (99) 

It follows from theorm (2.1.19) that there is a self-adjoint element ℎ ∈  𝐴 with ‖ℎ‖ ≤  2𝜋 

such that 

‖𝑒−𝜋𝑡𝑢 − exp(𝑖ℎ)‖ < 𝜖.                                             (100) 

Therefore 

‖𝑢 − 𝑒𝑖𝜋𝑡 exp(𝑖ℎ)‖ < 𝜖.                                         (101) 

Let 𝑎 =  𝜋𝑡. Note that 𝑒𝑖𝜋𝑡 exp(𝑖ℎ) =  𝑒𝑥𝑝(𝑖(ℎ +  𝑎)). Put ℎ1 = ℎ + 𝑎. We conclude 

that 

‖𝑢 − exp(𝑖ℎ1)‖ < 𝜖. 

Note that ‖ℎ1‖ ≤ ‖ℎ‖ + |𝑎| < 3𝜋. There is ℎ2 ∈ 𝐴𝑠.𝑎. with ‖ℎ2‖ < 2𝑎𝑟𝑐𝑠𝑖𝑛(𝜋/2) such 

that 

                                             𝑢 = exp(𝑖ℎ1) exp(𝑖ℎ2).                                                 (102) 

If we choose 𝜖 so that 

2 arcsin(𝜖/2) < 3𝜋 − ‖ℎ‖ + |𝑎|, 

then 

‖ℎ1‖ + ‖ℎ2‖ < 3𝜋. 

Corollary (2.1.21)[80]: Let 𝑢 ∈ 𝑈0(𝒵) be a unitary. There exists 𝑡 ∈ (−𝜋, 𝜋) such 

that, for any 𝜖 > 0,there exists a self-adjoint element ℎ ∈ 𝒵 with ‖ℎ‖ ≤ 2𝜋 and a real 

number −𝜋 < 𝑡 ≤ 𝜋 satisfying  

‖𝑒𝑖𝑡𝑢 − exp(𝑖ℎ)‖ < 𝜖.                                                    (103) 

    Let 𝑢 ∈  𝐶([0, 1],𝑀𝑛) be defined as follows: 

                  𝑢(𝑡) = 𝑒𝜋𝑖𝑡(2−1/(𝑛−1))𝑒1 + 𝑒
−𝜋𝑖

𝑡(2−1/(𝑛−1))

(𝑛−1) (∑𝑒𝑘

𝑛

𝑘=2

)  𝑎𝑛𝑑              (104) 

ℎ(𝑡) = 𝑡(2 − 1/(𝑛 − 1))𝑒1 −
𝑡(2 − 1/(𝑛 − 1))

(𝑛 − 1)
(∑𝑒𝑘

𝑛

𝑘=2

)   𝑓𝑜𝑟 𝑡 ∈ [0,1],    (105) 

 

where{𝑒1, 𝑒2, . . . , 𝑒𝑛} is a set of mutually orthogonal rank one projections. 

Then 

𝑢(𝑡) = exp(𝑖𝜋ℎ)               𝑎𝑛𝑑    𝜏(ℎ) = 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐶[0,1],𝑀𝑛). 

Therefore 𝑑𝑒𝑡(𝑢(𝑡)) = 1 for all 𝑡 ∈ [0, 1]and 𝑢 ∈ 𝐶𝑈(𝐶[0, 1],𝑀𝑛). Note also ‖ℎ‖ =

𝜋(2 − 1/(𝑛 − 1)). In what follows we will show that 𝑐𝑒𝑙(𝑢) ≥ (2 − 1/(𝑛 − 1))𝜋. It  

should  be noted that it ismuch easier to show that if 𝑢(𝑡) = 𝑒𝑥𝑝(𝑖𝐻) for some self-adjoint 

element in 𝐶([0, 1],𝑀𝑛)then‖𝐻‖ ≥ (2 − 1/(𝑛 − 1))𝜋. 

Suppose that 𝑐𝑒𝑙(𝑢) = 𝑟1. Fix 𝑟1 > 𝜖 > 0 and put 𝑟 =  𝑟1 + 𝜖/16. Then there are self-

adjointelements ℎ1, ℎ2, . . . , ℎ𝑘 ∈  𝐶([0, 1],𝑀𝑛) such that 

                                   𝑢 =∏exp(𝑖ℎ𝑗)

𝑘

𝑗=1

      𝑎𝑛𝑑   ∑‖ℎ𝑗‖

𝑘

𝑗=1

= 𝑟.                              (106) 
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Define 𝑢𝑠 = ∏ 𝑒𝑥𝑝𝑘
𝑗=1 (𝑖ℎ𝑗(1 − 𝑠)). Then us is continuous and piecewise smooth on 

[0, 1]. Moreoverlength{𝑢(𝑡)}  ≤  𝑟. Since ℎ𝑗(𝑡)(1 − 𝑠) is continuous on [0, 1] × [0, 1], 

one shows that 𝑊(𝑡, 𝑠) = 𝑢𝑠(𝑡)is continuous on [0, 1] × [0, 1]. 

Furthermore 

‖𝑢𝑠1 − 𝑢𝑠2‖ ≤ 𝑟|𝑠1 − 𝑠2|     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠1, 𝑠2 ∈ [0,1].                          (107) 

Lemma (2.1.22)[80]: Let 𝑢 and 𝑣 be two unitaries in a unital 𝐶∗-algebra 𝐴. Suppose 

that there is acontinuous path of unitaries {𝑤(𝑡): 𝑡 ∈ [0, 1]} ⊂ 𝐴with 𝑤(0) =

𝑢 𝑎𝑛𝑑 𝑤(1) = 𝑣. Then, if𝜆 ∈  𝑠𝑝(𝑢), there is a continuous path {𝜆(𝑡) ∈ 𝑇: 𝑡 ∈ [0, 1]} 

such that 𝜆(0)  =  𝜆, 𝜆(𝑡)  ∈  𝑠𝑝(𝑤(𝑡)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 1].If furthermore, 

𝑙𝑒𝑛𝑔𝑡ℎ{𝑤(𝑡): 𝑡 ∈  [0, 1]} = 𝑟 ≤ 𝜋/2, then one can require that 

𝑙𝑒𝑛𝑔𝑡ℎ {𝜆(𝑡): 𝑡 ∈ [0,1] ≤ 𝑟. 

Proof: The proof of this was originally taken from an argument of Phillips . One obtains 

a sequence of partitions {𝒫𝑛} of [0, 1] such that 𝒫𝑛 ⊂ 𝒫𝑛+1, 𝑛 =  1, 2, . . ., foreach partition 

𝒫𝑛 = {0 = 𝑡0
(𝑛)
< 𝑡1

(𝑛)
< ···  𝑡𝑘(𝑛)

(𝑛)
=  1}, there are 𝜆(𝑛, 𝑖)  ∈  𝑠𝑝(𝑤(𝑡𝑖

(𝑛)
)) such that 

|𝜆(𝑛, 𝑖) − 𝜆(𝑛, 𝑖 + 1| = ‖𝑤 (𝑡𝑖
(𝑛)
) − 𝑤 (𝑡(𝑖+1)

(𝑛)
)‖          𝑎𝑛𝑑                 (108) 

∑|𝜆(𝑛, 𝑖) − 𝜆(𝑛, 𝑖 + 1|

𝑘(𝑛)

𝑖=1

≤ ∑ ‖𝑤 (𝑡𝑖
(𝑛)
) − 𝑤 (𝑡(𝑖+1)

(𝑛)
)‖

𝑘(𝑛)

𝑖=1

≤ 𝑟,                (109) 

if{𝑤(𝑡)} is rectifiable with 𝑙𝑒𝑛𝑔𝑡ℎ{𝑤(𝑡): 𝑡 ∈ [0, 1]} = 𝑟. Write 𝜆(𝑛, 𝑗) = 𝑒𝑖𝜃(𝑛,𝑗) with 

𝜃(𝑛, 𝑗)  ∈ [0, 2𝜋), 𝑗 =  1, 2, . . . , 𝑘(𝑛)and 𝑛 =  1, 2,⋯. Define 

                                                𝜃(𝑡) = sup {𝜃(𝑛, 𝑗): 𝑡𝑗
(𝑛)
≤ 𝑡}.                                  (110) 

By the uniform continuity of 𝑤(𝑡), one checks that 𝜆(𝑡)  =  𝑒𝑥𝑝(𝑖𝜃(𝑡)) is continuous on 

[0, 1], 𝜆(𝑡)  ∈  𝑠𝑝(𝑤(𝑡)) and 𝑙𝑒𝑛𝑔𝑡ℎ({𝜆(𝑡)}  ≤  𝑟. 

 Suppose that 𝑢(𝑡)  ∈  𝐶([𝑐, 𝑑],𝑀𝑛) is a unitary which has the form: 

𝑢(𝑡) = 𝑓(𝑡)𝑞1 + 𝓏(𝑡)       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [𝑐, 𝑑], 

where𝑓 (𝑡)  ∈ 𝐶 ([0, 1], 𝕋), 𝑞1 is a rank one projection and 𝓏 ∈

(1 – 𝑞1) 𝐶([𝑐, 𝑑],𝑀𝑛)(1 −  𝑞1) isa unitary. Let 𝑐𝑒𝑙(𝑢) = 𝑟1 and fix 𝑟1/2 > 𝜖 > 0. Let 

𝑟 =  𝑟1 + 𝜖/16. let{𝑊(𝑡, 𝑠) ∶  𝑠 ∈  [0, 1]} be a continuous rectifiable path such that 

𝑊(𝑡, 𝑠)  ∈  𝐶([𝑐, 𝑑]  × [0, 1],𝑀𝑛) with𝑊(𝑡, 0) = 𝑢(𝑡) and 𝑊(𝑡, 1)  =  1 with length r. 

Fix 𝑠0 ∈  (0, 1]. Suppose that 𝑙𝑒𝑛𝑔𝑡ℎ{𝑊(𝑡, 𝑠): 𝑠 ∈ [0, 𝑠0]} = 𝑟0. Define 𝑆1 the subset of 

𝕋such that every point of 𝑆1 can be connected to a point in 𝑠𝑝(𝓏) by a continuous path of 

length at most 𝑟0. 

   Then we have the following: 

Lemma (2.1.23)[80]:    Let {𝑓(𝑡) ∶  𝑡 ∈  [𝑐, 𝑑]}  =  {𝑒𝑖𝑡: 𝑡 ∈  [𝑡0, 𝑡1]} with 𝑓(𝑐) = 𝑒𝑖𝑡0 

and 𝑓(𝑑) = 𝑒𝑖𝑡1 such that 𝑡1 − 𝑡1 = 𝑟2. Suppose that 

𝑑𝑖𝑠𝑡(𝜆𝑡(𝑠), 𝑆1) > 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [𝑡0, 𝑡1]   𝑎𝑛𝑑 𝑠 ∈ [0, 𝑠0], 

where 𝑙𝑒𝑛𝑔𝑡ℎ{𝑊(𝑡, 𝑠): 𝑠 ∈  [0, 𝑠0]}  = 𝑟0 < 𝑟2/2. Then 

𝑊(𝑡, 𝑠0) = 𝑔𝑠0(𝑡)𝑞1 + 𝑣1(𝑡)      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [𝑐1, 𝑑1] 
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for some [𝑐1, 𝑑1]  ⊂  [𝑐, 𝑑] with 𝑑1 > 𝑐1. Moreover 𝑔𝑠0(𝑡) is a continuous function and 

{𝑔𝑠0(𝑡): 𝑡 ∈ [𝑐1, 𝑑1]} ⊃ {𝑒
𝑖𝑡: 𝑡 ∈ [𝑡0 + 𝑟0, 𝑡1 − 𝑟0]}. 

Proof:   View 𝑍 =  𝑊(𝑡, 𝑠)|[𝑐,𝑑]×[0,𝑠0] as a unitary in 𝐶([𝑐, 𝑑] × [0, 𝑠0],𝑀𝑛). Then the 

assumptionimplies that 

𝑠𝑝(𝑍) ⊂ 𝐽⨆𝑆1, 

where𝐽 = {𝜆𝑡(𝑠): 𝑡 ∈ [𝑡0, 𝑡1] and 𝑠 ∈  [0, 𝑠0]}, Note that 𝐽 ∩ 𝑆1 = ∅. Then, there is a non-

zeroprojection 𝑞1
′ ∈  𝐶([𝑐, 𝑑]  × [0, 𝑠0], 𝑀𝑛) such that 

                                                                  𝑍 = 𝑧1 + 𝑧2,                                                   (111) 

where𝑧1 ∈  𝑞1
′𝐶([𝑐, 𝑑]  × [0, 𝑠0],𝑀𝑛)𝑞1

′  and 𝑧2 ∈ (1 − 𝑞1
′)𝐶([𝑐, 𝑑]  × [0, 𝑠0], 𝑀𝑛)(1 − 𝑞1

′ ) 

are unitariessuch that 𝑠𝑝(𝑧1) ⊂ 𝐽 and 𝑠𝑝(𝑧2) 𝑆1. Since 𝑞1
′has rank one in [𝑐, 𝑑]  ×  {0}, we 

conclude that 𝑞1
′has rank one everywhere. Thus 

𝑍(𝑡, 𝑠) = 𝑔𝑠(𝑡)𝑞1
′ (𝑡, 𝑠) + 𝑧2(𝑠, 𝑡)    𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑡, 𝑠) ∈ [𝑐, 𝑑] × [0, 𝑠0]. 

Note that 𝑔𝑠(𝑡)  ∈  𝐶([𝑐, 𝑑] × [0, 𝑠0]). Therefore {𝑔𝑠0  (𝑡): 𝑡 ∈  [𝑐, 𝑑]}is an are containing 

𝑔(𝑐)  =  𝜆𝑐(𝑠0)and 𝑔𝑠0(𝑑). By the assumption, 𝑔𝑠0(𝑐) ∈ {𝑒
𝑖𝑡: 𝑡 ∈  [𝑡0 − 𝑟0, 𝑡0 + 𝑟0]}and 

𝑔𝑠0(𝑑) ∈ {𝑒
𝑖𝑡𝑡 ∈ [𝑡1 − 𝑟0, 𝑡1 + 𝑟0]}. The lemma follows. 

Lemma (2.1.24)[80]: Suppose that 𝑙𝑒𝑛𝑔𝑡ℎ({𝑊(𝑡, 𝑠): 𝑠 ∈ [0, 𝑠1]} = 𝐶1 <  𝜋/4. If 

[𝑐, 𝑑] ⊂ [𝑎, 𝑏] such that 

𝑑𝑖𝑠𝑡({𝑓(𝑡) ∶  𝑡 ∈  [𝑐, 𝑑]}, {𝑠𝑝(𝑣1(𝑡)) ∶  𝑡 ∈  [𝑐, 𝑑]}) = 𝑟1 =  4 𝑠𝑖𝑛(𝐶1/2)  +  𝛿 

for some 0 <  𝛿 <  𝜋/8, {𝑓(𝑡): 𝑡 ∈ [𝑐, 𝑑]} = {𝑒𝑖𝑡: 𝑡 ∈ [𝑡0, 𝑡1]} with 𝑡0, −𝑡1 > 2𝑟1, then, 

for any 𝛿 >  0,there exists an interval [𝑐1, 𝑑1]  ⊂  [𝑐, 𝑑] with 𝑐1 < 𝑑1, a rank one 

projection 𝑞1 ∈ 𝐶([𝑐1, 𝑑1],𝑀𝑛)such that 

                                           𝑊(𝑡, 𝑠1) = 𝑔𝑠1(𝑡)𝑞1 + 𝑣1
′(𝑡),                                           (112) 

where𝑔𝑠1(𝑡)  ∈  𝐶([𝑐1, 𝑑1]) with 

{𝑔1(𝑡): 𝑡 ∈ [𝑐1, 𝑑1]} = {𝑒
𝑖𝑡: 𝑡 ∈ [𝑡0 + 𝐶1 + 𝛿, 𝑡1 − 𝐶1 − 𝛿]},                      (113) 

where 2𝜋 > 𝑡1
′ > 𝑡0

′ ≥  0, and where 𝑣1
′ ∈ (1 − 𝑞1)𝐶([𝑐1, 𝑑1],𝑀𝑛)(1 − 𝑞1) is a unitary 

with𝑠𝑝(𝑣1(𝑡)) ⊂ 𝑆1, where 𝑆1 is a subset of 𝕋 such that every point of 𝑆1 can be 

connected by a pointin 𝑠𝑝(𝑣(𝑡)) (𝑡 ∈  [𝑐, 𝑑]) by a continuous path with length at most 𝐶1. 

Proof: Let 𝑆1 be the subset of 𝕋 such that every point in 𝑆1 can be connected to a point 

in𝑠𝑝(𝑣1) with length at most 𝐶1. Since 𝑙𝑒𝑛𝑔𝑡ℎ({𝑊(𝑡, 𝑠): 𝑠 ∈ [0, 𝑠1]} = 𝐶1 <  𝜋/4, 

                     𝑑𝑖𝑠𝑡(𝜆𝑡(𝑠), 𝑆1) >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [𝑡0, 𝑡1]𝑎𝑛𝑑 𝑠 ∈ [0, 𝑠1].              (114) 

 Theorem (2.1.25)[80]:     Let 𝑢(𝑡)  ∈  𝐶([0, 1],𝑀𝑛) be the unitary. For any    𝜖 > 0, 

                                      𝑙𝑒𝑛𝑔𝑡ℎ {𝑢(𝑡)} ≥ 𝜋 (2 −
1

𝑛 − 1
) − 𝜖.                                   (115) 

If ℎ ∈ 𝐶([0, 1],𝑀𝑛)𝑠.𝑎. such that 

‖𝑢 − exp(𝑖ℎ)‖ < 𝜖,                                           (116) 

then ‖ℎ‖ ≥ 𝜋 (2 −
1

𝑛−1
) − 2arcsin(ϵ/2). Moreover, 

𝑐𝑒𝑙𝐶𝑈(𝐶[0,1],𝑀𝑛) ≥ 𝜋 (2 −
1

𝑛 − 1
). 
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Proof: From    anterior   definition . We write 

𝑢(𝑡) = 𝑓(𝑡)𝑒1 + 𝑣(𝑡). 

Let 0 < 𝑑 ≤ 𝜖/2 𝑎𝑛𝑑 𝑘 ≥ 1 be an integer such that 𝑘𝑑 =  𝜋(1 − 1/𝑛 − 1). Let 0 <

𝑎0 < 𝑏0 < 1such that 

f(a0) = e
id+ϵ/k2   and  f(b0) = e

iπ(2−1/n−1)−d−ϵ/k2. 

Let 0 < 𝑠1 <  1 such that 𝑙𝑒𝑛𝑔𝑡ℎ{𝑊(𝑡, 𝑠): 𝑠 ∈ [0, 𝑠0]} = 𝑑. It follows from 

lemma(2.1.24) that there exists𝑎0 < 𝑎1 < 𝑏1 < 𝑏0 such that 

                             𝑊(𝑡, 𝑠0) = 𝑔1(𝑡)𝑞1 + 𝑧1(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [𝑎1, 𝑏1],                      (117) 

where𝑞1 is a rank one projection, 𝑧1 ∈  (1 − 𝑞1)𝐶([𝑎1, 𝑏1],𝑀𝑛)(1 − 𝑞1), 

{𝑔1(𝑡): 𝑡 ∈ [𝑎1, 𝑏1]} = {𝑒
𝑖𝑡: 𝑡 ∈ [2𝑑 + 𝜖/𝑘2, 𝜋(2 − 1/(𝑛 − 1)) − 2𝑑 − 𝜖/𝑘2]} 

with𝑔1(𝑎1) = 𝑒
𝑖(2𝑑+𝜖/𝑘2) and 𝑔1(𝑏1) = 𝑒

𝑖(𝜋(2−1/𝑛−1))−2𝑑−𝜖/𝑘2), 𝑠𝑝(𝑧1) ⊂ 𝑆1, where 𝑆1 is 

thesubset of 𝕋 such that every point in S1𝑆1 is connected by a rectifiable continuous path 

from{𝑒𝑖𝑡: 𝑡 ∈  [−(2 − 1/𝑛 − 1)𝜋𝑛 − 1 , 0]}. In particular, 

𝑆1 ⊂ {𝑒
𝑖𝑡: 𝑡 ∈ [−

(2 − 1/(𝑛 − 1))𝜋

𝑛 − 1
− 𝑑,+𝑑]}.                           (118) 

Let 1 > 𝑠1 > 𝑠0 such that 𝑙𝑒𝑛𝑔𝑡ℎ{𝑊(𝑡, 𝑠) ∶  𝑠 ∈  [𝑠0, 𝑠1]}  =  𝑑. By repeating above, one 

obtains𝑎1 < 𝑎2 < 𝑏2 < 𝑏1 such that 

                       𝑊(𝑡, 𝑠1) = 𝑔2(𝑡)𝑞2 + 𝑧2(𝑡),      𝑡 ∈ [𝑎2, 𝑏2],                                    (119) 

where𝑞2 is a rank one projection, 𝑧2 ∈ (1 − 𝑞2)𝐶([𝑎2, 𝑏2],𝑀𝑛)(1 − 𝑞2), 
{𝑔2(𝑡): 𝑡 ∈ [𝑎2, 𝑏2]}                                                                                         (120)

= {𝑒𝑖𝑡: 𝑡 ∈ [2𝑑 +
𝜖

𝑘2
+ 𝑑 +

𝜖

𝑘4
, 𝜋 (2 −

1

𝑛 − 1
) − 2𝑑 −

𝜖

𝑘2
− 𝑑 −

𝜖

𝑘4
]}          (121)

= {𝑒𝑖𝑡: 𝑡 ∈ [3𝑑 +
𝜖

𝑘2
+ 𝑑 +

𝜖

𝑘4
, 𝜋 (2 −

1

𝑛 − 1
) − 3𝑑 −

𝜖

𝑘2
− 𝑑 −

𝜖

𝑘4
]}         (122) 

with𝑔2(𝑎2)  =  𝑒
𝑖(3𝑑+ǫ/𝑘2+ǫ/𝑘4) and 𝑔2(𝑏2) = 𝑒

𝑖(𝜋(2−1/𝑛−1))−3𝑑−𝜖/𝑘2−𝜖/𝑘4), 𝑠𝑝(𝑧1)  ⊂

 𝑆2, where 𝑆2 isthe subset of 𝕋 such that every point in 𝑆2 is connected by a rectifiable 

continuous path from {𝑒𝑖𝑡: 𝑡 ∈ [−2(1 − 1/𝑛 − 1)𝜋/(𝑛 − 1) −  𝑑, 𝑑]}. In particular, 

𝑆2 ⊂ {𝑒
𝑖𝑡: 𝑡 ∈ [−

(2 − 1/(𝑛 − 1))𝜋

𝑛 − 1
−  2𝑑, 𝑑]}.                                (123) 

By repeating this argument 𝑘 −  1 times, We obtain 1 > 𝑠𝑘−1 > 𝑠𝑘−2 such that 

𝑙𝑒𝑛𝑔𝑡ℎ{𝑊(𝑡, 𝑠): 𝑠 ∈ [0, 𝑠𝑘−1]} = (𝑘 − 1)𝑑 = 𝜋(1 − 1/(𝑛 − 1)) − 𝑑    𝑎𝑛𝑑 

𝜋 ∈ {𝑒𝑖𝑡: 𝑡 ∈ [(𝑘 − 1)𝑑 +∑
𝜖

𝑘2𝑗

𝑘−1

𝑗=1

, (2 −
1

𝑛 − 1
)𝜋 − (𝑘 − 1)𝑑 +∑

𝜖

𝑘2𝑗

𝑘−1

𝑗=1

]}

⊂ sp(W(t, sk−1)). 

Thus the minimum length of continuous path from 𝑊(𝑡, sk−1) to 1 is at least 𝜋. Thus 

𝑙𝑒𝑛𝑔𝑡ℎ{𝑢(𝑡)} +
𝜖

16
≥ 𝜋 + (𝑘 − 1)𝑑                                     (124) 

= 𝜋 + 𝜋 (1 −
1

𝑛 − 1
) − 𝑑 ≥ 𝜋(2 − 1/(𝑛 − 1)) − 𝜖/2                               (125) 

for all 𝜖 >  0. It follows that 
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                                           𝑙𝑒𝑛𝑔𝑡ℎ{𝑢(𝑡)} ≥ 𝜋(2 − 1/(𝑛 − 1)).                               (126) 

Fix an integer 𝑛 > 12 and let 𝑘0 ≥ 0. Suppose that 0 ≤ 𝑘 ≤ 𝑘0. Let 𝑁 = 𝑚𝑛 + 𝑘 and 

let𝑁0 =  𝑚𝑛. Consider a unitary 𝑢00 ∈ 𝐶([0, 1],𝑀𝑁0) : 

𝑢00 = 𝑒
𝜋𝑖𝑡(2−1/(𝑛−1))𝑃1 + 𝑒

−𝜋𝑖𝑡(2−1/(𝑛−1))𝑃2,                               (127) 

where𝑃1, 𝑃2 ∈  𝐶([0, 1],𝑀𝑁0) are constant projections with 𝑟𝑎𝑛𝑘 𝑃1 =  𝑚 and 𝑟𝑎𝑛𝑘 𝑃2  =

 (𝑛 − 1)𝑚. Define 

𝑢0 = 𝑢00 + 𝑣0 ∈ 𝐶([0,1],𝑀𝑁),                                        (128) 

where𝑣0 ∈  (1 − (𝑃1 + 𝑃2))𝐶([0, 1],𝑀𝑁)(1 − (𝑃1 + 𝑃2)) is another unitary such that 

𝑑𝑒𝑡(𝑣0(𝑡)) = 1for each 𝑡 ∈ [0, 1] and 𝑣0 = ∑ 𝜆𝑗
𝑘
𝑗=1 𝑒𝑗, where {𝑒1, 𝑒2, . . . , 𝑒𝑘} is a set of 

mutually orthogonal rankone constant projections in (1 − 𝑃1 − 𝑃2)𝐶([0, 1],𝑀𝑁)(1 − 𝑃1 −

𝑃2). Note that 𝑟𝑎𝑛𝑘(1 − (𝑃1 + 𝑃2))  = 𝑘. 

Lemma (2.1.26)[80]: Let 𝑛 ≥  1 be a given integer and let 𝜖 >  0. There exists 𝛿 > 0 

satisfying the following: Choose 𝑚0 >  128(𝑘0 + 1)𝑛𝜋/𝜖, for any unitary u with 𝑚 ≥

𝑚0, if 𝑣 ∈ 𝐶([0, 1],𝑀𝑁) is another unitary such that 

‖𝑢 − 𝑣‖ < 𝛿, 

then 

|𝜇𝑡𝑟,𝑡,𝑣({𝑒
𝑖𝑡: 𝑠 ∈ [𝑡𝜃0 − 𝜖/2, 𝑡𝜃0 + 𝜖/2]}) − 1/𝑛| < 𝜖           𝑎𝑛𝑑      (129) 

|𝜇𝑡𝑟,𝑡,𝑣({𝑒
𝑖𝑠: 𝑠 ∈ [−𝑡𝜃0/(𝑛 − 1) − 𝜖/2,−𝑡𝜃0/(𝑛 − 1) + 𝜖/2]}) − (𝑛 − 1)/𝑛|

< 𝜖                                                                                                                                                 (130) 

for all 𝑡 ∈  [1/(𝑛 −  1), 1], where 𝜇𝑡𝑟,𝑡,𝑣 is the probability measure given by 𝑡𝑟 ∘ 𝜋𝑡 ∘ 𝜓, 

where𝜓 ∶  𝐶(𝕋)  →  𝐶([0, 1],𝑀𝑁) is the homomorphism defined by 𝜓(𝑓)  =  𝑓(𝑣) for all 

𝑓 ∈  𝐶(𝕋), andwhere 𝑡𝑟 is the normalized trace on 𝑀𝑁. 

Lemma (2.1.27)[80]: Let 𝑛 ≥ 12. There exists 𝛿 > 0 and integer 𝑚0 > 2
15(𝑘0 +

 1)𝑛3𝜋2 satisfying the following:  If  ℎ ∈  𝐶([0, 1],𝑀𝑁)𝑠.𝑎. with ‖ℎ‖ ≤  2𝜋 such that 

‖𝑢 − exp(𝑖ℎ)‖ < 𝛿,                                                        (131) 

then 

‖ℎ‖ ≥ 2(1 − 1/(𝑛 − 1))𝜋.                               (132) 

Lemma (2.1.28)[80]: Let (𝐺, 𝐺+) be a countable unperforated ordered group. Then 

there exists a unitalsimple 𝐶∗-algebra 𝐴 which is an inductive limit of interval algebras 

with  (𝐾0(𝐴), 𝐾0(𝐴)+) = (𝐺, 𝐺+)satisfying the following: 

For any 𝜖 > 0, there exists a unitary 𝑢 ∈ 𝐶𝑈(𝐴) and 𝛿 > 0 satisfying the following: ifℎ ∈

𝐴𝑠.𝑎. with ‖ℎ‖ ≤ 2𝜋 such that 

‖𝑢 − exp (𝑖ℎ)‖ < 𝛿, 

then 

‖ℎ‖ ≥ 2𝜋 − 𝜖. 

Proof: 

Fix 1/2 > 𝜖. Choose 𝑛 ≥  12 such that 𝜋/(𝑛 −  1) < 𝜖/4. Let 𝑘0 =  𝑛 −  1. Let 𝑚0
′ >

215(𝑘0 + 1)𝑛
3𝜋2 (in place of 𝑚0) be an integer required by  lemma(2.1.27) for the above 

mentioned 𝑛 and𝑘0. Let 𝑚0 =  2𝑚0
′ . 
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Let 𝐶 =  𝑙𝑖𝑚𝑘→∞(𝐶𝑘, 𝜑𝑘) be a unital simple AF-algebra, where each 𝐶𝑘 is a unital 

finitedimensional 𝐶∗-algebra, such that (𝐾0(𝐶),𝐾0(𝐶)+) = (𝐺, 𝐺+). We may assume that 

the map𝜑𝑘 ∶  𝐶𝑘 → 𝐶𝑘+1 is unital and injective. We write 

𝐶𝑘 = 𝑀𝑟(1,𝑘)⊕𝑀𝑟(2,𝑘)⨁…⨁𝑀𝑟(𝑚(𝑘),𝑘). 

Let 𝜑𝑘,𝑗:𝑀𝑟(𝑗,𝑘) → 𝐶𝑘+1 be the homomorphism defined by 𝜑𝑗,𝑖,𝑘 = (𝜑𝑘)|𝑀𝑟(𝑗,𝑘). Define 

𝜋𝑘,𝑗 ∶ 𝐶𝑘 → 𝑀𝑟(𝑗,𝑘) by the projection to the summand. Set 𝜑𝑗,𝑖,𝑘 = 𝜋𝑘+1,𝑖 ∘ 𝜑𝑘,𝑗 ∶

𝑀𝑟(𝑗,𝑘) → 𝑀𝑟(𝑘+1,𝑗).Note that (𝜓𝑗,𝑖,𝑘)∗0 is determined by its multiplicity 𝑀(𝑗, 𝑖, 𝑘). Since 

𝐶 is simple, without lossof generality, we may assume that 𝑟(𝑗, 1):= 𝑟(𝑗) ≥ 2𝑛(𝑚0 +

1), 𝑗 = 1, 2, . . . , 𝑚(1). By passingto a subsequence if necessary, we may assume that 

𝑀(𝑖, 𝑗, 𝑘) ≥ (2𝑚0 + 1)𝑘. There is a set of𝑀(𝑗, 𝑖, 𝑘) mutually orthogonal 

projections{𝑒𝑗,𝑖,𝑘,𝑠 ∶  𝑠} in 𝑀𝑟(𝑖,𝑘+1) such that each 𝑒𝑗,𝑖,𝑘 has rank𝑟(𝑗, 𝑘), 

∑ ∑ 𝑒𝑗,𝑖,𝑘,𝑠

𝑀(𝑗,𝑖,𝑘)

𝑠=1

𝑚(𝑗)

𝑗=1

= 1𝑀𝑟(𝑖,𝑘+1) . 

 

Put 

𝑒(𝑗, 𝑖, 𝑘) = ∑ 𝑒𝑗,𝑖,𝑘,𝑠

𝑀(𝑗,𝑖,𝑘)

𝑠=1

. 

We write 

𝑟(𝑗) = 𝑑(𝑗)𝑛 + 𝑘(𝑗),    𝑘(𝑗) < 𝑛, 

where 𝑑(𝑗)  ≥  2𝑚0. 

Denote 𝜃0 = (2 − 1/(𝑛 − 1))𝜋, 𝑗 = 1, 2, . . . , 𝑚(1). Let 𝐵𝑗,𝑘 = 𝐶([0, 1],𝑀𝑟(𝑗,𝑘)), 𝑗 =

1, 2, . . . , 𝑚(𝑘), 𝑘 = 1, 2, . ... Let {𝑡(0, 𝑘), 𝑡(1, 𝑘), . . . , 𝑡(𝑘, 𝑘)} be a partition of [0, 1] such 

that 𝑡(0, 𝑘)  =  0, 𝑡(𝑘, 𝑘)  = 1and 𝑡(𝑖, 𝑘) − 𝑡(𝑖 −  1, 𝑘)  =  1/(𝑘 +  1), 𝑖 =

 1, 2, . . . , 𝑘, 𝑘 =  1, 2, . ... Define 𝜓𝑗,𝑖,𝑘: 𝐵𝑗,𝑘 → 𝑒(𝑗, 𝑖, 𝑘)𝐵𝑖,𝑘+1𝑒(𝑗, 𝑖, 𝑘) as follows: 

𝜓𝑗,𝑖,𝑘(𝑓) = 𝑑𝑖𝑎𝑔 (𝑓, 𝑓, … , 𝑓⏟      
𝑀(𝑗,𝑖,𝑘)−𝑘

, 𝑓(𝑡, (1, 𝑘)), 𝑓(𝑡(2, 𝑘)), … , 𝑓(𝑡(𝑘, 𝑘)))                  (133) 

for all 𝑓 ∈ 𝑀𝑗,𝑘. Define 𝐴𝑘 = 𝐶([0, 1])⊗ 𝐶𝑘. Note that 

𝐴𝑘 =
𝑚(𝑘)
⊕
𝑗 = 1

𝐶([0,1],𝑀𝑟(𝑗,𝑘)). 

Let 𝜓𝑘: 𝐴𝑘 → 𝐴𝑘+1 be the unital homomorphism given by the partial maps 𝜓𝑗,𝑖,𝑘. 

Define𝐴 =  𝑙𝑖𝑚𝑛→∞(𝐴𝑘, 𝜓𝑘). It is known such defined 𝐴 is a unital simple 𝐶∗-algebra. 

Moreover, 

(𝐾0(𝐴), (𝐾0(𝐴))+) =
(𝐺, 𝐺0). 

Consider the unitaries 

𝑢𝑗 = 𝑒
𝑖𝜃0𝑝1,𝑗 + 𝑒

−𝑖𝜃0/(𝑛−1)𝑝2,𝑗 + 𝑝3,𝑗 , 
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where{𝑝1,𝑗 , 𝑝2,𝑗 , 𝑝3,𝑗} ⊂ 𝑀𝑟(1,𝑗) are mutually orthogonal constant projections, 𝑝1,𝑗 has 

𝑟𝑎𝑛𝑘 𝑑(𝑗), 𝑝2,𝑗 has 𝑟𝑎𝑛𝑘 (𝑛 − 1)𝑟(𝑗) and 𝑝3,𝑗 has 𝑟𝑎𝑛𝑘 𝑘(𝑗) < 𝑛, 𝑗 = 1, 2, . . . , 𝑚(1). 

Define 

                                                𝑤 = 𝑢1⊕𝑢2⊕…⊕𝑢𝑚(1).                                      (134) 

Let 𝑢 = 𝜓1,∞(𝑤), where 𝜓1,∞ is the homomorphism induced by the inductive limit 

system. Sinceeach 𝑢𝑗 ∈  𝐶𝑈(𝐶([0, 1],𝑀𝑟(1,𝑗)), 𝑢 ∈  𝐶𝑈(𝐴). We now verify that 𝑢 satisfies 

the assumption. Let𝛿1 >  0 be as in lemma (2.1.27) for 𝜖/2 (in place of 𝜖) and 𝑘0 = 𝑛 −

1. Let 𝛿 =  𝛿1/2. Suppose that there is aself-adjoint element ℎ ∈ 𝐴𝑠.𝑎. with ‖ℎ‖ ≤ 2𝜋 

such that 

‖𝑢 − exp (𝑖ℎ)‖ < 𝛿.                                                                                (135) 

There is, for a sufficiently larger 𝑘, a self-adjoint element ℎ1 ∈ 𝐴𝑘 for some 𝑘 ≥ 1 such 

that 

‖ℎ − 𝜓𝑘,∞(ℎ1)‖ <
𝜖

4
       𝑎𝑛𝑑        ‖𝜓𝑘,∞(ℎ1) − exp(𝑖ℎ1)‖ < 2𝛿 = 𝛿1.           (136) 

Consider a summand 𝐴𝑖,𝑘of 𝐴𝑘. Note that 𝐴𝑖,𝑘 = 𝐶([0, 1],𝑀𝑟(𝑖,𝑘)). We compute that 

𝜓1,𝑘(𝑤) = 𝑒
𝑖𝜃0𝑃1,𝑖,𝑘 + 𝑒

−𝑖𝜃0/(𝑛−1)𝑃2,𝑖,𝑘 + 𝑣0,𝑖 ,                                         (137) 

where𝑣0,𝑖 ∈ 𝑃3,𝑖,𝑘𝐸𝑖,𝑘𝑃3,𝑖,𝑘 is a constant unitary, 𝑃1,𝑖,𝑘 , 𝑃2,𝑖,𝑘 , 𝑃3,𝑖,𝑘 are mutually 

orthogonalprojections with 

𝑃1,𝑖,𝑘 + 𝑃2,𝑖,𝑘 + 𝑃3,𝑖,𝑘 = 𝑖𝑑𝐴𝑖,𝑘 , 

𝑃2,𝑖,𝑘has𝑟𝑎𝑛𝑘 𝑛 − 1 times as much as 𝑃1,𝑖,𝑘 and 𝑃1,𝑖,𝑘 has rank at least 𝑚0 times that of 

therank of 𝑃3,𝑖,𝑘. Denote by 𝐾0 the rank of 𝑃3,𝑖,𝑘. Then we have 

𝑟𝑎𝑛𝑘𝑃3,𝑖,𝑘 > 2
15𝑛3(𝐾0 + 1)𝜋

2. 

It follows from lemma (2.1.27) that 

‖ℎ1‖ ≥ 2(1 − 1/(𝑛 − 1))𝜋 = 2𝜋 −
2𝜋

𝑛 − 1
≥ 2𝜋 −

𝜖

2
.                          (138) 

Note that each ψ is injective. Therefore 

‖𝜓𝑘,∞(ℎ1)‖ = ‖ℎ1‖ ≥ 2𝜋 −
𝜖

2
. 

By (136), 

‖ℎ‖ ≥ 2𝜋 − 𝜖. 

Theorem (2.1.29)[80]: Let (𝐺0, (𝐺0)+) be a countable weakly unperforated Riesz 

group and let 𝐺1 be any countable abelian group. There exists a unital simple 𝐴𝐻-algebra 

𝐴with tracial rank onesuch that 

(𝐾0(𝐴). 𝐾0(𝐴)+, 𝐾1(𝐴)) = (𝐺0, (𝐺0)+, 𝐺1). 

Moreover, for any 𝜖 >  0, there exists a unitary 𝑢 ∈  𝐶𝑈(𝐴) and there exists 𝛿 > 0 

satisfying thefollowing: If ℎ ∈ 𝐴𝑠.𝑎. such that 

‖𝑢 − exp (𝑖ℎ)‖ < 𝛿, 

then 

‖ℎ‖ ≥ 2𝜋 − 𝜖. 
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Corollary (2.1.30)[80]:    Let (𝐺0, (𝐺0)+) be a countable weakly unperforated Riesz 

group and let 𝐺1 be any countable abelian group. There exists a unital simple 𝐴𝐻-algebra 

𝐴with tracial rank onesuch that 

(𝐾0(𝐴).𝐾0(𝐴)+, 𝐾1(𝐴)) = (𝐺0, (𝐺0)+, 𝐺1)    𝑎𝑛𝑑                                           (139) 

𝑐𝑒𝑙𝐶𝑈(𝐴) > 𝜋.                                                                                  (140) 

Proof:  Let 𝐴 be in the conclusion  of  theorem(2.1.29). Let 𝜖 =  𝜋/16. Choose a unitary 

𝑢 in 𝐴 and 𝛿 satisfythe conclusion of theorem(2.1.29) for this 𝜖. We may assume that 𝛿 <

 1/64. We will show that 𝑐𝑒𝑙(𝑢)  >  𝜋.Otherwise, one obtains a self-adjoint element ℎ ∈

 𝐴 with ‖ℎ‖ ≤  𝜋 such that 

‖𝑢 − exp (𝑖ℎ)‖ < 𝛿. 

This is not possible. 

Section (2.2): Approximate Unitary Equivalence  in  Simple 𝑪∗-Algebras of Tracial 

Rank One 

   Let 𝑇1 and 𝑇2 be two normal operators in 𝑀𝑛, the algebra of 𝑛 × 𝑛 matrices. Then 𝑇1 and 

𝑇2 are unitary equivalent, or there exists a unitary 𝑈 such that 𝑈∗𝑇1𝑈 =  𝑇2 if and only if 

𝑠𝑝(𝑇1)  =  𝑠𝑝(𝑇2), 

counting the multiplicities. Let 𝑋 =  𝑠𝑝(𝑇1). Define 𝜙𝑖 ∶  𝐶(𝑋)  → 𝑀𝑛 by 

𝜙(𝑓) =  𝑓(𝑇𝑖)𝑓𝑜𝑟𝑓 ∈ 𝐶(𝑋),    𝑖 =  1, 2. 

Let 𝜏 ∶  𝑀𝑛 → ℂ be the normalizedtracial state on 𝑀𝑛. Then 𝜏 ∘ 𝜙𝑖  (𝑖 =  1, 2) gives a 

Borel probability measure 𝜇𝑖 on 𝐶(𝑋), 𝑖 =  1, 2. Then 𝜙1 and 𝜙2 are unitarily equivalent 

if and only if 𝜇1 = 𝜇2. More generally, one may formulate the following Let 𝑋 be a 

compact metric space and let 𝜙1, 𝜙2 ∶  𝐶(𝑋)  → 𝑀𝑛 be two homomorphisms. Then 𝜙1 and 

𝜙2 are unitarily equivalent if and only if 

𝜏 ∘ 𝜙1 =  𝜏 ∘ 𝜙2.                                                                          (141) 

For an infinite dimensional situation, one has the following classical result: two bounded 

normal operators on an infinite dimensional separable Hilbert space are unitary equivalent 

if and only if they have the same equivalent spectral measures and multiplicity functions. 

Perhaps a more interesting and useful statement is the following: let 𝑇1 and 𝑇2 be two 

bounded normal operators in 𝐵(𝑙2). Then there exists a sequence of unitary 𝑈𝑛 ∈ 𝐵(𝑙
2) 

such that 

lim
𝑛→∞

‖𝑈𝑛
∗𝑇1𝑈𝑛 − 𝑇2‖ =  0 𝑎𝑛𝑑 

𝑈𝑛
∗𝑇1𝑈 − 𝑇2𝑖𝑠𝑐𝑜𝑚𝑝𝑎𝑐𝑡 

if and only if 

(𝑖)𝑠𝑝𝑒(𝑇1)  =  𝑠𝑝𝑒(𝑇2), 

(𝑖𝑖)dim null(𝑇1 − 𝜆𝐼)  =  dim null(𝑇2 − 𝜆𝐼) 𝑓𝑜𝑟𝑎𝑙𝑙𝜆 ∈ ℂ \ 𝑠𝑝𝑒(𝑇1). 

       Here 𝑠𝑝𝑒(𝑇𝑖) is the essential spectrum of 𝑇𝑖, i.e., 𝑠𝑝𝑒(𝑇𝑖)  =  𝑠𝑝(𝜋(𝑇𝑖)), where 𝜋 ∶

 𝐵(𝑙2)  → 𝐵(𝑙2)/𝜅 is the quotient map, i = 1, 2. Let 𝑋 be a compact subset of the plane and 

let 𝜙1, 𝜙2 ∶  𝐶(𝑋)  → 𝐵(𝑙
2)/𝜅 be two unital monomorphisms. In the study of essentially 

normal operators on the infinite dimensional separable Hilbert space, one asks when 𝜙1 
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and 𝜙2 are unitarily equivalent. This was answered: 𝜙1 and 𝜙2 are unitarily equivalent if 

and only if (𝜙1)∗1 = (𝜙2)∗1, 𝑤ℎ𝑒𝑟𝑒(𝜙𝑖)∗1: 𝐾1(𝐶(𝑋)) → 𝐾1((𝐵(𝑙
2)/𝜅)) ≅ ℤis the 

induced homomorphism  (Fredholm index), 𝑖 =  1, 2 (cf. [15]). In fact, one has the 

following more general BDF-theorem:     

Theorem (2.2.1)[71]: If 𝑋 is a compact metric space, then 𝜙1 and 𝜙2 are unitarily 

equivalent if and only 

[𝜙1] =  [𝜙2]𝑖𝑛𝐾𝐾 (𝐶(𝑋),
𝐵(𝑙2)

𝐾
) . 

It is known that the Calkin algebra 𝐵(𝑙2)/𝐾 is a unital simple 𝐶∗-algebra with real rank 

zero. It is also purely infinite. We will study approximate unitary equivalence in a unital 

separable simple stably finite 𝐶∗-algebra. 

Definition (2.2.2)[71]:  Let 𝐴 and 𝐵 be two unital 𝐶∗-algebras and let 𝜙1, 𝜙2 ∶  𝐴 → 𝐵 be 

two homomorphisms. We say that 𝜙1 and 𝜙2 are approximately unitarily equivalent if 

there exists a sequence of unitaries {𝑢𝑛}  ⊂ 𝐵 such that 

 lim
𝑛→∞

𝑎𝑑 𝑢𝑛𝜙1(𝑎) = 𝜙2(𝑎)𝑓𝑜𝑟𝑎𝑙𝑙𝑎 ∈ 𝐴.                                                 (142) 

 In Definition (2.2.2), suppose that 𝐽 =  kcr𝜙1. Then ker𝜙2  =  𝐽 if 𝜙1 and 𝜙2 are 

approximately unitarily equivalent. Thus one may study the induced monomorphisms 

from 𝐴/𝐼 to 𝐵 instead of homomorphisms from 𝐴. To simplify matters, we will only study 

monomorphisms. 

We note that 𝑀𝑛 is a unital finite dimensional simple 𝐶∗-algebra with a unique tracial 

state. We now replace 𝐴 by an infinite dimensional simple 𝐶∗-algebra. First we consider 

AF-algebras, approximately finite dimensional 𝐶∗-algebras. 

Let A be a unital simple AF-algebra and let 𝑋 be a compact metric space. Let 𝜙1, 𝜙2 ∶

 𝐶(𝑋)  → 𝐴 be two unitalmonomorphisms. When are 𝜙1 and 𝜙2 approximately unitarily 

equivalent or when are there unitaries 𝑢𝑛 ∈ 𝐴 such that 

lim
𝑛→∞

𝑢𝑛
∗𝜙1(𝑎)𝑢𝑛   = 𝜙2(𝑎) 

for all 𝑎 ∈ 𝐶(𝑋)? 

Let 𝐶 be a unital stably finite 𝐶∗-algebra. Denote by 𝑇(𝐶) the tracial state space of 𝐶. 

Suppose that 𝜙1, 𝜙2 ∶  𝐶(𝑋)  → 𝐴are two unital monomorphisms. Let 𝜏 ∈ 𝑇 (𝐴) be a 

tracial state. Then 𝜏 ∘ 𝜙𝑗  is a normalized positive linear functional (𝑗 =  1, 2). It gives a 

Borel probability measure 𝜇𝑗 . Furthermore, it is strictly positive in the sense that 

𝜇𝑗(𝑂)  >  0 for every non-empty open subset 𝑂 ⊂ 𝑋. If 𝜙1 and 𝜙2 are approximately 

unitarily equivalent, then it is obvious that 𝜇1  =  𝜇2, or equivalently, 𝜏 ∘ 𝜙1  =  𝜏 ∘ 𝜙2. In 

fact, one has the following: 

Let 𝑋 be a compact metric space and let 𝐴 be a unital simple AF-algebra with a unique 

tracial state 𝜏. Suppose that 𝜙1, 𝜙2 ∶  𝐶(𝑋)  → 𝐴 are two unital monomorphisms. Then 𝜙1 

and 𝜙2 are approximately unitarily equivalent if and only if 

(𝜙1)∗0 = (𝜙2)∗0𝑎𝑛𝑑𝜏 ∘ 𝜙1 =  𝜏 ∘ 𝜙2. 



50 
 

Here (𝜙1)∗0 is an induced homomorphism from 𝐾0(𝐶(𝑋)) into 𝐾0(𝐴). Note in this case 

that 𝑋 is connected and 𝐾0(𝐴) has no infinitesimal elements, i.e., 𝜏 (𝑝)  =  𝜏 (𝑞) implies 

[𝑝]  =  [𝑞] in 𝐾0(𝐴) for any pair of projections 𝑝 and𝑞, as in the case that 𝐴 =  𝑀𝑛, or in 

the case that 𝐴 is a UHF-algebra, the condition(𝜙1)∗0 = (𝜙2)∗0 is automatically satisfied 

if the two measures are the same. Note also that 𝐾1(𝐴)  =  {0}. In general, 𝜙𝑗 also gives 

another homomorphism:  

(𝜙𝑗)∗1 ∶ 𝐾1(𝐶(𝑋))  → 𝐾1(𝐴), 𝑗 =  1, 2. 

Theorem (2.2.3)[71]: Let 𝑋 be a compact metric space and let 𝐴 be a unital simple 𝐶∗-

algebra with real rank zero, stable rank one, weaklyunperforated𝐾0(𝐴) and with a unique 

tracial state 𝜏. Suppose that 𝜙1, 𝜙2 ∶  𝐶(𝑋)  → 𝐴 are two unital monomorphisms. Then 𝜙1 

and 𝜙2 are approximately unitarily equivalent if and only if 

[𝜙1] =  [𝜙2]𝑖𝑛𝐾𝐿(𝐶(𝑋), 𝐴) 𝑎𝑛𝑑𝜏 ∘ 𝜙1  =  𝜏 ∘ 𝜙2. 

In the case that 𝐾∗(𝐶(𝑋)) is torsion free, the condition that [𝜙1]  =  [𝜙2] 𝑖𝑛𝐾𝐿(𝐶(𝑋), 𝐴) 

can be replaced by (𝜙1)∗𝑖 = (𝜙2)∗𝑖, where (𝜙𝑗)∗𝑖 ∶ 𝐾𝑖𝑖(𝐶(𝑋))  → 𝐾𝑖(𝐴) (𝑖 =

 0, 1 𝑎𝑛𝑑𝑗 =  1, 2), is the induced homomorphism. 

Recall that an AH-algebra is an inductive limit of 𝐶∗-algebras with the form 

𝑃𝑛𝑀𝑘(𝑛)(𝐶(𝑋𝑛))𝑃𝑛, where 𝑋𝑛 is a (not necessarily connected) finite CW complex and 𝑃𝑛 

is a projection in 𝑀𝑘(𝑛)(𝐶(𝑋𝑛)). More recently, for the situation that 𝑇(𝐴) has no 

restriction, we have the following: 

Theorem (2.2.4)[71]: Let 𝐶 be a unital AH-algebra with property (𝐽) and let 𝐴 be a unital 

simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. Suppose that 𝜙,𝜓 ∶  𝐶 → 𝐴 are two unital 

monomorphisms. Then 𝜙 and 𝜓 are approximately unitarily equivalent if and only if 

 [𝜙] =  [𝜓]    in     𝐾𝐿(𝐶, 𝐴),                                            (143) 

𝜙  = 𝜓    and     𝜙
‡  =  𝜓‡.                                                 (144) 

  Let 𝑋 be a compact metric space, let 𝑥 ∈  𝑋 and let 𝑎 >  0. Denote by 𝐵𝑎(𝑥) the open 

ball of 𝑋 with radius a and center 𝑥. Let 𝐴 be a unital 𝐶∗-algebra and 𝜉 ∈  𝑋. Denote by 

𝜋𝜉 ∶  𝐶(𝑋)  →  𝐴 the point-evaluation defined by 𝜋𝜉(𝑓)  =  𝑓(𝜉) ⋅ 1𝐴 for all 𝑓 ∈  𝐶(𝑋). 

Let 𝐴 and 𝐵 be two 𝐶∗-algebras and let 𝐿1, 𝐿2 ∶  𝐴 →  𝐵 be two maps. Suppose that ℱ ⊂

 𝐴 is a subset and 𝜖 >  0. We write 

𝐿1 ≈𝜖 𝐿2  𝑜𝑛 ℱ 

If  ‖𝐿1(𝑎)  −  𝐿2(𝑎)‖ < 𝜖 for all 𝑎 ∈  ℱ. 

The map 𝐿1 is said to be 𝜖- ℱ -multiplicative if 

‖𝐿1(𝑎𝑏) − 𝐿1(𝑎)𝐿1(𝑏)‖ < 𝜖 for all 𝑎, 𝑏 ∈  ℱ. 

Let 𝐴 be 𝑎𝐶∗-algebra. Set  𝑀∞(𝐴)  = ⋃ 𝑀𝑛
∞
𝑛=1 (𝐴). 

Let 𝐴 be a unital 𝐶∗-algebra. Denote by 𝑈(𝐴) the unitary group of 𝐴. Denote by 𝑈0(𝐴) the 

normal subgroup of 𝑈(𝐴) consisting of the path connected component of 𝑈(𝐴) containing 

the identity. Suppose that 𝑢 ∈  𝑈0(𝐴) and {𝑢(𝑡) ∶  𝑡 ∈  [0, 1]} is a continuous path with 

𝑢(0) = 𝑢 and 𝑢(1)  =  1. Denote by length ({𝑢(𝑡)}) the length of the path. Put 

cel(𝑢)  =  inf{length({𝑢(𝑡)})}. 
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Definition (2.2.5)[71]: Let 𝑋 be a compact metric space and let 𝑃 ∈  𝑀𝑙(𝐶(𝑋)) be a 

projection. Put            𝐶 = 𝑃𝑀𝑙(𝐶(𝑋))𝑃 . Let 𝑢 ∈  𝑈(𝐶). Define, as in [113], 

𝐷𝐶(𝑢)  =  inf{‖𝑎‖ ∶  𝑎 ∈  𝐴𝑠.𝑎such thatdet(𝑒
𝑖𝑎 ⋅ 𝑢) =  1}.                                (145) 

Let 𝐴 be a unital 𝐶∗-algebra. Denote by 𝐶𝑈 (𝐴) the closure of the subgroup generated by 

the commutators of  𝑈(𝐴). For 𝑢 ∈  𝑈(𝐴), we will use �̅� for the image of 𝑢 in 𝑈(𝐴)/

𝐶𝑈(𝐴). 

      If �̅�, �̅� ∈  𝑈 (𝐴)/𝐶𝑈 (𝐴), define 

𝑑𝑖𝑠𝑡(�̅�, �̅�)  =  inf{ 𝑥 −  𝑦: 𝑥, 𝑦 ∈  𝑈 (𝐴) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 �̅� =  �̅�, �̅� =  �̅�}. 

𝐼𝑓 𝑢, 𝑣 ∈  𝑈 (𝐴), then 

𝑑𝑖𝑠𝑡(�̅�, �̅�)  =  inf{‖𝑢𝑣∗ −  𝑥‖  ∶  𝑥 ∈  𝐶𝑈 (𝐴)}. 

Let 𝐴 and 𝐵 be two unital 𝐶∗-algebras and let 𝜙 ∶  𝐴 →  𝐵 be a unital homomorphism. It is 

easy to check that 𝜙 maps 𝐶𝑈(𝐴) to 𝐶𝑈(𝐵). Denote by 𝜙‡ the homomorphism from 

𝑈(𝐴)/𝐶𝑈(𝐴) into 𝑈(𝐵)/𝐶𝑈(𝐵) induced by 𝜙. We also use 𝜙‡ for the homomorphism 

from 𝑈(𝑀𝑘(𝐴))/𝐶𝑈(𝑀𝑘(𝐴)) into 𝑈(𝑀𝑘(𝐵))/𝐶𝑈(𝑀𝑘(𝐵)) (𝑘 =  1, 2, . . . ). 

Definition (2.2.6)[71]: Let A be a 𝐶∗-algebra. Following [21], denote 

𝐾(𝐴)  =⨁𝐾𝑖(𝐴)

𝑖=0,1

⨁⨁𝐾𝑖
𝑘≥2𝑖=0,1

(𝐴, ℤ/𝑘ℤ). 

Let 𝐵 be a unital 𝐶∗-algebra. Furthermore,  

𝐻 𝑜𝑚𝛬(𝐾(𝐴), 𝐾(𝐵))  =  𝐾𝐿(𝐴, 𝐵). 

Here 𝐾𝐿(𝐴, 𝐵)  =  𝐾𝐾(𝐴, 𝐵)/𝑃𝑒𝑥𝑡(𝐾∗(𝐴), 𝐾∗(𝐵)) (see [21] for details). Let 𝑘 ≥  1 be an 

integer. Denote 

𝐹𝑘𝐾(𝐴) =⨁𝐾𝑖(𝐴)

𝑖=0,1

⨁𝐾𝑖
𝑛|𝑘

(𝐴, ℤ 𝑘ℤ⁄ ) 

𝑖 = 0,1 

Suppose that 𝐾𝑖(𝐴) is finitely generated (𝑖 =  0, 2). It follows from [21] that there is an 

integer 𝑘 ≥  1 such that 

 𝐻 𝑜𝑚𝛬 (𝐹𝑘𝐾(𝐴), 𝐹𝑘𝐾(𝐵)) = 𝐻 𝑜𝑚𝛬 (𝐾(𝐴),𝐾(𝐵)).                                   (146) 

Let 𝐴 and 𝐵 be two unital 𝐶∗-algebras and let 𝐿 ∶  𝐴 →  𝐵 be a unital contractive 

completely positive linear map. Let 𝒫 ⊂  𝐾(𝐴) be a finite subset. It is well known that, 

for some small 𝛿 and large finite subset 𝒢 ⊂  𝐴, if 𝐿 is also 𝛿-𝒢-multiplicative, then [𝐿]|𝒫 

is well defined. In what follows whenever we write [𝐿]|𝒫. 

we mean 𝛿 is sufficiently small and 𝒢 is sufficiently large so that it is well defined (see 2.3 

of [70]). If 𝑢 ∈  𝑈(𝐴), we will use 〈𝐿〉(𝑢) for the unitary 𝐿(𝑢)|𝐿(𝑢)∗𝐿(𝑢)|−1. 

   For an integer 𝑚 ≥  1 and a finite subset 𝒰 ⊂  𝑈(𝑀𝑚(𝐴)), let 𝐹 ⊂  𝑈 (𝐴) be the 

subgroup generated by 𝒰. There exists a finite subset 𝒢 and a small 𝛿 >  0 such that a 𝛿-

𝒢-multiplicative contractive completely positive linear map 𝐿 induces a 

homomorphism𝐿‡ ∶ 𝐹  →  𝑈 (𝑀𝑚(𝐵))/𝐶𝑈(𝑀𝑚(𝐵)). Moreover, we may assume 〈𝐿〉(𝑢) =

𝐿‡(�̅�). 
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If there are 𝐿1, 𝐿2 ∶  𝐴 →  𝐵 and 𝜖 >  0 is given, suppose that both 𝐿1 and 𝐿2 are 𝛿-𝒢-

multiplicative and 𝐿1
‡
 and 𝐿2

‡
 are well defined on 𝐹 . Whenever we write 

dist(𝐿1
‡(�̅�), 𝐿2

‡ (�̅�))  < 𝜖 

for all 𝑢 ∈  𝒰, we also assume that 𝛿 is sufficiently small and 𝒢 is sufficiently large 

so that        

dist (〈𝐿1〉(𝑢), (𝑢)〈𝐿2〉) < 𝜖     for all  𝑢 ∈ 𝒰. 

Definition(2.2.7)[71]: Let 𝐴 and 𝐵 be two unital 𝐶∗-algebras. Let ℎ ∶  𝐴 → 𝐵 be a 

homomorphism and 𝑣 ∈  𝑈(𝐵) such that       

ℎ(𝑔)𝑣 =  𝑣ℎ(𝑔)for all 𝑔 ∈  𝐴. 

Thus we obtain a homomorphism ℎ̅ ∶  𝐴 ⊗ 𝐶(𝕋) →  𝐵 by ℎ̅(𝑓 ⊗  𝑔)  =  ℎ(𝑓)𝑔(𝑣) for 

𝑓 ∈  𝐴 and 𝑔 ∈  𝐶(𝕋). The tensor product induces two injective homomorphisms: 

   𝛽(0) ∶  𝐾0(𝐴) →  𝐾1(𝐴 ⊗  𝐶(𝕋))𝑎𝑛𝑑                                        (147) 

𝛽(1) ∶  𝐾1(𝐴) →  𝐾0(𝐴 ⊗  𝐶(𝕋)).                                                   (148) 

The second one is the usual Bott map. Note that, in this way, one writes  

𝐾𝑖(𝐴 ⊗  𝐶(𝕋))  =  𝐾𝑖(𝐴) ⊕ 𝛽(𝑖−1)(𝐾𝑖−1(𝐴)). 

We use 𝛽(𝑖)̂: 𝐾𝑖(𝐴⊗ 𝐶(𝕋))  →  𝛽(𝑖−1)(𝐾𝑖−1(𝐴)) for the projection to 𝛽(𝑖−1)(𝐾𝑖−1(𝐴)).  

      For each integer 𝑘 ≥ 2, one also obtains the following injective homomorphisms: 

   𝛽𝑘
(𝑖)
∶  𝐾𝑖 (𝐴,

ℤ

𝑘ℤ
) → 𝐾𝑖−1 (𝐴 ⊗  𝐶(𝕋),

ℤ

𝑘ℤ
) , 𝑖 =  0, 1.                 (149) 

Thus we write           

𝐾𝑖−1 (𝐴 ⊗  𝐶(𝕋),
ℤ

𝑘ℤ
) =  𝐾𝑖−1 (𝐴,

ℤ

𝑘ℤ
)⊕ 𝛽𝑘

(𝑖)
(𝐾𝑖 (𝐴,

ℤ

𝑘ℤ
)) , 𝑖 =  0, 1.            (150) 

Denote 𝛽𝑘
(𝑖)̂
: 𝐾𝑖(𝐴⊗ 𝐶(𝕋), ℤ/𝑘ℤ) → 𝛽𝑘

(𝑖−1)
(𝐾𝑖−1(𝐴, ℤ/𝑘ℤ)), similar to that of 

𝛽(𝑖)̂. , 𝑖 =  1, 2. If 𝑥 ∈  𝐾(𝐴), we use 𝛽(𝑥) for 𝛽(𝑖)(𝑥) if 𝑥 ∈  𝐾𝑖(𝐴) and for 𝛽𝑘
(𝑖)
(𝑥) if 𝑥 ∈

𝑘𝑖(𝐴, ℤ/𝑘ℤ). Thus we have a map 𝛽 ∶ 𝐾(𝐴) → 𝐾(𝐴⊗ 𝐶(𝕋)) as well as �̂�: 𝐾(𝐴⊗

𝐶(𝕋)) → 𝛽(𝐾(𝐴)). Therefore one may write 𝐾(𝐴⊗ 𝐶(𝕋))  =  𝐾(𝐴)⊕ 𝛽(𝐾(𝐴)) On the 

other hand ℎ induces homomorphisms  

ℎ̅∗𝑖,𝑘 ∶ 𝐾𝑖(𝐴⊗ 𝐶(𝕋)), , ℤ/𝑘ℤ)  →  𝐾𝑖(𝐵, ℤ/𝑘ℤ),   𝑘 =  0, 2,   . . . ,    𝑖 =  0, 1. 

We use Bott (ℎ, 𝑣) for all homomorphisms ℎ̅∗𝑖,𝑘 ∘ 𝛽𝑘
(𝑖)

. We write  

Bott(ℎ, 𝑣)  =  0  

if ℎ̅∗𝑖,𝑘 ∘ 𝛽𝑘
(𝑖)
=  0 for all 𝑘 ≥  1 and 𝑖 =  0, 1. We will use bott1(ℎ, 𝑣) for the 

homomorphism ℎ̅1,0 ∘ 𝛽
(1): 𝐾1(𝐴) → 𝐾0(𝐵) and bott0(h, u) for the homomorphism ℎ̅0,0 ∘

𝛽(0): 𝐾0(𝐴) → 𝐾1(𝐵). Since 𝐴 is unital, if bott0(ℎ, 𝑣)  =  0, then [𝑣]  =  0 in 𝐾1(𝐵). In 

what follows, we will use 𝑧 for the standard generator of 𝐶(𝕋) and we will often identify 

𝕋 with the unit circle without further explanation. With this identification 𝑧 is the identity 

map from the circle to the circle. 

Given a finite subset 𝒫 ⊂  𝐾(𝐴), there exists a finite subset ℱ ⊂  𝐴 and 𝛿0 >  0 such that 
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𝐵𝑜𝑡𝑡(ℎ, 𝑣)|𝒫 

is well defined if 

‖[ℎ(𝑎), 𝑣]‖ = ‖ℎ(𝑎)𝑣 −  𝑣ℎ(𝑎)‖ < 𝛿0 for all 𝑎 ∈  ℱ 

(see [70]). There is 𝛿1 >  0 ([101]) such that bott1(𝑢, 𝑣) is well defined for any pair of 

unitaries𝑢 and 𝑣 such that ‖[𝑢, 𝑣]‖ < 𝛿1. As in 2.2 of [32], if 𝑣1, 𝑣2, . . . , 𝑣𝑛 are unitaries 

such that 

‖[𝑢, 𝑣𝑗]‖ < 𝛿1/𝑛, 𝑗 =  1, 2, . . . , 𝑛, 

then 

bott1(𝑢, , 𝑣1, 𝑣2, . . . , 𝑣𝑛)  =∑bott1

n

j=1

(𝑢, 𝑣𝑗). 

By considering unitaries 𝑧 ∈  𝐴 ⊗  𝐶 (𝐶 =  𝐶𝑛 for some commutative 𝐶∗-algebra with 

torsion 𝐾0 and 𝐶 =  𝑆𝐶𝑛) from the above, for a given unital 𝐶∗-algebra 𝐴 and a given 

finite subset 𝒫 ⊂ 𝐾(𝐴), one obtains a universal constant 𝛿 >  0 and a finite subset ℱ ⊂

 𝐴 satisfying the following: 

Bott(ℎ, 𝑣𝑗)|𝒫                                                        (151) 

is well defined and𝐵𝑜𝑡𝑡(ℎ, 𝑣1, 𝑣2, . . . , 𝑣𝑛) = ∑ bottn
j=1 (ℎ, 𝑣𝑗) 

for any unital homomorphism ℎ and unitaries 𝑣1, 𝑣2, . . . , 𝑣𝑛 for which 

 ‖[ℎ(𝑎), 𝑣𝑗]‖ <
𝛿

𝑛
, 𝑗 =  1, 2, . . . , 𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℱ.                   (152) 

Furthermore, if 𝐾𝑖(𝐴) is finitely generated, then (146) holds. Therefore, there is a finite 

subset 𝒬 ⊂ 𝐾(𝐴) such that 

𝐵𝑜𝑡𝑡(ℎ, 𝑣) 

is well defined if Bott(ℎ, 𝑣)|𝒬 is well defined (see [70]). See [70] for further information. 

Let 𝐴 be a unital 𝐶∗-algebra. Denote by 𝑇(𝐴) the tracial state space of 𝐴. Suppose that 

𝑇(𝐴) ≠  ∅. Let 𝐵 be another unital𝐶∗-algebra with 𝑇(𝐵) ≠ ∅. Suppose that 𝜙 ∶  𝐴 →  𝐵 is 

a unital homomorphism. Denote by 𝜙 ∶  𝐴𝑓 𝑓 (𝑇 (𝐴))  →  𝐴𝑓 𝑓 (𝑇 (𝐵)) the positive 

homomorphism defined by 𝜙 (�̂�)(𝜏) = 𝜏 ∘ 𝜙(𝑎) for all 𝑎 ∈  𝐴𝑠.𝑎. 

Let 𝑋 be a compact metric space and let 𝐴 be a unital 𝐶∗-algebra with 𝑇(𝐴) ≠ ∅. Let 𝐿 ∶

 𝐶(𝑋)  →  𝐴 be a unital positive linear map. For each 𝜏 ∈  𝑇 (𝐴) denote by 𝜇𝜏∘𝐿 the Borel 

probability measure induced by 𝜏 ∘ 𝐿. 

Let 𝑋1, 𝑋2, . . . , 𝑋𝑚 be compact metric spaces. Fix a base point 𝜉𝑖 ∈  𝑋𝑖 , 𝑖 =  1, 2, . . . , 𝑚. 

We write 𝑋1 ∨ 𝑋2 ∨. . .∨  𝑋𝑚 as the space resulted by gluing 𝑋1, 𝑋2, . . . , 𝑋𝑚 together at 𝜉𝑖 

(by identifying all base points at one point 𝜉1). Denote by 𝜉0 the common point. If 𝑥, 𝑦 ∈

 𝑋𝑖, then dist(𝑥, 𝑦) is defined to be the same as that in 𝑋𝑖. If 𝑥 ∈  𝑋𝑖 , 𝑦 ∈ 𝑋𝑗 with 𝑖 ≠ 𝑗, 

and 𝑥 ≠ 𝜉0, 𝑦 ≠ 𝜉0, then we define 

dist(𝑥, 𝑦)  =  dist(𝑥, 𝜉0)  +  dist(𝑦, 𝜉0). 

Definition (2.2.8)[71]: Let 𝐴 be a unital simple 𝐶∗-algebra. 𝐴 is said to have tracial rank 

no more than one (𝑇 𝑅(𝐴) ≤  1) if the following hold for any 𝜖 >  0, any 𝑎 ∈  𝐴+ \ {0} 

and any finite subset ℱ ⊂  𝐴, there exists a projection 𝑝 ∈  𝐴 and a 𝐶∗-subalgebra 𝑩 =
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⨁𝑖=1
𝑘 𝑀𝑟(𝑖)(𝐶(𝑋𝑖)), where each 𝑋𝑖 is a finite CW complex with covering dimension no 

more than 1, with 1𝐵  =  𝑝 such that: 

(i)  ‖𝑝𝑥 − 𝑥𝑝‖ < 𝜖  for all 𝑥 ∈ ℱ, 

(ii)  dist(𝑝𝑥𝑝, 𝐵)  <  𝜖 for all ℱ and 

(iii)  1 −  𝑝 is equivalent to a projection in 𝑎𝐴𝑎. 

If in the above definition 𝑋𝑖 can always be chosen to be a point, then we say 𝐴 has tracial 

rank zero and write 𝑇 𝑅(𝐴)  =  0. If 𝑇 𝑅(𝐴)  ≤  1 but 𝑇 𝑅(𝐴) ≠ 0, then we write 

𝑇 𝑅(𝐴)  =  1 and say 𝐴 has tracial rank one. As in [91], if 𝑇 𝑅(𝐴)  ≤  1, then 𝐴 has TAI, 

i.e., in the above definition, one may replace 𝑋𝑖 by [0, 1] or by a point. 

  Let 𝐴 be a unital separable simple 𝐶∗-algebra with 𝑇 𝑅(𝐴)  ≤  1. Then 𝐴 is tracially 

approximately divisible. For example, for any 𝜖 >  0, any finite subset ℱ ⊂  𝐴, any 𝑎 ∈

 𝐴+ \ {0} and any integer 𝑁 ≥ 1, there exists a projection 𝑝 ∈ 𝐴 and a finite dimensional 

𝐶∗-subalgebra 𝐷 = ⨁𝑖=1
𝑘 𝑀𝑟(𝑖)𝑤𝑖𝑡ℎ 𝑟(𝑗)  ≥  𝑁 and with 1𝐷 =  𝑝 such that:    

(i) ‖[𝑥, 𝑦]‖ < 𝜖  for all 𝑥 ∈  ℱ and for all 𝑦 ∈  𝐷 with  ‖𝒴‖   ≤  1;  

(ii) 1 −  𝑝 is equivalent to a projection in 𝑎𝐴𝑎     

Lemma (2.2.9)[71]: Let 𝑋 be a connected simplicial complex, let ℱ ⊂  𝐶(𝑋) be a finite 

subset, let 𝜖 >  0, 𝜖1 >  0 be positive numbers, and let 𝑁 ≥  1 be an integer. There exists 

𝜂1 >  0 with the following properties. 

    For any 𝜎1 >  0 and any 𝜎 >  0, there exists a positive number 𝜂 >  0 and an integer 

𝐾 >  4/𝜖 (which are independent of 𝜎), and there exists a positive number 𝛿 >  0, an 

integer 𝐿 >  0 and a finite subset 𝒢 ⊂  𝐶(𝑋) satisfying the following. 

Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑃 𝑀𝑛(𝐶(𝑌))𝑃 (where 𝑌 is a connected simplicial complex 

with dim𝑌 ≤  3), where rank(𝑃)  ≥  𝐿 are two unitalhomomorphisms such that 

 𝜇𝜏∘𝜙(𝑂𝜂1) ≥  𝜎1𝜂1, 𝜇𝜏∘𝜙(𝑂𝜂) ≥  𝜎𝜂 for all 𝜏 ∈  𝑇 (𝑃𝑀𝑛(𝐶(𝑋))𝑃 )         (153) 

and for all open balls 𝑂𝜂1 with radius 𝜂1 and open balls 𝑂𝜂 with radius 𝜂2, respectively, 

and 

 |𝜏 ∘ 𝜙(𝑔)  −  𝜏 ∘ 𝜓(𝑔)|  <  𝛿 for all 𝑔 ∈  𝒢.                          (154) 

Then there exist mutually orthogonal projections 𝑃0 and 𝑃1 (with 𝑃0 + 𝑃1  =  𝑃), a unital 

homomorphism 𝜙1 ∶ 𝐶(𝑋)  →  𝑃1(𝑀𝑛(𝐶(𝑌))𝑃1) factoring through 𝐶([0, 1]), 

and a unitary 𝑢 ∈  𝑃 (𝑀𝑛(𝐶(𝑌)))𝑃 such that   

   𝜙(𝑓)  − [𝑃0𝜙(𝑓)𝑃0 + 𝜙1(𝑓)]   <  1/4𝐾                 (155)and 

‖𝑎𝑑 𝑢 ∘ 𝜓(𝑓)  − [𝑃0(𝑎𝑑 𝑢 ∘ 𝜓(𝑓))𝑃0 + 𝜙1(𝑓)]‖ <
1

4𝐾
for all 𝑓 ∈ ℱ,                 (156) 

     

rank𝑃0 ≥
𝑟𝑎𝑛𝑘 𝑃

𝐾
,                                                          (157) 

there are mutually orthogonal projections 𝑞1, 𝑞2, . . . , 𝑞𝑚  ∈  𝑃1(𝑀𝑛(𝐶(𝑌)))𝑃1 and an 𝜖1-

dense subset {𝑥1, 𝑥2, . . . , 𝑥𝑚} such that  

‖𝜙1(𝑓) − [(𝑃1 − ∑ 𝑞𝑗
𝑚
𝑗=1 )𝜙1(𝑓)(𝑃1 − ∑ 𝑞𝑗

𝑚
𝑗=1 ) + ∑ 𝑓(𝑥𝑗)𝑞𝑗

𝑚
𝑗=1 ]‖ < 𝜖(158) 

for all 𝑓 ∈  ℱ and   
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 rank(𝑞𝑗) ≥  𝑁 ⋅ (rank 𝑃0 + 2dim𝑌), 𝑗 =  1, 2, . . . , 𝑚.                         (159) 

Proof: This is a reformulation of Proposition 4.47′ of [51] and follows from that 

immediately. 

We now will apply in [51]. Let 𝜖 >  0, 𝜖1 >  0, 𝑁 and ℱ be given. Choose 𝜂0 >  0 such 

that 

 |𝑓(𝑥) − 𝑓(𝑥′)| <
𝜖

2
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ.                                             (160) 

Choose 𝜖2 = min{𝜖1/3𝑁, 𝜂0/3𝑁}. Let 𝜂1
′ >  0 (in place of 𝜂) be as in [51] for 𝜖/2, 𝜖2 (in 

place of 𝜖1) and ℱ. Let  𝜎1 >  0 and𝜎 >  0. Put 𝛿1 = 𝜎1 ∙ 𝜂1
′ /32. Let 𝐾 >  4/𝜖  and �̃� be 

as in [51] for the above  𝜖/4, 𝜖2 (in place of 𝜖1) and 𝛿1 (in place of 𝛿). Let 𝛿 = 𝜎 ∙ �̃�/32. 

Let 𝐿 ≥  1 be an integer and let 𝒢 ⊂  𝐶(𝑋) be a finite subset which corresponds to the 

finite subset 𝐻 in [51]. Let 𝜂1 = 𝜂1
′ /32, 𝜂 =  �̃�/32 and let 0 <  𝛿 < 𝛿/4. Suppose that 𝜙 

and 𝜓 satisfy the assumption of the lemma for the above 𝜂1, 𝜂, 𝛿, 𝐾, 𝐿 and𝒢. 

It follows that 𝜙 has the properties sdp(𝜂1/32, 𝛿1) and sdp(�̃�/32, 𝛿) (see [51]). One then 

applies Proposition4.47′ of [51] to obtain 

 ‖𝜙(𝑓) − [𝑃0𝜙(𝑓)𝑃0 + 𝜙1(𝑓)]‖ <
1

4𝐾
                                                      (161) 

and 

‖𝑎𝑑 𝑢 ∘ 𝜓(𝑓)  − [𝑃0(𝑎𝑑 𝑢 ∘ 𝜓(𝑓))𝑃0 + 𝜙1(𝑓)]‖ <  1/4𝐾 for all 𝑓 ∈ ℱ.           (162) 

and mutually orthogonal projections 𝑒1, 𝑒2, . . . , 𝑒𝑚1 in 𝑃1(𝑀𝑛(𝐶(𝑌)))𝑃1 and 𝜖2/4-dense 

subset {𝑥1
′ , 𝑥2

′ , . . . , 𝑥𝑚1
′  } of 𝑋 such that 

‖𝜙1(𝑓) − [(𝑃1 −∑𝑐𝑖

𝑚1

𝑖=1

)𝜙1(𝑓)(𝑃1 −∑𝑐𝑖

𝑚1

𝑖=1

) +∑𝑓(𝑥𝑖
′)𝑐𝑖

𝑚

𝑖=1

]‖ <
𝜖

2
                       (163) 

for all 𝑓 ∈ ℱ,    

 rank P0 ≥
 rank P

K
𝑎𝑛𝑑 𝑟𝑎𝑛𝑘𝑒𝑖 ≥  rank P0 + 2dim𝑌.                                     (164) 

Since there are at least 𝑁 many disjoint open balls with radius 𝜖2 in an open ball of radius 

𝜖1, by moving points within 𝑁𝜖2 < min{𝜖1/2, 𝜂0}, by (37), one may write 

‖𝜙1(𝑓) − [(𝑃1 −∑𝑒𝑖

𝑚1

𝑖=1

)𝜙1(𝑓)(𝑃1 −∑𝑒𝑖

𝑚1

𝑖=1

) +∑𝑓(𝑥𝑖 )𝑞𝑖

𝑚

𝑖=1

]‖ < 𝜖                  

for all 𝑓 ∈  ℱ                                                                                                          (165) 

and 

𝑟𝑎𝑛𝑘𝑞𝑖  ≥  𝑁(𝑟𝑎𝑛𝑘𝑃0  +  2𝑑𝑖𝑚𝑌)                                    (166)  

where  ∑ 𝑞𝑖
𝑚
𝑖=1 = ∑ 𝑒𝑖

𝑚1
𝑖=1  .         

The following is a generalization of [36]. The proof is essentially the same, but we will 

also apply [45]. 

Theorem (2.2.10)[71]: Let 𝑋 be a finite simplicial complex, let ℱ ⊂  𝐶(𝑋) be a finite 

subset and let 𝜖 >  0. There exists 𝜂1 >  0 with the following property. 
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For any 𝜎1 >  0 and 𝜎 >  0, there exists 𝜂 >  0 and an integer 𝐾 (which are independent 

of 𝜎), there exists 𝛿 >  0, a finite subset 𝒢 ⊂  𝐶(𝑋), a finite subset 𝒫 ⊂  𝐾(𝐶(𝑋)), a 

finite subset 𝒰 ⊂  P(1)(𝐶(𝑋)) and a positive integer𝐿 satisfying the following. 

Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑃𝑀𝑘(𝐶(𝑌))𝑃, where 𝑌 is a connected simplicial complex 

with dim𝑌 ≤  3, are two unital homomorphisms such that 

 𝜇𝜏∘𝜙(𝑂𝜂1)  ≥  𝜎1𝜂1  and 𝜇𝜏∘𝜙(𝑂𝜂) ≥  𝜎𝜂                                                        (167) 

for all open balls 𝑂𝜂1  with radius 𝜂1 and open balls 𝑂𝜂 with radius 𝜂, and 

 |𝜏 ∘ 𝜙(𝑔) − 𝜏 ∘  𝜓(𝑔)| <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈  𝒢                                 (168) 

and for all 𝜏 ∈  𝑇 (𝑃 𝑀𝑘(𝐶(𝑌))𝑃), 

 rank(𝑃)  ≥  𝐿,                                                                       (169) 

 [𝜙]|𝒫  =  [𝜓]|𝒫                                                                       (170) 

and 

 dist (𝜙‡(�̅�), 𝜓‡(�̅�)) <
1

8𝐾𝜋
                                                                          (171) 

for all 𝓏 ∈  𝒰. Then there exists a unitary 𝑢 ∈  𝑃 𝑀𝑘(𝐶(𝑋))𝑃 such that 

 ‖𝜙(𝑓)  −  ad 𝑢 ∘ 𝜓(𝑓)‖ <for all 𝑓 ∈                                                  (172) 

Proof: It is clear that we may assume that 𝑋 is connected. Since 𝑋 is a simplicial simplex, 

there is 𝑘0  ≥  1 such that for any unital separable 𝐶∗-algebra A, 

𝐻𝑜𝑚𝛬 (𝐾(𝐶(𝑋)),𝐾(𝐴)) =  𝐻𝑜𝑚𝛬 (𝐹𝑘0𝐾(𝐶(𝑋)), 𝐹𝑘0𝐾(𝐴))(see [21]). 

Let 𝐶𝑗 be a commutative 𝐶∗-algebra with 𝐾0(𝐶𝑗)  =  ℤ/𝑗ℤ 𝑎𝑛𝑑 𝐾1(𝐶𝑗)  = {0}, 

𝑗 =  1, 2, . . . , 𝑘0 . 𝑃𝑢𝑡 𝐷0  =  𝐶(𝑋) 𝑎𝑛𝑑 𝐷𝑗  =  (𝐶(𝑋)  ⊗ 𝐶𝑗), 𝑗 =  1, 2, . . . , 𝑘0. There is 

aninteger𝑚1  ≥  1 such that 𝑈(𝑀𝑚1(𝐷𝑗))/𝑈0(𝑀𝑚1(𝐷𝑗))  =  𝐾1(𝐷𝑗), 𝑗 =  0, 1, 2, . . . , 𝑘0 . 

Put 𝑁1 = (𝑚1)
2. Let 𝑟 ∶ ℕ → ℕ such that 𝑟(𝑛) = 3𝑘0𝑛. Let 𝑏 ∶  𝑈 (𝑀∞(𝐶(𝑋)))  → 

ℝ+ be defined by 𝑏(𝑢)  =  (8 +  2𝑁1)𝜋. 

Let 𝜖 >  0 and ℱ be given. We may assume, without loss of generality, that ℱ is in the 

unit ball of 𝐶(𝑋). Let 1 > 𝛿1 >  0 (in place of 𝛿), let 𝒢1  ⊂  𝐶(𝑋), let 𝑙 ≥  1 be an 

integer, let 𝒫0  ⊂  𝐏
(0)(𝐶(𝑋)) and let 𝒰 ⊂  𝐏(1)(𝐶(𝑋)) be as required by Theorem 1.1 of 

[45] for 𝜖/4 and ℱ (and for the above 𝑟 and 𝑏). We may assume that 𝒰 ⊂

⋃ 𝑀𝑚1
𝑘0
𝑗=0 (𝐷𝑗)). We may also assume that there is 𝑙1  ≥  1 such that 𝒫0 ⊂ ⋃ 𝑀𝑙1

𝑘0
𝑗=0 (𝐷𝑗). 

 We also assume that, for any unital𝐶∗-algebra A, if 𝑢 is a unitary and 𝑒 is aprojection for 

which 

‖𝑒𝑢 − 𝑢𝑒‖ < 𝛿′ , 

there is a unitary 𝑣 ∈  𝑒𝐴𝑒 such that        

‖𝑒𝑢𝑒 − 𝑣‖ <  2𝛿′ 

for any 0 < 𝛿′ < 𝛿1. 

Set ℱ1 = ℱ ∪ 𝒢1. Let  𝜖1 >  0   be such that   

|𝑓(𝑥)  −  𝑓(𝑥′)|  <  𝜖/4 for all    𝑓 ∈ ℱ1,                                                               (173)  

if dist(𝑥, 𝑥′)  < 𝜖1. 
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Put 𝑁 =  𝑙 +  1 and 𝜖2 = min{𝛿1/4, 𝜖/4}. Let 𝜂1 >  0 be required by Lemma (2.2.9) for 

𝜖/2 (in place of𝜖), 𝜖1, ℱ1 (in place of ℱ) and 𝑁. Fix 𝜎1 >  0. Let 𝜂 >  0 and 𝐾1 >

 4𝑁1/𝜖2 (in place of 𝐾) be required by Lemma (2.2.9) Fix 𝜎 >  0. Let 𝛿 >  0, an integer 

𝐿 >  0 and let 𝒢 ⊂  𝐶(𝑋) be a finite subset required by Lemma(2.2.9)for 𝜖2 (in place of 

𝜖), ℱ1 (in place of ℱ), 𝜎, 𝜎1, and 𝑁. 

We may assume that 𝒢 ⊃ 𝐹1. Let 𝒫 ⊂ 𝐾(𝐶(𝑋)) be a finite subset which consists of the 

image of 𝒫0 and the image of 𝒰 in 𝐾(𝐶(𝑋)), and let 𝐾 =  2𝑁1𝐾1. 

Now suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑃𝑀𝑘(𝐶(𝑌))𝑃 are unital homomorphisms such that 

(167), (168), (169), (170) and (171)) hold. It follows from Lemma (2.2.9) that there are 

mutually orthogonal projections 𝑃0 and 𝑃1 with 𝑃0  +  𝑃1  =  𝑃, a unital homomorphism 

𝜙1 ∶  𝐶(𝑋)  →  𝑃1(𝑀𝑛(𝐶(𝑌))𝑃1) factoring through 𝐶([0, 1]), and a unitary 𝑣 ∈

 𝑃 (𝑀𝑛(𝐶(𝑌)))𝑃 such that 

 𝜙(𝑓) − [𝑃0𝜙(𝑓)𝑃0  +  𝜙1(𝑓)]  <
1

4𝐾1
                                                                 (174)   

and  

 ad 𝑣 ∘ 𝜓(𝑓) − [𝑃0(ad 𝑣 ∘ 𝜓(𝑓))𝑃0 + 𝜙1(𝑓)] < 1/4𝐾1for all 𝑓 ∈ ℱ1,        (175) 

rank𝑃0  ≥
rank𝑃

𝐾1
                                          (176) 

there are mutually orthogonal projections𝑞1, 𝑞2, . . . , 𝑞𝑚 ∈ 𝑃1(𝑀𝑛(𝐶(𝑌)))𝑃1 and an 𝜖1-

dense subset {𝑥1, 𝑥2, . . . , 𝑥𝑚} such that 

‖𝜙1(𝑓) − [(𝑃1 −∑𝑞𝑗

𝑚1

𝑗=1

)𝜙1(𝑓)(𝑃1 −∑𝑞𝑗

𝑚1

𝑗=1

) +∑𝑓(𝑥𝑗 )𝑞𝑗

𝑚

𝑗=1

]‖ < 𝜖2                                   

       for all 𝑓 ∈ ℱ1                                                                                             (177) 

and   

 rank(𝑞𝑗) ≥  𝑁(rank𝑃0 +  2dim𝑌), 𝑗 =  1, 2, . . . , 𝑚.                                  (178) 

Note  that  1/4𝐾1 < 𝛿1/16(𝑁1). For each 𝐶𝑗 , we may assume that 

𝐶𝑗 = 𝐶0(𝑍𝑗  \ {𝜉𝑗}), 

where 𝑍𝑗 is a path connected CW complex with 𝐾0(𝑍𝑗)  =  ℤ⊕ ℤ/𝑗ℤ and 𝐾1(𝑍𝑗) = {0} 

and where 𝜉𝑗 ∈ 𝑍𝑗 is a point, 𝑗 =  1, 2, . . . , 𝑘0.   

For each 𝓏 ∈  𝒰 and 𝓏 ∈ 𝑀𝑚1(𝐷𝑗), denote𝓏1 = (�̃� ⊗ 𝑖𝑑𝑚1)(𝑧)and𝑧2 = (ad 𝑣 ∘ 𝜓)⊗

𝑖𝑑𝑚1(𝑧), where �̃�, ad 𝑣 ∘ 𝜓 ∶  𝐷𝑗  →  (𝐶(𝑌) ⊗ 𝐶𝑗 )̃ is the induced homomorphism. 

Identify (𝑀𝑘(𝐶(𝑌)𝐶𝑗 )̃) with a 𝐶∗-subalgebra of 𝐶(𝑍𝑗 ,𝑀𝑘(𝐶(𝑌))) and denote by 𝑃0
′ the 

constant projection which is 𝑃0 at each point of 𝑍𝑗 and by 𝑃′ theconstant projection which 

is 𝑃 at each point of 𝑍𝑗 . There are unitaries 𝓏1
′ , 𝓏2

′ ∈ 𝑀𝑚1(𝑃0
′𝑀𝑘(𝐶(𝑌 ) ⊗ 𝐶𝑗)𝑃0

′ )̃)such 

that  

‖𝓏1
′ − �̅�0𝓏1�̅�0‖ <

2𝑁1

4𝐾1
<
𝛿1

8
, ‖𝓏2

′ − �̅�0𝓏2�̅�0‖ <
2𝑁1

4𝐾1
<
𝛿1

8
                                            (179) 

‖𝓏1 − 𝓏1
′ ⊕𝜙1(𝓏)‖ <

3(𝑁1)
2

4𝐾1
< 𝛿1/4 and‖𝓏2 − 𝓏2

′ ⊕𝜙1(𝓏)‖ <
3(𝑁1)

2

4𝐾1
<
𝛿1

4
,                    (180) 
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where �̅�  =  diag (𝑃′, 𝑃′, … , 𝑃′)⏞        
𝑚1

 and �̅�0  =  diag (𝑃0
′, 𝑃0

′, … , 𝑃0
′)⏞        

𝑚1

. By (171)), one computes 

that            

dist(𝓏1
′ ⊕𝜙

1
(𝓏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (𝓏2

′ ⊕𝜙
1
(𝓏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))  ≤

1

4𝐾𝜋
+
6𝑁1
4𝐾1

<
1 + 6𝑁1

2𝜋

4𝑁1𝐾1𝜋
,             (181) 

where (𝓏1
′ ⊕𝜙1(𝓏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and (𝓏2

′ ⊕𝜙1(𝓏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the images of (𝓏1
′ ⊕𝜙1(𝓏) and (𝓏2

′ ⊕𝜙1(𝓏). It 

follows that 

𝐷 (𝓏1
′ (𝓏2

′ )
∗
⊕ (�̅� − &�̅�0)) +

1+6𝑁1
2𝜋

4𝑁1𝐾1𝜋
                             (182) 

where 𝐷 is the determinant defined in Definition (2.2.5) 

Since rank𝑃0  ≥
rank 𝑃

𝐾1
, see [113], 

𝐷𝑃0𝑀𝑘(𝐶(𝑌))𝑃0(𝓏1
′ (𝓏2

′ )
∗
+
1+6𝑁1

2𝜋

4𝑁1
                                                                         (183) 

 

By the choice of 𝒫 and the assumption (170), since dim𝑌 ≤  3, 

     (𝓏1
′ (𝓏2

′ )
∗
⊕diag (𝑃0

′, 𝑃0
′, … , 𝑃0

′)⏞        
3𝑘0𝑚1

) ∈ 𝑈0(𝑀3𝑘0𝑚1(𝑃0
′𝑀𝑘(𝐷𝑗)𝑃0

′)).                   (184) 

By the theorem (2.2.11) of [113], 

cel (𝓏1
′(𝓏2

′ )∗⊕diag (𝑃0
′, 𝑃0

′, … , 𝑃0
′)⏞        

3𝑘0𝑚1

) ≤ (2𝑁1𝜋 +  𝜋) + 6𝜋 ≤  (2𝑁1 + 7)𝜋                   (185) 

for all 𝓏 ∈  𝒰. Denote 𝜙′ = 𝑃0𝜙𝑃0 and 𝜓′ = 𝑃0(𝑎𝑑 𝑢 ∘ 𝜓)𝑃0. Then both are 𝛿1 − ℱ1-

multiplicative. By the assumption (170), 

[𝜙′]|𝒫 = [𝜓
′]|𝒫 .                                                                                                                 (186) 

Since dim𝑌 ≤  3, for any 𝑝 ∈ 𝒫0, it follows that   

 [𝜙′](𝑝) ⊕ diag (𝑃0, 𝑃0, … , 𝑃0)
⏞        

3𝑘0𝑙1

~[𝜓′](𝑝) ⊕ diag (𝑃0, 𝑃0, … , 𝑃0)
⏞        

3𝑘0𝑙1

                 (187) 

for all 𝑝 ∈ 𝒫0. Note that 3𝑘0𝑙1 =  𝑟(𝑙1) and (2𝑁1 +  7)𝜋 + 𝛿1/4 <  𝑏(𝓏) for any 𝓏. 

Since (178) holds, 𝑁 ≥  𝑙 and {𝑥1, 𝑥2, . . . , 𝑥𝑚} is 1-dense in 𝑋. By (remark) of [45], there 

exists a unitary 

𝑢1 ∈ ((𝑃0 +∑ 𝑞
𝑗

𝑚

𝑗=1

))𝑃𝑀𝑘(𝐶(𝑌))𝑃(𝑃0 +∑ 𝑞
𝑗

𝑚

𝑗=1

) 

such that  

‖𝑢1
∗(𝜓′(𝑓) ⊕∑𝑓(𝑥𝑗)𝑞𝑗

𝑚

𝑗=1

)𝑢1 − 𝜙′(𝑓) ⊕∑𝑓(𝑥𝑗)𝑞𝑗

𝑚

𝑗=1

)‖ <
𝜖

4
                      (188) 

for all 𝑓 ∈ ℱ. 

Define 𝑢 =  (𝑢1⊕𝑃 − (𝑃0⊕∑ 𝑞
𝑗

𝑚
𝑗=1 ))𝑣 ∈ 𝑃𝑀𝑘(𝐶(𝑌))𝑃.Then, by (265),(177),(174) 

and (124),   

 ‖ad 𝑢 ∘ 𝜓(𝑓) − 𝜙(𝑓)‖ <   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ.                                                    (189) 



55 
 

Theorem (2.2.11)[71]: Let 𝑋 be a compact metric space and 𝐿 ∶  𝑈 (𝑀∞(𝐴))  →  𝑅+ be a 

map. For any 𝜖 >  0 and any finite subset ℱ ⊂  𝐶(𝑋), there exists a positive number 𝛿 >

 0, a finite subset 𝒢, a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)), a finite subset𝒰 ⊂ 𝑈(𝑀∞(𝐴)), an 

integer 𝑙 ≥ 1 and   𝜖1 >  0 satisfying the following.  If 𝜙,𝜓 ∶ 𝐶(𝑋)  →  ℬ (𝑤ℎ𝑒𝑟𝑒 ℬ =

⨁𝑗=1
𝑚 𝐶(𝑋𝑗 ,𝑀𝑟(𝑗)), 𝑋𝑗 = [0, 1],or𝑋𝑗is a point) are two unital𝛿-𝒢-multiplicative contractive 

completely positive linear maps with  

  [𝜙]|𝒫 = [𝜓]|𝒫andcel(𝜙(𝑣)∗𝜓(𝑣))  ≤  𝐿(𝑢)                                      (190) 

for all 𝑣 ∈  𝒰, then there exists a unitary 𝑢 ∈ 𝑀𝑙𝑚+1(𝐵) such that  

 ‖𝑢∗diag(𝜙(𝑓), 𝜎(𝑓))𝑢 −  diag(𝜓(𝑓), 𝜎(𝑓))‖ < 𝜖                                        (191) 

for all 𝑓 ∈  ℱ, where 𝜎(𝑓)  =  ∑ 𝑓(𝑥𝑖)𝑒𝑖
𝑚
𝑖=1  for any 𝜖1-dense set{𝑥1, 𝑥2, . . . , 𝑥𝑚} and any 

set of mutually orthogonal projections {𝑒1, 𝑒2, . . . , 𝑒𝑚} in 𝑀𝑙𝑚(𝐵) such that 𝑒𝑖is equivalent 

to idMl(𝐵). 

To prove the above theorem, we note that 𝐵 has stable rank one, 𝐾0-divisible rank 

𝑇(𝑛, 𝑘)  =  [𝑛/𝑘]  +  1, and exponential length divisible rank 𝐸(𝐿, 𝑛)  =  8𝜋 +  𝐿/𝑛 (see 

[46]). Therefore we have the following. 

Corollary (2.2.12)[71]: Let 𝑋 be a simplicial finite CW complex, let ℱ ⊂  𝐶(𝑋) be a 

finite subset and let 𝜖 >  0. There exists 𝜂1 >  0 with the following property. 

For any 𝜎1 > 0 and 𝜎 > 0, there exists 𝜂 > 0 and an integer 𝐾 (which are independent of 

𝜎), 𝛿 >  0, a finite subset 𝒢 ⊂  𝐶(𝑋), a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)), a finite subset 𝒰 ⊂

 𝑈(𝑀∞((𝐶(𝑋))) and a positive integer 𝐿 satisfying the following. Suppose that 𝜙,𝜓 ∶

 𝐶(𝑋) → 𝐵 = ⨁𝑗=1
𝑚 𝐶(𝑋𝑗 ,𝑀𝑟(𝑗))(𝑤ℎ𝑒𝑟𝑒𝑋𝑗 = [0, 1]or 𝑋𝑗 is a point) are two unital 

homomorphisms such that 

 𝜇𝜏∘𝜙(𝑂𝜂1) ≥  𝜎1𝜂1and𝜇𝜏∘𝜙(𝑂𝜂) ≥  𝜎𝜂,                                                       (192) 

|𝜏 ∘ 𝜙(𝑔)  −  𝜏 ∘ 𝜓(𝑔)|  <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈  𝒢, (193) 

and for all 𝜏 ∈  𝑇 (𝐵),   

𝑚𝑖𝑛
𝑗
{𝑟𝑎𝑛𝑘(𝑟(𝑗))}  ≥  𝐿, [𝜙]|𝒫 = [𝜓]|𝒫  𝑎𝑛𝑑                         (194) 

 𝑑𝑖𝑠𝑡 (𝜙‡(𝓏),𝜓‡(𝓏)) <
1

8𝐾𝜋
                    (195) 

for all 𝓏 ∈  𝒰. Then there exists a unitary 𝑢 ∈  𝐵 such that  

 ‖𝜙(𝑓)  −  ad 𝑢 ∘ 𝜓(𝑓)‖ < 𝜖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ.                                 (196) 

 lim
𝑛→∞

‖𝜙𝑛(𝑓)𝜙𝑛(𝑔)  − 𝜙𝑛(𝑓𝑔)‖ = 0  for all 𝑓, 𝑔 ∈  𝐶(𝕋 × 𝕋)    (197) 

And {𝜙𝑛} is away from homomorphisms. Therefore {𝜙𝑛} are not approximately unitarily 

equivalent to homomor-phisms. This is because [𝜙𝑛](𝑏) ≠ 0, where 𝑏 is the bott element. 

However, even when 𝑋 is contractive, as long as dim𝑋 >  2, one always has a sequence 

of contractive completely positive linear maps 𝜙𝑛 ∶  𝐶(𝑋)  →  𝑀𝑛 such that (197) holds 

and {𝜙𝑛} is away from any homomorphisms (see [44]).Therefore the condition on 𝐾𝐾-

theory (212) as well as the condition on the measure (213) in Lemma (2.2.15) are 

essential. 

The following is a version  in  [65] and follows from that immediately. 
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Lemma (2.2.13)[71]: Let 𝑋 be a compact metric space, 𝜖 >  0 and ℱ ⊂  𝐶(𝑋) be a finite 

subset. There exists 𝜂 >  0 which depends on𝜖 and ℱ for which 

|𝑓(𝑥)  −  𝑓(𝑥′)|  <  𝜖/8 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ, 

if dist(𝑥, 𝑥′)  <  𝜂, and for which the following holds. 

For any 𝜂/2-dense subset {𝑥1, 𝑥2, . . . , 𝑥𝑚} and any integer 𝑠 ≥  1 for which 𝑂𝑖  ∩  𝑂𝑗  =

 ∅ (𝑖 ≠ 𝑗), where 

𝑂𝑖  =  {𝑥 ∈  𝑋 ∶  dist(𝑥𝑖 , 𝑥)  <  𝜂/2𝑠}, 

and for any 𝜎 >  0 for which 1/2𝑠 >  𝜎 >  0, there exist 𝛿 >  0, a finite subset 𝒢 ⊂

 𝐶(𝑋) and a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the following. 

Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝐴 (for any unital simple C∗-algebra with tracial rank zero, 

infinite dimensional or finite dimensional) are two unital 𝛿-𝒢-multiplicative contractive 

completely positive linear maps such that 

 [𝜙]|𝒫 = [𝜓]|𝒫,                                                                                       (198) 

 |𝜏 ∘ 𝜙(𝑔) − 𝜏 ∘ 𝜓(𝑔)|  <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈  𝒢, 𝜏 ∈  𝑇 (𝐴),                        (199) 

 𝜇𝜏∘𝜙(𝑂𝑖) ≥  𝜎𝜂   and𝜇𝜏∘𝜓(𝑂𝑖) ≥  𝜎𝜂                                                           (200) 

𝑖 =  1, 2, . . . , 𝑚. 

Then there exists a unitary 𝑢 ∈  𝐴 such that 

 ad 𝑢 ∘ 𝜙 ≈   𝜓 𝑜𝑛 ℱ.                                                                                               (201) 

Lemma (2.2.14)[71]: Let 𝑋 be a compact metric space, let 𝜎1 >  0, 1 > 𝜂1 >  0 and let 

𝜎 >  0. For any 𝜖 >  0 and any finite subset ℱ ⊂  𝐶(𝑋), there exist 𝜂 >  0(which 

depends on and ℱ but not on 𝜎1, 𝜎, or 𝜂1), 𝛿 >  0, and a finite subset 𝒢 

(𝑏𝑜𝑡ℎ 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝜖, ℱ, 𝜎1, 𝜎 𝑎𝑛𝑑 𝜂1) satisfying the following. 

Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝑀𝑛 (for any integer 𝑛 ≥  1) is a 𝛿-𝐺-multiplicative contractive 

completely positive linear map such that 

 𝜇𝜏∘𝜙(𝑂𝜂1) ≥  𝜎1𝜂1and𝜇𝜏∘𝜙(𝑂𝜂) ≥  𝜎𝜂                                                                 (202) 

for all open balls with radius 𝜂1 and 𝜂, respectively. 

Then there exists a unital homomorphism ℎ ∶  𝐶(𝑋)  →  𝑀𝑛 such that  

 |𝜏 ∘ ℎ(𝑓) − 𝜏 ∘ 𝜙(𝑓)|  <  𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ,                                                (203) 

 𝜇𝜏∘ℎ(𝑂𝜂1) ≥  (𝜎1/2)𝜂1  and𝜇𝜏∘ℎ(𝑂𝜂) ≥ (𝜎/2)𝜂,                                         (204) 

for all 𝜏 ∈  𝑇 (𝐴).   

Proof: We apply Lemma (2.2.15) of [65]. Let 𝛾 >  0 and ℱ1 ⊂  𝐶(𝑋) be a finite subset. It 

follows from Lemma (2.2.15) of [65] that, for a choice of 𝛿 and𝒢, there is a projection 

𝑝 ∈ 𝑀𝑛 and a unital homomorphism ℎ0 ∶  𝐶(𝑋)  →  𝑝𝑀𝑛𝑝 such that 

 ‖𝜙(𝑓) − [(1 − 𝑝)𝜙(𝑓)(1 − 𝑝)  + ℎ0(𝑓)]‖ <  𝛾 for all 𝑓 ∈ ℱ1                (205) 

and 

 𝜏 (1 –  𝑝)  <  𝛾.                                                                                        (206) 

Moreover, for any open ball 𝑂𝜂 with radius 𝜂, 

  ∫ ℎ0𝑑𝜇𝜏∘ℎ0𝑂𝜂
> (

𝜎

2
) 𝜂                                                                               (207) 
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Let ℎ1: 𝐶(𝑋)  →  (1 −  𝑝)𝑀𝑛(1 −  𝑝) be a unital homomorphism and define ℎ =  ℎ1⊕

ℎ0. Therefore 

 𝜇𝜏∘ℎ(𝑂𝜂) > (
𝜎

2
) 𝜂                                                                                              (208) 

for any open ball with radius 𝜂. Moreover, 

 |𝜏 ∘ 𝜙(𝑓) − 𝜏 ∘ ℎ(𝑓)| <  2𝛾 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ1                                                     (209) 

We choose 𝛾 < 𝜖/2 and ℱ1 ⊃ ℱ. It is easy to see that, if we choose sufficiently small 𝛾 

and sufficiently large ℱ1, we may also have 

𝜇𝜏∘ℎ(𝑂𝜂1) ≥  (𝜎1/2)𝜂1. 

Lemma (2.2.15)[71]: Let 𝑋 be a path connected compact metric space, let 𝜖 >  0, ℱ ⊂

 𝐶(𝑋) be a finite subset, and let 𝜎1 >  0, 𝜎 >  0 and 1 > 𝜂1 >  0. Then, there exists 𝜂 >

 0 (which depends on𝜖 and ℱ but not on 𝜎1, 𝜎 𝑜𝑟 𝜂1), 𝛿 >  0, a finite subset 𝒢 ⊂  𝐶(𝑋) 

and a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the following. 

Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝑀𝑛 (for any integer 𝑛 ≥  1) is a 𝛿-𝒢-multiplicative contractive 

completely positive linear map such that 

 𝜇𝜏∘𝜙(𝑂𝜂) ≥  𝜎 ⋅ 𝜂 𝑎𝑛𝑑 𝜇𝜏∘𝜙(𝑂𝜂1)  ≥  𝜎1 ⋅ 𝜂1                                           (211) 

for all open balls with radius 𝜂 and 𝜂1, respectively, and 

 [𝜙]|𝒫 = [𝜋𝜉]|𝒫                                                                            (212) 

for some point 𝜉 ∈  𝑋. Then there exists a unital homomorphism ℎ ∶  𝐶(𝑋)  →  𝑀𝑛 such 

that 

 ‖𝜙(𝑓)  −  ℎ(𝑓)‖ < 𝜖  for all 𝑓 ∈  ℱ,                                                        (213) 

 𝜇𝜏∘ℎ(𝑂𝜂1) ≥  (𝜎1/2)𝜂1and 𝜇𝜏∘ℎ(𝑂𝑛)  ≥  (𝜎/2)𝜂.                                    (214) 

Proof:  Fix 𝜖 >  0, a finite subset ℱ ⊂  𝐶(𝑋), 𝜎1, 𝜎 𝑎𝑛𝑑 1 > 𝜂1 >  0. Let 𝜂2 >  0 be a 

positive number such that 

|𝑓(𝑥) − 𝑓(𝑥′)|  < 𝜖/16, 

if dist(𝑥, 𝑥′)  < 𝜂2. We may assume that 𝜂2 < 𝜂1. Let 𝑠, 𝒢1 (in place of 𝒢), 𝛿1 (in place of 

𝛿) and 𝒫 ⊂ 𝑷(𝐶(𝑋)) be as in Lemma (2.2.13) (for the above 𝜖/2, 𝜂2 and 𝜎).  

Let 𝜂 >  0, 𝛿 >  0 and a finite subset 𝒢 ⊂  𝐶(𝑋) be as in Lemma (2.215) required for 𝛾 

(in place of 𝜖), 𝒢1 ∪  ℱ (in place of ℱ), 𝜎 (with 𝜎1  =  𝜎) and 𝜂2 (in place of 𝜂1) above. 

Now suppose that 𝜙 ∶  𝐶(𝑋)  →  𝑀𝑛 is a 𝛿-𝒢-multiplicative contractive completely 

positive linear map satisfying the assumption with the above𝜂, 𝛿, 𝒢and 𝒫. By applying 

Lemma (2.2.14), one obtains a unital homomorphism ℎ1 ∶  𝐶(𝑋) → 𝑀𝑛 such that 

|𝜏 ∘ 𝜙(𝑔) − 𝜏 ∘ ℎ1(𝑔)| < 𝛿1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝒢1,                                                          

𝜇𝜏∘ℎ1(𝑂𝑛) ≥  (
𝜎

2
) 𝜂 𝑎𝑛𝑑                                                                                     (215) 

𝜇𝜏∘ℎ1(𝑂𝜂2) ≥  (
𝜎

2
) 𝜂2.                                                                                                           (216) 

Since 𝑋 is a path connected, 

[ℎ1]  =  [𝜋𝜉]. 

It follows that 

[ℎ1]|𝒫 = [𝜙]|𝒫 . 
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It then follows from Lemma(2.2.13) that there exists a unitary 𝑢 ∈ 𝑀𝑛 such that 

ad 𝑢 ∘ ℎ ≈𝜖 𝜙 𝑜𝑛 ℱ. 

Put ℎ =  ad 𝑢 ∘ ℎ1. One also has that 

𝜇𝜏∘ℎ(𝑂𝑛) = 𝜇𝜏∘ℎ1(𝑂𝑛) ≥  𝜎 ⋅ 𝜂/2. 

Note that, if one can choose 𝛿1 sufficiently smaller and 𝐺1 sufficiently larger, one may 

also require that 

𝜇𝜏∘ℎ(𝑂𝑛1) ≥  (𝜎1/2)𝜂1. 

Lemma (2.2.16)[71]: Let 𝑋 be a compact metric space and let 𝐴 be a finite 

dimensional𝐶∗-algebra. Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝐴 is a unital homomorphism and 𝑢 ∈

 𝐴 is a unitary such that 

𝜙(𝑓)𝑢 =  𝑢𝜙(𝑓) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐶(𝑋). 

Then there exists a continuous path of unitaries {𝑢(𝑡) ∶  𝑡 ∈  [0, 1]} such that 

𝑢(0) = 𝑢, 𝑢(1) = 𝑢, 𝜙(𝑓)𝑢(𝑡)  =  𝑢(𝑡)𝜙(𝑓) for all 𝑓 ∈  𝐶(𝑋) andLength({𝑢(𝑡)})  ≤  𝜋. 

Proof: Define 𝐻 ∶  𝐶(𝑋 ×  𝕋)  →  𝐴 by 𝐻(𝑓 ⊗ 𝑔) = 𝜙(𝑓)𝑔(𝑢) for 𝑓 ∈  𝐶(𝑋) and 𝑔 ∈

 𝐶(𝕋). Note that 𝐻(𝐶(𝑋)) is a commutative finite dimensional 𝐶∗-algebra. The lemma 

follows immediately. 

Lemma (2.2.17)[71]: Let 𝑋 be a compact path connected metric space, let 𝜖 >  0 and let 

ℱ ⊂  𝐶(𝑋) be a finite subset. There exists 𝜂 >  0 such that the following holds. 

For any 𝜎 >  0, there exists an integer 𝑠 ≥  1, 𝛿 >  0, a finite subset 𝒢 ⊂  𝐶(𝑋) and a 

finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the following. 

Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝑀𝑛 (for some integer 𝑛) is a unital homomorphism and a 

unitary 𝑢 ∈ 𝑀𝑛 such that there is a 𝛿-𝐺-multiplicative contractive completely positive 

linear map 𝛷 ∶  𝐶(𝑋 ×  𝕋)  →  𝑀𝑛 such that 

 ‖𝛷(𝑓 ⊗ 1) −  𝜙(𝑓)‖ <  𝛿 for all 𝑓 ∈ 𝒢, ‖𝑢 − 𝛷(1⊗ 𝑧)‖ < 𝛿,                (217) 

where 𝓏 is the identity map on the unit circle, 

  Bott(𝜙, 𝑢)|𝒫  =  {0}                                                                                (218) 

 and 𝜇𝜏∘𝛷(𝑂𝑛/2𝑠) ≥  𝜎𝜂                                                                         (219) 

for any open ball 𝑂𝑛/2𝑠 of 𝑋 ×  𝕋 with radius 𝜂/2𝑠. 

Then there is a continuous path of unitaries{𝑢(𝑡): 𝑡 ∈ [0, 1]} such that 𝑢(0) =  𝑢, 𝑢(1) =

 1   ‖𝜙(𝑓), 𝑢(𝑡)‖ < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ 𝑎𝑛𝑑 

length({𝑢(𝑡)})  ≤  𝜋 + 𝜖𝜋. 

Proof: Let 𝜖 >  0 and ℱ be as in the statement. We may assume that 𝜖 <  1/4. Let 𝑌 =

 𝑋 ×  𝕋 and 

ℱ1 = {𝑓 ×  𝑔 ∶  𝑓 ∈  ℱ ∪  {1}, 𝑔 =  1 𝑎𝑛𝑑 𝑔 =  𝓏}, 

where 𝓏 is the identity map of the unit circle. 

Let 𝜂 >  0 be as in Lemma (2.2.15) for ℱ1 (instead of ℱ) and 𝜖/4 (instead of 𝜖) for 𝑌 . 

Fix 𝜎1  =  𝜎 >  0 (and 𝜂1 =  𝜂). Let 𝑠 ≥  1, 𝛿0 (in place of 𝛿), 𝒢1 (in place of 𝒢) and 𝒬 ⊂

𝐾(𝐶(𝑋 ×  𝕋)) (in place of 𝒫) be as required by Lemma (2.2.15) for the above 𝜖/4, 𝐹, 𝜂 
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and 𝜎1 (and for 𝑌). There is 𝛿1 >  0, a finite subset 𝒢1 ⊂  𝐶(𝑋 ×  𝕋) and a finite subset 

𝒬 ⊂  𝛽(𝐾(𝐶(𝑋)) such that 

[𝛹]|𝛽(𝒬)  =  [𝜋𝜉]|𝛽(𝒬) 

for any 𝛿1-𝐺1-multiplicative contractive completely positive linear map for which 

 ‖Ψ(𝑓 ⊗ 1) − 𝜙(𝑓)‖ < 𝛿1  for all 𝑓 ∈ 𝒢1,‖𝛷(1⊗ 𝑧) − 𝑣‖ < 𝛿1              (220) 

 and Bott(𝜙, 𝑣)|𝒫 = {0}                                                                    (221) 

(for any unitary 𝑣 ∈ 𝑀𝑛 satisfying the above). 

Now suppose that 𝜙 and 𝑢 satisfy the assumption for the above 𝜂, 𝛿, 𝒢 and 𝒫. It follows 

from Lemma 4.3 that there is a unital homomorphism 𝐻:𝐶(𝑋 × 𝕋) → 𝑀𝑛 

such that 

 ‖𝛷(𝑔) − 𝐻(𝑔)‖ <
𝜖

4
for all 𝑔 ∈ ℱ1.                                                                   (𝟐𝟐𝟐) 

It follows from Lemma (2.2.16) that there exists a continuous path of unitaries{𝑢(𝑡) ∶  𝑡 ∈

 [1/4, 1]} such that 

  𝑢(1/4)  =  𝐻(1 ⊗  𝑧), 𝑢(1)  =  1,                                                   (223) 

𝑢(𝑡)𝐻(𝑔 ⊗ 1) = 𝐻(𝑔⊗ 1)𝑢(𝑡)for all 𝑔 ∈ 𝐶(𝑋), 𝑡 ∈ [1/4, 1] and           (224) 

 

  𝐿𝑒𝑛𝑔𝑡ℎ({𝑢(𝑡) ∶  𝑡 ∈  [1/4, 1]})  ≤  𝜋.                                          (225)  

Since   

‖𝑢 − 𝐻(1⊗ 𝑧)‖ < 𝜖/2, 

there is a continuous path of unitaries {𝑢(𝑡) ∶  𝑡 ∈  [0, 1/4]} such that  

𝑢(0)  =  𝑢, 𝑢(1/4)  =  𝐻(1 ⊗  𝑧) and Length({𝑢(𝑡) ∶  𝑡 ∈ [0, 1/4]}) ≤  𝜖 ⋅ 𝜋. 

The lemma then follows.    

Lemma (2.2.18)[71]: Let 𝑋 be a compact metric space without isolated points, 𝜖 > 0 and 

1 ∈ ℱ ⊂  𝐶(𝑋) be a finite subset. Let 𝑙 be a positive integer for which 256𝜋𝑀/𝑙 < 𝜖 , 

where 𝑀 =  max{1,max{ ‖𝑓‖ ∶  𝑓 ∈  ℱ}}. Then there exists 𝜂 >  0 (which depends on𝜖 

and ℱ) for any finite 𝜂/2-dense subset {𝑥1, 𝑥2, . . . , 𝑥𝑁 } of 𝑋 for which 𝑂𝑖 ∩ 𝑂𝑗 =  ∅ (𝑖 =

 𝑗), where 

𝑂𝑖  =  {𝑥 ∈ 𝑋 ∶  dist(𝑥, 𝑥𝑖)  <  𝜂/2𝑠} 

for some integer 𝑠 ≥  1 and for any 𝜎 >  0 for which 𝜎 <  1/2𝑠, and for any 𝛿0 >  0 and 

any finite subset 𝒢0 ⊂  𝐶(𝑋 ⊗  𝕋), there exists a finite subset 𝒢 ⊂  𝐶(𝑋) and there exists 

𝛿 >  0 satisfying the following. 

Suppose that 𝐴 is a unital separable simple 𝐶∗-algebra with tracial rank zero (infinite 

dimensional or finite dimensional), ℎ ∶  𝐶(𝑋)  →  𝐴 is a unital homomorphism and 𝑢 ∈  𝐴 

is a unitary such that 

‖[ℎ(𝑎), 𝑢]‖ < 𝛿 f or all 𝑎 ∈ 𝒢 and 𝜇𝜏∘ℎ(𝑂𝑖) ≥ 𝜎𝜂 for all 𝜏 ∈ 𝑇(𝐴).                    (226) 

Then there is a 𝛿0-𝒢0-multiplicative contractive completely positive linear map  

𝜙: 𝐶(𝑋)  ⊗  𝐶(𝕋) → 𝐴 and a rectifiable continuous path {𝑢𝑡 ∶  𝑡 ∈  [0, 1]} such that 

 𝑢0 = 𝑢, ‖[𝜙(𝑎 ⊗ 1), 𝑢𝑡]‖ < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℱ,                                                 (227) 

‖𝜙(𝑎 ⊗ 1) − ℎ(𝑎)‖ < 𝜖  , ‖𝜙(𝑎 ⊗ 𝑧) − ℎ(𝑎)𝑢 ‖ < 𝜖  for all 𝑎 ∈  ℱ,     (228) 
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where 𝑧 ∈  𝐶(𝕋) is the standard unitary generator of 𝐶(𝕋), and  

 𝜇𝜏∘𝜙 (𝑂(𝑥𝑖 × 𝑡𝑗)) >
𝜎1

2𝑙
𝜂, 𝑖 =  1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑙,                            (229) 

for all 𝜏 ∈  𝑇 (𝐴), where 𝑡1, 𝑡2, ..., 𝑡𝑙 are 𝑙 points on the unit circle which divide 𝕋 into 𝑙 

arcs evenly and where 

𝑂(𝑥𝑖 × 𝑡𝑗) = {𝑥 × 𝑡 ∈ 𝑋 × 𝕋 ∶ dist(𝑥, 𝑥𝑖) < 𝜂/2𝑠 𝑎𝑛𝑑 dist(𝑡, 𝑡𝑗) < 𝜋/4𝑠𝑙} 

for all 𝜏 ∈  𝑇 (𝐴) 

(𝑠𝑜 𝑡ℎ𝑎𝑡 𝑂(𝑥𝑖 × 𝑡𝑗) ∩ 𝑂(𝑥𝑖′ × 𝑡𝑗′) = ∅ 𝑖𝑓 (𝑖, 𝑗) ≠ (𝑖
′, 𝑗′)). Moreover, 

𝐿𝑒𝑛𝑔𝑡ℎ({𝑢𝑡}) ≤  𝜋 +  𝜋.                                                                        (230) 

Proof: The only diffierence between this lemma and Lemma in [70] is that in the 

statement of Lemma in [70] ℎ is assumed to be a monomorphism. However, for the case 

that 𝐴 is infinite dimensional, it is the condition that 

𝜇𝜏∘ℎ(𝑂𝑖) ≥  𝜎 ⋅ 𝜂 

for all 𝜏 ∈  𝑇 (𝐴) which is actually used. The existence of a monomorphism ℎ implies that 

𝐴 is infinite dimensional. 

In the case that 𝑀𝑛, 𝑝𝐴𝑝 may not have enough projections, a modification is needed for the 

case where 𝐴 =  𝑀𝑛 for some integer 𝑛. Let 𝜂 >  0 be such that 

|𝑓(𝑥) − 𝑓(𝑥′)| < 𝜖/32 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ, 

if dist(𝑥, 𝑥′) < 𝜂. Suppose that 𝑦1, 𝑦2, . . . , 𝑦𝑚 ∈  𝑋 and 𝑠1  ≥  1 such that 

𝐺𝑖 ∩ 𝐺𝑗  =  ∅ 𝑖𝑓 𝑖 ≠ 𝑗, 

where 𝐺𝑖 = 𝐵𝜂1/2𝑠1(𝒴i), 𝑖 =  1, 2, . . . , 𝑚. Let {𝑥1, 𝑥2, . . . , 𝑥2𝑚𝑙} be another subset of𝑋 such 

that each 𝐺𝑖 contains 2𝑙 many points. 

Now let 𝛿0 and 𝐺0 be given. Then there is 𝑠 > 𝑠1 such that 

𝑂𝑖  ∩  𝑂𝑗 =  ∅, 𝑖𝑓 𝑖 ≠ 𝑗, 

where 𝑂𝑗  = 𝐵𝜂1/2𝑠(𝑥𝑗), 𝑗 =  1, 2, . . . , 𝑚 +  2𝑙. Let 0 <  𝜎 <  1/2𝑠, let 𝜎1 =  2𝑙𝜎, and let 

𝛿 and 𝒢 be required by Lemma in [70] for the above 𝜖, ℱ, 𝑙, 𝜂, 𝑠, 𝜎1, 𝛿0 𝑎𝑛𝑑 𝒢0. 

Now suppose that ℎ ∶  𝐶(𝑋)  →  𝐴 is a unital homomorphism and 𝑢 ∈  𝐴 is a unitary such 

that 

‖[ℎ(𝑓), 𝑢]‖ <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝒢 𝑎𝑛𝑑 𝜇𝜏∘ℎ(𝑂𝑖)  ≥  𝜎𝜂. 

Then 

𝜇𝜏∘ℎ(𝒢𝑖) ≥  𝜎1𝜂 ≥  2𝑙𝜎𝜂. 

In particular, 𝑝𝐴𝑝 contains 2𝑙 −  1 mutually orthogonal and mutually equivalent non-zero 

projections. Thus the proof of Lemma in [70] applies. 

Lemma(2.2.19)[71]:Let 𝑋 be a finite CW complex, ℱ ⊂  𝐶(𝑋) be a finite subset and 𝜖 >

 0 be a positive number. Let 𝜎 >  0. There exists 𝜂 >  0 (which depends on and ℱ but not 

on 𝜎), 𝛿 >  0, a finite subset 𝒢 ⊂  𝐶(𝑋) and a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the 

following. 

Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝐴, where 𝐴 is a unital separable simple 𝐶∗-algebra with tracial 

rank zero (infinite or finite dimensional), is a unital homomorphism with 
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 𝜇𝜏∘𝜙 (𝑂𝜂
2
) ≥  𝜎𝜂                                                                                                       (231) 

for any open ball with radius 𝜂/2 and a unitary 𝑢 ∈  𝐴 such that 

 ‖[𝜙(𝑔), 𝑢]‖ <  𝛿 for all 𝑔 ∈ 𝒢 and Bott(𝜙, 𝑢)|𝒫  =  {0}.                            (232) 

Then there exists a continuous path of unitaries{𝑢𝑡 ∶  𝑡 ∈  [0, 1]} such that 

 𝑢0 =  𝑢, 𝑢1  =  1, ‖[𝜙(𝑓), 𝑢𝑡]‖ < 𝜖                                                                     (233) 

for all 𝑓 ∈ ℱ and 𝑡 ∈  [0, 1] and 

length({𝑢𝑡})  ≤  2𝜋 + 𝜖 . 

Let 𝑋 be a locally path connected compact metric space. Let 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝐴 be two 

unital homomorphisms, where 𝐴 is a finite dimensional 𝐶∗-subalgebra. In this section, we 

will show that 𝜙 and 𝜓, up to some homotopy, are unitary equivalent if they are close and 

they induce similar measure. See Lemma(2.2.21) below. 

Lemma (2.2.20)[71]: Let 𝑋 be a connected compact metric space. For any 𝜂 >  0 and 

𝜎 >  0, there is 𝛿 =  (𝜎𝜂/16) and there is a finite subset 𝒢 ⊂  𝐶(𝑋) such that if 𝜙,𝜓 ∶

 𝐶(𝑋)  →  𝐴 are two unital homomorphisms, where 𝐴 is a unital 𝐶∗-algebra with a tracial 

state 𝜏 such that 

 |𝜏 ∘ 𝜙(𝑔) − 𝜏 ∘ 𝜓(𝑔)| < 𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈  𝒢,                                               (234)    

 𝜇𝜏∘𝜙 (𝑂𝜂
8
) ≥

𝜎𝜂

8
𝑎𝑛𝑑 𝜇𝜏∘𝜓 (𝑂𝜂

8
) ≥

𝜎𝜂

8
,                                                            (235) 

then, for any compact subset 𝐹 ⊂  𝑋, 

 𝜇𝜏∘𝜙(𝐹) ≤ 𝜇𝜏∘𝜓 (𝐵𝜂(𝐹)) 𝑎𝑛𝑑 𝜇𝜏∘𝜓(𝐹) ≤  𝜇𝜏∘𝜙 (𝐵𝜂(𝐹)),                              (236) 

where  

𝐵𝜂(𝐹) = {𝑥 ∈ 𝑋 ∶ dist(𝑥, 𝐹) < 𝜂}. 

Proof: There are finitely many open balls 𝐵𝜂/8(𝑥1), 𝐵𝜂/8(𝑥2), . . . , 𝐵𝜂/8(𝑥𝑁) with radius 

𝜂/8 covers 𝑋. It is an easy exercise to show that there is a finite subset𝒢 of 𝐶(𝑋) 

satisfying the following. If (311) holds, then, for any subset 𝑆 of{1, 2, . . . , 𝑁}, 

𝜇𝜏∘𝜙 (⋃𝐵𝜂
8

(𝑥𝑖)

𝑖∈𝑆

) ≤ 𝜇𝜏∘𝜓 (⋃𝐵𝜂
4

(𝑥𝑖)

𝑖∈𝑆

) +  𝛿 𝑎𝑛𝑑                                             (237) 

𝜇𝜏∘𝜓 (⋃𝐵𝜂
8

(𝑥𝑖)

𝑖∈𝑆

) ≤ 𝜇𝜏∘𝜙 (⋃𝐵𝜂
4

(𝑥𝑖)

𝑖∈𝑆

) +  𝛿                                                             (238) 

If ⋃ 𝐵3𝜂/4(𝑥𝑖)𝑖∈𝑆  =  𝑋, then 

𝜇𝜏∘𝜙 (⋃𝐵𝜂
8

(𝑥𝑖)

𝑖∈𝑆

) ≤ 𝜇𝜏∘𝜓⋃𝐵3𝜂
4

(𝑥𝑖)

𝑖∈𝑆

 𝑎𝑛𝑑                                    (239) 

𝜇𝜏∘𝜓 (⋃𝐵𝜂
8

(𝑥𝑖)

𝑖∈𝑆

) ≤ 𝜇𝜏∘𝜙⋃𝐵3𝜂
4

(𝑥𝑖)

𝑖∈𝑆

.                             (240) 

Otherwise, since 𝑋 is path connected, there is an open ball 𝑂 of 𝑋 with radius 

𝜂/8 such that  
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𝑂 ∩ (⋃𝐵𝜂/4(𝑥𝑖)

𝑖∈𝑆

) =  ∅ 𝑎𝑛𝑑𝑂 ⊂ (⋃𝐵𝜂(𝑥𝑖)

𝑖∈𝑆

) 

Thus, by (237), (316) and (235), 

𝜇𝜏∘𝜙 (⋃𝐵𝜂
8

(𝑥𝑖)

𝑖∈𝑆

) ≤ 𝜇𝜏∘𝜓 (⋃𝐵𝜂(𝑥𝑖)

𝑖∈𝑆

)                                    (241) 

Now for any compact subset ℱ, there is 𝑆 ⊂  {1, 2, . . . , 𝑁} such that   

          𝐹 ⊂⋃𝐵𝜂
8

(𝑥𝑖)

𝑖∈𝑆

 𝑎𝑛𝑑 𝐹 ∩ 𝐵𝜂 8⁄ (𝑥𝑖) ≠  ∅ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈  𝑆                          (242) 

It follows that  

𝜇𝜏∘𝜙(𝐹) ≤ 𝜇𝜏∘𝜙 (⋃𝐵𝜂
8

(𝑥𝑖)

𝑖∈𝑆

)                                                            (243) 

                           ≤  𝜇𝜏∘𝜓 (⋃𝐵𝜂
8

(𝑥𝑖)

𝑖∈𝑆

) ≤ 𝜇𝜏∘𝜓 (𝐵𝜂(𝐹)).                                   (244) 

Exactly the same argument shows that the other inequality of (e 6.97) also holds. 

Lemma(2.2.21)[71]:Let 𝑋 be a locally path connected compact metric space without 

isolated points, let 𝜖 >  0 and let ℱ ⊂  𝐶(𝑋) be a finite subset. Let 𝜂 >  0 be such that 

|𝑓(𝑥) − 𝑓(𝑥′)|  <  /2 for all 𝑓 ∈  ℱ, provided that dist(𝑥, 𝑥′) < 𝜂 and such that any open 

ball 𝐵𝜂 with radius 𝜂 is path connected. 

Let 𝜎 >  0. There is 𝛿 >  0 and there exists a finite subset 𝒢 ⊂  𝐶(𝑋) satisfying the 

following. For any two unital homomorphisms 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑀𝑛(𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛 ≥  1) 

for which  

 ‖𝜙(𝑓 ) − 𝜓(𝑓)‖ <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝒢                                                            (245) 

𝑎𝑛𝑑 𝜇𝜏∘𝜙 (𝑂 𝜂

24
) , 𝜇𝜏∘𝜓 (𝑂 𝜂

24
) ≥  𝜎𝜂                                                               (246) 

for any open balls with radius 𝜂/24, there exist two unital homomorphisms 𝛷1, 𝛷2 ∶

 𝐶([0, 1],𝑀𝑛) such that 

𝜋0 ∘ 𝛷1  = 𝜙, 𝜋0 ∘ 𝛷2  =  𝜓,                                                   (247) 

‖𝜋𝑡 ∘ 𝛷1(𝑓) − 𝜙(𝑓)‖ <  , ‖𝜋𝑡 ∘ 𝛷2(𝑓)  −  𝜓(𝑓)‖ < 𝜖                         (248) 

for all 𝑓 ∈  ℱ and 𝑡 ∈  [0, 1], and there is a unitary𝑢 ∈ 𝑀𝑛 such that 

         ad 𝑢 ∘ 𝜋1 ∘ 𝛷1  =  𝜋1 ∘ 𝛷2.                                                                       (249) 

Proof:𝑋 is a union of finitely many connected and locally path connected compact metric 

spaces. It is clear that the general case can be reduced to the case where 𝑋 is a connected 

and locally path connected compact metric space. 

We will apply the so-called Marriage Lemma (see [53]). Let 𝛿 and 𝒢 be in Lemma 

(2.2.19) corresponding to 𝜂/3 and 𝜎. We may assume that 𝒢 ⊃  ℱ. We may write that 

 𝜙(𝑓 ) = ∑  𝑓(𝑥𝑖)𝑝𝑖
𝑁1
 𝑖=1 and   𝜓(𝑓) =   ∑ 𝑓(𝑦𝑗)𝑞𝑗

𝑁2
𝑗=1                                   (250) 

for all 𝑓 ∈ 𝐶(𝑋), where{𝑝1, 𝑝2, . . . , 𝑝𝑁1} and {𝑞1, 𝑞2, . . . , 𝑞𝑁2}are two sets of 

mutuallyorthogonal projections such that∑ 𝑝𝑖
𝑁1
 𝑖=1  = 1 =∑ 𝑞𝑗

𝑁2
𝑗=1  .  
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By Lemma (2.2.19), 

 𝜇𝜏∘𝜙(𝐹) < 𝜇𝜏∘𝜓(𝐵𝜂 3⁄ (𝐹)) and 𝜇𝜏∘𝜓(𝐹) < 𝜇𝜏∘𝜙 (𝐵𝜂 3⁄ (𝐹))                      (251) 

for any compact subset 𝐹 ⊂  𝑋. 

Suppose that 𝑝𝑖 has rank 𝑟(𝑖). Choose 𝑟(𝑖) many points {𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑟(𝑖)}  ⊂ 𝐵𝜂/3(𝑥𝑖) 

and define 

𝜙1(𝑓 ) =∑(∑𝑓 (𝑥𝑖,𝑘)𝑒𝑖,𝑘

𝑟(𝑖)

𝑘=1

)

𝑁1

𝑖=1

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝐶(𝑋), 

where {𝑒𝑖,1, 𝑒𝑖,2, . . . , 𝑒𝑖,𝑟(𝑖)} is a set of mutually orthogonal rank one projections 

suchthat∑ 𝑒𝑖,𝑘
𝑟(𝑖)
𝑘=1 = 𝑝𝑖. It follows that 

 𝜇𝜏∘𝜙1(𝐹) ≤  𝜇𝜏∘𝜓(𝐵𝜂 3⁄ (𝐹)) and𝜇𝜏∘𝜓(𝐹) ≤  𝜇𝜏∘𝜙1 (𝐵𝜂 3⁄ (𝐹))                        (252) 

for any compact subset 𝐹 ⊂  𝑋. Since 𝐵𝜂(𝑥) is path connected for every 𝑥 ∈  𝑋, there is a 

unital homomorphism 𝛷1 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) such that 

 𝜋0 ∘ 𝛷1  =  𝜙, 𝜋1 ∘ 𝛷1  =  𝜙1                                                                                       (253)  

and 

 ‖𝜋𝑡 ∘ 𝛷1(𝑓)  −  𝜙(𝑓)‖ <   𝜖/2𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈  ℱ 𝑎𝑛𝑑 𝑡 ∈  [0, 1].                 (254) 

We rewrite   

 𝜙1(𝑓 ) = ∑ 𝑓 (𝑥𝑖
′)𝑒𝑖

𝑛
𝑖=1 for all 𝑓 ∈  𝐶(𝑋),                                              (255) 

where each 𝑒𝑖 is a rank one projection and 𝑥𝑖
′ is a point in 𝑋, 𝑖 =  1, 2, . . . , 𝑛, and 

∑ 𝑒𝑖
𝑛
𝑖=1  =  1. Similarly, there is a unital homomorphism 𝛷2

′ ∶ 𝐶(𝑋) → 𝐶([0, 1/2],𝑀𝑛) 

such that          

  𝜋0 ∘ 𝛷2
′  =  𝜓, 𝜋1

2

∘ 𝛷2  =  𝜓1                                                                    (256) 

and ‖𝜋𝑡 ∘ 𝛷2
′ (𝑓 ) − 𝜓(𝑓)‖ <

𝜖

2
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ 𝑎𝑛𝑑 𝑡 ∈  [0,

1

2
],                 (257) 

where        

  𝜓1(𝑓 ) = ∑ 𝑓 (𝑦𝑖
′)𝑒𝑖

𝑛
𝑖=1  for all f ∈ C(X),                                (258)  

where each 𝑒𝑖
′is a rank projection, 𝑦𝑖

′ is a point in 𝑋, 𝑖 =  1, 2, . . . , 𝑛, and∑ 𝑒𝑖
′𝑛

𝑖=1 =  1. 

Moreover, 

 𝜇𝜏∘𝜓1(𝐹) ≤  𝜇𝜏∘𝜓(𝐵𝜂 3⁄ (𝐹)) and𝜇𝜏∘𝜓(𝐹) ≤  𝜇𝜏∘𝜓1 (𝐵𝜂 3⁄ (𝐹))                  (259) 

for any compact subset 𝐹 ⊂  𝑋. Combining (251), (252) and (259), one has 

 𝜇𝜏∘𝜙1(𝐹) ≤  𝜇𝜏∘𝜙 (𝐵𝜂 3⁄ (𝐹)) < 𝜇𝜏∘𝜓 (𝐵2𝜂 3⁄ (𝐹))                                              (260) 

  ≤ 𝜇𝜏∘𝜓1 (𝐵𝜂(𝐹))                                                                                       (261) 

and  

  𝜇𝜏∘𝜓1(𝐹)  < 𝜇𝜏∘𝜙1(𝐵𝜂(𝐹))                                                    (262) 

for any compact subset 𝐹 ⊂  𝑋. 

By the Marriage Lemma (see [53]), there is a permutation ∆: {1, 2, . . . , 𝑛}  → 

{1, 2, . . . , 𝑛} such that  
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 dist(𝑥𝑖
′, 𝑦𝛥(𝑖)

′ )  <  𝜂, 𝑖 =  1, 2, . . . , 𝑛.                                                            (263) 

Define 𝜓2 ∶  𝐶(𝑋)  →  𝑀𝑛 by   

 𝜓2(𝑓 ) = ∑ 𝑓(𝑥𝑖
′), 𝑒𝛥(𝑖)

′𝑛
 𝑖=1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝐶(𝑋).                                                (264) 

Since every open ball of radius 𝜂 is path connected, one obtains anotherunital 

Homomorphism 

𝛷2
′′  ∶  𝐶(𝑋) → 𝐶([1/2, 1],𝑀𝑛): 

              𝜋1 ∘ 𝛷2
′′  =  𝜓2, 𝜋1

2

∘ 𝛷2
′′  =   𝜓1                                                                         (265) 

 and 

               ‖𝜋𝑡 ∘ 𝛷2
′ (𝑓)  − 𝜓1(𝑓)‖ <   𝜖/2 for all 𝑓 ∈  ℱ.                                   (266)  

Now define 𝛷2 ∶  𝐶([0, 1],𝑀𝑛) 𝑏𝑦 𝜋𝑡 ∘ 𝛷2 = 𝜋𝑡 ∘ 𝛷2
′  𝑓𝑜𝑟 𝑡 ∈  [0, 1/2]𝑎𝑛𝑑 𝜋𝑡 ∘ 𝛷2

 =

 𝜋𝑡 ∘ 𝛷2
′′ 

for 𝑡 ∈  [1/2, 1]. Then 𝛷1and 𝛷2 satisfy (247) and (248). 

Moreover, by  

(255) and (264), there exists a unitary 𝑢 ∈ 𝑀𝑛 such that   

 𝑎𝑑 𝑢 ∘ 𝜙1  =  𝜓2 =  𝜋1 ∘ 𝛷2 .        

Lemma (2.2.22)[71]: Let 𝑋 be a finite 𝐶𝑊 complex with torsion 𝐾1(𝐶(𝑋)) and torsion 

free 𝐾0(𝐶(𝑋)). Let 𝜖 >  0, ℱ ⊂  𝐶(𝑋) be a finite subset and let 𝜎 >  0. There exist 𝜂 >

 0 (which depends on𝜖 and ℱ but not on 𝜎), a finite subset 𝒢 ⊂  𝐶(𝑋) and 𝛿 >  0 

satisfying the following. 

Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑀𝑛(for any integer 𝑛) are two unitalhomomor- phisms such 

that  

 ‖𝜙(𝑓)  −  𝜓(𝑓)‖ <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝒢 ,                                        (267) 

 𝜇𝜏∘𝜙(𝑂𝜂) ≥  𝜎𝜂 𝑎𝑛𝑑 𝜇𝜏∘𝜓(𝑂𝜂) ≥  𝜎𝜂                                                                   (268) 

for any open ball 𝑂𝜂 of radius 𝜂, where 𝜏 is the normalized trace on 𝑀𝑛 and 

 𝑎𝑑 𝑢 ∘ 𝜙 =  𝜓                                                                                             (269) 

for some unitary 𝑢 ∈  𝐴. Then there exists a homomorphism 𝛷 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) 

such that 

𝜋0 ∘ 𝛷 = 𝜙, 𝜋1 ∘ 𝛷 =  𝜓 𝑎𝑛𝑑 

‖𝜓(𝑓) − 𝜋𝑡 ∘ 𝛷(𝑓)‖ <  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ. 

Proof:It is easy to see that the general case can be reduced to the case where 𝑋 is 

connected. 

Let 𝜖 >  0,ℱ ⊂  𝐶(𝑋) be a finite subset and let 𝜎 >  0. Let 𝜂10 (in place of 𝜂), 𝛿 >  0, a 

finite subset 𝒢 ⊂  𝐶(𝑋), a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) be required by Lemma (2.2.19) for 

𝜖/2, ℱ and 𝜎/2. Let 𝜂 =  𝜂1/2. 

We may assume that 𝒫 ⊂ 𝐾1(𝐶(𝑋)). Since 𝐾1(𝐶(𝑋)) is torsion and 𝐾0(𝑀𝑛) is free, for 

sufficiently small 𝛿 and sufficiently large 𝒢, and for any pair of 𝜙 and 𝑢 for which 

‖[𝜙(𝑔), 𝑢]‖ <  𝛿 for all 𝑔 ∈  𝒢, 

bott1(𝜙, 𝑢)|𝒫 =  0. 

We may assume that 𝛿 and 𝒢have this property.  We may further assume that 
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𝛿 < 𝜖 /2 and ℱ ⊂  𝒢. 

Now we assume that 𝜙, 𝜓 and 𝑢 satisfy the assumption of the lemma for theabove𝜂, 𝛿 and 

𝒢. Then  

 𝜇𝜏∘𝜙 (
𝑂𝜂1

2
) ≥

𝜎𝜂1

2
= (

𝜎

2
) 𝜂1  𝑎𝑛𝑑                                                                   (270) 

          𝜇𝜏∘𝜓 (
𝑂𝜂1

2
) ≥  (

𝜎

2
) 𝜂1.                                                                                        (271) 

By applying Lemma (2.2.19), one obtains a continuous path of unitaries{𝑢(𝑡) ∶  𝑡 ∈

 [0, 1]} such that 

𝑢(0) =  𝑢, 𝑢(1) =  1                                                                                (272) 

and       

 ‖𝑢(𝑡)∗𝜙(𝑓)𝑢(𝑡) − 𝜙(𝑓)‖ <  𝜖/2  𝑓𝑜𝑟𝑎𝑙𝑙 𝑓 ∈  ℱ.                                  (273) 

Define 𝛷 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) by        

𝜋𝑡 ∘ 𝛷 =  ad 𝑢(1 −  𝑡) ∘ 𝜙 𝑓𝑜𝑟𝑎𝑙𝑙 𝑡 ∈  [0, 1]. 

Then,             

𝜋0 ∘ 𝛷 =  𝜙  𝑎𝑛𝑑 𝜋1 ∘ 𝛷 =  𝜓. 

Moreover, by (350) and (346), 

‖𝜓(𝑓) − 𝜋𝑡 ∘ 𝛷(𝑓)‖ < 𝑓𝑜𝑟𝑎𝑙𝑙 𝑓 ∈  ℱ 𝑎𝑛𝑑𝑡 ∈  [0, 1]. 

Lemma (2.2.23)[71]: Let 𝑋 be a finite 𝐶𝑊 complex with torsion 𝐾1(𝐶(𝑋)) and let 𝑘 be 

the largest order of torsion elements in 𝐾𝑖(𝐶(𝑋)) (𝑖 =  0, 1). Let 𝜖 >  0, ℱ ⊂  𝐶(𝑋) be a 

finite subset and let 𝜎 >  0. There exist 𝜂 >  0 (which depends on and ℱ but not on 𝜎), a 

finite subset 𝒢 ⊂  𝐶(𝑋) and 𝛿 >  0 satisfying the following. 

Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑀𝑛 (for any integer 𝑛) are two unital homomor-phisms such 

that 

 ‖𝜙(𝑓)  −  𝜓(𝑓)‖ <  𝛿 for all 𝑓 ∈  𝒢,                                                      (274) 

 𝜇𝜏∘𝜙(𝑂𝜂) ≥  𝜎𝜂 𝑎𝑛𝑑 𝜇𝜏∘𝜓(𝑂𝜂) ≥  𝜎𝜂                                                                   (275) 

for any open ball 𝑂𝜂 of radius 𝜂, where 𝜏 is the normalized trace on 𝑀𝑛, and 

 𝑎𝑑 𝑢 ∘ 𝜙 =  𝜓                                                                                                             (276) 

for some unitary 𝑢 ∈  𝐴. Then there exists a homomorphism 

𝛷 ∶  𝐶(𝑋)  →  𝑀𝑘0(𝐶([0, 1],𝑀𝑛)) 

such that 

𝜋0 ∘ 𝛷 =  𝜙
(𝑘0), 𝜋1 ∘ 𝛷 =  𝜓

(𝑘0)𝑎𝑛𝑑 

‖𝜓(𝑘0)(𝑓)  − 𝜋𝑡 ∘ 𝛷(𝑓) ‖ <   𝑓𝑜𝑟𝑎𝑙𝑙  𝑓 ∈  ℱ, 

where 𝑘0 = 𝑘!, and where 𝜙(𝑘0)(𝑓) = diag (𝜙(𝑓), 𝜙(𝑓), . . . , 𝜙(𝑓))⏞              
𝑘0

 and𝜓(𝑘0)(𝑓 ) =

diag (𝜓(𝑓), 𝜓(𝑓), . . . , 𝜓(𝑓))⏞              
𝑘0

for all 𝑓 ∈ 𝐶(𝑋), respectively.  

Proof: By [20], one has 

𝐻 𝑜𝑚𝛬(𝐾(𝐶(𝑋)), 𝐾(𝑀𝑛))  =  𝐻 𝑜𝑚𝛬(𝐹𝑘𝐾(𝐶(𝑋)), 𝐹𝑘𝐾(𝑀𝑛)). 

Let 𝑘0 = 𝑘!. It follows that 
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𝜆 +  𝜆 + ⋯+  𝜆 ⏞          
𝑘0

=  0, 

for any homomorphism 𝜆 from 𝐾1(𝐶(𝑋), ℤ/𝑚ℤ) with 𝑚 ≤  𝑘0. (to 𝜙(𝑘0) 𝑎𝑛𝑑 𝜓(𝑘0)). 

The point is that 

Bott(𝜙(𝑘0), 𝑢(𝑘0))|𝒫′ = {0} 

for any finite subset 𝑃′ ⊂ 𝐾1(𝐶(𝑋), ℤ/𝑚ℤ) for 0 ≤  𝑚 ≤  𝑘0as long as it is defined, 

where 𝑢(𝑘0) =  diag(𝑢, 𝑢, . . . , 𝑢⏞      
𝑘0

). 

Lemma (2.2.24)[71]: Let 𝑋 =  𝕋 or 𝑋 =  𝐼 ×  𝕋 (𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑚𝑒𝑡𝑟𝑖𝑐). Let ℱ ⊂

 𝐶(𝑋)𝑏𝑒 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑎𝑛𝑑 let 𝜖 >  0. There exists 𝜂1 >  0 such that, for any 𝜎1 >  0, 

the following holds. There exists a finite subset 𝒢 ⊂  𝐶(𝑋) and there exists 𝜂2 >  0 such 

that, for any 𝜎2 >  0, there exists 𝛿 >  0 satisfying the following. 

Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑀𝑛 (for some integer 𝑛) are two unital homomorphisms 

such that 

‖𝜙(𝑓)  −  𝜓(𝑓)‖ <  𝛿 for all 𝑓 ∈  𝒢,                                               (277) 

 𝜇𝜏∘𝜙(𝑂𝜂1) ≥  𝜎1𝜂1, 𝜇𝜏∘𝜓(𝑂𝜂1) ≥  𝜎1𝜂1,                                                (278) 

𝜇𝜏∘𝜙(𝑂𝜂2) ≥  𝜎2𝜂2, 𝜇𝜏∘𝜓(𝑂𝜂2) ≥  𝜎2𝜂2,                                                            (279)  

for any open ball 𝑂𝜂𝑗 of radius 𝜂𝑗  , 𝑗 =  1, 2, where 𝜏 is the normalized trace on 𝑀𝑛, and 

 ad 𝑢 ∘ 𝜙 =  𝜓                                                                                                            (280) 

for some unitary 𝑢 ∈ 𝑀𝑛. Then there exists a homomorphism 𝛷 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) 

such that 

𝜋0 ∘ 𝛷 =  𝜙, 𝜋1 ∘ 𝛷 =  𝜓 𝑎𝑛𝑑  

‖𝜓(𝑓) − 𝜋𝑡 ∘ 𝛷(𝑓)‖ < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ. 

Proof: Let 𝛿00 >  0 satisfy the following: for any pair of unitaries 𝑢0, 𝑣0 in a unital 𝐶∗-

algebra, bott1(𝑢0, 𝑣0) is well defined whenever ‖[𝑢0, 𝑣0]‖ < 𝛿00. We will prove the case 

that 𝑋 =  𝐼 ×  𝕋. The proof for the case that 𝑋 =  𝕋 follows from the same argument but 

is simpler. Let 𝜖 >  0 and ℱ be given as in the lemma. Let ℱ1 = ℱ ∪ {𝑧}, where 

𝓏(𝑡, 𝑒2𝜋𝑖𝑠)  =  𝑒2𝜋𝑖𝑠  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 1] 𝑎𝑛𝑑 𝑠 ∈  [0, 1]. 

Let 𝜂1 >  0 (in place of 𝜂) be required by Lemma (2.2.19) for 𝜖/4 (in place of𝜖) and ℱ1 

(in place of ℱ). Let 𝜎1 >  0. 

Let 𝒢 ⊂  𝐶(𝑋) be a finite subset, let 𝛿0 >  0 (in place of 𝛿) and let 𝒫 ⊂ 𝐾(𝐶(𝑋)) be a 

subset required by Lemma(2.2.19) for 𝜖/4 (in place of𝜖) and ℱ1(in place of ℱ) and 𝜎1/2 

(as well as for 𝑋 =  𝐼 ×  𝕋). 

Since 𝐾0(𝐶(𝑋))  =  ℤ and𝐾1(𝐶(𝑋))  =  ℤ, without loss of generality, we may assume that 

𝒫 =  {[𝑧]}. We assume that 𝛿0 < 𝛿00/2. We may also assume that 𝛿0 satisfies the 

following. If 𝑢1, 𝑢2 and 𝑣 are unitaries with 

‖𝑢1 − 𝑢2‖ < 𝛿0  𝑎𝑛𝑑  ‖[𝑢1, 𝑣]‖ < 𝛿0, 

then    

 bott1(𝑢1, 𝑣) =  bott1(𝑢2, 𝑣)                                                                           (281) 

(whenever[𝑢1, 𝑣] < 𝛿00/2). Let 𝜂2
′ >  0 such that      
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  |𝑓(𝑥) − 𝑓(𝑥′)| < min {
𝛿0

2
, 𝜖
16
} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝒢 ∪  ℱ                          (282) 

provided that dist(𝑥, 𝑦) < 𝜂2. Choose an integer 𝐾  >  1 such that 2𝜋/𝐾 < min {𝜂1/

16, 𝜂2
′ /16}and put 𝜂2 = 𝜋/4𝐾. Let 𝜎2 >  0. Choose 𝛿 =  min{𝛿0/2, 𝜎2𝜂2/2}. 

Suppose that 𝜙 and 𝜓 satisfythe assumption of the lemma for the above 𝒢. 

𝜂1, 𝜂2, 𝜎1, 𝜎2 𝑎𝑛𝑑 𝛿. 𝐿𝑒𝑡 𝑤𝑗  =  𝑒
2𝑗𝜋√−1/𝐾  𝑎𝑛𝑑 𝜁𝑗 =  1 × 𝑤𝑗  , 𝑗 =  1, 2, . . . , 𝐾. Then, by 

the assumption,          

    𝜇𝜏∘𝜓 (𝐵𝜂2(𝜁𝑗)) ≥  𝜎2𝜂2 > 2𝛿,                                          (283) 

𝑗 =  1, 2, . . . , 𝐾. Note that         

    𝐵𝜂2(𝜁𝑗) ∩ 𝐵𝜂2(𝜁𝑗
′) = ∅,                                                        (284) 

If 𝑗 ≠ 𝑗′ , 𝑗, 𝑗′ =  1, 2, . . . , 𝐾.       

Write           

  𝜓(𝑓) = ∑ 𝑓(𝑥𝑙)𝑒𝑙
𝑁
𝑙=1   𝑓𝑜𝑟   𝑎𝑙𝑙 𝑓 ∈  𝐶(𝑋),                                         (285) 

where {𝑒1, 𝑒2, . . . , 𝑒𝑁 } is a set of mutually orthogonal projections and 𝑥1, 𝑥2, . . . , 𝑥𝑁 are 

distinct points in 𝑋. Define 

𝑝𝑗 = ∑ 𝑒𝑙
𝑥𝑙∈𝐵𝜂2  (𝜁𝑗)

, 𝑗 =  1, 2, . . . . , 𝐾. 

By (283), 

 𝜏(𝑝𝑗) ≥  𝜎2𝜂2, 𝑗 =  1, 2. . . , 𝐾.                                                      (286) 

Put     

 𝛾 =
1

2𝜋𝑖
𝜏 (log(𝑢∗𝜙(𝓏)𝑢𝜙(𝓏)∗)),                                                        (287) 

where 𝜏 is the normalized trace on 𝑀𝑛. Then  

   |𝛾|  <  𝛿.                                                                    (288) 

We first assume that 𝛾 =  0. For convenience, we may assume that 𝛾 <  0. By the Exel 

formula (see [43]), 𝛾 =  𝑚/𝑛 for some integer |𝑚|  <  𝑛. 

For each 𝑗, there is a projection 𝑞𝑗 ≤ 𝑝𝑗  such that      

 𝜏(𝑞𝑗) = |𝛾|𝑎𝑛𝑑 𝑞𝑗𝑒𝑙 = 𝑒𝑙𝑞𝑗 , 𝑗 =  1, 2, . . . , 𝐾,   𝑙 =  1, 2, . . . , 𝑁.           (289) 

There is a unitary 𝑣1 ∈  (∑ 𝑞𝑗
𝐾
𝑗=1 )𝑀𝑛(∑ 𝑞𝑗

𝐾
𝑗=1 ) such that     

𝑣1
∗𝑞𝑗𝑣1 = 𝑞𝑗+1, 𝑗 =  1, 2, . . . , 𝐾 − 1 𝑎𝑛𝑑 𝑣1

∗𝑞𝐾𝑣1 = 𝑞1.                   (290) 

Define 𝑣 =  (1 − ∑ 𝑞𝑗
𝐾
𝑗=1 )  + 𝑣1. Note that, by the choice of 𝛿, we have  

   [𝑢𝑣, 𝜙(𝑓)] < 𝛿0  for all 𝑓 ∈  𝒢.                         (291)  

Write 𝑥𝑙 =  𝑠 × 𝑒
2𝜋√−1𝑡𝑙 , 𝑙 = 1, 2, . . . , 𝑁. Define 𝑧′ = (1 − ∑ 𝑞𝑗

𝐾
𝑗=1 )𝜓(𝑧)  + 

∑𝑤𝑗𝑞𝑗

𝐾

𝑗=1

 . 𝑇ℎ𝑒𝑛 

‖𝜓(𝑧) –  𝑧′‖ < 𝛿0  𝑎𝑛𝑑 𝑣
∗𝑧′𝑣 = (1 − ∑ 𝑞𝑗

𝐾
𝑗=1 )𝜓(𝑧) + ∑ 𝑤𝑗𝑞𝑗+1

𝐾
𝑗=1 +𝑤𝐾𝑞1 .       (292) 

It follows that            



55 
 

  
1

2𝜋𝑖
𝜏(log(𝑣∗𝑧′𝑣(𝑧′)∗)) = 𝜏(𝑞𝑗) =  −𝛾.                                     (293) 

By the choice of 𝛿0, we have that      

  
1

2𝜋𝑖
𝜏 (log(𝑣∗𝜓(𝑧)𝑣𝜓(𝑧)∗)) = 𝜏(𝑞𝑗) =  −𝛾.                                    (294) 

By the choice of 𝛿0 and the Exel formula, we have   

 
1

2𝜋𝑖
𝜏 (log(𝑣∗𝑢∗𝜙(𝑧)𝑢𝑣𝜙(𝑧)∗))                                                         (295) 

                         =
1

2𝜋𝑖
𝜏 (log(𝑢∗𝜙(𝑧)𝑢𝜙(𝑧)∗)) +

1

2𝜋𝑖
𝜏 (log(𝑣∗𝜙(𝑧)𝑣𝜙(𝑧)∗))            

          =
1

2𝜋𝑖
𝜏 (log(𝑢∗𝜙(𝑧)𝑢𝜙(𝑧)∗)) +

1

2𝜋𝑖
𝜏 (log(𝑣∗𝜓(𝑧)𝑣𝜓(𝑧)∗))    (296) 

          =  𝛾 −  𝛾 =  0.                                              (297) 

It follows from the Exel formula, bott1(𝜙, 𝑢𝑣)  =  {0} and Bott(𝜙, 𝑢𝑣)|𝒫  =  {0}. It 

follows from Lemma (2.2.19) that there exists a continuous path of unitaries{𝑢(𝑡) ∶  𝑡 ∈

 [0, 1/2]} such that 

 𝑢(0)  =  1, 𝑢(1/2)  =  𝑢𝑣 𝑎𝑛𝑑‖[𝜙(𝑓), 𝑢(𝑡)]‖ <  𝜖 /4                                (298) 

for all 𝑓 ∈  ℱ and for all 𝑡 ∈  [0, 1/2].  

Define 𝛷1 ∶  𝐶(𝑋)  →  𝐶([0, 1/2],𝑀𝑛) by  

 𝜋𝑡 ∘ 𝛷1(𝑓)  =  𝑢(𝑡)
∗𝜙(𝑓)𝑢(𝑡) 𝑓𝑜𝑟𝑎𝑙𝑙 𝑓 ∈  𝐶(𝑋) 𝑎𝑛𝑑 𝑡 ∈  [0, 1/2].        (299) 

Then   

 ‖𝜋𝑡 ∘ 𝛷1(𝑓)  −  𝜙(𝑓)‖ <
𝜖

2
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ 𝑎𝑛𝑑 𝑡 ∈ [0,

1

2
] .                         (300) 

Let   

𝑞𝑗𝜓(𝑓) = ∑ 𝑓(𝜉𝑘,𝑗)𝑒𝑘,𝑗
′

𝑁(𝑗)

𝑘=1

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝐶(𝑋), 

where {𝑒𝑘,𝑗
′ } is a set of mutually orthogonal projections and 𝜉𝑘,𝑗 ∈ 𝐵𝜂2(𝜁𝑗), 𝑗 =

 1, 2, . . . , 𝐾.Note that 

𝑣∗𝑢∗𝜙(𝑓)𝑢𝑣 = 𝜓(𝑓)(1 −∑𝑞𝑗

𝐾

𝑗=1

)  +∑(∑ 𝑓(𝜉𝑘,𝑗)𝑣1
∗𝑒𝑘,𝑗
′ 𝑣1

𝑁(𝑗)

𝑘=1

)

𝐾

𝑗=1

                   (301) 

for all 𝑓 ∈  𝐶(𝑋). It is easy to find a homomorphism 𝛷2 ∶ 𝐶(𝑋) → 𝐶([1/2, 1],  𝑀𝑛)such 

that (with 𝑞𝐾+1  =  𝑞1, 𝑒𝑘, 𝐾 + 1 =  𝑒𝑘,1
′ and𝜉𝑘,𝐾+1 = 𝜉𝑘,1) 

 𝜋1/2 ∘ 𝛷2(𝑓) = 𝑣
∗𝑢∗𝜙(𝑓 )𝑢𝑣,                                                                 (302) 

 𝜋3
4

∘ 𝛷2(𝑓) = 𝜓(𝑓 )(1 − ∑ 𝑞𝑗
𝐾
𝑗=1 ) + ∑ 𝑓 (𝜉𝑗) (∑ 𝑣1

∗𝑒𝑘,𝑗
′ 𝑣1

𝑁(𝑗)
𝑘=1 )𝐾

𝑗=1                            (303) 

= 𝜓(𝑓)(1 −∑ 𝑞𝑗

𝐾+1

𝑗=1

)  + ∑ 𝑓(𝜉𝑗)𝑞𝑗+1 + 𝑓(𝜉𝐾)𝑞1                                               

𝐾−1

𝑗=1

(304) 

𝑎nd 

𝜋1 ∘ 𝛷2(𝑓) = 𝜓(𝑓)(1 − ∑ 𝑞
𝑗

𝐾
𝑗=1 )  + ∑ (∑ 𝑓(𝜉𝑘,𝑗+1)𝑒𝑘,𝑗+1

′𝑁(𝑗+1)
𝑘=1 )𝐾−1

𝑗=1 + ∑ 𝑓(𝜉𝑘,1)𝑒𝑘,1
′𝑁(1)

𝑘=1    (305) 

    =  𝜓(𝑓)                                                                                              (306) 
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for all 𝑓 ∈  𝐶(𝑋). Moreover,      

‖𝜋𝑡 ∘ 𝛷2(𝑓)  −  𝜓(𝑓)‖ <
𝜖

16
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ.           (307) 

Now define 𝛷 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) by     

𝜋𝑡 ∘ 𝛷 = 𝜋𝑡 ∘ 𝛷1for all 𝑡 ∈  [0, 1/2] 𝑎𝑛𝑑 𝜋𝑡 ∘ 𝛷 =  𝜋𝑡 ∘ 𝛷2for all 𝑡 ∈  [
1

2
, 1].           (308) 

One checks that         

  ‖𝜋𝑡 ∘ 𝛷(𝑓)  −  𝜙(𝑓) ‖ < 𝜖  for all 𝑓 ∈  ℱ.                                     (309) 

Finally, if 𝛾 =  0, we do not need 𝑣 and can apply Lemma (2.2.19) directly. 

Lemma (2.2.25)[71]: Let 𝑋 =  𝕋 or 𝑋 =  𝐼 ×  𝕋 (with the product metric). Let ℱ ⊂

 𝐶(𝑋) be a finite subset and let 𝜖 >  0. Then there exists 𝜂1 >  0, for any 𝜎1 >  0, 

satisfying the following. There exists a finite subset 𝒢 ⊂  𝐶(𝑋) and there exists 𝜂2 >  0 

such that, for any 𝜎2 >  0, there exists 𝛿 >  0 such that the following holds. 

Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑀𝑛 (for some integer 𝑛) are two unital homomorphisms 

given by 

𝜙(𝑓) =  ∑𝑓(𝑥𝑖)𝑝𝑖

𝑁1

𝑖=1

  𝑎𝑛𝑑   𝜓(𝑓)  =∑𝑓(𝑦𝑗)𝑞𝑗

𝑁2

𝑗=1

 

for all 𝑓 ∈  𝐶(𝑋), where {𝑥1, 𝑥2, . . . , 𝑥𝑁1}, {𝑦1, 𝑦2, . . . , 𝑦𝑁2}  ⊂  𝑋 and where 

{𝑝1, 𝑝2, . . . , 𝑝𝑁1} and {𝑞1, 𝑞2, . . . , 𝑞𝑁2} are two sets of mutually orthogonal projections such 

that 

‖𝜙(𝑓) − 𝜓(𝑓)‖ <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝒢,                   (310) 

𝜇𝜏∘𝜙(𝑂𝜂𝑗)  ≥  𝜎𝑗𝜂𝑗  ,   𝜇𝜏∘𝜓(𝑂𝜂𝑗)  ≥  𝜎𝑗𝜂𝑗                                                           (311) 

for any open ball 𝑂𝜂𝑗 of radius 𝜂𝑗  , 𝑗 =  1, 2, where 𝜏 is the normalized trace on 𝑀𝑛. Then 

there exists a homomorphism 𝛷 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) such that 

𝜋0 ∘ 𝛷 = 𝜙, 𝜋1 ∘ 𝛷 =  𝜓 and 

‖𝜓(𝑓)  − 𝜋𝑡 ∘ 𝛷(𝑓)‖ < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ. 

Moreover, 𝜋𝑡 ∘ 𝛷(𝐶(𝑋))  ⊂ 𝐶1 for 𝑡 ∈  [0, 1/4], 𝜋0 ∘ 𝛷(𝐶(𝑋))  ⊂ 𝐶2 for 𝑡 ∈  [3/4, 1] 

and 

𝜋𝑡 ∘ 𝛷(𝑓)  =  𝑢(𝑡)
∗𝜙(𝑓)𝑢(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [

1

4
,
3

4
] (312) 

and for all 𝑓 ∈  𝐶(𝑋), where 𝐶1 is a finite dimensional commutative 𝐶∗-subalgebra 

containing projections 𝑝1, 𝑝2, . . . , 𝑝𝑁1 , 𝐶2 is a finite dimensional commutative 𝐶∗-

subalgebra containing 𝑞1, 𝑞2, . . . , 𝑞𝑁2 , 𝑢(1/4)  =  1 and 𝑢(𝑡)  ∈  𝐶([1/4, 3/4],𝑀𝑛). 

Definition (2.2.26)[71]:Let 𝑋 be a compact metric space. It is said to satisfy the property 

(H) if the following holds. 

For any finite subset ℱ ⊂  𝐶(𝑋) and for any 𝜖 >  0, there exists 𝜂1 >  0 such that, for any 

𝜎1 >  0, the following holds. There exists a finite subset 𝒢 ⊂  𝐶(𝑋) and 𝜂2 >  0 such that, 

for any 𝜎2 >  0, there exists 𝛿 >0 satisfying the following. 
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Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑀𝑛 (for any integer𝑛) are two unital homomorphisms such 

that 

‖𝜙(𝑓)  −  𝜓(𝑓)‖ <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝒢,                                                             (313) 

𝜇𝜏∘𝜙 (𝑂𝜂𝑗) ≥  𝜎𝑗𝜂𝑗  ,   𝜇𝜏∘𝜓 (𝑂𝜂𝑗) ≥  𝜎𝑗𝜂𝑗                (314) 

for any open ball 𝑂𝜂𝑗of 𝑋 with radius 𝜂𝑗  , 𝑗 =  1, 2, where 𝜏 is the normalized trace on 𝑀𝑛 

and  

 ad 𝑢 ∘ 𝜙 =  𝜓                                                             (315) 

for some unitary 𝑢 ∈  𝐴. Then there exists a homomorphism 𝛷 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) 

such that 

𝜋𝑡 ∘ 𝛷 =  𝜑, 𝜋1 ∘ 𝛷 =  𝜓 𝑎𝑛𝑑 

‖𝜓(𝑓)  − 𝜋𝑡 ∘ 𝛷(𝑓)‖ <  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ. 

We have proved in Lemma (2.2.22) that if 𝑋 is a finite CW complex with torsion 

𝐾1(𝐶(𝑋)) and torsion free 𝐾0(𝐶(𝑋)), then 𝑋 satisfies property (H), and we have proved in 

Lemma (2.2.24) that if 𝑋 =  𝕋 or 𝑋 =  𝐼 ×  𝕋, then 𝑋 has property (H).  

Lemma (2.2.27)[71]: Let 𝑋 = 𝕋 ∨ 𝕋 ∨ 𝕋 ∨ …∨ 𝕋⏞            
𝑚

∨ 𝑌, where 𝑌  is a finite CW 

complexwith torsion 𝐾1(𝐶(𝑌)) and torsion free 𝐾0(𝐶(𝑌)). Then 𝑋 has property (H). 

Lemma (2.2.28)[71]:  𝐿𝑒𝑡 𝑋 =  𝕋 × 𝕋 × … × 𝕋⏞          
𝑚

. Then 𝑋 has property (H).  

Proof:  Define 𝓏𝑖(𝑒
2𝜋√−1𝑡1  , 𝑒2𝜋√−1𝑡2  , . . . , 𝑒2𝜋√−1𝑡𝑚) = 𝑒2𝜋√−1𝑡𝑖 , 𝑖 =  1, 2, . . . , 𝑚.  

Let 𝛿00 >  0 be as in the proof of Lemma (2.2.24) Let 𝜖 >  0, ℱ ⊂  𝐶(𝑋) be a finite 

subset. Let ℱ1 = 𝐹 ∪ {𝓏1, 𝓏2, . . . , 𝓏𝑚}. Let 𝜂1 >  0 be as in the proof of Lemma (2.2.24) 

and let 𝜎1 >  0. Let 𝒢 ⊂  𝐶(𝑋), 𝛿0 >  0 and 𝒫 ⊂ 𝐾(𝐶(𝑋)) be as in the proof of Lemma 

(2.2.24) (for this 𝑋). 

Since 𝐾0(𝐶(𝑋))  =  ℤ
𝑚 and 𝐾1(𝐶(𝑋))  =  ℤ

𝑚, we may assume that 𝒫 =

{[𝓏1], [𝓏2], . . . , [𝓏𝑚]}. Let 𝜂2 >  0, 𝜎2 >  0, 𝐾 and 𝜃 be as in the proof Lemma(2.2.27) 

Let 𝑤𝑗 = 𝑒
(2𝜋√−1+𝜃)/𝐾 be as in the proof of Lemma (2.2.27)Choose𝜁𝑗,𝑖 =

(1, . . . , 1⏞    
𝑖−1

, 𝑤𝑗 , 1, . . . , 1⏞    
𝑚−1

), 𝑗 =  1, 2, . . . , 𝐾  and𝑖 =  1, 2, . . . , 𝑚.Note that  

𝐵𝜂2(𝜁𝑗,𝑖) ∩ 𝐵𝜂2(𝜁𝑗′,𝑖′)  =  ∅                                                               (316) 

if 𝑗 ≠ 𝑗′ , 𝑗, 𝑗′ = 1, 2, . . . , 𝐾, 𝑖, 𝑖′  =  1, 2, . . . , 𝑚. Moreover, 1 ∉ 𝐵𝜂2(𝜁𝑗,𝑖), 𝑗 =

 1, 2, . . . , 𝐾and𝑖 =  1, 2, . . . , 𝑚. Write        

      𝜓(𝑓 ) =∑𝑓(𝑥𝑙)𝑒𝑙

𝑁

𝑙=1

  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝐶(𝑋),                                           (317) 

where {𝑒1, 𝑒2, . . . , 𝑒𝑁 } is a set of mutually orthogonal projections and 𝑥1, 𝑥2, . . . , 𝑥𝑙 are 

distinct points in 𝑋. Define 

𝑝𝑗,𝑖 = ∑ 𝑒𝑙
𝑥𝑙∈𝐵𝜂2(𝜁𝑗,𝑖)

, 𝑗 =  1, 2, . . . , 𝐾 
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By (318), 

 𝜏 (𝑝𝑗,𝑖) ≥  𝜎2𝜂2,     𝑗 =  1, 2. . . , 𝐾 𝑎𝑛𝑑 𝑖 =  1, 2, . . . , 𝑚.                                  (318) 

Put       

𝛾𝑖 =
1

2𝜋√−1
𝜏(log(𝑢∗𝜙(𝓏𝑖)𝑢𝜙(𝓏𝑖)

∗)),                                 (319) 

where 𝜏 is the normalized trace on 𝑀𝑛. Then  

     |𝛾𝑖|  <  𝛿.                                                      (320) 

By the Exel formula (see [43]), 𝛾𝑖 = 𝑚𝑖/𝑛𝑖 for some integer |𝑚𝑖|  < 𝑛𝑖. 

For each 𝑖 and 𝑗, there is a projection 𝑞𝑗,𝑖 ≤ 𝑝𝑗,𝑖 such that     

          

 τ(𝑞𝑗,𝑖)  |𝛾𝑖|and𝑞𝑗,𝑖𝑒𝑙 = 𝑒𝑙𝑞𝑗,𝑖 ,   𝑗 =  1, 2, . . . , 𝐾, 𝑖 =  1, 2, . . . , 𝑚 and 𝑙 =

 1, 2, . . . , 𝑁.                                                                                             (321) 

There is a unitary 𝑣𝑖 ∈ (∑ 𝑞𝑗,𝑖
𝐾
𝑗=1 )𝑀𝑛(∑ 𝑞𝑗,𝑖

𝐾
𝑗=1 ) such that     

𝑣𝑖
∗𝑞𝑗,𝑖𝑣𝑖 = 𝑞𝑗+1,𝑖 ,     𝑗 =  1, 2, . . . , 𝐾 − 1, 𝑎𝑛𝑑  𝑣𝑖

∗𝑞𝑘,𝑖𝑣𝑖 = 𝑞1,𝑖 ,if 𝛾 <  0,             (322) 

and 

𝑣𝑖
∗𝑞𝑗,𝑖𝑣𝑖 = 𝑞𝑗−1,𝑖 ,     𝑗 =  1, 2, . . . , 𝐾 − 1,                                                  (323)  

𝑎𝑛𝑑  𝑣𝑖
∗𝑞1,𝑖𝑣𝑖 = 𝑞𝑘,𝑖if 𝛾𝑖 >  0. If 𝛾𝑖 =  0, define 𝑣𝑖 =  1. Define 𝑣 = (1 −

∑ ∑ 𝑞𝑗,𝑖
𝐾
𝑗=1

𝑚
𝑖=1 )  + ∑ 𝑣𝑖

𝑚
𝑖=1 . Note that, by the choice of 𝛿, we have 

‖[𝑢𝑣, 𝜙(𝑓)]‖ < 𝛿0  𝑓𝑜𝑟 𝑎𝑙𝑙     𝑓 ∈  𝒢.                                                                       (324)  

Moreover, the same computation as in the proof of Lemma (2.2.24)shows that 

1

2𝜋√−1
𝜏(log((𝑢𝑣)∗𝜙(𝓏𝑖)𝑢𝑣𝜙(𝓏𝑖)

∗)) = 0,     𝑖 = 1,2,… ,𝑚                                  (325) 

Then, using the Exel formula, obtains that 

Bott(𝜙, 𝑢𝑣)|𝒫 = {0}.                                                                                             (326) 

It follows from Lemma (2.2.19) that there exists a continuous path of unitaries{𝑢(𝑡) ∶  𝑡 ∈

 [0, 1/2]}  ⊂ 𝑀𝑛 such that 

      𝑢(0) =  𝑢𝑣, 𝑢 (
1

2
) =  1 𝑎𝑛𝑑   ‖[𝜙(𝑓 ), 𝑢𝑣]‖ <

𝜖

4
                                          (327) 

for all 𝑓 ∈ ℱ and 𝑡 ∈  [0, 1/2]. The rest of the proof is exactly the same as that of Lemma 

(2.2.24). 

Theorem (2.2.29)[71]: Let 𝑋 be a finite CW complex which has property (H). Let 𝜖 >  0 

be a positive number and let ℱ be a finite subset of 𝐶(𝑋). There exists 𝜂1 >  0 such that, 

for each 𝜎1 >  0, the following holds. There exists 𝜂2 >  0 such that, for any 𝜎2 >  0, 

there exists𝜂3 >  0 such that, for any 𝜎3 >  0, there are a finite subset 𝒢 ⊂  𝐶(𝑋) and 𝛿 >

 0 satisfying the following. Suppose that 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝑀𝑛 (for some integer 𝑛) are two 

unital homomorphisms such that 

‖𝜙(𝑓) − 𝜓(𝑓)‖ <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝒢, 𝜇𝜏∘𝜙(𝑂𝜂𝑗)  ≥  𝜎𝑗𝜂𝑗  ,   𝜇𝜏∘𝜓(𝑂𝜂𝑗)  ≥  𝜎𝑗𝜂𝑗                                  (328) 

for any open ball 𝑂𝜂𝑗 of radius 𝜂𝑗  , 𝑗 =  1, 2,3, where 𝜏 is the normalized trace on 𝑀𝑛. 

Then there exists a homomorphism 𝛷 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) such that 

𝜋0 ∘ 𝛷 = 𝜙, 𝜋1 ∘ 𝛷 =  𝜓 and 
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‖𝜓(𝑓)  − 𝜋𝑡 ∘ 𝛷(𝑓)‖ < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ. 

Proof: It is clear that one can reduce the general case to the case that 𝑋 is connected. 

Let 𝜂1
′ >  0 (in place of 𝜂1) be given by Definition (2.2.26) for  𝜖/2 and ℱ. Let 𝜂1 =

𝜂1
′ /16 . 𝐿𝑒𝑡 𝜎1 >  0. Let 𝒢1 (in place of 𝒢) be a finite subset of 𝐶(𝑋) and 𝜂2

′ >  0 (in place 

of 𝜂2) be given by Definition (2.2.26)for 𝜂1
′  and 𝜎1/16 (in place of 𝜎1). Let 𝜎2 >  0. 

Choose 𝛿1 (in place of 𝛿) required by Definition (2.2.26) for the given 𝜖/2 >

 0, ℱ, 𝒢1, 𝜂1
′ , 𝜂2

′  𝑎𝑛𝑑 𝜎2/16. We may assume that 𝜂2
′ <𝜂1 and ℱ ⊂ 𝒢. Denote 𝜂2 = 𝜂2

′ /16. 

We may assume that 𝒢1 is larger than the 𝒢 required by Lemma (2.2.20) for 𝜂2
′ /2 (inplace 

of 𝜂) and 𝜎2/16 (in place of 𝜎). Choose 𝛿2 = min{𝛿1/2, 𝜎2𝜂2/64}. Let 𝜂2 >  0 be such 

that 

|𝑓(𝑥)  −  𝑓(𝑥′)|  < 𝛿2/4 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝒢1, 

provided that dist(𝑥, 𝑥′)  < 𝜂0. 

Let 0 < 𝜂3
′  ≤  min{𝜂0/2, 𝜂2

′ /2}. We may also assume, by choosing a smaller 𝜂0, that any 

open ball with radius 𝜂3
′  is path connected. Let 𝜂3  =  𝜂3

′ /24 and let 𝜎3 >  0. Let 𝛿3 >  0 

(in place of 𝛿) and let 𝒢 ⊂  𝐶(𝑋) be a finite subset required by Lemma (2.2.21) for 𝛿2/2 

(in place of 𝜖), 𝒢1 (in place of ℱ), 𝜂3
′  (in place of 𝜂) and 𝜎3/24. Let𝛿 =  𝑚𝑖𝑛{𝛿3/2, 𝛿2/

2}. 

Now suppose that 𝜙 and 𝜓 satisfy conditions (328) for the above 

𝜂1, 𝜂2, 𝜂3, 𝜎1, 𝜎2, 𝜎3, 𝒢 𝑎𝑛𝑑 𝛿. In particular, 

𝜇𝜏∘𝜙(𝑂𝜂3′ 24⁄ ) ≥ (𝜎3 24⁄ )𝜂3
′    𝑎𝑛𝑑 𝜇𝜏∘𝜓(𝑂𝜂3′/24)  ≥ (𝜎3/24)𝜂3

′  

for every open ball 𝑂𝜂3′ 24⁄  with radius 𝜂3
′ 24⁄ . It follows from Lemma (2.2.21)that there 

are unitalhomomorphisms𝛷𝑖 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) such that 

𝜋0 ∘ 𝛷1  = 𝜙, 𝜋0 ∘ 𝛷2  =  𝜓,                                                                      (329) 

‖𝜋𝑡 ∘ 𝛷1(𝑔)  −  𝜙(𝑔)‖ < 𝛿2 2⁄ 𝑎𝑛𝑑 ‖𝜋𝑡 ∘ 𝛷2(𝑔) − 𝜓(𝑔)‖ <
𝛿2
2
      (330) 

for all 𝑔 ∈ 𝒢1 and 𝑡 ∈  [0, 1]. Moreover, there is a unitary 𝑢 ∈ 𝑀𝑛 such that 

ad 𝑢 ∘ 𝜋1 ∘ 𝛷1 = 𝜋1 ∘ 𝛷2.                                                               (331) 

Note that 

𝜇𝜏∘𝜙(𝑂𝜂2′ 16⁄ )  ≥  𝜎2 𝜂2
′ 16⁄ . 

It follows from the proof of Lemma (2.2.20) (with possibly larger 𝒢 which depends on 𝜂2) 

that 

𝜇𝜏∘𝜙(𝑂𝜂2′ 16⁄ )  ≤ 𝜇𝜏∘𝜋1∘𝛷1(𝑂𝜂2).                                                              (332) 

It follows that           

𝜇𝜏∘𝜋1∘𝛷1(𝑂𝜂2′ ) ≥ (𝜎2 16⁄ )𝜂2
′  .                                                                   (333) 

Similarly,            

𝜇𝜏∘𝜋1∘𝛷2(𝑂𝜂2) ≥ (𝜎2 16⁄ )𝜂2.                                                        (334) 

Moreover,         

𝜇𝜏∘𝜋1∘𝛷1(𝑂𝜂1′ ) ≥ (𝜎1 16⁄ )𝜂1
′ and 𝜇𝜏∘𝜋1∘𝛷2(𝑂𝜂1′ ) ≥ (𝜎1 16⁄ )𝜂1

′ .                                 (335) 
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Since 𝑋 has property (H), there is a unital homomorphism 𝛷3 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) 

such that 

𝜋0 ∘ 𝛷3  =  𝜋1 ∘ 𝛷1,      𝜋1 ∘ 𝛷3  =  𝜋1 ∘ 𝛷2                                             (336) 

𝑎𝑛𝑑      

  ‖𝜋𝑡 ∘ 𝛷3(𝑓)  − 𝜋1 ∘ 𝛷1(𝑓)‖ <
𝜖

2
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ.                                  (337) 

The theorem follows from the combination of (329), (330), (336) and (337). 

Theorem (2.2.30)[71]: Let 𝑋 be a finite CW complex with dimension 1. Let 𝜖 >  0 and let 

ℱ ⊂  𝐶(𝑋) be a finite subset. There exists 𝛿 >  0 and a finite subset 𝒢 ⊂  𝐶(𝑋) 

satisfying the following. For any unital 𝛿-𝒢-multiplicative contractive completely 

positive linear map 𝜙 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) (for any integer 𝑛), there is a unital 

homomorphism ℎ ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) such that 

‖𝜙(𝑓)  −  ℎ(𝑓)‖ < 𝜖 

for all 𝑓 ∈  ℱ. 

Definition (2.2.31)[71]: Let𝑋0 be the family of finite CW complexes which consists of all 

those with dimension no more than one and all those which have property (H). Note that 

𝑋0 contains all finite CW complexes 𝑋 with finite 𝐾1(𝐶(𝑋)) and torsion free 

𝐾0(𝐶(𝑋)), 𝐼 ×  𝕋, 𝑛-dimensional tori and those with the form 𝕋 ∨ … ∨  𝕋 ∨  𝑌 with some 

finite CW complex 𝑌 with torsion 𝐾1(𝐶(𝑌)) and torsion free 𝐾0(𝐶(𝑌)). 

Let 𝑋 be the family of finite CW complexes which contains all those in 𝑋0 and those with 

torsion 𝐾1(𝐶(𝑋)). 

Let 𝑋 be a finite CW complex and let ℎ ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) be a unital 

homomorphism. It is easy to see that there are finitely many mutually orthogo-nal 

projections 𝑝1, 𝑝2, . . . , 𝑝𝑚 and points 𝜉1, 𝜉2, . . . , 𝜉𝑚 in 𝑋 with one point in each connected 

component such that 

[ℎ]  =  [𝛷] in 𝐾𝐾(𝐶(𝑋), 𝐶([0, 1],𝑀𝑛)), 

where 𝛷(𝑓)  = ∑ 𝑓(𝜉𝑖)𝑝𝑖
𝑚
𝑖=1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝐶(𝑋). 

Theorem (2.2.32)[71]: Let 𝑋 ∈ 𝑋0. Let 𝜖 >  0 and let ℱ ⊂  𝐶(𝑋) be a finite subset. 

There exists 𝜂1 >  0 such that, for any 𝜎1 >  0, there exists𝜂2 >  0 such that, for any 𝜎2 >

 0, there exists 𝜂3 >  0 such that, for any 𝜎3 >  0, there exists a finite subset 𝒢, 𝛿 > 0, and 

a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the following. 

Suppose that 𝜙 ∶  𝐶(𝑋) →  𝐶([0, 1],𝑀𝑛) (for any integer𝑛 ≥  1) is a unital 

𝛿-𝐺-multiplicative contractive completely positive linear map for which 

 𝜇𝜏∘𝜙(𝑂𝜂𝑗)  ≥  𝜎𝑗𝜂𝑗                                                     (338) 

for any open ball 𝑂𝜂𝑗 withradius𝜂𝑗  , 𝑗 =  1, 2, 3, and for all tracial states 𝜏 of 

𝐶([0, 1],𝑀𝑛), and   

[𝜙]|𝒫  =  [𝛷]|𝒫 ,                                             (339) 

where 𝛷 is a point-evaluation. 

Then there exists a unital homomorphism ℎ ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) such that 

‖𝜙(𝑓) − ℎ(𝑓)‖ < 𝜖                                                                                                             (340) 



555 
 

for all 𝑓 ∈  ℱ. 

Proof: The cases that need to be considered are those 𝑋 which have property (H). We may 

assume that 𝑋 is connected and 𝛷 =  𝜋𝜉  for some point 𝜉 ∈  𝑋. Let 𝜖 >  0 and ℱ ⊂

 𝐶(𝑋) be given. 

Let 𝜂1 >  0 be required by Theorem (2.2.29) for 𝜖/4 (in place of 𝜖) and ℱ above. Let 𝜎1 >

 0. Let 𝜂2 >  0 be as required by Theorem (2.2.29)for 𝜖/4 (in place of 𝜖), ℱ, 𝜂1 and 𝜎1. 

Let 𝜎2 >  0. Let 𝜂3
′ >  0 (in place of 𝜂3) be required by Theorem (2.2.29)for 𝜖/4 (in place 

of 𝜖), ℱ, 𝜂1, 𝜂2, 𝜎1𝑎𝑛𝑑 𝜎2/4 (in place of 𝜎2). Let 𝜎2 >  0. 

Let 𝒢1 ⊂  𝐶(𝑋) (in place of 𝒢) be a finite subset and 𝛿1 >  0 (in place of 𝛿) be required by 

Theorem (2.2.29)for 𝜖 4⁄ , ℱ, 𝜂1, 𝜂2,𝜂3 (in place of 𝜂3), and 
𝜎𝑗

4
(𝑗 = 1, 2, 3) as above. We 

may assume that ℱ ⊂ 𝒢1. Let 𝐺2 ⊂  𝐶(𝑋) be a finite subset which is larger than 𝒢1 and 

which also depends on 𝜂1 and 𝜎1. 

Let 𝜖1 =  min{𝜖/4, 𝛿1/4}. Let 𝜂3 >  0 (in place of 𝜂), 𝛿2 >  0 (in place of 𝛿), 𝒢 ⊂  𝐶(𝑋) 

be a finite subset and 𝒫 ⊂ 𝐾(𝐶(𝑋)) be a finite subset required by Lemma (2.2.15)for 1 (in 

place of𝜖), 𝐺2 (in place of ℱ), 𝜎2 (in place of 𝜎1), 𝜎3/2(in place of 𝜎) and 𝜂2 (in place of 

𝜂1). We may assume that 𝜂3 <  min{𝜂3/2, 𝜂2/2}. 

Suppose that 𝜙 satisfies the assumption of the theorem for the above 𝜂𝑗 , 𝜎𝑗(𝑗 =

 1, 2, 3), 𝛿, 𝒢 𝑎𝑛𝑑 𝒫. Consider 𝜇𝜏∘𝜙 for each 𝑡 ∈  [0, 1]. Note that 𝐾(𝐶([0, 1],𝑀𝑛))  =

 𝐾(𝑀𝑛). It follows that 

[𝜋𝑡 ∘ 𝜙]|𝒫 = [𝜋𝜉]|𝒫 .                                                  (341) 

Note that  

𝜇𝜏∘𝜙(𝑂𝜂3) ≥  𝜎3𝜂3  𝑎𝑛𝑑 𝜇𝜏∘𝜙(𝑂𝜂2)  ≥  𝜎2𝜂2                               (342) 

for all open balls 𝑂𝜂3 with radius𝜂3, all open balls 𝑂𝜂2 with radius 𝜂2 and for all tracial 

states 𝜏 𝑜𝑓 𝐶([0, 1],𝑀𝑛). 

By applying Lemma (2.2.15), one obtains, for each 𝑡 ∈  [0, 1], a unital homomorphism 

ℎ𝑡 ∶  𝐶(𝑋)  →  𝑀𝑛 such that 

‖𝜋𝑡 ∘ 𝜙(𝑔) − ℎ𝑡(𝑔)‖ < 𝛿1 4⁄   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝐺1,                                                     (343) 

𝜇𝜏∘ℎ𝑡(𝑂𝜂3)  ≥  (𝜎3 2⁄ )𝜂3  𝑎𝑛𝑑 𝜇𝜏∘ℎ𝑡(𝑂𝜂2) ≥  (
𝜎2
2
) 𝜂2,                                           (344) 

where 𝜏 is the unique tracial state on 𝑀𝑛. Note that, by choosing the large 𝒢2 (depends on 

𝜖1 and 𝜎1) and smaller 𝛿1, we may also assume that 

𝜇𝜏∘ℎ𝑡(𝑂𝜂1) ≥  (
𝜎1
2
) 𝜂1.                                                                     (345) 

There is a partition 0 =  𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚  =  1 such that 

‖𝜋𝑡𝑖 ∘ 𝜙(𝑔) − 𝜋𝑡𝑖−1 ∘ 𝜙(𝑔)‖ < 𝛿1/4 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝒢1,                                             (346) 

𝑖 =  1, 2, . . . , 𝑚. Therefore 

‖ℎ𝑡𝑖(𝑔) − ℎ𝑡𝑖−1(𝑔)‖ < ‖ℎ𝑡𝑖(𝑔) − 𝜋𝑡𝑖 ∘ 𝜙(𝑔)‖                                                   (347) 

    +‖𝜋𝑡𝑖 ∘ 𝜙(𝑔) − 𝜋𝑡𝑖−1 ∘ 𝜙(𝑔)‖ + ‖𝜋𝑡𝑖−1 ∘ 𝜙(𝑔) − ℎ𝑡𝑖−1 ∘ 𝜙(𝑔)‖                       (348) 
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<
𝛿1
4
+
𝛿1
4
+
𝛿1
4
< 𝛿1                                         (349) 

for all 𝑔 ∈ 𝒢1. Thus, using (342) and (345), and by applying Theorem (2.2.29), there 

exists, for each 𝑖, a unital homomorphism 𝛷𝑖 ∶ 𝐶(𝑋) → 𝐶([𝑡𝑖−1, 𝑡𝑖],𝑀𝑛)such that 

𝜋𝑡𝑖−1 ∘ 𝛷𝑖 = ℎ𝑡𝑖−1 , 𝜋𝑡𝑖 ∘ 𝛷𝑖 = ℎ𝑡𝑖and‖𝜋𝑡 ∘ 𝛷𝑖(𝑓) − ℎ𝑡𝑖−1(𝑓)‖ < 𝜖/4              (350) 

for all 𝑓 ∈  ℱ, 𝑖 =  1, 2, . . . , 𝑚.  

Define ℎ ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) by  

𝜋𝑡 ∘ ℎ =  𝜋𝑡 ∘ 𝛷𝑖   𝑖𝑓 𝑡 ∈  [𝑡𝑖−1, 𝑡𝑖], 

𝑖 =  1, 2, . . . , 𝑚. It follows that  

‖ℎ(𝑓) − 𝜙(𝑓)‖ < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ. 

Lemma (2.2.33)[71]: Let 𝑋 ∈X. Let 𝜖 >  0 and ℱ ⊂  𝐶(𝑋) be a finite subset. Suppose 

that 𝑘0 = 𝑘!, where 𝑘 is the largest finite order of torsion elements in 𝐾𝑖(𝐶(𝑋)), 

𝑖 =  0, 1. 

There exists 𝜂1 >  0 such that, for any 𝜎1 >  0, there exists 𝜂2 >  0 such that, for any 𝜎2 >

 0, there exists 𝜂3 >  0 such that, for any 𝜎3 >  0, the following holds. There is a finite 

subset 𝒢 ⊂  𝐶(𝑋), there is 𝛿 >  0 and there is a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the 

following. 

Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) is a unital 𝛿-𝐺-multiplicative contractive 

completely positive linear map for which 

𝜇𝜏∘𝜙 (𝑂𝜂𝑗) ≥  𝜎𝑗𝜂𝑗                                                                                                                             (351) 

for any open ball 𝑂𝜂𝑗with radius 𝜂𝑗 , 𝑗 =  1, 2, 3, for all tracial states 𝜏 of 𝐶([0, 1],𝑀𝑛),and

  

                                  [𝜙]|𝒫 = [𝛷]|𝒫 ,                                                    (352) 

where 𝛷 is a point-evaluation. 

Then there exists a unital homomorphism ℎ ∶  𝐶(𝑋)  →  𝑀𝑘0  (𝐶([0, 1],𝑀𝑛)) such that 

‖𝜙(𝑘0)(𝑓) −  ℎ(𝑓 )‖ < 𝜖                                                                                        (353) 

for all 𝑓 ∈  ℱ, where 𝜙(𝑘0)(𝑓) =  diag(𝜙(𝑓), 𝜙(𝑓), . . . , 𝜙(𝑓)⏞            
𝑘0

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐶(𝑋). 

Corollary (2.2.34) [71]: Let 𝑋 ∈ X𝟎. Let𝜖 >  0, let ℱ ⊂  𝐶(𝑋) be a finite subset and 

let∆: (0, 1)  →  (0, 1) be a non-decreasing map. There exists𝜂 >  0, a finite subset 𝒢, 𝛿 >

0, and a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the following. 

Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) (for any integer 𝑛 ≥  1) is a unital 𝛿-𝐺-

multiplicative contractive completely positive linear map for which 

𝜇𝜏∘𝜙(𝑂𝑎) ≥  𝛥(𝑎)                                                                       (354) 

for any open ball 𝑂𝑎 with radius 𝑎 ≥  𝜂 and for all tracial states 𝜏 of 𝐶([0, 1], 𝑀𝑛), and 

[𝜙]|𝒫  =  [𝛷]|𝒫 ,                                            (355) 

where 𝛷 is a point-evaluation. 

Then there exists a unital homomorphism ℎ ∶  𝐶(𝑋)  →  𝐶([0, 1],𝑀𝑛) such that 

‖𝜙(𝑓) − ℎ(𝑓)‖ < 𝜖                                                                (356) 
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for all 𝑓 ∈  ℱ. 

Proof: Let 𝜖 >  0, ℱ ⊂  𝐶(𝑋) be a finite subset and be given as described. Let 𝜂1 >  0 be 

as required by Theorem (2.2.32). Let 𝜎1  =  𝛥(𝜂1)/𝜂1). Let 𝜂2 >  0 be required by 

Theorem (2.2.32). for the above 𝜖, ℱ, 𝜂1 and 𝜎2. Let 𝜎2  =  𝛥(𝜂2). 𝜂2. Let 𝜂3 >  0 be 

required by the above 𝜖, ℱ, 𝜂𝑗 and 𝜎𝑗  , 𝑗 =  1, 2. Let 𝜎3 = 𝛥(𝜂3)/𝜂3. Choose 𝜂 =

 min{𝜂𝑗 ∶  𝑗 =  1, 2, 3}. We then choose 𝛿 >  0, 𝒢 𝑎𝑛𝑑 𝒫 as required by Theorem 

(2.2.32). for the above 𝜖, ℱ, 𝜂𝑗  𝑎𝑛𝑑 𝜎𝑗 , 𝑗 =  1, 2, 3. Suppose that 𝜙 satisfies the assumption 

for the above 𝜂, 𝛿, 𝒢 𝑎𝑛𝑑 𝒫. Then 𝜙 satisfies the assumption of Theorem 8.3 for the 

above 𝜂𝑗  , 𝜎𝑗  , 𝛿 𝑎𝑛𝑑 𝒫. We then apply Theorem (2.2.32). 

Note that Lemma (2.2.33). also has its version of Corollary (2.2.34). 

   We collects a number of elementary facts about simple 𝐶∗-algebras with tracial rank one. 

Let 𝐵 = ⨁𝑗=1
𝑚  𝐶(𝑋𝑗  , 𝑀𝑟(𝑗)), where 𝑋𝑗 = [0, 1]𝑜𝑟 𝑋𝑗 is a point. For 𝑗 ≤  𝑚, denote by 𝑡𝑗,𝑥 

the normalized trace at 𝑥 ∈ 𝑋𝑗 for the 𝑗-th summand. For example, 

if 𝑏 ∈  𝐵, then 

𝑡𝑗,𝑥(𝑏)  =  𝜏 (𝜋𝑗(𝑏)(𝑥)), 

where 𝜋𝑗 ∶  𝐵 →  𝐶([0, 1],𝑀𝑟(𝑗)) is the projection to the 𝑗-th summand, 𝑥 ∈  𝑋𝑗 and 𝜏 is 

the normalized trace on 𝑀𝑟(𝑗). 

 

Corollary (2.2.35)[71]: Let A be a unital simple separable 𝐶∗-algebra with tracial rank 

one or zero and let 𝑎 ∈ 𝐴+\ {0} with ‖𝑎‖  ≤  1. Suppose that 

                      𝜏(𝑎) ≥  𝜎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴)                                              (357) 

for some 𝜎 >  0. Then, for any 1 >  𝑟 >  0, there is a projection 𝑒 ∈ 𝑎𝐴𝑎 such that 

                       𝜏(𝑒) ≥  𝑟𝜎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴).                                                (358) 

Proof:  For any 𝑏 ∈ 𝐴+ and any 𝛿 >  0, there exists 𝜖 >  0 such that 

‖𝑓𝜖(𝑏)𝑏 −  𝑏‖ <  𝛿, 

where 𝑓𝜖 is as defined in the proof of Lemma (2.2.37). Then one sees that the corollary 

follows immediately from the previous lemma. 

Proposition (2.2.36)[71]: Let A be a unital separable simple 𝐶∗-algebra with tracial rank 

no more than one and let 𝑝 ∈  𝐴 be a projection. Then, for any 𝜎 >  0 and integers 𝑚 >

 𝑛 ≥  1, there exists a projection 𝑞 ≤  𝑝 such that 

𝑛 + 1

𝑚
𝜏 (𝑝) >  𝜏 (𝑞) >

𝑛

𝑚
𝜏 (𝑝)       𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴).                           (359) 

Proof. This follows from the fact that 𝐴 is tracially approximately divisible 

Lemma (2.2.37)[71]: Let 𝑋 be a compact metric space, let ∆: (0, 1)  →  (0, 1) be a non-

decreasing map, let 𝜖 > 0, let ℱ ⊂  𝐶(𝑋)be a finite subset.be a finite subset and let 

{𝑥1, 𝑥2, . . . , 𝑥𝑚}Let 𝜂 >  0 be such that 

|𝑓(𝑥)  −  𝑓(𝑥′)|  < 𝜖/4 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ, 

if dist(𝑥, 𝑥′)  <  2𝜂 and 

𝑂2𝜂(𝑥𝑖)  ∩ 𝑂2𝜂(𝑥𝑗)  =  ∅ 𝑖𝑓 𝑖 ≠ 𝑗 
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(so 𝜂 does not depend on∆). Let 1 >  𝑟 >  0. Then there exists 𝛿 >  0 and a finite subset 

𝒢 ⊂  𝐶(𝑋) satisfying the following. 

For any unital separable simple 𝐶∗-algebra A with tracial rank no more than one and any 

unital 𝛿-𝒢-multiplicative contractive completely positive linear map 𝐿 ∶  𝐶(𝑋)  →  𝐴 for 

which 

𝜇𝜏∘𝐿(𝑂𝑎) ≥  𝛥(𝑎)𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴)                                         (360) 

and for all 1 >  𝑎 ≥  𝜂, there exist mutually orthogonal non-zero projections 

𝑝1, 𝑝2, . . . , 𝑝𝑚 in 𝐴 such that 

                  𝜏(𝑝𝑖) ≥  𝑟𝛥(𝜂)𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴), 𝑖 =  1, 2, . . . , 𝑚,                        (361) 

           𝑎𝑛𝑑      ‖𝐿(𝑓) − [𝑃𝐿(𝑓 )𝑃 +∑𝑓(𝑥𝑖)𝑝𝑖

𝑚

𝑖=1

]‖ < 𝜖    𝑓𝑜𝑟𝑎𝑙𝑙 𝑓 ∈  ℱ,                (362) 

where 𝑃 = 1 − ∑ 𝑝𝑖
𝑚
𝑖=1 .          

Proof: Suppose that the lemma is false (for the above𝜖, ℱ, ∆ and{𝑥1, 𝑥2, . . ., 𝑥𝑚}). 

Let 𝜂 >  0 be such that          

|𝑓(𝑥) −  𝑓(𝑥′)| <
𝜖

4
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ,                                                  (363) 

if dist(𝑥, 𝑥′)  <  2𝜂. We may assume that 𝑂2𝜂(𝑥𝑖) ∩ 𝑂2𝜂(𝑥𝑗) =  ∅ 𝑖𝑓 𝑖 ≠ 𝑗 , 𝑖, 𝑗 =

1, 2, . . . , 𝑚.           

Let 𝑔𝑖 be a function in 𝐶(𝑋) such that 0 ≤  𝑔𝑖(𝑥)  ≤ 1 for all 𝑥 ∈ 𝑋, 𝑔𝑖(𝑥) = 1 if 

dist(𝑥, 𝑥𝑖) < 𝜂 and 𝑔𝑖(𝑥) = 0 if dist(𝑥, 𝑥𝑖)  ≥  2𝜂, 𝑖 = 1, 2, . . . , 𝑚. Put 𝒢0 = {𝑔𝑖 ∶ 𝑖 =

 1, 2, . . . , 𝑚}. 

Then, there exists a sequence of unital separable simple 𝐶∗-algebras with tracial rank no 

more than one and a sequence of 𝛿𝑛-𝒢𝑛-multiplicative contractive completely positive 

linear maps 𝐿𝑛 ∶  𝐶(𝑋)  →  𝐴𝑛 for a sequence of decreasing positivenumbers 𝛿𝑛  →  0 and 

a sequence of finite subsets {𝒢𝑛} with⋃ 𝒢𝑛
∞
𝑛=1  dense in 𝐶(𝑋) 

such that          

𝜇𝜏∘𝐿(𝑂𝑎) ≥  𝛥(𝑎)𝑓𝑜𝑟 𝑎𝑙𝑙  𝜏 ∈  𝑇 (𝐴)𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 1 >  𝑎 ≥  𝜂     (364) 

lim inf{inf {max{‖𝐿𝑛(𝑓) − [𝑃𝑛𝐿𝑛(𝑓)𝑃𝑛 +∑𝑓(𝑥𝑖)𝑝𝑖,𝑛

𝑚

𝑖=1

]‖ : 𝑓 ∈  𝐹}}}  

≥ 𝜖 𝑛                                                                                                                                             (365) 

where infimum is taken among all possible mutually orthogonal non-zero 

projections𝑝1,𝑛, 𝑝2,𝑛, . . . , 𝑝𝑚,𝑛 with 𝜏(𝑝𝑖,𝑛) ≥ 𝑟𝛥(𝜂) for all 𝜏 ∈ 𝑇 (𝐴𝑛) and 𝑝𝑛 = 1𝐴𝑛 −

∑ 𝑝𝑖,𝑛
𝑛
𝑖=1 in 𝐴𝑛. 

Let 𝐵 = ∏ 𝐴𝑛
∞
𝑛=1 , let 𝑄 = 𝐵/⨁𝑛=1

∞ 𝐴𝑛 and let Π ∶  𝐵 →  𝑄 be the quotient map. Define 

𝛷 ∶ 𝐶(𝑋) → 𝐵 by 𝛷(𝑓) = 𝐿𝑛(𝑓)and 𝜙 = 𝛱 ∘ 𝛷. Then𝜙: 𝐶(𝑋) → 𝑄is a unital 

homomorphism.         

By (488),         

𝜏(𝐿𝑛(𝑔𝑖))  ≥  𝜇𝜏∘𝐿𝑛(𝑂𝜂)  ≥  𝛥(𝜂) 
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for all 𝜏 ∈  𝑇 (𝐴). It follows from Corollary 9.4 that there exists a projection 𝑝𝑖,𝑛
′ ∈

𝐿𝑛(𝑔𝑖)𝐴𝐿𝑛(𝑔𝑖) such that 

                 𝜏(𝑝𝑖,𝑛
′ ) ≥ 𝑟𝛥(𝜂)forall𝜏 ∈ 𝑇 (𝐴𝑛), 𝑖 =  1, 2, . . . , 𝑚,                                (366)  

for all 𝑛 ≥ 𝑛0for some 𝑛0 ≥ 1. Define 𝑝𝑖 = {𝑝𝑖,𝑛
′ }(𝑤𝑖𝑡ℎ 𝑝𝑖,𝑛

′ =  1 for 𝑛 =  1, 2, . . . , 𝑛0)

 and 𝑞𝑖 =  Π(𝑃𝑖), 𝑖 =  1, 2, . . . . , 𝑚. Note that     

𝑞𝑖 ∈ 𝜙(𝑔𝑖)𝐴𝜙(𝑔𝑖), 𝑖 =  1, 2, . . . , 𝑚.                                                       (367) 

It follows that 

‖𝜙(𝑓 ) − [𝑞𝜙(𝑓)𝑞 +∑𝑓(𝑥𝑖)𝑞𝑖

𝑚

𝑖=1

]‖ <
𝜖

2𝑓𝑜𝑟
𝑎𝑙𝑙 𝑓 ∈ ℱ,                               (368) 

where 𝑞 = 1 − ∑ 𝑞𝑖
𝑚
𝑖=1 . It follows that, forsome sufficiently large 𝑛1 ≥ 𝑛0, 

‖𝐿𝑛(𝑓) − [𝑃𝑛𝐿𝑛(𝑓)𝑃𝑛 + ∑ 𝑓(𝑥𝑖)𝑝𝑖,𝑛
′𝑚

𝑖=1 ]‖ < 𝜖for all 𝑓 ∈ ℱ.                    (369) 

for all 𝑛 ≥ 𝑛1, where 𝑃𝑛 = ∑ 𝑝𝑖,𝑛
′𝑚

𝑖=1  . This contradicts (489). 

Lemma (2.2.38)[71]: Let 𝑋 be a connected finite CW complex, let 𝜉 ∈ 𝑋 be a point and 

let𝑌 =  𝑋 \ {𝜉}. Suppose that 𝐾0(𝐶0(𝑌)) = ℤ
𝑘⨁Tor (𝐾0(𝐶0(𝑌))) and 𝑔1, 𝑔2, . . . , 𝑔𝑘 are 

generators of ℤ𝑘. Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝐴 (for some unital separable simple 𝐶∗-

algebra with tracial rank one or zero) is a 𝛿-𝒢-multiplicative contractive completely 

positive linear map for which [𝜙](𝑔𝑖) is well defined (𝑖 =  1, 2, . . . , 𝑘), where 𝛿 is a 

positive number and 𝒢 is a finite subset of 𝐶(𝑋), and 

|𝜏([𝜙](𝑔𝑖))| <  𝜎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴), 𝑖 =  1, 2, . . . , 𝑘,                                (370) 

for some 1 >  𝜎 >  0. Then, for any 𝜖 >  0 and any finite subset ℱ, any 1 >  𝑟 >  0 and 

any finite subset ℋ ⊂  𝐴, there exists a projection 𝑝 ∈  𝐴 and a unital 𝐶∗-subalgebra 𝐵 =

⨁𝑗=1
𝑚  𝐶(𝑋𝑗  , 𝑀𝑟(𝑗)), where 𝑋𝑗 = [0, 1] or 𝑋𝑗 is a single point, with 1𝐵 = 𝑝 and 𝑎 unital 

(𝛿 + 𝜖)-𝒢-multiplicative contractive completely positive linearmap𝐿 ∶  𝐶(𝑋)  →  𝐵 such 

that 

‖𝜙(𝑓) − [(1 − 𝑝)𝜙(𝑓)(1 − 𝑝) + 𝐿(𝑓)]‖ < 𝜖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ                 (371) 

     𝑎𝑛𝑑   |𝑡𝑗,𝑥([𝐿](𝑔𝑖))| < (1 +  𝑟)𝜎, 𝑗 =  1, 2, . . . , 𝑘, 𝑎𝑛𝑑 𝑥 ∈ 𝑋𝑗  .    (372) 

(We use 𝑡𝑗,𝑥 for 𝜏𝑗,𝑥⊗  𝑇 𝑟𝑅 on 𝐵 ⊗𝑀𝑅, where 𝑇𝑟𝑅 is the standard trace on 𝑀𝑅.) 

Moreover, 

‖𝑝𝑎 −  𝑎𝑝‖ < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  ℋ. 

Proof: The proof is similar. Let 𝑝𝑗 , 𝑞𝑗 ∈ 𝑀𝑅(𝐶(𝑋)) such that      

[𝑝𝑗]  − [𝑞𝑗]  =  𝑔𝑗  , 𝑗 =  1, 2, . . . , 𝑘, 

for some integer 𝑅 ≥  1. There exists a sequence projections 𝑝𝑛 ∈  𝐴 such th 

lim
𝑛→∞

‖𝑐𝑝𝑛 − 𝑝𝑛𝑐‖   =  0     𝑓𝑜𝑟 𝑎𝑙𝑙     𝑐 ∈  𝐴,                                    (373) 

and there exists a sequence of 𝐶∗-subalgebras 𝐵𝑛 = ⨁𝑗=1
𝑚(𝑛)

 𝐶(𝑋𝑗,𝑛 , 𝑀𝑟(𝑗,𝑛)) (where 𝑋𝑗,𝑛 =

 [0, 1] or 𝑋 is a single point) with 1𝐵𝑛 = 𝑝𝑛such that  

lim
𝑛→∞

dist(𝑝𝑛𝑐𝑝𝑛, 𝐵𝑛) =  0 and lim
𝑛→∞

sup
𝜏∈𝑇 (𝐴)

{𝜏 (1 − 𝑝𝑛)} = 0.                    (374) 
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For sufficiently large 𝑛, there exists a contractive completely positive linear map 𝐿𝑛
′ ∶

𝑝𝑛𝐴𝑝𝑛 → 𝐵𝑛 such that 

lim
𝑛→∞

‖𝐿𝑛
′ (𝑎)  − 𝑝𝑛𝑎𝑝𝑛‖ =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐴. 

We have 

lim
𝑛→∞

‖𝜙(𝑓) − [(1 − 𝑝𝑛)𝜙(𝑓)(1 − 𝑝𝑛)  + 𝐿𝑛
′ ∘ 𝜙(𝑓)]‖ = 0for all 𝑓 ∈  𝐶(𝑋).        (375) 

Define 𝐿𝑛,𝑅
′ :𝑀𝑅(𝐴)  →  𝑀𝑅(𝐴) by 𝐿𝑛

′ ⊗ 𝑖𝑑𝑀𝑅and 𝜙𝑅 ∶ 𝑀𝑅(𝐶(𝑋))  →  𝑀𝑅(𝐴)by 

𝜙𝑅 = 𝜙⊗ 𝑖𝑑𝑀𝑅. 

Suppose that (𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑓𝑖𝑥𝑒𝑑 1 > 𝑟 > 0) there exists a subsequence {𝑛𝑘}, {𝑗𝑘}and 

{𝑥𝑘}  ∈  [0, 1] such that  

𝑡𝑗𝑘,𝑥𝑘 (𝐿𝑛,𝑅
′ ∘ 𝜙𝑅(𝑝𝑖 − 𝑞𝑖)) ≥ (1 +  𝑟)𝜎                                     (376) 

for all 𝑘. Define a state 𝑇𝑘 ∶  𝐴 →  𝐶 by 𝑇𝑘(𝑎)  = 𝑡𝑗𝑘,𝑥𝑘(𝑎), 𝑘 =  1, 2, . . .. Let 𝑇 be a limit 

point. Note 𝑇𝑘(1𝐴)  =  1. Therefore 𝑇 is a state on 𝐴. Then, by (500), 

                               𝑇([𝜙](𝑔𝑖)) ≥  (1 +  𝑟)𝜎.                                                                 (377) 

However, it is easy to check that 𝑇 is a tracial state. This contradicts (484). Sothe lemma 

follows by choosing 𝐵 to be 𝐵𝑛, 𝑝 to be 𝑝𝑛 and 𝐿 to be 𝐿𝑛
′ ∘ 𝐿 for some sufficiently large 𝑛. 

Lemma (2.2.39)[71]: Let 𝐴 be a unital separable simple 𝐶∗-algebra with tracial rank no 

more than one. Let 𝑝1, 𝑝2, . . . , 𝑝𝑛 be a finite subset of projections in 𝐴, and let 𝐿 ∶  𝐶(𝑋)  →

 𝐴 be a contractive completely positive linear map with 𝐿(1𝐶(𝑋)) beinga projection. Let 

𝑑1, 𝑑2, . . . , 𝑑𝑛  be positive numbers, ∆: (0, 1)  →  (0, 1) be a nondecreasing map and let 

𝜂 >  0. Suppose that  

                𝜏(𝑝𝑖) ≥  𝑎𝑖   𝑎𝑛𝑑   𝜇𝜏∘𝐿(𝑂𝜂) ≥  𝛥(𝑎)𝑓𝑜𝑟𝑎𝑙𝑙 𝑎 ≥  𝜂                               (378) 

for all 𝜏 ∈  𝑇 (𝐴). 

Then, for any 1 >  𝑟 >  0, any 1 >  𝛿 >  0, any finite subset 𝒢 ⊂  𝐶(𝑋) andany finite 

subset ℋ ⊂ 𝐴, there exists a projection 𝐸 ∈ 𝐴, a 𝐶∗-𝑠𝑢𝑏𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝐵 = ⨁𝑗=1
𝐿  𝐶(𝑋𝑗  , 𝑀𝑟(𝑗)) 

with 1𝐵 = 𝐸 (𝑋𝑗 = [0, 1]𝑜𝑟 𝑋𝑗  𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡), projections 𝑝𝑖
′, 𝑝1

′′with 𝑝𝑖
′ ∈  𝐵, and a 

contractive completely positive linear map 𝐿1 ∶ 𝐶(𝑋) →  𝐵 with 𝐿1(1𝐶(𝑋))being a 

projection satisfying the following: 

‖𝐸𝑎 −  𝑎𝐸‖ <  𝛿 𝑓𝑜𝑟𝑎𝑙𝑙 𝑎 ∈  ℋ ∪ {𝐿(𝑓 ): 𝑔 ∈  𝒢},                                        (379) 

‖𝑝𝑖 − (𝑝𝑖
′⊖𝑝𝑖

′′)‖ <  𝛿, 𝑖 =  1, 2, . . . , 𝑛,                                  (380) 

         𝐿(𝑓) − [𝐸𝐿(𝑓)𝐸 + 𝐿1(𝑓)] <  𝛿 𝑓𝑜𝑟𝑎𝑙𝑙 𝑓 ∈  𝐺,                                                  (381) 

𝑡𝑗,𝑥(𝑝𝑖
′) ≥  𝑟𝑑𝑖 , 𝑖 =  1, 2, . . . , 𝑛,                                                                (382) 

      𝑎𝑛𝑑  𝜇𝑡𝑗,𝑥∘𝐿1(𝑂𝑎) ≥  𝑟𝛥(𝑂𝑎)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≥  𝜂                                                            (383) 

for all 𝑥 ∈ 𝑋𝑗 and 𝑗 =  1, 2, . . . , 𝐿. Moreover,   

  𝜏(1 −  𝐸)  <   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴). 

If 𝐿′ ∶  𝐶(𝑋) → 𝐴is another 𝛿-𝒢-multiplicative contractive completely positive linear map 

such that   

|𝜏 ∘ 𝐿′(𝑔)𝜏 ∘ 𝐿(𝑔)| <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝒢,                                             (384) 
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we may further require that 

‖𝐸𝐿′(𝑓) − 𝐿(𝑓)𝐸‖ <  𝛿, |𝐿′(𝑓) − [𝐸𝐿′(𝑓)𝐸 + 𝐿1(𝑓)]‖ < 𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝒢,         (385) 

|𝑡𝑗,𝑥 ∘ 𝐿1(𝑓) − 𝑡𝑗,𝑥 ∘ 𝐿1
′ (𝑓)| <   𝑎𝑛𝑑 𝜇𝑡𝑗,𝑥∘𝐿1′ (𝑂𝑎) ≥  𝑟𝛥(𝑎)       (386) 

for all 𝑥 ∈ 𝑋𝑗  , 𝑗 =  1, 2, . . . , 𝐿, for 𝑎 ≥  𝜂 and for all 𝑓 ∈ 𝒢.  

Proof:  There exists a sequence of projections 𝐸𝑛 ∈ 𝐴 and a sequence of 𝐶∗-subalgebra

 𝐵 = ⨁𝑗=1
𝐿𝑛  𝐶(𝑋𝑗,𝑛 , 𝑀𝑟(𝑗,𝑛)) such that    

lim
n→∞

‖𝐸𝑛𝑎 −  𝑎𝐸𝑛‖ = 0 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎 ∈  𝐴.                                                          (387) 

One then obtains a sequence of projections 𝑝𝑖,𝑛
′ ∈ 𝐵𝑛, 𝑝𝑖,𝑛

′′ ∈ (1 − 𝐸𝑛)𝐴(1 − 𝐸𝑛) and a 

sequence of contractive completely positive linear maps 𝛷𝑛 ∶  𝐴 →  𝐵𝑛 (see[69]) such that 

lim
n→∞

‖𝑝𝑖 − (𝑝𝑖,𝑛
′ + 𝑝𝑖,𝑛

′′ )‖ = 0 and lim
n→∞

‖𝑎 − [𝐸𝑛𝑎𝐸𝑛 +𝛷𝑛(𝑎)]‖ =  0         (388) 

for all 𝑎 ∈  𝐴. Moreover 

lim
n→∞

sup
𝜏∈𝑇 (𝐴)

{𝜏 (1 − 𝑒𝑛)}  =  0.                                                           (389) 

Suppose that there exists a subsequence {𝑛𝑘} such that     

𝑡𝑗𝑛,𝑘,𝑥𝑘(𝑝𝑖,𝑛
′ ) <  𝑟𝑑𝑖 , 𝑖 =  1, 2, . . . , 𝑛.                                                               (390) 

Define 𝑇𝑘(𝑎) = 𝑡𝑗𝑛,𝑘,𝑥𝑘(𝛷𝑛𝑘(𝑎)) for 𝑎 ∈  𝐴. Let 𝑇 be a limit point. Then 𝑇(1𝐴)  =  1. So 

𝑇 is a state. It is easy to see that it is also a tracial state. Then 

                           𝑇(𝑝𝑖) ≤ 𝑟𝑑𝑖 , 𝑖 =  1, 2, . . . , 𝑛,                                            (391) 

a contradiction. 

Suppose that there exists a subsequence {𝑛𝑘} such that 

𝜇𝑡𝑗𝑛𝑘,𝑥𝑘∘𝛷𝑛𝑘∘𝐿
(𝑂𝑎𝑘) <  𝑟𝛥(𝑎𝑘)                                                  (392) 

for some 1 > 𝑎𝑘  ≥  𝜂 and for all 𝑘. Again, use the above notation 𝑇 for a limit 

of{𝑡𝑗𝑛𝑘 ,𝑥𝑘
∘ 𝛷𝑛𝑘}. Then 𝑇is a tracial state so that 

𝜇𝑇∘𝐿(𝑂𝑎) ≤  𝑟𝛥(𝑎)                                                                       (393) 

for some 𝑎 ≥  𝜂, another contradiction. 

The first part of the lemma follows by choosing 𝐿1 to be 𝛷𝑛 ∘ 𝐿, 𝑝𝑖
′to be 𝑝1,𝑛

′  

and 𝑝𝑖
′′  to be 𝑝1,𝑛

′′  for some sufficiently large 𝑛.   

The last part follows from a similar argument.   

Lemma (2.2.40)[71]: Let 𝐴 be a unital separable simple 𝐶∗-algebra with tracial rank no 

more than one. Suppose that 𝑝, 𝑞 ∈  𝐴 are two projections such that 

𝜏(𝑝)  ≥  𝐷 𝑎𝑛𝑑 𝜏 (𝑞)  ≥  𝐷 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴). 

Then, for any 1 >  𝑟 >  1, there are projections 𝑝1  ≤  𝑝 and 𝑞1 ≤  𝑞 such that 

[𝑝1] =  [𝑞1]𝑖𝑛 𝐾0(𝐴)𝑎𝑛𝑑 𝜏 (𝑝1) =  𝜏 (𝑞1) ≥  𝑟 ∙ 𝐷                               (394) 

for all 𝜏 ∈  𝑇 (𝐴). 

Proof: Fix 1 > 𝑟1 >  𝑟 >  0. 

A similar argument as in Lemma (2.2.39) leads to the following. There are mutually 

orthogonal projections 𝑝0
′ , 𝑝1

′  and mutually orthogonal projections𝑞0
′ , 𝑞1

′  such that 

‖𝑝0 + 𝑝1
′ −  𝑝‖ < 1 2⁄ ,   ‖𝑞0 + 𝑞1

′ − 𝑞‖ <  ½                                            (395) 
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and 𝑝1
′ , 𝑞1

′ ∈ 𝐵 = ⨁𝑗=1
𝐿  𝐶(𝑋𝑗  , 𝑀𝑟(𝑗)), where 𝑋𝑗 = [0, 1] or where 𝑋𝑗is a single point 

  𝑡𝑗,𝑥(𝑝1
′) > 𝑟1𝐷 𝑎𝑛𝑑 𝑡𝑗,𝑥(𝑞1

′) > 𝑟1𝐷                                                                   (396) 

for 𝑥 ∈ 𝑋𝑗and 𝑗 =  1, 2, . . . , 𝐿. Moreover, as [90], 𝑟(𝑗) ≥
2

(𝑟1−𝑟)𝐷
. There isa projection 

𝑝1,𝑗 ∈ 𝐶(𝑋𝑗  ,𝑀𝑟(𝑗)) such that 𝑝1,𝑗  ≤ 𝜋𝑗(𝑝1
′) and   

𝑟1𝐷 ≥  𝑡𝑗,𝑥(𝑝1,𝑗) >  𝑟𝐷                                                    (397) 

for 𝑥 ∈ 𝑋𝑗 and 𝑗 =  1, 2, . . . , 𝐿, where 𝜋𝑗: 𝐵 →  𝐶(𝑋𝑗  ,𝑀𝑟(𝑗)) is a projection. 

Hence     

𝑡𝑗,𝑥(𝑝1,𝑗) ≤ 𝑡𝑗,𝑥(𝑞1
′ ) 

for all 𝑥 ∈ 𝑋𝑗  , 𝑗 =  1, 2, . . . , 𝐿. There exists a partial isometry 𝑣𝑗 ∈ 𝑋𝑗  , 𝑀𝑟(𝑗)such that 

𝑣𝑗
∗𝑣𝑗 = 𝑝1,𝑗   𝑎𝑛𝑑 𝑣𝑗𝑣𝑗

∗ ≤ 𝜋𝑗(𝑞1
′), 

𝑗 =  1, 2, . . . , 𝐿. 

Define 𝑝1
′′ = ∑ 𝑝1,𝑗

𝐿
𝑗=1  and 𝑣 = ∑ 𝑣𝑗

𝐿
𝑗=1 . Then   

𝑝1
′′ ≤ 𝑝1, 𝑣

∗𝑣 = 𝑝1
′′  𝑎𝑛𝑑 𝑣𝑣∗  ≤ 𝑞1

′ . 

Moreover,      

𝜏(𝑝1
′′)  ≥  𝑟𝐷 𝑓𝑜𝑟𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴). 

By (519), there exists a projection 𝑝1 ≤  𝑝 and a projection 𝑞1  ≤  𝑞 such that 

 [𝑝1] =  [𝑝1
′′] =  [𝑣𝑣∗] =  [𝑞1].                                                                 (398) 

Note that      

𝜏(𝑝1)  =  𝜏(𝑞1)  ≥  𝑟 ∙ 𝐷 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴). 

Lemma (2.2.41)[71]: Let 𝐵 be a unital separable amenable 𝐶∗-algebra and let 𝐴 be a 

unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. For any 𝜖 >  0,any finite subset ℱ ⊂  𝐵, any 

𝜎 >  0, any integer 𝑘 ≥  1, any integer 𝐾 ≥  1 and anyfinite subset ℱ1 ⊂  𝐴. Suppose 

that 𝜙,𝜓 ∶  𝐵 →  𝐴 are two unital positive linear maps. Then there is a projection  𝑝 ∈

𝐴, 𝑎   𝐶∗-subalgebra𝐶0 =⊕𝑖=1
𝑛1 (𝐶([0, 1],𝑀𝑑(𝑖))⨁⊕𝑗=1

𝑛2 𝑀𝑟(𝑗) with 𝑑(𝑖), 𝑟(𝑗)  ≥  𝐾 and a 

𝐶∗-subalgebra 𝐶 of 𝐴 with 𝐶 = 𝑀𝑘(𝐶0) and with 1𝐶 =  𝑝 and unital positive linear maps 

𝜙0, 𝜓0 ∶  𝐵 →  𝐶0 such that  

    ‖𝜙(𝑓), 𝑝‖ < 𝜖 , ‖𝜓(𝑓), 𝑝‖ < 𝜖 𝑓𝑜𝑟𝑎𝑙𝑙   𝑓 ∈  ℱ,                                            (399) 

  ‖𝑥, 𝑝‖ < 𝜖  𝑓𝑜𝑟 𝑎𝑙𝑙   𝑥 ∈ ℱ1,                                                                                (400) 

‖𝜙(𝑓) − ((1 −  𝑝)𝜑(𝑓)(1 −  𝑝)  ⊕ 𝜙0
(𝑘)
(𝑓))‖ < 𝜖   ,                               (401) 

‖𝜓(𝑓) − ((1 −  𝑝)𝜓(𝑓 )(1 − 𝑝) ⊕ 𝜓0
(𝑘)(𝑓))‖ <  𝜖  𝑓𝑜𝑟 𝑎𝑙𝑙     𝑓 ∈  ℱ              (402) 

and    

             𝜏 (1 −  𝑝)  <  𝜎 𝑓𝑜𝑟 𝑎𝑙𝑙𝜏 ∈  𝑇 (𝐴),                                             (403) 

where             

𝜙0
(𝑘)(𝑓) = diag(𝜙0(𝑓), 𝜙0(𝑓), … 𝜙0(𝑓)⏞              

𝑘

)                                                                      (404) 

and   

𝜓0
(𝑘)(𝑓) = diag(𝜓0(𝑓), 𝜓0(𝑓),… , 𝜓0(𝑓)

⏞              )

𝑘

𝑓𝑜𝑟 𝑎𝑙𝑙𝑓 ∈  𝐵.                                        (405) 
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Lemma (2.2.42)[71]: Let 𝑋 be a connected finite CW complex and let 𝑌 = 𝑋\{𝜉} , where

 𝜉 ∈  𝑋 is a point. Let 𝐾0(𝐶(𝑌)) = 𝐺 = ℤ
𝑘⊕𝑇 𝑜𝑟(𝐺) and 𝐾0(𝐶(𝑋)) = ℤ⊕ 𝐺. 

Fix 𝜅 ∈ 𝐻𝑜𝑚𝛬(𝐾(𝐶0(𝑌)), 𝐾(𝒦)). Put 

𝐾 = max{|𝜅(𝑔𝑖)| ∶ 𝑔𝑖 = (0, . . . , 0⏞    
𝑖−1

, 1, 0, . . . , 0) ∈ ℤ𝑘}. 

Then, for any 𝛿 >  0 any finite subset 𝒢 ⊂  𝐶(𝑋) and any finite subset𝒫 ⊂ 𝐾(𝐶0(𝑌)), 

there exists an integer 𝑁(𝐾)  ≥  1 (which depends on 𝐾, 𝛿, 𝒢 𝑎𝑛𝑑 𝒫, but not 𝜅) and a 

unital 𝛿-𝒢-multiplicative contractive completely positive linear map 𝐿 ∶  𝐶(𝑋)  →  𝑀𝑁(𝑘) 

such that 

[𝐿|𝐶0(𝑌)]|𝒫 = 𝜅|𝒫 .                                                                                     (406) 

(𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑙𝑒𝑚𝑚𝑎 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑡ℎ𝑎𝑡 𝐾 =  0. ) 

Proof: Choose 𝛿0 >  0 and a finite subset 𝒢0 ⊂ 𝐶0(𝑌) such that, for any pair of 𝛿0-𝒢0-

multiplicative contractive completely positive linear maps from 𝐶0(𝑌) to any 𝐶∗-algebra, 

[𝐿𝑖]|𝒫 is well defined and 

[𝐿1]|𝒫  = [𝐿2]|𝒫 ,                                                         (407) 

provided that 

𝐿1 ≈𝛿0 𝐿2    𝑜𝑛 𝒢0. 

It follows that there exists an asymptotic morphism{𝜙𝑡 ∶  𝑡 ∈  [1,∞)} ∶  𝐶0(𝑌)  →  𝒦 such 

that 

[{𝜙𝑡}] =  𝜅.                                                                          (408) 

Note that, for each 𝑡 ∈  [1,∞),𝜙𝑡 is a contractive completely positive linear map and 

lim
𝑡→∞

‖𝜙𝑡(𝑎𝑏) − 𝜙𝑡(𝑎)𝜙𝑡(𝑏)‖   =  0 

for all 𝑎, 𝑏 ∈ 𝐶0(𝑌). Define 𝛿1 = min{𝛿0/2, 𝛿/2} and 𝒢1 = 𝒢0 ∪  𝒢. It follows that, for 

sufficiently large 𝑡, 

[𝜙𝑡]|𝒫 = 𝜅|𝒫                                                                                                                   (409) 

and 𝜙𝑡 is 𝛿1-𝒢1 multiplicative. Choose a projection 𝐸 ∈  𝜅 such that 

‖𝐸𝜙𝑡(𝑎) − 𝜙𝑡(𝑎)𝐸‖ < 𝛿1/4 for all 𝑎 ∈ 𝒢2,                                                             (410) 

where 𝒢2 = 𝒢1 ∪ {𝑎𝑏 ∶  𝑎, 𝑏 ∈ 𝒢1}. Define 𝐿 ∶  𝐶(𝑋)  →  𝐸𝒦𝐸 by 𝐿(𝑓) = 𝑓(𝜉)𝐸 +

𝐸𝜙𝑡(𝑓 −  𝑓 (𝜉))𝐸 for 𝑓 ∈  𝐶(𝑋). It is easy to see that 𝐿 is a 𝛿-𝒢-multiplicative 

contractive completely positive linear map and 

[𝐿|𝐶0(𝑌)]|𝒫 = 𝜅|𝒫  .                                                                  (411) 

Define the rank of 𝐸 to be 𝑁(𝜅). Note that 𝐸𝒦𝐸 ≅ 𝑀𝑁(𝜅). Note that since  

𝐾𝑖(𝐶0(𝑌)) is finitely generated, by [21], 

𝐻𝑜𝑚𝛬(𝐾(𝐶0(𝑌)), 𝐾(𝒦))  =  𝐻𝑜𝑚𝛬(𝐹𝑚𝐾(𝐶0(𝑌)), 𝐹𝑚𝐾(𝒦)) 

for some integer 𝑚 ≥  1. Thus, when 𝐾 is given, there are only finitely many di erent κ so 

that |𝜅(𝑔𝑖)|  ≤  𝐾 for 𝑖 =  1, 2, . . . , 𝑘. Thus such 𝑁(𝐾) exists by takingthe maximum of 

those 𝑁(𝜅).        

Lemma (2.2.43)[71]: Let 𝑋 be a connected finite CW complex and let 𝑌 =  𝑋\{𝜉}, 

where𝜉 ∈  𝑋 is a point. Let 𝐾0(𝐶(𝑌 )) = 𝐺 = ℤ
𝑘⊕  𝑇 𝑜𝑟(𝐺) and 𝐾0(𝐶(𝑋)) = ℤ ⊕  𝐺. 
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Forany 𝛿 >  0, any finite subset 𝒢 ⊂  𝐶(𝑋) and any finite subset 𝒫 ⊂ 𝐾(𝐶0(𝑌)), there 

exists an integer 𝑁(𝛿, 𝒢, 𝒫) ≥ 1 satisfying the following. 

Let 𝜅 ∈  𝐻𝑜𝑚𝛬(𝐾(𝐶0(𝑌)), 𝐾(𝒦)) and let 

𝐾 = max{|𝜅(𝑔𝑖)| ∶ 𝑔𝑖 = (0, . . . , 0⏞    
𝑖−1

, 1, 0, . . . , 0) ∈ ℤ𝑘} 

There exists an integer 𝑁(𝐾)  ≥  1 and a unital 𝛿-𝒢-multiplicative contractive completely 

positive linear map 𝐿 ∶  𝐶(𝑋)  →  𝑀𝑁(𝑘) such that 

[𝐿]|𝒫 = 𝜅|𝒫 𝑎𝑛𝑑  
𝑁(𝐾)

max{𝐾, 1}
≤  𝑁(𝛿, 𝒢, 𝒫).                                                 (412) 

Proof: Fix 𝛿,𝒫 and 𝒢. Let 𝑁(0) and 𝑁(1) be as in Lemma (2.2.42) corresponding to the 

case that 𝐾 =  0 and 𝐾 =  1. Define 

𝑁(𝛿, 𝒢, 𝒫)  =  𝑘𝑁(1)  +  𝑁(0). 

Fix 𝜅 ∈  𝐻𝑜𝑚𝛬(𝐾(𝐶0(𝑌)), 𝐾(𝒦)). Suppose that 𝜅(𝑔𝑖) = 𝑚𝑖 , 𝑖 =  1, 2, . . . , 𝑘. For each 

𝑖 (𝑖 =  0, 1, 2, . . . , 𝑘) there is 𝜅𝑖 ∈  𝐻𝑜𝑚𝛬(𝐾(𝐶0(𝑌)), 𝐾(𝒦)) such that 

𝜅0(𝑔𝑖) =  0, 𝑖 =  1, 2, . . . , 𝑘,                                                    (413) 

𝜅0(𝑔𝑖) =  0,   𝑖𝑓 𝑚𝑖  =  0, 𝑗 =  1, 2, . . . , 𝑘,                      (414) 

𝜅0(𝑔𝑖) =  sign(𝑚𝑖) ∙ 1  (𝑖𝑛 ℤ) 𝑎𝑛𝑑 𝜅0(𝑔𝑗) = 0 𝑖𝑓 𝑗 ≠ 𝑖,                                           (415) 

                     𝑖𝑓 𝑚𝑖 ≠  0,    𝑖 =  1, 2, … , 𝑘,                                                                         (416) 

  𝑎𝑛𝑑 

𝜅0 +∑𝑚𝑖𝜅𝑖

𝑘

𝑖=1

=  𝜅.                                                                       (417) 

By Lemma (2.2.42), there exists a unital𝛿-𝒢-multiplicative contractive completely 

positive linear map 𝐿𝑖 ∶  𝐶(𝑋)  →  𝑀𝑁(1) such that     

                     [𝐿𝑖|𝐶0(𝑌)]|𝒫 = 𝜅𝑖|𝒫 , 𝑖 =  0, 1, 2, . . . , 𝑘.                                   (418) 

Put 𝑁 =  𝑁(0) + ∑ |𝑚𝑖|𝑁(1)
𝑘
𝑖=1 . Define L ∶  C(X)  →  MNby    

                      𝐿(𝑓) =  𝐿0(𝑓) ⊕⨁𝐿𝑖(𝑓)

𝑘

𝑖=1

 ,                                                 (419) 

for all 𝑓 ∈  𝐶(𝑋), where  

𝐿𝑖(𝑓) = diag(𝐿𝑖(𝑓), 𝐿𝑖(𝑓),… , 𝐿𝑖(𝑓)
⏞              

|𝑚𝑖|

) , 𝑖 = 1, 2, . . . . , 𝑘.                              (420) 

One estimates that         

𝑁

𝑚𝑎𝑥{𝐾, 1}
=
𝑁(0) + ∑ |𝑚𝑖|𝑁(1)

𝑘
𝑖=1

𝑚𝑎𝑥{𝐾, 1}
≤ 𝑁(0) + 𝑘𝑁(1) = 𝑁(𝛿, 𝒢, 𝒫).                  (421) 

Lemma(2.2.44)[71]: Let 𝑋 be a connected finite CW complex with 𝐾0(𝐶(𝑋)) = ℤ⊕

𝐺where𝐺 = ℤ𝑘⊕  𝑇 𝑜𝑟(𝐺)=𝐾0(𝐶0(𝑋)) and 𝑌 =  𝑋 \ {𝜉} for some point 𝜉 ∈  𝑋. For any 

𝜎 >  0, there exists 𝛿 >  0 and a finite subset 𝒢 ⊂  𝐶(𝑋) satisfying the following.  

   For any unital separable 𝐶∗-algebra 𝐴 with 𝑇(𝐴) ≠ ∅ and any unital 𝛿-𝒢- 
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multiplicative contractive completely positive linear map 𝐿 ∶  𝐶(𝑋)  →  𝐴, one has 

|𝜏 ∘ [𝐿](𝑔𝑖)| <  𝜎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴),                                            (422)  

where 𝑔𝑖 = (0, . . . , 0⏞    
𝑖−1

, 1, 0, . . . , 0) ∈ ℤ𝑘and 𝜏 is the state on 𝐾0(𝐶(𝑋))induced by thetracial 

state 𝜏. 

Proof:  Suppose that the lemma is false. 

Then there exists a sequence of unital separable 𝐶∗-algebras 𝐴𝑛 and a sequence of 𝛿𝑛-𝒢𝑛-

multiplicative contractive completely positive linear maps 𝐿𝑛: 𝐶(𝑋)  →  𝐴𝑛,where 𝛿𝑛   ↓  0 

and 𝒢𝑛  is a sequence of finite subsets such that 𝒢𝑛 ⊂ 𝒢𝑛+1  and⋃ 𝒢𝑛
∞
𝑛=1  is dense in 𝐶(𝑋) 

and that there exists 𝜏𝑛 ∈  𝑇(𝐴𝑛) such that 

|𝜏𝑛 ∘ [𝐿𝑛](𝑔𝑖)| ≥
𝜎

2
                                                                 (423) 

for some 𝑖 ∈  {1, 2, . . . , 𝑘}. 

Let 𝐵 = ∏ 𝐴𝑛
∞
𝑛=1 . Define𝑡𝑛({𝑎𝑛}) = 𝜏𝑛(𝑎𝑛). Then 𝑡𝑛 is a tracial state of 𝐵. Let 𝑇 be a 

limit point of {𝑡𝑛}. One obtains a subsequence {𝑛𝑘} such that 

                          𝑇 ({𝑎𝑛})  =  lim
𝑘→∞

𝜏𝑛𝑘(𝑎𝑛𝑘)                                                             (424) 

for any {𝑎𝑛}  ∈  𝐵. Note that for any 𝑎 ∈⊕𝑛=1
∞ 𝐴𝑛 ⊂  𝐵, 𝑇(𝑎)  =  0. It follows that defines 

a tracial state �̅�on 𝐵/⊕𝑛=1
∞ 𝐴𝑛. Let𝛱 ∶  𝐵 →  𝐵/⊕𝑛=1

∞ 𝐴𝑛 be the quotient map. Define 𝐿 ∶

 𝐶(𝑋)  →  𝐵 by 𝐿(𝑓)  =  {𝐿𝑛(𝑓)}. Put 𝜙 =  𝛱 ∘ 𝐿. Then 𝜙 is a unital homomorphism. 

Therefore 

                              𝑇 ∘ 𝜙∗0(𝑔𝑖) =  0.                                                                      (425) 

It follows that there is a subsequence {𝑛𝑘
′ }  ⊂  {𝑛𝑘} such that  

lim 𝜏𝑛𝑘
′ ∘ [𝐿𝑛𝑘

′ ] (𝑔𝑖) =  0.                                                                           (426) 

However, this contradicts (347). 

Lemma (2.2.45)[71]: Let 𝐶(𝑋) be a connected finite CW complex and 𝒫 ⊂ 𝐾(𝐶(𝑋)). 

There exists 𝛿 > 0 and a finite subset 𝒢 ⊂ 𝐶(𝑋) satisfying the following. For any unital 

𝐶∗-algebra 𝐴 and any unital 𝛿-𝒢-multiplicative contractive completely positive linear map 

𝐿 ∶ 𝐶(𝑋) → 𝐴,there exists𝜅 ∈ 𝐻𝑜𝑚𝛬(𝐾(𝐶(𝑋)), 𝐾(𝐴)) suchthat 

[𝐿]|𝒫 = 𝜅|𝒫 .                                                                                     (427) 

This is known (see [70]). 

Lemma (2.2.46)[71]: Let 𝑋 ∈ 𝑿 be a finite simplicial complex. Let 𝜖 >  0, let 𝜖1 > 0, let 

𝜂0 > 0, let ℱ ⊂  𝐶(𝑋) be a finite subset, let 𝑁 ≥  1 and 𝐾 ≥  1 be positive integers and 

let ∆: (0, 1)  →  (0, 1) be a non-decreasing map. There exist 𝜂 > 0, 𝛿 >  0, a finite subset 

𝒢 and a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) satisfying the following. 

Suppose that 𝐴 is a unital separable simple 𝐶∗-algebra with tracial rank no more than one 

and 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝐴 are two unital𝛿-𝒢-multiplicative contractive completely positive 

linear maps such that 

𝜇𝜏∘𝜙(𝑂𝑎) ≥  𝛥(𝑎)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≥  𝜂,                                        (428) 

|𝜏 ∘ 𝜙(𝑔) − 𝜏 ∘ 𝜓(𝑔)| <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈  𝒢                                    (429) 
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for all 𝜏 ∈  𝑇(𝐴) and .    

    [𝜙]|𝒫 = [𝜓]|𝒫                                                                                                  (430) 

Then, for any  𝜖0 >  0, there are four mutually orthogonal projections 𝑃0, 𝑃1, 𝑃2 𝑎𝑛𝑑 𝑃3
 with 𝑃0 + 𝑃1 + 𝑃2 + 𝑃3  = 1𝐴, there is a unital 𝐶∗-𝑠𝑢𝑏𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝐵1 ⊂ (𝑃1 + 𝑃2 +

𝑃3)𝐴(𝑃1 + 𝑃2 + 𝑃3) with 1𝐵  =  𝑃1 + 𝑃2 + 𝑃3, where 𝐵1 has the form𝐵1 =

⊕𝑗=1
𝑠 𝐶(𝑋𝑗 , 𝑀𝑟(𝑗)) with 𝑃1, 𝑃2, 𝑃3 ∈ 𝐵1, where 𝑋𝑗  =  [0, 1] or 𝑋𝑗 is a point.  

There are also unitalhomomorphisms𝜙1, 𝜓1 ∶  𝐶(𝑋)  →  𝐵, where 𝐵 = 𝑃3𝐵1𝑃3, 

there exists a finite dimensional 𝐶∗-subalgebra 𝐶0 ⊂ 𝑃1𝐵𝑃1 with 1𝐶0  =  𝑃1 and there 

exists a unital 𝜖-ℱ-multiplicative contractive completely positive linear map 𝜙2 ∶

 𝐶(𝑋)  →  𝐶0and mutually orthogonal projections 𝑝1, 𝑝2, . . . , 𝑝𝑚 ∈ 𝑃2𝐵1𝑃2 and a unitary 

𝑢 ∈  𝐴 such that 

 ‖𝜙(𝑓) − [𝑃0𝜙(𝑓)𝑃0 + 𝜙2(𝑓) + ∑ 𝑓(𝑥𝑖)𝑝𝑖
𝑚
𝑖=1 + 𝜙1(𝑓)]‖𝜖/2                     (431) 

 𝑎𝑛𝑑 

 ‖𝑎𝑑 𝑢 ∘ 𝜓(𝑓) − [𝑃0(𝑎𝑑 𝑢 ∘ 𝜓(𝑓))𝑃0 + 𝜙2(𝑓) + ∑ 𝑓(𝑥𝑖)𝑝𝑖
𝑚
𝑖=1 + 𝜓1(𝑓)]‖ < 𝜖/2 

(432) 

for all 𝑓 ∈  ℱ, where {𝑥1, 𝑥2, . . . , 𝑥𝑚} is  𝜖1-dense in 𝑋 and 𝑃2 = ∑ 𝑝𝑖
𝑚
𝑖=1 , 

 𝑁𝜏(𝑃0 + 𝑃1)  < 𝜏(𝑝𝑖) 𝐾𝑡𝑗,𝑥(𝑃1 + 𝑃2)  ≤ 𝑡𝑗,𝑥(𝑃3),                          (433) 

 𝜇𝑇∘𝜙1(𝑂𝑎) ≥
𝛥(𝑎)

4
, 𝜇𝑇∘𝜓1(𝑂𝑎) ≥

𝛥(𝑎)

4
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≥  𝜂0,                             (434) 

 |𝑇 ∘ 𝜓1(𝑓 ) − 𝑇 ∘ 𝜙1(𝑓 )| <   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  ℱ,                                          (435) 

for all 𝜏 ∈  𝑇 (𝐴), 𝑖 =  1, 2, . . . , 𝑚, for all 𝑥 ∈ 𝑋𝑗  , 𝑗 =  1, 2, . . . , 𝑠, and for all 𝑇 ∈  𝑇 (𝐵). 

Moreover, for any finite subset ℋ ⊂  𝐴, one may require that 

 ‖𝑎𝑃0 − 𝑃0𝑎‖ < 𝜖0  𝑎𝑛𝑑 (1 − 𝑃0)𝑎(1 − 𝑃0) ∈𝜖 𝐵1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  ℋ.           (436) 

Corollary (2.2.47)[71]: Let 𝑋 ∈ 𝑋. Let 𝜖 >  0, let 𝜂0 >  0, let ℱ ⊂  𝐶(𝑋) and let 

∆: (0, 1)  →  (0, 1) be a non-decreasing map. Then there exists 𝜂 >  0, 𝛿 >  0, and afinite 

subset 𝒢 ⊂  𝐶(𝑋) satisfying the following. 

Suppose that 𝐴 is a unital separable simple 𝐶∗-algebra with 𝑇 𝑅(𝐴)  ≤  1 and 𝜙: 𝐶(𝑋)  →

 𝐴 is a unital 𝛿-𝒢-multiplicative contractive completely positive linearmap such that 

 𝜇𝑇∘𝜙(𝑂𝑎) ≥  𝛥(𝑎) for all 𝑎 ≥  𝜂.                                              (437) 

Then, for any 𝜖0 >  0, for any integer 𝐾 ≥  1, there are mutually orthogonal projections 

𝑃0𝑃1 and 𝑃2 with𝑃0 + 𝑃1 + 𝑃2  =  1𝐴, there exists a unital 𝐶∗-subalgebra𝐵 =

⨁ 𝐶(𝑋𝑗  , 𝑀𝑟(𝑗))
𝑠
𝑗=1  with 𝑃1 = 1𝐵 , where 𝑋𝑗  =  [0, 1] or 𝑋𝑗 is a point, a finite dimensional 

𝐶∗-subalgebra 𝐷, a unital completely positive linear map 𝜙1 ∶  𝐶(𝐴)  →  𝐷 and there exists 

a unital homomorphism 𝜙1 ∶  𝐶(𝑋)  →  𝐵 such that ‖𝜙(𝑓 ) − (𝑃0𝜙(𝑓)𝑃0  +  𝜙2(𝑓)  +

 𝜙1(𝑓))‖ < 𝜖  for all 𝑓 ∈ ℱ                                   (438) 

and    

 𝐾𝜏(𝑃0  +  𝑃2) <  𝜏 (𝑃1)𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴).                                                  (439) 

Moreover, for any finite subset ℋ ⊂  𝐴, one may require that   

 ‖𝑎𝑃0 − 𝑃0𝑎‖ < 𝜖0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  ℋ ∪  𝜙(𝐹).                                                (440) 

Proof: Choose 𝜓 =  𝜙 and then apply Lemma (2.2.46).  
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Theorem (2.2.48)[71]: Let 𝑋 be a finite simplicial complex in 𝑋. Let 𝜙 >  0, let ℱ ⊂

 𝐶(𝑋) be a finite subset and let Δ: (0, 1)  →  (0, 1) be a non-decreasing map. There exists 

𝜂 >  0, 𝛿 >  0, a finite subset 𝒢 ⊂  𝐶(𝑋) a finite subset 𝒫 ⊂ 𝐾(𝐶(𝑋)) and a finite subset 

𝒰 ⊂ 𝒰(𝑀∞(𝐶(𝑋))) satisfying the following, 

Suppose that 𝐴 is a unital separable simple 𝐶∗-algebra with tracial rank no more than one 

and 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝐴 are two unital 𝛿-𝒢-multiplicative contractive completely positive 

linear maps such that 

 𝜇𝑇∘𝜙(𝑂𝑎) ≥  𝛥(𝑎) for all 𝑎 ≥  𝜂,                                                               (441) 

 |𝜏 ∘ 𝜙(𝑔)  −  𝜏 ∘ 𝜓(𝑔)|  <  𝛿 for all 𝑔 ∈  𝒢,                                            (442) 

for all 𝜏 ∈  𝑇 (𝐴), and  

 [𝜙]|𝒫  =  [𝜓]|𝒫  𝑎𝑛𝑑  𝑑𝑖𝑠𝑡 (𝜙
‡(𝑧̅), 𝜓‡(𝑧̅)) <  𝛿                                                (443) 

for all 𝑧 ∈ 𝒰. Then there exists a unitary 𝑢 ∈  𝐴 such that 

 𝑎𝑑 𝑢 ∘ 𝜓 ≈   𝜙  𝑜𝑛 ℱ.                                                                    (444) 

Proof:  Let 𝜂1 >  0 be as in Corollary (2.2.12) for 𝜖/4 and ℱ. Let 𝜎1 =  𝛥(𝜂1)/4𝜂1. Let 

𝜂0 >  0 (in place of 𝜂) and 𝐾1  ≥  1 (in place of 𝐾) be as in Corollary (2.2.12) for 𝜖/4 and 

ℱ above. Let 𝜎0  =  𝛥(𝜂0)/4𝜂0 (in place of 𝜎). Let 𝛿1 >  0 (in place of 𝛿), 𝒢1 ⊂  𝐶(𝑋) (in 

place of 𝒢), 𝒫1 ⊂ 𝐾(𝐶(𝑋)) (in place of 𝒫), 𝒰1 ⊂  𝑈 (𝑀∞(𝐶(𝑋))) (in place of 𝒰) and 

𝐿1 ≥  1 (in place of 𝐿) be finite subsets required by Corollary (2.2.12) 

Let 𝐿 =  8𝜋 +  1. Let 𝛿2 >  0 (in place of 𝛿), 𝒢2 ⊂  𝐶(𝑋) (in place of 𝐺), 𝒫2 ⊂ 𝐾(𝐶(𝑋)) 

(in place of 𝒫), 𝒰2 ⊂ 𝒰 (𝑀∞(𝐶(𝑋))) (in place of 𝒰), 𝑙 ≥  1 and 𝜖1 >  0 be as required 

by Theorem (2.2.11)for 𝜖/4 and ℱ. Let 𝜖2 =  𝑚𝑖𝑛{ 𝛿1/2,  𝛿2/2} and ℱ2 = ℱ ∪ 𝒢1 ∪ 𝒢2. 

Let 𝜖3 >  0 be a number smaller than 𝜖2. Let 𝑁 =  𝑙 and 𝐾 >  16/ 𝑚𝑖𝑛{𝜎𝜂, 𝜎1𝜂1, 𝛿1}. Let 

𝜂2 >  0, let 𝛿3 > 0 (in place of 𝛿), let 𝒢3 ⊂  𝐶(𝑋) (in place of 𝒢), let 𝒫3 ⊂ 𝐾(𝐶(𝑋)) be 

required by Lemma (2.2.46)for 𝜖3 (in place of𝜖) 𝜖1, 𝑚𝑖𝑛{𝜂1, 𝜂0} (in place of 𝜂0) and ℱ2 

(in place of ℱ). 

Let 𝜂 =  𝑚𝑖𝑛{𝜂1, 𝜂0, 𝜂2} and let 𝛿4  =  𝑚𝑖𝑛{𝛥(𝜂)/4, 𝛿3, 1/32𝐾1𝜋}. 

Let 𝛿 be a positive number which is smaller than 𝛿4 and let 𝒢 be a finite subset containing 

𝒢3. Let 𝒫 ⊂ 𝐾(𝐶(𝑋)) be a finite subset which contains 𝒫1 ∪ 𝒫2 ∪ 𝒫3 and the image of 𝒰 

in 𝐾(𝐶(𝑋)). 

Suppose that 𝐴 is a unital separable simple 𝐶∗-algebra withtracial rank one or zero and 

suppose 𝜙,𝜓 ∶  𝐶(𝑋)  →  𝐴 are two unital 𝛿-𝒢-multiplicative contractive completely 

positive linear maps which satisfy the assumption of the theorem for the above 𝛿, 𝒢, 𝒫 and 

𝒰.        

It follows from Lemma (2.2.46)that there are four mutually orthogonal projections 

𝒫0, 𝒫1, 𝒫2and 𝒫3 with 𝒫0 +𝒫1 +𝒫2 +𝒫3 = 1𝐴, there is a unital 𝐶∗-subalgebra 𝐵1 ⊂

(𝒫1 + 𝒫2 +𝒫3)𝐴(𝒫1 + 𝒫2 +𝒫3)with 1𝐵 = 𝒫1 + 𝒫2 +𝒫3 and 𝒫1, 𝒫2,𝒫3 ∈ 𝐵1,where 

𝐵1has the form 𝐵1 = ⨁ 𝐶(𝑋𝑗  , 𝑀𝑟(𝑗))
𝑠
𝑗=1  and where 𝑋𝑗 = [0, 1] 𝑜𝑟 𝑋𝑗is a point, there are 

unitalhomomorphisms𝜙1, 𝜓1 ∶  𝐶(𝑋)  →  𝒫3𝐵1𝒫3, and there exists a finite dimensional 𝐶∗-

subalgebra 𝐶0 ⊂ 𝒫1𝐵1𝒫1with 1𝐶0 = 𝒫1. There also exists a unital 𝜖3-ℱ2-multiplicative 



555 
 

contractive completely positive linear map 𝜙2 ∶  𝐶(𝑋)  →  𝐶0 and mutually orthogonal 

projections 𝑝1, 𝑝2, . . . , 𝑝𝑚 ∈ 𝐵1 and a unitary 𝑣 ∈  𝐴 such that 

 ‖𝜙(𝑓) − [𝑃0𝜙(𝑓)𝑃0 + 𝜙2(𝑓) + ∑ 𝑓(𝑥𝑖)𝑝𝑖
𝑚
𝑖=1 + 𝜙1(𝑓)]‖ <

𝜖3

2
                 (445) 

and 

‖𝑎𝑑 𝑣 ∘ 𝜓(𝑓)  − [𝑃0(𝑎𝑑 𝑣 ∘ 𝜓(𝑓))𝑃0 + 𝜙2(𝑓)  +∑𝑓(𝑥𝑖)𝑝𝑖

𝑚

𝑖=1

+ 𝜓1(𝑓)]‖          

<
𝜖3
2
                                                                                                                         (446) 

for all 𝑓 ∈ ℱ2, where {𝑥1, 𝑥2, . . . , 𝑥𝑚} is  𝜖1-dense in 𝑋 and 𝑃2 = ∑ 𝑝𝑖
𝑚
𝑖=1 , 

 𝑁 𝜏 (𝑃0 + 𝑃1) <  𝜏 (𝑝𝑖), 𝐾𝑡𝑗,𝑥(𝑃1 + 𝑃2) ≤  𝑡𝑗,𝑥(𝑃3),                                        (447) 

 𝜇𝑇∘𝜙1(𝑂𝑎) ≥  𝛥(𝑎)/4,𝜇𝑇∘𝜓1(𝑂𝑎) ≥  𝛥(𝑎)/4 for all 𝑎 ≥  𝑚𝑖𝑛{𝜂0, 𝜂1}         (448) 

 And|𝑇 ∘ 𝜙1(𝑓) − 𝑇 ∘ 𝜓1(𝑓)|  < 𝜖3  for all 𝑓 ∈ ℱ2,                               (449) 

for all τ ∈ T (A), x ∈Xj , j = 1, 2, ..., m and for all T ∈ T (B). Moreover, for any finite 

subset H ⊂ A, one may require that 

 ‖𝑎𝑃0 − 𝑃0𝑎‖ < 𝜖3  and (1 − 𝑃0)𝑎(1 − 𝑃0)  ∈𝜖3  𝐵1 for all 𝑎 ∈  ℋ.       (450) 

We may also assume that 𝑟(𝑗) ≥ 𝐿1for 𝑗 =  1,2, . . . , 𝑠.Put 𝜙0(𝑓 ) = 𝑃0𝜙(𝑓 )𝑃0, 𝜓0(𝑓) =

𝑃0(𝑎𝑑 𝑢 ∘ 𝜓(𝑓 ))𝑃0, 𝜙3(𝑓 ) =  𝜙2(𝑓) + ∑ 𝑓(𝑥𝑖)𝑝𝑖
𝑚
𝑖=1 + 𝜙1(𝑓) 𝑎𝑛𝑑𝜓3(𝑓 ) = 𝜙2(𝑓) +

∑ 𝑓(𝑥𝑖)𝑝𝑖
𝑚
𝑖=1 + 𝜓1(𝑓) 𝑓𝑜𝑟 𝑓 ∈ 𝐶(𝑋).  

Since  

 𝑑𝑖𝑠𝑡 (𝜙‡(𝑧̅), 𝜓‡(𝑧̅)) <  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝒰,                                       (451) 

with a sufficiently large ℋ (and sufficiently small 𝜖3), in  [90], we may assume that 

𝑑𝑖𝑠𝑡(𝜙0
‡(𝑧̅), 𝜓0

‡(𝑧̅)) <  2𝛿 for all 𝑧 ∈  𝒰.                                            (452)  

Furthermore, we may also assume that 

 𝑑𝑖𝑠𝑡(𝜙3
‡(𝑧̅), 𝜓3

‡(𝑧̅)) <  2𝛿for all 𝑧 ∈ 𝒰.                                              (453)  

Denote by 𝐷 the determinant function on 𝐵1. We compute that 

 𝐷(𝜙1(𝑧)𝜓1(𝑧)
∗)  <  4𝛿 for all 𝑧 ∈  𝒰.                                             (454) 

It follows that   

 𝑑𝑖𝑠𝑡(𝜙1
‡(𝑧̅), 𝜓1

‡(𝑧̅)) <  1/8𝐾1𝜋 for all 𝑧 ∈  𝒰.                                         (456) 

We may also assume (with sufficiently large 𝒰 and sufficiently small  𝜖3) that 

 [𝜙1]|𝒫  =  [𝜓1]|𝒫                                                                          (457)  

and 

 [𝜙0]|𝒫  =  [𝜓0]|𝒫 .                                                                (458) 

By (660), (661) and (667) and by applying Corollary (2.2.12), we obtain a unitary 𝑤1 ∈  𝐵 

such that 

 𝑎𝑑 𝑤1 ∘ 𝜓1 ≈𝜖
4
𝜙1𝑜𝑛 ℱ.                                                                       (459) 

By applying Theorem (2.2.11), we also have a unitary 𝑤2 ∈ (𝑃0 + 𝑃2)𝐴(𝑃0 + 𝑃2) such 

that 
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‖𝑤2
∗ (𝜓0(𝑓) ⊕∑𝑓(𝑥𝑖)𝑝𝑖

𝑚

𝑖=1

)𝑤2 − (𝜙0(𝑓) ⊕∑𝑓(𝑥𝑖)𝑝𝑖

𝑚

𝑖=1

)‖ <
𝜖

4
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ. 

(460) 

The theorem then follows from the combination of (446), (447), (459) and (460). 

Definition (2.2.49):Let 𝐶 =  𝑃 𝑀𝑘(𝐶(𝑋))𝑃 for some finite 𝐶𝑊 complex 𝑋 and for some 

projection 𝑃 ∈ 𝑀𝑘(𝐶(𝑋)). Suppose that the rank of 𝑃 is m. Let 𝑡 be a state on 𝐶. Then 

there is a Borel probability measure 𝜇𝑡 such that 

 𝑡(𝑓)  = ∫ 𝐿𝑥(𝑓(𝑥))𝑑𝜇𝑡𝑋
  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝐶,                                        (461) 

where 𝐿𝑥 is a state on 𝑀𝑚. If 𝑡 ∈  𝑇 (𝐶), then 𝐿𝑥(𝑓 (𝑥))  =  𝑡𝑟(𝑓 (𝑥)), where 𝑡𝑟 is the 

normalized trace on 𝑀𝑚. There is an integer 𝑛 ≥  1 and a rank one trivial projection 𝑒 ∈

𝑀𝑛(𝐶) such that 𝑒𝑀𝑛(𝐶)𝑒 ≅ 𝐶(𝑋). It follows that there is a unitary 𝑢 ∈ 𝑀𝑛(𝐶) and a 

projection 𝑄 ∈ 𝑀𝑘𝑛(𝐶) such that 𝑢∗𝐶𝑢 =  𝑄𝑀𝑘(𝑒𝑀𝑛(𝐶)𝑒)𝑄. Suppose that A is a unital 

𝐶∗-algebra, 𝑠 is a state on 𝐴 and suppose that 𝜙 ∶  𝐶 →  𝐴 is a contractive completely 

positive linear map. Then  

𝑠 ∘ 𝜙(𝑓)  = ∫ 𝐿𝑥(𝑓(𝑥))𝑑𝜇𝜏∘𝜙
𝑋

  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈  𝐶, 

where 𝐿𝑥 is a state on 𝑀𝑚. 

Let 𝜏 ∈  𝑇 (𝐶) and let 𝜙(𝑛) ∶  𝑀𝑛(𝐶)  →  𝑀𝑛(𝐴) be the homomorphism induced by�̃�. 

Denote by 𝜙 ∶  𝐶(𝑋)  →  𝜙(𝑛)(𝑒)𝑀𝑛(𝐴)𝜙
(𝑛)(𝑒) the restriction of 𝜙(𝑛)on 𝑒𝑀𝑛(𝐶)𝑒. 

It follows that the probability measure 𝜇𝜏∘�̃� induced by 𝜏 ∘ �̃� is equal to 𝜇𝜏∘𝜙. 

Corollary (2.2.50)[71]: Let 𝑋 be a finite simplicial complex in 𝑋. Let 𝜖 >  0, let ℱ ⊂

 𝐶 =  𝑃 𝑀𝑛(𝐶(𝑋))𝑃, where 𝑃 ∈ 𝑀𝑛(𝐶(𝑋)) is a projection, be a finite subset and let 

∆: (0, 1)  →  (0, 1) be a non-decreasing map. There exists 𝜂 >  0, 𝛿 >  0, a finite subset 

𝒢, a finite subset 𝒫 ⊂ 𝐾(𝐶) and a finite subset 𝒰 ⊂ 𝒰(𝑀∞(𝐶)) satisfying the following. 

Suppose that 𝐴 is a unital separable simple 𝐶∗-algebra with tracial rank no more than one 

and 𝜙,𝜓 ∶  𝐶 →  𝐴 are two unital 𝛿-𝒢-multiplicative contractive completely positive linear 

maps such that 

 𝜇𝜏∘𝜙(𝑂𝑎) ≥  𝛥(𝑎)𝑓𝑜𝑟 𝑎𝑙𝑙𝑎 ≥  𝜂,                                                                (462) 

 |𝜏 ∘ 𝜙(𝑔) − 𝜏 ∘ 𝜓(𝑔)| <  𝛿 𝑓𝑜𝑟𝑎𝑙𝑙 𝑔 ∈ 𝒢,                                                  (463) 

for all 𝜏 ∈  𝑇 (𝐴), and  

 [𝜙]|𝒫  =  [𝜓]|𝒫  𝑎𝑛𝑑  𝑑𝑖𝑠𝑡 (𝜙
‡(𝑧̅), 𝜓‡(𝑧̅)) <  𝛿                                        (464) 

for all 𝑧 ∈ 𝒰. Then there exists a unitary 𝑢 ∈  𝐴 such that 

 𝑎𝑑 𝑢 ∘ 𝜓 ≈  𝜙  𝑜𝑛 ℱ.                                                                               (465) 

Proof. It is standard (using Definition 10.9) that the general case can be reduced to the case 

that 𝐶 =  𝑀𝑘(𝐶(𝑋)). It is then clear that this corollary follows from Theorem (2.2.48) 

It should be noted in the case that 𝑋 =  𝐼 × 𝕋 or 𝑋 is an n-dimensional torus, in the above 

Theorem (2.2.48)and Corollary 10.10, one may only consider 𝒰 ⊂  𝑈 (𝐶). Moreover, in 
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the case that 𝑋 is a finite simplicial complex with torsion 𝐾1(𝐶(𝑋)), the map 𝜙‡ and 𝜓‡ 

can be removed entirely (see [36]). 

Let 𝑋 be a compact metric space and let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇 (𝐴) ≠ ∅. 

Suppose that 𝜙 ∶  𝐶(𝑋)  →  𝐴 is a unital monomorphism. Then 𝜇𝜏∘𝜙 is a strictly positive 

probability Borel measure. Fix 𝑎 ∈  (0, 1). Let {𝑥1, 𝑥2, . . . , 𝑥𝑚}  ⊂  𝑋 be an 𝑎/4-dense 

subset. Define 

𝑑(𝑎, 𝑖)  =  (1/2) inf{𝜇𝜏∘𝜙(𝐵𝑎/4(𝑥𝑖)) ∶  𝜏 ∈  𝑇 (𝐴)}, 𝑖 =  1, 2, . . . , 𝑚. 

Fix a non-zero positive function 𝑔 ∈  𝐶(𝑋) with 𝑔 ≤  1 whose support is contained in 

𝐵𝑎/4(𝑥𝑖). Then, since 𝐴 is simple, inf{𝜏 (𝜙(𝑔)) ∶  𝜏 ∈  𝑇 (𝐴)}  >  0. It follows that 

𝑑(𝑎, 𝑖)  >  0. Put 

𝛥(𝑎)  =  𝑚𝑖𝑛{𝑑(𝑎, 𝑖) ∶  𝑖 =  1, 2, . . . , 𝑚}. 

For any 𝑥 ∈  𝑋, there exists 𝑖 such that 𝐵𝑎(𝑥)  ⊃ 𝐵𝑎/4(𝑥𝑖). Thus 

 𝜇𝜏∘𝜙(𝐵𝑎(𝑥)) ≥  𝛥(𝑎)𝑓𝑜𝑟𝑎𝑙𝑙 𝜏 ∈  𝑇 (𝐴).                                          (466) 

Note that ∆ gives a non-decreasing map from (0, 1)  →  (0, 1). 

This proves the following. 

Proposition (2.2.51)[71]: Let 𝑋 be a compact metric space and let 𝐴 be a unital simple 

𝐶∗-algebra with 𝑇(𝐴) ≠ ∅. Suppose that 𝜙: 𝐶(𝑋) → 𝐴 is a unitalmonomo-rphism. Then 

there is a non-decreasing map   ∆: (0, 1)  →  (0, 1) such that  

 𝜇𝜏∘𝜙(𝑂𝑎) ≥  𝛥(𝑎)𝑓𝑜𝑟 𝑎𝑙𝑙𝜏 ∈  𝑇 (𝐴)                                                 (467) 

for all open balls 𝑂𝑎 of 𝑋 with radius 𝑎 ∈  (0, 1). 

Definition (2.2.52)[71]: Let 𝐶 be a 𝐶∗-algebra. Let 𝑇 =  𝑁 ×  𝐾 ∶  𝐶+ + \ {0}  → ℕ ×

 ℝ+ \ {0} be a map. Suppose that 𝐴 is a unital𝐶∗-algebra and 𝜙 ∶  𝐶 →  𝐴 is a 

homomorphism. Let ℋ ⊂ 𝐶+ \ {0} be a finite subset. We say that 𝜙 is 𝑇 -ℋ-full if there 

are 𝑥𝑎,𝑖 ∈  𝐴, 𝑖 =  1, 2, . . . , 𝑁(𝑎) with 𝑥𝑎,𝑖 ≤  𝐾(𝑎), 𝑖 =  1, 2, . . . , 𝑁(𝑎), such that 

∑ 𝑥𝑎,𝑖
∗ 𝜙(𝑎)𝑥𝑎,𝑖

𝑁(𝑎)

𝑖=1

= 1𝐴 

for all 𝑎 ∈  ℋ. The homomorphism 𝜙 is said to be 𝑇-full if 

∑ 𝑥𝑎,𝑖
∗ 𝜙(𝑎)𝑥𝑎,𝑖

𝑁(𝑎)

𝑖=1

= 1𝐴 

for all 𝑎 ∈ 𝐴+\ {0}. If 𝜙 is 𝑇-full, then 𝜙 is injective. 

Proposition (2.2.53)[71]: Let 𝑋 be a finite 𝐶𝑊 complex, let 𝑃 ∈ 𝑀𝑘(𝐶(𝑋)) be a 

projection and let 𝐶1  =  𝑃 𝑀𝑘(𝐶(𝑋))𝑃. Suppose that 𝑇 =  𝑁 × 𝑁 ∶  𝐶+\{0}  →  ℕ ×

ℝ+\{0} is a map. Then there exists a non-decreasing map ∆: (0, 1)  →  (0, 1) associated 

with 𝑇 satisfying the following. 

For any 𝜂 >  0, there is a finite subset ℋ ⊂ (𝐶1⊗  𝐶(𝕋))+ \ {0} such that, for 

anyunital𝐶∗-algebra 𝐵 with 𝑇(𝐵) ≠ ∅and any unital contractive completely positive linear 

map 𝜙 ∶  𝐶 →  𝐵 which is 𝑇-ℋ-full, one has that  
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 𝜇𝜏∘𝜙(𝑂𝑎) ≥  𝛥(𝑎)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≥  𝜂 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ (𝜂, 1).                                    (468) 

Proof: To simplify notation, using Definition 10.9, without loss of generality, we may 

assume that 𝐶 =  𝐶(𝑋). Fix 1 >  𝑎 >  0. Let {𝑥1, 𝑥2, . . . , 𝑥𝑛} be an 𝑎/4-dense subset of 

𝑋. Let 𝑓𝑖 be a positive function in 𝐶(𝑋) with 0 ≤  𝑓𝑖  ≤  1 whose support is in 𝐵𝑎/4(𝑥𝑖) 

and contains 𝐵𝑎/6(𝑥𝑖), 𝑖 =  1, 2, . . . , 𝑚. Define∆′: (0, 1)  →  (0, 1) by 

 ∆′(𝑎) =
1

max{𝑁(𝑓𝑖)𝐾(𝑓𝑖)
2∶ 1 ≤ 𝑖 ≤ 𝑚}

                                                     (469) 

Define  

𝛥(𝑎)  =  𝑚𝑖𝑛{∆′(𝑏) ∶  𝑏 ≥  𝑎}. 

It is clear that ∆is non-decreasing.  

Now let 𝐵 be a unital𝐶∗-algebra with 𝑇(𝐵) ≠ ∅ and let 𝜙: 𝐶 →  𝐵 be a unital contractive 

completely positive linear map which is 𝑇 -ℋ-full. For each 𝑖, there are 𝑥𝑖,𝑗 , 𝑗 =

 1, 2, . . . , 𝑁(𝑓𝑖), with ‖𝑥𝑖,𝑗‖ ≤  𝑁(𝑓𝑖) such that 

       ∑ 𝑥𝑖,𝑗
∗ 𝜙(𝑓𝑖)𝑥𝑖,𝑗

𝑁(𝑓𝑖)
𝑖=1 = 1𝐵, 𝑖 =  1, 2, . . . , 𝑚.                                         (470) 

Fix a 𝜏 ∈  𝑇 (𝐵). There exists 𝑗 such that     

    𝜏 (𝑥𝑖,𝑗
∗ 𝜙(𝑓𝑖)𝑥𝑖,𝑗) ≥

1

𝑁(𝑓𝑖)
.                                               (471) 

  

It follows that            

           

  ‖𝑥𝑖,𝑗𝑥𝑖,𝑗
∗ ‖𝜏(𝜙(𝑓𝑖)) ≥ 𝜏 (𝜙(𝑓𝑖)

1

2𝑥𝑖,𝑗𝑥𝑖,𝑗
∗ 𝜙(𝑓𝑖)

1

2)                                      (472) 

    =  𝜏(𝑥𝑖,𝑗
∗ 𝜙(𝑓𝑖)𝑥𝑖,𝑗) ≥

1

𝑁(𝑓𝑖)
.                                                    (473) 

It also follows that           

    𝜏(𝜙(𝑓𝑖))  ≥
1

𝑁(𝑓𝑖)𝐾(𝑓𝑖)
2
 .                                               (474) 

This holds for all 𝜏 ∈  𝑇 (𝐵), 𝑖 =  1, 2, . . . , 𝑚. Now for any open ball 𝑂𝑎 with radius 𝑎, 

suppose that 𝑦 is the center. Then 𝑦 ∈ 𝐵𝑎/4(𝑥𝑖) for some 1 ≤  𝑖 ≤  𝑚. Thus 

𝑂𝑎 ⊃ 𝐵𝑎/4(𝑥𝑖). 

It follows that  

𝜇𝜏∘𝜙(𝑂𝑎) ≥  𝜏(𝑓𝑖) ≥  
1

𝑁(𝑓𝑖)𝐾(𝑓𝑖)
2
≥  𝛥(𝑎)                                                    (475) 

 

for all 𝜏 ∈  𝑇 (𝐵). It is then clear that, when 𝜂 >  0 is given, such a finite subset ℋ exists. 

Definition (2.2.54)[71]: An AH-algebra 𝐶 is said to have property (J) if 𝐶 is isomorphic to 

an inductive limit lim
𝑛→∞

(𝐶𝑛, 𝜙𝑗), where ⨁ 𝑃𝑛,𝑗
𝑅(𝑖)
𝑗=1 𝑀𝑟(𝑛,𝑗)(𝐶(𝑋𝑛,𝑗))𝑃𝑛,𝑗 where 

𝑋𝑛,𝑗is a one dimensional finite 𝐶𝑊 complex or a simplicial complex in 𝑋 and where 𝑃𝑛,𝑗 ∈

𝑀𝑟(𝑛,𝑗)(𝐶(𝑋𝑛,𝑗)) is a projection and each 𝜙𝑗 is injective. 
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Section (2.3): Unitaries in a Simple 𝑪∗-Algebra of Tracial Rank One 

 

Let 𝑀𝑛 be the 𝐶∗-algebra of 𝑛 × 𝑛 matrices and let 𝑢 ∈ 𝑀𝑛 be a unitary. Then 𝑢 can 

be diagonalized, i.e., 𝑢 = ∑ 𝑒𝑖(𝜃𝑘)𝑝𝑘
𝑛
𝑘=1 , where 𝜃𝑘 ∈ ℝ and {𝑝1, 𝑝2, . . . , 𝑝𝑛} are mutually 

orthogonal projections. As a consequence, 𝑢 = exp(𝑖ℎ), where ℎ = ∑ 𝜃𝑘𝑝𝑘
𝑛
𝑘=1  is a 

selfadjoint matrix. Now let 𝐴 be a unital 𝐶∗-algebra and let 𝑈(𝐴) be the unitary group of 

𝐴. Denote by 𝑈0(𝐴) the connected component of 𝑈(𝐴) containing the identity. Suppose 

that 𝑢 ∈ 𝑈0(𝐴). Even in the case that 𝐴 has real rank zero, 𝑠𝑝(𝑢) can have infinitely many 

points and it is impossible to write 𝑢 as an exponential, in general. However, it was shown 

([79]) that u can be approximated by unitaries in 𝐴 with finite spectrum if and only if 𝐴 

has real rank zero. This is an important and useful feature for 𝐶∗-algebras of real rank 

zero. In this case, 𝑢 is a norm limit of exponentials. 

Tracial rank for 𝐶∗-algebras was introduced in the connection with the program of 

classification of separable amenable 𝐶∗-algebras, or otherwise known as the Elliott 

program. Unital separable simple amenable 𝐶∗-algebras with tracial rank no more than one 

which satisfy the universal coefficient theorem have been classified by the Elliott invariant 

([36] and [89]). A unital separable simple 𝐶∗-algebra 𝐴 with 𝑇𝑅(𝐴) =  1 has real rank 

one. Therefore a unitary 𝑢 ∈ 𝑈0(𝐴) may not be approximated by unitaries with finite 

spectrum. We will show that, in a unital infinite dimensional simple 𝐶∗-algebra 𝐴 with 

tracial rank no more than one, if 𝑢 can be approximated by unitaries in 𝐴 with finite 

spectrum then u must be in 𝐶𝑈(𝐴), the closure of the subgroup generated by commutators 

of the unitary group. A related problem is whether every unitary 𝑢 ∈ 𝑈0(𝐴) can be 

approximated by unitaries which are exponentials. Our first result is to show that, there are 

selfadjoint elements ℎ𝑛 ∈ 𝐴𝑠.𝑎 such that 

𝑢 = lim
𝑛→∞

exp(𝑖ℎ𝑛) 

(converge in norm). It should be mentioned that exponential rank has been studied quite 

extendedly (see [112], [113], [108], [111], etc.). In fact, it was shown by N. C. Phillips that 

a unital simple 𝐶∗-algebra 𝐴 which is an inductive limit of finite direct sums of 𝐶∗-
algebras with the form 𝐶(𝑋𝑖,𝑛) ⊗𝑀𝑖,𝑛 with the dimension of 𝑋𝑖,𝑛 is bounded has 

exponential rank 1 + 𝜖, i.e., every unitary 𝑢 ∈ 𝑈0(𝐴) can be approximated by unitaries 

which are exponentials (see [113]). These simple 𝐶∗-algebras have tracial rank one or 

zero. Theorem (2.3.11) was proved without assuming 𝐴 is an AH-algebra, in fact, it was 

proved in the absence of amenability. 

Let 𝑇(𝐴) be the tracial state space of 𝐴. Denote by Aff(𝑇(𝐴)) the space of all real 

affine continuous functions on 𝑇(𝐴). Denote by ρA : K0(A) → Aff(𝑇(𝐴)) the positive 

homomorphism induced by 𝜌𝐴([𝑝])(𝜏) = 𝜏 (𝑝) for all projections in 𝑀𝑘(𝐴) (with 𝑘 =
 1, 2, . ..) and for all 𝜏 ∈  𝑇(𝐴). It was introduced by de la Harpe and Scandalis a 

determinant like map ∆ which maps 𝑈0(𝐴) into Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. By a result of 𝐾. 

Thomsen ([133]) the de la Harpe and Scandalis determinant induces an isomorphism 

between Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑈0(𝐴)/𝐶𝑈(𝐴). We found out that if 𝑢 can be 

approximated by unitaries in 𝐴 with finite spectrum then 𝑢 must be in 𝐶𝑈(𝐴). But can 

every unitary in 𝐶𝑈(𝐴) be approximated by unitaries with finite spectrum? To answer this 

question, we consider even simpler question: when can a self-adjoint element in a unital 

separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  =  1 be approximated by self-adjoint elements 
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with finite spectrum? Immediately, a necessary condition for a self-adjoint element 𝑎 ∈  𝐴 

to be approximated by self-adjoint elements with finite spectrum is that ℎ�̂� ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(for all 𝑛 ∈ ℕ). Given a unitary 𝑢 ∈ 𝑈0(𝐴), there is an affine continuous map from 

Aff(𝑇(𝐶(𝕋))) into Aff(𝑇(𝐴)) induced by u. Let Γ(𝑢): Aff(𝑇(𝐶(𝕋)))  →  Aff(𝑇(𝐴))/
𝜌𝐴(𝐾0(𝐴)) be the map given by 𝑢. Then it is clear that (u) = 0 is a necessary condition for 

u being approximated by unitaries with finite spectrum. Note that Γ(𝑢)  =  0 if and only if 

𝑢𝑛 + (𝑢𝑛)∗̂ ,𝑖(𝑢𝑛 − (𝑢𝑛)∗)̂  ∈  𝜌𝐴(𝐾0(𝐴)) for all positive integers 𝑛. By applying a 

uniqueness theorem together with classification results in simple 𝐶∗-algebras, we show 

that the condition is also sufficient. From this, we show that a unitary 𝑢 ∈ 𝐶𝑈(𝐴) can be 

approximated by unitaries with finite spectrum if and only if Γ(𝑢) =  0. We also show that 

∆(𝑢) = 0 is not sufficient for Γ(𝑢) = 0. Therefore, there are unitaries in 𝐶𝑈(𝐴) which can 

not be approximated by unitaries with finite spectrum. Perhaps more interesting fact is that 

Γ(𝑢) = 0 does not imply that ∆(𝑢) = 0 for 𝑢 ∈ 𝑈0(𝐴). 

Denote by I the class of 𝐶∗-algebras which are finite direct sums of C∗-subalgebras 

with the form 𝑀𝑘(𝐶([0, 1]) or 𝑀𝑘, 𝑘 =  1, 2, . . .. 
Definition (2.3.1)[94]. Recall that a unital simple 𝐶∗-algebra 𝐴 is said to have tracial rank 

no more than one (or 𝑇𝑅(𝐴)  ≤  1), if for any 𝜖 >  0, any 𝑎 ∈ 𝐴+\{0} and any finite 

subset ℱ ⊂ 𝐴, there exists a projection 𝑝 ∈  𝐴 and a 𝐶∗-subalgebra 𝐵 with 1𝐵 = 𝑝 such 

that 

(i) ‖𝑝𝑥 −  𝑥𝑝‖ < 𝜖 for all 𝑥 ∈ ℱ; 

(ii) dist(𝑝𝑥𝑝, 𝐵)  < 𝜖 for all 𝑥 ∈ ℱ and 

(iii) 1 −  𝑝 is Murry-von Nuemann equivalent to a projection in 𝑎𝐴𝑎̅̅ ̅̅ ̅. 
Recall that, in the above definition, if 𝐵 can always be chosen to have finite dimension, 

then 𝐴 has tracial rank zero (𝑇𝑅(𝐴)  =  0). If 𝑇𝑅(𝐴)  ≤  1 but 𝑇𝑅(𝐴) ≠ 0, we write 

𝑇𝑅(𝐴)  =  1. 

Every unital simple AH-algebra with very slow dimension growth has tracial rank 

no more than one (see [89]). There are 𝐶∗-algebras with tracial rank no more than one 

which are not amenable. 

Definition (2.3.2)[94]. Suppose that 𝑢 ∈  𝑈(𝐴). We will use �̅� for the image of 𝑢 in 

𝑈(𝐴)/𝐶𝑈(𝐴). If 𝑥, 𝑦 ∈  𝑈(𝐴)/𝐶𝑈(𝐴), define 

dist(𝑥, 𝑦) = inf{‖𝑢 −  𝑣‖ ∶ �̅�  =  𝑥 and �̅�  =  𝑦}. 
Let 𝐶 be another unital 𝐶∗-algebra and let 𝜑 ∶  𝐶 →  𝐴 be a unital homomorphism. 

Denote by 𝜑‡ ∶ 𝑈(𝐶)/𝐶𝑈(𝐶)  →  𝑈(𝐴)/𝐶𝑈(𝐴) the homomorphism induced by 𝜑. 

Let 𝐴 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1, then 𝐴 is quasi-

diagonal, stable rank one, weakly unperforated 𝐾0(𝐴) and, if 𝑝, 𝑞 ∈  𝐴 are two 

projections, then 𝑝 is equivalent to a projection 𝑝′ ≤ 𝑞 whenever 𝜏(𝑝) < 𝜏(𝑞) for all 

tracial states 𝜏 in 𝑇(𝐴). 
For unitary group of 𝐴, we have the following: 

(i) 𝐶𝑈(𝐴)  ⊂  𝑈0(𝐴) [89]; 

(ii) 𝑈0(𝐴)/𝐶𝑈(𝐴) is torsion free and divisible [89]; 

Theorem (2.3.3)[94]. [84] Let 𝐴 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤ 1 

and let 𝑒 ∈  𝐴 be a non-zero projection. Then the map 𝑢 ⟼ 𝑢 + (1 − 𝑒) induces an 

isomorphism 𝑗 from 𝑈(𝑒𝐴𝑒)/𝐶𝑈(𝑒𝐴𝑒) onto 𝑈(𝐴)/𝐶𝑈(𝐴). 
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Corollary (2.3.4)[94]. Let 𝐴 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. 

Then the map 𝑗 ∶  𝑎 →  diag(𝑎, 1, 1, . . , 1⏞    
𝑚

) from 𝐴 to 𝑀𝑛(𝐴) induces an isomorphism from 

𝑈(𝐴)/𝐶𝑈(𝐴) onto 𝑈(𝑀𝑛(𝐴))/𝐶𝑈(𝑀𝑛(𝐴)) for any integer 𝑛 ≥ 1. 

Definition (2.3.5)[94]. Let 𝑢 ∈ 𝑈0(𝐴). There is a piece-wise smooth and continuous path 

{𝑢(𝑡) ∶  𝑡 ∈ [0, 1]} ⊂ 𝐴 such that 𝑢(0)  =  𝑢 and 𝑢(1)  =  1. Define 

𝑅({𝑢(𝑡)})(𝜏) =
1

2𝜋𝑖
∫ 𝜏 (

𝑑𝑢(𝑡)

𝑑𝑡
𝑢(𝑡)∗)𝑑𝑡

1

0

. 

𝑅({𝑢(𝑡)})(𝜏) is real for every 𝜏. 
Definition (2.3.6)[94]. Let 𝐴 be a unital 𝐶∗-algebra with 𝑇(𝐴) ≠ ∅. As in [133], define a 

homomorphism ∆: 𝑈0(𝐴) → Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  by 

∆(𝑢) = ∆(
1

2𝜋
∫ 𝜏 (

𝑑𝑢(𝑡)

𝑑𝑡
𝑢(𝑡)∗)

1

0

𝑑𝑡), 

where ∆∶ Aff(𝑇(𝐴)) →  Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the quotient map and where {𝑢(𝑡) ∶  𝑡 ∈

 [0, 1]} is a piece-wise smooth and continuous path of unitaries in 𝐴 with 𝑢(0)  =  𝑢 and 

𝑢(1)  =  1𝐴. This is well-defined and is independent of the choices of the paths. 

The following is a combination of a result of 𝐾. Thomsen ([133]). We state here for 

the convenience. 

Theorem (2.3.7)[94]. Let 𝐴 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. 

Suppose that 𝑢 ∈ 𝑈0(𝐴). Then the following are equivalent: 

(i) 𝑢 ∈  𝐶𝑈(𝐴); 
(ii) ∆(𝑢)  =  0; 

(iii) for some piecewise continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]} ⊂ 𝐴 with 𝑢(0)  =
 𝑢 and 𝑢(1)  =  1𝐴, 

𝑅({𝑢(𝑡)}) ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

(iv) for any piecewise continuous path of unitaries {𝑢(𝑡): 𝑡 ∈  [0, 1]} ⊂ 𝐴 with 𝑢(0)  =  𝑢 

and 𝑢(1) =  1𝐴, 

𝑅({𝑢(𝑡)}) ∈ 𝜌𝐴(𝐾0(𝐴)). 
(v) there are ℎ1, ℎ2, . . . , ℎ𝑚 ∈ 𝐴𝑠.𝑎. such that 

𝑢 =∏exp(𝑖ℎ𝑗)

𝑚

𝑗=1

 and  ∑ℎ�̂�

𝑚

𝑗=1

∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

(vi) ∑ ℎ�̂�
𝑚
𝑗=1 ∈ 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for any ℎ1, ℎ2, . . . , ℎ𝑚 ∈ 𝐴𝑠.𝑎. for which 

𝑢 =∏exp(𝑖ℎ𝑗)

𝑚

𝑗=1

 

Proof. Equivalence of (ii), (iii), (iv), (v) and (vi) follows from the definition of the 

determinant and follows from the Bott periodicy. The equivalence of (i) and (ii) follows on 

[133]. 

The following is a consequence. 

Theorem (2.3.8)[94]. Let 𝐴 be a unital simple separable 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. 

Then ker ∆ = 𝐶𝑈(𝐴). The de la Harpe and Skandalis determinant gives an isomorphism: 

∆̅∶ 𝑈0(𝐴)/𝐶𝑈(𝐴)  →  Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Moreover, one has the following short exact (splitting) sequence 
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0 → Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∆̅−1 

→  𝑈(𝐴)/𝐶𝑈(𝐴)  →  𝐾1(𝐴)  →  0. 

(Note that 𝑈0(𝐴)/𝐶𝑈(𝐴) is divisible in this case, by [89].) 

Theorem (2.3.9)[94]. Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1 and let  : 

𝐶(𝕋)𝑠.𝑎 → Aff(𝑇(𝐴)) be a (positive) affine continuous map. 

For any 𝜖 >  0, there exists 𝛿 >  0 and there exists a finite subset ℱ ⊂ 𝐶(𝕋)𝑠,𝑎 

satisfying the following: If 𝑣 ∈ 𝑈0(𝐴) with 

|𝜏(𝑓(𝑢)) − 𝛾(𝑓)(𝜏)| < 𝛿, for all   𝑓 ∈ ℱ   and  𝜏 ∈  𝑇(𝐴), and         (476) 

dist(�̅�, �̅�) <  𝛿   in   𝑈0(𝐴)/𝐶𝑈(𝐴).                                       (477) 
Then there exists a unitary 𝑊 ∈  𝑈(𝐴) such that 

‖𝑢 −𝑊∗𝑣𝑊‖ < 𝜖.                                         (478) 
Proof. The lemma follows immediately on [64]. See [71], [64]. Note that, of [64], we can 

replace the given map ℎ1 (in this case a given unitary) by a given map 𝛾. 

Corollary (2.3.10)[94]. Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1 and let 𝑢 ∈
𝑈0(𝐴) be a unitary. For any 𝜖 >  0, there exists 𝛿 >  0 and there exists an integer 𝑁 ≥  1 

satisfying the following: If 𝑣 ∈  𝑈0(𝐴) with 

|𝜏(𝑢𝑘) −  𝜏 (𝑣𝑘)| < 𝛿, 𝑘 =  1, 2, . . . , 𝑁  for all 𝜏 ∈  𝑇(𝐴)and               (479) 

dist(�̅�, �̅�) < 𝛿   in   𝑈0(𝐴)/𝐶𝑈(𝐴).                                      (480) 
Then there exists a unitary 𝑊 ∈  𝑈(𝐴) such that 

‖𝑢 −𝑊∗𝑣𝑊‖ < 𝜖.                                                  (481) 
Proof. Note that (479), 

|𝜏(𝑢𝑘)  −  𝜏(𝑣𝑘)| <  𝛿   𝑘 =  ±1,±2, . . . , ±𝑁.                          (482) 
For any subset 𝒢 ⊂ 𝐶(𝑆1) and any 𝜂 >  0, there exists 𝑁 ≥  1 and 𝛿 >  0 such that 

|𝜏(𝑔(𝑢)) − 𝜏(𝑔(𝑣))| < 𝜂   for all    𝜏 ∈ 𝑇(𝐴) 
if (482) holds. 

Then the lemma follows from (2.3.9) (or [64]). 

Theorem (2.3.11)[94]. Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. Suppose 

that 𝑢 ∈ 𝑈0(𝐴), then, for any 𝜖 > 0, there exists a selfadjoint element 𝑎 ∈ 𝐴𝑠.𝑎 such that 

‖𝑢 − exp(𝑖𝑎)‖ < 𝜖.                                     (483) 
Proof. Since 𝑢 ∈ 𝑈0(𝐴), we may write 

𝑢 =∏exp(𝑖ℎ𝑗)

𝑘

𝑗=1

.                                                (484) 

Let 𝑀 = max{‖ℎ𝑗‖ ∶  𝑗 =  1, 2, . . . , 𝑘}  +  1. Let 𝛿 >  0 and 𝑁 be given in Corollary 

(2.3.4) for 𝑢. We may assume that 𝛿 <  1 and 𝑁 ≥  3. We may also assume that 𝛿 < 𝜖. 
Since 𝑇𝑅(𝐴)  ≤  1, there exists a projection 𝑝 ∈  𝐴 and a 𝐶∗-subalgebra 𝐵 ∈ 𝐴 with 1𝐵  =

 𝑝 such that 𝐵 ≅⊕𝑖=1
𝑚 𝐶(𝑋𝑖 , 𝑀𝑟(𝑖)), where 𝑋𝑖 = [0, 1] or a point, and 

‖𝑝𝑢 −  𝑢𝑝‖ <
𝛿

16𝑁𝑀𝑘
,                                       (485) 

‖(1 −  𝑝)𝑢(1 −  𝑝)  − (1 −  𝑝)∏exp(𝑖((1 −  𝑝)ℎ𝑗(1 −  𝑝))

𝑘

𝑗=1

‖  <
𝛿

16𝑁𝑀𝑘
,     (486) 

𝑝𝑢𝑝 ∈ 𝛿

16𝑁𝑀𝑘

𝐵  and 𝜏 (1 −  𝑝) <
𝛿

2𝑁𝑀𝑘
   for all   𝜏 ∈  𝑇(𝐴).            (487) 

There exist unitary 𝑢1 ∈  𝐵 such that 
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‖𝑝𝑢𝑝 − 𝑢1‖  <
𝛿

8𝑁𝑀𝑘
                                   (488) 

Put 𝑢2 = (1 −  𝑝)∏ exp(𝑖(1 −  𝑝)ℎ𝑗(1 −  𝑝))
𝑘
𝑗=1 . Since 𝑢1 ∈ 𝐵, it is well known that 

there exists a selfadjoint element 𝑏 ∈ 𝐵𝑠.𝑎 such that 

‖𝑢1  −  𝑝 exp(𝑖𝑏)‖ <
𝛿

16𝑁𝑀𝑘
.                                (489) 

Let 𝑣0 = (1 −  𝑝)  +  𝑝 exp(𝑖𝑏) and 𝑢0 = 𝑝 exp(𝑖𝑏) + 𝑢2. Then, by (485), (486), (488) 

and (489),  

‖𝑢0  −  𝑢‖ < ‖𝑢 − 𝑝𝑢𝑝 − (1 −  𝑝)𝑢(1 −  𝑝)‖                                        (490) 
+‖(𝑝𝑢𝑝 −  𝑝 exp(𝑖𝑏))  + ((1 −  𝑝)𝑢(1 −  𝑝)  − 𝑢2)‖        (491) 

<
3𝛿

16𝑁𝑀𝑘
+

𝛿

8𝑁𝑀𝑘
+

𝛿

16𝑁𝑀𝑘
=

3𝛿

8𝑁𝑀𝑘
.                                    (492) 

and 

𝑢0𝑣0
∗ =∏exp(𝑖(1 −  𝑝)ℎ𝑗(1 −  𝑝))

𝑘

𝑗=1

.                                   (493) 

Note that 

|𝜏 (∑(1 −  𝑝)ℎ𝑗(1 −  𝑝)

𝑘

𝑗=1

)|  ≤∑|𝜏 ((1 −  𝑝)ℎ𝑗(1 −  𝑝))|

𝑘

𝑗=1

      (494) 

= 𝑘𝜏 (1 −  𝑝)max{‖ℎ𝑗‖ ∶  𝑗 =  1, 2, . . . , 𝑘} < 𝛿/16𝑁           (495) 

for all 𝜏 ∈  𝑇(𝐴). It follows that 

dist(�̅�, �̅�0) < 𝛿/16𝑁 in 𝑈0(𝐴)/𝐶𝑈(𝐴).                          (496) 
It follows from that 

dist(�̅�, �̅�0)  <  𝛿/8𝑁.                                         (497) 
On the other hand, for each 𝑠 =  1, 2, . . . , 𝑁, by (493), (492) and (487) 

|𝜏(𝑢𝑠) −  𝜏(𝑣0
𝑠)| ≤ |𝜏(𝑢𝑠) − 𝜏 (𝑢0

𝑠)| + |𝜏(𝑢0
𝑠) − 𝜏(𝑣0

𝑠)|                  (498) 

≤ ‖𝑢𝑠  −  𝑢0
𝑠‖ + |𝜏 ((1 −  𝑝) − (1 −  𝑝)∏exp (𝑖(1 −  𝑝)𝑠ℎ𝑗(1 −  𝑝))

𝑘

𝑗=1

)|         (499) 

≤ 𝑁‖𝑢 − 𝑢0‖ + 2𝜏 (1 −  𝑝)                                        (500) 

<
3𝛿

8𝑀𝑘
+

𝛿

𝑀𝑁𝑘
<  𝛿                                                        (501) 

for all 𝜏 ∈  𝑇(𝐴). From the above inequality and (497) and applying Corollary (2.3.4), one 

obtains a unitary 𝑊 ∈  𝑈(𝐴) such that 

‖𝑢 −𝑊∗𝑣0𝑊‖ < 𝜖.                                          (502) 
Put 𝑎 = 𝑊∗((1 −  𝑝)  +  𝑏)𝑊. Then 

‖𝑢 −  exp(𝑖𝑎)‖ < 𝜖.                                       (503) 
Note that Theorem (2.3.11) does not assume that 𝐴 is amenable, in particular, it may not 

be a simple AH-algebra. The proof used a kind of uniqueness theorem for unitaries in a 

unital simple 𝐶∗-algebra 𝐴 with 𝑇𝑅(𝐴)  ≤  1. This bring us to the following theorem 

which is an immediate consequence of Corollary (2.3.4). 

Theorem (2.3.12)[94]. Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. Let 𝑢 and 𝑣 

be two unitaries in 𝑈0(𝐴). Then they are approximately unitarily equivalent if and only if 

∆(𝑢) = ∆(𝑣)   and                                                 (504) 
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𝜏(𝑢𝑘) = 𝜏(𝑣𝑘) for all 𝜏 ∈  𝑇(𝐴),                                        (505) 
 𝑘 =  1, 2, . . . . 

Since ∆∶  𝑈0(𝐴)/𝐶𝑈(𝐴)  →  Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is an isomorphism, one may ask if 

(505) implies that ∆(𝑢)  = ∆(𝑣)? In other words, would 𝜏(𝑓(𝑢)) = 𝜏(𝑓(𝑣)) for all 𝑓 ∈
𝐶(𝑆1) imply that ∆(𝑢) = ∆(𝑣)? This becomes a question only in the case that 

𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ Aff(𝑇(𝐴)). Thus we would like to recall the following: 

Theorem (2.3.13)[94]. 

Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. Then the following are equivalent: 

(i) 𝑇𝑅(𝐴)  =  0, 

(ii) 𝜌𝐴(𝐾0(𝐴))  =  Aff(𝑇(𝐴)) and 

(iii) 𝐶𝑈(𝐴)  =  𝑈0(𝐴). 
However, when 𝑇𝑅(𝐴)  =  1, at least, one has the following: 

Proposition (2.3.14)[94]. Let 𝐴 be a unital simple infinite dimensional 𝐶∗-algebra with 

𝑇𝑅(𝐴)  ≤  1. If 𝑎 ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then 

𝑟𝑎 ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                   (506) 

for all 𝑟 ∈ ℝ. In fact, 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is a closed ℝ-linear subspace of Aff(𝑇(𝐴)). 

Proof. Note that 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is an additive subgroup of Aff(𝑇(𝐴)). It suffices to prove the 

following: Given any projection 𝑝 ∈  𝐴, any real number 0 < 𝑟1 < 1 and 𝜖 > 0, there 

exists a projection 𝑞 ∈  𝐴 such that 

|𝑟1𝜏 (𝑝) −  𝜏(𝑞)| < 𝜖 for all 𝜏 ∈  𝑇(𝐴).                            (507) 
Choose 𝑛 ≥  1 such that 

|𝑚/𝑛 − 𝑟1|  < 𝜖/2 and 1/𝑛 < 𝜖/2                             (508) 
for some 1 ≤  𝑚 <  𝑛. 

Note that 𝑇𝑅(𝑝𝐴𝑝)  ≤  1. By [89], there are mutually orthogonal projections 

𝑞0, 𝑝1, 𝑝2, . . . , 𝑝𝑛 with [𝑞0] ≤ [𝑝1] and [𝑝1] = [𝑝𝑖], 𝑖 =  1, 2, . . . , 𝑛 and ∑ 𝑝𝑖 + 𝑞0
𝑛
𝑖=1 = 𝑝. 

Put 𝑞 = ∑ 𝑝𝑖
𝑚
𝑖=1 . We then compute that 

|𝑟1𝜏(𝑝) − 𝜏(𝑞)| < 𝜖  for all 𝜏 ∈  𝑇(𝐴).                           (509) 
Theorem (2.3.15)[94]. Let 𝐴 be a unital simple infinite dimensional 𝐶∗-algebra with 

𝑇𝑅(𝐴)  =  1. Then there exist unitaries 𝑢, 𝑣 ∈  𝑈0(𝐴) with 

𝜏(𝑢𝑘) = 𝜏(𝑣𝑘)   for all   𝜏 ∈  𝑇(𝐴), 𝑘 =  0, ±1,±2, . . . , ±𝑛, . .. 
such that ∆(𝑢) ≠ ∆(𝑣). In particular, u and v are not approximately unitarily equivalent. 

Proof. Since we assume that 𝑇𝑅(𝐴)  =  1, then, by Theorem (2.3.13), Aff(𝑇(𝐴)) ≠

𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑈0(𝐴)/𝐶𝑈(𝐴) are not trivial. 

Let 𝜅1, 𝜅2 ∶  𝐾1(𝐶(𝕋))  →  𝑈0(𝐴)/𝐶𝑈(𝐴) be two different homomorphisms. Fix an 

affine continuous map 𝑠 ∶  𝑇(𝐴)  →  𝑇𝑓(𝐶(𝕋)), where 𝑇𝑓(𝐶(𝕋)) is the space of strictly 

positive normalized Borel measures on 𝕋. Denote by 𝛾0 ∶  Aff(𝑇(𝐶(𝕋)))  →  Aff(𝑇(𝐴)) 

the positive affine continuous map induced by 𝛾0(𝑓)(𝜏) = 𝑓(𝑠(𝜏)) for all 𝑓 ∈
Aff(𝑇(𝐶(𝑇))) and 𝜏 ∈ 𝑇(𝐴). Let 

𝛾0 ∶ 𝑈0(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋)) = Aff(𝑇(𝐶(𝕋)))/𝑍 →  Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝑈0(𝐴)/𝐶𝑈(𝐴) 
be the map induced by 𝛾0. Write 

𝑈(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋))  =  𝑈0(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋)) ⊕ 𝐾1(𝐶(𝕋)). 
Define 𝜆𝑖 ∶  𝑈(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋))  →  𝑈0(𝐴)/𝐶𝑈(𝐴) by 
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𝜆𝑖(𝑥 ⊕  𝑧)  =  𝛾0(𝑥)  + 𝜅𝑖(𝑧) 
for 𝑥 ∈  𝑈0(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋)) and 𝑧 ∈  𝐾1(𝐶(𝕋)), 𝑖 =  1, 2. That there are two unital 

monomorphisms 𝜑1, 𝜑2 ∶  𝐶(𝕋)  →  𝐴 such that 

(𝜑1)∗𝑖 = 0, 𝜑𝑖
‡  =  𝜆𝑖      and      𝜑𝑖

♮ = 𝑠,                          (510) 
𝑖 =  1, 2. Let 𝑧 be the standard unitary generator of 𝐶(𝑆1). Define 𝑢 = 𝜑1(𝑧) and 𝑣 =
𝜑2(𝑧). 

Then 𝑢, 𝑣 ∈  𝑈0(𝐴). The condition that 𝜑𝑖
♮ = 𝑠 implies that 𝜏(𝑢𝑘) = 𝜏(𝑣𝑘) for all 𝜏 ∈

𝑇(𝐴), 𝑘 =  0,±1,±2, . . . , ±𝑛, . . .. 
But since 𝜆1 ≠ 𝜆2, 

∆(𝑢) ≠ ∆(𝑣). 
Therefore 𝑢 and 𝑣 are not approximately unitarily equivalent. 

Lemma (2.3.16)[94]. Let 𝐴 be a unital separable simple infinite dimensional 𝐶∗-algebra 

with 𝑇𝑅(𝐴)  ≤  1 and let ℎ ∈  𝐴 be a self-adjoint element. Then h can be approximated by 

self-adjoint elements with finite spectrum if and only if ℎ�̂� ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  1, 2, . . .. 

Proof. If ℎ can be approximated by self-adjoint elements so can hn. By Proposition 

(2.3.14), 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is a closed linear subspace. Therefore ℎ�̂� ∈ 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all 𝑛. 

Now we assume that ℎ�̂� ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  1, 2, . . .. The Stone-Weierstrass 

theorem implies that 𝑓(ℎ)̂ ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all real-value functions 𝑓 ∈ 𝐶(𝑠𝑝(ℎ)). For 

any 𝜖 >  0, by Lemma 2.4 of [89], there is 𝑓 ∈ 𝐶(𝑠𝑝(𝑥))
𝑠.𝑎

. such that 

‖𝑓(ℎ)  −  ℎ‖ < 𝜖 
and 𝑠𝑝(𝑓(ℎ)) consists of a union of finitely many closed intervals and finitely many 

points. 

Thus, to simplify notation, we may assume that 𝑋 =  𝑠𝑝(ℎ) is a union of finitely 

many intervals and finitely many points. Let 𝜓 ∶  𝐶(𝑋)  →  𝐴 be the homomorphism 

defined by 𝜓(𝑓)  =  𝑓(ℎ). Let 𝑠 ∶  𝑇(𝐴)  →  𝑇𝑓(𝐶(𝑋)) be the affine map defined by 

𝑓(𝑠(𝜏 ))  =  𝜓(𝑓)(𝜏) for all 𝑓 ∈  Aff(𝐶(𝑋)) and 𝜏 ∈ 𝑇(𝐴). 
Let 𝐵 be a unital simple AH-algebra with real rank zero, stable rank one and 

(𝐾0(𝐵),𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵)) ≅ (𝐾0(𝐴),𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴)). 
In particular, 𝐾0(𝐵) is weakly unperforated. The proof on [89] provides a unital 

homomorphism 𝚤 ∶  𝐵 →  𝐴 which carries the above identification. This can be done by 

applying of [89] and the uniqueness Theorem of [89], or better by corollary 11.7 of [71] 

because 𝑇𝑅(𝐵)  =  0, the map 𝜑‡ is not needed since 𝑈(𝐵)  =  𝐶𝑈(𝐵) and the map on 

traces is determined by the map on 𝐾0(𝐵). 

Note that Aff(𝑇(𝐵))  =  𝜌𝐵(𝐾0(𝐵))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By identifying 𝐵 with a unital 𝐶∗-subalgebra 

of 𝐴, we may write 𝜌𝐵(𝐾0(𝐵))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Let 𝜓♮ ∶  Aff(𝑇(𝐶(𝑋)))  →  𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the map induced by 𝜓. This gives an affine map 

𝛾 ∶  Aff(𝑇(𝐶(𝑋)))  → 𝜌𝐵(𝐾0(𝐵))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . That there exists a unital monomorphism 𝜑 ∶  𝐶(𝑋)  →

 𝐵 such that 

𝚤 ∘ 𝜑∗0  = 𝜓∗0   and   (𝚤 ∘ 𝜙)
♮  =  𝜓♮, 

where (𝚤 ∘ 𝜑)♮ ∶  Aff(𝑇(𝐶(𝑋)))  →  Aff(𝑇(𝐴)) defined by (𝚤 ∘ 𝜑)♮(𝑎)(𝜏 )  =  𝜏 (𝚤 ∘ 𝜑)(𝑎) 
for all 𝑎 ∈  𝐴𝑠.𝑎.. It follows on [71] that 𝜓 and 𝚤 ∘ 𝜑 are approximately unitarily 

equivalent. On the hand, since 𝐵 has real rank zero, 𝜑 can be approximated by 
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homomorphisms with finite dimensional range. It follows that h can be approximated by 

self-adjoint elements with finite spectrum. 

Theorem (2.3.17)[94]. Let 𝐴 be a unital separable simple infinite dimensional 𝐶∗-algebra 

with 𝑇𝑅(𝐴)  ≤ 1 and let 𝑢 ∈  𝑈0(𝐴). Then 𝑢 can be approximated by unitaries with finite 

spectrum if and only if 𝑢 ∈  𝐶𝑈(𝐴) and 

𝑢𝑛 + (𝑢𝑛)∗̂ ,𝚤(𝑢𝑛 − (𝑢𝑛)∗)̂ ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  1, 2, . . .. 

Proof. Suppose that there exists a sequence of unitaries {𝑢𝑛} ⊂ 𝐴 with finite spectrum 

such that 

lim
𝑛→∞

𝑢𝑛 = 𝑢. 

There are mutually orthogonal projections 𝑝1,𝑛, 𝑝2,𝑛, . . . , 𝑝𝑚(𝑛),𝑛 ∈ 𝐴 and complex numbers 

𝜆1,𝑛, 𝜆2,𝑛, . . . , 𝜆𝑚(𝑛),𝑛 ∈ ℂ with |𝜆𝑖,𝑛| = 1, 𝑖 = 1, 2, . . . , 𝑚(𝑛, ) and 𝑛 =  1, 2, …, such that 

lim
𝑛→∞

‖𝑢 − ∑ 𝜆𝑖,𝑛𝑝𝑖,𝑛

𝑚(𝑛)

𝑖=1

‖ = 0. 

It follows that 

lim
𝑛→∞

‖((𝑢∗)𝑛  +  𝑢𝑛) − ∑ 2𝑅𝑒(𝜆𝑖,𝑛)𝑝𝑖,𝑛

𝑚(𝑛)

𝑖=1

‖ = 0. 

By Proposition (2.3.14), 

∑ 2𝑅𝑒(𝜆𝑖,𝑛)𝑝𝑖,�̂�

𝑚(𝑛)

𝑖=1

∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Thus𝑅𝑒(𝑢𝑛)̂  ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Similarly, 𝐼𝑚(𝑢𝑛)̂ ∈ 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

To show that 𝑢 ∈  𝐶𝑈(𝐴), consider a unitary 𝑣 = ∑ 𝜆𝑖𝑝𝑛
𝑚
𝑖=1 , where {𝑝1, 𝑝2, . . . , 𝑝𝑚} 

is a set of mutually orthogonal projections such that ∑ 𝑝𝑗
𝑚
𝑖=1 = 1, and where |𝜆𝑖| = 1, 𝑖 =

 1, 2, . . . , 𝑚. Write 𝜆𝑗 = 𝑒
𝑖𝜃𝑗 for some real number 𝜃𝑗  , 𝑗 =  1, 2, . . .. Define 

ℎ =∑𝜃𝑗𝑝𝑗

𝑚

𝑗=1

. 

Then 

𝑣 = exp(𝑖ℎ). 

By Proposition (2.3.14), ℎ̂ ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . It follows from Theorem (2.3.7) that 𝑣 ∈

 𝐶𝑈(𝐴). Since 𝑢 is a limit of those unitaries with finite spectrum, 𝑢 ∈  𝐶𝑈(𝐴). 

Now assume 𝑢 ∈  𝐶𝑈(𝐴) and 𝑢𝑛 + (𝑢𝑛)∗̂ ,𝑖(𝑢𝑛 − (𝑢𝑛)∗̂ ) ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for 𝑛 =

 1, 2, . . .. If 𝑠𝑝(𝑢) ≠ 𝕋, then the problem is reduced to the case in Lemma (2.3.16). So we 

now assume that 𝑠𝑝(𝑢)  = 𝕋. Define a unital monomorphism 𝜑: 𝐶(𝕋) → 𝐴 by 𝜑(𝑓)  =
 𝑓(𝑢). By the Stone-Weirestrass theorem and Proposition (2.3.14), every real valued 

funtion 𝑓 ∈  𝐶(𝕋), [𝜙(𝑓)  ∈  𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

As in the proof of Lemma (2.3.16), one obtains a unital 𝐶∗-subalgebra 𝐵 ⊂  𝐴 

which is a unital simple AH-algebra with tracial rank zero such that the embedding 𝚤: 𝐵 →
 𝐴 gives an identification: 

(𝐾0(𝐵),𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵))  =  (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴)). 
Moreover, that there is a unital monomorphism 𝜓: 𝐶(𝕋) → 𝐵 such that 
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𝜓∗1 =  0   and   (𝚤 ∘ 𝜓)
♮  =  𝜑♮. 

Note also 

(𝚤 ∘ 𝜓)‡  = 𝜙‡ 
(both are trivial, since 𝑢 ∈  𝐶𝑈(𝐴)). 
It follows on (see [71]) that 𝚤 ∘  𝜓 and 𝜑 are approximately unitarily equivalent. However, 

since 𝜓∗1 = 0, in 𝐵, by [79], 𝜓 can be approximated by homomorphisms with finite 

dimensional range. It follows that 𝑢 can be approximated by unitaries with finite spectrum. 

If 𝐴 is a finite dimensional simple 𝐶∗-algebra, then 𝑇𝑅(𝐴)  =  0. Of course, every 

unitary in 𝐴 has finite spectrum. But 𝐶𝑈(𝐴) ≠ 𝑈0(𝐴). To unify the two cases, we note that 

𝐾0(𝐴)  =  𝑍. 

Instead of using 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , one may consider the following definition: 

Definition (2.3.18)[94]. Let 𝐴 be a unital 𝐶∗-algebra. Denote by 𝑉 (𝜌𝐴(𝐾0(𝐴))), the 

closed ℝ-linear subspace of Aff(𝑇(𝐴)) generated by 𝜌𝐴(𝐾0(𝐴)). Let Π: Aff(𝑇(𝐴))  →
 Aff(𝑇(𝐴))/𝑉 (𝜌𝐴(𝐾0(𝐴))) be the quotient map. Define the new determinant 

∆̃: 𝑈0(𝐴)  →  Aff(𝑇(𝐴))/𝑉 (𝜌𝐴(𝐾0(𝐴))) 
by 

∆̃(𝑢) = Π ∘ ∆(𝑢)  for all  𝑢 ∈ 𝑈0(𝐴). 
Note that if A is a finite dimensional 𝐶∗-algebra Aff(𝑇(𝐴)) = 𝑉 (𝜌𝐴(𝐾0(𝐴))). Thus ∆̃=  0. 

If 𝐴 is a unital simple infinite dimensional 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, by Proposition 

(2.3.14), 

𝑉 (𝜌𝐴(𝐾0(𝐴)))  =  𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 
Definition (2.3.19)[94]. Suppose that 𝑢 ∈  𝐴 is a unitary with 𝑋 =  𝑠𝑝(𝑢). Then it 

induces a positive affine continuous map from 𝛾0 ∶  𝐶(𝑋)𝑠.𝑎. → Aff(𝑇(𝐴)) defined by 

𝛾0(𝑓(𝑢))(𝜏) = 𝜏(𝑓(𝑢)) 
for all 𝑓 ∈ 𝐶(𝑋)𝑠.𝑎. and all 𝜏 ∈  𝑇(𝐴). Let ∆∶  Aff(𝑇(𝐴))  →  Aff(𝑇(𝐴))/𝑉 (𝜌𝐴(𝐾0(𝐴))). 
Put Γ(𝑢) = Π ∘ 𝛾0. Then Γ(𝑢) is a map from 𝐶(𝑋)𝑠.𝑎. into Aff(𝑇(𝐴))/𝑉 (𝜌𝐴(𝐾0(𝐴))). 

It is clear that, Γ(𝑢)  =  0 if and only if 𝑢𝑛 + (𝑢𝑛)∗̂ ,𝑖(𝑢𝑛 + (𝑢𝑛)∗̂ ) ∈
𝑉 (𝜌𝐴(𝐾0(𝐴))) for all 𝑛 ≥  1. 

Thus, we may state the following: 

Corollary (2.3.20)[94]. Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1 and let 𝑢 ∈
𝑈0(𝐴). Then 𝑢 can be approximated by unitaries with finite spectrum if and only if  

∆̃(𝑢) = 0   and    Γ(𝑢) = 0. 
Corollary (2.3.21)[94]. Suppose that 𝑢 = exp(𝑖ℎ) for some self-adjoint element ℎ ∈  𝐴. 

If 𝑢 ∈  𝐶𝑈(𝐴), then, by Theorem (2.3.7), ∆̃(𝑢)  =  0, i.e., ℎ̂ ∈ 𝑉 (𝜌𝐴(𝐾0(𝐴))). So one 

may ask if there are unitaries with ∆̃(𝑢) = 0 but Γ(𝑢) ≠ 0. Proposition (2.3.22) below 

says that this could happen. 

Proposition (2.3.22)[94]. For any unital separable simple 𝐶∗-algebra 𝐴 with 𝑇𝑅(𝐴) = 1, 

there is a unitary 𝑢 with ∆̃(𝑢)  =  0 (𝑜𝑟 𝑢 ∈  𝐶𝑈(𝐴)) such that Γ(𝑢) ≠ 0 and which is not 

a limit of unitaries with finite spectrum. 

Proof. Let 𝑒 ∈  𝐴 be a non-zero projection such that there is a projection 𝑒1 ∈ (1 −
 𝑒)𝐴(1 −  𝑒) such that [𝑒] = [𝑒1]. Then 𝑇𝑅(𝑒𝐴𝑒)  ≤  1. Since 𝐴 does not have real rank 

zero, one has 𝑇𝑅(𝑒𝐴𝑒)  =  1. 

It follows from Theorem (2.3.13) that 

Aff(𝑇(𝑒𝐴𝑒)) ≠ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 
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Choose ℎ ∈  (𝑒𝐴𝑒)𝑠.𝑎. with ‖ℎ‖ ≤ 1 such that ℎ is not a norm limit of self-adjoint 

elements with finite spectrum. 

If ℎ̂ ∈ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, then define 

𝑢 =  exp(𝑖ℎ). 
Then, ∆(𝑢)  =  0 and by Theorem (2.3.7), 𝑢 ∈  𝐶𝑈(𝐴). Since h can not be approximated 

by selfadjoint elements with finite spectrum, nor u can be approximated by unitaries with 

finite spectrum since ℎ =  (1/𝑖) log(𝑢) for a continuous branch of the logarithm (note 

that 𝑠𝑝(𝑢) ≠ 𝕋 ). 

Now suppose that ℎ̂ ∉ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

We also have, by Proposition (2.3.14), 2𝜋ℎ̂ ∉ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . We claim that there is a 

rational number 0 <  𝑟 ≤  1 such that 𝑟ℎ2̂  −  2𝜋ℎ̂ ∉ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

In fact, if ℎ2̂ ∈  𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, then the claim follows easily. So we assume that 

ℎ2̂ ∉ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Suppose that, for some 0 <  𝑟1 < 1, 𝑟1ℎ

2̂  − 2𝜋ℎ̂  ∈ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Then (1 − 𝑟1)ℎ
2̂ ∉ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Hence 

ℎ2̂ − 2𝜋ℎ̂ = (1 − 𝑟1)ℎ
2̂ + (𝑟1ℎ

2̂  −  2𝜋ℎ̂) ∉ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

This proves the claim. 

Now define ℎ1 = 𝑟ℎ + 2𝜋𝑒1 −𝑤
∗𝑟ℎ𝑤, where 𝑤 ∈ 𝐴 is a unitary such that 

𝑤∗𝑒𝑤 =  𝑒1. Put 

𝑢 =  exp(𝑖ℎ1) 
It follows from Proposition (2.3.14) that 

2𝜋𝑒1̂ ∈ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Thus 𝜏(ℎ1) = 2𝜋𝜏(𝑒1) ∈ 𝜌𝐴(𝐾0(𝑒𝐴𝑒))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Therefore, by Theorem (2.3.7), 𝑢 ∈  𝐶𝑈(𝐴). 

Since 

ℎ1
2̂ = 𝑟2ℎ2̂ + 4𝜋2𝑒1̂ − 4𝜋𝑟ℎ̂ + 𝑟2ℎ2̂                                (511) 

=  2𝑟(𝑟ℎ2̂ − 2𝜋ℎ̂)  −  4𝜋2 𝑒1̂ ∉ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .           (512) 

Therefore, by Lemma (2.3.16), ℎ1 can not be approximated by self-adjoint elements with 

finite spectrum. It follows that u can not be approxiamted by unitaries with finite 

spectrum. 

Another question is whether Γ(𝑢)  =  0 is sufficient for ∆(𝑢)  =  0. For the case that 

𝑠𝑝(𝑢) ≠ 𝕋, one has the following. But in general, Proposition (2.3.24) gives a negative 

answer. 

Proposition (2.3.23)[94]. Let 𝐴 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1. 

Suppose that 𝑢 ∈ 𝑈0(𝐴) with 𝑠𝑝(𝑢) ≠ 𝕋. If Γ(𝑢) = 0, then ∆̃(𝑢) = 0, 𝑢 ∈ 𝐶𝑈(𝐴) and 𝑢 

can be approximated by unitaries with finite spectrum. 

Proof. Since 𝑠𝑝(𝑢) ≠ 𝕋, there is a real valued continuous function 𝑓 ∈ 𝐶(𝑠𝑝(𝑢)) such 

that 𝑢 = exp(𝑖𝑓(𝑢)). Thus the condition that Γ(𝑢) = 0 implies that 𝑓(𝑢)̂ ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

By Theorem (2.3.7), 𝑢 ∈  𝐶𝑈(𝐴). 
Proposition (2.3.24)[94]. Let 𝐴 be a unital infinite dimensional separable simple 𝐶∗-
algebra with 𝑇𝑅(𝐴)  =  1. Then there are unitaries 𝑢 ∈ 𝑈0(𝐴) with Γ(𝑢) = 0 such that 

𝑢 ∉ 𝐶𝑈(𝐴). In particular, ∆̃(𝑢) ≠ 0 and u can not be approximated by unitaries with finite 

spectrum. 
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Proof. There exists a unital 𝐶∗-subalgebra 𝐵 ⊂ 𝐴 with tracial rank zero such that the 

embedding gives the following identification: 

(𝐾0(𝐵),𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵))  =  (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴)). 

Note that Aff(𝑇(𝐵)) = 𝜌𝐵(𝐾0(𝐵))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Let 𝑤 ∈ 𝑈0(𝐵) be a unitary with 𝑠𝑝(𝑤)  = 𝕋. Thus Γ(𝑤) = 0. Let 

𝛾: Aff(𝑇(𝐶(𝕋)))  → 𝐴𝑓𝑓(𝑇(𝐴)) be given by 𝛾(𝑓)(𝜏) = 𝜏(𝑓(𝑢)) for 𝑓 ∈ 𝐶(𝑇)𝑠.𝑎. and 𝜏 ∈
𝑇(𝐴). Since 𝑇𝑅(𝐴)  =  1, by Theorem (2.3.7), there are unitaries 𝑢0 ∈ 𝑈0(𝐴) \𝐶𝑈(𝐴). By 

the proof of Theorem (2.3.15), there is a unitary 𝑢 ∈ 𝑈0(𝐴) such that 

𝑢 = 𝑢0    and 

𝜏(𝑓(𝑢)) = 𝜏(𝑓(𝑤)) for all  𝜏 ∈ 𝑇(𝐴) 

and for all 𝑓 ∈ 𝐶(𝑇)𝑠.𝑎.. Thus ∆̃(𝑢) ≠ 0 and Γ(𝑢) = Γ(𝑤) = 0. By Theorem (2.3.17), 𝑢 

can not be approximated by unitaries with finite spectrum. 

Corollary (2.3.25)[147]. Let 𝐴 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. 

Suppose that 𝑢2 ∈ 𝑈0(𝐴). Then the following are equivalent: 

(i) 𝑢2 ∈  𝐶𝑈(𝐴); 

(ii) ∆(𝑢2)  =  0; 

(iii) for some piecewise continuous path of unitaries {𝑢2(𝑡): 𝑡 ∈  [0, 1]} ⊂ 𝐴 with 

𝑢2(0)  =  𝑢2 and 𝑢2(1)  =  1𝐴, 

𝑅({𝑢2(𝑡)}) ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

(iv) for any piecewise continuous path of unitaries {𝑢2(𝑡): 𝑡 ∈  [0, 1]} ⊂ 𝐴 with 𝑢2(0)  =

 𝑢2 and 𝑢2(1) =  1𝐴, 

𝑅({𝑢2(𝑡)}) ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

(v) there are ℎ1
2, ℎ2

2, . . . , ℎ𝑚
2 ∈ 𝐴𝑠.𝑎2. such that 

𝑢2 =∏exp(𝑖ℎ𝑗
2)

𝑚

𝑗=1

 and  ∑ℎ𝑗
2̂

𝑚

𝑗=1

∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

(vi) ∑ ℎ𝑗
2̂𝑚

𝑗=1 ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for any ℎ1

2, ℎ2
2, . . . , ℎ𝑚

2 ∈ 𝐴𝑠.𝑎2. for which 

𝑢2 =∏exp(𝑖ℎ𝑗
2)

𝑚

𝑗=1

 

Proof. Equivalence of (ii), (iii), (iv), (v) and (vi) follows from the definition of the 

determinant and follows from the Bott periodicy. The equivalence of (i) and (ii) follows on 

[133]. 

The following is a consequence. 

Corollary (2.3.26)[147]. Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1 and let 𝛾 ∶

 𝐶(𝕋)𝑠.𝑎2 → Aff(𝑇(𝐴)) be a (positive) affine continuous map. 

For any 𝜖 >  0, there exists 𝛿 >  0 and there exists a finite subset ℱ ⊂ 𝐶(𝕋)𝑠,𝑎2  satisfying 

the following: If 𝑢2 + 𝜖 ∈ 𝑈0(𝐴) with 

|𝜏(𝑓(𝑢2)) − 𝛾(𝑓)(𝜏)| < 𝛿, for all   𝑓 ∈ ℱ   and  𝜏 ∈  𝑇(𝐴), and                  (513) 

dist(𝑢2̅̅ ̅, 𝑢2̅̅ ̅ + 𝜖) <  𝛿   in   𝑈0(𝐴)/𝐶𝑈(𝐴).                                               (514) 
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Then there exists a unitary 𝑊 ∈  𝑈(𝐴) such that 

‖𝑢2  − 𝑊∗(𝑢2 + 𝜖)𝑊‖ < 𝜖.                                                              (515) 

Proof. The lemma follows immediately on [64]. See [71] and [64]. Note that of [64], we 

can replace the given map ℎ1
2 (in this case a given unitary) by a given map 𝛾. 

Corollary (2.3.27)[147]. Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1 and let 

𝑢2 ∈ 𝑈0(𝐴) be a unitary. For any 𝜖 >  0, there exists 𝛿 >  0 and there exists an integer 

𝑁 ≥  1 satisfying the following: If (𝑢2 + 𝜖 ) ∈  𝑈0(𝐴) with 

|𝜏(𝑢2𝑘) −  𝜏 ((𝑢2 + 𝜖)𝑘)| < 𝛿, 𝑘 =  1, 2, . . . , 𝑁  for all 𝜏 ∈  𝑇(𝐴) and                     (516) 

dist(𝑢2̅̅ ̅, 𝑢2̅̅ ̅ + 𝜖) < 𝛿   in   𝑈0(𝐴)/𝐶𝑈(𝐴).                                              (517) 

Then there exists a unitary 𝑊 ∈  𝑈(𝐴) such that 

‖𝑢2  − 𝑊∗(𝑢2 + 𝜖)𝑊‖ < 𝜖.                                                                  (518) 

Proof. Note that (516), 

|𝜏(𝑢2𝑘)  −  𝜏((𝑢2 + 𝜖)𝑘)| <  𝛿   𝑘 =  ±1,±2, . . . , ±𝑁.                                          (519) 

For any subset 𝒢 ⊂ 𝐶(𝑆1) and any 𝜂 >  0, there exists 𝑁 ≥  1 and 𝛿 >  0 such that 

|𝜏(𝑔(𝑢2)) − 𝜏(𝑔(𝑢2 + 𝜖))| < 𝜂   for all    𝜏 ∈ 𝑇(𝐴) 

if (519) holds. 

Then the lemma follows from ([64]) 

Corollary (2.3.28)[147]. Let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1. Suppose 

that 𝑢2 ∈ 𝑈0(𝐴), then, for any 𝜖 > 0, there exists a selfadjoint element 𝑎2 ∈ 𝐴𝑠.𝑎2 such 

that 

‖𝑢2  − exp(𝑖𝑎2)‖ < 𝜖.                                                          (520) 

Proof. Since 𝑢2 ∈ 𝑈0(𝐴), we may write 

𝑢2 =∏exp(𝑖ℎ𝑗
2)

𝑘

𝑗=1

.                                                                (521) 

Let 𝑀 = max{‖ℎ𝑗
2‖ ∶  𝑗 =  1, 2, . . . , 𝑘}  +  1. Let 𝛿 >  0 and 𝑁 be given in 3.2 for 𝑢2. We 

may assume that 𝛿 <  1 and 𝑁 ≥  3. We may also assume that 𝛿 < 𝜖. Since 𝑇𝑅(𝐴)  ≤  1, 

there exists a projection 𝑝2 ∈  𝐴 and a 𝐶∗-subalgebra 𝐵 ∈ 𝐴 with 1𝐵  =  𝑝
2 such that 𝐵 ≅

⊕𝑖=1
𝑚 𝐶(𝑋𝑖 ,𝑀𝑟(𝑖)), where 𝑋𝑖 = [0, 1] or a point, and 

‖𝑝2𝑢2  −  𝑢2𝑝2‖ <
𝛿

16�̃��̃��̃�
,                                                       (522) 

‖(1 − 𝑝2)𝑢2(1 − 𝑝2)  − (1 − 𝑝2)∏exp(𝑖((1 − 𝑝2)ℎ𝑗
2(1 − 𝑝2))

𝑘

𝑗=1

‖  

<
𝛿

16�̃��̃��̃�
,                                                                                                             (523) 

𝑝2𝑢2𝑝2 ∈ 𝛿

16�̃��̃��̃�

𝐵  and 𝜏(1 − 𝑝2) <
𝛿

2�̃��̃��̃�
   for all   𝜏 ∈  𝑇(𝐴).                (524) 

There exist unitary 𝑢1
2 ∈  𝐵 such that 
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‖𝑝2𝑢2𝑝2  −  𝑢1
2‖  <

𝛿

8�̃��̃��̃�
                                                   (525) 

Put 𝑢2
2 = (1 − 𝑝2)∏ exp(𝑖(1 − 𝑝2)ℎ𝑗

2(1 − 𝑝2))𝑘
𝑗=1 . Since 𝑢1

2 ∈ 𝐵, it is well known 

that there exists a selfadjoint element 𝑏2 ∈ 𝐵𝑠.𝑎2 such that 

‖𝑢1
2  −  𝑝2 exp(𝑖𝑏2)‖ <

𝛿

16�̃��̃��̃�
.                                                (526) 

Let 𝑢0
2 + 𝜖 = (1 − 𝑝2)  +  𝑝2 exp(𝑖𝑏2) and 𝑢0

2 = 𝑝2 exp(𝑖𝑏2) + 𝑢2
2. Then, by (522), 

(523), (525) and (526),  

‖𝑢0
2 − 𝑢2‖ < ‖𝑢2 − 𝑝2𝑢2𝑝2 − (1 − 𝑝2)𝑢2(1 − 𝑝2)‖                                        (527) 

+‖(𝑝2𝑢2𝑝2  −  𝑝2 exp(𝑖𝑏2))  + ((1 − 𝑝2)𝑢2(1 −  𝑝2)  − 𝑢2
2)‖                        (528) 

<
3𝛿

16�̃��̃��̃�
+

𝛿

8�̃��̃��̃�
+

𝛿

16�̃��̃��̃�
=

3𝛿

8�̃��̃��̃�
.                                                    (529) 

and 

𝑢0
2(𝑢0

∗2 + 𝜖) =∏exp(𝑖(1 − 𝑝2)ℎ𝑗
2(1 −  𝑝2))

𝑘

𝑗=1

.                                                   (530) 

Note that 

|𝜏 (∑(1 − 𝑝2)ℎ𝑗
2(1 − 𝑝2)

𝑘

𝑗=1

)|  ≤∑|𝜏 ((1 − 𝑝2)ℎ𝑗
2(1 − 𝑝2))|

𝑘

𝑗=1

                      (531) 

= 𝑘𝜏 (1 − 𝑝2)max{‖ℎ𝑗
2‖ ∶  𝑗 =  1, 2, . . . , 𝑘} < 𝛿/16�̃�                           (532) 

for all 𝜏 ∈  𝑇(𝐴). It follows that 

dist(𝑢2̅̅ ̅, 𝑢0
2̅̅ ̅ + 𝜖) < 𝛿/16�̃� in 𝑈0(𝐴)/𝐶𝑈(𝐴).                                          (533) 

It follows from that 

dist(𝑢2̅̅ ̅, 𝑢0
2̅̅ ̅ + 𝜖)  <  𝛿/8�̃�.                                                               (534) 

On the other hand, for each 𝑠 =  1, 2, . . . , 𝑁, by (530), (529) and (524) 

|𝜏(𝑢2𝑠) −  𝜏(𝑢0
2 + 𝜖)𝑠| ≤ |𝜏(𝑢2𝑠) − 𝜏 (𝑢0

2𝑠)| + |𝜏(𝑢0
2𝑠) − 𝜏(𝑢0

2 + 𝜖)𝑠|                  (535) 

≤ ‖𝑢2𝑠  −  𝑢0
2𝑠‖ + |𝜏 ((1 − 𝑝2) − (1 − 𝑝2)∏exp (𝑖(1 − 𝑝2)𝑠ℎ𝑗

2(1 − 𝑝2))

𝑘

𝑗=1

)| (536) 

≤ �̃�‖𝑢2  −  𝑢0
2‖ + 2𝜏 (1 − 𝑝2)                                                        (537) 

<
3𝛿

8�̃��̃�
+

𝛿

�̃��̃��̃�
<  𝛿                                                                         (538) 

for all 𝜏 ∈  𝑇(𝐴). From the above inequality and (534) and applying Corollary (2.3.27), 

one obtains a unitary 𝑊 ∈  𝑈(𝐴) such that 

‖𝑢2  − 𝑊∗(𝑢0
2 + 𝜖)𝑊‖ < 𝜖.                                                                          (539) 

Put 𝑎2 = 𝑊∗((1 − 𝑝2)  +  𝑏2)𝑊. Then 

‖𝑢2  −  exp(𝑖𝑎2)‖ < 𝜖.                                                                         (540) 

Note that Corollary (2.3.28) does not assume that 𝐴 is amenable, in particular, it may not 

be a simple AH-algebra. The proof used a kind of uniqueness theorem for unitaries in a 
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unital simple 𝐶∗-algebra 𝐴 with 𝑇𝑅(𝐴)  ≤  1. This bring us to the following theorem 

which is an immediate consequence of Corollary (2.3.27).  

Corollary (2.3.29)[147]. Let 𝐴 be a unital simple infinite dimensional 𝐶∗-algebra with 

𝑇𝑅(𝐴)  ≤  1. If 𝑎2 ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then 

𝑟𝑎2 ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                                   (541) 

for all 𝑟 ∈ ℝ. In fact, 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is a closed ℝ-linear subspace of Aff(𝑇(𝐴)). 

Proof. Note that 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is an additive subgroup of Aff(𝑇(𝐴)). It suffices to prove the 

following: Given any projection 𝑝2  ∈  𝐴, any real number 0 < 𝑟1 < 1 and 𝜖 > 0, there 

exists a projection 𝑝2 + 𝜖 ∈  𝐴 such that 

|𝑟1𝜏 (𝑝
2) −  𝜏(𝑝2 + 𝜖)| < 𝜖    for all   𝜏 ∈  𝑇(𝐴).                                            (542) 

Choose 𝑛 ≥  1 such that 

|𝑚/𝑛 − 𝑟1|  < 𝜖/2 and 1/𝑛 < 𝜖/2                                                (543) 

for some 1 ≤  𝑚 <  𝑛. 

Note that 𝑇𝑅(𝑝2𝐴𝑝2)  ≤  1. By [89], there are mutually orthogonal projections 𝑝0
2 +

𝜖, 𝑝1
2, 𝑝2

2, . . . , 𝑝𝑛
2 with [𝑝0

2 + 𝜖] ≤ [𝑝1
2] and [𝑝1

2] = [𝑝𝑖
2], 𝑖 =  1, 2, . . . , 𝑛 and ∑ 𝑝𝑖

2 +𝑛
𝑖=1

 𝑝0
2 + 𝜖 = 𝑝2.  

Put 𝑝2 + 𝜖 = ∑ 𝑝𝑖
2𝑚

𝑖=1 . We then compute that 

|𝑟1𝜏(𝑝
2) − 𝜏(𝑝2 + 𝜖)| < 𝜖  for all 𝜏 ∈  𝑇(𝐴).                                           (544) 

Corollary (2.3.30)[147]. Let 𝐴 be a unital simple infinite dimensional 𝐶∗-algebra with 

𝑇𝑅(𝐴)  =  1. Then there exist unitaries 𝑢2, 𝑢2 + 𝜖 ∈  𝑈0(𝐴) with 

𝜏(𝑢2𝑘) = 𝜏(𝑢2𝑘)   for all   𝜏 ∈  𝑇(𝐴), 𝑘 =  0, ±1,±2, . . . , ±𝑛, . .. 

such that ∆(𝑢2) ≠ ∆(𝑢2 + 𝜖). In particular, 𝑢2 and 𝑢2 + 𝜖 are not approximately unitarily 

equivalent. 

Proof. Since we assume that 𝑇𝑅(𝐴)  =  1, then, by Theorem (2.3.13), Aff(𝑇(𝐴)) ≠

𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑈0(𝐴)/𝐶𝑈(𝐴) are not trivial. 

Let 𝜅1, 𝜅2 ∶  𝐾1(𝐶(𝕋))  →  𝑈0(𝐴)/𝐶𝑈(𝐴) be two different homomorphisms. Fix an affine 

continuous map 𝑠 ∶  𝑇(𝐴)  →  𝑇𝑓(𝐶(𝕋)), where 𝑇𝑓(𝐶(𝕋)) is the space of strictly positive 

normalized Borel measures on 𝕋. Denote by 𝛾0 ∶  Aff(𝑇(𝐶(𝕋)))  →  Aff(𝑇(𝐴)) the 

positive affine continuous map induced by 𝛾0(𝑓)(𝜏) = 𝑓(𝑠(𝜏)) for all 𝑓 ∈ Aff(𝑇(𝐶(𝑇))) 

and 𝜏 ∈ 𝑇(𝐴). Let 

𝛾0 ∶ 𝑈0(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋)) = Aff(𝑇(𝐶(𝕋)))/𝑍 →  Aff(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝑈0(𝐴)/𝐶𝑈(𝐴) 

be the map induced by 𝛾0. Write 

𝑈(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋))  =  𝑈0(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋)) ⊕ 𝐾1(𝐶(𝕋)). 

Define 𝜆𝑖 ∶  𝑈(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋))  →  𝑈0(𝐴)/𝐶𝑈(𝐴) by 

𝜆𝑖(𝑥 ⊕  𝑥 + 2𝜖)  =  𝛾0(𝑥)  + 𝜅𝑖(𝑥 + 2𝜖) 

for 𝑥 ∈  𝑈0(𝐶(𝕋))/𝐶𝑈(𝐶(𝕋)) and 𝑥 + 2𝜖 ∈  𝐾1(𝐶(𝕋)), 𝑖 =  1, 2. That there are two 

unital monomorphisms 𝜑1, 𝜑2 ∶  𝐶(𝕋)  →  𝐴 such that 
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(𝜑1)∗𝑖 = 0, 𝜑𝑖
‡  =  𝜆𝑖      and      𝜑𝑖

♮ = 𝑠,                          (545) 

𝑖 =  1, 2. Let 𝑥 + 2𝜖 be the standard unitary generator of 𝐶(𝑆1). Define 𝑢2 = 𝜑1(𝑥 + 2𝜖) 

and 𝑢2 + 𝜖 = 𝜑2(𝑥 + 2𝜖). 

Then 𝑢2, 𝑢2 + 𝜖 ∈  𝑈0(𝐴). The condition that 𝜑𝑖
♮ = 𝑠 implies that 𝜏(𝑢2𝑘) = 𝜏((𝑢2 + 𝜖)𝑘) 

for all 𝜏 ∈ 𝑇(𝐴), 𝑘 =  0, ±1,±2, . . . , ±𝑛, . . .. 

But since 𝜆1 ≠ 𝜆2, 

∆(𝑢2) ≠ ∆(𝑢2 + 𝜖). 

Therefore 𝑢2 and 𝑢2 + 𝜖 are not approximately unitarily equivalent. 

Corollary (2.3.31)[147]. Let 𝐴 be a unital separable simple infinite dimensional 𝐶∗-

algebra with 𝑇𝑅(𝐴)  ≤  1 and let ℎ2  ∈  𝐴 be a self-adjoint element. Then ℎ2 can be 

approximated by self-adjoint elements with finite spectrum if and only if ℎ2�̂� ∈

𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  1, 2, . . .. 

Proof. If ℎ2 can be approximated by self-adjoint elements so can ℎ2𝑛. By 3.6, 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is a closed linear subspace. Therefore ℎ2�̂� ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all 𝑛. 

Now we assume that ℎ2�̂� ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  1, 2, . . .. The Stone-Weierstrass theorem 

implies that 𝑓(ℎ2)̂ ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all real-value functions 𝑓 ∈ 𝐶(𝑠𝑝(ℎ2)). For any 𝜖 >

 0, by [89], there is 𝑓 ∈ 𝐶(𝑠𝑝(𝑥))
𝑠.𝑎2

. such that 

‖𝑓(ℎ2)  − ℎ2‖ < 𝜖 

and 𝑠𝑝(𝑓(ℎ2)) consists of a union of finitely many closed intervals and finitely many 

points. 

Thus, to simplify notation, we may assume that 𝑋 =  𝑠𝑝(ℎ2) is a union of finitely many 

intervals and finitely many points. Let 𝜓 ∶  𝐶(𝑋)  →  𝐴 be the homomorphism defined by 

𝜓(𝑓)  =  𝑓(ℎ2). Let 𝑠 ∶  𝑇(𝐴)  →  𝑇𝑓(𝐶(𝑋)) be the affine map defined by 𝑓(𝑠(𝜏 ))  =

 𝜓(𝑓)(𝜏) for all 𝑓 ∈  Aff(𝐶(𝑋)) and 𝜏 ∈ 𝑇(𝐴). 

Let 𝐵 be a unital simple AH-algebra with real rank zero, stable rank one and 

(𝐾0(𝐵),𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵)) ≅ (𝐾0(𝐴),𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴)). 

In particular, 𝐾0(𝐵) is weakly unperforated. The proof of Theorem 10.4 of [89] provides a 

unital homomorphism 𝚤 ∶  𝐵 →  𝐴 which carries the above identification. This can be done 

by [89] and the uniqueness Theorem of [89], or better by corollary 11.7 of [71] because 

𝑇𝑅(𝐵)  =  0, the map 𝜑‡ is not needed since 𝑈(𝐵)  =  𝐶𝑈(𝐵) and the map on traces is 

determined by the map on 𝐾0(𝐵). 

Note that Aff(𝑇(𝐵))  =  𝜌𝐵(𝐾0(𝐵))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By identifying 𝐵 with a unital 𝐶∗-subalgebra 

of 𝐴, we may write 𝜌𝐵(𝐾0(𝐵))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Let 𝜓♮ ∶  Aff(𝑇(𝐶(𝑋)))  →  𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the map induced by 𝜓. This gives an affine map 

𝛾 ∶  Aff(𝑇(𝐶(𝑋)))  → 𝜌𝐵(𝐾0(𝐵))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . It follows that there exists a unital monomorphism 𝜑 ∶

 𝐶(𝑋)  →  𝐵 such that 

𝚤 ∘ 𝜑∗0  = 𝜓∗0   and   (𝚤 ∘ 𝜙)
♮  =  𝜓♮, 
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where (𝚤 ∘ 𝜑)♮ ∶  Aff(𝑇(𝐶(𝑋)))  →  Aff(𝑇(𝐴)) defined by (𝚤 ∘ 𝜑)♮(𝑎2)(𝜏 )  =  𝜏 (𝚤 ∘

𝜑)(𝑎2) for all 𝑎2 ∈  𝐴𝑠.𝑎2. It follows from Corollary 11.7 of [71] that 𝜓 and 𝚤 ∘ 𝜑 are 

approximately unitarily equivalent. On the other hand, since 𝐵 has real rank zero, 𝜑 can be 

approximated by homomorphisms with finite dimensional range. It follows that ℎ2 can be 

approximated by self-adjoint elements with finite spectrum. 

Corollary (2.3.32)[147]. Let 𝐴 be a unital separable simple infinite dimensional 𝐶∗-

algebra with 𝑇𝑅(𝐴)  ≤ 1 and let 𝑢2 ∈  𝑈0(𝐴). Then 𝑢2 can be approximated by unitaries 

with finite spectrum if and only if 𝑢2 ∈  𝐶𝑈(𝐴) and 

𝑢2𝑛 + (𝑢2𝑛)∗̂ ,𝚤(𝑢2𝑛 − (𝑢2𝑛)∗)̂ ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  1, 2, . . .. 

Proof. Suppose that there exists a sequence of unitaries {𝑢𝑛
2} ⊂ 𝐴 with finite spectrum 

such that 

lim
𝑛→∞

𝑢𝑛
2 = 𝑢2. 

There are mutually orthogonal projections 𝑝1,𝑛
2 , 𝑝2,𝑛

2 , . . . , 𝑝𝑚(𝑛),𝑛
2 ∈ 𝐴 and complex numbers 

𝜆1,𝑛, 𝜆2,𝑛, . . . , 𝜆𝑚(𝑛),𝑛 ∈ ℂ with |𝜆𝑖,𝑛| = 1, 𝑖 = 1, 2, . . . , 𝑚(𝑛, ) and 𝑛 =  1, 2, …, such that 

lim
𝑛→∞

‖𝑢2 − ∑ 𝜆𝑖,𝑛𝑝𝑖,𝑛
2

𝑚(𝑛)

𝑖=1

‖ = 0. 

It follows that 

lim
𝑛→∞

‖((𝑢∗ )2𝑛  +  𝑢2𝑛) − ∑ 2𝑅𝑒(𝜆𝑖,𝑛)𝑝𝑖,𝑛
2

𝑚(𝑛)

𝑖=1

‖ = 0. 

By Corollary (2.3.29), 

∑ 2𝑅𝑒(𝜆𝑖,𝑛)𝑝𝑖,𝑛
2̂

𝑚(𝑛)

𝑖=1

∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Thus 𝑅𝑒(𝑢2𝑛)̂  ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Similarly, 𝐼𝑚(𝑢2𝑛)̂ ∈ 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

To show that 𝑢2 ∈  𝐶𝑈(𝐴), consider a unitary 𝑢2 + 𝜖 = ∑ 𝜆𝑖𝑝𝑛
2𝑚

𝑖=1 , where {𝑝1
2, 𝑝2

2, . . . , 𝑝𝑚
2 } 

is a set of mutually orthogonal projections such that ∑ 𝑝𝑗
𝑚
𝑖=1

2 
= 1, and where |𝜆𝑖| =

1, 𝑖 =  1, 2, . . . , 𝑚. Write 𝜆𝑗 = 𝑒
𝑖𝜃𝑗
2

 for some real number 𝜃𝑗
2 , 𝑗 =  1, 2, . . .. Define 

ℎ2 =∑𝜃𝑗
2𝑝𝑗
2

𝑚

𝑗=1

. 

Then 

𝑢2 + 𝜖 = exp(𝑖ℎ2). 

By Corollary (2.3.29), ℎ2̂ ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . It follows from Theorem (2.3.7) that 𝑢2 + 𝜖 ∈

 𝐶𝑈(𝐴). Since 𝑢2 is a limit of those unitaries with finite spectrum, 𝑢2 ∈  𝐶𝑈(𝐴). 

Now assume 𝑢2 ∈  𝐶𝑈(𝐴) and 𝑢2𝑛 + (𝑢2𝑛)∗̂ ,𝑖(𝑢2𝑛 − (𝑢2𝑛)∗̂ ) ∈ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for 𝑛 =

 1, 2, . . .. If 𝑠𝑝(𝑢2) ≠ 𝕋, then the problem is reduced to the case in Corollary (2.3.31). So 
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we now assume that 𝑠𝑝(𝑢2)  = 𝕋. Define a unital monomorphism 𝜑: 𝐶(𝕋) → 𝐴 by 

𝜑(𝑓)  =  𝑓(𝑢2). By the Stone-Weirestrass theorem and Corollary (2.3.29), every real 

valued funtion 𝑓 ∈  𝐶(𝕋), [𝜑(𝑓)  ∈  𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

As in the proof of Corollary (2.3.31), one obtains a unital 𝐶∗-subalgebra 𝐵 ⊂  𝐴 which is 

a unital simple AH-algebra with tracial rank zero such that the embedding 𝚤: 𝐵 →  𝐴 gives 

an identification: 

(𝐾0(𝐵),𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵))  =  (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴)). 

Moreover, by Lemma 5.1 of [8] that there is a unital monomorphism 𝜓: 𝐶(𝕋) → 𝐵 such 

that 

𝜓∗1 =  0   and   (𝚤 ∘ 𝜓)
♮  =  𝜑♮. 

Note also 

(𝚤 ∘ 𝜓)‡  = 𝜑‡ 

(both are trivial, since 𝑢2 ∈  𝐶𝑈(𝐴)). 

It follows from ([71]) that 𝚤 ∘  𝜓 and 𝜑 are approximately unitarily equivalent. However, 

since 𝜓∗1 = 0, in 𝐵, by [79], 𝜓 can be approximated by homomorphisms with finite 

dimensional range. It follows that 𝑢2 can be approximated by unitaries with finite 

spectrum. 

If 𝐴 is a finite dimensional simple 𝐶∗-algebra, then 𝑇𝑅(𝐴)  =  0. Of course, every unitary 

in 𝐴 has finite spectrum. But 𝐶𝑈(𝐴) ≠ 𝑈0(𝐴). To unify the two cases, we note that 

𝐾0(𝐴)  =  𝑍. 

Instead of using 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , one may consider the following definition: 

Corollary (2.3.33)[147]. For any unital separable simple 𝐶∗-algebra 𝐴 with 𝑇𝑅(𝐴) = 1, 

there is a unitary 𝑢2 with ∆̃(𝑢2)  =  0 (or 𝑢2  ∈  𝐶𝑈(𝐴)) such that Γ(𝑢2) ≠ 0 and which is 

not a limit of unitaries with finite spectrum. 

Proof. Let 𝑒2 ∈  𝐴 be a non-zero projection such that there is a projection 𝑒1
2 ∈ (1 −

 𝑒2)𝐴(1 − 𝑒2) such that [𝑒2] = [𝑒1
2]. Then 𝑇𝑅(𝑒2𝐴𝑒2)  ≤  1 by 5.3 of [4]. Since 𝐴 does 

not have real rank zero, one has 𝑇𝑅(𝑒2𝐴𝑒2)  =  1. 

It follows from Theorem (2.3.13) that 

Aff(𝑇(𝑒2𝐴𝑒2)) ≠ 𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Choose ℎ2 ∈ (𝑒2𝐴𝑒2)𝑠.𝑎2. with ‖ℎ2‖ ≤ 1 such that ℎ2 is not a norm limit of self-adjoint 

elements with finite spectrum. 

If ℎ2̂ ∈ 𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then define 

𝑢2 =  exp(𝑖ℎ2). 

Then, ∆(𝑢2)  =  0 and by Theorem 2.9, 𝑢2 ∈  𝐶𝑈(𝐴). Since ℎ2 can not be approximated 

by selfadjoint elements with finite spectrum, nor 𝑢2 can be approximated by unitaries with 

finite spectrum since ℎ2 = (1/𝑖) log(𝑢2) for a continuous branch of the logarithm (note 

that 𝑠𝑝(𝑢2) ≠ 𝕋 ). 

Now suppose that ℎ̂ ∉ 𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 
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We also have, by Corollary (2.3.29), 2𝜋ℎ2̂ ∉ 𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . We claim that there is a rational 

number 0 <  𝑟 ≤  1 such that 𝑟ℎ4̂  −  2𝜋ℎ2̂ ∉ 𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

In fact, if ℎ4̂ ∈  𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then the claim follows easily. So we assume that ℎ4̂ ∉

𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Suppose that, for some 0 <  𝑟1 < 1, 𝑟1ℎ

4̂  − 2𝜋ℎ2̂  ∈ 𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Then (1 − 𝑟1)ℎ
4̂ ∉ 𝜌𝐴(𝐾0(𝑒

2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Hence 

ℎ4̂ − 2𝜋ℎ2̂ = (1 − 𝑟1)ℎ
4̂ + (𝑟1ℎ

4̂  −  2𝜋ℎ2̂) ∉ 𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

This proves the claim. 

Now define ℎ1
2 = 𝑟ℎ2 + 2𝜋𝑒1

2 −𝑤∗𝑟ℎ2𝑤, where 𝑤 ∈ 𝐴 is a unitary such that 𝑤∗𝑒2𝑤 =

 𝑒1
2. Put 

𝑢2 =  exp(𝑖ℎ1
2) 

It follows from Corollary (2.3.29) that 

2𝜋𝑒1
2̂ ∈ 𝜌𝐴(𝐾0(𝑒

2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Thus 𝜏(ℎ1
2) = 2𝜋𝜏(𝑒1

2) ∈ 𝜌𝐴(𝐾0(𝑒
2𝐴𝑒2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Therefore, by 2.9, 𝑢2 ∈  𝐶𝑈(𝐴). Since 

ℎ1
4̂ = 𝑟2ℎ4̂ + 4𝜋2𝑒1

2̂
− 4𝜋𝑟ℎ2̂ + 𝑟2ℎ4̂                                                 (546) 

=  2𝑟(𝑟ℎ4̂ − 2𝜋ℎ2̂)  −  4𝜋2 𝑒1
2̂ ∉ 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .                               (547) 

Therefore, by Corollary (2.3.31), ℎ1
2 can not be approximated by self-adjoint elements 

with finite spectrum. It follows that 𝑢2 can not be approxiamted by unitaries with finite 

spectrum. 

 Another question is whether Γ(𝑢2)  =  0 is sufficient for ∆(𝑢2)  =  0. For the case that 

𝑠𝑝(𝑢2) ≠ 𝕋, one has the following. But in general, Corollary (2.3.35) gives a negative 

answer. 

Corollary (2.3.34)[147]. Let 𝐴 be a unital separable simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1. 

Suppose that 𝑢2 ∈ 𝑈0(𝐴) with 𝑠𝑝(𝑢2) ≠ 𝕋. If Γ(𝑢2) = 0, then ∆̃(𝑢2) = 0, 𝑢2 ∈ 𝐶𝑈(𝐴) 

and 𝑢2 can be approximated by unitaries with finite spectrum. 

Proof. Since 𝑠𝑝(𝑢2) ≠ 𝕋, there is a real valued continuous function 𝑓 ∈ 𝐶(𝑠𝑝(𝑢2)) such 

that 𝑢2 = exp(𝑖𝑓(𝑢2)). Thus the condition that Γ(𝑢2) = 0 implies that 𝑓(𝑢2)̂ ∈

𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By Theorem (2.3.7), 𝑢2 ∈  𝐶𝑈(𝐴). 

Corollary (2.3.35)[147]. Let 𝐴 be a unital infinite dimensional separable simple 𝐶∗-

algebra with 𝑇𝑅(𝐴)  =  1. Then there are unitaries 𝑢2 ∈ 𝑈0(𝐴) with Γ(𝑢2) = 0 such that 

𝑢2 ∉ 𝐶𝑈(𝐴). In particular, ∆̃(𝑢2) ≠ 0 and 𝑢2 can not be approximated by unitaries with 

finite spectrum. 

Proof. There exists a unital 𝐶∗-subalgebra 𝐵 ⊂ 𝐴 with tracial rank zero such that the 

embedding gives the following identification: 

(𝐾0(𝐵),𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵))  =  (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴)). 

Note that Aff(𝑇(𝐵)) = 𝜌𝐵(𝐾0(𝐵))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌𝐴(𝐾0(𝐴))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 
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Let 𝑤2 ∈ 𝑈0(𝐵) be a unitary with 𝑠𝑝(𝑤2)  = 𝕋. Thus Γ(𝑤2) = 0. Let 

𝛾: Aff(𝑇(𝐶(𝕋)))  → Aff(𝑇(𝐴)) be given by 𝛾(𝑓)(𝜏) = 𝜏(𝑓(𝑢2)) for 𝑓 ∈ 𝐶(𝑇)𝑠.𝑎2. and 𝜏 ∈

𝑇(𝐴). Since 𝑇𝑅(𝐴)  =  1, by Theorem (2.3.7), there are unitaries 𝑢0
2 ∈ 𝑈0(𝐴) \𝐶𝑈(𝐴). By 

the proof of Corollary (2.3.30) (see also Theorem (2.3.8)), there is a unitary 𝑢2 ∈ 𝑈0(𝐴) 

such that 

𝑢2 = 𝑢0
2     and 

𝜏(𝑓(𝑢2)) = 𝜏(𝑓(𝑤2)) for all  𝜏 ∈ 𝑇(𝐴) 

and for all 𝑓 ∈ 𝐶(𝑇)𝑠.𝑎2.. Thus ∆̃(𝑢2) ≠ 0 and Γ(𝑢2) = Γ(𝑤2) = 0. By Corollary (2.3.32), 

𝑢2 can not be approximated by unitaries with finite spectrum. 

 


