Chapter 1

Primitively of Unital Products Homomorphisms in C*-Algebra
A C^{*}-algebra is called primitive if it admits a faithful and irreducible *-representation .Let A and B be unital separable simple amenable C^{*}-algebras which satisfy the Universal Coefficient Theorem. Suppose that A and B are Z-stable and are of rationally tracial rank no more than one. We show that this holds if A is a rationally $A H$-algebra which is not necessarily simple. Moreover, for any strictly positive unit-preserving $\kappa \in K L(A, B)$, any continuous affine $\quad \operatorname{map} \lambda: \operatorname{Aff}(T(A)) \rightarrow \operatorname{Aff}(T(B))$ and any continuous group homomorphism $\gamma: U(A) / C U(A) \rightarrow U(B) / C U(B)$ which are compatible.

Section (1.1): Full Free Products of Residually Finite Dimensional C^{*}-Algebras

A C^{*}-algebra is called primitive if it admits a faithful and irreducible *-representation. Thus the simplest examples are matrix algebras. A nontrivial example, shown independently by Choi and Yoshizawa, is the full group C^{*}-algebra of the free group on n elements, $2 \leq n \leq \infty$, see [146] and [11]. In [17], Murphy gave numerous conditions for primitivity of full group C^{*}-algebras. More recently, T. Å. Omland showed in [27] that for G_{1} and G_{2} countable amenable discrete groups and σ a multiplier on the free product G_{1} * G_{2}, the full twisted group C^{*}-algebra $C^{*}-\left(G_{1} * G_{2}, \sigma\right)$ is primitive whenever $\left(\left|G_{1}\right|-\right.$ 1) $\left(\left|G_{2}\right|-1\right) \geq 2$.

We prove that given two nontrivial, separable, unital, residually finite dimensional C^{*}-algebras A_{1} and A_{2}, their unital C^{*}-algebra full free product $A_{1} * A_{2}$ is primitive except when $A_{1}=\mathbb{C}^{2}=A_{2}$. The methods used are essentially different from those in [17], [146], [2] and [105] but do rely on [40] that $A_{1} * A_{2}$ is itself residually finite dimensional. Roughly speaking, we first show that if $\left(\operatorname{dim}\left(A_{1}\right)-1\right)\left(\operatorname{dim}\left(A_{2}\right)-1\right) \geq 2$, then there is an abundance of irreducible finite dimensional *-representations and later, by means of a sequence of approximations, we construct an irreducible and faithful *-representation.
Proposition (1.1.1)[30]: Let B be a finite dimensional C^{*}-algebra and assume B decomposes as

$$
\oplus_{j=1}^{J} B_{j}
$$

and there is a positive integer n such that all B_{j} are $*$-isomorphic to M_{n}. Fix $\left\{\beta_{j}: B_{j} \rightarrow\right.$ $\left.M_{n}\right\}_{1 \leq j \leq J}$ a set of $*$-isomorphisms.
(i) For a permutation σ in S_{J} define $\psi_{\sigma}: B \rightarrow B$ by

$$
\psi_{\sigma}\left(b_{1}, \ldots, b_{J}\right)=\left(\beta_{1}^{-1} \circ \beta_{\sigma-1(1)}\left(b_{\sigma-1(1)}\right), \ldots, \beta_{J}^{-1} \circ \beta_{\sigma-1(J)}\left(b_{\sigma-1(J)}\right) .\right.
$$

Then ψ_{σ} lies in $\operatorname{Aut}(B)$ and the map $\sigma \mapsto \psi_{\sigma}$ defines a groupembedding of S_{J} into Aut (B).
(ii) Every element α in $\operatorname{Aut}(B)$ factors as

$$
\left(\oplus_{j=1}^{J} A d u_{j}\right) \circ \psi_{\sigma}
$$

for some permutation σ in S_{J} and unitaries u_{j} in $\mathbb{U}\left(B_{j}\right)$.
(iii) There is a exact sequence

$$
0 \rightarrow \operatorname{Inn}(B) \rightarrow \operatorname{Aut}(B) \rightarrow S_{J} \rightarrow 0
$$

So far we have consider C^{*}-algebras with only one type of block sub-algebra, so to speak. Next proposition shows that a $*$-automorphism cannot mix blocks of different dimensions. As a consequence, and along with Proposition (1.1.1), we get a general decomposition of *-automorphisms of finite dimensional C^{*}-algebras.

Proposition (1.1.2)[30]: Let B be a finite dimensional C^{*}-algebra. Decompose B as

$$
\oplus_{i=1}^{1} \oplus_{j=1}^{J_{i}} B(i, j) .
$$

Where for each i, there is a positive integer n_{i} such that $B(i, j)$ is isomorphic to $M_{n_{i}}$ for all1 $\leq j \leq J_{i}$, i.e. we group sub-algebras that are isomorphic to the same matrix algebra, and where $n_{1}<n_{2}<\cdots<n_{I}$.
Then any α in $\operatorname{Aut}(B)$ factors as $\alpha=\bigoplus_{i=1}^{I} \alpha_{i}$ where

$$
\alpha_{i}: \oplus_{j=1}^{J_{i}} B(i, j) \rightarrow \oplus_{j=1}^{J_{i}} i B(i, j)
$$

is a $*$-isomorphism.
We summarize some result that, later on, will be repeatedly used. Definitions and proofs of results mentioned can be found in [56] and [53].
Theorem (1.1.3)[30]: Any closed subgroup of a Lie group is a Lie subgroup.
Theorem (1.1.4)[30]: Let G be a Lie group of dimension n and $H \subseteq G$ be a Lie subgroup of dimension k.
(i) Then the left coset space G / H has a natural structure of a manifold of dimension $n-$ k such that the canonical quotient map $\pi: G \rightarrow G / H$, is a fiber bundle, with fiber diffeomorphic to H.
(ii) If H is a normal Lie subgroup then G / H has a canonical structure of a Lie group.

Proposition (1.1.5)[30]: Let G denote a Lie group and assume it acts smoothly on a manifold M. For $m \in M$ let $\mathcal{O}(m)$ denote its orbit and $\operatorname{Stab}(m)$ denote its stabilizer i.e.

$$
\begin{gathered}
\mathcal{O}(m)=\{g \cdot m: g \in G\}, \\
\operatorname{Stab}(m)=\{g \in G: g \cdot m=m\} .
\end{gathered}
$$

The orbit $\mathcal{O}(m)$ is an immersed submanifold of M. If $\mathcal{O}(m)$ is compact, then the map $g \mapsto$ $g . m$, is a diffeomorphism from $G / \operatorname{Stab}(m)$ onto $\mathcal{O}(m)$. (In this case we say $\mathcal{O}(m)$ is an embedded submanifold of M.)
Corollary (1.1.6)[30]: Let G be a compact Lie group and let K and L be closed subgroups of G. The subspace $K L=\{k l: k \in K, l \in L\}$ is an embedded submanifold of G of dimension

$$
\operatorname{dim} K+\operatorname{dim} L-\operatorname{dim}(L \cap K) .
$$

Proof: First of all $K L$ is compact. This follows from the fact that multiplication is continuous and both K and L are compact. Consider the action of $K \times L$ on G givenby $(k, l) . g=k g l^{-1}$. Notice that the orbit of e is precisely $K L$. By Proposition (1.1.5), $K L$ is an immersed sub-manifold diffeomorphic to $K \times L / \operatorname{Stab}(e)$. Since it is compact, it is an embedded submanifold. But $\operatorname{Stab}(e)=\{(x, x): x \in K \cap L\}$ and we conclude $\operatorname{dim} K L=\operatorname{dim}(K \times L)-\operatorname{dim} \operatorname{Stab}(e)=\operatorname{dim} K+\operatorname{dim} L-\operatorname{dim}(K \cap L)$.
Proposition (1.1.7)[30]: Let G be a compact Lie group and let H be a closed subgroup. Let π denote the quotient map onto G / H.
There are:
(i) \mathcal{N}_{G}, a compact neighborhood of e in G,
(ii) \mathcal{N}_{H}, a compact neighborhood of e in H,
(iii) $\mathcal{N}_{G / H}$, a compact neighborhood of $\pi(e)$ in G / H,
(iiii) a continuous function $s: \mathcal{N}_{G / H}(\pi(e)) \rightarrow G$ satisfying
(a) $s(\pi(e))=e \operatorname{and} \pi(s(y))=y$ for all y in $\mathcal{N}_{G / H}(\pi(e))$,
(b) The map

$$
\mathcal{N}_{H} \times \mathcal{N}_{G / H} \rightarrow \mathcal{N}_{G}, \quad(h, y) \mapsto h s_{g}(y)
$$

is a homeomorphism.

Notation (1.1.8)[30]: Whenever we take commutators they will be with respect to the ambient algebra M_{N}, in other words for a sub-algebra A in $*-\operatorname{SubAlg}\left(M_{N}\right)$

$$
A^{\prime}=\left\{x \in M_{N}: x a=a x, \text { for all } a \text { in } A\right\}
$$

Recall that $C(A)$ denotes the center of A i.e.

$$
C(A)=A \cap A^{\prime}=\{a \in A: x a=\text { axfor all } x \text { in } A\}
$$

Proposition (1.1.9)[30]: For any B_{1} in $*-\operatorname{SubAlg}\left(M_{N}\right)$ and for any B in $*-\operatorname{SubAlg}\left(B_{1}\right)$, we have

$$
\operatorname{dim} \operatorname{Stab}\left(B_{1}, B\right)=\operatorname{dim} \mathbb{U}(B)+\operatorname{dim} \mathbb{U}\left(B_{1} \cap B^{\prime}\right)-\operatorname{dim} \mathbb{U}(C(B))
$$

Proof: We'll find a normal subgroup of $\operatorname{Stab}\left(B_{1}, B\right)$, for which we can compute its dimension and that partitions $\operatorname{Stab}\left(B_{1}, B\right)$ into a finite number of cosets. Let G denote the subgroup of $\operatorname{Stab}\left(B_{1}, B\right)$ generated by $\mathbb{U}\left(B_{1} \cap B^{\prime}\right)$ and $\mathbb{U}(B)$. Since the elements of $\mathbb{U}(B)$ commute with the elements of $\mathbb{U}\left(B_{1} \cap B^{\prime}\right)$, a typical element of G looks like $v w$, where v lies in $\mathbb{U}(B)$ and w lies in $\mathbb{U}\left(B_{1} \cap B^{\prime}\right)$. Taking into account compactness of $\mathbb{U}(B)$ and $\mathbb{U}\left(B_{1} \cap B^{\prime}\right)$, we deduced G is compact.

Now we show G is normal in $\operatorname{Stab}\left(B_{1}, B\right)$. Take u an element in $\operatorname{Stab}\left(B_{1}, B\right)$. For a unitaryv in $\mathbb{U}(B)$ it is immediate that $u v u^{*}$ lies in $\mathbb{U}(B)$. For a unitary $w i n \mathbb{U}\left(B_{1} \cap B^{\prime}\right)$, the following computation shows $u w u^{*}$ belongs to $\mathbb{U}\left(B_{1} \cap B^{\prime}\right)$.
For any element b in B we have:

$$
\left(u w u^{*}\right) b=u w\left(u^{*} b u\right) u^{*}=u\left(u^{*} b u\right) w u^{*}=b\left(u w u^{*}\right)
$$

where in the second equality we used $u^{*} b u$ lies in B. In conclusion $u G u^{*}$ is contained in G for all u in $\operatorname{St}\left(B_{1}, B\right)$ i.e. G is normal in $\operatorname{Stab}\left(B_{1}, B\right)$.
As a result $\operatorname{Stab}\left(B_{1}, B\right) / G$ is a Lie group. The next step is to show $\operatorname{Stab}\left(B_{1}, B\right) / G$ is finite. Decompose B as

$$
B=\bigoplus_{i=1}^{I} \bigoplus_{j=1}^{J_{i}} \quad B(i, j)
$$

where for all i there is k_{i} such that for $1 \leq j \leq J_{i}, B(i, j)$ is $*-$ isomorphic to $M_{k_{i}}$. For the rest of our proof we fix a family, $\beta(i, j): B(i, j) \rightarrow M_{k_{i}}$, of $*$-isomorphisms.
An element u in $\operatorname{Stab}\left(B_{1}, B\right)$ defines a $*$-automorphism of B by conjugation. As a consequence, Propositions (1.1.1) and (1.1.2) imply there are permutations σ_{i} in $S_{J_{i}}$ and unitaries v_{i} in $\mathbb{U}\left(\bigoplus_{j=1}^{J_{i}} B(i, j)\right)$ such that

$$
\begin{equation*}
\forall b \in B: u b u^{*}=v \psi(b) v^{*} \tag{1}
\end{equation*}
$$

Where $v=\bigoplus_{i=1}^{I} v_{i}$ is a uitary in $\mathbb{U}(B)$ and $\psi=\bigoplus_{i=1}^{I} \psi_{\sigma_{i}}$ is a $*$-automorphism in $A u t(B)$ (the maps ψ depends on the family of $*$-isomorphisms $\beta(i, j)$ we fixed earlier). Equation (1) is telling us important information. Firstly, that ψ extends to an*-isomorphism of B_{1} and most importantly, this extension is an inner $*$-automorphism. Fix a unitary \mathbb{U}_{ψ} in $\mathbb{U}\left(B_{1}\right)$ such that $\psi(b)=A d \mathbb{U}_{\psi}(b)$ for all b in B (note that \mathbb{U}_{ψ} may not be unique but we just pick one and fix it for rest of the proof). From equation (1) we deduce there is a unitary w in $\mathbb{U}\left(B_{1} \cap B^{\prime}\right)$ satisfying $u=v \mathbb{U}_{\psi} w$. Since the number of functions ψ, that may arise from (1), is at most $J_{1}!\ldots J_{1}$!, we conclude

$$
\left|\operatorname{Stab}\left(B_{1}, B\right) / G\right| \leq J_{1}!\ldots J_{1}!
$$

Now that we know $\operatorname{Stab}\left(B_{1}, B\right) / G$ is finite we have $\operatorname{dimStab}\left(B_{1}, B\right)=\operatorname{dim} G$, and $*-$ gives the result. From Proposition (1.1.9), we get the following corollary.
Corollary (1.1.10)[30]: For any B_{1} in $*-\operatorname{SubAlg}\left(M_{N}\right)$ and any B in $*-\operatorname{SubAlg}\left(B_{1}\right)$, we have

$$
\operatorname{dim}[B]_{B_{1}}=\operatorname{dim} \mathbb{U}\left(B_{1}\right)-\operatorname{dim} \mathbb{U}\left(B^{\prime} \cap B_{2}\right)+\operatorname{dim} \mathbb{U}(C(B))-\operatorname{dim} \mathbb{U}(B)
$$

Now we focus our efforts on $Y\left(B_{2} ; B\right)$.
Proposition (1.1.11)[30]: Assume $Y\left(B_{2} ; B\right) \neq \emptyset$. Then $Y\left(B_{2} ; B\right)$ is a finite disjoint union of embedded submanifolds of $\mathbb{U}\left(M_{N}\right)$. For each one of these submanifolds there is $u \in$ $Y\left(B_{2} ; B\right)$ such that the submanifold's dimension is

$$
\operatorname{Stab}\left(M_{N}, B\right)+\operatorname{dim} \mathbb{U}\left(B_{2}\right)-\operatorname{dim} \operatorname{Stab}\left(B_{2}, u^{*} B u\right) .
$$

Using Proposition (1.1.9) the later equals

$$
\begin{equation*}
\operatorname{dim} \mathbb{U}\left(B^{\prime}\right)+\operatorname{dim} \mathbb{U}\left(B_{2}\right)-\operatorname{dim} \mathbb{U}\left(B_{2}, u^{*} B^{\prime} u\right) . \tag{2}
\end{equation*}
$$

Proof: We'll define an action on $Y\left(B_{2} ; B\right)$ which will partition $Y\left(B_{2} ; B\right)$ into a finite number of orbits, each orbit an embedded sub-manifold of dimension (2) for a corresponding unitary. Define an action of $\operatorname{Stab}\left(M_{N}, B\right) \times \mathbb{U}\left(B_{2}\right)$ on $Y\left(B_{2} ; B\right)$ via

$$
(w, v) \cdot u=w u v^{*} .
$$

For $u \in Y\left(B_{2} ; B\right)$ let $\mathcal{O}(u)$ denote the orbit of u and let \mathcal{O} denote the set of all orbits. To prove \mathcal{O} is finite consider the function

$$
\varphi: \mathcal{O} \rightarrow *-\operatorname{SubAlg}\left(B_{2}\right) / \sim_{B_{2}}, \varphi(\mathcal{O}(u))=\left[u^{*} B u\right]_{B_{2}} .
$$

Firstly, we need to show φ is well defined. Assume $u_{2} \in \mathcal{O}\left(u_{1}\right)$ and take $(w, v) \in$ $\operatorname{Stab}\left(M_{N}, B\right) \times \mathbb{U}\left(B_{2}\right)$ such that $u_{2}=w u_{1} v^{*}$. From the identities

$$
u_{2}^{*} B u_{2}=v u_{1} w^{*} B w u_{1} v^{*}=v u_{1} B u_{1} v^{*}
$$

we obtain $\left[u_{2} B u_{2}^{*}\right]_{B_{2}}=\left[u_{1} B u_{1}^{*}\right]_{B_{2}}$. Hence φ is well defined.
The next step is to show φ is injective. Assume $\varphi\left(\mathcal{O}\left(u_{1}\right)\right)=\varphi\left(\mathcal{O}\left(u_{2}\right)\right)$, for $u_{1}, u_{2} \in$ $Y\left(B_{2} ; B\right)$. Since $\left[u_{1} B u_{1}^{*}\right]_{B_{2}}=\left[u_{2} B u_{2}^{*}\right]_{B_{2}}$, we have $u_{2}^{*} B u_{2}=v u_{1} B u_{1} v^{*}$ for some $v \in$ $\mathbb{U}\left(B_{2}\right)$. But this implies $u_{1} v^{*} u_{2}^{*} \in \operatorname{Stab}\left(M_{N}, B\right)$ so if $w=u_{1} v^{*} u_{2}^{*}$ we conclude $(w, v) \cdot u_{2}=u_{1}$ which yields $\mathcal{O}\left(u_{1}\right)=\mathcal{O}\left(u_{2}\right)$. We conclude $|\mathcal{O}| \leq \mid *-\operatorname{SubAlg}\left(B_{2}\right) /$ $\sim_{B_{2}} \mid<\infty$.
Now we prove each orbit is an embedded submanifold of $\mathbb{U}\left(M_{N}\right)$ of dimension (2). Since $\operatorname{Stab}\left(M_{n}, B\right) \times \mathbb{U}\left(B_{2}\right)$ is compact, every orbit $\mathcal{O}(u)$ is compact. Thus, Proposition (1.1.5) implies $\mathcal{O}(u)$ is an embedded submanifoldof $\mathbb{U}\left(M_{N}\right)$, diffeomorphic to

$$
\left(\operatorname{Stab}\left(M_{N}, B\right) \times \mathbb{U}\left(B_{2}\right)\right) / \operatorname{Stab}(u)
$$

where

$$
\operatorname{Stab}(u)=\left\{(w, v) \in \operatorname{Stab}\left(M_{N}, B\right) \times \mathbb{U}\left(B_{2}\right):(w, v) \cdot u=u\right\} .
$$

Since

$$
(w, v) \cdot u=u \Leftrightarrow w u v^{*}=u \Leftrightarrow u^{*} w u=v,
$$

we deduce the group $\operatorname{Stab}(u)$ is isomorphic to

$$
\mathbb{U}\left(B_{2}\right) \cap\left[u^{*} \operatorname{Stab}\left(M_{N}, B\right) u\right],
$$

via the map $(w, v) \mapsto v$. A straightforward computation shows

$$
u^{*} \operatorname{Stab}\left(M_{N}, B\right) u=\operatorname{Stab}\left(M_{N}, u^{*} B u\right)
$$

for any $u \in \mathbb{U}\left(M_{N}\right)$. Hence, for any $u \in Y\left(B_{2} ; B\right), \operatorname{dim} \mathcal{O}(u)=\operatorname{dim} \operatorname{Stab}\left(M_{N}, B\right)+$ $\mathbb{U}\left(B_{2}\right)-\operatorname{dim} \mathbb{U}\left(B_{2}\right) \cap \operatorname{Stab}\left(M_{N}, u^{*} B u\right)$. Lastly, one can check $\mathbb{U}\left(B_{2}\right) \cap$ $\operatorname{Stab}\left(M_{N}, u^{*} B u\right)=\operatorname{Stab}\left(B_{2}, u^{*} B u\right)$.
Lemma (1.1.12)[30]: Suppose $\varphi: A_{1} \rightarrow A_{2}$ is a unital *-homomorphism and A_{i} is isomorphic to $\bigoplus_{j=1}^{l_{i}} M_{k_{i}(j)},(i=1,2)$. Then φ is determined, up to unitary in A_{2}, by on $l_{2} \times l_{1}$ matrix, written $\mu=\mu(\phi)=\mu\left(A_{2}, A_{1}\right) \quad$, having nonnegative integer entries such that

$$
\mu\left[\begin{array}{c}
k_{1}(1) \\
\vdots \\
k_{1}\left(l_{1}\right)
\end{array}\right]=\left[\begin{array}{c}
k_{2}(1) \\
\vdots \\
k_{2}\left(l_{2}\right)
\end{array}\right] .
$$

We call this the matrix of partial multiplicities. In the special case when φ is a unital $*-$ representation of A_{1} into M_{N}, μ is a row vector and this vector is called the multiplicity of the representation. One constructs μ as follows: decompose A_{p} as

$$
A_{p}=\bigoplus_{j=1}^{l_{p}} A_{p}(j)
$$

where each $A_{p}(j)$ is simple, $p=1,2,1 \leq j \leq l_{p}$. Taking projections, π induces unital $*-$ representations $\pi_{i}: A_{1} \rightarrow A_{2}(i), 1 \leq i \leq l_{2}$. But up to unitary equivalence, π_{i} equals

$$
\underbrace{\operatorname{id}_{A_{1}(1)} \oplus \ldots \oplus \mathrm{id}_{A_{1}(1)}}_{m_{i}, 1-\text { times }} \oplus \ldots \oplus \underbrace{}_{m_{i}, l_{1}-\text { times }} \mathrm{id}_{A_{1}\left(l_{1}\right)} \oplus \ldots \oplus \mathrm{id}_{A_{1}\left(l_{1}\right)})
$$

for some nonnegative integer $m_{i, j}, 1 \leq j \leq l_{1}$. Set $\mu[i, j]:=m_{i, j}$. In particular, $\mu[i, j]$ equals the rank of $\pi_{i}(p) \in A_{2}(i)$, where p is a minimal projection in $A_{1}(j)$. Clearly, π is injective if and only if for all j there is i such that $\mu[i, j] \neq 0$.
Furthermore, the C^{*}-subalgebra

$$
A_{2} \cap \varphi\left(A_{1}\right)^{\prime}=\left\{x \in A_{2}: x \varphi(a)=\varphi(a) x \text { for all } a \in A_{1}\right\}
$$

is*-isomorphic to $\bigoplus_{i=1}^{l_{2}} \bigoplus_{j=1}^{l_{1}} M_{\mu[i, j]}$ and if we have morphisms $A_{1} \rightarrow A_{2} \rightarrow A_{3}$, then $\mu\left(A_{3}, A_{2}\right) \mu\left(A_{2}, A_{1}\right)=\mu\left(A_{3}, A_{1}\right)$ for the corresponding matrices.

Our next task is to show $d(B)<N^{2}$, for abelian $B \neq C$. We prove it by cases, so let us start.
Lemma (1.1.13)[30]: Assume B_{i} is $*$-isomorphic to $M_{k_{1}},(i=1,2)$ and let $k=$ $\operatorname{gcd}\left(k_{1}, k_{2}\right)$. Take B a unital C^{*}-subalgebra of B_{1} such that it is unitarily equivalent to a C^{*}-subalgebra of B_{2}. Then there is an injective unital $*-$ representation of B into M_{k}.
Proof: Take u in $Y\left(B_{2} ; B\right)$ so that $u^{*} B u \subseteq B_{2}$. Let $m_{i}:=\mu\left(M_{N}, B_{i}\right)$, so that $m_{i} k_{i}=$ $N,(i=1,2)$. Find positive integers p_{1} and p_{2} such that $k_{1}=k p_{1}$ and $k_{2}=k p_{2}$ Assume B is $*-$ isomorphic to $\bigoplus_{j=1}^{l} M_{n_{j}}$.
To prove the result it is enough to show there are positive integers $(m(1), \ldots m(l))$ such that

$$
n_{1} m(1)+\cdots+n_{l} m(l)=k
$$

Let

$$
\mu\left(B_{1}, B\right)=\left[m_{1}(1), \ldots, m_{1}(l)\right] \mu\left(B_{2}, u^{*} B u\right)=\left[m_{2}(1), \ldots, m_{2}(l)\right] .
$$

Since $\mu\left(M_{N}, B_{1}\right) \mu\left(B_{1}, B\right)=\mu\left(M_{N}, B_{2}\right) \mu\left(B_{2}, u^{*} B u\right)$ we deduce that $m_{1} m_{1}(j)=$ $m_{2} m_{2}(j)$ for all $1 \leq j \leq l$. Multiplying by k and using $N=m_{1} k_{1}=m_{2} k_{2}$ we conclude

$$
\frac{N}{p_{1}} m_{1}(j)=k m_{1} m_{1}(j)=k m_{2} m_{2}(j)=\frac{N}{p_{2}} m_{2}(j)
$$

so $p_{2} m_{1}(j)=p_{1} m_{2}(j)$. Since $\operatorname{gcd}\left(p_{1}, p_{2}\right)=1$, the number $\frac{m_{1}(j)}{p_{1}}=\frac{m_{2}(j)}{p_{2}}$ is a positive integer whose value we name $m(j)$. From

$$
k p_{1}=k_{1}=\sum_{j=1}^{l} n_{j} m_{1}(j)=\sum_{j=1}^{l} n_{j} m(j) p_{1}
$$

we conclude $k=\sum_{j=1}^{l} n_{j} m(j) p_{1}$.
Lemma (1.1.14)[30]: Fix a positive integer n and let r_{1}, \ldots, r_{n} be positive real numbers. Then

$$
\min \left\{\left.\sum_{j=1}^{n} \frac{x_{j}^{2}}{r_{j}} \right\rvert\, \sum_{j=1}^{n} x_{j}=1\right\}=\frac{1}{\sum_{j=1}^{n} r_{j}}
$$

where the minimum is taken over all n-tuples of real numbers that sum up to 1 .
Proposition (1.1.15)[30]: Assume B_{1} and B_{2} are simple. Take $B \neq \mathbb{C}$ an abelian unital C^{*} subalgebra of B_{1}, that is unitarily equivalent to a C^{*}-subalgebra of B_{2}. Then $d(B)<N^{2}$.
Lemma (1.1.16)[30]: For an integer $k \geq 2$ define

$$
h(x, y)=2 x y-\left(1+\frac{1}{k^{2}}\right) y^{2}-\frac{1}{2} x^{2}
$$

Then

$$
\max \{h(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1 / 2\}=\frac{1}{4}-\frac{1}{4 k^{2}}
$$

Proposition (1.1.17)[30]: Suppose $\operatorname{dim} C\left(B_{1}\right) \geq 2$ and B_{1} is $*$-isomorphic to

$$
\begin{equation*}
M_{N / \operatorname{dim} C\left(B_{1}\right)} \oplus \ldots \oplus M_{N / \operatorname{dim} C\left(B_{1}\right)} \tag{3}
\end{equation*}
$$

Assume one of the following cases holds:
(i) $\operatorname{dim} C\left(B_{2}\right)=1$,
(ii) B_{1} is*-isomorphic to

$$
M_{N / 2} \oplus M_{N / 2}
$$

B_{2} is*-isomorphic to

$$
M_{N / 2} \oplus M_{N /(2 \mathrm{k})}
$$

where $k \geq 2$.
(iii) $\operatorname{dim} C\left(B_{2}\right) \geq 3 \operatorname{and} B_{2}$ is $*$-isomorphic to

$$
M_{N / \operatorname{dim} C\left(B_{2}\right)} \oplus \ldots \oplus M_{N / \operatorname{dim} C\left(B_{2}\right)}
$$

Then for any $B \neq \mathbb{C}$ an abelian unital C^{*}-subalgebra of B_{1} that is unitarily equivalent to a C^{*}-subalgebraof B_{2}, we have that $d(B)<N^{2}$.
Lemma (1.1.18)[30]: Take $B \neq \mathbb{C}$ a unital C^{*}-subalgebra of B_{1} that is unitarily equivalent to a C^{*}-subalgebra of B_{2}. If $\operatorname{dim} \mathbb{U}\left(B_{1}\right)+\operatorname{dim} \mathbb{U}\left(B_{2}\right) \leq N^{2}, B$ is simple and C in $*-$ $\operatorname{SubAlg}(B)$ is $*$-isomorphic to \mathbb{C}^{2}, then $d(B) \leq d(C)$.
Proof: Assume B is $*$-isomorphic to M_{k} and let m denote the multiplicity of B in M_{N}. Thus we must have $k m=N$. Take a unitary u in the submanifold of maximum dimension in $Y\left(B_{2} ; B\right)$, so that $d(B)$ is the sum of the terms
$S_{1}(B):=\operatorname{dim} \mathbb{U}\left(B_{1}\right)-\operatorname{dim} \mathbb{U}\left(B_{1} \cap B^{\prime}\right)$,
$S_{2}(B):=\operatorname{dim} \mathbb{U}\left(B_{2}\right)-\operatorname{dim} \mathbb{U}\left(B_{2} \cap u^{*} B^{\prime} u\right)$,
$S_{3}(B):=\operatorname{dim} \mathbb{U}\left(B^{\prime}\right)$,
$S_{4}(B):=\operatorname{dim} \mathbb{U}\left(B \cap B^{\prime}\right)-\operatorname{dim} \mathbb{U}(B)$.
and let v lie in the submanifold of maximum dimension in $Y\left(B_{2}, C\right)$ so that $d(C)$ is the sum of the terms
$S_{1}(C):=\operatorname{dim} \mathbb{U}\left(B_{1}\right)-\operatorname{dim} \mathbb{U}\left(B_{1} \cap C^{\prime}\right)$,
$S_{2}(C):=\operatorname{dim} \mathbb{U}\left(B_{2}\right)-\operatorname{dim} \mathbb{U}\left(B_{2} \cap v^{*} C^{\prime} v\right)$,
$S_{3}(C):=\operatorname{dim} \mathbb{U}\left(C^{\prime}\right)$.
Clearly, $S_{4}(B)=1-k^{2}$. We write

$$
B_{1} \simeq \bigoplus_{i=1}^{l_{1}} M_{k_{1}(i),}, B_{2} \simeq \bigoplus_{i=1}^{l_{2}} M_{k_{2}(i)}
$$

and

$$
\delta\left(B_{1}\right)=\left[k_{1}(1), \ldots, k_{1}\left(l_{1}\right)\right]^{t}, \delta\left(B_{2}\right)=\left[k_{2}(1), \ldots, k_{2}\left(l_{2}\right)\right]^{t} .
$$

From definition of multiplicity and the fact that it is invariant under unitary equivalence we get

$$
\begin{gathered}
\mu\left(B_{1}, B\right) k=\delta\left(B_{1}\right), \\
\mu\left(B_{2}, u^{*} B u\right) k=\delta\left(B_{2}\right), \\
\mu\left(M_{N}, B_{1}\right) \delta\left(B_{1}\right)=\mu\left(M_{N}, B_{2}\right) \delta\left(B_{2}\right)=N, \mu\left(M_{n}, B_{1}\right) \mu\left(B_{1}, B\right)=\mu\left(M_{N}, B_{2}\right) \mu\left(B_{2}, u^{*} B u\right) \\
=m .
\end{gathered}
$$

From Lemma (1.1.12) and equation (4) we get

$$
\begin{equation*}
\operatorname{dim} \mathbb{U}\left(B_{1} \cap B^{\prime}\right)=\frac{1}{k^{2}} \operatorname{dim} \mathbb{U}\left(B_{1}\right) . \tag{5}
\end{equation*}
$$

Hence

$$
S_{1}(B)=\left(1-\frac{1}{k^{2}}\right) \operatorname{dim} \mathbb{U}\left(B_{1}\right) .
$$

Similarly

$$
S_{2}(B)=\left(1-\frac{1}{k^{2}}\right) \operatorname{dim} \mathbb{U}\left(B_{2}\right) .
$$

Now it is the turn of C. To ease notation let

$$
\mu(B, C)=\left[x_{1}, x_{2}\right] .
$$

Notice that $x_{1},+x_{2}=k$.We claim

$$
S_{1}(C)=\left(1-\frac{x_{1}^{2}+x_{2}^{2}}{k^{2}}\right) \operatorname{dim} \mathbb{U}\left(B_{1}\right) .
$$

Using $\mu\left(B_{1}, C\right)=\mu\left(B_{1}, B\right) \mu(B, C)$ we get

$$
\operatorname{dim} \mathbb{U}\left(B_{1} \cap C^{\prime}\right)=\left(x_{1}^{2}+x_{2}^{2}\right) \operatorname{dim} \mathbb{U}\left(B_{1} \cap B^{\prime}\right) .
$$

Furthermore using (5) we obtain

$$
\operatorname{dim} \mathbb{U}\left(B_{1} \cap C^{\prime}\right)=\frac{x_{1}^{2}+x_{2}^{2}}{k^{2}} \operatorname{dim} \mathbb{U}\left(B_{1}\right) .
$$

Hence our claim follows from definition of $S_{1}(C)$. Similarly

$$
S_{2}(C)=\left(1-\frac{x_{1}^{2}+x_{2}^{2}}{k^{2}}\right) \operatorname{dim} \mathbb{U}\left(B_{2}\right) .
$$

Lastly from $\mu\left(M_{N}, C\right)=\left[m x_{1}, m x_{2}\right]$ and $m k=N$ we get

$$
S_{3}(C)=\left(x_{1}^{2}+x_{2}^{2}\right) \frac{N^{2}}{k^{2}} S_{3}(B)=\frac{N^{2}}{k^{2}}
$$

To prove $d(B) \leq d(C)$ we'll show

$$
\begin{equation*}
S_{1}(B)-S_{1}(C)+S_{2}(B)-S_{2}(C)+S_{4}(B) \leq S_{3}(C)-S_{3}(B) . \tag{6}
\end{equation*}
$$

Using the description of each summand we have that left hand side of (6) equals

$$
\frac{x_{1}^{2}+x_{2}^{2}-1}{k^{2}}\left(\operatorname{dim} \mathbb{U}\left(B_{1}\right)+\operatorname{dim} \mathbb{U}\left(B_{2}\right)\right)+1-k^{2} .
$$

The right hand side of (6) equals

$$
\frac{x_{1}^{2}+x_{2}^{2}-1}{k^{2}} N^{2} .
$$

But x_{1} and x_{2} are strictly positive, because C is a unital subalgebra of B. Hence we can cancel $x_{1}^{2}+x_{2}^{2}-1$ and finish the proof by using that $1-\delta(B)^{2}<0$ and the assumption $\operatorname{dim} \mathbb{U}\left(B_{1}\right)+\operatorname{dim} \mathbb{U}\left(B_{2}\right) \leq N^{2}$.

We recall an important perturbation result that can be found in [27].

Lemma (1.1.19)[30]: Let A be a finite dimensional C^{*}-algebra. Given any positive number ε there is a positive number $\delta=\delta(\varepsilon)$ so that whenever B and C are unital C^{*} subalgebras of A and such that C has a system of matrix units $\left\{e_{C}(s, i, j)\right\}_{s, i, j}$, satisfying $\operatorname{dist}\left(e_{C}(s, i, j), B\right)<\delta$ for all s, i and j, then there is a unitary u in $\mathbb{U}\left(C^{*}(B, C)\right)$ with $\|u-1\|<\varepsilon$ so that $u C u^{*} \subseteq B$.
Notation (1.1.20)[30]: For an element x in M_{N} and a positive number $\varepsilon, \mathcal{N}_{\varepsilon}(x)$ denotes the open ε-neighborhood around x (i.e. open ball of radius ε centered at x), where the distance is from the operator norm in M_{N}.
Lemma (1.1.21)[30]: Take B in $*-\operatorname{SubAlg}\left(B_{1}\right)$ and assume $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$ is nonempty. Then the function

$$
\begin{align*}
& Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \rightarrow[B]_{B_{1}} \tag{7}\\
& u \mapsto u B_{2} u^{*} \cap B_{1}
\end{align*}
$$

is continuous.
Proof: Assume B is $*$-isomorphic to

$$
\stackrel{l}{\oplus}{ }_{s=1} M_{k_{s}} .
$$

First we recall that the topology of $[B]_{B_{1}}$ is induced by the bijection

$$
\beta:[B]_{B_{1}} \rightarrow \frac{\mathbb{U}\left(B_{1}\right)}{\operatorname{Stab}\left(B_{1}, B\right)}, \beta\left(u B u^{*}\right)=u \operatorname{Stab}\left(B_{1}, B\right) .
$$

For convenience let $\pi: \mathbb{U}\left(B_{1}\right) \rightarrow \mathbb{U}\left(B_{1}\right) / \operatorname{Stab}\left(B_{1}, B\right)$ denote the canonical quotient map. Pick u_{0} in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$. With no loss of generality we may assume $B=u_{0} B_{2} u_{0}^{*} \cap B_{1}$. We prove the result by contradiction. Suppose the function in (7) is not continuous at u_{0}. Then there is a sequence $\left(u_{k}\right)_{k \geq 1} \subset Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$ and an open neighborhood N of B in $[B]_{B_{1}}$ such that
(i) $\lim _{k} u_{k}=u_{0}$,
(ii) for all $k, u_{k} B_{2} u_{k}^{*} \cap B_{1} \notin \mathcal{N}$.

On the other hand, let $\varepsilon>0$ be such that $\pi\left(\mathcal{N}_{\varepsilon}\left(1_{B_{1}}\right)\right) \subseteq \beta(\mathcal{N})$. Let $\left\{e_{k}(s, i, j)\right\}_{1 \leq s \leq l, 1 \leq i, j \leq k_{s}}$ denote a system of matrix units for $u_{k} B_{2} u_{k}^{*} \cap B_{1}$. Fix elements $f_{k}(s, i, j)$ in B_{2} such that $e_{k}(s, i, j)=u_{k} f_{k}(s, i, j) u_{k}^{*}$.Since B_{2} is finite dimensional, passing to a subsequence if necessary, we may assume that $\lim _{k} f_{k}(s, i, j)=f(s, i, j)$, for all s, i and j. Using property (i) of the sequence $\left(u_{k}\right)_{k \geq 1}$, we deduce

$$
\lim _{k} e_{k}(s, i, j)=\lim _{k} u_{k} f_{k}(s, i, j) u_{k}^{*}=u_{0} f(s, i, j) u_{0}^{*}
$$

Hence the element $e(s, i, j)=u_{0} f(s, i, j) u^{*}$ belongs to $u_{0} B_{1} u_{0}^{*} \cap B_{1}=B$. Use Lemma (1.1.13) and take δ_{1} positive such that whenever C is a subal-gebra in *$\operatorname{SubAlg}\left(B_{1}\right)$ having a system of matrix units $\left\{e_{C}(s, i, j)\right\}_{s, i, j}$ satisfying $\operatorname{dist}\left(e_{C}(s, i, j), B\right)<$ δ_{1}, for all s, i and j, then there is a unitary Q in $U\left(B_{1}\right)$ such that $\left\|Q-1_{B_{1}}\right\|<\varepsilon$ and $Q C Q^{*} \subseteq B$. Take k such that $\left\|e_{k}(s, i, j)-e(s, i, j)\right\|<\delta_{1}$ for all s, i and j. This implies $\operatorname{dist}\left(e_{C}(s, i, j), B\right)<\delta_{1}$ for all s, i and j. We conclude there is a unitary Q in $\mathbb{U}\left(B_{1}\right)$ such that $\left\|Q-1_{B_{1}}\right\|<\varepsilon$ and $Q^{*}\left(u_{k} B_{2} u_{k}^{*} \cap B_{1}\right) Q \subseteq B$. But $\operatorname{dim} B=\operatorname{dim} u_{k} B_{2} u_{k}^{*} \cap B_{1}=$ $\operatorname{dim} Q^{*}\left(u_{k} B_{2} u_{k}^{*} \cap B_{1}\right) Q$,
where in the first equality we used that u_{k} lies in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$. Hence $Q^{*}\left(u_{k} B_{2} u_{k}^{*} \cap\right.$ $\left.B_{1}\right) Q=B$. As a consequence,

$$
\beta\left(u_{k} B_{2} u_{k}^{*} \cap B_{1}\right)=\underset{8}{\beta\left(Q B Q^{*}\right)}=\pi(Q) \in \beta(N) .
$$

But the latter contradicts property (ii) of $\left(u_{k}\right)_{k \geq 1}$.
Lemma (1.1.22)[30]: For B in $*-\operatorname{SubAlg}(B)$, the function $c:[B]_{B_{1}} \rightarrow[C(B)]_{B_{1}}$ given by $c\left(u B u^{*}\right)=u C(B) u^{*}$ is continuous.
Proof: First, we must show the function c is well defined. In other words we have to show $\operatorname{Stab}\left(B_{1}, B\right) \subseteq \operatorname{Stab}\left(B_{1}, C(B)\right)$. But this follows directly from the fact that any u in $\operatorname{Stab}\left(B_{1}, B\right)$ defines a $*$-automorphism of B and any $*$-automorphism leaves the center fixed. Since $[B]_{B_{1}}$ and $[C(B)]_{B_{1}}$ are homeomorphic to $\mathbb{U}\left(B_{1}\right) / \operatorname{Stab}\left(B_{1}, B\right)$ and $\mathbb{U}\left(B_{1}\right) /$ $\operatorname{Stab}\left(B_{1}, C(B)\right)$ respectively, it follows that c is continuous if and only if the function $\tilde{c}: \mathbb{U}\left(B_{1}\right) / \operatorname{Stab}\left(B_{1}, B\right) \rightarrow \mathbb{U}\left(B_{1}\right) / \operatorname{Stab}\left(B_{1}, C(B)\right)$ given by $\tilde{c}\left(u \operatorname{Stab}\left(B_{1}, B\right)\right)=$ $u \operatorname{Stab}\left(B_{1}, C(B)\right)$ is continuous. But the spaces $\mathbb{U}\left(B_{1}\right) / \operatorname{Stab}\left(B_{1}, B\right)$ and $\mathbb{U}\left(B_{1}\right) /$ $\operatorname{Stab}\left(B_{1}, C(B)\right)$ have the quotient topology induced by the canonical projections

$$
\pi_{B}: \mathbb{U}\left(B_{1}\right) \rightarrow \operatorname{Stab}\left(B_{1}, B\right), \pi_{C}(B): \mathbb{U}\left(B_{1}\right) \rightarrow \mathbb{U}\left(B_{1}\right) / \operatorname{Stab}\left(B_{1}, C(B)\right)
$$

Thus \tilde{c} is continuous if and only if $\pi_{B} \circ \tilde{c}$ is continuous. But $\pi_{B} \circ \tilde{c}=\pi_{C(B)}$, which is indeed continuous.
We are ready to find local parameterizations of $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$.
Proposition (1.1.23)[30]: Take B a unital C^{*}-subalgebra in B_{1} that is unitarily equivalent to a C^{*}-subalgebra of B_{2}. Fix an element u_{0} in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$. Then there is a positive number r and a continuous injective function

$$
\Psi: N_{r}\left(u_{0}\right) \cap Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \rightarrow \mathbb{R}^{d(C(B))}
$$

Proof: Using that $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)=Z\left(B_{1}, B_{2} ;\left[u_{0} B_{2} u_{0}^{*} \cap B_{1}\right]_{B_{1}}\right)$, with no loss of generality we may assume $u_{0} B_{2} u_{0}^{*} \cap B_{1}=B$. Now, we use the manifold structure of $[C(B)]_{B_{1}}$ and $Y\left(B_{2} ; C(B)\right)$ to construct Ψ. Note that if $Y\left(B_{2}, B\right)$ is nonempty then $Y\left(B_{2}, C(B)\right)$ is nonempty as well. Let d_{1} denote the dimension of $[C(B)]_{B_{1}}$ and let d_{2} denote the dimension of the sub-manifold of $Y\left(B_{2} ; C(B)\right)$ that contains u_{0}. Of course, we have $d_{1}+d_{2} \leq d(C(B))$.
We use the local cross section result from previous section to parametrize $[C(B)]_{B_{1}}$. To ease notation take $G=\mathbb{U}\left(B_{1}\right), H=\operatorname{Stab}\left(B_{1}, C(B)\right)$ and let π denote the canonical quotient map from G onto the left-cosets of H. By Proposition (1.1.7) there are
(i) \mathcal{N}_{G}, a compact neighborhood of 1 in G,
(ii) \mathcal{N}_{H}, a compact neighborhood of 1 in H,
(iii) $\mathcal{N}_{G / H}$, a compact neighborhood of $\pi(1)$ in G / H,
(iiii) a continuous function s: $\mathcal{N}_{G / H} \rightarrow \mathcal{N}_{G}$ satisfying
(a) $s(\pi(1))=1$ and $\pi(s(\pi(g)))=\pi(g)$ whenever $\pi(g)$ lies in $\mathcal{N}_{G / H}$,
(b) the function

$$
\begin{gathered}
\mathcal{N}_{H} \times \mathcal{N}_{G / H} \rightarrow \mathcal{N}_{G}, \\
(h, \pi(g)) \mapsto h s(\pi(g)),
\end{gathered}
$$

is an homeomorphism.
Since G / H is a manifold of dimension d_{1}, we may assume there is a continuous injective $\operatorname{map} \Psi_{1}: \mathcal{N}_{G / H} \rightarrow \mathbb{R}^{d_{2}}$.
Parametrizing $Y\left(B_{2}, C(B)\right)$ is easier. Since $u_{0} B_{2} u_{0}^{*} \cap B_{1}=B, u_{0}$ belongs to $Y\left(B_{2}, B\right)$. Take r_{1} positive and a diffeomorphism Ψ_{2} from $Y\left(B_{2}, C(B)\right) \cap \mathcal{N}_{r_{1}}\left(u_{0}\right)$ onto an open subset of $\mathbb{R}^{d_{2}}$.

Now that we have fixed parametrizations Ψ_{1} and Ψ_{2}, we can parametrize $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$ around u_{0}. Recall $[C(B)]_{B_{1}}$ has the topology induced by the bijection $\beta:[C(B)]_{B_{1}} \rightarrow$ G / H, given by $\beta\left(u C(B) u^{*}\right)=\pi(u)$.The function

$$
Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \rightarrow[C(B)]_{B_{1}}, u \mapsto c\left(u B_{2} u^{*} \cap B_{1}\right)
$$

is continuous by Lemma (1.1.21) and Lemma (1.1.22). Hence there is δ_{2} positive such that $\beta\left(c\left(u B_{2} u^{*} \cap B_{1}\right)\right)$ belongs to $\mathcal{N}_{G / H}$, whenever u lies in the intersection $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \cap$ $\mathcal{N}_{\delta_{2}}\left(u_{0}\right)$. For a unitary u in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \cap \mathcal{N}_{\delta_{2}}\left(u_{0}\right)$ define

$$
q(u):=s\left(\beta\left(c\left(u B_{2} u^{*} \cap B_{1}\right)\right) .\right.
$$

We note that $q\left(u_{0}\right)=1, q(u)$ lies in G and that the map $u \mapsto q(u)$ is continuous. The main property of $q(u)$ is that

$$
\begin{equation*}
\left(c\left(u B_{2} u^{*} \cap B_{1}\right)=q(u) c(B) q(u)^{*}\right. \tag{8}
\end{equation*}
$$

Indeed, for u in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \cap \mathcal{N}_{\delta_{2}}\left(u_{0}\right)$ there is a unitary v in G with the property $u B_{2} u^{*} \cap B_{1}=v B v^{*}$. Hence $c\left(u B_{2} \cap B_{1}\right)=v C(B) v^{*}$. Since
$\left\|u-u_{0}\right\|<\delta_{2}, \beta\left(c\left(u B_{2} u^{*} \cap B_{1}\right)\right)$ lies in $\mathcal{N}_{G / H}$. Hence $\beta\left(c\left(u B_{2} u^{*} \cap B_{1}\right)=\pi(v)\right.$ lies in $\mathcal{N}_{G / H}$. Using the fact that s is a local section on $\mathcal{N}_{G / H}$ (property (ia) above) we deduce $\pi(s(\pi(v)))=\pi(v)$.
On the other hand, by definition of $q(u)$ we have

$$
\pi(s(\pi(v)))=\pi\left(s\left(\beta\left(u B_{2} u^{*} \cap B_{1}\right)\right)\right)=\pi(q(u))
$$

As a consequence, $\pi(v)=\pi(q(u))$ i.e. $v^{*} q(u)$ belongs to $\operatorname{Stab}\left(B_{1}, B\right)$ which is just another way to say (8) holds. At last we are ready to find r. Continuity of the map $u \mapsto$ $q(u)$ gives a positive δ_{3}, less that δ_{2}, such that $\|q(u)-1\|<\frac{\delta_{1}}{2}$ whenever u lies in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \cap \mathcal{N}_{\delta_{3}}\left(u_{0}\right)$. Define $r=\min \left\{\frac{\delta_{1}}{2}, \delta_{3}\right\}$. The first thing we notice is that $q(u)^{*} u$ belongs to $Y\left(B_{2} ; C(B)\right) \cap \mathcal{N}_{\delta_{1}}\left(u_{0}\right)$ whenever u lies in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \cap$ $\mathcal{N}_{\delta}\left(u_{0}\right)$. Indeed, from

$$
q(u) c(B) q(u)^{*}=c\left(u B_{2} u^{*} \cap B_{1}\right) \subseteq u B_{2} u^{*}
$$

we obtain $q(u)^{*} u \in Y\left(B_{2} ; c(B)\right)$ and a standard computation, using $\|q(u)-1\|<\frac{\delta_{2}}{2}$, shows $\left\|q(u)^{*} u-u_{0}\right\|<\delta_{1}$. Hence we are allowed to take $\Psi_{2}\left(q(u)^{*} u\right)$. Lastly, for u in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \cap \mathcal{N}_{\delta}\left(u_{0}\right)$ define

$$
\Psi(u):=\left(\Psi_{1}\left(\beta\left(c\left(u B_{2} u^{*} \cap B_{1}\right)\right)\right), \Psi_{2}\left(q(u)^{*} u\right)\right) .
$$

It is clear that Ψ is continuous.
Now we show Ψ is injective. If $\Psi\left(u_{1}\right)=\Psi\left(u_{2}\right)$, for two element u_{1} and u_{2} in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$, then

$$
\begin{gather*}
\Psi_{1}\left(\beta\left(c\left(u_{1} B_{2} u_{1}^{*} \cap B_{1}\right)\right)\right)=\Psi_{1}\left(\beta\left(c\left(\left(u_{2} B_{2} u_{2}^{*} \cap B_{1}\right)\right)\right)\right) \tag{9}\\
\left.\Psi_{2}\left(q\left(u_{1}\right) u_{1}^{*}\right)=\Psi_{2}\left(q\left(u_{2}\right) u_{2}^{*}\right)\right) \tag{10}
\end{gather*}
$$

From (9) and definition of $q(u)$ it follows that $q\left(u_{1}\right)=q\left(u_{2}\right)$ and from equation (10) we conclude $u_{1}=u_{2}$.
Proposition (1.1.24)[30]: Take B a unital C^{*}-subalgebra of B_{1} such that it is unitarily equivalent to a C^{*}-subalgebra of B_{2}. Fix an element u_{0} in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$.
There is a positive number r and a continuous injective function

$$
\Psi: \mathcal{N}_{r}\left(u_{0}\right) \cap Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \rightarrow \mathbb{R}^{d(B)}
$$

The proof of Proposition (1.1.24) is similar to that of Proposition (1.1.23), so we omit it. We now begin showing density in $\mathbb{U}\left(M_{N}\right)$ of certain sets of unitaries.

Lemma (1.1.25)[30]: Assume B_{1} and B_{2} are simple. If $B \neq C$ is a unital C^{*}-subalgebra of B_{1} and it is unitarily equivalent to a C^{*}-subalgebra of B_{2} then $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)^{c}$ is dense.
Proof: Firstly we notice that $\operatorname{dim} \mathbb{U}\left(B_{1}\right)+\operatorname{dim} \mathbb{U}\left(B_{2}\right)<N^{2}$. Indeed, if B_{i} is *-isomorphic to $M_{k_{i}}, i=1,2$ and $m_{i}=\mu\left(M_{N}, B_{i}\right)$ then $\operatorname{dim} \mathbb{U}\left(B_{1}\right)+\operatorname{dim} \mathbb{U}\left(B_{2}\right)=N^{2}\left(1 / m_{2}^{2}+\right.$ $\left.1 / m_{2}^{2}\right)<N^{2}$. Secondly we will prove that for anyu in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$ there is a natural number d_{u}, with $d_{u}<N^{2}$, a positive number ru and a continuous injective function Ψ_{u} : $\mathcal{N}_{r_{u}}(u) \cap Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right) \rightarrow \mathbb{R}^{d_{u}}$. We will consider two cases.
Case (i): B is not simple. Take $d_{u}=d(C(B))$. Since $C(B) \neq \mathbb{C}$, Proposition (1.1.14) implies $d(C(B))<N^{2}$. Take r_{u} and Ψ_{u} as required to exist by Proposition (1.1.23)
Case (ii): B is simple. Take $d_{u}=d(B)$. Since $B \neq \mathbb{C}, B$ contains a unital C^{*}-subalgebra isomorphic to \mathbb{C}^{2}, call it C. Lemma (1.1.12) implies $d(B) \leq d(C)$ and implies $d(C)<$ N^{2}. Take r_{u} and Ψ_{u} the positive number and continuous injective function from Proposition (1.1.24)
We will show that $U \cap Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)^{c} \neq \emptyset$, for any nonempty open subset $U \subseteq$ $\mathbb{U}\left(M_{N}\right)$.First notice that if the intersection $U \cap\left(\mathrm{U}_{u \in Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)} \mathcal{N}_{r_{u}}(u)\right)^{c}$ is nonempty then we are done. Thus we may assume $U \subseteq\left(\cup_{u \in Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)} \mathcal{N}_{r_{u}}(u)\right)$. Furthermore, by making U smaller, if necessary, we may assume there is u in $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$ such that $U \subseteq \mathcal{N}_{r_{u}}(u)$.
For sake of contradiction assume $U \subseteq Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$. We may take an open subset V, contained in U, small enough so that V is diffeomorphic to an open connected set \mathcal{O} of $\mathbb{R}^{N^{2}}$. Let $\varphi: \mathcal{O} \rightarrow V$ be a diffeomorphism. It follows we have a continuous injective function

$$
\mathbb{R}^{N^{2}} \supseteq \mathcal{O} \xrightarrow{\varphi} V \xrightarrow{\psi_{u}} \mathbb{R}^{d_{u}} \leftrightarrow \mathbb{R}^{N^{2}}
$$

By the Invariance of Domain Theorem, the image of this map must be open in $\mathbb{R}^{N^{2}}$. But this is a contradiction since the image is contained in $\mathbb{R}^{d_{u}}$ and $d_{u}<N^{2}$. We conclude $U \cap$ $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)^{c} \neq \emptyset$
Lemma (1.1.26)[30] :Suppose $\operatorname{dim} C\left(B_{1}\right) \geq 2$ and B_{1} is *-isomorphic to

$$
M_{N / \operatorname{dim} C\left(B_{1}\right)} \oplus \ldots \oplus M_{N / \operatorname{dim} C\left(B_{1}\right)} .
$$

Assume one of the following cases holds:
(i) $\operatorname{dim} C\left(B_{2}\right)=1$,
(ii) B_{1} is*-isomorphic to

$$
M_{N / 2} \oplus M_{N / 2}
$$

and B_{2} is *-isomorphic to

$$
M_{N / 2} \oplus M_{N /(2 k)}
$$

where $k \geq 2$.
(i) $\operatorname{dim} C\left(B_{2}\right) \geq 3 \operatorname{and} B_{2}$ is $*$-isomorphic to

$$
(\mathrm{iii}) M_{N / \operatorname{dim} C\left(B_{2}\right)} \oplus \ldots \oplus M_{N / \operatorname{dim} C\left(B_{2}\right)} .
$$

Then for any $B \neq \mathbb{C}$ unital i -subalgebra of B_{1} such that it is unitarily equivalent to a i subalgebra of $B_{2}, Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)^{c}$ is dense.
Proof: The proof of Lemma (1.1.26) is exactly as the proof of (1.1.25) but using Lemma (1.1.17) instead of Lemma (1.1.14)

At this point if the sets $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$ were closed one could conclude immediately that $\Delta\left(B_{1}, B_{2}\right)$ is dense. Unfortunately they may not be closed. What saves the day is the fact
that we can control the closure of $Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)$ with sets of the same form i.e. sets like $Z\left(B_{1}, B_{2} ;[C]_{B_{1}}\right)$ for a suitable finite family of subalgebras C.We make this statement clearer with the definition of an order on $*-\operatorname{SubAlg}\left(B_{1}\right)$.
Definition (1.1.27)[30]: On $*-\operatorname{SubAlg}\left(B_{1}\right) / \sim_{B_{1}}$ we define a partial order as follows:

$$
[B]_{B_{1}} \leq[C]_{B_{1}} \Leftrightarrow \exists D \in *-\operatorname{SubAlg}(C): D \sim_{B_{1}} B
$$

Lemma (1.1.28)[30]: Assume one of the conditions (i)-(iiii). Then for any $B \neq \mathbb{C}$, unital C^{*}-subalgebra of B_{1} that is unitarily equivalent to a C^{*}-subalgebra of B_{2}, the set ${\left.\overline{Z\left(B_{1}, B_{2}\right.} ;[B]_{B_{1}}\right)}^{c}$ is dense.
Proof: Assume $\overline{Z\left(B_{1}, B_{2} ;[B]_{B_{1}}\right)}{ }^{c}$ is not dense. There is $[C]_{B_{1}}>[B]_{B_{1}}$ such that ${\left.\overline{Z(B}, B_{1}, B_{2} ;[B]_{B_{1}}\right)}^{c}$ is not dense. We notice that again we are in the same condition to apply, since $[C]_{B_{1}}>[B]_{B_{1}}>[\mathbb{C}]_{B_{1}}$. In this way we can construct chains, in $*-$ $\operatorname{SubAlg}\left(B_{1}\right) / \sim_{B_{1}}$, of length arbitrarily large, but this cannot be since it is finite.

At last we can give a proof of Theorem (1.1.29)
Theorem (1.1.29)[30]: Assume one of the following conditions holds:
(i) $\operatorname{dim} C\left(B_{1}\right)=1=\operatorname{dim} C\left(B_{2}\right)$,
(ii) $\operatorname{dim} C\left(B_{1}\right) \geq 2, \operatorname{dim} C\left(B_{2}\right)=1$ and B_{1} is $*$-isomorphic to

$$
M_{N / \operatorname{dim} C\left(B_{1}\right)} \oplus \ldots \oplus M_{N / \operatorname{dim} C\left(B_{1}\right)}
$$

(iii) $\operatorname{dim} C\left(B_{1}\right)=2=\operatorname{dim} C\left(B_{2}\right), B_{1}$ is $*$-isomorphic to

$$
M_{N / 2} \oplus M_{N / 2}
$$

and B_{2} is *-isomorphic to

$$
M_{N / 2} \oplus M_{N /(2 k)}
$$

Where $k \geq 2$,
(iiii)dim $C\left(B_{1}\right) \geq 2, \operatorname{dim} C\left(B_{2}\right) \geq$ 3and, for $i=1,2, B_{i}$ is $*$ - isomorphic to $M_{N / \operatorname{dim} C\left(B_{i}\right)} \oplus \ldots \oplus M_{N / \operatorname{dim} C\left(B_{i}\right)}$.
Then

$$
\Delta\left(B_{1}, B_{2}\right):=\left\{u \in \mathbb{U}\left(M_{N}\right): B_{1} \cap u B_{2} u^{*}=\mathbb{C}\right\}
$$

is dense in $\mathbb{U}\left(M_{N}\right)$.
Proof : A direct computation shows that

$$
\Delta\left(B_{1}, B_{2}\right)=\bigcap_{[B]_{B_{1}}>[\mathbb{C}]_{B_{1}}} Z\left(B_{1}, B_{2},[B]_{B_{1}}\right)^{c}
$$

Thus

$$
\Delta\left(B_{1}, B_{2}\right) \supseteq \bigcap_{[B]_{B_{1}}>[\mathbb{C}]_{B_{1}}} Z\left(B_{1}, B_{2},[B]_{B_{1}}\right)^{c}
$$

Now whenever $[B]_{B_{1}}>[\mathbb{C}]_{B_{1}}$, the set $\overline{Z\left(B_{1}, B_{2},[B]_{B_{1}}\right.}{ }^{c}$ is dense. Hence $\Delta\left(B_{1}, B_{2}\right)$ is dense.
We unless stated otherwise, $A_{1} \neq \mathbb{C}$ and $A_{2} \neq \mathbb{C}$ denote two nontrivial, separable, residually finite dimensional $\mathrm{C} *$-algebras. Our goal is to prove $A_{1} * A_{2}$ is primitive, except for the case $A_{1}=\mathbb{C}^{2}=A_{2}$. Two main ingredients are used. Firstly, the perturbation results from previous section. Secondly, the fact that $A_{1} * A_{2}$ has a separating family of finite dimensional $*-$ representations, a result due to [40].
Before we start proving results about primitivity, we want to consider the case $\mathbb{C}^{2} * \mathbb{C}^{2}$. This is a well studied C^{*}-algebra; see for in-stance [11], [107] and [118]. It is known that
$\mathbb{C}^{2} * \mathbb{C}^{2}$ is $*$-isomorphic to the $\mathbb{C} *$-algebra of continuous M_{2}-valued functions on the closed interval [0, 1], whose values at 0 and 1 are diagonal matrices. As a consequences its center is not trivial. Since the center of any primitive C^{*}-algebra is trivial, we conclude $\mathbb{C}^{2} * \mathbb{C}^{2}$ is not primitive.
Definition (1.1.30)[30]: We denote by ι_{j} the inclusion $*$-homomorphism from A_{j} into $A_{1} *$ A_{2}. Given a unital*-representation $\pi: A_{1} * A_{2} \rightarrow \mathbb{B}(H)$, we define $\pi^{(1)}=\pi \circ \iota_{1}$ and $\pi^{(2)}=\pi \circ l_{2}$. Thus, with this notation, we have $\pi=\pi^{(1)} * \pi^{(2)}$. For a unitary u in $\mathbb{U}(H)$ we call the *representation $\pi^{(1)} *\left(A d u \circ \pi^{(2)}\right)$, a perturbation of π by u.
Definition (1.1.31)[30]: Assume A_{1} and A_{2} are finite dimensional and let $\rho: A_{1} * A_{2} \rightarrow$ $\mathbb{B}(H)$ be a unital, finite dimensional representation. We say that ρ satisfies the Rank of Central Projections condition (or RCP condition) if for both $i=1,2$, the rank of $\rho(p)$ is the same for all minimal projections p of the center $C\left(A_{i}\right)$ of A_{i}, (but they need not agree for different values of i).
The RCP condition for ρ, of course, is really about the pair of representations $\left(\rho^{(1)}, \rho^{(2)}\right)$. However, it will be convenient to express it in terms of $A_{1} * A_{2}$. In any case, the following two lemmas are clear.
Lemma (1.1.32)[30]: Suppose A_{1} and A_{1} are finite dimensional, $\rho: A_{1} * A_{2} \rightarrow \mathbb{B}(H)$ is a finite dimensional representation that satisfies the RCP condition and $u \in \mathbb{U}(H)$. Then the representation $\rho^{(1)} *\left(A d u \circ \rho^{(2)}\right)$ of $A_{1} * A_{2}$ also satisfies the RCP condition.
Lemma (1.1.33)[30]: Suppose A_{1} and A_{2} are finite dimensional, $\rho: A_{1} * A_{2} \rightarrow \mathbb{B}(H)$ and $\sigma: A_{1} * A_{2} \rightarrow \mathbb{B}(K)$ are finite dimensional representations that satisfy the RCP condition. Then $\rho \oplus \sigma: A_{1} * A_{2} \rightarrow \mathbb{B}(H \bigoplus K)$ also satisfies the RCP condition.
The following is clear from Lemma (1.1.12)
Lemma (1.1.34)[30]: Assume A is a finite dimensional C^{*}-algebra $*$-isomorphic to $\bigoplus_{j=1}^{l} M_{n(j)}$ and take $\pi: A \rightarrow \mathbb{B}(H)$ a unital finite dimensional *representation. Let $\mu(\pi)=[m(1), \ldots, m(l)]$ and let $\tilde{\pi}$ be the restriction of π to the center of A. Then

$$
\mu(\tilde{\pi})=[m(1) n(1), \ldots, m(l) n(l)] .
$$

The next lemma will help us to prove that the RCP condition is easy to get.
Lemma (1.1.35)[30]: Assume A is a finite dimensional C^{*}-algebra and $\pi: A \rightarrow \mathbb{B}(H)$ is a unital finite dimensional $*-$ representation. Let

$$
\mu(\pi)=[m(1), \ldots, m(l)] .
$$

For any nonnegative integers $q(1), \ldots, q(l)$ there is a finite dimensional unital *representation $\rho: A \rightarrow \mathbb{B}(K)$ such that

$$
\mu(\pi \oplus \rho)=[m(1)+q(1), \ldots, m(l)+q(l)]
$$

Proof: Write A as

$$
A=\stackrel{l}{\bigoplus_{i=1}} A(i)
$$

where $A(i)=\mathbb{B}\left(V_{i}\right)$ for V_{i} finite dimensional. For $1 \leq i \leq l$, let $p_{i}: A \rightarrow A(i)$ denote the canonical projection onto $A(i)$. Notice that p_{i} is a unital $*-$ representation of A. Define

$$
\rho:=\bigoplus_{i=1}^{\bigoplus} \underbrace{\left(p_{i} \oplus \ldots \oplus p_{i}\right)}_{q(i) \text {-times }}: A \rightarrow \underset{i=1}{\bigoplus} A(i)^{q(i)} \subseteq \mathbb{B}(K)
$$

Where $K=\bigoplus_{i=1}^{l}\left(V_{i}^{\oplus q_{i}}\right)$. Then ρ is a unital*-representation of A on K and

$$
\mu(\pi \oplus \rho)=[m(1)+q(1), \ldots, m(l)+q(l)] .
$$

The next lemma takes slightly more work and is essential to our construction.
Lemma (1.1.36)[30]: Assume A_{1} and A_{2} are finite dimensional. Given a unital finite dimensional *-representation $\pi: A_{1} * A_{2} \rightarrow \mathbb{B}(H)$, there is a finite dimensional Hilbert space \widehat{H} and a unital $*$-representation

$$
\hat{\pi}: A_{1} * A_{2} \rightarrow \mathbb{B}(\widehat{H})
$$

such that $\pi \oplus \hat{\pi}$ satisfies the RCP condition.
Proof: For $i=1,2$, let $l_{i}=\operatorname{dim} C\left(A_{i}\right)$, let A_{i} be $*$-isomorphic to $\oplus_{j=1}^{l_{i}} M_{n_{i}(j)}$ and write

$$
\mu\left(\pi^{(i)}\right)=\left[m_{i}(1), \ldots, m_{i}\left(l_{i}\right)\right] .
$$

Take $n_{i}=\operatorname{lcm}\left(n_{i}(1), \ldots, n_{i}\left(l_{i}\right)\right)$ and integers $r_{i}(j)$, such that $r_{i}(j) n_{i}(j)=n_{i}$, for $1 \leq$ $j \leq l_{i}$. Take a positive integer s such that $s r_{i}(j) \geq m_{i}(j)$ for all $i=1$, 2and $1 \leq j \leq l_{i}$. Use Lemma (1.1.36) to find a unital finite dimensional *-representation $\rho_{i}: A_{i} \rightarrow$ $\mathbb{B}\left(K_{i}\right), i=1,2$ such that

$$
\mu\left(\pi^{(i)} \oplus \rho_{i}\right)=\left[s r_{i}(1), \ldots, s r_{i}\left(l_{i}\right)\right] .
$$

Letting κ_{i} denote the restriction of $\pi^{(i)} \oplus \rho_{i}$ to $C\left(A_{i}\right)$, from Lemma (1.1.36) we have

$$
\mu\left(\kappa_{i}\right)=\left[s r_{i}(1) n_{i}(1), \ldots, s r_{i}\left(l_{i}\right) n_{i}\left(l_{i}\right)\right]=\left[s n_{i}, s n_{i}, \ldots, s n_{i}\right] .
$$

The $*$-representations ($\pi^{(1)} \oplus \rho_{1}$) and ($\pi^{(2)} \oplus \rho_{2}$) are almost what we want, but they may take values in Hilbert spaces with different dimensions. To take care of this, we take multiples of them. Let $N=\operatorname{lcm}\left(\operatorname{dim}\left(H \oplus K_{1}\right), \operatorname{dim}\left(H \oplus K_{2}\right)\right)$, find positive integers k_{1} and k_{2} such that

$$
N=K_{1} \operatorname{dim}\left(H \oplus K_{1}\right)=K_{2} \operatorname{dim}\left(H \oplus K_{2}\right)
$$

and consider the Hilbert spaces $\left(H \oplus K_{i}\right)^{\oplus k_{i}}$, whose dimensions agree for $i=1,2$. Then

$$
\operatorname{dim}\left(K_{1} \oplus\left(H \oplus K_{1}\right)^{\oplus\left(K_{1}-1\right)}\right)=\operatorname{dim}\left(K_{2} \oplus\left(H \oplus K_{2}\right)^{\oplus\left(K_{2}-1\right)}\right)
$$

and there is a unitary operator

$$
U: K_{2} \oplus\left(H \oplus K_{2}\right)^{\oplus\left(K_{2}-1\right)} \rightarrow K_{1} \oplus\left(H \oplus K_{1}\right)^{\oplus\left(K_{1}-1\right)} .
$$

Take

$$
\begin{gathered}
\widehat{H}:=K_{1} \oplus\left(H+K_{1}\right)^{\oplus\left(K_{1}-1\right)} \\
\hat{\pi}_{1}:=\rho_{1} \oplus\left(\pi^{(1)} \oplus \rho\right)^{\oplus\left(K_{1}-1\right)},
\end{gathered}
$$

$\sigma_{1}:=\pi^{(1)} \oplus \hat{\pi}_{1}$,
$\hat{\pi}_{2}:=A d U \circ\left(\rho_{2} \oplus\left(\pi^{(2)} \oplus \rho\right)^{\oplus\left(K_{2}-1\right)}\right)$,
$\sigma_{2}:=\pi^{(2)} \oplus \hat{\pi}_{2}$,
$\hat{\pi}:=\hat{\pi}_{1} * \hat{\pi}_{2}$.
Then $\quad \sigma_{1} * \sigma_{2}=\left(\pi^{(1)} \oplus \hat{\pi}_{1}\right) *\left(\pi^{(2)} \oplus \hat{\pi}_{2}\right)=\pi \oplus \hat{\pi}$. We have $\mu\left(\sigma_{i}\right)=$ $\left[k_{i} s r_{i}(1), \ldots, k_{i} s r_{i}\left(l_{i}\right)\right]$. Let $\tilde{\sigma}_{i}$ denote the restriction of σ_{i} to $C\left(A_{i}\right)$.
From Lemma (1.1.35) we have

$$
\mu\left(\tilde{\sigma}_{i}\right)=\left[k_{i} s r_{i}(1) n_{i}(1), \ldots, k_{i} s r_{i}\left(l_{i}\right) n_{i}\left(l_{i}\right)\right]=\left[k_{i} s n_{i}, \ldots, k_{i} s n_{i}\right] .
$$

The purpose of the next definition and lemma is to emphasize an important property about *-representations satisfying the RCP.
Definition (1.1.37)[30]: A $*-$ representation $\pi: A_{1} * A_{2} \rightarrow \mathbb{B}(H)$ is said to be densely perturbable to an irreducible $*$-representation, abbreviated DPI, if the set

$$
\Delta(\pi):=\left\{u \in \mathbb{U}(H): \pi^{(1)}\left(A_{1}\right)^{\prime} \cap\left(u \pi^{(2)}\left(A_{2}\right)^{\prime} u *\right)=\mathbb{C}\right\}
$$

is norm dense in $\mathbb{U}(H)$. Here the commutants are taken with respect to $\mathbb{B}(H)$.
The next lemma shows that any **-representation satisfying the R.C.P is DPI.

Lemma (1.1.38)[30]: Assume A_{1} and A_{2} are finite dimensional C^{*}-algebras and $\left(\operatorname{dim}\left(A_{1}\right)-1\right)\left(\operatorname{dim}\left(A_{2}\right)-1\right) \geq 2$. If $\rho: A_{1} * A_{2} \rightarrow \mathbb{B}(H)$, with H finite dimensional, satisfies the Rank of Central Projections condition, then ρ is DPI.
Proof: Since $\left(\operatorname{dim}\left(A_{1}\right)-1\right)\left(\operatorname{dim}\left(A_{2}\right)-1\right) \geq 2$, and after interchanging A_{1} and A_{2}, if necessary, one of the following must hold:
(i) A_{1} and A_{2} are simple,
(ii) $\operatorname{dim} C\left(A_{1}\right) \geq 2$ and A_{2} is simple,
(iii) for $i=1,2, A_{i}=M_{n_{i(1)}} \oplus M_{n_{i(2)}}$, with $n_{2}(2) \geq 2$,
(iiii) $\operatorname{dim} C\left(A_{1}\right) \geq 2, \operatorname{dim} C\left(A_{2}\right) \geq 3$.
In case (1), take $B_{i}=\rho^{(i)}\left(A_{i}\right)^{\prime}, i=1,2$.
In case (2), let $B_{1}=\rho^{(1)}\left(C\left(A_{1}\right)\right)^{\prime}$ and $B_{2}=\rho^{(2)}\left(A_{2}\right)^{\prime}$. Notice that $\operatorname{dim} C\left(B_{2}\right)=$ 1, $\operatorname{dim} C\left(B_{1}\right)=\operatorname{dim} C\left(A_{1}\right) \geq 2$ and, by the R.C.P assumption, B_{1} is $*$-isomorphic to $M_{\operatorname{dim} H / \operatorname{dim} C\left(B_{1}\right)} \oplus \ldots \oplus M_{\operatorname{dim} H / \operatorname{dim} C\left(B_{1}\right)}$.
In case (iii), let $B_{1}=\rho^{(1)}\left(C\left(A_{1}\right)\right)^{\prime}$ and $B_{2}=\rho^{(2)}\left(\mathbb{C} \oplus M_{n_{2(2)}}\right)^{\prime}$. By the RCP assumption, B_{1} is *-isomorphic to

$$
M_{\operatorname{dim} H / 2} \oplus M_{\operatorname{dim} H / 2}
$$

$\operatorname{and} B_{2}$ is $*$-isomorphic to

$$
M_{\operatorname{dim} H / 2} \oplus M_{\operatorname{dim} H /\left(2 n_{2}(2)\right)} .
$$

In case (iiii), let $B_{i}=\rho^{(i)}\left(C\left(A_{i}\right)\right)^{\prime}$ for $i=1,2$. Then $\operatorname{dim} C\left(B_{1}\right)=\operatorname{dim} C\left(A_{1}\right) \geq$ $2, \operatorname{dim} C\left(B_{2}\right)=\operatorname{dim} C\left(A_{2}\right) \geq 3$ and, for $i=1,2, \mathrm{RCP}$ implies Bi is $*$-isomorphic to $M_{\operatorname{dim} H / \operatorname{dim} C\left(B_{i}\right)} \oplus \ldots \oplus M_{\operatorname{dim} H / \operatorname{dim} C\left(B_{i}\right)}$
Now define

$$
\Delta\left(B_{1}, B_{2}\right):=\left\{u \in \mathbb{U}(H): B_{1} \cap \operatorname{Ad} u\left(B_{2}\right)=\mathbb{C}\right\} .
$$

and notice that in all four cases $\Delta\left(B_{1}, B_{2}\right) \subseteq \Delta(\rho)$. By Theorem (1.1.29), the set $\Delta\left(B_{1}, B_{2}\right)$ is dense in all the four cases.
A downside of the DPI property is that it is not stable under direct sums. However, it is stable under perturbations.
We obtain the following.
Lemma (1.1.39)[30]: For any unital finite dimensional *-representation $\pi: A_{1} * A_{2} \rightarrow$ $\mathbb{B}(H)$, there is a unital finite dimensional *-representation $\hat{\pi}: A_{1} * A_{2} \rightarrow \mathbb{B}(\widehat{H})$ such that $\pi \oplus \hat{\pi}$ is DPI.
Proof: The assumption $\left(\operatorname{dim}\left(A_{1}\right)-1\right)\left(\operatorname{dim}\left(A_{2}\right)-1\right) \geq 2$ implies there is a unital finite dimensional *-representation $\vartheta: A_{1} * A_{2} \rightarrow \mathbb{B}\left(H_{0}\right)$, such that $\left(\operatorname{dim}\left(\vartheta^{(1)}\left(A_{1}\right)\right)-\right.$ 1) $\left(\operatorname{dim}\left(\vartheta^{(2)}\left(A_{2}\right)\right)-1\right) \geq 2$. Consider the unital C^{*}-subalgebras of $\mathbb{B}\left(H \oplus H_{0}\right), D_{i}=$ $(\pi \oplus \vartheta)^{(i)}\left(A_{i}\right), i=1,2$, and notice that $\left(\operatorname{dim}\left(D_{1}\right)-1\right)\left(\operatorname{dim}\left(D_{2}\right)-1\right) \geq 2$. Let $\theta: D_{1} * D_{2} \rightarrow \mathbb{B}\left(H \oplus H_{0}\right)$ be the unital *-representation induced by the universal property of $D_{1} * D_{2}$ via the unitalinclusions $D_{i} \subseteq \mathbb{B}\left(H \oplus H_{0}\right)$. Lemma 5.8 implies there is a unital finite dimensional *-representation $\rho: D_{1} * D_{2} \rightarrow \mathbb{B}(K)$ such that $\theta \oplus \rho$ satisfies the RCP condition, so by is DPI.
Let $j_{i}: D_{i} \rightarrow D_{1} * D_{2}, i=1,2$, be the inclusion $*$-homomorphism from the definition of unital full free product. Now consider the unital*-homomorphism $\sigma=\left(j_{1} \circ(\pi \oplus \vartheta)^{(1)}\right) *$ $\left.\left(j_{2} \circ(\pi \oplus \vartheta)^{(2)}\right)\right): A_{1} * A_{2} \rightarrow D_{1} * D_{2}$.

Now just take $\widehat{H}=H_{0} \oplus K$ and $\hat{\pi}=\vartheta \oplus(\rho \circ \sigma)$. In order to show $\pi \oplus \hat{\pi}$ is DPI we just need to show that, for $i=1,2,(\pi \oplus \hat{\pi})^{(i)}\left(A_{i}\right)=(\theta \oplus \rho)^{(i)}\left(D_{i}\right)$, but this is a direct computation.
The proof of next lemma is a standard approximation argument and we omit it.
Proposition (1.1.40)[30]: Let A_{1} and A_{2} be two unital C^{*}-algebras. Given a non zero element x in $A_{1} * A_{2}$ and a positive number ε, there is a positive number $\delta=\delta(x, \varepsilon)$ such that for any u and v in $\mathbb{U}(H)$ satisfying $\|u-v\|<\delta$ and any unital*representations $\pi: A_{1} * A_{2} \rightarrow \mathbb{B}(H)$, we have

$$
\left\|\left(\pi^{(1)} *\left(\operatorname{Ad} u \circ \pi^{(2)}\right)\right)(x)-\left(\pi^{(1)} *\left(A d u \circ \pi^{(2)}\right)\right)(x)\right\|<\varepsilon .
$$

Here is our main theorem.
Theorem (1.1.41)[30]: Assume A_{1} and A_{2} are unital, separable, residually finite dimensional C^{*}-algebras with $\left(\operatorname{dim}\left(A_{1}\right)-1\right)\left(\operatorname{dim}\left(A_{2}\right)-1\right) \geq 2$. Then $A_{1} * A_{2}$ is primitive.
Proof: By the result of [40], there is a separating sequence $\left(\pi_{j}: A_{1} * A_{2} \rightarrow \mathbb{B}\left(H_{j}\right)\right)_{j \geq 1}$, of finite dimensional unital*-representations. For later use in constructing an essential representation of $A_{1} * A_{2}$, i.e., a $*$-representation with the property that zero is the only compact operator in its image, we modify $\left(\pi_{j}\right)_{j \geq 1}$, if necessary, so that that each *representation is repeated infinitely many times.
By recursion and using Lemma (1.1.39), we define a sequence

$$
\hat{\pi}_{j}: A_{1} * A_{2} \rightarrow \mathbb{B}\left(\widehat{H}_{j}\right),(j \geq 1)
$$

of finite dimensional unital*-representations such that, for all $k \geq 1, \oplus_{j=1}^{k}\left(\pi_{j} \oplus \hat{\pi}_{j}\right)$ is D.P.I. Let $\pi:=\bigoplus_{j \geq 1} \pi_{j} \oplus \hat{\pi}_{j}$ and $H:=\bigoplus_{j \geq 1} H_{j} \oplus \widehat{H}_{j}$. To ease notation, for $k \geq 1$, let $\pi_{[k]}=\oplus_{j=1}^{k} \pi \oplus \hat{\pi}$. Note that we have $\pi\left(A_{1} * A_{2}\right) \cap \mathbb{K}(H)=\{0\}$. Indeed, if $\pi(x)$ is compact then $\lim _{j}\left\|\left(\pi_{j} \oplus \hat{\pi}_{j}\right)(x)\right\|=0$, since each representation is repeated infinitely many times and we are considering a separating family we get $x=0$.
We will show that given any positive number ε, there is a unitary u on $\mathbb{U}(H)$ such that $\left\|u-\mathrm{id}_{H}\right\|<\varepsilon$ and $\pi^{(1)} *\left(\operatorname{Ad} u \circ \pi^{(2)}\right)$ is both irreducible and faithful. To do this, we will to construct a sequence $\left(u_{k}, \theta_{k}, F_{k}\right)_{k \geq 1}$ where:
(i) For all k, u_{k} is a unitary in $\mathbb{U}\left(\oplus_{j=1}^{k}\left(H_{j} \oplus \widehat{H}_{j}\right)\right)$ satisfying

$$
\begin{equation*}
\left\|u-\operatorname{id}_{\oplus_{j=1}^{k} H_{j} \oplus \widehat{H}_{j}}\right\|<\frac{\varepsilon}{2^{k+1}} \tag{11}
\end{equation*}
$$

(ii) Letting

$$
u_{(j, k)}=u_{j} \oplus \operatorname{id}_{H_{j+1} \oplus \hat{H}_{j+1}} \oplus \ldots \oplus \operatorname{id}_{H_{k} \oplus \hat{H}_{k}}
$$

and

$$
\begin{equation*}
U_{k}=u_{k} u_{(k-1, k)} u_{(k-2, k)} \ldots u_{(1, k)}, \tag{12}
\end{equation*}
$$

theunital*-representation of $A_{1} * A_{2}$ onto $\mathbb{B}\left(\oplus_{j=1}^{k} H_{j} \oplus \widehat{H}_{j}\right)$, given by

$$
\begin{equation*}
\theta_{k}=\pi_{[k]}^{(1)} *\left(\operatorname{Ad} U_{k} \circ \pi_{[k]}^{(2)}\right), \tag{13}
\end{equation*}
$$

is irreducible.
(iii) F_{k} is a finite subset of the closed unit ball of $A_{1} * A_{2}$ and for all y in the closed unit ball of $A_{1} * A_{2}$ there is an element x in F_{k} such that

$$
\begin{equation*}
\left\|\theta_{k}(x)-\theta_{k}(y)\right\|<\frac{1}{2^{k+1}} \tag{14}
\end{equation*}
$$

(iv) If $k \geq 2$, then for any element x in the union $\cup_{j=1}^{k-1} F_{j}$, we have

$$
\begin{equation*}
\| \theta_{k}(x)-\left(\theta_{k-1} \oplus \pi_{k} \oplus \hat{\pi}_{k}(x) \|<\frac{1}{2^{k+1}}\right. \tag{14}
\end{equation*}
$$

We construct such a sequence by recursion.
Step 1: Construction of $\left(u_{1}, \theta_{1}, F_{1}\right)$. Since $\pi \oplus \hat{\pi} \quad$ is DPI, there is a unitary u_{1} in $H_{1} \oplus \widehat{H}_{1}$ such that $\left\|u_{1}-\operatorname{id}_{H \oplus \hat{H}}\right\|<\frac{\varepsilon}{2^{2}}$ and $\pi_{[1]}^{(1)} * \operatorname{Ad} u_{1} \circ \pi_{[1]}^{(2)}$ is irreducible. Hence condition (11) and (13) trivially hold. Since $H_{1} \oplus \widehat{H}_{1}$ is finite dimensional, there is a finite set F_{1} contained in the closed unit ball of $A_{1} * A_{2}$ satisfying condition (14). At this stage there is no condition (15).
Step 2: Construction of $\left(u_{k+1}, \theta_{k+1}, F_{k+1}\right)$ from $\left(u_{j}, \theta_{j}, F_{j}\right), 1 \leq j \leq k$.First, we are prove there exists a unitary u_{k+1} in $\mathbb{U}\left(\oplus_{j=1}^{k+1} H_{j} \oplus \widehat{H}_{j}\right)$ such that $\| u_{k+1}-$ $\operatorname{id}_{\oplus_{j=1}^{k+1} H_{j} \oplus \hat{H}_{j}} \|<\frac{\varepsilon}{2^{k+2}}$, the unital $*$-representation of $A_{1} * A_{2}$ into $\mathbb{B}\left(\oplus_{j=1}^{k+1} H_{j} \oplus \widehat{H}_{j}\right)$ defined by

$$
\begin{equation*}
\theta_{k+1}:=\left(\theta_{k} \oplus \pi_{k+1} \oplus \hat{\pi}_{k+1}\right)^{(1)} *\left(\operatorname{Ad} u_{k+1}\right) \circ\left(\theta_{k} \oplus \pi_{k+1} \oplus \hat{\pi}_{k+1}\right)^{(2)} \tag{16}
\end{equation*}
$$

is irreducible and for any element x in the union $\mathrm{U}_{j=1}^{k} F_{j}$, the inequality
$\| \theta_{k+1}(x)-\left(\theta_{k} \oplus \pi_{k+1} \oplus \hat{\pi}_{k+1}(x) \|<\frac{1}{2^{k+1}}\right.$, holds , $\theta_{k} \oplus \pi_{k+1} \oplus \hat{\pi}_{k+1}$ is D.P.I so Proposition (1.1.40) assures the existence of suchunitary u_{k+1}. Notice that, from construction, conditions (11) and (15) are satisfied. A consequence of (13) and (12) is
$\theta_{k+1}=\pi_{[k+1]}^{(1)} *\left(\operatorname{Ad} U_{k+1} \circ \pi_{[k+1]}^{(2)}\right)$,
Finite dimensionality of $\oplus_{j=1}^{k+1} H_{j} \oplus \widehat{H}_{j}$ guarantees the existence of a finite set F_{k+1} contained in the closed unit ball of $A_{1} * A_{2}$ satisfying condition (14). This completes Step 2.

Now consider the *-representations

$$
\begin{equation*}
\sigma_{k}=\theta_{k} \stackrel{\oplus}{\geq}+1 \pi_{j} \oplus \hat{\pi}_{j} . \tag{17}
\end{equation*}
$$

We now show there is a unital *-representation of $\sigma: A_{1} * A_{2} \rightarrow \mathbb{B}(H)$, such that for all x in $A_{1} * A_{2}, \lim _{k}\left\|\sigma_{k}(x)-\sigma(x)\right\|=0$. If we extend the unitaries u_{k} to all of H via $\tilde{u}_{k}=$ $u_{k} \oplus_{j \geq k+1} \operatorname{id}_{H_{j} \oplus \hat{H}_{j}}$, then we obtain

$$
\begin{equation*}
\sigma_{k}=\pi^{(1)} *\left(A d \widetilde{U}_{k} \circ \pi^{(2)}\right), \tag{18}
\end{equation*}
$$

Where $\widetilde{U}_{k}=\tilde{u}_{k} \ldots \tilde{u}_{1}$. Thanks to condition (11), we have

$$
\left\|\widetilde{U}_{k}-\operatorname{id}_{H}\right\| \leq \sum_{j=1}^{k}\left\|\tilde{u}_{k}-\mathrm{id}_{H}\right\|<\sum_{j=1}^{k} \frac{\varepsilon}{2^{k+1}}
$$

and for $l \geq 1$

$$
\left\|\widetilde{U}_{k+l}-\widetilde{U}_{k}\right\|=\left\|\tilde{u}_{k+l} \ldots \tilde{u}_{k+1}-\operatorname{id}_{H}\right\| \leq \sum_{j=k+1}^{k+l} \frac{\varepsilon}{2^{j+1}}
$$

Hence, Cauchy's criterion implies there is a unitary u in $\mathbb{U}(H)$ such that the sequence $\left(\widetilde{U}_{k}\right)_{k \geq 1}$ converges in norm to u and $\left\|u-\operatorname{id}_{H}\right\|<\frac{\varepsilon}{2}$.
Define

$$
\begin{equation*}
\sigma=\pi^{(1)} *\left(A d u \circ \pi^{(2)}\right) . \tag{19}
\end{equation*}
$$

From Proposition (1.1.40) we have that for all x in $A_{1} * A_{2}$,

$$
\begin{equation*}
\lim _{\left\|\sigma_{k}(x)-\sigma(x)\right\|=0} \tag{20}
\end{equation*}
$$

Our next goal is to show σ is irreducible. To ease notation let $A=A_{1} * A_{2}$. We will show $\overline{\sigma(A)}^{S O T}=\mathbb{B}(H)$. Take T in $\mathbb{B}(H)$. With no loss of generality we may assume $\|T\| \leq \frac{1}{2}$. Recall that a neighborhood basis for the SOT topology around T is given by the sets

$$
\mathcal{N}_{T}\left(\xi_{1}, \ldots, \xi_{n} ; \varepsilon\right)=\left\{S \in \mathbb{B}(H):\left\|S \xi_{i}-T \xi_{i}\right\|<\varepsilon, i=1, \ldots, n\right\}
$$

where $\varepsilon>0, n \in \mathbb{N}$, and $\xi_{1}, \ldots, \xi_{n} \in H$ are unit vectors. We show that for any $\varepsilon>0$ and any unit vectors $\xi_{1}, \ldots, \xi_{n}, \mathcal{N}_{T}\left(\xi_{1}, \ldots, \xi_{n} ; \varepsilon\right) \cap \sigma(A)$ is nonempty. Let P_{k} denote the orthogonal projection from H onto $\oplus_{j=1}^{k} H_{j} \oplus \widehat{H}_{j}$. Take $k_{1} \geq 1$ such

$$
\sum_{k \geq k_{1}} \frac{1}{2^{k}}<\frac{\varepsilon}{2^{3}}
$$

and for $k \geq k_{1}, 1 \leq i \leq n$,

$$
\begin{array}{r}
\left\|\left(\operatorname{id}_{H}-P_{k}\right)\left(\xi_{i}\right)\right\|<\frac{\varepsilon}{2^{3}}, \\
\left\|\left(\operatorname{id}_{H}-P_{k}\right)\left(T \xi_{i}\right)\right\|<\frac{\varepsilon}{2^{3}}, \tag{22}
\end{array}
$$

Since P_{k} has finite rank and θ_{k} is irreducible, there is a in A, with $\|a\| \leq 1$ such that

$$
\begin{equation*}
P_{k_{1}} T P_{k_{1}}\left(\xi_{i}\right)=\theta_{k_{1}}(a)\left(P_{k_{1}}\left(\xi_{i}\right)\right) \tag{23}
\end{equation*}
$$

for $i=1, \ldots, n$. We have

$$
\begin{equation*}
\theta_{k_{1}}(a)\left(P_{k_{1}}\left(\xi_{i}\right)\right)=\sigma_{k_{1}}(a)\left(P_{k_{1}}\left(\xi_{i}\right)\right) . \tag{24}
\end{equation*}
$$

Take x in $F_{k_{1}}$ such that

$$
\begin{equation*}
\left\|\theta_{k_{1}}(a)-\theta_{k_{1}}(x)\right\|<\frac{1}{2^{k_{1}+1}} \tag{25}
\end{equation*}
$$

We will show $\sigma(x) \in \mathcal{N}_{T}\left(\xi_{1}, \ldots, \xi_{n} ; \varepsilon\right)$. To ease notation let $\xi_{i}=\xi$. From (21), (22), (23) and (24), we deduce

$$
\begin{array}{r}
\|T \xi-\sigma(x) \xi\| \leq\left\|T \xi-P_{k_{1}} T P_{k_{1}} \xi\right\|+\left\|P_{k_{1}} T P_{k_{1}} \xi-\sigma_{k_{1}}(a) \xi\right\| \\
\quad<\frac{3 \varepsilon}{2^{\varepsilon}}+\left\|\sigma_{k_{1}}(a) \xi-\sigma(x) \xi\right\|+\left\|\sigma_{k_{1}}(a) \xi-\sigma(x) \xi\right\| .
\end{array}
$$

For any $p \geq 1$ we have
$\sigma_{k_{1}}(a) \xi-\sigma(x) \xi$

$$
\begin{aligned}
& =\sigma_{k_{1}}(a) \xi-\sigma_{k_{1}}(x) \xi+\sum_{j=k_{1}}^{k_{1}+p}\left(\sigma_{j}(x) \xi-\sigma_{j+1}(x) \xi\right)+\sigma_{k_{1}+p+1}(x) \xi \\
& -\sigma(x) \xi
\end{aligned}
$$

Thus, from (21), (24), (25), (17) and (15) we deduce

$$
\left\|\sigma_{k_{1}}(a) \xi-\sigma(x) \xi\right\|<\frac{\varepsilon}{2}+\left\|\sigma_{k_{1}+p+1}(x) \xi-\sigma(x) \xi\right\|
$$

hence

$$
\left\|\sigma_{k_{1}}(a) \xi-\sigma(x) \xi\right\| \leq \frac{\varepsilon}{2}
$$

We conclude $\sigma(x)$ lies in $\mathcal{N}_{T}\left(\xi_{1}, \ldots, \xi_{n} ; \varepsilon\right)$.

An application of Choi's technique will give us faithfulness of σ. Indeed, from construction, for all x in $A, \sigma(x)=\lim _{k} \sigma_{k}(x)$. Thus if each σ_{k} is faithful then so is σ. But faithfulness of σ_{k} follows from the commutativity of the following diagram

A	$\xrightarrow[\rightarrow]{\pi}$	$\mathbb{B}(H)$
$\pi \downarrow$		$\downarrow \pi_{C}$
$\mathbb{B}(H)$	$\xrightarrow{\pi_{C}}$	$\mathbb{B}(H) / \mathbb{K}(H)$

(where π_{C} denotes the quotient map onto the Calkin algebra), which in turn is implied by (17).

To obtain the following corollary, see [2].
Corollary (1.1.42)[30]: Assume A_{1} and A_{2} are nontrivial residually finite dimensional C^{*} algebraswith $\left(\operatorname{dim}\left(A_{1}\right)-1\right)\left(\operatorname{dim}\left(A_{2}\right)-1\right) \geq 2$. Then $A_{1} * A_{2}$ is antiliminal and has an uncountable family of pairwise in-equivalent irreducible faithful *representations.
We finish with a corollary derived in [28].
Corollary (1.1.43)[30]: Assume A_{1} and A_{2} are nontrivial residually finite dimensional C^{*} algebras with $\left(\operatorname{dim}\left(A_{1}\right)-1\right)\left(\operatorname{dim}\left(A_{2}\right)-1\right) \geq 2$. Then pure states of $A_{1} * A_{2}$ are W^{*} dense in the state space.

Section (1.2): Homomorphisms into Z-Stable C*-Algebra

Let X and Y be two compact Hausdorff spaces, and denote by $C(X)$ (or $C(Y)$) the C^{*} algebra of complex-valued continuous functions on X (or Y). Any continuous map $\lambda: Y \rightarrow$ X induces a homomorphism ϕ from the commutative C^{*}-algebra $C(X)$ into the commutative C^{*}-algebra $C(Y)$ by $\phi(f)=f \lambda$, and any homomorphism from $C(X)$ to $C(Y)$ arises this way (by homomorphisms or isomorphisms between C^{*}-algebras, we mean *homomorphismsn or $*$-isomorphisms). It should be noted that, by the Gelfand-Naimark theorem, every unital commutative C^{*}-algebra has the form $C(X)$ as above.
For non-commutative C^{*}-algebras, one also studies homomorphisms. Let A and B be two unital C^{*}-algebras and let $\phi, \psi: A \rightarrow B$ be two homomorphisms. A fundamental problem in the study of C^{*}-algebras is to determine when ϕ and ψ are (approximately) unitarily equivalent.
The last two decades saw the rapid development of classification of amenable C^{*} algebras, or otherwise known the Elliott program. For instance, all unital simple AHalgebras with slow dimension growth are classified by their Elliott invariant ([36]). In fact, the class of classifiable simple C^{*}-algebras includes all unital separable amenable simple C^{*}-algebras with the tracial rank at most one which satisfy the Universal Coefficient Theorem (the $U C T$) (see [88]). One of the crucial problems in the Elliott program is the socalled uniqueness theorem which usually asserts that two monomorphisms are approximately unitarily equivalent if they induce the same K-theory related maps under certain assumptions on C^{*}-algebras involved.
Recently, W. Winter's method ([141]) greatly advances the Elliott classification program. The class of amenable separable simple C^{*}-algebras that can be classified by the Elliott invariant has been enlarged so that it contains simple C^{*}-algebras which no longer are assumed to have finite tracial rank. In fact, with [141], [86], [99] and [73], the classifiable C^{*}-algebras now include any unital separable simple Z-stable C^{*}-algebra A satisfying the $U C T$ such that $A \otimes U$ has the tracial rank no more than one for some $U H F$ algebra U (it has recently been shown, for example, $A \otimes U$ has tracial rank at most one
for all $U H F$-algebras U of infinite type, if $A \otimes C$ has tracial rank at most one for one of infinite dimensional unital simple $A F$-algebra (see [95])). This class of C^{*}-algebras is strictly larger than the class of $A H$-algebras without dimension growth. For example, it contains the Jiang-Su algebra Z itself which is projectionless and all simple unital inductive limits of so-called generalized dimension drop algebras (see [85]).

Recall that the Elliott invariant for a stably finite unital simple separable C^{*}-algebra A is

$$
\operatorname{Ell}(A):=\left(\left(K_{0}(A), K_{0}(A)_{+},\left[1_{A}\right], T(A)\right), K_{1}(A)\right),
$$

where $\left(K_{0}(A), K_{0}(A)_{+},\left[1_{A}\right], T(A)\right)$ is the quadruple consisting of the K_{0}-group, its positive cone, the order unit and tracial simplex together with their pairing, and $K_{1}(A)$ is the K_{1}-group.

Denote by C the class of all unital simple C^{*}-algebras A for which $A \otimes U$ has tracial rank no more than one for some $U H F$-algebra U of infinite type. Suppose that A and B are two unital separable amenable C^{*}-algebras in C which satisfy the $U C T$. The classification theorem in [73] states that if the Elliott invariants of A and B are isomorphic, i.e.

$$
\operatorname{Ell}(A) \cong \operatorname{Ell}(B)
$$

then there is an isomorphism $\phi: A \rightarrow B$ which carries the isomorphism above.
However, the question when two isomorphisms are approximately unitarily equivalent was still left open. A more general question is: for any two such C^{*}-algebras A and B, and, for any two homomorphisms $\phi, \psi: A \rightarrow B$, when are they approximately unitarily equivalent?

If ϕ and ψ are approximately unitarily equivalent, then one must have,

$$
[\phi]=[\psi] \text { in } K L(A, B) \text { and } \phi_{\#}=\psi_{\#}
$$

where $\phi_{\#}, \psi_{\#}: \operatorname{Aff}(T(A)) \rightarrow \operatorname{Aff}(T(B))$ are the affine maps induced by ϕ and ψ, respectively. Moreover, as shown in [71], one also has

$$
\phi^{\ddagger}=\psi^{\ddagger}
$$

where $\phi^{\ddagger}, \psi^{\ddagger}: U(A) / C U(A) \rightarrow U(B) / C U(B)$ are homomorphisms induced by ϕ, ψ, and $C U(A)$ and $C U(B)$ are the closures of the commutator subgroups of the unitary groups of A and B, respectively.

We will show that the above conditions are also sufficient, that is, the maps ϕ and ψ are approximately unitarily equivalent if and only if $[\phi]=[\psi]$ in $K L(A, B), \phi_{\#}=\psi_{\#}$ and $\phi^{\ddagger}=\psi^{\ddagger}$.

The proof of this uniqueness theorem is based on the methods developed in the proof of the classification result mentioned above, which can be found in [73], [82], [71], [99] and [74]. Most technical tools are developed in this research, either directly or implicitly. We will collect them and then assemble them into production.

In [103], it is shown that, for any partially ordered simple weakly unperforated rationally Riesz group G_{0} with order unit u, any countable abelian group G_{1}, any metrizable Choquet simple S , and any surjective affine continuous map r : S $\rightarrow S u\left(G_{1}\right)$ (the state space of G_{0}) which preserves extremal points, there exists one (and only one up to isomorphism) unital separable simple amenable C^{*}-algebra $A \in C$ which satisfies the $U C T$ so that $\operatorname{Ell}(A)=\left(G_{0},\left(G_{0}\right)_{+}, u, G_{1}, S, r\right)$.
Then a natural question is: Given two unital separable simple amenable C^{*}-algebras $A, B \in C$ which satisfy the $U C T$, and a homomorphism Γ from $\operatorname{Ell}(A)$ to $\operatorname{Ell}(B)$, does there exist a unital homomorphism $\phi: A \rightarrow B$ which induces Γ ? We will give an answer to this question. Related to the uniqueness theorem discussed earlier and also related to the
question above, one may also ask the following: Given an element $\kappa \in K L(A, B)$ which preserves the unit and order, an affine map
 $C U(B)$ which are compatible, does there exist a unital homomorphism $\phi: A \rightarrow B$ so that $[\varphi]=\kappa, \phi_{\#}=\lambda$ and $\phi^{\ddagger}=\gamma$? We will, at least, partially answer this question.

Let A be a unital stably finite C^{*}-algebra. Denote by $T(A)$ the simplex of tracial states of A and denote by $\operatorname{Aff}(T(A))$ the space of all real affine continuous functions on $T(A)$. Suppose that $\tau \in T(A)$ is a tracial state. We will also denote by τ the trace $\tau \otimes \operatorname{Tr}$ on $M_{k}(A)=A \otimes M_{k}(\mathbb{C})$ (for every integer $k \geq 1$), where Tr is the standard trace on $M_{k}(\mathbb{C})$. A trace τ is faithful if $\tau(a)>0$ for any $a \in A_{+} \backslash\{0\}$. Denote by $T_{f}(A)$ the convex subset of $T(A)$ consisting of all faithful tracial states.

Denote by $M_{\infty}(A)$ the set $\mathrm{U}_{k=1}^{\infty} M_{k}(A)$, where $\operatorname{Mk}(\mathrm{A})$ is regarded as a C^{*}-subalgebra of $M_{k+1}(A)$ by the embedding $a \mapsto\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$. For any projection $p \in M_{\infty}(A)$, the restriction $\tau \mapsto \tau(p)$ defines a positive affine function on $T(A)$. This induces a canonical positive homomorphism $\rho_{A}: K_{0}(A) \rightarrow \operatorname{Aff}(T(A))$.
Denote by $U(A)$ the unitary group of A, and denote by $U(A)_{+}$the connected component of $U(A)$ containing the identity. Let C be another unital C^{*}-algebra and let $\phi: C \rightarrow A$ be a unital *-homomorphism. Denote by $\phi_{T}: T(A) \rightarrow T(C)$ the continuous affine map induced by ϕ, i.e.,

$$
\phi_{T}(\tau)(c)=\tau \circ \phi(c)
$$

for all $c \in C$ and $\tau \in T(A)$. Denote by $\phi_{\#}: \operatorname{Aff}(T(C)) \rightarrow \operatorname{Aff}(T(A))$ the map defined by

$$
\phi_{\#}(f)(\tau)=\mathrm{f}\left(\phi_{\mathrm{T}}(\tau)\right) \text { for all } \tau \in \mathrm{T}(\mathrm{~A}) .
$$

Definition (1.2.1)[98]:

Let A be a unital C^{*}-algebra. Denote by $C U(A)$ the closure of the subgroup generated by commutators of $U(A)$. If $u \in U(A)$, its image in the quotient $U(A) / C U(A)$ will be denoted by u. Let B be another unital C^{*}-algebra and let $\phi: A \rightarrow B$ be a unital homomorphism. it is clear that ϕ maps $C U(A)$ into $C U(B)$. Let ϕ^{\ddagger} denote the induced homomorphism from $U(A) / C U(A)$ into $U(B) / C U(B)$.

Let $n \geq 1$ be any integer. Denote by $U_{n}(A)$ the unitary group of $M_{n}(A)$, and denote by $C U(A)_{n}$ the closure of commutator subgroup of $U_{n}(A)$. Regard $U_{n}(A)$ as a subgroup of $U_{n+1}(A)$ via the embedding $u \mapsto\left(\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right)$ and denote by $U_{\infty}(A)$ the union of all $U_{n}(A)$. Consider the union $C U_{\infty}(A):=\bigcup_{n} C U_{n}(A)$. It is then a normal subgroup of $U_{\infty}(A)$, and the quotient $U(A)_{\infty} / C U_{\infty}(A)$ is in fact isomorphic to the inductive limit of $U_{n}(A) / C U_{n}(A)$ (as abelian groups). We will use ϕ^{\ddagger} for the homomorphism induced by ϕ from $U_{\infty}(A) / C U_{\infty}(A)$ into $U_{\infty}(B) / C U_{\infty}(B)$.

Definition (1.2.2)[98]:

Let A be a unital C^{*}-algebra, and let $u \in U(A)_{0}$. Let $u(t) \in C([0,1], A)$ be a piecewisesmooth path of unitaries such that $u(0)=u$ and $u(1)=1$. Then the de la HarpeSkandalis determinant of $u(t)$ is defined by

$$
\operatorname{Det}(u(t))(\tau)=\frac{1}{2 \pi i} \int_{0}^{1} \tau\left(\frac{d u(t)}{d t} u(t)^{*}\right) d t \text { for all } \tau \in T(A) \text {, }
$$

which induces a homomorphism

$$
\operatorname{Det}: U(A)_{0} \rightarrow A f f(T(A)) / \overline{\rho_{A}\left(K_{0}(A)\right)}
$$

The determinant Det can be extended to a map from $U_{\infty}(A)_{0}$ into $\operatorname{Aff}(T(A)) /$ $\rho_{A}\left(K_{0}(A)\right)$. It is easy to see that the determinant vanishes on the closure of commutator subgroup of $U_{\infty}(A)$. In fact, by a result of K. Thomsen ([133]), the closure of the commutator subgroup is exactly the kernel of this map, that is, it induces an isomorphism Det: $U_{\infty}(A)_{0} / C U_{\infty}(A) \rightarrow \operatorname{Aff(T(A))/\overline {\rho _{A}(K_{0}(A)})\text {.Moreover,by([133]),onehasthe}}$ following short exact sequence

$$
\begin{equation*}
\left.0 \rightarrow A f f(T(A)) / \overline{\rho_{A}\left(K_{0}(A)\right.}\right) \rightarrow U_{\infty}(A) / C U_{\infty}(A) \xrightarrow{\Pi} K_{1}(A) \rightarrow 0 \tag{26}
\end{equation*}
$$

which splits (with the embedding of $\left.\operatorname{Aff}(T(A)) / \overline{\rho_{A}\left(K_{0}(A)\right.}\right)$ induced by $(\overline{\operatorname{Det}})^{-1}$). We will fix a splitting map $s_{1}: K_{1}(A) \rightarrow U_{\infty}(A) / C U_{\infty}(A)$. The notation Π and s_{1} will be used late without further warning.

For each $\bar{u} \in s_{1}\left(K_{1}(A)\right)$, select and fix one element $u_{c} \in \cup_{n=1}^{\infty} M_{n}(A)$ such that $u_{c}=$ \bar{u}. Denote this set by $U_{c}(A)$. In the case that A has tracial rank at most one .

$$
U_{\infty}(A)_{0} / C U_{\infty}(A)=U(A)_{0} / C U(A)
$$

and thus the following splitting short exact sequence:

$$
\begin{equation*}
\left.0 \rightarrow \operatorname{Aff}(T(A)) / \overline{\rho_{A}\left(K_{0}(A)\right.}\right) \rightarrow U(A) / C U(A) \rightarrow K_{1}(A) \rightarrow 0 . \tag{27}
\end{equation*}
$$

Definition (1.2.3)[98]:

Let A be a unital C^{*}-algebra and let C be a separable C^{*}-algebra which satisfies the Universal Coefficient Theorem. Recall that $K L(C, A)$ is the quotient of $K(C, A)$ modulo pure extensions. By a result of $\mathrm{D}^{-} \mathrm{ad}^{-}$arlat and Loring in [82], one has

$$
\begin{equation*}
K L(C, A)=\operatorname{Hom}_{A}(\underline{K}(C), \underline{K}(A)), \tag{28}
\end{equation*}
$$

where

$$
\underline{K}(B)=\left(K_{0}\left(B, K_{1}(B)\right)\right) \oplus \underset{n=2}{\infty}\left(\mathrm{~K}_{0}(\mathrm{~B}, \mathbb{Z} / \mathrm{n} \mathbb{Z})\right) \oplus K_{1}\left(B, K_{1}(B)\right)
$$

for any C^{*}-algebra B. Then, we will identify $K L(C, A)$ with $\operatorname{Hom}_{A}(\underline{K}(C), \underline{K}(A))$. Denote by $\kappa_{i}: K_{i}(C) \rightarrow K_{i}(A)$ the homomorphism given by κ with $i=0,1$, and denote by $K L(C, A)^{++}$the set of those $\kappa \in \operatorname{Hom}_{A}(\underline{K}(C), \underline{K}(A))$ such that

$$
k_{0}\left(K_{0}^{+}(C)\{0\}\right) \subseteq K_{0}^{+}(A) \backslash\{0\} .
$$

Denote by $K L_{e}(C, A)^{++}$the set of those elements $\kappa \in K L(C, A)^{++}$such that $\kappa_{0}\left(\left[1_{C}\right]\right)=$ $\left[1_{A}\right]$. Suppose that both A and C are unital, $T(C) \neq \emptyset$ and $T(A) \neq \emptyset$. Let $\lambda_{T}: T(A) \rightarrow$ $T(C)$ be a continuous affine map. Let $h_{0}: K_{0}(C) \rightarrow K_{0}(A)$ be a positive homomorphism. We say λ_{T} is compatible with h_{0} if for any projection $p \in M_{\infty}(C), \lambda_{T}(\tau)(p)=\tau\left(h_{0}([p])\right)$ for all $\tau \in T(A)$. Let $\lambda: \operatorname{Aff}\left(T_{f}(C)\right) \rightarrow \operatorname{Aff}(T(A))$ be an affine continuous map. We say λ and h_{0} are compatible if h_{0} is compatible to λ_{T}, where $\lambda_{T}: T(A) \rightarrow T_{f}(C)$ is the map $\lambda_{T}(\tau)(a)=\lambda\left(a^{*}\right)(\tau), \forall a \in C^{+}$and $\tau \in T(A)$, where $a^{*} \in \operatorname{Aff}\left(T_{f}(C)\right)$ is the affine function induced by a. We say κ and λ (or λ_{T}) are compatible, if κ is positive and κ_{0} and λ are compatible.
Denote by $K L T_{e}(C, A)^{++}$the set of those pairs $\left(\kappa, \lambda_{T}\right)$ (or, (κ, λ)), where $\kappa \in$ $K L_{e}(C, A)^{++}$and $\lambda_{T}: T(A) \rightarrow T_{f}(C)$ (or, $\lambda: \operatorname{Aff}\left(T_{f}(C)\right) \rightarrow \operatorname{Aff}(T(A))$) is a continuous affine map which is compatible with κ. If λ is compatible with κ, then λ maps $\rho_{C}\left(K_{0}(C)\right)$ into $\rho_{A}\left(K_{0}(A)\right)$. Therefore λ induces a continuous homomorphism $\bar{\lambda}: \operatorname{Aff}\left(T_{f}(C)\right) / \overline{\rho_{C}(K 0(C))} \rightarrow \operatorname{Aff(T(A))/\overline {\rho _{A}(K0(A))}}$. Suppose that $\gamma: U_{\infty}(C) /$ $C U_{\infty}(C) \rightarrow U_{\infty}(A) / C U_{\infty}(A)$ is a continuous homomorphism and $h_{i}: K_{i}(C) \rightarrow K_{i}(A)$ are
homomorphisms for which h_{0} is positive. We say that γ and h_{1} are compatible if $\gamma\left(U_{\infty}(C)_{0} / C U_{\infty}(C)\right) \subset v(A)_{0} / C U_{\infty}(A)$ and $\gamma \circ s_{1}=s_{1} \circ h_{1}$, we say that h_{0}, h_{1}, λ and γ are compatible, if λ and h_{1} are compatible, γ and h_{1} are compatible and

$$
\left.\overline{\operatorname{Det}}_{A} \circ \gamma\right|_{U_{\infty}(C)_{0} / C U_{\infty}(C)}=\bar{\lambda} \circ \overline{\operatorname{Det}}_{C},
$$

and we also say that κ, λ and γ are compatible, if $\kappa_{0}, \kappa_{1}, \lambda$ and γ are compatible.
For each prime number p, let ϵ_{p} be a number in $\{0,1,2, \ldots,+\infty\}$. Then a supernatural number is the formal product $p=\prod_{p} p^{\epsilon_{p}}$. Here we insist that there are either infinitely many p in the product, or, one of ϵ_{p} is infinite. Two supernatural numbers $p=\prod_{p} p^{\epsilon_{p}(p)}$ and $q=\prod_{p} p^{\epsilon_{p}(q)}$ are relatively prime if for any prime number p , at most one of $\epsilon_{p}(p)$ and $\epsilon_{p}(q)$ is nonzero. A supernatural number p is called of infinite type if for any prime number, either $\epsilon_{p}(p)=0$ or $\epsilon_{p}(p)=+\infty$. For each supernatural number p, there is a $U H F$-algebra M_{p} associated to it, and the $U H F$-algebra is unique up to isomorphism (see [124]).

Denote by Q the $U H F$-algebra with $\left(K_{0}(Q), K_{0}(Q)_{+},\left[1_{A}\right]\right)=\left(\mathbb{Q}, \mathbb{Q}_{+}, 1\right)$ (the supernatural number associated to Q is $\prod_{p} p^{+\infty}$), and let M_{p} and M_{q} be two $U H F$-algebras with $M_{p} \otimes M_{p} \cong Q$ and $p=\prod_{p} p^{\epsilon_{p}(p)}$ and $q=\prod_{p} p^{\epsilon_{p}(q)}$ relatively prime. Then it follows that p and q are of infinite type. Denote by

$$
\begin{gathered}
\mathbb{Q}_{p}=\mathbb{Z}\left[\frac{1}{p_{1}}, \ldots, \frac{1}{p_{n}}, \ldots\right] \subseteq \mathbb{Q} \text {, where } \epsilon_{p_{n}}(p)=+\infty \text { and } \\
\mathbb{Q}_{q}=\mathbb{Z}\left[\frac{1}{p_{1}}, \ldots, \frac{1}{p_{n}}, \ldots\right] \subseteq \mathbb{Q} \text {, where } \epsilon_{p_{n}}(q)=+\infty .
\end{gathered}
$$

Note that $\left(K_{0}\left(M_{p}\right), K_{0}\left(M_{p}\right)_{+},\left[1_{M_{p}}\right]\right)=\left(\mathbb{Q}_{p},\left(\mathbb{Q}_{p}\right)_{+}, 1\right) \quad$ and $\quad\left(K_{0}\left(M_{q}\right)\right.$, $\left.K_{0}\left(M_{q}\right)_{+},\left[1_{M_{p}}\right]\right)=\left(\mathbb{Q}_{q},\left(\mathbb{Q}_{q}\right)_{+}, 1\right)$. Moreover, $\mathbb{Q}_{p} \cap \mathbb{Q}_{q}=\mathbb{Z}$ and $\mathbb{Q}=\mathbb{Q}_{q}+\mathbb{Q}_{q}$
For any pair of relatively prime supernatural numbers p and q, define the C^{*}-algebra $z_{p, q}$ by

$$
z_{p, q}=\left\{f:[0,1] \rightarrow M_{p} \otimes M_{q} ; f(0) \in M_{p} \otimes 1_{M_{q}} \text { and } f(1) \in 1_{M_{q}} \otimes M_{q}\right\} .
$$

The Jiang-Su algebra Z is the unital inductive limit of dimension drop interval algebras with unique trace, and $\left(K_{0}(Z), K_{0}(Z),[82]\right)=\left(\mathbb{Z}, \mathbb{Z}^{+}, 1\right)$ (see [55]). For any pair of relatively prime supernatural numbers p and q of infinite type, the Jiang-Su algebra Z has a stationary inductive limit decomposition:

$$
z_{p, q} \rightarrow z_{p, q} \rightarrow \cdots \rightarrow z_{p, q} \rightarrow \cdots \rightarrow z
$$

The C^{*}-algebra $Z_{p, q}$ absorbs the Jiang-Su algebra: $Z_{p, q} \otimes Z \cong Z_{p, q}$. A C^{*}-algebra A is said to be Z-stable if $A \otimes Z \cong A$.

Definition (1.2.4)[98]:

A unital simple C^{*}-algebra A has tracial rank at most one, denoted by $T R(A) \leq 1$, if for any finite subset $\mathcal{F} \subset A$, any $\epsilon>0$, and any nonzero $a \in A^{+}$, there exist a nonzero projection $p \in A$ and a C^{*}-subalgebra $I \cong \oplus_{i=1}^{m} C\left(X_{i}\right) \otimes M_{r(i)}$ with $1_{I}=p$ for some finite $C W$ complexes X_{i} with dimension at most one such that
(i) $\|[x, p]\| \leq \epsilon$ for any $x \in \mathcal{F}$,
(ii) for any $x \in \mathcal{F}$, there is $x^{\prime} \in I$ such that $\left\|p x p-x^{\prime}\right\| \leq \epsilon$, and
(iii) $1-p$ is Murray-von Neumann equivalent to a projection in $\overline{a A a}$.

Moreover, if the C^{*}-subalgebra I above can be chosen to be a finite dimensional C^{*} algebra, then A is said to have tracial rank zero, and in such case, we write $T R(A)=0$. It is a theorem of Guihua Gong [51] that every unital simple $A H$-algebra with no dimension growth has tracial rank at most one. It has been proved in [73] that every Z-stable unital simple $A H$-algebra has tracial rank at most one.

Definition (1.2.5)[98]:

Denote by \mathcal{N} the class of all separable amenable C^{*}-algebras which satisfy the Universal Coefficient Theorem (UCT). Denote by C the class of all simple C^{*}-algebras A for which $T R\left(A \otimes M_{p}\right) \leq 1$ for some $U H F$-algebra M_{p}, where p is a supernatural number of infinite type. Note, by [103], that, if $T R\left(A \otimes M_{p}\right) \leq 1$ for some supernatural number p then $T R\left(A \otimes M_{p}\right) \leq 1$ for all supernatural number p.
Denote by C_{0} the class of all simple C^{*}-algebras A for which $T R\left(A \otimes M_{p}\right)=0$ for some supernatural number p of infinite type (and hence for all supernatural number p of infinite type).

Theorem (1.2.6)[98]:

Let C be a unital $A H$-algebra and let A be a unital simple C^{*}-algebra with $T R(A) \leq 1$. Suppose that $\phi, \psi: C \rightarrow A$ are two unital monomorphisms. Then ϕ and ψ are approximately unitarily equivalent if and only if

$$
\begin{aligned}
& {[\phi]=[\psi] \text { in } K L(C, A)} \\
& \phi_{\#}=\psi_{\#} \text { and } \phi^{\ddagger}=\psi^{\ddagger}
\end{aligned}
$$

Let A and B be two unital C^{*}-algebras. Let $h: A \rightarrow B$ be a homomorphism and $v \in$ $U(B)$ be such that

$$
[h(g), v]=0 \text { for any } g \in A
$$

We then have a homomorphism $\bar{h}: A \otimes C(\mathbb{T}) \rightarrow B$ defined by $f \otimes g \mapsto h(f) g(v)$ for any $f \in A$ and $g \in C(\mathbb{T})$. The tensor product induces two injective homomorphisms:

$$
\beta^{(0)}: K_{0}(A) \rightarrow K_{1}(A \otimes C(\mathbb{T})) \text { and } \beta^{(1)}: K_{1}(A) \rightarrow K_{0}(A \otimes C(\mathbb{T}))
$$

The second one is the usual Bott map. Note that, in this way, one writes

$$
K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \beta^{(i-1)}\left(K_{i-1}(A)\right)
$$

Let us use $\hat{\beta}^{(i)}: K_{i}(A \otimes C(\mathbb{T})) \rightarrow \beta^{(i-1)}\left(K_{i-1}(A)\right)$ to denote the quotient map.
For each integer $k \geq 2$, one also has the following injective homomorphisms:

$$
\beta_{\mathrm{k}}^{(\mathrm{i})}: \mathrm{K}_{\mathrm{i}}(\mathrm{~A}, \mathrm{k} \mathbb{Z}) \rightarrow \mathrm{K}_{\mathrm{i}-1}(\mathrm{~A} \otimes \mathrm{C}(\mathbb{T}), \mathbb{Z} / \mathrm{k} \mathbb{Z}), \quad \mathrm{i}=0,1
$$

Thus, we write

$$
K_{i}(A \otimes C(\mathbb{T}), \mathbb{Z} / k \mathbb{Z})=K_{i}(A, \mathbb{Z} / k \mathbb{Z}) \otimes \beta^{(i-1)}\left(K_{i-1}(A), \mathbb{Z} / k \mathbb{Z}\right)
$$

Denote by $\hat{\beta}_{k}^{(i)}: K_{i}\left(A \otimes C(\mathbb{T}), \frac{\mathbb{Z}}{k \mathbb{Z}}\right) \rightarrow \beta^{(i-1)}\left(K_{i-1}(A), \mathbb{Z} / k \mathbb{Z}\right)$ the map analogous to $\hat{\beta}^{(i)}$. If $x \in \underline{K}(A)$, we use $\beta(x)$ for $\beta^{(i)}(x)$ if $x \in K_{i}(A)$ and for $\beta_{k}^{(i)}(x)$ if $x \in K_{i}(A, \mathbb{Z} / k \mathbb{Z})$. Thus we have a map $\beta: K(A) \rightarrow K(A \otimes C(\mathbb{T}))$ as well as $\hat{\beta}: \underline{K}(A \otimes C(\mathbb{T})) \rightarrow \beta(\underline{K})$. Therefore, we may write $\underline{K}(A \otimes C(\mathbb{T}))=\underline{K}(A) \oplus \beta(\underline{K}(A))$. On the other hand, \bar{h} induces homomorphisms

$$
\bar{h}_{* i, k}: K_{i}(A \otimes C(\mathbb{T}), \mathbb{Z} / k \mathbb{Z}) \rightarrow K_{i}(B, \mathbb{Z} / k \mathbb{Z})
$$

$k=0,2, \ldots$, and $i=0,1$.
We use $\operatorname{Bott}(h, v)$ for all homomorphisms $\bar{h}_{* i, k} \circ \beta_{k}^{(i)}$, and we use $\operatorname{bott}_{1}(h, v)$ for the homomorphism $\bar{h}_{1,0} \circ \beta^{(1)}: K_{1}(A) \rightarrow K_{0}(B)$, and $\operatorname{bott}_{0}(h, v)$ for the homomorphism $h_{0,0} \beta^{(0)}: K_{0}(A) \rightarrow K_{1}(B) . \operatorname{Bott}(h, v)$ as well as $\operatorname{bott}_{i}(h, v)(i=0,1)$ may be defined for
a unitary v which only approximately commutes with h. In fact, given a finite subset $\mathcal{P} \subset$ $\underline{K}(A)$, there exists a finite subset $\mathcal{F} \subset A$ and $\delta_{0}>0$ such that

$$
\left.\operatorname{Bott}(h, v)\right|_{\mathcal{P}}
$$

is well defined if

$$
\|[h(a), v]\|<\delta_{0}
$$

for all $a \in \mathcal{F}$.
We have the following generalized Exel's formula for the traces of Bott elements.

Theorem (1.2.7)[98]:

There is $\delta>0$ satisfying the following: Let A be a unital separable simple C^{*}-algebra with $T R(A) \leq 1$ and let $u, v \in U(A)$ be two unitaries such that $\|u v-v u\|<\delta$. Then $\operatorname{bott}_{1}(u, v)$ is well defined and

$$
\tau\left(\text { bott }_{1}(u, v)\right)=\frac{1}{2 \pi i}\left(\tau\left(\log \left(v u v^{*} u^{*}\right)\right)\right)
$$

for all $\tau \in T(A)$.
we collect several facts on the rotation map which are going to be used frequently in this essay. Most of them can be found in the literature.

Definition (1.2.8)[98]:

Let A and B be two unital C^{*}-algebras, and let ψ and ϕ be two unital monomorphisms from B to A. Then the mapping torus $M_{\phi, \psi}$ is the C^{*}-algebra defined by

$$
M_{\phi, \psi}:=\{f \in C([0,1]) ; f(0)=\phi(b) \text { and } f(1)=\psi(b) \text { for some } b \in B\} .
$$

For any $\psi, \phi \in \operatorname{Hom}(B, A)$, denoting by π_{0} the evaluation of $M_{\phi, \psi}$ at 0 , we have the short exact sequence

$$
0 \rightarrow S(A) \xrightarrow{i} M_{\phi, \psi} \xrightarrow{\pi_{0}} B \rightarrow 0,
$$

where $S(A)=C_{0}((0,1), A)$. If $\phi_{* i}=\psi_{* i}(i=0,1)$, then the corresponding six-term exact sequence breaks down to the following two extensions:

$$
\eta_{i}\left(M_{\phi, \psi}\right): 0 \rightarrow K_{i+1}(A) \rightarrow K_{i}\left(M_{\phi, \psi}\right) \rightarrow K_{i}(B) \rightarrow 0, \quad(i=0,1) .
$$

Suppose that, in addition,

$$
\begin{equation*}
\tau \circ \phi=\tau \circ \psi \text { for all } \tau \in T(A) . \tag{29}
\end{equation*}
$$

For any continuous piecewise smooth path of unitaries $u(t) \in M_{\phi, \psi}$, consider the path of unitaries $w(t)=u^{*}(0) u(t)$ in A. Then it is a continuous and piecewise smooth path with $w(0)=1$ and $w(1)=u^{*}(0) u(1)$. Denote by $R_{\phi, \psi}(u)=\operatorname{Det}(w)$ the determinant of $w(t)$. It is clear with the assumption that $R_{\phi, \psi}(u)$ depends only on the homotopy class of $u(t)$. Therefore, it induces a homomorphism, denoted by $R_{\phi, \psi}$, from $K_{1}\left(M_{\phi, \psi}\right)$ to $\operatorname{Aff}(T(A))$.

Definition (1.2.9)[98]:

Fix two unital C^{*}-algebras A and B with $T(A) \neq \emptyset$. Define \mathcal{R}_{0} to be the subset of $\operatorname{Hom}\left(K_{1}(B), \operatorname{Aff}(T(A))\right) \quad$ consisting of those homomorphisms $h \in$ $\operatorname{Hom}\left(K_{1}(B), \operatorname{Aff}(T(A))\right)$ for which there exists a homomorphism $d: K_{1}(B) \rightarrow K_{0}(A)$ such that

$$
h=\rho_{A} \circ d .
$$

It is clear that R 0 is a subgroup of $\operatorname{Hom}\left(K_{1}(B), \operatorname{Aff}(T(A))\right)$.
If $[\phi]=[\psi]$ in $K K(B, A)$, then the exact sequences $\eta_{i}\left(M_{\phi, \psi}\right)(i=0,1)$ above split. In particular, there is a lifting $\theta: K_{1}(B) \rightarrow K_{1}\left(M_{\phi, \psi}\right)$. Consider the map

$$
R_{\phi, \psi} \circ \theta: K_{1}(B) \rightarrow \operatorname{Aff}(T(A)) .
$$

If a different lifting θ^{\prime} is chosen, then, $\theta-\theta^{\prime}$ maps $K_{1}(B)$ into $K_{0}(A)$. Therefore

$$
R_{\phi, \psi} \circ \theta-R_{\phi, \psi} \circ \theta^{\prime} \in \mathcal{R}_{0}
$$

Then define

$$
\bar{R}_{\phi, \psi}=\left[R_{\phi, \psi} \circ \theta\right] \in \operatorname{Hom}\left(K_{1}(B), \operatorname{Aff}(T(A))\right) / \mathcal{R}_{0} .
$$

If $[\phi]=[\psi]$ in $K L(B, A)$, then the exact sequences $\eta_{i}\left(M_{\phi, \psi}\right)(i=0,1)$ are pure, i.e., any finitely generated subgroup in the quotient groups has a lifting. In particular, for any finitely generated subgroup $G \subseteq K_{1}(B)$, one has a map

$$
R_{\phi, \psi} \circ \theta_{G}: G \rightarrow \operatorname{Aff}(T(A)),
$$

where $\theta_{G}: G \rightarrow K_{1}\left(M_{\phi, \psi}\right)$ is a lifting. Let $G \subset K_{1}(B)$ be a finitely generated subgroup. Denote by $\mathcal{R}_{0, G}$ the set of those elements h in $\operatorname{Hom}(G, \operatorname{Aff}(T(A)))$ such that there exists a homomorphism $d_{G}: G \rightarrow K_{0}(A)$ such that $\left.h\right|_{G}=\rho_{A} \circ d_{G}$.
If $[\phi]=[\psi]$ in $K L(B, A)$ and $R_{\phi, \psi}\left(K_{1}\left(M_{\phi, \psi}\right)\right) \subset \rho_{A}\left(K_{0}(A)\right)$, then $\theta_{G} \in \mathcal{R}_{0, G}$ for any finitely generated subgroup $G \subset K_{1}(B)$ and any lifting θ_{G}. In this case, we will also write

$$
\bar{R}_{\phi, \psi}=0 .
$$

Lemma (1.2.10)[98]:

Let C and A be unital C^{*}-algebras with $T(A) \neq \emptyset$. Suppose that $\phi, \psi: C \rightarrow A$ are two unital homomorphisms such that

$$
[\phi]=[\psi] \text { in } K L(C, A), \phi_{\#}=\psi_{\#}, \text { and } \phi^{\ddagger}=\psi^{\ddagger} .
$$

Then the image of $R_{\phi, \psi}$ is in the $\overline{\rho_{A}\left(K_{0}(A)\right)} \subseteq \operatorname{Aff}(T(A))$.

Proof:

Let $z \in K_{1}(C)$. Suppose that $u \in U_{n}(C)$ for some integer $n \geq 1$ such that $[u]=z$. Note that $\psi(u)^{*} \phi(u) \in C U_{n}(A)$. Thus, by (28), for any continuous and piecewise smooth path of unitaries $\{w(t): t \in[0,1]\} \subset U(A)$ with $w(0)=\psi(u)^{*} \phi(u)$ and $w(1)=1$,

$$
\begin{equation*}
\operatorname{Det}(w)(\tau)=\int_{0}^{1} \tau\left(\frac{d w(t)}{d t} w(t)^{*}\right) d t \in \overline{\rho_{A}\left(K_{0}(A)\right)} \tag{30}
\end{equation*}
$$

Suppose that $\{(v)(t): t \in[0,1]\}$ is a continuous and piecewise smooth path of unitaries in $U_{n}(A)$ with $v(0)=\phi(u)$ and $v(1)=\psi(u)$. Define $w(t)=\psi(u)^{*} v(t)$. Then $w(0)=$ $\psi^{*}(u) \phi(u)$ and $w(1)=1$. Thus, by (3),

$$
\begin{align*}
R_{\phi, \psi}(z)(\tau) & =\int_{0}^{1} \tau\left(\frac{d v(t)}{d t} v(t)^{*}\right) d t \tag{31}\\
& =\int_{0}^{1} \tau\left(\psi(u)^{*} \frac{d v(t)}{d t} v(t)^{*} \psi(u)\right) d t \tag{32}\\
& =\int_{0}^{1} \tau\left(\frac{d w(t)}{d t} w(t)^{*}\right) d t \in \overline{\rho_{A}\left(K_{0}(A)\right)} . \tag{33}
\end{align*}
$$

Let A be a unital C^{*}-algebra and let u and v be two unitaries with $\left\|u^{*} v-1\right\|<2$. Then $h=\frac{1}{2 \pi i} \log \left(u^{*} v\right)$ is a well-defined self-adjoint element of A, and $w(t):=u \exp (2 \pi i h t)$ is a smooth path of unitaries connecting u and v. It is a straightforward calculation that for any $\tau \in T(A)$,

$$
\operatorname{Det}(w(t))(\tau)=\frac{1}{2 \pi i} \tau\left(\log \left(u^{*} v\right)\right)
$$

Let A be a unital C^{*}-algebra, and let u and w be two unitaries. Suppose that $w \in U_{0}(A)$. Then $w=\prod_{k=0}^{m} \exp \left(2 \pi i h_{k}\right)$ for some self-adjoint elements h_{0}, \ldots, h_{m}. Define the path

$$
w(t)=\left(\prod_{k=0}^{l-1} \exp \left(2 \pi i h_{k}\right)\right) \exp \left(2 \pi i h_{l} m t\right) \text {, if } t \in[(l-1) / m, l / m],
$$

and define $u(t)=w^{*}(t) u w(t)$ for $t \in[0,1]$. Then, $u(t)$ is continuous and piecewise smooth, and $u(0)=u$ and $u(1)=w * u w$. A straightforward calculation shows that $\operatorname{Det}(u(t))=0$.

In general, if w is not in the path-connected component containing the identity, one can consider unitaries $\operatorname{diag}(u, 1)$ and $\operatorname{diag}\left(w, w^{*}\right)$. Then, the same argument as above shows that there is a piecewise smooth path $u(t)$ of unitaries in $M_{2}(A)$ such that $u(0)=$ $\operatorname{diag}(u, 1), u(1)=\operatorname{diag}\left(w^{*} u w, 1\right)$, and

$$
\operatorname{Det}(u(t))=0 .
$$

Lemma (1.2.11)[98]:

Let B and C be two unital C^{*}-algebras with $T(B) \neq \emptyset$. Suppose that $\phi, \psi: C \rightarrow B$ are two unital monomorphisms such that $[\phi]=[\psi]$ in $K L(C, B)$ and

$$
\tau \circ \phi=\tau \circ \psi
$$

for all $\tau \in T(B)$. Suppose that $u \in U l(C)$ is a unitary and $w \in U l(B)$ such that

$$
\left\|\left(\phi \otimes i d_{M_{l}}\right)(u) w^{*}\left(\psi \otimes i d_{M_{l}}\right)\left(u^{*}\right) w-1\right\|<2 .
$$

Then, for any unitary $U \in U_{l}\left(M_{\phi, \psi}\right)$ with $U(0)=\left(\phi \otimes i d_{M_{l}}\right)(u)$ and $U(1)=(\psi \otimes$ $\left.i d_{M_{l}}\right)(u)$, one has that

$$
\begin{align*}
& \frac{1}{2 \pi i} \tau\left(\log \left(\left(\phi \otimes i d_{M_{l}}\right)\left(u^{*}\right) w^{*}\left(\psi \otimes i d_{M_{l}}\right)(u) w\right)\right)-R_{\phi, \psi}([U])(\tau) \\
& \quad \in \rho_{B}\left(K_{0}(B)\right) . \tag{34}
\end{align*}
$$

Proof:

Without loss of generality, one may assume that $u \in C$. Moreover, to prove the lemma, it is enough to show that (34) holds for one path of unitaries $U(t)$ in $M_{2}(B)$ with $U(0)=$ $\operatorname{diag}(\phi(u), 1)$ and $U(1)=\operatorname{diag}(\psi(u), 1)$.
Let U_{1} be the path of unitaries specified with $U_{1}(0)=\operatorname{diag}(\phi(u), 1)$ and $U_{1}(1 / 2)=$ $\operatorname{diag}\left(w^{*} \psi(u) w, 1\right)$, and let U_{2} be the path specified with $U_{2}(1 / 2)=\operatorname{diag}\left(w^{*} \psi(u) w, 1\right)$ and

$$
U_{2}(1)=\operatorname{diag}(\psi(u), 1) .
$$

Set U the path of unitaries by connecting U_{1} and U_{2}. Then $U(0)=\operatorname{diag}(\phi(u), 1)$ and $U(1)=\operatorname{diag}(\psi(u), 1)$, for any $\tau \in T(B)$, one computes that

$$
\begin{aligned}
R_{\phi, \psi}([U]) & =\operatorname{Det}(U(t))(\tau)=\operatorname{Det}\left(U_{1}(t)\right)(\tau)+\operatorname{Det}\left(U_{2}(t)\right)(\tau) \\
& =\frac{1}{2 \pi i} \tau\left(\phi\left(u^{*}\right) w^{*} \psi(u) w\right),
\end{aligned}
$$

as desired.

Definition (1.2.12)[98]:

Let A be a unital C^{*}-algebra. In the following, for any invertible element $x \in A$, let $\langle x\rangle$ denote the unitary $x\left(x^{*} x\right)^{-\frac{1}{2}}$, and let \bar{x} denote the element $\langle\bar{x}\rangle$ in $U(A) / C U(A)$. Consider a subgroup $\mathbb{Z}^{k} \subseteq K_{1}(A)$, and write the unitary $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq U_{c}(A)$ the unitary corresponding to the standard generators $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ of \mathbb{Z}^{k}. Suppose that $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subset M_{n}(A)$ for some integer $n \geq 1$. Let $\Phi: A \rightarrow B$ be a unital positive linear map and $\Phi \otimes i d_{M_{n}}$ is at least $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}-1 / 4$-multiplicative (hence each $\Phi \otimes$ $i d_{M_{n}}\left(u_{i}\right)$ is invertible), then the map $\left.\Phi^{\ddagger}\right|_{s_{1}\left(\mathbb{Z}^{k}\right)}: \mathbb{Z}^{k} \rightarrow U(B) / C U(B)$ is defined by

$$
\left.\Phi^{\ddagger}\right|_{s_{1}\left(\mathbb{Z}^{k}\right)}\left(e_{i}\right)=\overline{\left\langle\Phi \otimes \imath d_{M_{n}}\left(u_{l}\right)\right\rangle}, \quad 1 \leq i \leq k .
$$

Thus, for any finitely generated subgroup $G \subset U_{c}(A)$, there exists $\delta>0$ and a finite subset $\mathcal{G} \subset A$ such that, for any unital $\delta-\mathcal{G}$-multiplicative completely positive linear map $L: A \rightarrow B$ (for any unital C^{*}-algebra B), the map L^{\ddagger} is well defined on $s_{1}(G)$. (Please see 2.1 for $U_{c}(A)$ and s_{1}.)

The following theorems are taken from [97].
Theorem (1.2.13)[98]:
Let $=P M_{n}(C(X)) P$, where X is a compact subset of a finite $C W$-complex and P a projection in $M_{n}(C(X))$ with an integer $n \geq 1$. Let $\Delta:(0,1) \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subseteq C$, there exists $\delta>0, \eta>0, \gamma>0$, a finite subsets $\mathcal{G} \subseteq C, \mathcal{P} \subseteq \underline{K}(C)$, a finite subset $Q=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset K_{0}(C)$ which generates a free subgroup and $x_{i}=\left[\mathcal{P}_{i}\right]-\left[q_{i}\right]$, where $p_{i}, q_{i} \in M_{m}(C)$ (for some integer $m \geq 1$) are projections, satisfying the following:
Suppose that A is a unital simple C^{*}-algebra with $T R(A) \leq 1, \phi: C \rightarrow A$ is a unital homomorphism and $u \in A$ is a unitary, and suppose that

$$
\|[\phi(c), u]\|<\delta, \forall c \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=0
$$

and

$$
\mu_{\tau \circ \phi}\left(O_{a}\right) \geq \Delta(a) \forall \tau \in T(A \otimes D),
$$

where O_{a} is any open ball in X with radius $\eta \leq a<1$ and $\mu_{\tau \circ \phi}$ is the Borel probability measure defined by $\tau \circ \phi$. Moreover, for each $1 \leq i \leq k$, there is $v_{i} \in C U\left(M_{m}(A)\right)$ such that

$$
\left\|\left\langle\left(1_{m}-\phi\left(p_{i}\right)+\phi\left(p_{i}\right) u\right)\left(1_{m}-\phi\left(q_{i}\right)+\phi\left(q_{i}\right) u^{*}\right)\right\rangle-v_{i}\right\|<\gamma .
$$

Then there is a continuous path of unitaries $\{u(t): t \in[0,1]\}$ in A such that

$$
u(0)=u, u(1)=1, \text { and }\|[\phi(c), u(t)]\|<\epsilon
$$

for any $c \in \mathcal{F}$ and for any $t \in[0,1]$.

Theorem (1.2.14)[98]:

Let $C=P M_{n}(C(X)) P$, where X is a compact subset of a finite $C W$-complex and P a projection in $M_{n}(C(X))$ for some integer $n \geq 1$. Let $G \subset K_{0}(C)$ be a finitely generated subgroup. Write $G=\mathbb{Z}^{k} \oplus \operatorname{Tor}(G)$ with \mathbb{Z}^{k} generated by

$$
\left\{x_{1}=\left[p_{1}\right]-\left[q_{1}\right], x_{2}=\left[p_{2}\right]-\left[q_{2}\right], \ldots, x_{k}=\left[p_{k}\right]-\left[q_{k}\right]\right\},
$$

where $p_{i}, q_{i} \in M_{m}(C)$ (for some integer $m \geq 1$) are projections, $i=1, \ldots, k$.
Let A be a simple C^{*}-algebra with $T R(A) \leq 1$. Suppose that $\phi: C \rightarrow A$ is a monomorphism. Then, for any finite subsets $\mathcal{F} \subseteq C$ and $P \subseteq \underline{K}(C)$, any $\epsilon>0$ and $\gamma>0$, any homomorphism

$$
\Gamma: \mathbb{Z}^{k} \rightarrow U_{0}(A) / C U(A)
$$

there is a unitary $w \in A$ such that

$$
\begin{gathered}
\|[\phi(c), w]\|<\epsilon \quad \forall f \in \mathcal{F} \\
\left.\operatorname{Bott}(\phi, w)\right|_{p}=0,
\end{gathered}
$$

and

$$
\operatorname{dist}\left(\overline{\left\langle\left(1_{m}-\phi\left(p_{i}\right)+\phi\left(p_{i}\right) w\right)\left(1_{m}-\phi\left(q_{i}\right)+\phi\left(q_{i}\right) w^{*}\right)\right\rangle}, \Gamma\left(x_{i}\right)\right)<\gamma, \forall 1 \leq i \leq k,
$$

where $U_{0}(A) / C U(A)$ is identified as $U_{0}\left(M_{m}(A)\right) / C U\left(M_{m}(A)\right)$, and the distance above is understood as the distance in $U_{0}\left(M_{m}(A)\right) / C U\left(M_{m}(A)\right)$.

Lemma (1.2.15)[98]:

Let A be a simple C^{*}-algebra with $T R(A) \leq 1$, and let C be a unital $A H$-algebra. If there are monomorphisms $\phi, \psi: C \rightarrow A$ such that

$$
[\phi]=[\psi] \text { in } K L(C, A), \quad \phi_{\#}=\psi_{\#}, \quad \text { and } \quad \phi^{\ddagger}=\psi^{\ddagger},
$$

then, for any $2>\epsilon>0$, any finite subset $\mathcal{F} \subseteq C$, any finite subset of unitaries $\mathcal{P} \subset$ $U_{n}(C)$ for some $n \geq 1$, there exist a finite subset $\mathcal{G} \subset K_{1}(C)$ with $\overline{\mathcal{P}} \subseteq \mathcal{G}$ (where $\overline{\mathcal{P}}$ is the image of \mathcal{P} in $K_{1}(C)$) and $\delta>0$ such that, for any map $\eta: G(\mathcal{G}) \rightarrow \operatorname{Aff}(T(A))$ with $|\eta(x)(\tau)|<\delta$ for all $\tau \in T(A)$ and $\eta(x)-\bar{R}_{\phi, \psi}(x) \in \rho_{A}\left(K_{0}(A)\right)$ for all $x \in \mathcal{G}$, there is a unitary $u \in A$ such that

$$
\left\|\phi(f)-u^{*} \psi(f)\right\|<\epsilon \quad \forall f \in \mathcal{F},
$$

and
$\tau\left(\frac{1}{2 \pi i} \log \left(\left(\phi \otimes i d_{M_{n}}\left(x^{*}\right)\right)\left(u \otimes 1_{M_{n}}\right)^{*}\left(\psi \otimes i d_{M_{n}}(x)\right)\left(u \otimes 1_{M_{n}}\right)\right)\right)=\tau(\eta([x]))$ for all $x \in \mathcal{P}$ and for all $\tau \in T(A)$

Proof:

Without loss of generality, one may assume that any element in \mathcal{F} has norm at most one. Let $\epsilon>0$. Choose $\epsilon>\theta>0$ and a finite subset $\mathcal{F} \subset \mathcal{F}_{0} \subset C$ satisfying the following: For all $x \in \mathcal{P}, \tau\left(\frac{1}{2 \pi i} \log \left(\phi\left(x^{*}\right) w_{j}^{*} \psi(x) w_{j}\right)\right)$ is well defined and

$$
\begin{align*}
& \tau\left(\frac{1}{2 \pi i} \log \left(\phi\left(x^{*}\right) w_{j}^{*} \psi(x) w_{j}\right)\right) \tag{35}\\
& \quad=\tau\left(\frac{1}{2 \pi i} \log \left(\phi\left(x^{*}\right) v_{1}^{*} \psi(x) v_{1}\right)\right)+\cdots \\
& \quad+\tau\left(\frac{1}{2 \pi i} \log \left(\phi\left(x^{*}\right) v_{j}^{*} \psi(x) v_{j}\right)\right) \quad \text { for all } \tau \in T(A) \tag{36}
\end{align*}
$$

whenever

$$
\left\|\phi(f)-v_{j}^{*} \psi(f) v_{j}\right\|<\theta \text { for all } f \in \mathcal{F}_{0}
$$

where v_{j} are unitaries in A and $w_{j}=v_{1}, \cdots, v_{j}, j=1,2,3$. In the above, if $x \in U_{n}(C)$, we denote by ϕ and ψ the extended maps $\phi \otimes i d_{M_{n}}$ and $\psi \otimes i d_{M_{n}}$, and replace w_{j}, and v_{j} by $\operatorname{diag}\left(w_{j}, \ldots, w_{j}\right)$ and $\operatorname{diag}\left(v_{j}, \ldots, v_{j}\right)$, respectively.
Let $C^{\prime}, l: C^{\prime} \rightarrow C, \delta^{\prime}>0$ (in the place of δ) and $\mathcal{G}^{\prime} \subseteq K_{1}\left(C^{\prime}\right)$ (in the place of Q) the constant and finite subset with respect to C (in the place of C), \mathcal{F}_{0} (in the place of \mathcal{F}), \mathcal{P} (in the place of \mathcal{P}), and ψ (in the place of h). Put $\delta=\delta^{\prime} / 2$.
Fix a decomposition $(l)_{* 1}\left(C^{\prime}\right)=\mathbb{Z}^{k} \oplus \operatorname{Tor}\left((l)_{* 1}\left(C^{\prime}\right)\right)$ (for some integer $k \geq 0$), and let \mathcal{G} be a set of standard generators of \mathbb{Z}^{k}. Let $\mathcal{G}^{\prime \prime} \subset U_{m}(C)$ be a finite subset containing a representative for each element of \mathcal{G}. Without loss of generality, one may assume that $\mathcal{P} \subseteq$ $\mathcal{G}^{\prime \prime}$, the maps ϕ and ψ are approximately unitary equivalent. Hence, for any finite subset Q and any δ_{1}, there is a unitary $v \in A$ such that

$$
\left\|\phi(f)-v^{*} \psi(f) v\right\|<\delta_{1}, \quad \forall f \in Q
$$

By choosing $Q \supseteq \mathcal{F}_{0}$ sufficiently large and $\delta_{1}<\eta / 2$ sufficiently small, the map

$$
[x] \mapsto \tau\left(\frac{1}{2 \pi i} \log \left(\phi^{*}(x) v^{*} \psi(x) v\right)\right), x \in \mathcal{G}^{\prime \prime}
$$

induces a homomorphism $\quad \eta_{1}:(l)_{* 1}\left(K_{1}\left(C^{\prime}\right)\right) \rightarrow \operatorname{Aff}(T(A)) \quad$ (note that $\eta_{1}\left(\operatorname{Tor}\left(\left((l)_{* 1}\left(K_{1}\left(C^{\prime}\right)\right)\right)\right)=\{0\}\right)$, and moreover, $\left\|\eta_{1}(x)\right\|<\delta$ for all $x \in \mathcal{G}$.

By Lemma (1.2.11), the image of $\eta_{1}-\bar{R}_{\phi, \psi}$ is in $\rho\left(K_{0}(A)\right)$. Since $\eta(x)-\bar{R}_{\phi, \psi}(x) \in$ $\rho_{A}\left(K_{0}(A)\right)$ for all $x \in \mathcal{G}$, the image $\left(\eta-\eta_{1}\right)\left((l)_{* 1}\left(K_{1}\left(C^{\prime}\right)\right)\right)$ is also in $\rho_{A}\left(K_{0}(A)\right)$. Since $\eta-\eta_{1}$ factors through \mathbb{Z}^{k}, there is a map $h:(l)_{* 1}\left(K_{1}\left(C^{\prime}\right)\right) \rightarrow K_{0}(A)$ such that $\eta-\eta_{1}=$ $\rho_{A} \circ h$. Note that $|\tau(h(x))|<2 \delta=\delta^{\prime}$ for all $\tau \in T(A)$ and $x \in \mathcal{G}$.
By the universal multi-coefficient theorem, there is $\kappa \in \operatorname{Hom}_{\Lambda}\left(\underline{K}\left(C^{\prime} \otimes C(\mathbb{T})\right), \underline{K}(A)\right)$ with

$$
\left.k \circ \beta\right|_{K_{1}\left(C_{\prime}\right)}=h \circ\left((l)_{* 1} .\right.
$$

Applying, there is a unitary w such that

$$
\|[w, \psi(f)]\|<\theta / 2, \quad \forall f \in \mathcal{F}_{0},
$$

and $\operatorname{Bott}(w, \psi \circ \iota)=\kappa$. In particular, $\operatorname{bott}_{1}(w, \psi)(x)=h(x)$ for all $x \in \mathcal{P}$.
Set $u=w v$. One then has

$$
\left\|\phi(f)-u^{*} \psi(f) u\right\|<\theta, \quad \forall f \in \mathcal{F}_{0},
$$

and for any $x \in \mathcal{P}$ and any $\tau \in T(A)$,

$$
\begin{aligned}
\tau\left(\frac{1}{2 \pi i} \log (\right. & \left.\left.\phi\left(x^{*}\right) u^{*} \psi(x) u\right)\right)=\tau\left(\frac{1}{2 \pi i} \log \left(\phi(x) v^{*} w^{*} \psi(z) w v\right)\right) \\
& =\tau\left(\frac{1}{2 \pi i} \log \left(\phi\left(x^{*}\right) v^{*} \psi(x) v v^{*} \psi\left(x^{*}\right) w^{*} \psi(x) w v\right)\right) \\
& =\tau\left(\frac{1}{2 \pi i} \log \left(\phi\left(x^{*}\right) v^{*} \psi(x) v\right)\right)+\tau\left(\frac{1}{2 \pi i} \log \psi\left(x^{*}\right) w^{*} \psi(x) w\right) \\
& =\eta_{1}([x])(\tau)+h([x])(\tau)=\eta([x])(\tau) .
\end{aligned}
$$

Corollary (1.2.16)[98]:

Let C be a unital $A H$-algebra and let A be a unital separable simple Z-stable C^{*}-algebra in C. Let $\phi, \psi: C \rightarrow A$ be two unital monomorphisms. Then there exists a sequence of unitaries $\left\{u_{n}\right\} \subset A$ such that

$$
\lim _{n \rightarrow \infty} u_{n}^{*} \psi(c) u_{n}=\phi(c) \text { for all } c \in C \text {, }
$$

if and only if

$$
[\phi]=[\psi] \quad \text { in } K L(C, A), \quad \phi_{\#}=\psi_{\#} \text { and } \phi^{\ddagger}=\psi^{\ddagger} .
$$

Proof:

We only show the "if" part. Suppose that ϕ and ψ satisfy the condition. Let $\epsilon>0$, and let $\mathcal{F} \subset C$ be a finite subset. Then exists a unitary $v \in A \otimes \mathrm{Z}$ such that

$$
\begin{equation*}
\left\|v^{*}(\psi(a) \otimes 1) v-\phi(a) \otimes 1\right\|<\frac{\epsilon}{3} \quad \text { for all } a \in \mathcal{F} \tag{37}
\end{equation*}
$$

Let $l: A \rightarrow A \otimes Z$ be defined by $l(a)=a \otimes 1$ for $a \in A$. There exists an isomorphism j : $A \otimes Z \rightarrow A$ such that $j \circ l$ is approximately inner. So there is a unitaries $w \in A$ such that

$$
\begin{equation*}
\left\|j(\psi(a) \otimes 1)-w^{*} \psi(a) w\right\|<\frac{\epsilon}{3} \text { and }\left\|w^{*} \phi(a) w-j(\phi(a) \otimes 1)\right\|<\frac{\epsilon}{3} \tag{38}
\end{equation*}
$$

for all $a \in \mathcal{F}$. Let $u=w j(v) w^{*} \in A$; then, for $a \in \mathcal{F}$,

$$
\begin{align*}
\| u^{*} \psi(a) u- & \phi(a)\|=\| w j(v)^{*} \psi(a) w j(v) w^{*}-\phi(a) \| \tag{39}\\
& \leq\left\|w j(v)^{*} w^{*} \psi(a) w j(v) w^{*}-w j(v)^{*} j(\psi(a) \otimes 1) j(v) w^{*}\right\| \tag{40}\\
& +\left\|w j(v)^{*}(j(\psi(a)) \otimes 1) j(v) w^{*}-w(j(\phi(a) \otimes 1)) w^{*}\right\| \tag{41}\\
& +\left\|w(j(\phi(a) \otimes 1)) w^{*}-\phi(a)\right\| \tag{42}\\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3} \frac{\epsilon}{3}=\epsilon \text { for all } a \in \mathcal{F} . \tag{43}
\end{align*}
$$

A version of the following is also obtained by H. Matui.

Corollary (1.2.17)[98]:

Let C be a unital $A H$-algebra and let A be a unital separable simple C^{*}-algebra in C_{0} which is Z-stable. Suppose that $\phi, \psi: C \rightarrow A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\left\{u_{n}\right\} \subset A$ such that

$$
\lim _{n \rightarrow \infty} u_{n}^{*} \phi(c) u_{n}=\psi(c) \text { for all } c \in C \text {, }
$$

if and only if

$$
[\phi]=[\psi] \quad \text { in } K L(C, A), \quad \phi_{\#}=\psi_{\#} \text { and } \phi^{\ddagger}=\psi^{\ddagger} .
$$

Lemma (1.2.18)[98]:

Let A be a unital C^{*}-algebra such that $A \otimes M_{r}$ is an $A H$-algebra for any supernatural number r of infinite type. Let $B \in C$ be a unital separable C^{*}-algebra, and let $\phi, \psi: A \rightarrow B$ be two unital monomorphisms. Suppose that

$$
\begin{align*}
{[\phi] } & =[\psi] \text { in } K L(A, B), \tag{44}\\
\phi_{\#} & =\psi_{\#} \text { and } \phi^{\ddagger}=\psi^{\ddagger} . \tag{45}
\end{align*}
$$

Let p and q be two relatively prime supernatural numbers of infinite type with $M_{p} \otimes$ $\mathrm{M}_{\mathrm{q}}=\mathrm{Q}$. Then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subset \mathrm{A} \otimes \mathrm{Z}_{\mathrm{p}, \mathrm{q}}$, there exists a unitary $\mathrm{v} \in \mathrm{B} \otimes \mathrm{Z}_{\mathrm{p}, \mathrm{q}}$ such that

$$
\begin{equation*}
\left\|v^{*}((\phi \otimes i d)(a)) v-(\psi \otimes i d)(a)\right\|<\epsilon \quad \text { for all } a \in \mathcal{F} \tag{46}
\end{equation*}
$$

The proof of this lemma will be lengthy and technical in nature. Using homotopy lemmas, one could find a certain path of unitaries in $B \otimes Q$ such that it implements the approximate equivalence above when it is regarded as a unitary in $B \otimes Z_{p, q}$. But since the domain C^{*}-algebra A is only assumed to be rational tracial rank at most one, in order to apply the homotopy lemmas, one also needs to interpolate paths in $A \otimes Z_{p, q}$, and this increases the technical difficulty of the proof.

Proof:

Let r be a supernatural number. Denote by $l_{r}: A \rightarrow A \otimes M_{r}$ the embedding defined by $l_{r}(a)=a \otimes 1$ for all $a \in A$. Denote by $j_{r}: B \rightarrow B \otimes M_{r}$ the embedding defined by $j_{r}(b)=b \otimes 1$ for all $b \in B$. Without loss of generality, one may assume that $\mathcal{F}=\mathcal{F}_{1} \otimes$ \mathcal{F}_{2}, where $\mathcal{F}_{1} \subseteq A$ and $\mathcal{F}_{2} \subseteq Z_{p, q}$ are finite subsets and $1_{A} \in \mathcal{F}$ and $1_{z_{p, q}} \in \mathcal{F}_{2}$. Moreover, one may assume that any element in \mathcal{F}_{1} or \mathcal{F}_{2} has norm at most one.

Let $0=t_{0}<t_{1}<\cdots<t_{m}=1$ be a partition of $[0,1]$ such that

$$
\begin{equation*}
\left\|b(t)-b\left(t_{i}\right)\right\|<\frac{\epsilon}{4} \quad \forall b \in \mathcal{F}_{2}, \forall t \in\left[t_{i-1}, t_{i}\right], i=1, \ldots, m . \tag{47}
\end{equation*}
$$

Consider

$$
\begin{align*}
& \varepsilon=\left\{a \otimes b\left(t_{i}\right) ; a \in \mathcal{F}_{1}, b \in \mathcal{F}_{2}, i=0, \ldots, m\right\} \subseteq A \otimes Q \\
& \varepsilon_{p}=\left\{a \otimes b\left(t_{0}\right) ; a \in \mathcal{F}_{1}, b \in \mathcal{F}_{2}\right\} \subseteq A \otimes M_{p} \subset A \otimes Q \text { and } \tag{48}\\
& \varepsilon_{q}=\left\{a \otimes b\left(t_{m}\right) ; a \in \mathcal{F}_{1}, b \in \mathcal{F}_{2}\right\} \subseteq A \otimes M_{q} \subset A \otimes Q . \tag{49}
\end{align*}
$$

Since $A \otimes Q$ is an $A H$-algebra, without loss of generality, one may assume that the finite subset E is in a C^{*}-subalgebra of $A \otimes Q$ which is isomorphic to $C:=P M_{n}(C(X)) P$ (for some $n \geq 1$) for some compact metric space X. Since $P M_{n}(C(X)) P=$ $\lim _{m \rightarrow \infty}\left(P_{m} M_{n}\left(C\left(X_{m}\right)\right) P_{m}\right)$, where X_{m} are closed subspaces of finite $C W$-complexes, then, without loss of generality, one may assume further that X is a closed subset of a finite $C W$-complex.
Fix a metric on X, and for any $a \in(0,1)$, denote by $\Delta(a)=\inf \left\{\mu_{\tau \circ(\phi \otimes i d)}\left(O_{a}\right) ; \tau \in T(B), O_{a}\right.$ an open ball of radius a in $\left.X\right\}$. Since B is simple, one has that $0<\Delta(a) \leq 1$.
Let $\mathcal{H} \subset C, \mathcal{P} \subseteq \underline{K}(C), Q=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \subset K_{0}(C)$ which generates a free subgroup of $K_{0}(C), \delta>0, \gamma>0$, and $d>0$ (in the place of η) be the constants of Theorem (1.2.13) with respect to $E, \epsilon / 8$, and Δ. We may assume that $x_{i}=[p i]-\left[q_{i}\right]$, where $p_{i}, q_{i} \in M_{n}(C)$ are projections (for some integer $n \geq 1$), $i=1,2, \ldots, m$. Moreover, we may assume that $\gamma<1$. Denote by ∞ the supernatural number associated with \mathbb{Q}. Let $P_{i}=P \cap K_{i}(A \otimes$ $Q), i=0,1$. There is a finitely generated free subgroup $G(\mathcal{P})_{i, 0} \subset K_{i}(A)$ such that if one sets

$$
\begin{equation*}
G(\mathcal{P})_{i, \infty, 0}=G\left(\left\{g r: g \in\left(l_{\infty}\right)_{* i}\left(G(\mathcal{P})_{i, 0}\right) \text { and } r \in D_{0}\right\}\right), \tag{50}
\end{equation*}
$$

where $1 \in D_{0} \subset \mathbb{Q}$ is a finite subset, then $G(\mathcal{P})_{i, \infty, 0}$ contains the subgroup generated by $\mathcal{P}_{i}, i=0,1$. Moreover, we may assume that, if $r=k / m$, where k and m are nonzero integers, and $r \in D_{0}$, then $1 / m \in D_{0}$. Let $\mathcal{P}_{i}^{\prime} \subset K_{i}(A)$ be a finite subset which generates $G(\mathcal{P})_{i, 0}, i=0,1$.Also denote by $\mathcal{P}^{\prime}=\mathcal{P}_{0}^{\prime} \cup \mathcal{P}_{1}^{\prime}$.
Denote by $j: C \rightarrow A \otimes Q$ the embedding.
Write the subgroup generated by the image of Q in $K_{0}(A \otimes Q)$ as \mathbb{Z}^{k} (for some integer $k \geq 1$). Choose $\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\} \subseteq K_{0}(A)$ and $\left\{r_{i j} ; 1 \leq i \leq m, 1 \leq j \leq k\right\} \subseteq \mathbb{Q}$ such that

$$
j_{* 0}\left(x_{i}\right)=\sum_{j=1}^{k} r_{i j} x_{j}^{\prime}, \quad 1 \leq i \leq m, 1 \leq j \leq k
$$

and moreover, $\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}$ generates a free subgroup of $K_{0}(A)$ of rank k. Choose projections $p_{j}^{\prime}, q_{j}^{\prime} \in M_{n}(A)$ such that $x_{j}^{\prime}=\left[p_{j}^{\prime}\right]-\left[q_{j}^{\prime}\right], 1 \leq j \leq k$. Choose an integer M such that $M r_{i j}$ are integers for $1 \leq i \leq m$ and $1 \leq j \leq k$. In particular $M x_{i}$ is the linear combination of x_{j}^{\prime} with integer coefficients.
Also noting that the subgroup of $K_{0}(A \otimes Q)$ generated by $\left\{\left(l_{\infty}\right)_{* i}\left(x_{1}^{\prime}\right), \ldots,\left(l_{\infty}\right)_{* i}\left(x_{k}^{\prime}\right)\right\}$ is isomorphic to \mathbb{Z}^{k} and the subgroup of $K_{0}\left(A \otimes M_{r}\right)$ generated by $\left\{\left(l_{r}\right)_{* i}\left(x_{1}^{\prime}\right)\right.$, $\left.\ldots,\left(l_{r}\right)_{* i}\left(x_{k}^{\prime}\right)\right\}$ has to be isomorphic to \mathbb{Z}^{k}, where $r=p$ or $r=q$.
Since $A \otimes M_{r}$ is an $A H$-algebra, one can choose a C^{*}-subalgebra C_{r} of $A \otimes M_{r}$ which is isomorphic to $P_{r} M_{n_{r}}\left(C\left(X_{r}\right)\right) P_{r}$ (for some $n_{r} \geq 1$) such that $E_{r} \subseteq C_{r}$ and projections $\left\{p_{1, r}^{\prime}, \ldots, p_{k, r}^{\prime}, q_{1, r}^{\prime}, \ldots, q_{k, r}^{\prime}\right\} \subseteq M_{n}\left(C_{r}\right)$ such that for any $1 \leq j \leq k$,

$$
\begin{equation*}
\left\|p_{j}^{\prime} \otimes 1_{M_{r}}-p_{j, r}^{\prime}\right\|<\gamma /\left(32\left(1+\sum_{i, j^{\prime}}\left|M r_{i, j^{\prime}}\right|\right)\right)<1 \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|q_{j}^{\prime} \otimes 1_{M_{r}}-q_{j, r}^{\prime}\right\|<\gamma /\left(32\left(1+\sum_{i, j^{\prime}}\left|M r_{i, j^{\prime}}\right|\right)\right)<1 \tag{52}
\end{equation*}
$$

where X_{r} is a closed subset of a finite $C W$-complex, and $r=p$ or $r=q$.
Denote by $x_{j, r}^{\prime}=\left[p_{j, \tau}^{\prime}\right]-\left[q_{j, r}^{\prime}\right], 1 \leq j \leq k$, and denote by G_{r} the subgroup of $K_{0}\left(C_{r}\right)$ generated by $\left\{x_{1, r}^{\prime}, \ldots, x_{k, r}^{\prime}\right\}$, and write $G_{r}=\mathbb{Z}^{k} \oplus \operatorname{Tor}\left(G_{r}\right)$. Since G_{r} is generated by k elements, one has that $r \leq k$ and $r=k$ if and only if G_{r} is torsion free. Note that the image of G_{r} in $K_{0}\left(A \otimes M_{r}\right)$ is the group generated by $\left\{\left[p_{1}^{\prime} \otimes 1_{M_{r}}\right]-\left[q_{1}^{\prime} \otimes\right.\right.$ $\left.1_{M_{r}}\right], \ldots,\left[p_{k}^{\prime} \otimes 1_{M_{r}}\right]-\left[q_{k}^{\prime} \otimes 1_{M_{r}}\right\}$, which is isomorphic to \mathbb{Z}^{k} (with $\left\{\left[p_{j}^{\prime} \otimes 1_{M_{r}}\right]-\right.$ $\left.\left[q_{j}^{\prime} \otimes 1_{M_{r}}\right] ; 1 \leq j \leq k\right\}$ as the standard generators). Hence G_{r} is torsion free and $r=k$.
Without loss of generality, one may assume that $l_{r}\left(\mathcal{P}^{\prime}\right) \subseteq K\left(C_{r}\right)$. Assume that \mathcal{H} is sufficiently large and δ is sufficiently small such that for any homomorphism h from $A \otimes$ Q to $B \otimes Q$ and any unitary $z_{j}(j=1,2,3,4)$, the map $\operatorname{Bott}\left(h, z_{j}\right)$ and $\operatorname{Bott}\left(h, w_{j}\right)$ are well defined on the subgroup generated by \mathcal{P} and

$$
\operatorname{Bott}\left(h, z_{j}\right)=\operatorname{Bott}\left(h, z_{1}\right)+\cdots+\operatorname{Bott}\left(h, z_{j}\right)
$$

on the subgroup generated by \mathcal{P}, if $\left\|\left[h(x), z_{j}\right]\right\|<\delta$ for any $x \in \mathcal{H}$, where $w_{j}=$ $z_{1}, \ldots, z_{j}, j=1,2,3,4$.
By choosing larger \mathcal{H} and smaller δ, one may also assume that

$$
\begin{equation*}
\left\|h\left(p_{i}\right), z_{j}\right\|<\frac{1}{16} \text { and }\left\|h\left(q_{i}\right), z_{j}\right\|<\frac{1}{16}, \quad 1 \leq i \leq m, j=1,2,3,4 \tag{53}
\end{equation*}
$$

and for any $1 \leq i \leq m$,

$$
\begin{equation*}
\operatorname{dist}\left(\zeta_{i, z_{1}}^{M} \prod_{j=1}^{k}\left(\zeta_{i, z_{1}}^{\prime}\right)^{M r_{i, j}}\right)<\gamma / 8 \tag{54}
\end{equation*}
$$

where

$$
\zeta_{i, z_{1}}=\overline{\left.\left.\left\langle\left(1_{n}-h\left(p_{i}\right)+h\left(p_{i}\right)\right) z_{1}\right)\left(1_{n}-h\left(p_{i}\right)+h\left(p_{i}\right)\right) z_{1}^{*}\right)\right\rangle}
$$

and
$\zeta_{i, z_{1}}^{\prime}$
$=\overline{\left.\left.\left\langle\left(1_{n}-h\left(p_{j}^{\prime} \otimes 1_{A \otimes Q}\right)+h\left(p_{j}^{\prime} \otimes 1_{A \otimes Q}\right)\right) z_{1}\right)\left(1_{n}-h\left(q_{j}^{\prime} \otimes 1_{A \otimes Q}\right)+h\left(q_{j}^{\prime} \otimes 1_{A \otimes Q}\right)\right) z_{1}^{*}\right)\right\rangle .}$
By choosing even smaller δ, without loss of generality, we may assume that

$$
\mathcal{H}=\mathcal{H}^{0} \otimes \mathcal{H}^{p} \otimes \mathcal{H}^{q}
$$

where $\mathcal{H}^{0} \subset A, \mathcal{H}^{p} \subset M_{p}$ and $\mathcal{H}^{q} \subset M_{q}$ are finite subsets, and $1 \in \mathcal{H}^{0}, 1 \in \mathcal{H}^{p}$ and $1 \in$ \mathcal{H}^{q}.

Moreover, choose $\mathcal{H}^{0}, \mathcal{H}^{p}$ and \mathcal{H}^{q} even larger and δ even smaller so that for any homomorphism $h_{r}: A \otimes M_{r} \rightarrow B \otimes M_{r}$ and unitaries $z_{1}, z_{2} \in B \otimes M_{r}$ with $\left\|h_{r}(x), z_{i}\right\|<$ δ for any $x \in \mathcal{H}_{0} \otimes \mathcal{H}_{r}$, one has

$$
\begin{equation*}
\left\|h_{r}\left(p_{i, r}^{\prime}\right), z_{j}\right\|<\frac{1}{16} \text { and }\left\|h_{r}\left(q_{i, r}^{\prime}\right), z_{j}\right\|<\frac{1}{16}, \quad 1 \leq i \leq k, j=1,2 \tag{55}
\end{equation*}
$$

and

$$
\operatorname{dist}\left(\zeta_{i, z_{1}, z_{2}}, \overline{\left(1_{B \otimes M_{r}}\right)_{n}}\right)<\operatorname{dist}\left(\zeta_{i, z_{1}^{*}}, \zeta_{i, z_{2}}\right)+\gamma /\left(32\left(1+\sum_{i, j}\left|M r_{i, j}\right|\right)\right)
$$

where

$$
\zeta_{i, z}=\overline{\left.\left.\left\langle\left(1_{n}-h_{r}\left(p_{i, r}^{\prime}\right)+h_{r}\left(p_{i, r}^{\prime}\right)\right) z^{\prime}\right)\left(1_{n}-h_{r}\left(q_{i, r}^{\prime}\right)+h\left(q_{i, r}^{\prime}\right)\right)\left(z^{\prime}\right)^{*}\right)\right\rangle, z^{\prime}=z_{1} z_{2}, z_{1}^{*}, z_{2} .}
$$

Denote by $C^{\prime}=P^{\prime} M_{n}(C(\tilde{X})) P^{\prime}, l: C^{\prime} \rightarrow A \otimes Q, \delta_{2}$ (in the place of δ) the constant, $G \subseteq$ $K_{1}(C(\tilde{X}))$ (in the place of Q) the finite subset with respect to $A \otimes Q$ (in the place of C), $B \otimes Q$ (in the place of A), $\phi \otimes i d Q$ (in the place of h), $\delta / 4$ (in the place of ϵ), \mathcal{H} (in the place of \mathcal{F}) and \mathcal{P}. Note that \tilde{X} is a finite $C W$-complex.
Let $\mathcal{H}^{\prime} \subseteq A \otimes Q$ be a finite subset and assume that δ_{2} is small enough such that for any homomorphism h from $A \otimes Q$ to $B \otimes Q$ and any unitary $z_{j}(j=1,2,3,4)$, the map $\operatorname{Bott}\left(h, z_{j}\right)$ and $\operatorname{Bott}\left(h, w_{j}\right)$ is well defined on the subgroup $[l]\left(\underline{K}\left(C^{\prime}\right)\right)$ and

$$
\operatorname{Bott}\left(h, w_{j}\right)=\operatorname{Bott}\left(h, z_{1}\right)+\cdots+\operatorname{Bott}\left(h, z_{j}\right)
$$

on the subgroup $[l]\left(K\left(C^{\prime}\right)\right)$, if $\left\|\left[h(x), z_{j}\right]\right\|<\delta_{2}$ for any $x \in H^{\prime}$, where $w_{j}=z_{1}, z_{j}, j=$ $1,2,3,4$. Furthermore, as above, one may assume, without loss of generality, that

$$
\mathcal{H}^{\prime}=\mathcal{H}^{0 \prime} \otimes \mathcal{H}^{p^{\prime}} \otimes \mathcal{H}^{q^{\prime}},
$$

where $\mathcal{H}^{0} \subseteq \mathcal{H}^{0 \prime} \subset A, \mathcal{H}^{p} \subseteq \mathcal{H}^{p^{\prime}} \in M_{q}$ and $\mathcal{H}^{q} \subseteq \mathcal{H}^{q^{\prime}} \subset M_{q}$ are finite subsets.
Let $\delta_{2}^{\prime}>0$ be a constant such that for any unitary with $\|u-1\|<\delta_{2}^{\prime}$, one has that $\|\log u\|<\delta_{2} / 4$. Without loss of generality, one may assume that $\delta_{2}^{\prime}<\delta_{2} / 4<\epsilon / 4$ and $\delta_{2}^{\prime}<\delta$.
Let $C_{r}^{\prime}:=P_{r} M_{n} C\left(X_{r}^{\prime}\right) P_{r}$ (in the place of C^{\prime}), $l_{r}^{\prime}: C_{r} \rightarrow A \otimes M_{r}$ (in the place of l), $R_{r} \subset$ $K_{1}\left(C_{r}^{\prime}\right)$) (in the place of Q) and δ_{r} (in the place of δ) be the finite subset and constant with respect to $A \otimes M_{r}$ (in the place of C), $B \otimes M_{r}$ (in the place of A), $\phi \otimes i d M_{r}$ (in the place of h), $\mathcal{H}^{0 \prime} \otimes \mathcal{H}^{r \prime}$ (in place of \mathcal{F}) and $\left(l_{r}\right)_{* 0}\left(\mathcal{P}_{0}^{\prime}\right) \cup\left(l_{r}\right)_{* 1}\left(\mathcal{P}_{1}^{\prime}\right)$ (in the place of \mathcal{P}) and $\delta_{2}^{\prime} / 8$ (in place of ϵ) $\left(r=p\right.$ or $r=q$). Note that X_{r}^{\prime} is a finite $C W$-complex with $K_{1}\left(C_{1}^{\prime}\right)=$ $\mathbb{Z}^{k_{r}} \oplus \operatorname{Tor}\left(K_{1}\left(C_{r}^{\prime}\right)\right)$. Let $R_{r}^{(i)}=\left(l_{r}^{\prime}\right)_{* i}\left(K_{i}\left(C_{r}^{\prime}\right)\right), i=0,1$. There is a finitely generated subgroup $G_{i, 0, r} \subset K_{i}(A)$ and a finitely generated subgroup $D_{0, r} \subseteq \mathbb{Q}_{r}$ so that

$$
G_{i, 0, r}^{\prime}:=G\left(\left\{g r: g \in\left(l_{r}\right)_{* i}\left(G_{i, 0, r}\right) \text { and } r \in D_{0, r}\right\}\right)
$$

contains the subgroup $R_{r}^{(i)}, i=0,1$. Without loss of generality, one may assume that $D_{0, p}=\left\{\frac{k}{m_{p}} ; k \in Z\right\}$ and $D_{0, q}=\left\{\frac{k}{m_{q}} ; k \in Z\right\}$ for an integer m_{p} divides p and an integer m_{q} divides q. Let $R \subset \underline{K}(A \otimes Q)$ be a finite subset which generates a subgroup containing

$$
\frac{1}{m_{p} m_{q}}\left(\left(l_{p, \infty}\right)_{*}\left(G_{0,0, p}^{\prime} \cup G_{1,0, p}^{\prime}\right) \cup\left(l_{q, \infty}\right)_{*}\left(G_{0,0, q}^{\prime} \cup G_{1,0, q}^{\prime}\right)\right)
$$

in $\underline{K}(A \otimes Q)$, where $l_{r, \infty}$ is the canonical embedding $A \otimes M_{r} \rightarrow A \otimes Q, r=p, q$. Without loss of generality, one may also assume that $R \supseteq l_{/ 1}(\mathcal{G})$. Let $\mathcal{H}_{r} \subset A \otimes M_{r}$ be a finite subset and $\delta_{3}>0$ such that for any homomorphism h from $A \otimes M_{r}$ to $B \otimes$ $M_{r}(r=p$ or $r=q)$ any unitary $z_{j}(j=1,2,3,4)$, the map $\operatorname{Bott}\left(h, z_{j}\right)$ and $\operatorname{Bott}\left(h, w_{j}\right)$ are well defined on the subgroup $\left[l_{r}^{\prime}\right]\left(\underline{K}\left(C_{r}^{\prime}\right)\right)$ and

$$
\operatorname{Bott}\left(h, w_{j}\right)=\operatorname{Bott}\left(h, z_{1}\right)+\cdots+\operatorname{Bott}\left(h, z_{j}\right)
$$

on the subgroup generated by $\left[l_{r}^{\prime}\right]\left(\underline{K}\left(C_{r}^{\prime}\right)\right)$, if $\left\|\left[h(x), z_{j}\right]\right\|<\delta_{3}$ for any $x \in \mathcal{H}_{r}$, where $w_{j}=z_{1}, \ldots, z_{j}, j=1,2,3,4$. Without loss of generality, we assume that $\mathcal{H}^{0} \otimes \mathcal{H}^{p} \subset \mathcal{H}_{p}$ and $\mathcal{H}^{0} \otimes \mathcal{H}^{q} \subset \mathcal{H}_{q}$. Furthermore, we may also assume that

$$
\mathcal{H}_{r}=\mathcal{H}_{0,0} \otimes \mathcal{H}_{0, r}
$$

for some finite subsets $\mathcal{H}_{0,0}$ and $\mathcal{H}_{0, r}$ with $\mathcal{H}^{0 \prime} \subset \mathcal{H}_{0,0} \subset A, \mathcal{H}^{p \prime} \subset \mathcal{H}_{0, p} \subset$ M_{p} and $\mathcal{H}^{q \prime} \subset \mathcal{H}_{0, q}$. In addition, we may also assume that $\delta_{3}<\delta_{2} / 2$.
Furthermore, one may assume that δ_{3} is sufficiently small such that, for any unitaries z_{1}, z_{2}, z_{3} in a C^{*}-algebra with tracial states, $\tau\left(\frac{1}{2 \pi i} \log \left(z_{i} z_{j}^{*}\right)\right)(i, j=1,2,3)$ is well defined and

$$
\tau\left(\frac{1}{2 \pi i} \log \left(z_{1} z_{2}^{*}\right)\right)=\tau\left(\frac{1}{2 \pi i} \log \left(z_{1} z_{3}^{*}\right)\right)+\tau\left(\frac{1}{2 \pi i} \log \left(z_{3} z_{2}^{*}\right)\right)
$$

for any tracial state τ, whenever $\left\|z_{1}-z_{3}\right\|<\delta_{3}$ and $\left\|z_{2}-z_{3}\right\|<\delta_{3}$.
To simply notation, we also assume that, for any unitary $z_{j},(j=1,2,3,4)$ the map $\operatorname{Bott}\left(h, z_{j}\right)$ and $\operatorname{Bott}\left(h, w_{j}\right)$ are well defined on the subgroup generated by \mathcal{R} and

$$
\operatorname{Bott}\left(h, w_{j}\right)=\operatorname{Bott}\left(h, z_{1}\right)+\cdots+\operatorname{Bott}\left(h, z_{j}\right)
$$

on the subgroup generated by \mathcal{R}, if $\left\|\left[h(x), z_{j}\right]\right\|<\delta_{3}$ for any $x \in \mathcal{H}^{\prime \prime}$, where $w_{j}=$ $z_{1}, \ldots, z_{j}, j=1,2, \ldots, 4$, and assume that

$$
\mathcal{H}^{\prime \prime}=\mathcal{H}_{0,0} \otimes \mathcal{H}_{0, p} \otimes \mathcal{H}_{0, q} .
$$

Let $R_{i}=R \cap K_{i}(A \otimes Q)$. There is a finitely generated subgroup $G_{i, 0}$ of $K_{i}(A)$ and there is a finite subset $D_{0}^{\prime} \subset \mathbb{Q}$ such that

$$
G_{i, \infty}:=G\left(\left\{g r: g \in\left(l_{r}\right)_{* i}\left(G_{i, 0}\right) \text { and } r \in D_{0}^{\prime}\right\}\right)
$$

contains the subgroup generated by $R^{i}, i=0,1$. Without loss of generality, we may assume that $G_{i, \infty}$ is the subgroup generated by R^{i}. Note that we may also assume that $G_{i, 0} \supset G(\mathcal{P})_{i, 0}$ and $1 \in D_{0}^{\prime} \supset D_{0}$. Moreover, we may assume that, if $r=k / m$, where m, k are relatively prime non-zero integers, and $r \in D_{0}^{\prime}$, then $1 / m \in D_{0}^{\prime}$. We may also assume that $G_{i, 0, r} \subseteq G_{i, 0}$ for $r=p, q$ and $i=0,1$. Let $R^{i^{\prime}} \subset K_{i}(A)$ be a finite subset which generates $G_{i, 0}, i=0,1$. Choose a finite subset $U \subset U_{n}(A)$ for some n such that for any element of $R^{1^{\prime}}$, there is a representative in U. Let S be a finite subset of A such that if $\left(z_{i, j}\right) \in U$, then $z_{i, j} \in S$.
Denote by δ_{4} and $Q_{r} \subset K_{1}\left(A \otimes M_{r}\right) \cong K_{1}(A) \otimes Q_{r}$ the constant and finite subset of Lemma (1.2.15) corresponding to $\varepsilon_{r} \cup \mathcal{H}_{r} \otimes 1 \cup l_{r}(S)$ (in the place of \mathcal{F}), $l_{r}(\mathcal{U})$ (in the place of \mathcal{P}) and $\frac{1}{n^{2}} \min \left\{\delta_{2}^{\prime} / 8, \delta_{3} / 4\right\}$ (in the place of ϵ) $(r=p$ or $r=q$). We may assume that $Q_{r}=\left\{x \otimes r: x \in Q^{\prime}\right.$ and $\left.r \in D_{r}^{\prime \prime}\right\}$, where $Q^{\prime} \subset K_{1}(A)$ is a finite subset and $D_{r}^{\prime \prime} \subset \mathbb{Q}_{r}$ is also a finite subset. Let $K=\max \left\{|r|: r \in D_{p}^{\prime \prime} \cup D_{q}^{\prime \prime}\right\}$. Since $[\phi]=[\psi]$ in $K L(A, B)$, $\phi_{\#}=\psi_{\#}$ and $\phi^{\ddagger}=\psi^{\ddagger}$, by Lemma (1.2.10), $\bar{R}_{\phi, \psi}\left(K_{1}(A)\right) \subseteq \overline{\rho_{B}\left(K_{0}(B)\right)} \subset \operatorname{Aff}(T(B))$. Therefore, there is a map $\eta: G\left(Q^{\prime}\right) \rightarrow$

$$
\begin{equation*}
\left(\eta-\bar{R}_{\phi, \psi}\right)([z]) \in \rho_{B}\left(K_{0}(B)\right) \text { and }\|\eta(z)\|<\frac{\delta_{4}}{1+K} \text { for all } z \in Q^{\prime} \tag{56}
\end{equation*}
$$

Consider the map $\phi_{r}=\phi \otimes i d_{M_{r}}$ and $\psi_{r}=\psi \otimes i d_{M_{r}}(r=p$ or $r=q)$. Since η vanishes on the torsion part of $G\left(Q^{\prime}\right)$, there is a homomorphism $\eta_{r}: G\left(\left(l_{r}\right)_{* 1}\left(Q^{\prime}\right)\right) \rightarrow$ $\overline{\rho_{B \otimes M_{r}}\left(K_{0}\left(B \otimes M_{r}\right)\right)} \subset \operatorname{Aff}\left(T\left(B \otimes M_{r}\right)\right)$ such that

Since $\overline{\rho_{B \otimes M_{r}}\left(K_{0}\left(B \otimes M_{r}\right)\right)}=\overline{\mathbb{R}_{\rho_{B}}\left(K_{0}(B)\right)}$ is divisible, one can extend η_{r} so it defines on $K_{1}(A) \otimes \mathbb{Q}_{r}$. We will continue to use η_{r} for the extension. It follows from (50) that $\eta_{r}(z)-\bar{R}_{\phi, \psi}(z) \in \rho_{B \otimes M_{r}}\left(K_{0}\left(B \otimes M_{r}\right)\right)$ and $\left\|\eta_{r}(z)\right\|<\delta_{4}$ for all $z \in Q_{r}$. By Lemma 1.2.17, there exists a unitary $u_{p} \in B \otimes M_{p}$ such that

$$
\begin{gather*}
\left\|u_{p}^{*}\left(\phi \otimes i d_{M_{p}}\right)(z) u_{p}-\left(\psi \otimes i d_{M_{p}}\right)(z)\right\|<\frac{1}{n^{2}} \min \left\{\delta_{2}^{\prime} / 8, \delta_{3} / 4\right\}, \forall c \\
\in \mathcal{E}_{p} \cup \mathcal{H}_{p} \cup l_{p}(S) . \tag{58}
\end{gather*}
$$

Note that

$$
\left\|u_{p}^{*}\left(\phi \otimes i d_{M_{p}}\right)(z) u_{p}-\left(\psi \otimes i d_{M_{p}}\right)(z)\right\|<\delta_{3} \quad \text { for any } z \in U .
$$

Therefore $\tau\left(\frac{1}{2 \pi i} \log \left(u_{p}^{*}\left(\phi \otimes i d_{p}\right)(z) u_{p}\left(\psi \otimes i d_{p}\right)(z)\right)\right)=\eta_{p}\left(\left[z^{*}\right]\right)(\tau)$ for all $z \in l_{p}(U)$, where we identify ϕ and ψ with $\phi \otimes i d_{M_{n}}$ and $\psi \otimes i d_{M_{n}}$, and up with $u_{p} \otimes$ $1_{M_{n}}$, respectively.
The same argument shows that there is a unitary $u_{q} \in B \otimes M_{q}$ such that

$$
\begin{gather*}
\left\|u_{q}^{*}\left(\phi \otimes i d_{M_{q}}\right)(z) u_{q}-\left(\psi \otimes i d_{M_{q}}\right)(z)\right\|<\frac{1}{n^{2}} \min \left\{\delta_{2}^{\prime} / 8, \delta_{3} / 4\right\}, \forall c \\
\in \mathcal{E}_{q} \cup \mathcal{H}_{q} \cup l_{q}(S) \tag{59}
\end{gather*}
$$

and $\quad \tau\left(\frac{1}{2 \pi i} \log \left(u_{q}^{*}\left(\phi \otimes i d_{q}\right)(z) u_{q}\left(\psi \otimes i d_{q}\right)(z)\right)\right)=\eta_{q}\left(\left[z^{*}\right]\right)(\tau) \quad$ for \quad all $\quad z \in l_{q}(U)$, where we identify ϕ and ψ with $\phi \otimes i d_{M_{n}}$ and $\psi \otimes i d_{M_{n}}$, and uq with $u_{q} \otimes 1_{M_{n}}$, respectively. We will also identify u_{p} with $u_{p} \otimes 1_{M_{q}}$ and u_{q} with $u_{q} \otimes 1_{M_{q}}$ respectively. Then $u_{p} u_{q}^{*} \in A \otimes Q$ and one estimates that for any $c \in \mathcal{H}_{00} \otimes \mathcal{H}_{0, p} \otimes \mathcal{H}_{q}$,

$$
\begin{equation*}
\left\|u_{q} u_{p}^{*}\left(\phi \otimes 1_{Q}(c)\right)(z) u_{p} u_{q}^{*}-\left(\phi \otimes 1_{Q}\right)(c)\right\|<\delta_{3}, \tag{60}
\end{equation*}
$$

and hence $\operatorname{Bott}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right)(z)$ is well defined on the subgroup generated by R. Moreover, for any $z \in U$, by the Exel formula by applying (83),

$$
\begin{align*}
\tau\left(\text { bott }_{1}(\phi\right. & \left.\left.\otimes \text { id }_{Q}, u_{p} u_{q}^{*}\right)\left(l_{\infty}\right)_{* 1}([z])\right) \tag{61}\\
& =\tau\left(\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right)\left(l_{\infty}(z)\right)\right) \tag{62}\\
& =\tau\left(\frac { 1 } { 2 \pi i } \operatorname { l o g } \left(u_{p} u_{q}^{*}\left(\phi \otimes i d_{q}\right)\left(l_{\infty}(z)\right) u_{q} u_{p}^{*}(\psi\right.\right. \\
& \left.\left.\left.\otimes i d_{q}\right)\left(l_{\infty}(z)\right)^{*}\right)\right) \tag{63}\\
& =\tau\left(\frac{1}{2 \pi i} \log \left(u_{q}^{*}\left(\phi \otimes i d_{q}\right)\left(l_{\infty}(z)\right) u_{q}\left(\psi \otimes i d_{q}\right)\left(l_{\infty}\left(z^{*}\right)\right)\right)\right) \tag{64}\\
& -\tau\left(\frac{1}{2 \pi i} \log \left(u_{p}^{*}\left(\phi \otimes i d_{q}\right)\left(l_{\infty}(z)\right) u_{p}\left(\psi \otimes i d_{q}\right)\left(l_{\infty}\left(z^{*}\right)\right)\right)\right) \tag{65}\\
& =\eta_{q}\left(\left(l_{q}\right)_{* 1}([z])\right)(\tau)-\eta_{p}\left(\left(l_{p}\right)_{* 1}([z])\right)(\tau) \tag{66}\\
& =\eta([z])(\tau)-\eta([z])(\tau)=0 \text { for all } \tau \in T(B) \tag{67}
\end{align*}
$$

where we identify ϕ and ψ with $\phi \otimes i d_{M_{n}}$ and $\psi \otimes i d_{M_{n}}$, and u_{p} and u_{q} with $u_{p} \otimes$ $1_{M_{n}}$ and u_{q} with $u_{q} \otimes 1_{M_{n}}$, respectively.

Now suppose that $g \in G_{1, \infty}$. Then $g=(k / m)\left(l_{\infty}\right)_{* 1}([z])$ for some $z \in U$, where k, m are non-zero integers. It follows that

$$
\begin{equation*}
\tau\left(\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right)(m g)\right)=k \tau\left(\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right)([z])\right)=0 \tag{68}
\end{equation*}
$$

for all $\tau \in T(B)$. Since $\operatorname{Aff}(T(B))$ is torsion free, it follows that

$$
\begin{equation*}
\tau\left(\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right)(g)\right)=0 \tag{69}
\end{equation*}
$$

for all $g \in G_{1, \infty}$ and $\tau \in T(B)$. Therefore, the image of R^{1} under $\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right)$ is in $\operatorname{ker} \rho_{B \otimes Q}$. One may write

$$
G_{1,0}=\mathbb{Z}^{r} \oplus \mathbb{Z} / p_{1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / p_{s} \mathbb{Z} .
$$

where r is a non-negative integer and p_{1}, \ldots, p_{s} are powers of primes numbers. Since p and q are relatively prime, one then has the decomposition

$$
G_{1,0}=\mathbb{Z}^{r} \oplus \operatorname{Tor}_{p}\left(G_{1,0}\right) \oplus \operatorname{Tor}_{q}\left(G_{1,0}\right) \subseteq K_{1}(A),
$$

where $\operatorname{Tor}_{p}\left(G_{1,0}\right)$ consists of the torsion-elements with their orders divide p and $\operatorname{Tor}_{q}\left(G_{1,0}\right)$ consists of the torsion-elements with their orders divide q. Fix this decomposition. Note that the restriction of $\left(l_{p}\right)_{* 1}$ to $\mathbb{Z}^{r} \oplus \operatorname{Tor}_{q}\left(G_{1,0}\right)$ is injective and the restriction to $\operatorname{Tor}_{p}\left(G_{1,0}\right)$ is zero, and the restriction of $\left(l_{q}\right)_{* 1}$ to $\mathbb{Z}^{r} \oplus \operatorname{Tor}_{p}\left(G_{1,0}\right)$ is injective and the restriction to $\operatorname{Tor}_{q}\left(G_{1,0}\right)$ is zero.

Moreover, using the assumption that p and q are relatively prime again, for any element $k \in\left(l_{q}\right)_{* 1}$ to $\mathbb{Z}^{r} \oplus \operatorname{Tor}_{p}\left(G_{1,0}\right)$ and any nonzero integer q which divides q, the element $\frac{k}{q}$ is well defined in $K_{1}\left(A \otimes M_{q}\right)$; that is, there is a unique element $s \in K_{1}\left(A \otimes M_{q}\right)$ such that $q s=k$.

Denote by e_{1}, \ldots, e_{r} the standard generators of \mathbb{Z}^{r}. It is also clear that

$$
\left(l_{\infty}\right)_{* 1}\left(\operatorname{Tor}_{p}\left(G_{1,0}\right)\right)=\left(l_{\infty}\right)_{* 1}\left(\operatorname{Tor}_{p}\left(G_{1,0}\right)\right)
$$

Recall that $D_{0, p}=\left\{k / m_{p} ; k \in \mathbb{Z}\right\} \subset \mathbb{Q}_{p}$ and $D_{0, q}=\left\{k / m_{q} ; k \in \mathbb{Z}\right\} \subset \mathbb{Q}_{q q p}$ for an integer m_{p} dividing p and an integer m_{q} dividing q. Put $m_{\infty}=m_{p} m_{q}$. Consider $\frac{1}{m_{\infty}} \mathbb{Z}^{r} \in K_{1}(A \otimes Q)$, and for each $e_{i}, 1 \leq i \leq r$, consider

$$
\frac{1}{m_{\infty}} \operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right)\left(\left(l_{\infty}\right)_{* 1}\left(e_{i}\right)\right) \in \operatorname{ker} \rho_{B \otimes Q} .
$$

Since $\operatorname{ker} \rho_{B \otimes Q} \cong\left(\operatorname{ker} \rho_{B}\right) \otimes \mathbb{Q}$, $\operatorname{ker} \operatorname{ker} \rho_{B \otimes M_{p}} \cong\left(\operatorname{ker} \rho_{B}\right) \otimes \mathbb{Q}_{p}$, and $\operatorname{ker} \rho_{B \otimes M_{q}} \cong$ $\left(\operatorname{ker} \rho_{B}\right) \otimes \mathbb{Q}_{q}$, there are $g_{i, p} \in \operatorname{ker} \rho_{B \otimes M_{p}}$ and $g_{i, q} \in \operatorname{ker} \rho_{B \otimes M_{q}}$ such that

$$
\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right)\left(\frac{1}{m_{\infty}}\left(l_{\infty}\right)_{* 1}\left(e_{i}\right)\right)=\left(j_{p}\right)_{* 0}\left(g_{i, p}\right)+\left(j_{q}\right)_{* 0}\left(g_{i, q}\right),
$$

where $g_{i, p}$ and $g_{i, q}$ are identified as their images in $K_{0}(A \otimes Q)$.
Note that the subgroup $\left(l_{p}\right)_{* 1}\left(G_{1,0}\right)$ in $K_{0}\left(A \otimes M_{p}\right)$ is isomorphic to $\mathbb{Z}^{r} \oplus T o r_{q}$ and $\frac{1}{m_{q}}\left(\mathbb{Z}^{r} \oplus \operatorname{Tor}_{q}\right)$ is well defined in $K_{0}\left(A \otimes M_{p}\right)$, and the subgroup $\left(l_{q}\right)_{* 1}\left(G_{1,0}\right)$ in $K_{0}(B \otimes$ $\left.M_{p}\right)$ is isomorphic to $\mathbb{Z}^{r} \oplus \operatorname{Tor}_{p}$ and $\frac{1}{m_{q}}\left(\mathbb{Z}^{r} \oplus \operatorname{Tor}_{p}\right)$ is well defined in $K_{0}\left(A \otimes M_{q}\right)$.

One then defines the maps $\theta_{p}: \frac{1}{m_{p}}\left(l_{p}\right)_{* 1}\left(G_{1,0}\right) \rightarrow \operatorname{ker} \rho_{B \otimes M_{p}}$ and $\theta_{q}: \frac{1}{m_{q}}\left(l_{q}\right)_{* 1}\left(G_{1,0}\right) \rightarrow$ $\operatorname{ker} \rho_{B \otimes M_{q}}$ by

$$
\theta_{p}\left(\frac{1}{m_{p}}\left(l_{p}\right)_{* 1}\left(e_{i}\right)\right)=m_{q} g_{i, p} \text { and } \theta_{q}\left(\frac{1}{m_{q}}\left(l_{q}\right)_{* 1}\left(e_{i}\right)\right)=m_{p} g_{i, q}
$$

for $1 \leq i \leq r$ and

$$
\left.\theta_{p}\right|_{\operatorname{Tor}\left(\left(l_{p}\right)_{*_{1}}\left(G_{1,0}\right)\right)}=0 \text { and }\left.\theta_{q}\right|_{\left.\operatorname{Tor}\left(\left(l_{q}\right)\right)_{1}\left(G_{1,0}\right)\right)}=0 .
$$

Then, for each e_{i}, one has

$$
\begin{aligned}
\left(j_{p}\right)_{* 0} \circ \theta_{p} \circ & \left(l_{p}\right)_{* 1}\left(e_{i}\right)+\left(j_{q}\right)_{* 0} \circ \theta_{q} \circ\left(l_{q}\right)_{* 1}\left(e_{i}\right) \\
& =m_{p}\left(\frac{1}{m_{p}}\left(j_{p}\right)_{* 0} \circ \theta_{p} \circ\left(l_{p}\right)_{* 1}\left(e_{i}\right)\right)+m_{q}\left(\frac{1}{m_{q}}\left(j_{q}\right)_{* 0} \circ \theta_{q} \circ\left(l_{q}\right)_{* 1}\left(e_{i}\right)\right) \\
& =m_{p} m_{q}\left(\left(j_{p}\right)_{* 0}\left(g_{i, p}\right)+\left(j_{q}\right)_{* 0}\left(g_{i, q}\right)\right) \\
& =m_{\infty} \operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right) \circ\left(\left(l_{\infty}\right)_{* 1}\left(e_{i} / m_{\infty}\right)\right) \\
& =\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right) \circ\left(\left(l_{\infty}\right)_{* 1}\left(e_{i}\right)\right) .
\end{aligned}
$$

Since the restriction of $\theta_{p} \circ\left(l_{p}\right)_{* 1}, \theta_{q} \circ\left(l_{q}\right)_{* 1}$ and $\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right) \circ\left(\left(l_{\infty}\right)_{* 1}\right)$ to the torsion part of $G_{1,0}$ is zero, one has

$$
\operatorname{bott}_{1}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right) \circ\left(\left(l_{\infty}\right)_{* 1}\right)=\left(j_{p}\right)_{* 1} \circ \alpha_{p} \circ\left(l_{p}\right)_{* 0}+\left(j_{q}\right)_{* 1} \circ \alpha_{q} \circ\left(l_{q}\right)_{* 0}
$$

The same argument shows that there also exist maps $\alpha_{p}: \frac{1}{m_{p}}\left(\left(l_{p}\right)_{* 1}\left(G_{0,0}\right)\right) \rightarrow$ $K_{1}\left(B \otimes M_{p}\right)$ and $\alpha_{q}: \frac{1}{m_{q}}\left(\left(l_{q}\right)_{* 1}\left(G_{0,0}\right)\right) \rightarrow K_{1}\left(B \otimes M_{q}\right)$ such that

$$
\operatorname{bott}_{0}\left(\phi \otimes i d_{Q}, u_{p} u_{q}^{*}\right) \circ\left(\left(l_{\infty}\right)_{* 0}\right)=\left(j_{p}\right)_{* 1} \circ \alpha_{p} \circ\left(l_{p}\right)_{* 0}+\left(j_{q}\right)_{* 1} \circ \alpha_{q} \circ\left(l_{q}\right)_{* 0} .
$$

On $G_{0,0}$.
Note that $G_{i, 0, r} \subseteq G_{i, 0}, i=0,1, r=p, q$. In particular, one has that $\left(l_{r}\right)_{* i}\left(G_{i, 0, r}\right) \subseteq$ $\left(l_{r}\right)_{* i}\left(G_{i, 0}\right)$, and therefore $G_{1,0, p}^{\prime} \subseteq \frac{1}{m_{p}}\left(l_{p}\right)_{* i}\left(G_{1,0}\right)$ and $G_{1,0, q}^{\prime} \subseteq \frac{1}{m_{q}}\left(l_{q}\right)_{* i}\left(G_{1,0}\right)$. Then the maps θ_{p} and θ_{q} can be restricted to $G_{1,0, p}^{\prime}$ and $G_{1,0, q}^{\prime}$ respectively. Since the group $G_{i, 0, r}^{\prime}$ contains $\left(l_{r}^{\prime}\right)_{* i}\left(K_{i}\left(C_{r}^{\prime}\right)\right)$, the maps θ_{p} and θ_{q} can be restricted further to $\left(l_{p}^{\prime}\right)_{* 1}\left(K_{1}\left(C_{p}^{\prime}\right)\right)$ and

$$
\left(l_{q}^{\prime}\right)_{* 1}\left(K_{1}\left(C_{q}^{\prime}\right)\right)
$$

respectively.
For the same reason, the maps α_{p} and α_{q} can be restricted to $\left(l_{p}^{\prime}\right)_{* 0}\left(K_{0}\left(C_{p}^{\prime}\right)\right)$ and $\left(l_{q}^{\prime}\right)_{* 0}\left(K_{0}\left(C_{q}^{\prime}\right)\right)$ respectively. We keep the same notation for the restrictions of these maps $\alpha_{p}, \alpha_{q}, \theta_{p}$, and θ_{q}.

By the universal multi-coefficient theorem, there is $k_{p} \in \operatorname{Hom}_{\Lambda}\left(\underline{K}\left(C_{p}^{\prime} \otimes\right.\right.$ $\left.C(\mathbb{T})), \underline{K}\left(B \otimes M_{p}\right)\right)$ such that

$$
\left.\overline{k_{p}}\right|_{\beta\left(K_{1}\left(c_{p}^{\prime}\right)\right)}=-\theta_{p} \circ\left(l_{p}^{\prime}\right)_{* 1} \circ \beta^{-1} \text { and }\left.k_{p}\right|_{\beta\left(K_{1}\left(c_{p}^{\prime}\right)\right)}=-\alpha_{p} \circ\left(l_{p}^{\prime}\right)_{* 0} \circ \beta^{-1}
$$

Similarly, there exists $k_{q} \in \operatorname{Hom}_{\Lambda}\left(\underline{K}\left(C_{q}^{\prime} \otimes C(\mathbb{T})\right), \underline{K}\left(B \otimes M_{q}\right)\right)$ such that

$$
\left.k_{q}\right|_{\beta\left(K_{1}\left(C_{q}^{\prime}\right)\right)}=-\theta_{q} \circ\left(l_{q}^{\prime}\right)_{* 1} \circ \beta^{-1} \text { and }\left.k_{q}\right|_{\beta\left(K_{1}\left(c_{q}^{\prime}\right)\right)}=-\alpha_{q} \circ\left(l_{q}^{\prime}\right)_{* 0} \circ \beta^{-1} .
$$

Note that since $g_{i, r} \in \operatorname{ker} \rho_{A \otimes M_{r}}, k_{r}\left(\beta\left(K_{1}\left(C_{r}^{\prime}\right)\right)\right) \subseteq \operatorname{ker} \rho_{B \otimes M_{r}}, r=p$ or $r=q$. By Theorem (1.2.15), there exist unitaries $w_{p} \in B \otimes M_{p}$ and $w_{q} \in B \otimes M_{q}$ such that

$$
\left\|\left[w_{p},\left(\phi \otimes i d_{M_{p}}\right)(x)\right]\right\|<\delta_{2}^{\prime} / 8, \quad\left\|\left[w_{p},\left(\phi \otimes i d_{M_{q}}\right)(y)\right]\right\|<\delta_{2}^{\prime} / 8,
$$

for any $x \in \mathcal{H}^{0^{\prime}} \otimes \mathcal{H}^{p^{\prime}}$ and $y \in \mathcal{H}^{0^{\prime}} \otimes \mathcal{H}^{q^{\prime}}$, and
$\operatorname{Bott}\left(\phi \otimes i d_{M_{p}}, w_{p}\right) \circ\left[l_{p}^{\prime}\right]=k_{p} \circ \beta$ and $\operatorname{Bott}\left(\phi \otimes i d_{M_{q}}, w_{q}\right) \circ\left[l_{q}^{\prime}\right]=k_{q} \circ \beta$.
For $r=p$ or $r=q$ and each $1 \leq j \leq k$, define
$=\frac{\left\langle\left(1_{n}-\left(\phi \otimes i d_{M_{r}}\right)\left(p_{j, r}^{\prime}\right)+\left(\left(\phi \otimes i d_{M_{r}}\right)\left(p_{j, r}^{\prime}\right)\right) w_{r} u_{r}\right)\left(1_{n}-\left(\phi \otimes i d_{M_{r}}\right)\left(q_{j, r}^{\prime}\right)+\left(\left(\phi \otimes i d_{M_{r}}\right)\left(q_{j, r}^{\prime}\right)\right) u_{r}^{*} w_{r}^{*}\right)\right\rangle .}{}$. It is element in $U\left(B \otimes M_{\mathrm{r}}\right) / C U\left(B \otimes M_{\mathrm{r}}\right)$.

Define the map $\Gamma_{\mathrm{r}}: \mathbb{Z}^{K} \rightarrow U\left(B \otimes M_{P}\right) / C U\left(B \otimes M_{P}\right)$ by

$$
\Gamma_{\mathrm{r}}\left(x_{j, r}^{\prime}\right)=\zeta_{j, \mathrm{w}_{\mathrm{r}}, \mathrm{u}_{\mathrm{r}}^{\prime}} \quad 1 \leq j \leq k
$$

C_{r} (in the place of C), $G\left(x_{1, \mathfrak{r}}^{\prime}, \ldots, x_{K, \mathfrak{r}}^{\prime}\right)$ (in the place of G), $B \otimes M_{\mathfrak{r}}$ (in the place of A), and $\left.\left(\phi \otimes \operatorname{id}_{M_{\mathrm{r}}}\right)\right|_{\mathrm{C}_{\mathrm{r}}}$ (in the place of ϕ), there is a unitary $\mathrm{c}_{\mathrm{r}} \in B \otimes M_{\mathrm{r}}$ such that

$$
\left\|c_{r_{r}}\left(\phi \otimes \operatorname{id}_{M_{\mathrm{r}}}\right)(x)\right\|<\delta_{2}^{\prime} / 16
$$

for any $x \in \mathcal{H}^{0^{\prime}} \otimes \mathcal{H}^{\mathrm{r}^{\prime}}$,
$\left.\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{M_{r_{r}}}, \mathrm{c}_{\mathrm{r}}\right)\right|_{\mathrm{L}_{\mathrm{r}}}\left(\mathcal{P}^{\prime}\right)=0$,

$$
\begin{equation*}
\operatorname{dist}\left(\zeta_{j, c_{\mathrm{r}}^{*}}, \Gamma_{\mathrm{r}}\left(x_{j, \mathrm{r}}\right)\right) \leq \gamma /\left(32\left(1+\sum_{i, j}\left|M r_{i j}\right|\right)\right), \quad 1 \leq j \leq k \tag{70}
\end{equation*}
$$

where

$$
\begin{aligned}
& \zeta_{j, c_{\mathrm{r}}^{*}}=\overline{\left\langle\left(1_{n}-\left(\phi \otimes \operatorname{ld}_{M_{\mathrm{r}}}\right)\left(p^{\prime}{ }_{j, \mathfrak{r}}\right)+\left(\left(\phi \otimes \operatorname{ld}_{M_{\mathrm{r}}}\right)\left(p^{\prime}{ }_{J, \mathrm{r}}\right)\right) c_{\mathrm{r}}^{*}\right)\right.} \\
& \left.\left(1_{n}-\left(\phi \otimes \operatorname{ld}_{M_{\mathrm{r}}}\right)\left(q_{j, \mathfrak{r}}^{\prime}\right)+\left(\left(\phi \otimes \operatorname{ld}_{M_{\mathrm{r}}}\right)\left(q_{J, \mathfrak{r}}^{\prime}\right)\right) c_{\mathrm{r}}^{*}\right)\right\rangle
\end{aligned}
$$

Put $v_{r}=c_{r} w_{r} u_{r}$. Then, by (81) and (70), for $1 \leq j \leq k$

$$
\begin{align*}
\operatorname{dist}\left(\zeta_{j, v_{r}} \overline{\left(1_{B \otimes M_{r}}\right) n}\right)<\operatorname{dist}\left(\zeta_{j, c_{r}^{*}}, \zeta_{j, w_{r} u_{r}}\right)+\gamma /\left(32\left(1+\sum_{i, j}\left|M r_{i j}\right|\right)\right) \\
<\gamma /\left(16\left(1+\sum_{i, j}\left|M r_{i j}\right|\right)\right), \tag{71}
\end{align*}
$$

where

Recall that $\left[x_{j}^{\prime}\right]=\left[p_{j}^{\prime}\right]-\left[q_{j}^{\prime}\right]$. Define

$$
\zeta_{x_{j}^{\prime}, v_{r}}=\overline{\left\langle(1 _ { n } - \phi (p ^ { \prime } { } _ { J }) \otimes 1 _ { M _ { \mathfrak { r } } } + (\phi ({ p ^ { \prime } } ^ { \prime }) \otimes 1 _ { M _ { \mathrm { r } } }) v _ { r }) \left(1_{n}-\phi\left(q^{\prime}{ }_{J}\right) \otimes{1_{M_{\mathrm{r}}}+}_{\left.\left.\left(\phi\left(q^{\prime}{ }_{J}\right) \otimes 1_{M_{\mathrm{r}}}\right) v_{\mathrm{r}}^{*}\right)\right\rangle}^{(} .\right.\right.}
$$

one has

$$
\operatorname{dist}\left(\zeta_{x^{\prime}, v_{r},} \zeta_{j, v_{r}}\right)<\gamma /\left(16\left(1+\sum_{i, j^{\prime}}\left|M r_{i j}\right|\right)\right),
$$

and hence by (39),

$$
\operatorname{dist}\left(\zeta_{x^{\prime}, v_{r}}, \overline{\left.\left(1_{B \otimes M_{\mathrm{r}}}\right) n\right)}\right)<\gamma /\left(8\left(1+\sum_{i, j^{\prime}}\left|M r_{i j^{\prime}}\right|\right)\right) .
$$

Regard $\zeta_{x^{\prime}, v_{r}}$ as its image in $B \otimes Q$, one has

$$
\operatorname{dist}\left(\zeta_{x^{\prime} j, v_{r}} \overline{\left.\left(1_{B \otimes Q}\right) n\right)}\right)<\gamma /\left(8\left(1+\sum_{i, j^{\prime}}\left|M r_{i j^{\prime}}\right|\right)\right)
$$

and hence for any $1 \leq i \leq m$,

$$
\operatorname{dist}\left(\prod_{j=1}^{k}\left(\zeta_{x_{j}^{\prime}, v_{r}}\right)^{M r_{i j}}, \overline{\left.\left(1_{B \otimes Q}\right) n\right)}<\gamma / 8 .\right.
$$

One has

$$
\operatorname{dist} \overline{\left(\left\langle\left(1-\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{p}_{1}\right)+\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{p}_{1}\right) v_{r}\right) \frac{\left(1-\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{q}_{1}\right)\right)}{\left.\left.+\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{q}_{1}\right) v_{\mathrm{r}}^{*}\right)\right\rangle^{M}}, \overline{\left.\left(1_{B \otimes Q}\right) n\right)}\right.\right.}<\gamma / 4
$$

$$
\left.\left.+\left(\phi \otimes \mathrm{ld}_{\mathrm{Q}}\right)\left(\mathrm{q}_{\mathrm{t}}\right) v_{\mathrm{r}}^{*}\right)\right\rangle, \overline{\left.\left(1_{B \otimes Q}\right) n\right)}<\gamma /(4 M)<\gamma / 4 .
$$

In particular,
$\operatorname{dist} \overline{\left(\left\langle\left(1-\left(\phi \otimes \operatorname{Id}_{\mathrm{Q}}\right)\left(\mathrm{p}_{1}\right)+\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{p}_{\mathrm{r}}\right) v_{q} v_{p}^{*}\right)\left(1-\frac{\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{q}_{1}\right)}{\left.\left.+\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{q}_{1}\right) v_{p} v_{q}^{*}\right)\right\rangle}, \overline{\left.\left(1_{B \otimes Q}\right) n\right)}\right.\right.\right.}$
$\left.\leq \operatorname{dist} \overline{\left(\left\langle\left(1-\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{p}_{\mathrm{I}}\right)+\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{p}_{\mathrm{I}}\right) v_{q}\right)\left(1-\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{q}_{\mathrm{I}}\right)\right.\right.\right.}\right)$
$\overline{\left.\left.+\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{q}_{\mathrm{I}}\right) v_{q}^{*}\right)\right\rangle}, \overline{\left.\left(1_{B \otimes Q}\right) n\right)}+\operatorname{dist}\left(\overline{\left\langle\left(1-\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{p}_{\mathrm{t}}\right)+\right.\right.}\right.$
$\overline{\left.\left.\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{p}_{\mathrm{I}}\right) v_{p}\right)\left(1-\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{q}_{\mathrm{I}}\right)+\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{q}_{\mathrm{I}}\right) v_{p}^{*}\right)\right\rangle}, \overline{\left.\left(1_{B \otimes Q}\right) n\right)}<\gamma / 2$
That is

$$
\begin{equation*}
\operatorname{dist}\left(\zeta_{i, v_{q} v_{p}^{*}}, \overline{1_{n}}\right)<\gamma / 2 \tag{72}
\end{equation*}
$$

where

$$
\zeta_{i, v_{q} v_{p}^{*}}=\operatorname{dist}\left(\overline{\left\langle\left(1-\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{p}_{1}\right)+\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}\right)\left(\mathrm{p}_{\mathrm{1}}\right) v_{q} v_{p}^{*}\right)\left(1-\frac{\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{q}_{1}\right)}{}\right)\right.}+\frac{\left.\left.+\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{q}_{\mathrm{1}}\right) v_{p} v_{q}^{*}\right)\right\rangle}{}\right.
$$

Moreover, one also has
$\left\|\psi \otimes \operatorname{id}_{\mathrm{Q}}(x)-v_{p}^{*}\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}(x)\right) v_{p}\right\|<\delta_{2}^{\prime} / 4, \quad \forall x \in \mathcal{H}^{0^{\prime}} \otimes \mathcal{H}^{p^{\prime}} \otimes \mathcal{H}^{q^{\prime}}$ and $\left\|\psi \otimes \operatorname{id}_{\mathrm{Q}}(x)-v_{q}^{*}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}(x)\right) v_{q}\right\|<\delta_{2}^{\prime} / 4, \quad \forall x \in \mathcal{H}^{0^{\prime}} \otimes \mathcal{H}^{p^{\prime}} \otimes \mathcal{H}^{q^{\prime}}$
Hence

$$
\left\|v_{p} v_{q}^{*}, \phi(x) \otimes 1_{Q}\right\|<\delta_{2}^{\prime} / 2, \quad \forall x \in \mathcal{H}^{\prime}
$$

Thus $\operatorname{Bott}\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}, v_{p} v_{q}^{*}\right)$ is well defined on the subgroup generated by \mathcal{P}.
Moreover, a direct calculation shows that
$\operatorname{bott}\left(\phi \otimes \operatorname{id}_{Q}, v_{p} v_{q}^{*}\right) \circ\left(\ell_{\infty}\right)_{* 1}(z)$
$=\operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, c_{p}\right) \circ\left(\ell_{\infty}\right)_{* 1}(z)+\operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, w_{p}\right) \circ\left(\ell_{\infty}\right)_{*_{1}}(z)$
$+\operatorname{bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, u_{p} u_{q}^{*}\right) \circ\left(\ell_{\infty}\right)_{* 1}(z)+\operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{Q}, w_{q}^{*}\right) \circ\left(\ell_{\infty}\right)_{* 1}(z)$
$+\operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{Q}, c_{q}^{*}\right) \circ\left(\ell_{\infty}\right)_{* 1}(z)$
$=\left(\mathrm{j}_{p}\right)_{* 0} \circ \operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{M_{p}}, \quad c_{p}\right) \circ\left(\ell_{p}\right)_{* 1}(z)+\left(\mathrm{j}_{p}\right)_{* 0} \circ \operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{M_{p}}, \quad w_{p}\right) \circ$ $\left(\ell_{p}\right)_{* 1}(z)+\operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{Q}, \quad u_{p} u_{q}^{*}\right) \circ\left(\ell_{\infty}\right)_{* 1}(z)+\left(\mathrm{j}_{p}\right)_{* 0} \circ \operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{M_{q},} \quad w_{q}^{*}\right) \circ$ $\left(\ell_{p}\right)_{* 1}(z)+\left(\mathrm{j}_{p}\right)_{* 0} \circ \operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{M_{q}}, c_{q}^{*}\right) \circ\left(\ell_{p}\right)_{* 1}(z)$
$=\left(\mathrm{j}_{p}\right)_{* 0} \circ \operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{M_{p}}, w_{p}\right) \circ\left(\ell_{p}\right)_{* 1}(z)+\operatorname{bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, u_{p} u_{q}^{*}\right) \circ\left(\ell_{\infty}\right)_{* 1}(z)$
$+\left(\mathrm{j}_{p}\right)_{* 0} \circ \operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{M_{q}}, w_{q}^{*}\right) \circ\left(\ell_{q}\right)_{* 1}(z)$
$=-\left(\mathrm{j}_{p}\right)_{* 0} \circ \theta_{p} \circ\left(\ell_{p}\right)_{* 1}(z)+\left(\left(\mathrm{j}_{p}\right)_{* 0} \circ \theta_{p} \circ\left(\ell_{p}\right)_{* 1}+\left(\mathrm{j}_{q}\right)_{* 0} \circ \theta_{q} \circ\left(\ell_{q}\right)_{* 1}\right)-$

$$
\left(\mathrm{j}_{q}\right)_{* 0} \circ \theta_{q} \circ\left(\ell_{q}\right)_{* 1}(z)
$$

$=0$ for all $\mathrm{z} \in \mathrm{G}(\mathcal{P})_{1,0}$.
The same argument shows that bott ${ }_{0}\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}, v_{p} v_{q}^{*}\right)=0$ on $\mathrm{G}(\mathcal{P})_{0,0}$ Now, for any $g \in$ $\mathrm{G}(\mathcal{P})_{1, \infty, 0}$ there is $\mathrm{z} \in \mathrm{G}(\mathcal{P})_{1,0}$ and integers k, m such that $(k / m) z=g$. From the above, $\operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{p} v_{q}^{*}\right)(m g)=k \operatorname{bott}_{1}\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}, v_{p} v_{q}^{*}\right)(z)=0$.
Since $K_{0}(B \otimes Q)$ is torsion free, it follows that bott ${ }_{1}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{p} v_{q}^{*}\right)(g)=0$.
for all $g \in \mathrm{G}(\mathcal{P})_{1, \infty, 0}$ So it vanishes on $\mathcal{P} \cap K_{1}(A \otimes Q)$. Similarly,
$\left.\operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{p} v_{q}^{*}\right)\right|_{\mathcal{P} \cap K_{1}(A \otimes Q)}=0$ on $\mathcal{P} \cap K_{0}(A \otimes Q)$.
Since $K_{i}(B \otimes Q, \mathbb{Z} / m \mathbb{Z})=\{0\}$ for all $m \geq 2$, we conclude that $\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{Q}\right.$, $\left.v_{p} v_{q}^{*}\right)\left.\right|_{\mathcal{P}}=0$ on the subgroup generated by \mathcal{P}
Since $[\phi]=[\psi]$ in $K L(A, B), \phi_{\#}=\psi_{\#}$ and $\phi^{\ddagger}=\psi^{\ddagger}$, one has that

$$
\begin{equation*}
\left[\phi \otimes \operatorname{id}_{Q}\right]=\left[\psi \otimes \mathrm{id}_{Q}\right] \text { in } K L(A \otimes Q, B \otimes Q) \tag{74}
\end{equation*}
$$

$\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}\right)_{\#}=\left(\psi \otimes \mathrm{id}_{\mathrm{Q}}\right)_{\#}$ and $\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}\right)^{\ddagger}=\left(\psi \otimes \mathrm{id}_{\mathrm{Q}}\right)^{\ddagger}$
Therefore, $\phi \otimes \mathrm{id}_{\mathrm{Q}}$ and $\psi \otimes \mathrm{id}_{\mathrm{Q}}$ are approximately unitarily equivalent. Thus there exists a unitary $u \in B \otimes Q$ such that

$$
\begin{equation*}
\left\|u^{*}\left(\phi \otimes \operatorname{id}_{Q}\right)(c) u-\left(\psi \otimes \operatorname{id}_{Q}\right)(c)\right\|<\delta_{2}^{\prime} / 8 \quad \text { for all } c \in \varepsilon \cup \mathcal{H}^{\prime} \tag{76}
\end{equation*}
$$

It follows that

$$
\left\|u v_{q}^{*}\left(\phi(c) \otimes 1_{\mathrm{Q}}\right) v_{p} u^{*}-\psi(c) \otimes 1_{\mathrm{Q}}\right\|<\delta_{2}^{\prime} / 2+<\delta_{2}^{\prime} / 8 \quad \forall c \in \mathcal{G}^{\prime}
$$

By the choice of δ_{2}^{\prime} and $\mathcal{H}^{\prime}, \operatorname{Bott}\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}, v_{p} v_{q}^{*}\right)$ is well defined on $[\iota]\left(K\left(C^{\prime}\right)\right)$, and

$$
\left|\tau \operatorname{bott}_{1}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{p} v_{q}^{*}\right)(z)\right|<\delta_{2} / 2 \quad \forall \tau \in \mathrm{~T}(\mathrm{~B}), \forall \mathrm{z} \in \mathcal{G} .
$$

There exists a unitary $y_{p} \in B \otimes Q$ such that

$$
\left\|\left[y_{p},\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}\right)(h)\right]\right\|<\delta / 2, \quad \forall h \in \mathcal{H},
$$

and $\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, y_{p}\right)=\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{p} u^{*}\right)$ on the subgroup generated by \mathcal{P}.
For each $1 \leq i \leq m$, define

$$
\zeta_{i, y_{p}, u v_{p}^{*}}=\overline{\left\langle\left(1_{\mathrm{n}}-\left(\phi \otimes ı \mathrm{~d}_{\mathrm{Q}}\right)\left(p_{l}\right)+\left(\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(p_{l}\right) y_{p} u v_{p}^{*}\right)\left(1_{\mathrm{n}}-\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{q}_{\mathrm{l}}\right)\right.\right.\right.} \frac{\left.\left.\left.+\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(q_{l}\right)\right) v_{p} u^{*} y_{p}^{*}\right)\right\rangle}{+}
$$

and define the map $\Gamma: Z^{m} \rightarrow U(B \otimes Q) / C U(B \otimes Q)$ by $\Gamma\left(x_{i}\right)=\zeta_{i, y_{p}, u u_{q}^{*}}$.
Applying Corollary (1.2.15)to C and $G(Q)$, there is a unitary $c \in B \otimes Q$ such that

$$
\left\|\left[c,\left(\phi \otimes \operatorname{id}_{Q}\right)(h)\right]\right\|<\delta / 4,
$$

$\forall h \in \mathcal{H}$
$\left.\operatorname{Bott}\left(\phi \otimes \mathrm{id}_{\mathrm{Q}}, c\right)\right|_{\mathcal{P}}=0$ and for any $1 \leq i \leq k$,

$$
\zeta_{i, c^{*}}^{\prime}=\frac{\operatorname{dist}\left(\zeta_{i, c^{*}}^{\prime}, \Gamma\left(x_{i}\right)\right) \leq \gamma / 2}{\left\langle(1 _ { \mathrm { n } } - (\phi \otimes \operatorname { l d } _ { \mathrm { Q } }) (p _ { l }) + (\phi \otimes \operatorname { l d } _ { \mathrm { Q } }) (p _ { l }) c ^ { * }) \left(1_{\mathrm{n}}-\frac{\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{q}_{\mathrm{l}}\right)}{\left.\left.\left.+\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(q_{l}\right)\right) c\right)\right\rangle}\right.\right.}
$$

Consider the unitary $v=c y_{p} u$, one has that

$$
\left\|\left[v,\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}\right)(h)\right]\right\|<\delta / 4, \quad \text { for all } \quad h \in \mathcal{H} \quad \operatorname{Bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v v_{p}^{*}\right)=0
$$

on the subgroup generated by \mathcal{P}, and for any $1 \leq i \leq m$,

$$
\begin{equation*}
\operatorname{dist}\left(\zeta_{i, v v_{p}^{*}}^{\prime} \overline{1_{\mathrm{n}}}\right) \leq \gamma / 2, \tag{77}
\end{equation*}
$$

where

$$
\zeta_{i, v v_{p}^{*}}^{\prime}=\overline{\left\langle(1 _ { \mathrm { n } } - (\phi \otimes ı \mathrm { d } _ { \mathrm { Q } }) (p _ { l }) + (\phi \otimes \mathrm { Id } _ { \mathrm { Q } }) (p _ { l }) v v _ { p } ^ { * }) \left(1_{\mathrm{n}}-\left(\phi \otimes_{\left.1 \mathrm{Id}_{\mathrm{Q}}\right)\left(\mathrm{q}_{1}\right)}^{\left.\left.\left.+\left(\phi \otimes \mathrm{Id}_{\mathrm{Q}}\right)\left(q_{l}\right)\right) v_{p} v^{*}\right)\right\rangle}\right.\right.\right.}
$$

By the construction of Δ, it is clear that

$$
\mu_{\tau \circ(\psi \otimes 1)}\left(O_{a}\right) \geq \Delta(a)
$$

for all a, where O_{a} is any open ball of X with radius a; in particular, it holds for all $a \geq d$. Applying Theorem (1.2.13) to C and $\left.\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}\right)\right|_{c}$, one obtains a continuous path of unitaries $v(t)$ in $B \otimes Q$ such that $v(0)=1$ and $v\left(t_{1}\right)=v v_{p}^{*}$ and

$$
\begin{equation*}
\left\|\left[z_{p}(t),\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}\right)(c)\right]\right\|<\epsilon / 2, \quad \forall x \in \varepsilon, \quad \forall t \in\left[0, t_{1}\right] . \tag{78}
\end{equation*}
$$

Note that

$$
\begin{align*}
\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{q} v^{*}\right) & =\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{q} v_{p}^{*} v_{p} v^{*}\right) \tag{79}\\
& =\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{q} v_{p}^{*}\right)+\operatorname{Bott}\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}, v_{p} v^{*}\right) \tag{80}\\
& =0+0=0 \tag{81}
\end{align*}
$$

on the subgroup generated by \mathcal{P}, and for any $1 \leq i \leq m$,

$$
\begin{align*}
& \operatorname{dist}\left(\zeta_{i, v_{q} v^{*}}^{\prime}, \overline{1}\right) \tag{82}\\
\leq & \operatorname{dist}\left(\zeta_{i, v_{q} v_{p}^{*}}^{\prime}\right)+\operatorname{dist}\left(\zeta_{i, v_{p} v^{*}}^{\prime} \overline{1}\right) \tag{83}\\
= & \gamma, \quad(\operatorname{by}(98) \text { and (127)) } \tag{84}
\end{align*}
$$

where

$$
\zeta_{i, v_{q} v^{*}}^{\prime}=\overline{\left\langle(1 - (\phi \otimes \imath \mathrm { d } _ { \mathrm { Q } }) (p _ { l }) + (\phi \otimes \operatorname { l d } _ { \mathrm { Q } }) (p _ { l }) v _ { q } v ^ { * }) \left(1-\frac{\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(\mathrm{q}_{1}\right)}{\left.\left.\left.+\left(\phi \otimes \operatorname{ld}_{\mathrm{Q}}\right)\left(q_{l}\right)\right) v v_{q}^{*}\right)\right\rangle}\right.\right.}
$$

Theorem (1.2.13) implies that there is a path of unitaries $z_{q}(t):\left[t_{m-1}, 1\right] \rightarrow U(A \otimes Q)$ such that $z_{q}\left(t_{m-1}\right)=v v_{q}^{*}, z_{q}(1)=1$ and

$$
\begin{equation*}
\left\|\left[z_{p}(t), \phi \otimes \operatorname{id}_{\mathrm{Q}}(c)\right]\right\|<\epsilon / 8, \quad \forall t \in\left[t_{m-1}, 1\right] \quad \forall c \in \varepsilon . \tag{85}
\end{equation*}
$$

Consider the unitary

$$
v(t)=\left\{\begin{array}{cc}
z_{p}(t) v_{p}, & \text { if } 0 \leq t \leq t_{1} \\
v, & \text { if } t_{1} \leq t \leq t_{m-1}, \\
z_{p}(t) v_{p}, & \text { if } t_{m-1} \leq t \leq t_{m} .
\end{array}\right.
$$

Then, for any $t_{i}, 0 \leq i \leq m$, one has that

$$
\begin{equation*}
\left\|v^{*}\left(t_{i}\right)\left(\phi \otimes \operatorname{id}_{\mathrm{Q}}\right)(c) v\left(t_{i}\right)-\left(\psi \otimes \mathrm{id}_{\mathrm{Q}}\right)(c)\right\|<\epsilon / 2, \quad \forall c \in \varepsilon . \tag{86}
\end{equation*}
$$

Then for any $t \in\left[t_{i}, t_{i+1}\right]$ with $1 \leq j \leq m-2$, one has

$$
\begin{align*}
& \left\|v^{*}(t)(\phi \otimes \operatorname{id}(\mathrm{a} \otimes \mathrm{~b}(\mathrm{t}))) v(t)-\psi \otimes \mathrm{id}(\mathrm{a} \otimes \mathrm{~b}(\mathrm{t}))\right\| \tag{87}\\
= & \left.\left.\| v^{*}(\phi(a) \otimes \mathrm{b}(\mathrm{t}))\right) v-\psi(a) \otimes \mathrm{b}(\mathrm{t})\right) \| \tag{88}\\
< & \left.\left.\| v^{*}\left(\phi(a) \otimes \mathrm{b}\left(t_{j}\right)\right)\right) v-\psi(a) \otimes \mathrm{b}\left(t_{j}\right)\right) \|+\epsilon / 4 \tag{89}\\
< & \epsilon / 4+\epsilon / 4=\epsilon / 2 . \tag{90}
\end{align*}
$$

For any $t \in\left[0, t_{1}\right]$, one has that for any $a \in \mathcal{F}_{1}$ and $b \in \mathcal{F}_{2}$,

$$
\begin{align*}
&\left\|v^{*}(t)(\phi \otimes \operatorname{id}(\mathrm{a} \otimes \mathrm{~b}(\mathrm{t}))) v(t)-\psi \otimes \mathrm{id}_{\mathrm{Q}}(\mathrm{a} \otimes \mathrm{~b}(\mathrm{t}))\right\| \tag{91}\\
&\left.\left.=\| v_{p}^{*} z_{p}^{*}(\phi(a) \otimes \mathrm{b}(\mathrm{t}))\right) z_{p}(t) v_{p}-\psi(a) \otimes \mathrm{b}(\mathrm{t})\right) \| \tag{92}\\
&\left.\left.<\| v_{p}^{*} z_{p}^{*}\left(\phi(a) \otimes \mathrm{b}\left(t_{0}\right)\right)\right) z_{p}(t) v_{p}-\psi(a) \otimes \mathrm{b}\left(t_{0}\right)\right) \|+\epsilon / 2 \tag{93}\\
&<\left.\| v_{p}^{*}\left(\phi(a) \otimes \mathrm{b}\left(t_{0}\right)\right) v_{p}-\psi(a) \otimes \mathrm{b}\left(t_{0}\right)\right) \|+3 \epsilon / 2 \tag{94}\\
& 3 \epsilon / 2+\epsilon / 4=\epsilon . \tag{95}
\end{align*}
$$

The same argument shows that for any $t \in\left[t_{m-1}, 1\right]$, one has that for any $a \in \mathcal{F}_{1}$ and $b \in$ \mathcal{F}_{2}

$$
\begin{equation*}
\left\|v^{*}(t)(\phi \otimes \operatorname{id}(\mathrm{a} \otimes \mathrm{~b}(\mathrm{t}))) v(t)-\psi \otimes \operatorname{id}(\mathrm{a} \otimes \mathrm{~b}(\mathrm{t}))\right\|<\epsilon . \tag{96}
\end{equation*}
$$

Therefore, one has

$$
\|v(\phi \otimes \operatorname{id}(f)) v-\psi \otimes \operatorname{id}(f)\|<\epsilon \quad \text { for all } \quad f \in \mathcal{F} .
$$

$$
\begin{equation*}
[\phi]=[\psi] \text { in } K L(A, B), \phi_{\#}=\psi_{\#} \text { and } \phi^{\ddagger}=\psi^{\ddagger} . \tag{97}
\end{equation*}
$$

Theorem (1.2.19)[98]:

Let A be a Z-stable C^{*}-algebra such that $A \otimes M_{R}$ is an $A H$-algebra for any supernatural number \mathfrak{r} of infinite type, and let $B \in C$ be a unital separable Z-stable C^{*}-algebras.
If ϕ and ψ are two monomorphisms from A to B with

$$
\begin{equation*}
[\phi]=[\psi] \text { in } K L(A, B), \phi_{\#}=\psi_{\#} \text { and } \phi^{\ddagger}=\psi^{\ddagger} . \tag{98}
\end{equation*}
$$

then, for any $\epsilon>0$ and any finite subset $\mathcal{F} \subseteq A$, there exists a unitary $u \in B$ such that

$$
\begin{equation*}
\left\|u^{*} \phi(a)-\psi(a)\right\|<\epsilon \quad \text { for all } \quad a \in \mathcal{F} . \tag{99}
\end{equation*}
$$

Proof :

Let $\alpha: A \rightarrow A \otimes Z$ and $\beta: Z \rightarrow Z \otimes Z$ be isomorphisms. Consider the map

$$
\Gamma_{\mathrm{A}}: \mathrm{A} \xrightarrow{\alpha} \mathrm{~A} \otimes Z \xrightarrow{i d \otimes \beta} \mathrm{~A} \otimes Z \otimes Z \xrightarrow{\alpha^{-} \otimes i d} \mathrm{~A} \otimes Z .
$$

Then Γ is an isomorphism. However, since β is approximately unitarily equivalent to the map

$$
Z \ni a \mapsto a \otimes 1 \in Z \otimes Z,
$$

the map Γ_{A} is approximately unitarily equivalent to the map

$$
A \ni a \mapsto a \otimes 1 \in A \otimes z
$$

Hence the map $\Gamma_{\mathrm{B}} \circ \phi \circ \Gamma_{\mathrm{A}}$ is approximately unitarily equivalent to $\phi \otimes \mathrm{id}_{z}$. The same argument shows that $\Gamma_{\mathrm{B}} \circ \psi \circ \Gamma_{\mathrm{A}}$ is approximately unitarily equivalent to $\psi \otimes \mathrm{id}_{\mathcal{Z}}$. Thus, in order to prove the theorem, it is enough to show that $\phi \otimes \mathrm{id}_{\mathcal{Z}}$ is approximately unitarily equivalent to $\psi \otimes \mathrm{id}_{z}$.
Since Z is an inductive limit of C^{*}-algebras $\mathcal{Z}_{\mathrm{p}, \mathrm{q}}$,it is enough to show that $\phi \otimes \mathrm{id}_{\mathcal{Z}_{\mathrm{p}, \mathrm{q}}}$ isapproximately unitarily equivalent to $\psi \otimes \mathrm{id}_{\mathcal{Z}_{\mathrm{p}, \mathrm{q}}}$, and this follows from Lemma (1.2.18).

The range of approximate equivalence classes of homomorphisms.

Now let A and B be two unital C^{*}-algebras in $N \cap C$. States that two unital monomorphisms are approximately unitarily equivalent if they induce the same element in $K L T_{e}(A, B)^{++}$and the same map on $U(A) / C U(A)$. In this section, we will discuss the following problem: Suppose that one has $k \in K L T_{e}(A, B)^{++}$and a continuous homomorphism $\gamma: U(A) / C U(A) \rightarrow U(B) / C U(B)$ which is compatible with k. Is there always a unital monomorphism $\phi: A \rightarrow B$ such that ϕ induces k and $\phi^{\ddagger}=\gamma$? At least in the case that $K_{1}(A)$ is free, states that such ϕ always exists.

Lemma (1.2.20)[98]:

Let A and B be two unital infinite dimensional separable stably finite C^{*}-algebras whose tracial simplexes are non-empty. Let $\gamma: U_{\infty}(A) / C U_{\infty}(A) \rightarrow U_{\infty}(B) / C U_{\infty}(B)$ be a continuous homomorphism, $h_{i}: K_{i}(A) \rightarrow K_{i}(B)(i=0,1)$ be homomorphisms for which h_{0} is positive, and let $\lambda: \operatorname{Aff}(\mathrm{T}(\mathrm{A})) \rightarrow \operatorname{Aff}(\mathrm{T}(\mathrm{B}))$ be an affine map so that $\left(h_{0}\right.$, $\left.h_{1}, \lambda, \gamma\right)$ are compatible. Let p be a supernatural number. Then γ induces a unique homomorphism $\gamma_{p}: U_{\infty}\left(A_{p}\right) / C U_{\infty}\left(A_{p}\right) \rightarrow U_{\infty}\left(B_{p}\right) / C U_{\infty}\left(B_{p}\right)$ which is compatible with $\left(h_{p}\right)_{i}(i=0,1)$ and γ_{p}, where $A_{p}=A \otimes M_{p}$ and $B_{p}=B \otimes M_{p}$, and $\left(h_{p}\right)_{i}: K_{i}(A) \otimes$ $\mathbb{Q}_{p} \rightarrow K_{i}(B) \otimes \mathbb{Q}_{p}$ is induced by $h_{i}(i=0,1)$. Moreover, the diagram

$$
\left.\begin{array}{ccc}
U_{\infty}(A) / C U_{\infty}(A) \\
\downarrow_{\downarrow_{p}^{*}}
\end{array}\right) \xrightarrow{\gamma} \quad \begin{gathered}
U_{\infty}(B) / C U_{\infty}(B) \\
\downarrow_{\left(L_{p}^{\prime}\right)^{\ddagger}}
\end{gathered}
$$

commutes, where $\iota_{p}: A \rightarrow A_{p}$ and $\iota_{p}: B \rightarrow B_{P}$ are the maps induced by $a \mapsto a \otimes 1$ and $b \mapsto b \otimes 1$,respectively.
Proof. Denote by $A_{0}=A, A_{p}=A \otimes M_{p}, B_{0}=B$ and $B_{P}=B \otimes M_{P}$. By a result of K.
Thomsen ([133]), using the de la Harpe and Skandalis determinant, one has the following short exact sequences:

$$
0 \rightarrow \operatorname{Aff}\left(\mathrm{~T}\left(\mathrm{~A}_{\mathrm{i}}\right)\right) / \overline{\rho_{A}\left(K_{0}\left(\mathrm{~A}_{\mathrm{i}}\right)\right)} \rightarrow U_{\infty}\left(\mathrm{A}_{\mathrm{i}}\right) / C U_{\infty}\left(\mathrm{A}_{\mathrm{i}}\right) \rightarrow K_{1}\left(\mathrm{~A}_{\mathrm{i}}\right) \rightarrow 0, i=0, \mathfrak{p}
$$

and

$$
0 \rightarrow \operatorname{Aff}\left(\mathrm{~T}\left(\mathrm{~B}_{\mathrm{i}}\right)\right) / \overline{\rho_{A}\left(K_{0}\left(\mathrm{~B}_{\mathrm{i}}\right)\right)} \rightarrow U_{\infty}\left(\mathrm{B}_{\mathrm{i}}\right) / C U_{\infty}\left(\mathrm{B}_{\mathrm{i}}\right) \rightarrow K_{1}\left(\mathrm{~B}_{\mathrm{i}}\right) \rightarrow 0, i=0, \mathfrak{p} .
$$

Note that, in all these cases, $\operatorname{Aff}\left(\mathrm{T}\left(\mathrm{A}_{\mathrm{i}}\right)\right) / \overline{\rho_{A}\left(K_{0}\left(\mathrm{~A}_{\mathrm{i}}\right)\right)}$ and $\operatorname{Aff}\left(\mathrm{T}\left(\mathrm{B}_{\mathrm{i}}\right)\right) / \overline{\rho_{A}\left(K_{0}\left(\mathrm{~B}_{\mathrm{i}}\right)\right)}$ are divisible groups, $i=0, \mathfrak{p}$. Therefore the exact sequences above splits. Fix splitting maps $s_{i}^{\prime}: K_{1}\left(\mathrm{~A}_{\mathrm{i}}\right) \rightarrow U_{\infty}(\mathrm{A}) / C U_{\infty}\left(\mathrm{A}_{\mathrm{i}}\right)$ and $s_{i}^{\prime}: K_{1} U_{\infty}(\mathrm{B}) / C U_{\infty}\left(\mathrm{B}_{\mathrm{i}}\right), i=0, \mathfrak{p}$, for the above two splitting short exact sequences. Let $\iota_{p}: A \rightarrow A_{p}$ be the homomorphism defined by $\iota_{p}(a)=a \otimes 1$ for all $a \in A$ and $\iota_{p}: B \rightarrow B_{P}$ be the homomorphism defined by $\iota_{p}(b)=b \otimes 1$ for all $b \in B$. Let $\left(\iota_{p}^{\prime}\right)^{\ddagger}: U_{\infty}(A) / C U_{\infty}(A) \rightarrow U_{\infty}\left(A_{p}\right) / C U_{\infty}(A)$ $\operatorname{and}\left(i_{p}^{\prime}\right)^{\ddagger}: U_{\infty}(\mathrm{B}) / C U_{\infty}(B) \rightarrow U_{\infty}\left(B_{p}\right) / C U_{\infty}\left(B_{p}\right)$ be the induced maps. The map ι_{p} induces the following commutative diagram:

Since there is only one tracial state on M_{p}, one may identify $T(A)$ with $T\left(\mathrm{~A}_{\mathrm{p}}\right)$ and $T(B)$ with $\mathrm{T}\left(\mathrm{B}_{\mathfrak{p}}\right)$. One may also identify $\overline{\rho_{\mathrm{A}_{\mathfrak{p}}}\left(K_{0}\left(\mathrm{~A}_{\mathfrak{p}}\right)\right)}$ with $\overline{\mathbb{R}_{\rho_{\mathrm{A}}}\left(K_{0}(\mathrm{~A})\right)}$ which is the closure of
those elements $r \widehat{p}]$ with $r \in R$. Note that $\left(h_{p}\right)_{i}: K_{i}\left(A \otimes M_{p}\right) \rightarrow K_{i}\left(B \otimes M_{p}\right)(i=$ 0,1) is given by the K unneth formula. Since γ is compatible with λ, γ maps $\overline{\mathbb{R}_{\rho_{\mathrm{A}}}\left(K_{0}(\mathrm{~A})\right)} / \overline{\rho_{\mathrm{A}}\left(K_{0}(\mathrm{~A})\right)}$ into $\overline{\mathbb{R}_{\rho_{\mathrm{B}}}\left(K_{0}(\mathrm{~B})\right)} / \overline{\rho_{\mathrm{B}}\left(K_{0}(\mathrm{~B})\right)}$. Note that

$$
\begin{equation*}
\operatorname{ker}\left(\iota_{p}\right)_{* 1}=\left\{x \in K_{1}(A): p x=0 \text { for (6.1)some factor } p \text { of } p\right\} \tag{100}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ker}\left(\iota_{p}^{\prime}\right)_{* 1}=\left\{x \in K_{1}(B): p x=0 \text { for (6.1)some factor } p \text { of } p\right\} \tag{101}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\operatorname{ker}\left(\iota_{p}^{\ddagger}\right)=\left\{x+s_{0}(y): x \in \overline{\mathbb{R}_{\rho_{\mathrm{A}}}\left(K_{0}(\mathrm{~A})\right)} / \overline{\rho_{\mathrm{A}}\left(K_{0}(\mathrm{~A})\right)}, y \in \operatorname{ker}\left(\left(\iota_{p}\right)_{* 1}\right)\right\} \tag{102}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ker}\left(\iota_{p}^{\prime}\right)^{\ddagger}=\left\{x+s_{0}^{\prime}(y): x \in \overline{\mathbb{R}_{\rho_{\mathrm{A}}}\left(K_{0}(\mathrm{~B})\right)} / \overline{\rho_{\mathrm{B}}\left(K_{0}(\mathrm{~B})\right)}, y \in \operatorname{ker}\left(\left(\iota_{p}\right)_{* 1}\right)\right\} \tag{103}
\end{equation*}
$$

If $y \in \operatorname{ker}\left(\left(\iota_{p}\right)_{* 1}\right)$, then, for some factor p of $p, p y=0$. It follows that $p \gamma\left(s_{0}(y)\right)=0$. Therefore $\gamma\left(s_{0}(y)\right)$ must be in $\operatorname{ker}\left(\left(\iota_{p}^{\prime}\right)^{\ddagger}\right)$ It follows that

$$
\begin{equation*}
\gamma\left(\operatorname{ker}\left(\iota_{p}^{\ddagger}\right)\right) \subset \operatorname{ker}\left(\iota_{p}^{\prime}\right)^{\ddagger} \tag{104}
\end{equation*}
$$

This implies that γ induces a unique homomorphism γ_{P} such that the following diagram commutes:

$$
\begin{array}{ccc}
U_{\infty}(A) / C U_{\infty}(A) & \xrightarrow{\downarrow_{\iota_{p}^{\ddagger}}} & \\
U_{\infty}\left(A_{p}\right) / C U\left(A_{p}\right) & \xrightarrow{\gamma_{p}} & \begin{array}{c}
U_{\infty}(B) / C U_{\infty}(B) \\
\left.\downarrow_{p}^{\prime}\right)^{\ddagger}
\end{array} \\
U_{\infty}\left(B_{P}\right) / C U_{\infty}\left(B_{P}\right)
\end{array}
$$

The lemma follows.

Lemma (1.2.21)[98]:

Let A and B be two unital infinite dimensional separable stably finite C^{*}-algebras whose tracial simplexes are non-empty. Let $\gamma: U_{\infty}(A) / C U_{\infty}(A) \rightarrow U_{\infty}(B) / C U_{\infty}(B)$ be a continuous homomorphism, $h_{i}: K_{i}(A) \rightarrow K_{i}(B)(i=0,1)$ be homomorphisms and λ : $\operatorname{Aff}(\mathrm{T}(\mathrm{A})) \rightarrow \operatorname{Aff}(\mathrm{T}(\mathrm{B}))$ be an affine homomorphism which are compatible. Let p and q be two relatively prime supernatural numbers such that $M_{p} \otimes M_{q}=Q$. Denote by ∞ the supernatural number associated with the product \mathfrak{p} and \mathfrak{q}. Let $E_{B}: B \rightarrow B \otimes Z_{p, q}$ be the embedding defined by $E_{B}(b)=b \otimes 1, \forall b \in B$. Then

$$
\begin{array}{ll}
\left(\pi_{t} \circ E_{B}\right)^{\ddagger} \circ \gamma=\gamma_{\infty} \circ \iota_{\infty}^{\ddagger} & \text { for all } \mathrm{t} \in(0,1) \\
\left(\pi_{0} \circ E_{B}\right)^{\ddagger} \circ \gamma=\gamma_{p} \circ \iota_{p}^{\ddagger} & \text { and } \\
\left(\pi_{1} \circ E_{B}\right)^{\ddagger} \circ \gamma=\gamma_{q} \circ \iota_{q}^{\ddagger} & \tag{107}
\end{array}
$$

with the notation of (1.2.20) where $\pi_{t}: z_{p, q} \rightarrow Q$ is the point-evaluation at t.

Proof:

Fix $z \in U_{\infty}(B) / C U_{\infty}(B)$. Let $u \in U_{n}(B)$ for some integer $n \geq 1$ such that $\bar{u}=z$ in $U_{\infty}(B) / C U_{\infty}(B)$. Then

$$
\begin{equation*}
E_{B}^{\ddagger}(z)=\overline{u \otimes 1} \tag{108}
\end{equation*}
$$

In other words, $E_{B}^{\ddagger}(z)$ is represented by $w(t) \in M_{n}\left(B \otimes Z_{p, q}\right)$ for which

$$
\begin{equation*}
w(t)=u \otimes 1 \text { for all } t \in[0,1] . \tag{109}
\end{equation*}
$$

Therefore, for any $t \in(0,1), \pi_{t} \circ E_{B}^{\ddagger}(z)$ may be written as

$$
\begin{equation*}
\pi_{t} \circ E_{B}^{\ddagger}(z)=\frac{u \otimes 1}{u \otimes 1} \text { in } U_{\infty}(\mathrm{B} \otimes \mathrm{Q}) / \mathrm{C} U_{\infty}(\mathrm{B} \otimes \mathrm{Q}) . \tag{110}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\pi_{t} \circ E_{B}^{\ddagger}(z)=\left(l_{\infty}\right)^{\ddagger}(z) \text { for all } z \in U_{\infty}(\mathrm{B}) / \mathrm{C} U_{\infty}(\mathrm{B}) . \tag{111}
\end{equation*}
$$

where $t_{\infty}: B \rightarrow B \otimes Q$ is defined by $t_{\infty}(b)=b \otimes 1$ for all $b \in B$.

$$
\begin{equation*}
\left(\pi_{t} \circ E_{B}\right)^{\ddagger} \circ \gamma=\gamma_{\infty} \circ \iota_{\infty}^{\ddagger} \quad \text { for all } \mathrm{t} \in(0,1) \tag{112}
\end{equation*}
$$

The identities (106) and (107) for end points exactly follow from the same arguments.

Lemma (1.2.22)[98]:

Let A be a unital $A H$-algebra and let B be a unital separable simple amenable C^{*}-algebra with $T R(B) \leq 1$. Suppose that $\phi_{1}, \phi_{2}: A \rightarrow B$ are two monomorphisms such that

$$
\begin{equation*}
\left[\phi_{1}\right]=\left[\phi_{2}\right] \text { in } K K(A, B),\left(\phi_{1}\right)_{\#}=\left(\phi_{2}\right)_{\#} \text { and } \phi_{1}^{\ddagger}=\phi_{2}^{\ddagger} . \tag{113}
\end{equation*}
$$

Then there exists a monomorphism $\beta: \phi_{2}(A) \rightarrow B$ such that $\left[\beta \circ \phi_{2}\right]=\left[\phi_{2}\right]$ in
$K K(A, B),\left(\beta \circ \phi_{2}\right)_{\#}=\phi_{2 \#}\left(\beta \circ \phi_{2}\right)^{\#}=\phi_{2}^{\ddagger}$ and $\beta \circ \phi_{2}$ is asymptotically unitarily equivalent to ϕ_{1}. Moreover, if $H_{1}\left(K_{0}(A), K_{1}(B)\right)=K_{1}(B)$, they are strongly asymptotically unitarily equivalent, where $H_{1}\left(K_{0}(A), K_{1}(B)\right)$
$=\left\{x \in K_{1}(B): \psi\left(\left[1_{A}\right]\right)=x\right.$ for some $\left.\psi \in \operatorname{Hom}\left(K_{0}(A), K_{1}(B)\right)\right\}$.

Proof:

There is a monomorphism $\beta \in \overline{\operatorname{Inn}}\left(\phi_{2}(A), B\right)$ such that $[\beta]=[\iota]$ in $K K\left(\phi_{2}(A), B\right)$ and $\bar{R}_{t, \beta}=-\bar{R}_{\phi_{1}, \phi_{2}}$
where l is the embedding of $\phi_{2}(A)$ to B and $\bar{R}_{l, \beta}$ is viewed as a homomorphism from $K_{1}(A)=K_{1}\left(\phi_{2}(A)\right)$ to $\operatorname{Aff}(\mathrm{T}(\mathrm{B}))$. In other words

$$
\begin{equation*}
\bar{R}_{\phi_{2}, \beta \circ \phi_{2}}=-\bar{R}_{\phi_{1}, \phi_{2}} . \tag{114}
\end{equation*}
$$

One also has that

$$
\begin{align*}
{\left[\phi_{2}\right] } & =\left[\beta \circ \phi_{2}\right] \text { in } K K(A, B), \tag{115}\\
\left(\beta \circ \phi_{2}\right)_{\#} & =\left(\phi_{2}\right)_{\#} \text { and }\left(\beta \circ \phi_{2}\right)^{\#}=\phi_{2}^{\ddagger} \tag{116}\\
{\left[\phi_{1}\right] } & \left.=\left[\beta \circ \phi_{2}\right]\right] \text { in } K K(A, B), \tag{117}\\
\left(\phi_{1}\right)_{\#} & =\left(\beta \circ \phi_{2}\right)_{\#} \text { and } \phi_{1}^{\ddagger}=\left(\beta \circ \phi_{2}\right)^{\#} \tag{118}
\end{align*}
$$

It follows from (100) and (115) that

$$
\begin{equation*}
c=\bar{R}_{\phi_{1}, \phi_{2}}=\bar{R}_{\phi_{2}, \beta \circ \phi_{2}}=0 . \tag{119}
\end{equation*}
$$

Therefore, it follows from Theorem (1.2.13) of [97] that the map ϕ_{1} and $\beta \circ \phi_{2}$ are asymptotically unitarily equivalent.
In the case that $H_{1}\left(K_{0}(A), K_{1}(B)\right)=K_{1}(B)$ of [97] that $\beta \circ \phi_{2}$ and ϕ_{1} are strongly asymptotically unitarily equivalent.

Lemma (1.2.23)[98]:

Let C and A be two unital separable stably finite C^{*}-algebras. Suppose that , $\psi: C \rightarrow$ A are two unital monomorphisms such that

$$
[\phi]=[\psi] \text { in } K L(C, A), \phi_{\square}=\psi_{\text {回 }} \text { and } \bar{R}_{\phi, \psi}=0 .
$$

Suppose that $\{U(t): t \in[0,1)\}$ is a piecewise smooth and continuous path of unitaries in A with $U(0)=1$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 1} U^{*}(t) \phi(u) U(t)=\psi(u) \tag{120}
\end{equation*}
$$

for some $u \in U(C)$ and suppose that there exists $w \in U(A)$ such that $\psi(u) w^{*} \in U_{0}(A)$. Let

$$
Z=Z(t)=U^{*}(t) \phi(u) U(t) w^{*} \quad \text { if } t \in[0,1)
$$

and $Z(1)=\psi(u) w^{*}$. Suppose also that there is a piecewise smooth continuous path of unitaries $\{z(s): s \in[0,1]\}$ in A such that $z(0)=\phi(u) w^{*}$ and $z(1)=1$. Then, for any piecewise smooth continuous path $\{Z(t, s): s \in[0,1] \mid\} \subset C([0,1], A)$ of unitaries such that $Z(t, 0)=Z(t)$ and $Z(t, 1)=1$, there is $f \in \rho_{A}\left(K_{0}(A)\right)$ such that

$$
\begin{equation*}
\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d Z(t, s)}{d s} Z(t, s)^{*}\right) d s=\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d Z(s)}{d s} Z(s)^{*}\right) d s+f(\tau) \tag{121}
\end{equation*}
$$

for all $t \in[0,1]$ and $\tau T(A)$.

Proof:

Define

$$
Z_{1}(t, s)= \begin{cases}U^{*}(t-2 s) \phi(u) U(t-2 s) w^{*} & \text { for } s \in[0, \mathrm{t} / 2) \tag{122}\\ \phi(u) w^{*} & \text { for } s \in[t / 2,1 / 2) \\ z(2 s-1) & \text { for } s \in[1 / 2,1]\end{cases}
$$

For $t \in[0,1)$ and define

$$
Z_{1}(t, s)=\left\{\begin{array}{cl}
\psi(u) w^{*} & \text { for } s=0 \tag{123}\\
U^{*}(1-2 s) \phi(u) U(1-2 s) w^{*} & \text { for } s \in[0,1 / 2) \\
z(2 s-1) & \text { for } s \in[1 / 2,1]
\end{array}\right.
$$

Thus $\left\{Z_{1}(t, s): s \in[0,1]\right\} \subset C([0,1], A)$ is a piecewise smooth continuous path of unitaries such that $Z_{1}(t, 0)=Z(t)$ and $Z_{1}(t, 1)=1$. Thus, there is an element $f_{1} \in$ $\rho_{A}\left(k_{0}(A)\right)$, such that

$$
\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d Z(t, s)}{d s} Z(t, s)^{*}\right) d s-\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d Z_{1}(t, s)}{d s} Z_{1}(t, s)^{*}\right) d s
$$

for all $\tau \in T(A)$ an for all $t \in[0,1]$.

On the other hand, let $V(t)=U^{*}(t) \phi(u) U(t)$ for $t \in[0,1)$ and $V(1)=\psi(u)$. For any $s \in[0,1)$, since $U(0)=1, U(t) \in U(C([0, s], A))_{0}($ for $t \in[0, s])$. There there are $a_{1}, a_{2}, \ldots, a_{k} \in U([0, s], A)_{s . a}$. such that

$$
\begin{align*}
& f_{1}(\tau)=\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d Z(t, s)}{d s} Z(t, s)^{*}\right) d s \\
&-\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d Z_{1}(t, s)}{d s} Z_{1}(t, s)^{*}\right) d s \tag{124}
\end{align*}
$$

for all $\tau \in T(A)$ an for all $t \in[0,1]$.
On the other hand, let $V(t)=U^{*}(t) \phi(u) U(t)$ for $t \in[0,1)$ and $V(1)=\psi(u)$. For any $s \in[0,1)$, since $U(0)=1, U(t) \in U(C([0, s], A))_{0}$ (for $\left.t \in[0, s]\right)$. There there are $a_{1}, a_{2}, \ldots, a_{k} \in U([0, s], A)_{s . a}$ such that

$$
U(t)=\prod_{j=1}^{k} \exp \left(i a_{j}(t)\right) \quad \text { for all } t \in[0, s]
$$

Then a straightforward calculation shows that

$$
\begin{equation*}
\int_{0}^{s} \frac{d V(t)}{d t} V^{*}(t) d t=0 \tag{125}
\end{equation*}
$$

we also have

$$
\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau \frac{d V(t)}{d t} V^{*}(t) d t=R_{\phi, \psi}([V])(\tau):=f(\tau) \in \rho_{A}\left(k_{0}(A)\right)
$$

for all $\tau \in T(A)$.
Then

$$
\begin{align*}
& \frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1 / 2} \tau\left(\frac{d Z_{1}(1, s)}{d s} Z_{1}(1, s)^{*}\right) d s= \\
& \frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1 / 2} \tau\left(\frac{d V(2 s-1)}{d s} V(2 s-1)^{*}\right) d s \tag{126}\\
& R_{\phi, \psi}([V])(\tau)=f(\tau) \text { for all } \tau \in T(A) . \tag{127}
\end{align*}
$$

One computes that, for any $\tau \in T(A)$ and for any $t \in[0,1)$, by applying (126),

$$
\begin{gather*}
=\frac{1}{2 \pi \sqrt{-1}}\left[\int _ { 0 } ^ { t / 2 } \tau \left(\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d Z_{1}(t, s)}{d s} Z_{1}(t, s)^{*}\right) d s\right.\right. \tag{128}\\
\left.\int_{t / 2}^{1 / 2} \tau\left(\frac{d Z_{1}(t, s)}{d s} Z_{1}(t, s)^{*}\right) d s+\int_{1 / 2}^{1} \tau\left(\frac{d z(s-1)}{d s} z(2 s-1)^{*}\right) d s\right] \\
=\frac{1}{2 \pi \sqrt{-1}}\left[\int_{0}^{t / 2} \tau\left(\frac{d V(t-2 s)}{d s} V(t-2 s)^{*}\right) d s\right. \tag{130}\\
\left.\quad+\int_{1 / 2}^{1} \tau\left(\frac{d z(s-1)}{d s} z(2 s-1)^{*}\right) d s\right] \\
\left.=0+\frac{1}{2 \pi \sqrt{-1}} \int_{1 / 2}^{1} \tau\left(\frac{d z(2 s-1)}{d s} z(2 s-1)^{*}\right) d s\right] \tag{131}
\end{gather*}
$$

$$
\begin{equation*}
=\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d z(s)}{d s} z(s)^{*}\right) d s \tag{133}
\end{equation*}
$$

It then follows from (126) that

$$
\begin{gather*}
=\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d Z_{1}(1, s)}{d s} Z_{1}(1, s)^{*}\right) d s \tag{134}\\
=\frac{1}{2 \pi \sqrt{-1}}\left[\int_{0}^{1 / 2} \tau\left(\frac{d Z_{1}(1, s)}{d s} Z_{1}(1, s)^{*}\right) d s+\int_{1 / 2}^{1} \tau\left(\frac{d z(2 s-1)}{d s} z(2 s-1)^{*} d s\right)\right] \tag{135}\\
=f(\tau)+\frac{1}{2 \pi \sqrt{-1}} \int_{0}^{1} \tau\left(\frac{d z(s)}{d s} z(s)^{*}\right) d s \tag{136}
\end{gather*}
$$

The lemma follows.

Lemma (1.2.24)[98]:

Let A be a unital C^{*}-algebra satisfying that $A \otimes M_{\mathrm{r}}$ is an AH-algebra for all supernatural number r with infinite type (in particular, all $A H$-algebra satisfies this property), and let B be a unital simple C^{*}-algebra in $\mathcal{N} \cap \mathcal{C}$. Let $\kappa \in K L_{e}(A, B)^{++}$and $\lambda: \operatorname{Aff}(\mathrm{T}(\mathrm{A})) \rightarrow \operatorname{Aff}(T(B))$ be an affine homomorphism which are compatible (see Definition 1.2.3). Then there exists a unital homomorphism $\phi: A \rightarrow B$ such that

$$
[\phi]=\kappa \text { and }(\phi)_{\square}=\lambda .
$$

Moreover, if $\gamma \in U_{\infty}(A) / C U_{\infty}(A) \rightarrow U_{\infty}(B) / C U_{\infty}(B)$ is a continuous homomorphism which is compatible with κ and λ, then one may also require that

$$
\begin{equation*}
\left.\phi^{\ddagger}\right|_{U_{\infty}(A)_{0} / C U_{\infty}(A)}=\left.\gamma\right|_{U_{\infty}(A)_{0} / C U_{\infty}(A)} \phi^{\ddagger} \circ s_{1}=\gamma \circ s_{1}-\bar{h}, \tag{137}
\end{equation*}
$$

where $s_{1}: k_{1}(A) \rightarrow U_{\infty}(A) / C U_{\infty}(A)$ is a splitting map (see 2.3), and

$$
\bar{h}: k_{1}(A) \rightarrow \mathbb{R} \rho_{B}\left(k_{0}(B)\right) / \rho_{B}\left(k_{0}(B)\right)
$$

is a homomorphism. Moreover,

$$
\begin{equation*}
\left(\phi \otimes \mathrm{id}_{\mathrm{z}_{\mathrm{p}, \mathrm{q}}}\right)^{\ddagger} \circ s_{1}=E_{B} \circ \gamma \circ s_{1}-\bar{h}, \tag{138}
\end{equation*}
$$

where E_{B} is as defined in (101).

