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ABSTRACT 

 

 

This thesis introduces full filled description for fifth-generation 

technology, here concentrated on massive MIMO technology in detailed at 

channel detection. However, channel illustrated carefully, described how to 

estimate and detect the channel. By using both algorithms least square and 

minimum mean square error for channel estimation while zero forcing and 

minimum mean square error for channel detection by analyzing and measure 

their performance using BER for MIMO 2x2, also it shows these algorithms 

on massive MIMO but it offers high BER and latency. In addition, simple 

algorithms used for equalizing the channel are Gauss-Jordan Elimination, 

Gaussian Elimination, RQ Decomposition and LU Decomposition. In which 

MATLAB simulation used to analyzed and applied mathematical models. 

After that measured the BER, delay for each algorithm and evaluate the 

capacity and throughput, by way, found that the Gaussian Elimination has 

better delay about 49% when RQ Decomposition about 95% while LU 

Decomposition about 98% compared by Gauss-Jordan Elimination. In 

addition, show their performance at capacity and throughput for various 

modulation and coding rate, while the deliverables average capacity about 10 

M bit and affected by the situation of the channel, LU has the best 

performance than other. 
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 المستخلص

 

 

متعددة الهوائيات التقنية لخامس ولقد تم التركيز علي اوصفا كاملا للجيل تقدم هذه الأطروحة 

كما تم توضيح  ووصف كيفية تقدير وكشف القناة باستخدام كل من  .ل للتحقق عن القناةيبالتفص

ري والحد بينما الصفر القس ,مربع الخطأ نفسه لتخمين القناةلوالحد الأدنى  طالمربع البسيخوارزميات 

اس أدائها باستخدام هوائتين عند قناة من خلال تحليل وقيالن ع مربع الخطأ نفسه للتحققلالأدنى 

من الهوائيات  هائلهذه الخوارزميات على عدد  بين عملالاستقبال وهوائتين عند الارسال, كما 

هنا تستخدم خوارزميات بسيطة لتخمين والتحقق من القناة  .للقناة وتأخير كبير أمقدار خط وأعطت

, والتحليل للمصفوفة والتعامديوهي جاوس جوردن للحذف, والحذف لجاوس, التحليل العكسي 

برنامج  للمصفوفة,وهنا أولا تم تحليل النموذج الرياضي ومن ثم تطبيقها باستخدام الاعلى والادني

ل من الخوارزميات وقيست ك من خر لكلأالخطا والتفوفات المكتبية للمحاكاة بعد ذلك تم قياس صالم

  بينما ٪49حوالي بالسعة الكلية للبيانات والسعة الحقيقية, وجدت أن خوارزمية الحذف لجاوس أفضل 

, في حين خوارزمية التحليل ٪95حوالي افضل ب العكسي والتعامدي للمصفوفةخوارزمية التحليل 

ويعرض ايضا  .جوردن للحذف مقارنة بخوارزمية جاوس ٪98حوالي الاعلى والادنى للمصفوفة ب

لسعة الكلية ان متوسط ا والترميز, في حين  من التضمينمختلف عدد لالادائية للسعة الكلية والحقيقية 

ل عطت افضلقد أميقا بت ووجدت ان خوارزمية التحليل الاعلى والادنى للمصفوفة  10 يبحوال تقدر

 ادائية مقارنة ببقية الخوارزميات حيث له اقل تاخير.

 

 



vii 
 

TABLE OF CONTENTS 

 

 

CHAPTERS TITLE PAGE 

 ii الإستهلال 

 DEDICATION Iii 

 ACKNOWLEDGEMENT iv 

 ABASTRACT v 

 vi المستخلص 

 TABLE OF CONTENTS vii 

 LIST OF TABLES x 

 LIST OF FIGURES xi 

 LIST OFABBREVIATION xiii 

 LIST OF SYMBOLS xv  

Chapter 1 INTRODUCTION 1 
 1.1 Preface 2 

 1.2 Problem Statement 3 

 1.3 Proposed Solution 3 

 1.4 Methodology 3 

 1.5 Aim and Objectives 4 

 1.3 Proposed Solution 3 

 1.4 Methodology 3 

 1.5 Aim and Objectives 4 

 1.6 Research Outlines 4 

Chapter 2 LITERATURE REVIEW 6 
 2.1 Background 7 

 2.1.1 Wireless Communication LTE 9 

 2.1.1.1 Orthogonal Frequency Division 

Multiplexing 

 

10 

 2.1.1.2 OFDMA/SC-FDMA 10 

 2.1.1.3 Generic Frame Structure 12 

 2.1.1.4 Uplink Physical Channel 13 



viii 
 

 2.2.2 Fifth Generation Technologies 16 

 2.2.2.1 Massive-MIMO and 5g Cellular 17 

 2.2.2.2 Millimeter Wave (mm-Wave) 19 

 2.2.2.3 Ultra-Densification 20 

 2.2.2.4 Conventional Cellular Network 

Architecture 

20 

 2.2.2.5 Distribution Architecture of Ultra-

Dense Cellular Networks 

 

22 

 2.1.1.1 Device-Centric Architectures 22 

 2.1.1.2 Smart Devices 25 

 2.1.1.3 Native Support for Machine-to-

Machine Communication  

 

25 

 2.2 Related Works 26 

Chapter 3 FIFTH GENERATION KERNEL 

ALGORITHMS 

 

30 

 3.1 Introduction 31 

 3.2 Channel Detection and Estimation 

Algorithms 

32 

 3.2.1 Channel Estimation 33 

 3.2.1.1 LS channel estimation 33 

 3.2.1.2 MMSE channel estimation 33 

 3.3 Channel Detection 34 

 3.3.1 ZF detection 34 

 3.3.2 MMSE detection 34 

 3.4 Generate channel matrix from 8x8 to 

256x256 

35 

 3.5 Algorithms For Fifth Generation Kernel 

Algorithms  

 

36 

 3.5.1 Gauss Jordan Elimination Flow Chart 36 

 3.5.2 Gaussian Elimination Flow Chart 37 

 3.5.2.1 Pivoting and Forward Elimination 38 

 3.5.2.2 Back Substitution 39 

 3.5.3 LU Decomposition Algorithm Flow Chart 40 

 3.5.4 RQ Decomposition Algorithm Flow Chart 41 

 3.6  Processing Time for Algorithms 42 



ix 
 

 3.7 Delay and capacity 43 

Chapter 4 RESULTS AND DISCUSSION 45 

 4.1 Introduction 46 

 4.2 Channel Estimation and Detection 47 

 4.2.1 Channel Estimation for 2x2 MIMO 47 

 4.2.2 Channel Detection for 2x2 MIMO 48 

 4.2.3 Channel Estimation for Massive MIMO 49 

 4.2.4 Channel Detection for Massive MIMO 49 

 4.3 Processing Delay for Algorithms and BER 50 

 4.4 Capacity and Throughput through AMC 52 

 4.4.1 BPSK Modulation and code rate 2/3 53 

 4.4.2 QAM Modulation and code rate 3/4 55 

 4.4.3 16-QAM Modulation and code rate 5/6 57 

 4.4.4 64-QAM Modulation and code rate 7/8 59 

Chapter 5 CONCLUSION AND 

RECOMMENDATIONS 

 

61 

 5.1 CONCLUSION 62 

 5.2 RECOMMENDATIONS 62 

References 64 

Appendix A    Mathematical Representation for algorithms 68 

Appendix B   Simulation using MATLAB for LS MMSE at             

channel estimation and ZF and MMSE for channel 

detection 

 

 

73 

Appendix C Simulation for delay to modified algorithm and 

evaluate its performance 

81 



x 
 

LIST OF TABLES 

 

 

TABLE NO. TITLE PAGE 
4.1 Simulation for 2x2 MIMO channel  46 

4.2 Parameter Used for Massive MIMO 

Simulation 

 

47 

4.3 Comparison between GJE and Other 

algorithms 

 

51 

4.4 Comparison between GJE and Other 

algorithms in terms of capacity and throughput 

(M=1 CR=2/3) 

 

 

54 

4.5 Comparison between GJE and Other 

algorithms in terms of capacity and throughput 

(M=2 CR=3/4) 

 

 

56 

4.6 Comparison between GJE and Other 

algorithms in terms of capacity and 

throughput (M=4 CR=5/6) 

 

 

58 

4.7 Comparison between GJE and Other 

algorithms in terms of capacity and 

throughput (M=6 CR=7/8) 

 

 

60 
 

 

 

 

 

 

 

 

 



xi 
 

LIST OF FIGURES 

 

 

 

FIGURE NO. TITLE PAGE 

2.1 Illustration of the uplink PHY Layer Blocks 

in LTE  

 

11 

2.2 Generic Frame Architecture Type 1 for SC-

FDMA in LTE 

 

12 

2.3 Generic Frame Architecture Type 1 for SC-

FDMA in LTE 

 

13 

2.4 Physical Layer Uplink between UE and 

eNodeB 

 

14 

2.5 Massive-MIMO Services Provided to Number 

of Users by Employing 2048, 4096 and 8192 

Antenna Arrays 

 

 

18 

2.6 Distribution ultra-dense cellular networks 

with deployment scenario and logical 

structure for single gateway 

 

 

21 

2.7 Flow Chart Illustration the Methodology for 

Massive MIMO Technology 

 

29 

3.1 Flow Chart for Gauss Jordan Algorithm 36 

3.2 Flow Chart for Gaussian Elimination 37 

3.3 Forward Elimination in Gaussian Elimination 

Algorithm 

38 

3.4 Forward Elimination in Gaussian Elimination 

Algorithm 

39 

3.5 Flow Chart for LU Decomposition 40 

3.6 Flow Chart for RQ Decomposition 41 

3.7 Flow Chart of Processing Time for Each 

Algorithm 

 

42 



xii 
 

4.1 Channel Estimation for LS and MMSE 48 

4.2 channel detection using ZF and MMSE 

Algorithms 

 

48 

4.3 Massive MIMO for channel estimation based 

on LS and MMSE  

 

49 

4.4 Massive MIMO  channel Detection 

algorithms based on ZF and MMSE  

 

49 

4.5 BER for Massive MIMO versus SNR 50 

4.6 Processing delay for GE, GJE, LU and RQ in 

Massive MIMO 

 

51 

4.7 BER for GE,GJE,RQ and LU decomposition 52 

4.8 Capacity for Algorithms through using BPSK 

and CR=2/3 versus number of Antenna 

 

53 

4.9 Throughput for Algorithms through using 

BPSK and CR=2/3 versus number of Antenna 

 

54 

4.10 Capacity for Algorithms through using QAM 

and CR=3/4 versus number of Antenna 

 

55 

4.11 Throughput for Algorithms through using 

QAM and CR=3/4 versus number of Antenna 

 

56 

4.12 Capacity for Algorithms through using 16-

QAM and CR=5/6 versus number of Antenna 

 

57 

4.13 Throughput for Algorithms through using 16-

QAM and CR=5/6 versus number of Antenna 

 

58 

4.14 Capacity for Algorithms through using 64-

QAM and CR=7/8 versus number of Antenna 

 

59 

4.15 Throughput for Algorithms through using 64-

QAM and CR=7/8 versus number of Antenna 

 

60 
 



xiii 
 

LIST OF ABBREVIATIONS 

 

 

2G The Second Generation of Mobile Telecommunications 

Technology 

3G The Third Generation of Mobile Telecommunications 

Technology 

3GPP The 3rd Generation Partnership Project 

3GPP2 3rd Generation Partnership Project 2 

4G The  Fourth Generation of Mobile Telecommunications 

Technology 

5G The Fifth Generation of Mobile Telecommunications 

Technology 

8-PSK eight phase shift keying 

16-QAM Sixteen Quadrature Amplitude Modulation 

64QAM Sixty Four Quadrature Amplitude Modulation 

AMC Adaptive Modulation and Coding 

BER Bit Error Rate 

BS Base Station 

CA Carrier Aggregation 

COMP Cooperative communications paradigms 

CP Cyclic Prefix 

CQI Channel Quality Indicator 

CR Code Rate 

CRC Cyclic Redundancy Check 

CSI Channel State Information 

D2D Device to Device 

DFT Discrete Fourier Transferee 

DRMS Demodulation Reference Signal 

FDD Frequency Division Duplex 

GE Gaussian Elimination 

GJE Gauss Jordan Elimination 

 



xiv 
 

HARQ-

ACK 

Hybrid Automatic Repeat Request with Acknowledge 

IFFT Inverse Fast Fourier Transform 

ISI Inter Symbol Interference 

LTE Long Term Evaluation 

LTE-A Long Term Evaluation - Advanced 

LU Lower Upper 

M2M Machine to Machine  

MATLAB Mathematical Laboratory 

Mbps Megabits per Second 

MIMO Multiple Input Multiple Output 

mm Millimeter Wave 

MMSE Minimum Mean Square Error 

MU-

MIMO 

Multi User MIMO 

OFDMA Orthogonal Frequency Division Multiple Access 

PAPR Peak to Average Power Ratio 

PHY Physical 

PUCCH Physical Uplink Control Channel 

PUSCH Physical Uplink Share Channel 

QAM Quadrature Amplitude Modulation 

QPSK Quadrature Phase Shift Keying 

RB Resource Block 

RN Relay Node 

RQ Reverse Quadrature 

SC Sub Carrier 

SC_FDM Single Carrier Frequency Division Multiplexing 

SIMD Single Input Multiple Data 

SNR Signal to Noise Ratio 

SRS sounding reference signal 

TDD Time Division Duplex 

UE User Equipment 

ZF Zero Forcing 



xv 
 

LIST of SYMBOLS 

 

 

Symbol Illustration 

𝐻𝑒𝑠𝑡 Estimated Channel 

𝐻𝐿𝑆 Channel Estimated for Least Square 

𝑋𝐻 Received Signal 

𝑌 Transmitted Signal 

𝐻𝑀𝑀𝑆𝐸 Channel Estimated for MMSE 

𝑅ℎ,ℎ𝑝 Autocorrelation Matrix of Channel Estimation 

𝜎𝑤
2  Variance for Channel 

𝐼 Identity Matrix 

𝑋𝑍𝐹  Received Signal From Channel For Zero Forcing 

𝑋𝑀𝑀𝑆𝐸  Received Signal From Channel For Minimum Mean Square 

Error 

𝜎𝑛
2 Variance for Estimated Channel 

𝜎𝑛𝑥
2  Variance for Transmitted Signal 

A Channel matrix Array 

ai,j The element corresponding to ith  row and the jth column of A 

N Number of Array elements 

BW Bandwidth 

M Modulation order 

C Code Rate 

BER Bit Error Rate 
 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER ONE 

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Chapter One 

Introduction 

1.1 Preface 

With a development of Communication system toward  2G in which 

utilize circuit switch, it developed to 3G for offer high speed and data rate 

beyond advanced to 4G with fulfilled application and enabling to use 

multimedia on the way to 5G by developing technologies in 4G LTE-

Advance. 

For the mobile operator, the cost becomes increasingly important, 

simultaneously with the rising user greater place demand on the mobile 

operator’s networks. Future communication technologies need to reduce 

power consumption, decrease latency, increase performance, and increase 

computability of today different standards. 

 The Long Term Evolution (LTE) baseband system many techniques 

exploits, such as synchronization, channel coding, interleaving, 

demodulation, channel estimation, multiple input multiple output (MIMO) 

detection, and so on. Many redundancies introduce like Channel estimation 

for a multi-antenna receiver system; these redundancies lower the channel’s 

utilization, require additional processing power, and increase latency. The 

conventional method to address these problems is to add pilot signals and 

decrease the length of the cyclic prefix (CP). In baseband processing, control, 

and data correlation by selecting appropriate algorithms and then optimizing 

these algorithms can be minimized. 
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 For conventional MIMO channel estimated using least square and 

minimum mean square error, while in detection zero forcing and minimum 

mean square error used and compared to each other algorithms. 

The conventional channel estimation and channel detection algorithms 

will be compared using massive MIMO and compare with the newest 

algorithms that we used in this thesis especially for channel detection as we 

will show in next chapters. 

In massive MIMO there is a huge number of the antenna element they 

we need to estimate large channel matrix, where, the number of element 

rising from 8×8 to 256×256. For that also mechanisms for the inverse matrix 

to evaluate, receiving signal is needed, and four algorithms are proposed 

Gaussian, LU decomposition, RQ decomposition and Gauss-Jordan 

elimination Algorithms to evaluate the latency in each one and show their 

performance. 

1.2 Problem Statement 

The ultra-high latency and high computation complexity of massive 

MIMO matrices from 16 to 256 dimensions is the vital bottleneck to realizing 

latency for channel estimation and MIMO detection.  

1.3 Proposed Solution  

To reduce the problem of high computational complexity that causes 

huge latency, four algorithms are supposed to represent and measure their 

performance. 
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1.4 Aim and Objectives 

The aim of this thesis project is performance evaluation of channel 

estimation algorithms in 5G kernel moving from general to the specific 

objective, we have: 

1- Modify algorithms used for channel estimation and detection in 2x2 

MIMO to be suitable with Massive MIMO.  

2- Design mathematical model for each of Gaussian Elimination, LU 

Decomposition and RQ Decomposition algorithm. 

3- Modification the Source code for Gauss- Jordan algorithm to be suitable 

with the three algorithms.   

4- Compare between Gauss- Jordan Elimination and three algorithms. 

5- Evaluate the performance and computational complexity of four 

algorithms using MATLAB simulation. 

1.5 Methodology 

The thesis makes use of Matrix Laboratory (MATLAB) simulation 

platform to simulate the different size of the matrix from 8x8 to 256x256 

applied in MATLAB. Firstly, least square and minimum mean square error 

for channel estimation while zero forcing and minimum mean square error 

for channel detection and these algorithms give very high BER and large 

latency for Massive MIMO. However, the solution for channel estimation 

algorithms is not considered. Though, concentrated on channel detection. 

New four algorithms applied for channel detection are Gaussian, LU 

Decomposition, RQ Decomposition and Gauss-Jordan. Nevertheless, each 

algorithm is represented in detailed and modified the mathematical model of 
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gauss Jordan elimination continuously to other algorithms. By way source, 

the code also modified as found in Appendix A, B, C and shown the latency 

happen at four algorithms for chose best one. The delay effect on bandwidth 

and this appear directly on capacity and throughput, our main goal is to reach 

less delay to give better performance for channel situation.    

1.6 Research Outlines 

Chapter One provides short Introduction; discuss Problem statement, 

proposed solution, and Objectives. While, Chapter Two review of the 

Channel Estimation, Matrix Inversion, and 5th generation technologies. In 

addition to Chapter Three explain the Fifth Generation Kernel Algorithms, 

and explain Simulating overall system Using MATLAB layout and discusses 

four scheme. However, Chapter Four include Results and Discussions. 

Finally, Chapter Five contain Conclusions, Recommendations.  
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Chapter Two 

Literature Review 

2.1 Background 

At these days the communication play important role in our life and it 

represent is the progressive thing as we say it have annoying to solve all 

problem for enhancing our real life and go faster and easier, we must solve 

and go through these obstacles to avoid it then go further and used as good 

as possible. 

Research on next-generation 5G wireless systems, several 

unprecedented it, which aims to resolve technical requirements and 

challenges, has attracted rising attention from both academia and industry in 

the past few years. More than 5 billion devices demand wireless connections 

that operate voice, data, and other applications in today’s wireless networks 

[1]. 

  For transmitting data from one node to another, there are multiple 

difficulties faces. Additionally how to receive data at the destination as it 

sends from source to destination. However, we need to receive data with low 

latency, BER, and high capacity. The communication system sends data from 

transmitter to receiver as it sent and with less delay, to deal with this problem 

and by what method to reduce both BER and delay time. 

Multiple antenna technologies like Multiple-Input, Multiple-Output 

(MIMO) and beamforming will thus play an important role in defining 5G 

system architectures [2], in particular for millimeter wave frequencies. Multi-

User MIMO (MU-MIMO) offers increased multiplexing gains and improves 
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spectral efficiency. Even though it has been included in the 3GPP LTE-

Advanced standard, its full possible is yet to be recognized [3]. 

Very good communication system must be designed to transmission 

data from source to destination. These communication systems contain all 

component beginning from source coding, coding, modulation, suitable 

multiple access, and antenna, it will flow through the channel. While in 

another side at a receiver, beginning with receive antenna, multiple access, 

demodulation, decoding, source decoding and then to end user. 

In this thesis, we focus on channel estimation and detection part. How 

to estimate the channel and how to equalize this channel upon estimation. 

Firstly we estimate the channel using two algorithms least square and 

maximum mean square error after that detect the received signal also using 

two algorithms zero forcing and maximum mean square error under channel 

using 2×2 MIMO. In 4G LTE and LTE-A using MIMO from 2×2 to 8×8 the 

main goal of this thesis how to estimate channel response and equalize the 

channel to detect the signal. While in 5G we need to enhance the techniques 

in 4G and these techniques are Ultra-densification, device-centric 

architectures, millimeter wave (mm-Wave), Massive MIMO, smart devices, 

and native support for machine-to-machine (M2M) communication. In This 

thesis, we concentrate on Massive MIMO use large numbers of antenna 

starting from 16×16 to 256×256 [4].  

Here, we estimated the channel and how to inverse it. Using four 

algorithms and then compare them. We assume that all communication 

system is complete the data is transmitted and the channel is estimated and 

depend on the estimated channel Matrix we calculate the inverse of channel 

using four algorithms Gauss- Jordan Elimination, LU Decomposition, RQ 
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Decomposition and Gaussian Elimination and then we evaluate the delay in 

the system using 8×8 to 256×256 [5].  In next chapter, we explain each of 

these algorithms and here we introduce a brief description of LTE and fifth 

generation technology as will show in next section. 

2.1.1 Wireless Communication LTE 

LTE-A is a 4th generation mobile telecommunication technology. 

LTE-A was finalized by the third Generation Partnership Project (3GPP) in 

March 2011. LTE-A is not a completely new technology, rather it is an 

enhancement to LTE. The main objective of LTE-A is to increase the peak 

data rate to 1 Gbps on the downlink and 500 Mbps on the uplink, improve 

spectral efficiency from a maximum of 16 bps/Hz in Release8 to 30 bps/Hz 

in Release10, increase the number of concurrently active subscribers, and 

improve performance at cell edges  [6]. Many technologies applied in LTE 

continue to be used in LTE-A, such as orthogonal frequency division 

multiplexing (OFDM), OFDMA, MIMO, and SC–FDMA. The aims of LTE 

are to ensure the continued competitiveness of 3G systems for the future and 

to offer high user data rates and low latency. 

The main new technologies introduced in LTE-A are carrier 

aggregation (CA), enhanced the use of multiple antenna techniques, and relay 

nodes (RN).Because this thesis focuses only on physical layer transmission, 

the enhanced MIMO technique is the only one of these techniques considered 

in this thesis. Detailed information about CA and RN can be found in [7] and 

[8]. 
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2.1.1.1 Orthogonal Frequency Division Multiplexing   

Orthogonal frequency division multiplexing (OFDM) is a well-known 

method of encoding digital data on multiple carrier frequencies. OFDM 

systems spilled the available bandwidth into many narrower sub-carriers. 

Data it transmitted as parallel streams over these sub-carriers. Each sub-

carrier it modulated with varying levels of modulation schemes, such as 

Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation 

(QAM), and 64-state QAM (64-QAM). The main merits of OFDM are low 

implementation complexity; good tolerance for inter-symbol interference 

(ISI) induced by multipath, and high spectral efficiency. 

2.1.1.2 OFDMA/SC-FDMA 

LTE/LTE-A employs OFDMA and SC-FDMA as the multiplexing 

scheme for the downlink and uplink respectively. The requirements of LTE 

uplink and downlink differ in several ways. Since power consumption is a 

key consideration for User Equipment (UE), i.e., terminals. Because of 

OFDM’s high PAPR and related loss of efficiency, an alternative to OFDM 

was desirable for the LTE uplink. 

SC-FDMA is a suitable scheme for the LTE uplink. The basic 

transmitter and receiver architecture of SC-FDMA is quite similar to 

OFDMA, and SC-FDMA provides the same degree of multipath protection.  

Figure 2-1 depicts the basic SC-FDMA and OFDMA signal processing 

chains of the transmitter and receiver. In this figure, S/P stands for serial to 

parallel conversion, while P/S stands for parallel to serial conversion. 
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Figure 2-1: Illustration of the uplink PHY Layer Blocks in LTE [4] 

As it can be seen figure 2-1, the OFDMA and SC-FDMA chain have a 

highly similar functional structure. In SC-FDMA. The subcarrier mapping 

(SC Mapping), N-point Inverse fast Fourier transform (IFFT), and cyclic 

prefix adding (Add CP) are the same as OFDMA. The difference is that, for 

the data streams, before they mapped to the subcarrier, Discrete Fourier 

Transform (DFT) is performed to decrease the PAPR. This DFT can also 

consider pre-coding. LTE-A physical layer protocols are mainly described in 

the following 3GPP standards:  

TS 36.201 General description of Long Term Evaluation (LTE) physical 

layer [9]. 

TS 36.211 Physical channels and modulation [10]. 

TS 36.212 Multiplexing and channels coding [11]. 

TS 36.201 is the general description documentation, the reset is 

specific document. As this thesis only views physical (PHY) layer 

transmission, the relevant content of TS 36.211 is a description in the 
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following sub-section. Although LTE-A is an improvement of LTE, there 

seems to be a little improvement from LTE to LTE-A at the PHY layer. At 

will introduced the essential technique of LTE/LTE-A used in PHY layer, 

specifically OFDM, OFDMA, SC-FDM, and MIMO. The LTE PHY 

downlink and uplink evolved are quite different because of the various 

structure and capabilities of the uplink channel estimation and the MIMO 

detection algorithms, an overview of LTE uplink PHY layer processing flow 

between the UE and eNodeB will be impersonated, hence the LTE downlink 

flow will be ignored. 

2.1.1.3 Generic Frame Structure       

One element shared by the LTE downlink and uplink is the generic 

frame structure. There are two types of frame structure defined in LTE 

specifications (depending on the duplexing scheme). Figure 2-2 shows the 

generic type 1 frame structure of LTE. 

 

 

 

 

 

 

 

Figure 2-2: Generic Frame Architecture Type 1 for SC-FDMA in LTE [4] 
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The duration of one radio frame is 10 ms. there are 20 slots in a frame. 

These slots are numbered from 0 to 19. The duration of one slot is 0.5 ms. 

Sub-frames in a frame. There are 7 or 6 OFDM Symbols in each slot 

depending on which kind of CP (normal or extended) is used. The CP is 

inserted in front of every symbol. 

    Figure 2.3 present the frame structure type 2. Each radio frame is 10 ms 

duration. A frame consists of two half-frames of 5 ms each. Each half frame 

is comprised of five sub-frames of length 1 ms. In common with type 1, the 

length of a sub-frame is also 1 ms. The difference between type 1 and type 2 

is that type 2 includes three different sub-frame: up-link transmission sub-

frame, downlink subframe, and special sub-frame.   

 

Figure 2-3: Generic Frame Type 2 for SC-FDMA in LTE [4] 
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2.1.1.4 Uplink Physical Channel 

These channels used to transmit the user’s data and control messages 

as illustrated in figure 2-4. There are two types of physical channels defined 

for uplink: Physical Uplink Shared Channel (PUSCH) and Physical Uplink 

Control Channel (PUCCH). This thesis only considers PUSCH, as a purpose 

of PUSCH is to transmit user data. The modulation scheme used by PUSCH 

are QPSK 16-state QAM (16-QAM) or 64-QAM depending on channel 

conditions. 

 

Figure 2-4: Physical Layer Uplink between UE and eNodeB [4] 

Procedures of User Equipment UE: 

•    Transmitter (TX) bit rate processing his stage include transport block 

cyclic redundancy check (CRC) attachment. 

•    Scrambling a number of bits are scrambled with a UE-specific scrambling 

sequence prior to modulation. The main reason for scrambling is to decrease 

the interference from adjacent cells. 

•    Modulation mapper this stage maps the binary bits into complex value 

symbols. The modulation scheme is QPSK, 16-QAM, and 64-QAM. 
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•    Layer mapping the complex modulation symbols for each of the code 

word to be transmitted are mapped onto one, two, three or four PHY layers. 

•    DFT performing a DFT converts the signal from the time domain to the 

frequency domain. 

•    Pre-coding maps the complex-valued modulation symbols from the layers 

to multiple antennas. 

•    Pilot Insertion pilot symbols generated and inserted into the complex 

values modulation symbols on each antenna port. 

•    Resource element mapping N-point IFFT are performed to convert the 

signal from the frequency domain to the time domain after resource element 

mapping. 

•    ADD CP & PS attach CP into every symbol and then perform parallel to 

serial conversion. 

•    Digital/Analog convert digital signal to analog signal and then transmit 

on the appropriate radio frequency. 

Procedures of eNodeB: 

•    Analog /Digital the base station receives an analog RF signal and then 

converts this analog signal to a digital signal. 

•    Serial /Parallel converter & remove CP perform serial to parallel 

conversion and then remove CP. 

•    Fast Fourier Transform (FFT) N-point FFTs are performed to convert the 

signal from time domain to frequency domain. 

•    Reference signal/Data signal separation the reference signal and data 

signal are separated. The reference signal it used to perform channel 
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estimation. Every user’s symbol data will be extracted from the different 

subcarriers according to their physical resource block configurations. 

•    Channel estimation Based on the pilot symbols extracted from the frame, 

estimated the channel matrix H during the period the channel state 

information (CSI) is valid 

•    Remove pilot remove the pilot symbol from the modulation symbol frame. 

•    Resource element mapping it maps the complex-valued modulated symbol 

frame into blocks. 

•    IFFT perform M-point IFFTs to convert the data from the frequency 

domain to the time domain. 

•    Soft slicer converts the received SC-FDMA symbols into soft bits 

according to the modulation scheme employed. 

•    Descrambler/Channel De-interleave the inverse stage of scrambling uses 

de-interleaved for rank indication bits, Hybrid Automatic Repeat Request 

ACK (HARQ-ACK) information bits, and PUSCH/Channel Quality 

Indication (CQI) multiplexing bits. 

•    Receiver (Rx) bit rate processing this stage is the inverse of TX bit rate 

processing. It involves code block de-concatenation, rate matching, turbo 

decoding, code block CRC removal, code block de segmentation and 

transport block CRC removal [3]. 

2.1.2 Fifth Generation Technologies 

To meet 1000× wireless traffic volume increment in the next decade, the fifth 

generation (5G) cellular network is growing a hot research topic in 

telecommunication industries and academics. Firstly, the massive multiple-



17 
 

input multi-output (MIMO) technology was proposed to improve the 

spectrum efficiency of 5G mobile communication systems. Secondly, the 

millimeter wave communications were introduced to reach the transmission 

bandwidth for 5G mobile communication systems. Moreover, the small cell 

idea has been issued to raise the throughput and save the energy consumption 

in cellular situations. To satisfy the seamless coverage, a larger number of 

small cells have to be densely expanded for 5G cellular networks. 

Consequently, the ultra-dense cellular network is emerging as one of core 

characteristics for 5G cellular networks. Nevertheless, the study of ultra-

dense cellular networks is still in an opening stage. Some basic studies, such 

as the network architecture and cellular densification limits require being 

extra investigated for future 5G cellular networks. 

2.1.2.1 MASSIVE-MIMO AND 5G CELLULAR 

In massive MIMO present research, challenges involve estimation of 

criticality of coherent channels. Propagation impairments for massive MIMO 

in modern context could also be hypothetically determined on an 

experimental basis for channel orthogonally. This could be further 

implemented based on deeper costs in the context of hardware power 

dissipation in each of the antennas. 

Viewing present scenario 5G has many advantages over 4G: 

i) Non- bulky in space 

ii) Directive antennas 

iii) Coherent angle spread of the propagation 

There are a limited number of antennas in MIMO. Manipulating 

single-user that is right for the current standard of cellular communication. 
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However, massive MIMO is not limited if TDD (Time Division Duplex) is 

combined for enabling channel characterization. 

Figure 2-5 show relative scenario of massive MIMO‘s application 

which governs the multiple antennas spread in which a small town or 

university campus or city could be utilized. 

 

Figure 2-5: Massive-MIMO Services Provided to Number of Users by Employing 2048, 

4096 and 8192 Antenna Arrays [2] 

Massive MIMO proposals for this model by applying a huge number 

of antennas to multiplex information signals in communication systems for 

several machines by utilizing devices-to-devices link (D2D) on each time-

frequency access schemes (TDD/FDD), focus must be on optimizing energy 

radiated towards the directions indicated during minimizing inter- and inter-

cell interference. Figure 2-5 clearly highlights the comparison of cellular 

services provided in terms of data rate gain for different antenna arrays. For 

massive MIMO application in a 4X4 baseline for subscribers in a single cell 

cluster. The 8192 number of antennas is expanded by massive MIMO 

systems thereby enhancing the user efficiency. Services to users with 2048 
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antennas in simple MIMO schemes were classically adopted where both 5 

and 50 percentile of full efficiency is reached. The MIMO systems with 5096 

are common with optimal service provided. Thus expanding the number of 

an array in the antenna with advanced signal processing tools could a make 

huge information transmission. 

2.1.2.2 Millimeter Wave (mm-Wave) 

The frequencies in the range of 600 MHz to 1600 MHz are currently 

in use for cellular. This little range can hardly be utilized for future generation 

wireless access systems by reframing the system. Higher spectrums in the 

ranges of GHz and THz could be extended by utilizing techniques in 

cognitive radio. The highly potential field is utilized by wavelength in 

millimeter range and hence the term millimeter wave is in practice. Today 

different cellular and wireless firms want a progressive expansion in capacity 

emerging aims, which has to be carried in becoming years beyond the fourth 

generation of wireless standards in Long Term Evolution (4GLTE). 

Around 2020, the cellular networks would face a very high speech and 

data traffic and thereby higher capacity requirements for data rate and 

bandwidth. For wireless future, wireless generation of 5G mobile data rates 

must increase up to numerous gigabits per second (Gbps) range, which can 

only be processed by using the millimeter wave spectrum steerable antennas. 

This would help 5G cellular backhaul communications in addition to the 

integration of worldwide accuracy in wireless services. Since Massive 

MIMO is a spatial processing technique which would have orthogonal 

polarization and beam-forming adaptation, this smaller millimeter 

wavelength is proper frequencies. The highly populated geographical regions 

could be covered by 4G+ to 5G technologies by setting backhaul link using 
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massive MIMO in the case of greater bandwidth challenges. Cost per base 

station will significantly reduce due to innovative architectures of 

cooperative MIMO, thereby decreasing interference relays and servicing 

base stations. 

`    The wireless operators would decrease cellular coverage area to Pico and 

femtocells for generating spatial reuse. Since cellular networks would meet 

gigantic traffic (data and speech) over next ten to twenty years, a huge 

challenge would be to harmonize frequency bands by ITU to GHz and THz. 

This will improve the low cost of service and roaming. The mobile network 

operators are planning to fulfill future requirements, by combing of to share 

spectrum for this solution that would be beneficial beyond 2020 [2]. 

2.1.2.3 Ultra-Densification 

With the development of massive MIMO antenna and millimeter wave 

communication technologies for 5G mobile communication systems, a large 

number of small cells will be expanded to form 5G ultra dense cellular 

networks. Therefore, the first challenge is how to design the architecture of 

5G ultra-dense cellular networks. In this section, the distribution architecture 

of ultra-dense cellular network with single and multiply gateways is proposed 

for further evaluating in following Sections. 

2.1.2.4 Conventional Cellular Network Architecture 

The conventional cellular network architecture is a type of tree 

network architecture, where the BS managers in the core network control 

every macrocell BS and all backhaul traffic is delivered to the core network 

by the given gateway. In order to maintain microcells deployment, e.g., 

femtocells, Pico-cells, and hotspots deployment, a hybrid architecture is 

shown for conventional cellular networks with microcells deployment. In this 
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hybrid network architecture, the microcell network is also configured as a 

kind of tree network architecture; wherever microcell BS managers in the 

core network and the backhaul traffic of macrocell BSs control every 

macrocell, BS is forwarded to the core network by the broadband Internet or 

fiber links. The coverage of microcells is overlapped with the coverage of 

macro-cells. Matched with macrocell BSs, macrocell BSs can afford the 

high-speed wireless transmission in indoor and hotspot scenarios. Both of the 

macrocell BS and the microcell BS can independently transmit the user data 

and the management data to associated users. Users can handover in 

macrocells and microcells according to their requirements. Moreover, 

macrocell and microcell managers in the core network control the handover 

process. In figure 2-6 this network architecture, the microcell network is a 

complement to the conventional macrocell network to perform the high-

speed wireless transmission in partial regions, e.g., indoor and hotspot 

scenarios. 

  

Figure 2-6: Distribution ultra-dense cellular networks with deployment scenario and 

logical structure for single gateway [12] 
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2.1.2.5 Distribution Architecture of Ultra-Dense Cellular Networks 

Prompted by the massive MIMO antenna and the Millimeter Wave 

Communication Technologies, the densification deployment of small cells is 

emerging into 5G cellular networks. Nevertheless, it is challenging to 

forward the backhaul traffic of every small cell BS by the broadband Internet 

or the fiber link considering the cost and geography deployment challenges 

in urban environments. Moreover, the small cell BS usually cannot directly 

transmit the wireless backhaul traffic to the given gateway since small cell 

BSs adopting the millimeter wave technology reduce the wireless 

transmission distance. In this case, the wireless backhaul traffic has to be 

relayed to the assigned gateway by multi-hop links. As an outcome, the 

distribution network architecture is a solution for 5G ultra-dense cellular 

networks. In 5G ultra-dense cellular scenarios, to solve the mobile user 

frequently handover problem in small cells, the macrocell BS is configured 

only to transmit the management data for controlling the user handover in 

small cells and the small cell BS takes charge of the user data transmission. 

Therefore, the small cell network is not a complement to the macrocell 

network. 5G ultra-dense cellular networks are jointly composed by small 

cells and macro cells. Based on the backhaul gateway configuration [12]. 

2.1.2.6 Device-Centric Architectures 

Cellular designs have historically relied on the obvious role of ‘cells’ 

as fundamental units within the radio access network. Under such a design 

guess, a device takes service by establishing a downlink and an uplink 

connection, carrying both control and data traffic, with the base station 

commanding the cell where the device is placed. Over the last few years, 

different aims have been guiding to a disruption of this cell-centric structure: 
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•    The base-station density is increasing rapidly, driven by the rise of 

heterogeneous networks. Whereas heterogeneous networks were already 

standardized in 4G, the architecture was not natively designed to assist them. 

Network densification could need some major changes in 5G. The 

deployment of base stations with vastly different transmit powers and 

coverage areas, for example, calls for a decoupling of downlink and uplink 

in a way that allows for the corresponding information to flow through 

different sets of nodes. 

•    The need for additional spectrum will inevitably lead to the coexistence 

of frequency bands with radically varying propagation characteristics within 

the same system. In this context, [13] proposes the concept of a ‘phantom 

cell’ where the data and control planes are separated: high-power nodes at 

microwave frequencies send the control information while low-power nodes 

at mm-Wave frequencies convey the payload data.  

•    A new idea termed centralized baseband related to the concept of Cloud 

Radio Access Networks is developing, where virtualization drives to a 

decoupling between a node and the hardware allocated to manage the 

processing associated with this node. Hardware resources in a pool, for 

instance, could be dynamically allocated to various nodes depending on 

metrics determined by the network operator. 

•    Emerging service classes could want a complete redefinition of the 

architecture. Current works are looking at architectural designs ranging from 

centralization or partial centralization (e.g., via aggregators) to full 

distribution (e.g., via compressed sensing and/or multi-hop). 

•    Cooperative communications paradigms such as COMP or relaying, which 

despite coming short of their initial hype are nonetheless beneficial, could 
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need a redefinition of the functions of the different nodes. In the context of 

relaying, for example, recent developments in wireless network coding 

propose transmission principles that would allow recovering some of the 

losses associated with half-duplex relays. Furthermore, recent research points 

to the plausibility of full duplex nodes for short-range communication in a 

not-so-distant future. 

•    The use of smarter devices could affect the radio access network. In 

particular, both D2D and smart caching call for an architectural redefinition 

where the center of gravity moves from the network core to the periphery 

(devices, local wireless proxies, relays).  

Based on these aims, our vision is that the cell-centric architecture should 

develop into a device-centric one: a given device (human or machine) should 

be able to communicate by replacing multiple information flows through 

several possible sets of heterogeneous nodes. In other words, the set of 

network nodes providing connectivity to a given device and the functions of 

these nodes in a particular communication session should be tailored to that 

particular device and session. Under this vision, the concepts of 

uplink/downlink and control/data channel should be rethought. While the 

need for a disruptive change in architectural design appears clear, major 

research efforts are still needed to transform the resulting vision into a 

coherent and realistic proposition. Since the history of innovations indicates 

that architectural changes are often the operators of major technological 

discontinuities, we conclude that the aims above might have a major impact 

on the development of 5G. 
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2.1.2.7 Smart Devices 

Earlier generations of cellular systems were built on the design 

assumption of having complete control at the infrastructure side. In this 

section, we discuss some of the possibilities that can be unleashed by 

enabling the devices to play a more active role and, consequently, how 5G’s 

design should account for an improvement in device smartness. We 

concentrate on three different examples of technologies that could be 

incorporated into smarter devices, namely D2D, local caching, and advanced 

interference rejection. 

2.1.2.8 Native Support for Machine-to-Machine Communication 

Wireless communication is becoming a commodity, just similar to 

electricity or water. This Commoditization, in turn, is giving growth to a large 

class of emerging services with new types of demands. We point to a few 

characteristic such requirements, each represented by a typical service: 

•    A massive number of connected devices. Whereas modern systems 

typically operate with, at most, a few hundred devices per base station, some 

M2M services might want over 10000 connected devices. Examples include 

metering, sensors, smart grid components, and other enablers of services 

targeting wide area coverage. 

•    Very high link reliability. Systems provided with critical control, safety, 

or production, have been ruled by wireline connectivity largely because 

wireless links did not offer the same degree of confidence. As these systems 

transition from wireline to wireless, it becomes necessary for the wireless 

link to be reliably operational virtually all the time. 
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•    Low latency and real-time operation. This can be an even more stringent 

requirement than the ones above, as it demands that data be transferred 

reliably within a given time interval. A typical example is a Vehicle-to-X 

connectivity, whereby traffic safety can be improved through the timely 

delivery of critical messages (e.g., alert and control) [14]. 

2.2 Related Works 

LTE is a 3.9G technology. According to the standard, the peak data 

rate of LTE is from 100 to 326.4 Mbps over the downlink and 50 to 86.4 

Mbps over the uplink. LTE uses orthogonal frequency division multiple 

access (OFDMA) and single carrier frequency division multiple access (SC-

FDMA) in downlink and uplink sequentially [15]. OFDM has two defects: 

large peak-to-average power ratio (PAPR) and high sensitivity to carrier 

frequency errors. [16] The main advantage of SC-FDMA is its low PAPR 

[17]. 

The potential technologies that could use in 5G are ultra-densification, 

device-centric architectures, millimeter wave (mm-Wave), massive MIMO, 

smart devices, and native support for machine-to-machine (M2M) 

communication [18] [19]. Single Input Multiple Data (SIMD) instruction 

processing is one of the newest forms of parallel processing in Flynn’s 

taxonomy. The basic idea of SIMD is to apply the same instruction sequence 

simultaneously to a huge number of discrete data streams [20]. 

The first viewpoint is the comparison of key technologies in baseband 

processing. There have been many papers discussed the channel estimation 

and MIMO detection at LTE/LTE-A uplink. For channel estimation, many 

references discuss how to optimize channel estimation method to gain good 

performance. [21] Moreover, the used method proposed to discuss further 



27 
 

how to optimize it when a different number of resource blocks are allocated. 

Several papers evaluated the different algorithms in different channel model 

such as [22] investigate algorithms in flat Rayleigh fading. The author in [23] 

Investigated the channel estimation for LTE uplink when the traveling speed 

of the UE is high. For MIMO detection. The author in [24] study two low-

complexity detection schemes based on MMSE for MIMO systems. [25] 

Evaluated the performance of different detection algorithms over Rayleigh 

wireless channel. Because channel estimation and MIMO detection are two 

advanced procedures in LTE-A Uplink. All of these references only focused 

on one scheme of channel estimation/MIMO detection. Meanwhile, they only 

research channel estimation/MIMO detection algorithm for multi-antennas 

2× 2 or maximum 4× 4 MIMO system. They did not consider the future 

massive MIMO-system. 

We have to find and a suitable algorithm for matrix inverse for these 

systems. This algorithm should be suitable for SIMD architecture. Following 

a great deal of reading of references and investigation, several conventional 

algorithms were selected that could be used to compute the matrix inverse for 

the complex matrix. The conventional methods used to perform matrix 

inverse are Gauss-Jordan Elimination [26], Gaussian Elimination [2], LU 

Decomposition [27], and QR Decomposition [28]. 

The research work conducted by Xin, [29] is alike to this project. Both 

focus on investigating and analyzing key technologies (Channel estimation 

and MIMO detection) in large-Scale MIMO. Our general orientation is to 

develop wireless system’s performance in large-Scale MIMO. The chosen 

algorithm is Gaussian-Jordan Elimination with the sizes of matrices ranging 

from 8⨯8 to 256×256. The references [30] [31] explored matrix computation 
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on matrices larger than 512⨯512 using LU decomposition and Gauss-Jordan-

Floyd-War-shall method respectively. 

      In [32] [33], the design and implementation of a parallel algorithm utilize 

multi-core task-level parallelism, another form of coarse-grained parallelism. 

     In order to analyze this processing are compare two conventional 

algorithms’ performance and complexity for channel estimation and MIMO 

detection. The key features, which affects the algorithms’ speed, it identified 

as the need for “massive complex matrix inversion”. A parallel coding 

scheme it suggested to implement a matrix inversion kernel algorithm on a 

single instruction multiple data stream (SIMD) vector processor. 

The figure 2-7 explain the methodology for last paper and as shown in 

blue color beginning with the physical layer in uplink for PUSCH channel 

and then work on massive MIMO technology and focus on the algorithm for 

equalizing the channel to extract transmitted signal. 

The fifth generation going to increasing the frequency and trying to 

decrease cell area and this enable to usage huge number of antenna especially 

in massive MIMO can arrive at 4096 antennas. its need very high 

computational complexity for that we look for what method to reduce the 

delay happen in computation thereby compare between two methods using 

only Gauss-Jordan Elimination, the work with SIMD and Normal calculation 

founded that the SIMD has less delay than normal calculation[4]. 
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Figure 2-7: Flow Chart Illustration the Methodology for Massive MIMO Technology [4]. 
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Chapter Three 

Fifth Generation Kernel Algorithms 

3.1 Introduction 

The communication system is very sensitive to transmission delay for 

that we must be careful by system design. As we know, next generation going 

toward increasing the bandwidth and frequency while trying to decrees the 

area of cells. 

By improving fourth generation technology toward the fifth generation 

such as centric device architecture, smart antenna, millimeter wave, device 

to device, ultra-densification and Massive MIMO, here we focus on how to 

develop this technology, especially in Massive MIMO. 

At the beginning algorithms, for channel estimation and detection 

work on 2×2 MIMO, it developed to be suitable with the Massive MIMO. 

For channel estimation, two algorithms are used least mean square and 

minimum mean square error and upgraded to be suitable with Massive 

MIMO and here we applied 4×4, 8×8, 16×16 and 32×32 antenna as will 

show in next chapter. At channel, detection two algorithms are used zero 

forcing and minimum mean square error, also modified to be suitable with 

Massive MIMO, also applied to different numbers of the antenna. 

In channel, estimation when the number of antennas increases the 

estimated channel will be very bad and the BER will higher for that we just 

assume the channel randomly depend on a number of antennas. 

While at channel detection the BER and latency is very high in both 

algorithms LS and MMSE when a huge number of the antenna are applied, 
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we preferred to use another algorithm for channel detection. In this thesis, 

four algorithms are used to detect and equalized the channel beginning by 

Gauss-Jordan Elimination, Gaussian Elimination, LU decomposition and RQ 

decomposition. 

Firstly, compare the delay happen for each algorithm and show the 

error for each one, after that we evaluate the effect of each algorithm on 

bandwidth and capacity, finally show the capacity when they have different 

modulation and coding rate depend on channel estimation. At this stage we 

use three combinations of adaptive modulation and coding AMC.  

3.2 Channel Estimation and Detection Algorithms 

In wireless communication, the signal will suffer from many 

phenomena such as different path losses, multipath, fading and so on. For 

that, we must carefully choose suitable channel estimation algorithms to 

equalize data correctly. 

Firstly we need to estimate the channel and then equalized the data 

depend on estimated channel and received signal, from this we understand 

that they need algorithms to perform channel estimation beyond doing 

channel detection. 

We will introduce two channel estimation algorithms and applied for 

simple and Massive MIMO, using both least square error (LS) and minimum 

mean square error (MMSE), while for channel detection zero forcing (ZF) 

and minimum mean square error (MMSE) used for simple and massive 

MIMO. 
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3.2.1 Channel Estimation 

In this section, we present two typical algorithms for channel 

estimation that are used in LTE uplink, and we describe modified algorithms 

based on these two algorithms for the LTE- A uplink in Appendix B.  

3.2.1.1 LS channel estimation 

  The simplest algorithm for channel estimation. LS is characterized by  

low complexity 

Where 𝐻𝑒𝑠𝑡 it is the estimated channel matrix of complex numbers, Χ 

is a frequency domain transmitted pilot signal   where Y is a frequency 

domain received pilot signal. Moreover, The LS channel estimation 

algorithm in the frequency domain. 

The LS algorithm estimates the Channel Impulse Response CIR based 

on the received and transmitted symbols. The algorithm ignores the noise; 

thus, the performance of the LS estimator is not good.  

3.2.1.2 MMSE channel estimation 

A better algorithm as it considers the effect of noise. This algorithm is 

widely used in practice. However, the major drawback of the MMSE 

algorithm is its high computational complexity 

𝐻𝑒𝑠𝑡 = 𝐻𝑀𝑀𝑆𝐸 = 𝑅ℎ,ℎ𝑝(𝑅ℎ𝑝,ℎ𝑝 + 𝜎𝑤
2𝐼)−1𝐻𝐿𝑆     3.2 

Where 𝑅ℎ𝑝,ℎ𝑝 it is the autocorrelation matrix of the channel at the pilot 

symbol positions; 𝑅ℎ,ℎ𝑝  is the cross-correlation matrix between the channel 

at the data symbol positions and the channel at the pilot symbol position and 

Ι is the identity matrix and 𝜎𝑤 variance for effected channel noise. 

𝐻𝑒𝑠𝑡 = 𝐻𝐿𝑆 = (𝑋𝐻𝑋)−1𝑋𝐻𝑌 = 𝑋−1𝑌    3.1 
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3.3 Channel Detection 

In MIMO detection, the detector calculates an estimated of the 

transmitted signal based on the received signal and the estimated channel 

matrix. After estimating and calculating the channel matrix, the system 

recovers the transmitted signal from the receiver signal as an output of the 

detector. In the following section, we described ZF and MMSE detection 

algorithms: 

3.3.1 ZF detection 

Is the simplest algorithm and has the lowest computational complexity. 

This detector begins by multiplying the received symbol vector by the 

channel matrix. 

𝑋𝑍𝐹 = (𝐻𝐻𝐻)−1𝐻𝐻𝑌     3.3 

A disadvantage of ZF detection is that it suffers from sudden noise 

enhancement; hence, the performance of ZF degrades without considering 

the noise. 

3.3.2 MMSE detection   

Addresses the issues of ZF and MMSE tries to minimize the mean 

square error the minimum mean square error equalization matrix it 

represented as follows: 

𝑋𝑀𝑀𝑆𝐸 = 𝐺𝑀𝑀𝑆𝐸 = (𝐻𝐻𝐻 + 𝜎𝑛
2/𝜎𝑛𝑥

2 𝐼)−1𝐻𝐻𝑌  3.4 

Where 𝜎 is the variance, 𝐻 is estimated matrix channel, 𝑌 is  received 

signal. In comparison with ZF detection, MMSE detection considers the 

noise variance and decreases noise enhancement, while the computational 

complexity of MMSE detection is greater than that of ZF detection. 
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3.4 Generate Channel Matrix from 8x8 to 256x256 

For both channel estimation and detection as it mentions Massive MIMO is 

applied when the number of Antenna 8, 16 and 32 as shown in  
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3.5 

Where A is the channel matrix usually M equal N represent the number 

of element, N =8, 16, 32… 256.     

In channel estimation, plotted estimated channel compared to ideal 

channel versus SNR based on LS and MMSE algorithms, for each number 

of antenna beginning from 2×2 until 16×16 to showing error happen in each 

one. Also in a channel, detection ZF and MMSE algorithms plotted BER 

happen from each algorithm versus SNR for each number of channel 

beginning from 2x2 until 16x16 and the error is very high for that if another 

algorithm used may give less delay.   

The main goal of this research is to introduce another detection 

algorithm to be applied. Four algorithms are applied as illustrated in next 

section 3.5 and now we compute the delay happen for each algorithm using 

MATLAB, after that the effect of delay on bandwidth and effect on channel 

capacity at different Modulation and coding is tested. 

MATLAB simulation used to compute delay happen for each 

algorithm using TIC TOC function in which compute the processing time 

delay for an instruction executed by algorithms. 
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3.5 Algorithms For Fifth Generation Kernel Algorithms 

Four algorithms are used in this thesis, in this section will define the 

four algorithms with flow charts beginning with Gauss-Jordan, Gaussian 

Elimination, LU decomposition and RQ Decomposition. 

3.5.1 Gauss Jordan Elimination Flow Chart 

 Figure 3-1 is the Gauss-Jordan Algorithm, at the beginning we have 

estimated channel and received signal, by applying equalization for both we 

extract transmitted signal as show in below figure, more detailed found in 

Appendix A and C. 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Flow Chart for Gauss Jordan Algorithm 
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Convert the Element below Major Diagonal to Zero 

 

Output Vector x 

End 

Convert the Element above Major Diagonal to Zero 

 

Convert the Element IN Major Diagonal to ones 
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3.5.2 Gaussian Elimination Flow Chart 

Figure 3-2 show the Gauss Elimination, also here we have estimated 

channel and received signal, by applying equalization for both to extract 

transmitted signal as shown in below figure, more detailed are found in 

Appendix A and C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Flow Chart for Gaussian Elimination 
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End 
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3.5.2.1 Pivoting and Forward Elimination 

Figure 3-3 show the forward elimination, how it will do in Gaussian 

elimination methods as the show they have three loops in this part, more 

detailed for mathematical at Appendix A, when source code at Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Forward Elimination in Gaussian Elimination Algorithm 

 

k= 1… n 

aij= aij-mik*akj 

bij= bij-mik*bkj 

 

mik = aik/aii 

J=k+1… n 

End 

Start 

i=1… n 
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3.5.2.2 Back Substitution 

Figure 3-4 show the back substitution, how it will do in Gaussian 

elimination methods as a show they have two loops in this part, more 

detailed for mathematical at Appendix A, when source code at Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: Forward Elimination in Gaussian Elimination Algorithm 

 

Start 

Xn=bn/ann 

i=n-1, n-2 … 1 

Sum=0 

j=i+1 … n 

Xi= (bi-sum)/aij 

Sum=Sum+aij*xj 

End 
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3.5.3 LU Decomposition Algorithm Flow Chart 

Figure 3-5 is flow chart for LU Decomposition, in which we estimated 

the channel and received signal, by applying equalization for both we extract-

transmitted signal more detailed for mathematical at Appendix A, when 

source code at Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Flow Chart for LU Decomposition 

Star 
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3.5.4 RQ Decomposition Algorithm Flow Chart 

Figure 3-6 illustrate the RQ Decomposition, to found estimated 

channel and received signal, after applying equalization for both we extract-

transmitted signal as shown in below figure, more detailed for mathematical 

at Appendix A, when source code at Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Flow Chart for RQ Decomposition 
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Get the element of the matrix in array a and b 
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Print the element of R and Q 

Find V by solving V*Q’=R 

Calculate element of R and Q 

Print array X as solution 

End 
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3.6 Processing Time for Algorithms 

In this section, the delay happen for each algorithm it computed by 

using TIC TOC function by using MATLAB Simulation as illustrated in 

Figure 3-7 and Appendix C as source code . 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7: Flow Chart of Processing Time for Each Algorithm 
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 The function TIC reset the timer, while TOC is beginning count after 

the reset. However, these functions used to evaluate the processing time 

happen in each algorithm for different number of antenna and the result it put 

in variable Elapsed Time. 

 The number of antenna with Elapsed Time it plotted as will showing 

in next chapter, to know the optimal algorithm. In addition, there are delay 

time adding from computer processor and MATLAB software it’s very small 

compared to delay caused by massive MIMO can be negligible.  

3.7 Delay and capacity 

The communication system is very sensitive to delay it reduce the 

bandwidth of whole system. In Equation (3.5) is the definition of bandwidth 

it is response of channel when data it applied in transmitter through 

communication system. When Equation (3.6,3.7) is the delay consider as 

vital problem that can face in our channel it will make the response very slow 

and going to decrease bandwidth in Equation (3.8)  , while reducing the band 

width also drive to decrease the capacity and throughput as in Equation (3.9, 

3.10): 

However, the bandwidth is represented as a response of system; at 

another way, the inverse of bandwidth give us the response of a system. In 

which the fading channel effect directly on the response of communication 

system beyond it go to minimize bandwidth.  

At fifth generation when Massive MIMO applied there are a huge 

number of antennas, these antennas cause large latency for channel 

estimation and detection, in this way it will effect on the response of a system 
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and decrease the bandwidth resulting in giving us lowest capacity and 

throughput. 

The latency includes channel delay, bit duration, and processing delay, 

this thesis focuses on processing delay for different algorithms to the 

comparison, measures their performance, analyzing to choose the lowest 

latency. 

For that, appropriate algorithms are c hosen in giving us lowest latency 

for channel detection trying to reduce the effect of algorithms on bandwidth, 

in order to give maximum capacity and throughput for dedicated bandwidth. 

The capacity and throughput determined depend on bandwidth (BW), 

modulation order (M) and code rate (C). Take in our consideration the effect 

of algorithms delay on bandwidth. . 

Capacity is the maximum data can carry through a channel. While 

throughput defined as valid received data from the transmitter, here 

calculated using a simple method by multiplying the capacity by BER to take 

out all invalid data and throughput represent the valid data, this evaluation 

shown in Appendix c. 
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Chapter Four 

Results and Discussion 

4.1 Introduction 

  MATLAB simulation used to simulate the algorithms and equation 

founded in previous chapter. This chapter has four sections; the first section 

is an introduction and shows the initial parameter used in this simulation table 

4-1 and table 4-2. While in the second section show the channel estimation 

and detection algorithms and their effect on massive MIMO. The third 

section applied four algorithms gauss Jordan elimination, Gaussian 

elimination, LU decomposition and RQ decomposition is shown the delay 

happen for each algorithm and BER in each one, finally, they show the effect 

of the algorithms delay on capacity and throughput for different modulation 

technique. 

Table 4-1: Simulation for 2x2 MIMO channel 

Parameters  Value(s) 

Bandwidth(MHz)  20 

IFFT/FFT size  2048 

OFDM CP Normal 

Channel  Rayleigh fading channel 

Channel estimation algorithms  LS, MMSE 

Number of resource blocks 10 

Number of RB per SC 12 

Number of base station antennas  2 

Number of UE antennas  2 
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These algorithms modified to be suitable with 4x4, 8x8 and 16x16 for 

both channel detection and estimation algorithms. 

 While table 4-2 represent the parameters that are used at the fifth 

generation for Massive MIMO kernel algorithms. 

Table 4-2: Parameter Used for Massive MIMO Simulation [36] 

Parameter Value 

Carrie Frequency 70GHz 

Channel Delay 13us 

Bandwidth 1GHz 

Sample Duration Delay 0.67ns 

 

4.2 Channel Estimation and Detection 

In this section, firstly show the channel estimation algorithm LS and 

MMSE for 2×2 MIMO by computing the error caused by estimated channel 

compared to an ideal channel, then show the BER caused by detection 

algorithms for both ZF and MMSE. 

Thirdly apply massive MIMO in both Channel estimation and 

detection algorithm beginning from 4×4, 8×8, 16×16 and show the error 

happen in channel estimation beyond the BER in channel detection.       

4.2.1 Channel Estimation for 2x2 MIMO 

AS can be seen, Figure 4-1 compare between LS and MMSE and 

found that MMSE has less BER than LS. Because MMSE based on the 

variance of the channel, while in another side LS it is not considered. 
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Figure 4-1: Channel Estimation for LS and MMSE 

4.2.2 Channel Detection for 2x2 MIMO 

For Detection, two algorithms are used ZF and MMSE for comparison 

as show in Figure 4-2 two algorithms compared for channel detection, plotted 

BER for each versus SNR, and founded that MMSE has less BER than ZF 

result from using variance for channel. 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: channel detection using ZF and MMSE Algorithms 
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4.2.3 Channel Estimation for Massive MIMO 

The Error is very higher when massive MIMO applied for these 

algorithms as shown in Figure 4-3 this part is not considering in this thesis. 

In addition, this mean fail in estimation channel 

 

 

 

 

 

 

Figure 4-3: Massive MIMO for channel estimation based on LS and MMSE 

4.2.4 Channel Detection for Massive MIMO 

Same algorithms are used at channel detection for Massive MIMO 

here we used 2×2, 4×4, 8×8 and 16×16 as shown in figure 4-4 found that 

the MMSE has less BER than ZF SNR values, 

 

 

 

 

 

 

Figure 4-4: Massive MIMO channel Detection algorithms based on ZF and MMSE 
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 They illustrated the other value of BER for massive MIMO and show 

the BER and found that the BER is very good when 2×2 is used but is higher 

BER when used massive MIMO. In figure 4-5 in 4×4 antenna found that 

when the SNR is less than 15dB the MMSE is better than ZF while after 15 

it fluctuated the BER. In 8×8 the MMSE is better when the SNR less than 

15dB but after that, the result is oscillated between them. Nevertheless, in 

16×16 in all situation the MMSE better than ZF.  

Finally, the BER is very high when these algorithms are applied and 

other algorithms suggested for massive MIMO for channel detection as will 

show in next section. 

 

 

 

 

 

 

Figure 4-5: BER for Massive MIMO versus SNR 

4.3 Processing Delay for Algorithms and BER 

In this section, calculate the delay caused by algorithms plotted versus 

a number of antennas and calculate the error happen for each algorithm as 

shown in figure 4-6. also, it shows the analysis of four algorithms, in which 

the best one is LU decomposition that distinction by delay Timeless than 1m 

second and after that RQ and the third one Gaussian Elimination while 

Gauss-Jordan elimination had the biggest delay compare to other algorithms. 
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Notice that the delay increase when a number of antenna increase. This 

distinguish coming for algorithm method and decomposition it’s very 

complex but minimize the loops and calculation happen in other algorithms 

While the percentage of enhancement illustrated in table 4-3. 

Figure 4-6: Processing delay for GE, GJE, LU and RQ in Massive MIMO 

 Here we compared the percentage of delay compared to Gauss-

Jordan Elimination for three other algorithms Gaussian Elimination, LU and 

RQ decomposition. These percentages mean the value of reducing delay in 

each algorithm compared by Gauss-Jordan Elimination algorithm, from table 

4-3 the LU had better performance than other algorithms secondly RQ and 

the last one is Gaussian Elimination. 

Table 4-3: Comparison between GJE and Other algorithms 

NO. Name of Algorithm Percentage compare to GJE (%) 

1 GE 49 

2 RQ 94 

3 LU 98 
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In figure 4-7 show the BER happen for each algorithm and show that 

the Gauss-Jordan Elimination have the biggest error than Gaussian 

Elimination but there are no error happen in LU and RQ or can be negligible. 

Also, show the BER happen in each algorithm while this figure illustrates the 

Gaussian Elimination had less BER than GJE and the best one is LU and then 

RQ it has delay less than GE the decomposition method reduce the BER 

happen in algorithms and the value of error percentage it’s very low 

compared to GE and GJE.  

 

 

 

 

 

 

 

Figure 4-7: BER for GE, GJE, RQ and LU decomposition 

 

 

4.4 Capacity and Throughput through AMC 

This section, mention the performance evaluation of these algorithms for 

capacity and throughput versus different modulations and coding rates. Here 

four combination of modulation and coding applied as shown in next 

sections. 
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4.4.1 BPSK Modulation and code rate 2/3 

Figure 4-8 show the capacity through different algorithms through 

BPSK and code rate 2/3 versus a various number of antennas. It shows that 

the LU algorithms had better capacity when the number of antenna increase 

and secondly is RQ had better capacity. While in GE and GJE the best 

capacity at 64 for this modulation and coding rate in each one, the delay is 

big to constrain in which it will effect on channel bandwidth beyond its effect 

in the capacity as illustrated in table 4-4. 

 

 

 

 

 

 

 

Figure 4-8: Capacity for Algorithms through using BPSK and CR=2/3 versus number of 

Antenna  

The Figure 4-9 show the throughput for algorithms at same modulation 

and coding rate the bit rate plotted versus a number of antennae. It shows that 

the LU algorithms had better throughput when the number of antenna 

increase and secondly is RQ had batter throughput. While in GE and GJE the 

best throughput at 64 for this modulation and coding rate technique. Delay is 

constrained in which it will effect on channel bandwidth beyond it effect at 

throughput as illustrated in table 4-4. 
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Figure 4-9: Throughput for Algorithms through using BPSK and CR=2/3 versus number 

of Antenna 

Table 4-4 compare between four Algorithms taken Gauss-Jordan 

Elimination as a reference in which found that the LU had the best 

performance and less delay while RQ better and last one it’s Gaussian 

Elimination, here we measured the performance of capacity and throughput. 

  

Table 4-4: Comparison between GJE and Other algorithms in terms of capacity and 

throughput (M=1 CR=2/3) 

 

 

NO. Algorithms Capacity(b/s) Throughput(b/s) Percentage (%) 

1 GJE 6.0101e+06 5.9981e+06 0 

2 GE 7.2087e+06   7.1943e+06 43.7756 

3 RQ 1.8173e+07 1.8136e+07 96.7278 

4 LU 2.8008e+07 2.7952e+07 98.9848 
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4.4.2 QAM Modulation and code rate 3/4 

Figure 4-10 show the capacity through different algorithms through 

QAM and code rate 3/4 versus a various number of antennas, also show that 

the LU algorithms had better capacity when the number of antenna increase 

and secondly is RQ had batter capacity when 128 than 256. While in GE and 

GJE the best capacity at 64 for this modulation and coding rate. Delay is 

constrained in which it will effect on channel bandwidth beyond it effect at 

capacity as illustrated in table 4-5. 

 

 

 

 

 

 

 

Figure 4-10: Capacity for Algorithms through using QAM and CR=3/4 versus number 

of Antenna 

The Figure 4-11 show the throughput for algorithms at same 

modulation and coding rate the bit rate plotted versus a number of antennae. 

While it shows that the LU algorithms had better throughput when the 

number of antenna increase and secondly is RQ had batter throughput when 

128 than 256. While in GE and GJE the best throughput at 64 for this 

modulation and coding rate technique. Delay is constrained in which it will 

effect on channel bandwidth beyond it effect at throughput as illustrated in 

table 4-5 and here it will take the average value for each algorithm. 
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Figure 4-11: Throughput for Algorithms through using QAM and CR=3/4 versus 

number of Antenna 

 

Table 4-5 compare between four Algorithms taken Gauss-Jordan 

Elimination as the reference in which found that the LU had the best 

performance and less delay while RQ better and last one it is Gaussian 

Elimination, here we measured the performance of capacity and throughput. 

Table 4-5: Comparison between GJE and Other algorithms in terms of capacity and 

throughput (M=2 CR=3/4) 

 

 

NO. Algorithm

s 

Capacity(b/s) Throughput(b/s) Percentage (%) 

1 GJE 1.3523e+07 1.3496e+07 0 

2 GE 1.6220e+07 1.6187e+07 43.7756 

3 RQ 4.0889e+07 4.0807e+07 96.7278 

4 LU 6.3019e+07 6.2893e+07 98.9848 
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4.4.3 16-QAM Modulation and code rate 5/6 

Figure 4-12 show the capacity through different algorithms through 

16-QAM and code rate 5/6 versus a various number of antennas. In addition, 

it shows that the LU algorithms had better capacity when the number of 

antenna increase and secondly RQ had better capacity at 128. While in GE 

and GJE the best capacity at 64 for this modulation and coding rate. Delay is 

constrained in which it will effect on channel bandwidth beyond it effect at 

capacity as illustrated in table 4-6. 

 

 

 

 

 

 

  

Figure 4-12: Capacity for Algorithms through using 16-QAM and CR=5/6 versus 

number of Antenna 

 The Figure 4-13 show the throughput for algorithms at same 

modulation and coding rate the bit rate plotted versus a number of antennae. 

Found that the LU algorithms had better throughput when the number of 

antenna increase and secondly has RQ had batter throughput at 128. While 

in GE and GJE the best throughput at 64 for this modulation and coding rate 

technique. Delay is constrained in which it will effect on channel bandwidth 

beyond it effect at throughput as illustrated in table 4-6, and here they take 

the average value for each algorithm for capacity and throughput and 

compared the percentage of enhancement to GJE.  
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 Figure 4-13: Throughput for Algorithms through using 16-QAM and CR=5/6 versus 

number of Antenna 

Table 4-6 compare between four Algorithms taken GJE as a reference 

in which found that the LU had the best performance and less delay while 

RQ better and last one it’s Gaussian Elimination, here we measured the 

performance of capacity and throughput. 

Table 4-6: Comparison between GJE and Other algorithms in terms of capacity and 

throughput (M=6 CR=7/8) 

 

 

 

`NO Algorithms Capacity(b/s) Throughput(b/s) Percentage (%) 

1 GJE 3.0050e+07 2.9990e+07 0 

2 GE 3.6044e+07 3.5971e+07 43.7756 

3 RQ 9.0864e+07 9.0682e+07 96.7278 

4 LU 1.4004e+08 1.3976e+08 98.9848 
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4.4.4 64-QAM Modulation and code rate 7/8 

Figure 4-14 show the capacity through different algorithms through 

64-QAM and code rate 7/8 versus a various number of antennas.  However, 

the LU algorithms had better capacity when the number of antenna increase 

and secondly is RQ had batter capacity at 128. While in GE and GJE the best 

capacity at 64 for this modulation and coding rate. Delay is constrained in 

which it will effect on channel bandwidth beyond it effect at capacity as 

illustrated in table 4-7.  

 

 

 

 

 

 

 

Figure 4-14: Capacity for Algorithms through using 64-QAM and CR=7/8 versus 

number of Antenna 

The Figure 4-15 show the throughput for algorithms at same 

modulation and coding rate the bit rate plotted versus a number of antennae. 

However, the LU algorithms had better throughput when the number of 

antenna increase and secondly has RQ had batter throughput at 128. While 

in GE and GJE the best throughput at 64 for this modulation and coding rate 

technique. Delay is constrained in which it will effect on channel bandwidth 

beyond it effect at throughput as illustrated in table 4-7. 
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Figure 4-15: Throughput for Algorithms through using 64-QAM and CR=7/8 versus 

number of Antenna 

Table 4-7 compare between four Algorithms taken Gauss-Jordan 

Elimination as a reference in which found that the LU had the best 

performance and less delay while RQ better and last one it’s Gaussian 

Elimination, here we measured the performance of capacity and throughput. 

Table 4-7: Comparison between GJE and Other algorithms in terms of capacity and 

throughput (M=6 CR=7/8) 

finally, for this section show that the capacity and throughput will 

increase when using a higher order of modulation and coding and the LU 

algorithm give higher capacity and throughput and after that RQ and then 

GJE and lastly have less capacity and throughput is GE and used as a 

reference in measuring delay. 

 

` Algorithms Capacity(b/s) Throughput(b/s) Percentage (%) 

1 GJE 4.7329e+07 4.7235e+07 0 

2 GE 5.6769e+07 5.6655e+07 45 

3 RQ 1.4311e+08 1.4282e+08 95 

4 LU 2.2057e+08 2.2013e+08 98 
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Chapter Five 

Conclusion and Recommendations 

5.1 Conclusion 

This thesis introduced a brief description of LTE physical layer. In 

addition, here we concentrate on channel detection and how to equalized 

channel. In another way, they use ZF and MMSE for massive MIMO but it 

will give high BER and latency for that four algorithms are suggested Gauss-

Jordan Elimination, Gaussian Elimination, RQ Decomposition and LU 

Decomposition. 

We modified the Mathematical Model of four algorithms and applied 

using MATLAB simulation for each algorithm. 

After applying these algorithms at MATLAB we found that the LU 

Decomposition had the lowest delay, the percentage about (98%) compared 

Gauss-Jordan Elimination algorithms while RQ had (95%) and Gaussian 

Elimination about (45%). While the best capacity for LU Decomposition 3 

25 Mbs, RQ Decomposition 216 Mbs, Gaussian Elimination 18 Mbs 

and Gauss-Jordan Elimination 0.7  6 Mbs and this depend on modulation 

and coding rate. LU Decomposition Algorithm has the best performance than 

another algorithm.         

5.2  Recommendations 

After finishing these research there are some other issues can be 

considering for future research these include: 

 Work at channel rather than AWGN channel such as Rayleigh fading 

channel for different communication environment to be realistic. 
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 Complexity analysis must do it in algorithms level not software level 

and can use mathematical complexity analysis such as (Big O 

Notation). 

 Work in channel estimation algorithms and how to enhance their 

performance to get low BER and latency. 

 Using other Algorithm like SDV in channel detection to get lowest 

BER and latency to be suitable with the biggest number of antenna 

element such as 2048, 4096. 

 Study Massive MIMO in Downlink rather than uplink and see its effect 

and performance on a channel. 
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Appendix A 

In this part is the mathematical representation for four scheme as shown: 

1-Gauss Elimination 

 

Ax = b 

 

A= [
𝑎11 ⋯ 𝑎1𝑗
⋮ ⋱ ⋮

𝑎𝑖1 ⋯ 𝑎𝑖𝑗
] ,       𝑥 = [

𝑥1
⋮
𝑥𝑖

] ,                  𝑏 = [
𝑏1
⋮
𝑏𝑖

]                

 

Where i=1,2,3, … n and j=1,2,3 … n 

 

By applying Gaussian Elimination: 

 

A=    ∑ ∑ ∑ 𝑎𝑖𝑗 − 𝑎𝑘𝑗 ∗
𝑎𝑖𝑘

𝑎𝑘𝑘

𝑛
𝑗=1

𝑛
𝑖=2

𝑛−1
𝑘=1    

 

A =

[
 
 
 
 𝑎11′ 𝑎12′ 𝑎13′
0       𝑎22′ 𝑎23′

⋯
𝑎(1 − 0)(𝑗 − 1)′ 𝑎(1 − 0)𝑗′|          𝑏1′

𝑎(2 − 0)(𝑗 − 1)′ 𝑎(2 − 0)𝑗′|          𝑏2′
⋮ ⋱ ⋮

0 0 0
0 0 0

⋯
𝑎(𝑖 − 1)(𝑗 − 2)′ 𝑎(𝑖 − 1)𝑗′| 𝑏𝑖 − 1′

0 𝑎(𝑖 − 0)𝑗′|        𝑏𝑖′ ]
 
 
 
 

       

 

After that doing back substitution 

 

𝑥𝑖 = 𝑏𝑖 − ∑ 𝑎𝑖𝑘′𝑛
𝑘=𝑖+1 𝑥𝑘             

 

 



 
 

2- Gauss-Jordan Elimination  

     Ax = b 

 

A= [
𝑎11 ⋯ 𝑎1𝑗
⋮ ⋱ ⋮

𝑎𝑖1 ⋯ 𝑎𝑖𝑗
] ,       𝑥 = [

𝑥1
⋮
𝑥𝑖

] ,                  𝑏 = [
𝑏1
⋮
𝑏𝑖

]                

 

Where i=1, 2, 3 … n and j=1, 2, 3 … n 

 

By applying Gaussian-Jordan: 

 

A=    ∑ ∑ ∑ 𝑎𝑖𝑗 − 𝑎𝑘𝑗 ∗
𝑎𝑖𝑘

𝑎𝑘𝑘

𝑛
𝑗=1

𝑛
𝑖=2

𝑛−1
𝑘=1    

 

A =

[
 
 
 
 𝑎11′ 𝑎12′ 𝑎13′
0       𝑎22′ 𝑎23′

⋯
𝑎(1 − 0)(𝑗 − 1)′ 𝑎(1 − 0)𝑗′|          𝑏1′

𝑎(2 − 0)(𝑗 − 1)′ 𝑎(2 − 0)𝑗′|          𝑏2′
⋮ ⋱ ⋮

0 0 0
0 0 0

⋯
𝑎(𝑖 − 1)(𝑗 − 2)′ 𝑎(𝑖 − 1)𝑗′| 𝑏𝑖 − 1′

0 𝑎(𝑖 − 0)𝑗′|        𝑏𝑖′ ]
 
 
 
 

       

Now the upper part of matrix equal zero also they need to make the lower 

zero as shown below 

A=    ∑ ∑ ∑ 𝑎𝑖𝑗 − 𝑎𝑘𝑗 ∗
𝑎𝑖𝑘

𝑎𝑘𝑘

2
𝑗=𝑛

2
𝑖=𝑛

1
𝑘=𝑛−1  

A =

[
 
 
 
 
𝑎11 0
0 𝑎22

⋯
0 | 𝑏1′

0 | 𝑏2′
⋮ ⋱ ⋮

0     0
0      0

⋯
0 | ⋮

𝑎𝑖𝑗 | 𝑏𝑖′]
 
 
 
 

  

After that divided each row by akk 

A=A/akk; 



 
 

A =

[
 
 
 
 

1 0
0 1

⋯
0 | 𝑏1′/𝑎11

0 | 𝑏2′/𝑎22
⋮ ⋱ ⋮

0     0
0      0

⋯
0 | ⋮

1 | 𝑏𝑖′/𝑎𝑖𝑖 ]
 
 
 
 

  

 

In which  

x=bi/aii; 

3- LU Decomposition 

𝐴 = [
𝑎11 ⋯ 𝑎1𝑗
⋮ ⋱ ⋮

𝑎𝑖1 ⋯ 𝑎𝑖𝑗
] , 𝐿 = [

𝑙11 0
𝑙21 𝑙22

⋯
0
0

⋮ ⋱ ⋮
𝑙𝑖1 𝑙𝑖2 ⋯ 𝑙𝑖𝑗

] ,

𝑈 = [

𝑢11 𝑢12
0 𝑢22

⋯
𝑢1𝑗
𝑢2𝑗

⋮ ⋱ ⋮
0      0 ⋯ 𝑢𝑖𝑗

] 

Note 

a11=l1*u11 

a12=l21*u12+l22*u22 

𝑎𝑖𝑗 = ∑ 𝑙𝑖𝑘 ∗ 𝑢𝑘𝑗𝑖
𝑘=1                      When i>j 

𝑎𝑖𝑗 = ∑ 𝑙𝑖𝑘 ∗ 𝑢𝑘𝑗
𝑗
𝑘=1                     When h<j 

A*x=b  L*u*x=b   L*y=b  U*x=y 

Solve by using  

1-Forward substitution  

𝒚𝒊 =
𝟏

𝒍𝒊𝒊
(𝒃𝒊 − ∑ 𝒍𝒊𝒋 ∗ 𝒚𝒋𝒊−𝟏

𝒋=𝟏 )  

2- Back Substitutions 

𝒙𝒊 =
𝟏

𝒖𝒊𝒊
(𝒚𝒊 − ∑ 𝒖𝒊𝒋 ∗ 𝒙𝒋𝒊−𝟏

𝒋=𝟏+𝟏 )  



 
 

4- RQ Decomposition 

 

𝑨 = [

𝑎11 𝑎12 𝑞13
𝑎21 𝑎22 𝑎23

⋯
𝑎1𝑗
⋮

⋮ ⋱ ⋮
𝑎𝑖1 𝑎𝑖2 𝑎𝑖3 ⋯ 𝑎𝑖𝑗

] = [𝐴1 𝐴2 𝐴3 … 𝐴𝑗]  

Where 

𝐴1 =

𝑎11
𝑎21
⋮

𝑎𝑖1

 ,         𝐴2 =

𝑎12
𝑎22
⋮

𝑎𝑖2

,        𝐴3 =

𝑎13
𝑎23
⋮

𝑎2𝑖

, … .        𝐴𝑗 =

𝑎1𝑗
𝑎2𝑗
⋮

𝑎𝑖𝑗

  

 

𝑅 = [

𝑟11 𝑟12
0 𝑟22

⋯
𝑟1𝑗
𝑟2𝑗

⋮ ⋱ ⋮
0       0 ⋯ 𝑟𝑖𝑗

]  

 

𝑟11 = ‖𝐴1‖ = √𝑎112 + 𝑎122 + ⋯+ 𝑎𝑖12  

 

𝑞1 =
1

‖𝐴1‖
 𝐴1 =

𝑎11/‖𝐴1‖

𝑎12/‖𝐴1‖
⋮

𝑎𝑖𝑗/‖𝐴1‖

  

 

𝑞2 =
𝑆2

‖𝑆2‖ 
 → 𝑞𝑛 =

𝑆𝑛

‖𝑆𝑛‖ 
  

𝑠2 = (1 − 𝑞1 ∗ 𝑞1′) ∗ 𝐴2  

𝑠𝑛 = (1 − 𝑞1 ∗ 𝑞1𝑇)(1 − 𝑞2 ∗ 𝑞2𝑇)(1 − 𝑞3 ∗ 𝑞3𝑇)… . . (1 − 𝑞(𝑛 − 1) ∗ 𝑞(𝑛 − 𝑞)𝑇 ∗ 𝐴𝑛  

𝑟22 = 𝑆2 →     𝑟𝑛𝑛 = 𝑠𝑛 →       𝑟𝑖𝑗 = 𝑞𝑖𝑇 ∗ 𝐴𝑗  

 



 
 

𝑸 = [𝒒𝟏 𝒒𝟐 … 𝒒𝒋],         𝑹 = [

𝒓𝟏𝟏 𝒓𝟏𝟐
𝟎 𝒓𝟏𝟏

⋯
𝒓𝟏𝒋
𝒓𝟐𝒋

⋮ ⋱ ⋮
  𝟎      𝟎     ⋯ 𝒓𝒊𝒋

]  

 

𝐴 = 𝑄 ∗ 𝑅 ,       𝑄 ∗ 𝑄𝑇 = 𝐼,     𝐴 ∗ 𝑋 = 𝐵  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix B 

Code for channel detection and estimation for Massive MIMO based on LS 

MMSE at estimation and ZF and MMSE at channel detection. 

Channel Detection 

clear all,clc 

 close all 

% N = 10^5; 

% Eb_N0_dB = [0:30]; 

% nTx = 8; 

% nRx = 8 

clour=['r' 'b' 'c' 'k' 'y' 'g' 'm' 'g']; 

clour(15)='y'; 

clour(16)='r'; 

line=['-' '-' '-' '-' '-' '-' '-' '-']; 

line(15)='-'; 

line(16)='-'; 

shape=['d' '+' '^' '*' ' ' ' ' 's' ' ']; 

shape(15)='o';  

shape(16)=' ';  

for txrx=[2 4 8 16] 

    N = 10^5; 

    Eb_N0_dB = [0:6:30];  

    nTx = txrx; 

    nRx = txrx; 

for ii = 1:length(Eb_N0_dB) 

ip = rand(1,N)>0.5; 

s = 2*ip-1; 

sMod = kron(s,ones(nRx,1)); 

sMod = reshape(sMod,[nRx,nTx,N/nTx]); 

h = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + j*randn(nRx,nTx,N/nTx)]; 

n = 1/sqrt(2)*[randn(nRx,N/nTx) + j*randn(nRx,N/nTx)]; 

y = squeeze(sum(h.*sMod,2)) + 10^(-Eb_N0_dB(ii)/20)*n; 



 
 

hCof = zeros(nRx,nTx,N/nTx) ; 

for ii1=1:nRx 

    for kk=1:nRx 

        if(kk~=ii1) 

            hCof(ii1,ii1,:) = hCof(ii1,ii1,:)+sum(h(:,kk,:).*conj(h(:,kk,:)),1); 

        end 

    end 

    hCof(ii1,ii1,:)=hCof(ii1,ii1,:)/(nRx-1); 

end  

% hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1); 

% hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1); 

for ii1=1:nRx 

    for kk=1:nRx 

        if(kk~=ii1) 

            lll=kk; 

            hCof(ii1,kk,:) = hCof(ii1,kk,:)+sum(h(:,ii1,:).*conj(h(:,kk,:)),1); 

        end 

    end 

    hCof(ii1,lll,:)=-hCof(ii1,lll,:)/(nRx-1); 

end 

% hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); 

% hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1);  

for ijk=1:N/nTx 

hDen( :,:,ijk) = abs(det(hCof(:,:,ijk)));%((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:))); 

end 

%hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:)));  

hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(nRx,nTx)),nRx,nTx,N/nTx); 

hInv = hCof./hDen; 

hDen=[]; 

hMod = reshape(conj(h),nRx,N); 

yMod = kron(y,ones(1,nRx)); 

yMod = sum(hMod.*yMod,1); 

yMod = kron(reshape(yMod,nRx,N/nTx),ones(1,nRx)); 

yHat = sum(reshape(hInv,nRx,N).*yMod,1); 



 
 

ipHat = real(yHat)>0; 

nErr(ii) = size(find([ip- ipHat]),2); 

end 

simBer = nErr/N; 

EbN0Lin = 10.^(Eb_N0_dB/10); 

theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); 

p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2); 

theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p)); 

%close all 

figure(1) 

semilogy(Eb_N0_dB,simBer,[line(txrx-1) clour(txrx-1) shape(txrx-1)],'linewidth',3);hold on 

for ii = 1:length(Eb_N0_dB) 

ip = rand(1,N)>0.5; 

s = 2*ip-1; 

sMod = kron(s,ones(nRx,1)); 

sMod = reshape(sMod,[nRx,nTx,N/nTx]); 

h = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + j*randn(nRx,nTx,N/nTx)]; 

n = 1/sqrt(2)*[randn(nRx,N/nTx) + j*randn(nRx,N/nTx)]; 

y = squeeze(sum(h.*sMod,2)) + 10^(-Eb_N0_dB(ii)/20)*n; 

hCof = zeros(nRx,nTx,N/nTx) ; 

for ii1=1:nRx 

    for kk=1:nRx 

        if(kk~=ii1) 

            hCof(ii1,ii1,:) = hCof(ii1,ii1,:)+sum(h(:,kk,:).*conj(h(:,kk,:)),1)+10^(-Eb_N0_dB(ii)/10); 

        end 

    end 

    hCof(ii1,ii1,:)=hCof(ii1,ii1,:)/(nRx-1); 

end 

% hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1); 

% hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1); 

for ii1=1:nRx 

    for kk=1:nRx 

        if(kk~=ii1) 

            lll=kk; 



 
 

            hCof(ii1,kk,:) = hCof(ii1,kk,:)+sum(h(:,ii1,:).*conj(h(:,kk,:)),1); 

        end 

    end 

    hCof(ii1,lll,:)=-hCof(ii1,lll,:)/(nRx-1); 

end 

% hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); 

% hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1);  

for ijk=1:N/nTx 

hDen( :,:,ijk) = abs(det(hCof(:,:,ijk)));%((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:))); 

end 

%hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:)));  

% hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1) + 10^(-Eb_N0_dB(ii)/10); 

% hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1) + 10^(-Eb_N0_dB(ii)/10); 

% hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); 

% hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); 

% hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:)));   

hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(nRx,nTx)),nRx,nTx,N/nTx); 

hInv = hCof./hDen; 

hDen=[]; 

hMod = reshape(conj(h),nRx,N); 

yMod = kron(y,ones(1,nTx)); 

yMod = sum(hMod.*yMod,1); 

yMod = kron(reshape(yMod,nRx,N/nTx),ones(1,nRx)); 

yHat = sum(reshape(hInv,nRx,N).*yMod,1); 

ipHat = real(yHat)>0; 

nErr(ii) = size(find([ip- ipHat]),2); 

end 

simBer = nErr/N; 

EbN0Lin = 10.^(Eb_N0_dB/10); 

theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); 

semilogy(Eb_N0_dB,simBer,[line(txrx) '-' clour(txrx) shape(txrx)],'linewidth',3); 

%axis([0 25 10^-5 0.5]) 

end 

grid on 



 
 

%hold off 

legend('ZF----> 2x 2', 'MMSE 2x 2','ZF----> 4x 4', 'MMSE 4x 4','ZF----> 8x 8', 'MMSE 8x 

8','ZF---->16x16', 'MMSE16x16'); 

xlabel('SNR(dB)'); 

ylabel('BER'); 

title(['The comparison of channel detection ZF and MMSE for MIMO ' num2str([2 4 8 ]) ' x ' 

num2str([ 2 4 8])]); 

 

 

Channel Estimation 

%close all 

%clf 

clear all 

clc 

numclour=1; 

c_est_count=1; 

for NOA=[ 1 2 4 8 16] 

TX_Num=NOA; 

RX_Num =NOA; 

M_RB_PUSCH=10; 

N_sc_RB=12; 

DFT_Size =M_RB_PUSCH*N_sc_RB; 

FFT_Size = 2048; 

CP_Size =160; 

TX_Num=TX_Num+1; 

RX_Num =RX_Num+1;  

n_cs=linspace(0,6,max(TX_Num,RX_Num)); 

alpha=2*pi*n_cs/12; 

sq2=sqrt(2); 

h_pdp=[1,0.5,0.25,0.125,0.0625]*sq2; 

L=length(h_pdp); 

F=zeros(DFT_Size,FFT_Size); 

for i=1:DFT_Size 



 
 

for j=1:FFT_Size 

F(i,j)=exp(-1j*2*pi*(i-1)*(j-1)/FFT_Size); 

end 

end 

L_TWD=floor(1.2*L); 

index=zeros(1,TX_Num*L_TWD); 

for n=1:TX_Num 

index((n-1)*L_TWD+1:n*L_TWD)=n_cs(n)*FFT_Size/12+(1:L_TWD); 

end 

SNR=[0:5:30]; 

Len_SNR=length(SNR); 

pilot = Gen_cazac_for_pilot(N_sc_RB,M_RB_PUSCH); 

tx_syms_map=zeros(TX_Num,FFT_Size); 

for n=1:TX_Num 

tx_syms_map(n,1:DFT_Size)=exp(1j*alpha(n)*[0:DFT_Size-1]).*pilot.'; 

end 

tx_syms=zeros(TX_Num,FFT_Size); 

for n=1:TX_Num 

tx_syms(n,:)=ifft(tx_syms_map(n,:),FFT_Size); 

end 

tx_syms_ACP=[tx_syms(:,FFT_Size-CP_Size+1:end) tx_syms];%add cyclic prefix 

MSE=zeros(2,Len_SNR); 

Num_syms=1000; 

for nsnr=1:Len_SNR 

for sym_dex=1:Num_syms 

h=zeros(RX_Num*TX_Num,L); 

H_ideal=zeros(RX_Num,TX_Num*DFT_Size); 

sig_fad=zeros(RX_Num,FFT_Size+CP_Size); 

for n=1:RX_Num 

for m=1:TX_Num 

temp=h_pdp.*[randn(1,L)+1j*randn(1,L)]/sq2; 

sig_fad(n,:)=sig_fad(n,:)+filter(temp,1,tx_syms_ACP(m,:)); 

h((n-1)*TX_Num+m,:)=temp; 

H=fft(temp,FFT_Size); 



 
 

H_ideal(n,(m-1)*DFT_Size+1:m*DFT_Size)=H(1:DFT_Size); 

end 

end 

sig_rx=zeros(RX_Num,FFT_Size+CP_Size); 

sigma=zeros(1,RX_Num); 

for n=1:RX_Num 

sig_rx(n,:)=awgn(sig_fad(n,:),SNR(nsnr),'measured'); 

sigma(n)=abs(norm(sig_rx(n,:))^2-norm(sig_fad(n,:))^2); 

end 

sig_rx_RCP=sig_rx(:,CP_Size+1:end); 

SigRxed_Fre=fft(sig_rx_RCP,FFT_Size,2); 

Y=SigRxed_Fre(:,1:DFT_Size); 

H_LS=zeros(RX_Num,DFT_Size); 

for m=1:RX_Num 

H_LS(m,1:DFT_Size)=Y(m,:).*conj(pilot.'); 

end 

for alg=1:2 

H_est=zeros(RX_Num,TX_Num*DFT_Size); 

for m=1:RX_Num 

if(alg==1) 

g=pinv(F(:,index))*H_LS(m,:).'; 

else    

g=inv(F(:,index)'*F(:,index)+sigma(m)*eye(TX_Num*L_TWD))*F(:,index)'*H_LS(m,:).'; 

end 

for n=1:TX_Num 

temp=g((n-1)*L_TWD+1:n*L_TWD).'; 

H=fft(temp,FFT_Size); 

H_est(m,(n-1)*DFT_Size+1:n*DFT_Size)=H(1:DFT_Size); 

end 

end 

MSE(alg,nsnr)=MSE(alg,nsnr)+sum(sum(abs(H_ideal- 

H_est).^2))/(RX_Num*TX_Num*DFT_Size); 

end 

end 



 
 

end 

MSE=MSE/Num_syms; 

clour=['r' 'b' 'k' 'm' 'c' 'g','y','k','b', 'k']; 

line= [' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '.' '.'] 

figure(1) 

for i=1:2 

semilogy(SNR,MSE(i,:),[line(numclour) clour(numclour)],'linewidth',3);hold on 

numclour=numclour+1; 

end 

if (NOA==2) 

channel_estimatio_est1= H_est; 

channel_estimatio_Idl1= H_ideal; 

elseif (NOA==4) 

channel_estimatio_est2= H_est; 

channel_estimatio_Idl2= H_ideal; 

elseif (NOA==8) 

channel_estimatio_est3= H_est; 

channel_estimatio_Idl3= H_ideal; 

elseif (NOA==16) 

channel_estimatio_est4= H_est; 

channel_estimatio_Idl4= H_ideal; 

end  

end 

%axis tight 

grid on 

xlabel('SNR(dB)') 

ylabel('Error = Estimated-Ideal') 

legend('LS    2x 2','MMSE  2x 2','LS    4x 4','MMSE  4x 4','LS    8x 8','MMSE  8x 8','LS   

16x16','MMSE 16x16','LS   32x32','MMSE 32x32') 

title('Channel estimation algorithms for  2x2 MIMO'); 

 

 



 
 

Appendix C 

Code for four algorithms a shown in chapter three, in addition to capacity 

and throughput 

clc,clear all,clf,close all 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%For Algorithms For Equalizing Channel 

%% 

Count_ALGORITHMS=1; 

%% 

%% 

for N_ALGORITM=[8 16 32 64 128 256] 

%% 

% 

Channel_Estimation; 

%% 

% 

Gaussian_Elimination; 

%% 

% 

GaussJordan; 

%% 

% 

simulate_rq; 

%% 

% 

LU_DECMP; 

end 

%% 

Plot_Output; 

%% 



 
 

Channel Estimation 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%Channel Estimation 

Matrix_ALGORITHMS=100*rand (N_ALGORITM, N_ALGORITM+1); 

%% 

%In this thesis the channel asuumed as random matrix% 

%it will change randomly as show avove   

Gaussian Elimination 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%Gaussian Elimination 

%% 

tic 

Received_EChannel_RSignal_GE=Matrix_ALGORITHMS; 

%% 

%Number of Row and Coulmns 

[m,n]=size(Matrix_ALGORITHMS); 

for j=1:m-1 

%% 

%Pivoting 

    for z=2:m 

        if Matrix_ALGORITHMS(j,j)==0 

            t=Matrix_ALGORITHMS(j,:); 

            Matrix_ALGORITHMS(j,:)=Matrix_ALGORITHMS(z,:); 

            Matrix_ALGORITHMS(z,:)=t; 

        end 

    end 

%% 

%Convert the Element Below Diagonal to Zero Forword Elimination 

    for i=j+1:m 



 
 

        Matrix_ALGORITHMS(i,:)=Matrix_ALGORITHMS(i,:)-

Matrix_ALGORITHMS(j,:)*(Matrix_ALGORITHMS(i,j)/Matrix_ALGORITHMS

(j,j)); 

    end 

end 

%% 

%Back Substituation 

x=zeros(1,m); 

for s=m:-1:1 

    c=0; 

    for k=2:m 

        c=c+Matrix_ALGORITHMS(s,k)*x(k); 

    end 

    x(s)=(Matrix_ALGORITHMS(s,n)-c)/Matrix_ALGORITHMS(s,s); 

end 

Elapsed_Time_GE(Count_ALGORITHMS)=toc; 

%% 

NOFA_GE(Count_ALGORITHMS)        =N_ALGORITM; 

Transmitted_Signal_GE   

=Received_EChannel_RSignal_GE(:,1:length(Matrix_ALGORITHMS)-

1)\Received_EChannel_RSignal_GE(:,end); 

Received_Signal_GE      =x'; 

Error_GE(Count_ALGORITHMS)      =sum(abs(Received_Signal_GE-

Transmitted_Signal_GE))/N_ALGORITM; 

%% 

Gauss Jordan Elimination 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%Gass-Jordan 

%% 

tic; 

Received_EChannel_RSignal_GJ=Matrix_ALGORITHMS; 

[m,n]=size(Matrix_ALGORITHMS); 



 
 

for j=1:m-1 

%% 

%Pivoting 

    for z=2:m 

        if Matrix_ALGORITHMS(j,j)==0 

            t=Matrix_ALGORITHMS(j,:); 

            Matrix_ALGORITHMS(j,:)=Matrix_ALGORITHMS(z,:); 

            Matrix_ALGORITHMS(z,:)=t; 

        end 

    end 

%% 

%Convert the Element below Major Diagonal to Zero 

    for i=j+1:m 

        Matrix_ALGORITHMS(i,:)=Matrix_ALGORITHMS(i,:)-

Matrix_ALGORITHMS(j,:)*(Matrix_ALGORITHMS(i,j)/Matrix_ALGORITHMS

(j,j)); 

    end 

end 

%% 

%Convert the Element Above Major Diagonal to Zero 

for j=m:-1:1 

    for i=j-1:-1:1 

        Matrix_ALGORITHMS(i,:)=Matrix_ALGORITHMS(i,:)-

Matrix_ALGORITHMS(j,:)*(Matrix_ALGORITHMS(i,j)/Matrix_ALGORITHMS

(j,j)); 

    end 

end 

%% 

%Convert the Element IN Major Diagonal to ones 

for s=1:m 

    

Matrix_ALGORITHMS(s,:)=Matrix_ALGORITHMS(s,:)/Matrix_ALGORITHMS(

s,s); 

    yy(s)=Matrix_ALGORITHMS(s,n); 

end 



 
 

Elapsed_Time_GJ(Count_ALGORITHMS)=toc; 

 NOFA_GJ(Count_ALGORITHMS)=N_ALGORITM; 

 Transmitted_Signal_GJ=Received_EChannel_RSignal_GJ(:,end); 

Received_Signal_GJ=Received_EChannel_RSignal_GJ(:,1:length(Matri

x_ALGORITHMS)-1)*yy'; 

 Error_GJ(Count_ALGORITHMS)=sum(abs(Received_Signal_GJ- 

Transmitted_Signal_GJ))/N_ALGORITM; 

%% 

RQ Decomposition 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%RQ Decompostion 

%% 

% 

tic 

Number_of_Antenna_RQ           =N_ALGORITM; 

Cannel_Estimated_Matrix_RQ    

=Matrix_ALGORITHMS(1:Number_of_Antenna_RQ,1:(end-1));%H 

Received_Matrix_RQ             

=Matrix_ALGORITHMS(1:Number_of_Antenna_RQ,end);%b 

[Q, R]                      =qr(Cannel_Estimated_Matrix_RQ);%Q R 

Transmited_Signal_RQ          =R\Q'*Received_Matrix_RQ;%x=R/Q'*b 

%% 

% 

Elapsed_Time_RQ(Count_ALGORITHMS)=toc; 

NOFA_RQ(Count_ALGORITHMS)=N_ALGORITM; 

Transmitted_Signal_RQ=Cannel_Estimated_Matrix_RQ*Transmited_Sign

al_RQ; 

 Received_Signal_RQ=Received_Matrix_RQ; 

Error_RQ(Count_ALGORITHMS)= sum(abs(Received_Signal_RQ-

Transmitted_Signal_RQ))/N_ALGORITM; 

%% 

 



 
 

LU Decompositions 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%LU Decompostion 

%% 

% 

tic 

Number_of_Antenna_LU           =N_ALGORITM; 

Channel_Estimated_Matrix_LU    = 

Matrix_ALGORITHMS(1:Number_of_Antenna_LU,1:(end-1)); 

Received_Matrix_LU             

=Matrix_ALGORITHMS(1:Number_of_Antenna_LU,end); 

[L, U]                      =lu(Channel_Estimated_Matrix_LU); 

Y                           =L\Received_Matrix_LU; 

Transmitted_Signal_LU          =U\Y; 

%% 

%channel_estimated_matrix*Transmitted_Signal 

%Received_matrix 

Elapsed_Time_LU(Count_ALGORITHMS)=toc; 

NOFA_LU(Count_ALGORITHMS)=N_ALGORITM; 

Received_Signal_LU=Channel_Estimated_Matrix_LU*Transmitted_Signa

l_LU; 

Transmitted_Signals_LU=Received_Matrix_LU; 

Error_LU(Count_ALGORITHMS)= sum(abs(Transmitted_Signals_LU-

Received_Signal_LU))/N_ALGORITM; 

Count_ALGORITHMS                =Count_ALGORITHMS+1; 

%% 

 

 

 

 

 

 



 
 

Capacity, through put and plotting 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%Plot the Result 

%% 

%Plot Elapsed Delay in Each Algorithms 

figure(6) 

semilogy(NOFA_GJ,Elapsed_Time_GJ,'-bs','linewidth',3, 

'MarkerSize',10,'MarkerEdgeColor','m','MarkerFaceColor','k');hol

d on 

semilogy(NOFA_GE,Elapsed_Time_GE,'-

rd','linewidth',3,'MarkerSize',10,'MarkerEdgeColor','c','MarkerF

aceColor','y'); 

semilogy(NOFA_RQ,Elapsed_Time_RQ,'ko--

','linewidth',3,'markersize',10,'MarkerEdgeColor','m','MarkerFac

eColor','g'); 

semilogy(NOFA_LU,Elapsed_Time_LU,'m^--

','linewidth',3,'markersize',10,'MarkerEdgeColor','k','MarkerFac

eColor','r'); 

xlabel('Number of Antennas'); 

ylabel('Elapsed Time'); 

title('Algoritms for calcultating delay of Variable Numbers of 

antennas'); 

legend('GJ','GE','RQ','LU') 

grid; 

axis tight 

hold off 

%% 

%Plot Error in Each Algorithms 

figure(2) 

semilogy(NOFA_GJ,Error_GJ,'-Bs','linewidth',2);hold on 

semilogy(NOFA_GE,Error_GE,'-rs','linewidth',2) 

semilogy(NOFA_RQ,Error_RQ,'-kd','linewidth',2) 



 
 

semilogy(NOFA_LU,Error_LU,'-m^','linewidth',2) 

xlabel('Number of Element[Antenna]'); 

ylabel('ERROR'); 

title('Error in Each Algorithms'); 

legend('GE','GJ','RQ','LU') 

grid 

axis tight 

hold off 

sum(Elapsed_Time_GJ); 

sum(Elapsed_Time_GE); 

sum(Elapsed_Time_LU); 

sum(Elapsed_Time_RQ); 

PER_GE=(sum(Elapsed_Time_GJ)-

sum(Elapsed_Time_GE))/sum(Elapsed_Time_GJ)*100 

PER_LU=(sum(Elapsed_Time_GJ)-

sum(Elapsed_Time_LU))/sum(Elapsed_Time_GJ)*100 

PER_RQ=(sum(Elapsed_Time_GJ)-

sum(Elapsed_Time_RQ))/sum(Elapsed_Time_GJ)*100 

%% 

 

 

 

 

 

 

 

 

 

 

 


