ACKNOWLEDGMENTS

The completion of the dissertation would not have been completed without the help and support from many people. Special thank to my advisor Dr. Awad El Karim Mustafa, for detailed guide on technical writing and dissertation organization, encouragement, tolerance and professional guide.
I would also like to thank my friend for his generous suggestion and encouragement Dr Kamal Massoud and Dr Sami A/ Alla
Finally, I would like to thank my wife for every think, really proud to have each of you for everything you have done to help me to complete my degree.
Abstract:

The thesis is concerned with Pavement Maintenance Management System of road for the Khartoum State Paved Network.

In this study a street classification system is assessed, comprehensive road inventory, Pavement Visual Condition Survey for the Pavement distresses types’ severity, density and prevent an each road were determined.

The study is also includes a complete pavement condition survey and assessment of (30km) from the paved street, the study ranks the project according to its pavement condition index (PCI) to set initial priorities based on “the worst first” concept.

It also includes carrying of dynamic cone penetration (DCP) on selected representative sample units from some section of the roads and a correlation between CBR(DCP) and CBR laboratory was found to be 0.62 and also The DCP data were analyzed by the transport road laboratory (TRL) U.K software version 3.1.

The Non destructive equipment includes the skid resistance device was carried out. Correlated with PCI and also level of service is carried out for paved road was found that only one street has level of service A, and four of them has level of service B and the rest six street are having level of service C, which will need more access and grade separation for the junctions and to some extent some maintenance is needed for some of them.

the study shows that about 17% of the road pavement one in fair condition, 33% of roads are in satisfactory condition, 25% are very good, 25% excellent and the average PCI of all the road was found to be 57%.
المستخلص:

عنى هذا البحث بموضوع نظام إدارة صيانة الرصف. وطبق على جزء مقدر من شبكة طرق ولاية الخرطوم. (مدينة الخرطوم)

تم في هذا البحث تسمية وترقيم جزء من طرق مدينة الخرطوم، اشتمل على مسح شامل لعيوب الطرق المسفلتة حيث حددت درجة عيوبها ومساحتها ونسبة شدتها وكثافتها بكل طريق.

وقد شملت دراسة المسح البصري حوالي 30 كلم من الطرق المسفلتة بولاية الخرطوم وربت الطرق حسب حالتها في جدول أوليات مبنية بناءاً على مبدأ الأسوأ (المنهار) أولاً، كما احتوت على إجراء لعدد من اختبارات المخروط الديناميكى (DCP) على وحدات مسح معينة من الطرق وحللت النتائج باستخدام برنامج حاسوب صادر من معهد بحوث الطرق والنقل البريطاني (TRRL) وحللت نتائج نسبة تحميل كلفورنيا المخروط الديناميكى مع نسبة تحميل كلفورنيا العملية وحدد درجة الإرتباط وإيجاداً اجري ساختبار لا تلافي (مقاومة الانزلاق) وحدد درجة الارتباط مع دليل حالة الطريق (PCI).

كما استخدم برنامج حاسوب صادر من معهد بحوث الطرق ونقل البريطاني (TRRL) وتم تحديد مستوى الخدمة للطرق (HCS +).

وقد خلصت الدراسة أن هناك طريقين حالتهما مقبولة وأيضاً بعضهم حالتهم جيدة، 17% مقبولة، 33% جيد، 25% جيد جداً، 25% ممتاز ومتوسط حالة ومتوسط مؤشر حالة الرصف للطرق كان 57%.
Table of Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>I</td>
</tr>
<tr>
<td>Abstract (English)</td>
<td>II</td>
</tr>
<tr>
<td>Abstract (Arabic)</td>
<td>III</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>IV</td>
</tr>
<tr>
<td>List of Tables</td>
<td>V</td>
</tr>
<tr>
<td>List of Figure</td>
<td>VI</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>VII</td>
</tr>
<tr>
<td>Appendices</td>
<td>VIII</td>
</tr>
</tbody>
</table>

Chapter One: Introduction

1.1 Objectives | 3 |
1.2 Scope of works | 3 |
1.3 Methodology | 3 |
1.4 Study outcomes | 3 |
1.5 Outlines | 4 |

Chapter Two: Pavement Management Overview:

2.1 introduction | 6 |
2.2 importance of pavements | 6 |
2.3 importance of pavement Management | 7 |
2.4 Pavement Management Level | 9 |
2.4.1 Network level purposes | 10 |
2.4.2 Project level purposes | 10 |
2.5 Differences between Network and project Management Levels | 11 |
2.5.1 Inventory | 12 |
2.5.2 condition Assessment | 14 |
2.6 Determine the impact of funding Decision | 20 |
2.7 Description of project level Elements | 21 |
2.8 New Design | 22 |
2.9 Developing Maintenance, rehabilitation and reconstruction | 24 |
2.9.1 Thickness Design | 26 |
2.9.2 Selecting the best strategy | 27 |
2.10 project selection level | 29 |
2.10.1 Interfacing Network and project level Elements | 29 |
2.10.2 Relationships of Data | 30 |
2.10.3 Decision support | 31 |
2.11 Real world factors not considered at network level | 31 |
2.12 Developing contract or construction packages | 32 |
2.13 Feedback from project level to network level | 33 |
2.14 Feedback from network level to project level | 33 |
2.15 The move to infrastructure Management | 34 |
2.15.1 Location | 36 |
2.15.2 Definitions | 37 |
2.15.3 Data collection | 37 |
2.15.4 Conflict analysis | 39 |
2.15.5 Needs analysis | 39 |
2.15.6 Fund allocation | 39 |
2.16 The Move to Pavement Preservation | 42 |
2.17 Organizational impacts | 43 |
2.18 Past management and decision making practices 44
2.18.1 Planning horizon 44
2.18.2 Fixed facilities and process 44
2.18.3 Resources 44
2.18.4 Completion of funding Needs 46
2.18.5 Structure 46
2.19 Benefits of pavement management 47
2.20 Policy of framework 48
2.20.1 Components of the policy 48
2.20.1.1 Mission statement 49
2.20.1.2 objective 49
2.20.1.3Statement and intervention 50

Chapter Three: Pavement Condition Survey Methodology 54
3.1 Asphalt Institute Pavement condition and rate procedure 54
3.1.1 Interpreting the condition Rating 55
3.2 Pavement condition Evaluation. ASTM Method 59
3.2.1 General 59
3.2.2 Approach 61
3.2.3 Road Identification System 61
3.2.3.1 Methodology of Road identify system 62
3.2.4 Definition of terms 63
3.2.5 Tools 65
3.2.6 Type of Distresses on a asphalt pavement 65
3.2.6.1 Ride Quality 66
3.2.6.2 Alligator Cracking (Fatigue) 67
3.2.6.3 Bleeding 68
3.2.6.4 Block cracking 68
3.2.6.5 upheaval & settlement 68
3.2.6.6 Corrugation 69
3.2.6.7 Depression 69
3.2.6.8 Edge Grading 69
3.2.6.9 lane /shoulder Drop-off 69
3.2.6.10 Longitudinal & transverse 70
3.2.6.11 Patching 70
3.2.6.12 Polishing 70
3.2.6.13 Pot holes 71
3.2.6.14 Railway crossing 71
3.2.6.15 Raveling 72
3.2.6.16 Reflection coracles 72
3.2.6.17 Rutting 72
3.2.6.18 Shoving 72
3.2.6.19 Slippage Cracking 73
3.2.6.20 Swell 73
3.2.7 Distress Management 73
3.2.8 Distress identification & Rating procedures 73
3.2.8.1 Sampling and sample units 73
3.2.8.2 Inspection Procedure 76
3.2.8.3 Calculation of PCI 77
3.2.8.4 Determination of section PCI 79
3.2.9 Results of visual condition survey 81
Chapter Four: Functional and Structural Evaluation

4.1 Dynamic core Penetration
4.1.1 DCP test Procedure
4.1.2 Terminology
4.1.3 Developing correlations between DCP Readings & CBR values
4.1.4 Manual DCP operation
4.1.5 Automatic DCP operation
4.1.6 practical use of DCP
4.1.7 Evaluation of pavement
 4.1.7.1 introduction
 4.1.7.2 road include in study
 4.1.7.3 Visual classification
 4.1.7.4 DCP test
 4.1.7.5 Laboratory soaked of CBR

4.2 Pit test Procedure
 4.2.1 Purpose
 4.2.2 Labor. equipment and Materials
 4.2.3 Sampling and testing
 4.2.4 Procedure

4.3 Non-Destructive Deflection Testing
 4.3.1- Asphalt pavement
 4.3.2- Concrete pavement
 4.3.3 Pavement Deflection Measurement Devices
 4.3.3.1 Impulse Deflection devices
 4.3.3.2 Dynatest Fwd
 4.3.3.3 Kuba Fwd
 4.3.3.4 Dynaflect Equipment
 4.3.3.5 Benkelman Beam
 4.3.4 Factors Affecting Deflection Values
 4.3.4.1 Pavement Structure
 4.3.4.2 Load Magnitude:
 4.3.4.3 Load Distribution
 4.3.4.4 Pavement Temperature
 4.3.4.5 Falling Weight Deflactometer
 4.3.5 Test Procedure
 4.3.6 Temperature measurement
 4.3.7 Ground Penetrating Radar
 4.3.8 Interpretation of Results
 4.4 Roughness Measurement
 4.4.1 Machine for evaluating Roughness
 4.4.2 Methods for Measuring Roughness
 4.4.3 Bump integrator
 4.4.4 MERLIN Apparatus
 4.4.5 International Roughness Index (IRI)
 4.4.6 Riding number
 4.5 Pavement Skid resistance Management
 4.5.1 introduction
 4.5.2 Factors influencing skid resistance
4.5.3 Micro texture and Macro texture
4.5.4 Measurement of frictional resistance
4.5.5 Locked Wheel Tester
4.5.5.1 Fixed Slip Devices
4.5.6 International Friction Index
4.5.7 Skid resistance Policy
4.6 Level of service
4.6.1 Freeways

Chapter Five: How to Implement A Pavement Management System
5.1 General
5.2 Barriers to Adoption and Use
5.2.1 Institutional Issues
5.2.2 Issues People and Barriers
5.2.3 Turf Protection.
5.2.4 Fear of Exposure
5.2.5 Resistance to Change
5.3 Organizational Issues and Barriers
5.4 Past Management and Decision Making Practice
5.4.1 Structure
5.4.2 Constrain on Selecting Projects for Funding
5.5 Fixed Facilities and Process
5.5.1 Resources
5.5.2 Competing Fund Needs
5.5.3 Stability
5.6 System Design, Development, or Selection
5.6.1 Matched to Agency Needs
5.6.2 Methods To Overcome Institutional Problems
5.6.3 Communication
5.6.4 Support and Training
5.6.5 Implementation Concepts
5.7 Deciding That Pavement Management is Needed in the Organization
5.7.1 First Knowledge
5.7.2 Attitude Formation
5.7.3 Decision to Pursue Implementation and Adoption
5.7.4 Develop Alliances
5.7.5 Getting Pavement Management on the Agenda
5.8 Phase 2-Obtaining a Corporate Decision
5.8.1 Agency Persuasion
5.8.2 Agencies Decision
5.8.3 Form a Steering Committee
5.8.4 Gain Commitment for Funding
5.8.5 Form an Implementation Group
5.8.6 Organizational Analysis
5.8.7 Select and Design System
5.8.8 Modify Selected Pavement Management Process
5.8.9 Prepare Staged Implementation Plan
5.8.10 Implement Through Trial Operation
5.8.11 Document Results
5.9 Final Agency Decision
5.9.1 Revise the Goals
5.9.2 Revise the Implementation Plan
5.10 Implementation for Entire Network
5.10.1 Complete Required Revisions
5.10.2 Complete the Revised Implementation
5.10.2.1 Collect Data
5.10.2.2 Store Data
5.10.2.3 Train Staff
5.11 Effective Pavement Management Operations
5.11.1 Matching Output to Management Styles and Needs
5.11.2 Placement in the Organization
5.11.3 Training on a Continuing Basis
5.11.4 Assistance

Chapter Six: Type of Maintenance
6.1 Preventive Maintenance
6.2 Corrective maintenance treatment
6.2.1 Cracking seal
6.2.2 Thin HMA Overlay
6.2.3 Chip Sealing
6.2.4 Fog seal
6.2.5 Slurry seal
6.3 Design of asphalt overlay
6.3.1 Correcting Surface Deficiencies in asphalt Pavements
6.3.2 Permeability and Rarely
6.3.3 Roughness
6.3.4 Distorted cross-section
6.3.5 Sloppy surface
6.3.6 Surface type section
6.3.7 Correcting structural deficiencies
6.4 Asphalt overlay Design approach
6.4.1 Limitation
6.4.2 Structural Deficiency approach
6.4.3 Deflection Based Approach
6.4.4 Mechanism Empirical Approach
6.4.5 Construction
6.5 Asphalt Patching
6.5.1 concurrent work
6.5.2 Materials
6.5.3 design
6.5.4 construction
6.5.5 Performance
Chapter SEVEN: Conclusion and Recommendation

7.1 Conclusions 218
7.2 Recommendations 219
 References 221
List of Table

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Road Name and ID Number</td>
<td>64</td>
</tr>
<tr>
<td>3.2</td>
<td>No of unit in section and sample inspected</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Condition Survey Data Sheet</td>
<td>82</td>
</tr>
<tr>
<td>3.4</td>
<td>Distress Severity and Method of Measurement</td>
<td>83</td>
</tr>
<tr>
<td>3.5</td>
<td>Example (1)</td>
<td>90</td>
</tr>
<tr>
<td>3.6</td>
<td>Example (2) Calculation</td>
<td>91</td>
</tr>
<tr>
<td>3.7</td>
<td>Follow Example (1) Calculation</td>
<td>92</td>
</tr>
<tr>
<td>3.8</td>
<td>Follow Example (2) Calculation</td>
<td>93</td>
</tr>
<tr>
<td>3.9</td>
<td>PCI Result for Road Section</td>
<td>94</td>
</tr>
<tr>
<td>3.10</td>
<td>Distress Percentages Compared to total surface area of All Surveyed Street</td>
<td>95</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary of Trail Pits Laboratory testing for different roads in Khartoum</td>
<td>109</td>
</tr>
<tr>
<td>4.8</td>
<td>Atypical Printout of Data Analysis by TRRL DCP Computer Programmer</td>
<td>113</td>
</tr>
<tr>
<td>4.9</td>
<td>Street and chain age CBR% and DCP (CBR)</td>
<td>116</td>
</tr>
<tr>
<td>4.10</td>
<td>Correlation between CBR (DCP) and laboratory CBR</td>
<td>117</td>
</tr>
<tr>
<td>4.11</td>
<td>PCI and skid resistance for roads</td>
<td>140</td>
</tr>
<tr>
<td>4.12</td>
<td>The specific LOS thresholds for a freeway facility are shown below in Table</td>
<td>143</td>
</tr>
<tr>
<td>4.13</td>
<td>Traffic account for Khartoum centre roads (ADT)</td>
<td>144</td>
</tr>
<tr>
<td>4.14</td>
<td>Level of service for the street of Khartoum urban center.</td>
<td>146</td>
</tr>
<tr>
<td>6.1</td>
<td>Advantages and disadvantages of crack sealing</td>
<td>190</td>
</tr>
<tr>
<td>6.2</td>
<td>treatment Crack Life as Reported By Various Sources</td>
<td>191</td>
</tr>
<tr>
<td>6.3</td>
<td>Crack Seal Costs per lane Mile</td>
<td>191</td>
</tr>
<tr>
<td>6.4</td>
<td>Advantage and disadvantage of Thin HMA overlay</td>
<td>192</td>
</tr>
<tr>
<td>6.5</td>
<td>Thin HMA Overlay Treatment Life as reported by Various Sources</td>
<td>192</td>
</tr>
<tr>
<td>6.6</td>
<td>Advantages and disadvantages of chip sealing</td>
<td>193</td>
</tr>
<tr>
<td>6.7</td>
<td>Single Chip Seal Treatment Life as Reported by Various Sources</td>
<td>194</td>
</tr>
<tr>
<td>6.8</td>
<td>Double Chip Seal Treatment Life as Reported by Various</td>
<td>195</td>
</tr>
<tr>
<td>6.9</td>
<td>Advantages and Disadvantages of Fog Seal</td>
<td>195</td>
</tr>
<tr>
<td>6.10</td>
<td>Fog Seal Treatment Life As Reported By Various Source</td>
<td>196</td>
</tr>
<tr>
<td>6.11</td>
<td>Slurry Seal Treatment life as Reported by various source</td>
<td>196</td>
</tr>
<tr>
<td>6.12</td>
<td>Type of Maintenance for Pavement Distres</td>
<td>216</td>
</tr>
<tr>
<td>6.13</td>
<td>Summary of Expected Lives and costs for Preventive Maintenance Treatments</td>
<td>217</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Description</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Effect of treatment timing on repair cost</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Projected condition with and without treatment</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Trigger value example</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Projected performance with projected preventive maintenance</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Load distribution</td>
<td>23</td>
</tr>
<tr>
<td>2.6 Policy framework</td>
<td>52</td>
</tr>
<tr>
<td>2.7 Mission</td>
<td>53</td>
</tr>
<tr>
<td>3.1 Inspection Form, Asphalt Institute</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Condition Rating as Maintenance Indicator, Asphalt Institute</td>
<td>57</td>
</tr>
<tr>
<td>3.3 Map of Khartoum State</td>
<td>63</td>
</tr>
<tr>
<td>3.4 Pavement Condition Index (PCI) and Rating</td>
<td>75</td>
</tr>
<tr>
<td>3.5 Distress percent compared to the total area of all surveyed sheet</td>
<td>96</td>
</tr>
<tr>
<td>3.6 The average pavement condition index (PCI) value</td>
<td>97</td>
</tr>
<tr>
<td>3.7 Percent of surveyed length of all roads</td>
<td>99</td>
</tr>
<tr>
<td>4.1 Dynamic Cone Penetrometer</td>
<td>111</td>
</tr>
<tr>
<td>4.2 CORRELATION BETWEEN CBR (DCP) AND LABORATORY CBR</td>
<td>117</td>
</tr>
<tr>
<td>4.3 Operation of the MERLIN</td>
<td>131</td>
</tr>
<tr>
<td>4.4 IRI roughness scale (replotted from sayers et al., 1986)</td>
<td>133</td>
</tr>
<tr>
<td>4.5 Individual present serviceability rating</td>
<td>134</td>
</tr>
<tr>
<td>4.6 Pavement condition index and skid resistant relationship</td>
<td>140</td>
</tr>
<tr>
<td>4.7 Skid resistance Tester</td>
<td>141</td>
</tr>
<tr>
<td>4.8 Speed Flow Curves and LOS for Basic Freeway Segments (HCM Exhibit 23-2)</td>
<td>143</td>
</tr>
<tr>
<td>6.1 Standard deficiency concrete</td>
<td>203</td>
</tr>
<tr>
<td>6.2 Critical stress location considered in Washington state dot overlay design producer</td>
<td>207</td>
</tr>
<tr>
<td>6.3 Washington state Dot overlay design procedure flowchart</td>
<td>208</td>
</tr>
<tr>
<td>6.4 Removal of material prior to asphalt patching</td>
<td>214</td>
</tr>
<tr>
<td>6.5 Vibratory compaction of asphalt patch.</td>
<td>215</td>
</tr>
</tbody>
</table>
Abbreviations and symbol

PMMS Pavement maintenance management system
PMS Pavement management system
NDT Non-destructive test
DCP Dynamic cone pentrometer
PCI Pavement condition index
LOS Level of services
SN Skid number
HCS Highway capacity software
CAN Aircraft classification number
PCN Pavement classification number
MR Maintenance rating
AASHTO American Association of State Highway and Transportation Officials
OECD Organization for economic co-operation and development
NHS National highway system
US United state
FWD Falling weight deflactometer
KN Kilo Newton
GPR Ground penetrating radar
GNP Gross natural product
IRI International roughness index
PSI Present serviceability index
RCI Road condition index
FHWA Federal Highway Administration
SHRP Strategic highway research program
PCC Portland cement concrete
CPR Concrete pavement restoration
ERL
HMA Hot mix asphalt
BMS Bridge management
CMS Congestion management
IMMS Intermeddle management
SMS Safety management
TMS Transportation management system
MMS Maintenance management system
HPMS Highway performance monitoring system
ISTEA Intermeddle service transportation efficiency act
GIS Geographical information system
RS Rapid setting
SS Slow setting
ASTM American soil testing material
R Road
ID Identification number
AC Asphalt concrete
M Medium severity
L Low severity
H High severity
DV Deduct value
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDV</td>
<td>Correct deduct value</td>
</tr>
<tr>
<td>TDV</td>
<td>Total deduct value</td>
</tr>
<tr>
<td>PR</td>
<td>Penetration rate</td>
</tr>
<tr>
<td>DSN</td>
<td>Number of blows required</td>
</tr>
<tr>
<td>CBR</td>
<td>California bearing ratio</td>
</tr>
<tr>
<td>ARRB</td>
<td>Australian road research board</td>
</tr>
<tr>
<td>TRRL</td>
<td>Transportation research road laboratory</td>
</tr>
<tr>
<td>RN</td>
<td>Ride number</td>
</tr>
<tr>
<td>PI</td>
<td>Profile index</td>
</tr>
<tr>
<td>IRRE</td>
<td>International road roughness experiment</td>
</tr>
<tr>
<td>MERLIN</td>
<td>Machine for Evaluating Roughness using Low cost Instrumentation</td>
</tr>
<tr>
<td>SDP</td>
<td>Service dynamic profilometer</td>
</tr>
<tr>
<td>RTRRM</td>
<td>Response type road roughness meters</td>
</tr>
<tr>
<td>KN</td>
<td>Kilo Newton</td>
</tr>
<tr>
<td>KG</td>
<td>Kilo Gram</td>
</tr>
<tr>
<td>PR</td>
<td>Penetration Rate</td>
</tr>
<tr>
<td>LL</td>
<td>Liquid Limit</td>
</tr>
<tr>
<td>PL</td>
<td>Plastic limit</td>
</tr>
<tr>
<td>PI</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>MDD</td>
<td>Maximum dry density</td>
</tr>
<tr>
<td>OMC</td>
<td>Optimum moisture content</td>
</tr>
</tbody>
</table>