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Chapter I 

 

1.1. General Introduction of Elementary Particles 

1.1.1. What is Matter Made of?  

Matter at the subatomic level consists of tiny particles, with vast empty spaces in between. 

Even more remarkable, these tiny particles come in a small number of different types 

(electrons, protons, neutrons, pi mesons, neutrinos, and so on). Particles that make up matter 

called atoms. 

1.1.2. How do we Produce Elementary Particles? 

Electrons and protons are no problem to produce; these are the stable constituents of ordinary 

matter. To produce electrons we simply heats up a piece of metal, and they come boiling off. 

If we  want a beam of electrons, we then set up a positively charged plate nearby, to attract 

them over, and cuts a small hole in it; the electrons that make it through the hole constitute 

the beam. To obtain protons we ionize hydrogen (in other words, strip off the electron). In 

fact, if  we’re using the protons as a target, we don’t even need to bother about the electrons; 

they’re so light that an energetic particle coming in will knock them out of the way. Thus, a 

tank of hydrogen is basically a tank of protons. For more exotic particles there are three main 

sources:  

Cosmic Rays:  The earth has been constantly bombarded with high-energetic particles 

(mainly protons) coming from outer space. What is the source of these particles might be 

remains as something of mystery; at any rate, when they hit atoms in the upper atmosphere 

they produce showers of secondary particles (mostly muons, by the time they reach ground 

level), which rain down on us all the time. As a source of elementary particles, cosmic rays 

have two advantages: they are free, and their energies can be enormous-far greater than we 

could possibly produce in the laboratory. But they have two major disadvantages: The rate at 

which they strike any detector of reasonable size is very low, and they are completely 

uncontrollable. So cosmic ray experiments need patience and luck (J.donoghue, 1994).  

Nuclear Reactors:  When a radioactive nucleus disintegrates, it may emit a variety of 

particles-neutrons, neutrinos, what is used to be called alpha rays (actually, alpha particles, 

which are bound states of two neutrons plus two protons), beta rays (actually, electrons or 

positrons), and gamma rays (actually, higher energetic photons).  
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Particle Accelerators:  We start with electrons or protons, accelerate them to high energy, 

and smash them into a target. By skillful arrangements of absorbers and magnets, we can 

separate out of the resulting debris the particle species we wish to study. Nowadays it is 

possible in this way to generate intense secondary beams of positrons, muons, pions, kaons, 

and antiprotons, which in turn can be fired at another target. The stable particles-electrons, 

protons, positrons, and antiprotons-can even by fed into giant storage rings in which they 

would be guided by powerful magnets, and circulate at high speed for hours at a time, to be 

extracted and used at the required moment, In general, the heavier of the particle we want to 

produce, the higher must be the energy of the collision. That's why, historically, lightweight 

particles tend to be discovered first, and as time goes on, and accelerators become more 

powerful, heavier and heavier particles are found, at present, the heaviest known particle is 

the Z, with nearly 100 times the mass of the proton. It turns out that the particle gains 

enormously energy if we collide two high-speed particles head-on, as opposed to firing one 

particle at a stationary target; there is another reason why particle physicists are always 

pushing towards higher energies. In general, the higher the energy of the collision, the closer 

the two particles come to one another. So if we want to study the interaction at very short 

range, we need very energetic particles (A.D.Martin, 1984). 

1.1.3. How do we detect Elementary Particle?  

There are many kinds of particle detectors-Geiger counters, cloud chambers, bubble 

chambers, spark chambers, photographic emulsions, Cerenkov counters, scintillates and 

photomultipliers. Actually, a typical modern detector has whole arrays of these devices, 

wired up to a computer that tracks the particles and displays their trajectories on a television 

screen, Most detection mechanisms rely on the fact that when high-energy charged particles 

pass through matter they ionize atoms along their path. The ions then act as “seeds” in the 

formation of droplets (cloud chamber) or bubbles (bubble chamber) or sparks (spark 

chamber), depending on of the detector the case. But electrically neutral particles do not 

cause ionization, and they leave no tracks (Veltman, 2003). 

1.1.4. Particles Accelerator and High Energy Physics: 

The study of particles physics began with the discovery of electron in 1897 by J.J.Thomson. 

Around 1930 and above, new particles were detected using Cosmic Rays as a source of 

energy, since it was the only high energy source known by then, starting with the discovery 

of the positron in 1931, and the muon in 1937 (A.D.Martin, 1984).  
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The Construction of High Energy Accelerators was improved, providing intense beams of 

known energy that lead us to discover the quark substructure of matter. One reason for why 

high energies became so important came from quantum mechanics, Which describes particles 

as waves, whose wavelength is established by the DE Broglie’s Expression  
 

 
 where p the 

beam momentum, and h the Planck's constant, which means that beams with higher 

momentums have shorter wavelengths, bringing higher resolutions, providing nicer detail in 

the structure of fundamental particles. To reach very high collision energies, many of the 

current accelerators are colliders in which two  particles beams are accelerated in opposite 

directions for collision them , doing this almost all the particle energy can be employed for 

production of new particles, being able to obtain high collision energies to study the structure 

of matter . The Energy needed for particles discovery is increasing more and more with time. 

Some examples for this type of colliders are Tevatron at Fermi-lab, or the LHC at CERN. 

Since 1939, the accelerators development has grown so much that the energy has improved 

from the        from the original cyclotron of 13cm of diameter to the        from the 

LHC of 27 km of diameter (al, 2012). 

 

1.2. Problem of the Study: There have been many proposed Unified Theories, but we need 

data to pick which, if any, of these theories describes nature.  In many grand unified theory 

the gauge couplings constants (which define the electromagnetic, weak and strong 

interactions or forces, are combined into one single force.) are predicted to meet at some high 

energy unification scale. In the standard model the gauge couplings do not meet at single 

point. However, the unification works very well in Supersymmetry theory but at high scale 

approximately        , such a high energy scale is beyond the reach of any present or future 

experiments. Extra dimensions offer power law running, that brings down the unification 

scale to an explorable range. 

There are several versions of extra dimension models, the simplest being the case of one flat 

extra dimension compactified on an        orbifold which has a size 1/R ≈ 1 TeV. This 

compactification will lead to a new particle states in the effective 4-dimensional (4D) theory. 

As such, in the 4D effective theory there appears an infinite tower of massive Kaluza-Klein 

(KK) states, with a mass contribution inversely proportional to the radius of the extra-

dimension (N.~Maru, 2010). 
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1.3. Objectives:  

There are many different ways to build a model with an extra dimensional space-time, the 

easiest one is the universal extra dimension (UED) model in which case all particles (bulk 

case) or some (brane case) do propagate in higher dimension space time. So we will study the 

unification of gauge coupling constants in various scenarios.  

1.4. Outline of the thesis: 

The outline of the thesis is as follow: 

We introduce in Chapter I general introduction of particle physics. Chapter II will 

discuss the theory of the standard model, supersymmetry and extra dimension models. 

In Chapter III, we will apply the technique of renormalization group equations to the 

evolution of gauge couplings for different fields localization. Chapter IV devoted to our 

numerical results, discussions and conclusions. 
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Chapter II 

The Standard model and Beyond 

2.1.   Introduction  

In this Chapter will present the Standard Model of elementary particle physics and discuss of 

its related issues. In addition to that, we also present alternative solution (beyond the standard 

model, supersymmetry and extra dimension models) to address some of these issues.  

2.2. What is the Standard Model? 

The Standard Model (SM) of particle physics is believed to be a remarkably successful theory 

describing elementary particles and their interactions. Its predictions have been tested well 

experimentally to a high level of accuracy, such as the structures of the neutral and charged 

currents, which agree with experiment. The standard model asserts that the material in the 

universe is made up of elementary fermions interacting through fields; the particles 

associated with the interacting fields are called bosons (mediator) (A.J.G.hey, 1993).  

The assignments of elementary particles in the standard model are as follows  

  Quarks ( 
 
)                   ( 

 
)                       ( 

 
)                                      

   Leptons (  
 
)               (  

 
)                  (  

 
)                                       

Gauge bosons ,

       

                    
       

                                    

Higgs boson{                                                                        

Quarks and leptons are fundamental building blocks of matter; all of them are fermions and 

have spin(
 

 
), They are classified as left-handed isospin doublets and right-handed isospin 

singlet's and will be described by the Dirac equation. Quarks interact through the 

electromagnetic (if they are charged quarks) and weak interaction and also through the strong 

interaction (quark comes with colors) (A.D.Martin, 1984).  
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 Leptons interact only through the electromagnetic interaction (if they are charged) and the 

weak interaction. 

Gauge bosons having spin (1) are mediators of interactions between quarks or leptons; there 

is a massless boson, the photon  , and three massive ones, the      and the Z      . 

Electromagnetic, weak and strong interactions are mediated by photons  , weak bosons W±, 

Z ° and gluons g, respectively.  

Interaction strength depends on which gauge bosons propagate between quarks or leptons. 

The scalar Higgs boson has spin( 0) is introduced for the Higgs mechanism to give mass to 

elementary particles, which is operative in the theories with spontaneous symmetry breaking 

of  local gauge symmetries(Guigg, 1983). 
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Table 1.1: The SM fields with their representations under       and       and their 

Charges under       and       Q is the electric charge and sis the spin of the field. 
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2.3. Symmetries and Particle Content in Standard Model: 

The Standard Model is a successful example of a minimal model based on the local gauge 

group (Salam, 1968). 

The gauge group for the standard model is 

                                                                                             

Where  

-The SU (3) gauge group or color group is the symmetry group of strong interactions. This 

group acts on the quarks which are the elementary constituents of matter and the interaction 

force is mediated by the gluons which are the gauge bosons of the group. The quarks and the 

gluons are colored fields. The corresponding coupling is denoted by α, The SU (3) color 

symmetry is exact and consequently the gluons are massless. 

-  The theory of strong interactions based on color SU (3) is called Quantum Chromo 

dynamics (QCD). 

- The              is the gauge group of the unified weak and electromagnetic 

interactions. Where        is the weak isospin group, acting on left-handed fermions, 

and        is the hypercharge group(Salam, 1968). 

 -The SU (2) group has three gauge bosons are denoted by   
    

     
 . None of these 

gauge bosons (and neither    photon) are physical particles, linear combinations of these 

gauge bosons will make up the photon as well as the W± and the Z boson, as matter content 

for the first family, we have 

          (  
  
)                       (  

  
)                                           

The explicit values for the hypercharges of the particles above are as follows  

                                      
 

 
         

 

 
         

 

 
 

Under       the lepton fields are           singlets, i.e. they do not transform at all. This 

Means that they do not couple to the gluons. The quarks on the other hand form triplets 

Under SU (3). The strong interaction does not distinguish between left- and right-handed 

Particles. 

However, since we ultimately want massive weak gauge bosons, we will have to break 

            gauge group spontaneously, by introducing some type of Higgs 

scalar(P.~W.~Higgs, 1964). 
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2.4. The Higgs Mechanism: 

As was presented in the previous section, a Dirac mass term will violate the Gauge 

symmetry. As such we need a mechanism that gives mass to the SM Particles and keeps the 

Lagrangian invariant under gauge symmetries (P.~W.~Higgs, 1964). This can be done 

through the mechanism of spontaneous gauge symmetry breaking also known as the Higgs 

mechanism. This mechanism adds a new complex scalar field which is a doublet under the 

       group, a singlet with respect to SU(3) and has hypercharge   = 1, and 

  (
  

  
)      (

       

       
)                                                                      

Where   ,    ,   and   are real scalars. This new scalar   adds extra terms 

To the SM Lagrangian: 

        (   )
 
                                                                            

Where the covariant derivative    is defined as  

        
  

 
     

  

 
  

                                                                   

The general gauge invariant renormalizable potential involving   is given by 

  

      
 

 
      

 

 
                                                                     

Equation (2.10) describes the Higgs potential, which involves two new real parameters   and 

 . We demand     for the potential to be bounded, otherwise the potential is unbounded 

from below and there will be no stable vacuum state.    takes the following two values: 

•      then the vacuum corresponds to    , the potential has a minimum at the origin 

(See Fig (2.1)). 

•      Then the potential develops a non-zero Vacuum Expectation Value (VEV) and the 

minimum is along a circle of radius  
 

√ 
 

   

√ 
 (See Fig (2.2)). Minimizing the potential we get 

       
    

    
    

   
  

 
                                                              

As such, we need to choose one of these minima as the ground state (         ,      

and      ) (A.J.G.hey, 1993). Thus the vacuum does not have the original symmetry of the 

Lagrangian, and therefore spontaneously breaks the symmetry. In other words, the 

Lagrangian is still invariant under the            , while the ground state is not. 
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 We choose the VEV in the neutral direction as the photon is neutral, so    becomes  

                〈 〉  
 

√ 
(
 

 
)                                                                         

With this particular choice of the ground state, the electroweak gauge group             

is broken to electromagnetism,       , 

                         
 
→                                                   

 

 

Figure (2.1): The Higgs potential      with, the case       as function of       √    

 

 

Figure (2.2): The Higgs potential      with, the case       as function of       √    
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2.5.    The Lagrangian of the Standard Model: 

The Standard Model Lagrangian can be split into six parts the gauge sector  , the 

Fermions sector  , the Higgs sector  , the Yukawa sector  , the Gauge,fixing sector 

               and the Ghost sector        (A.J.G.hey, 1993) 

                                                                      

2.5.1. Gauge Sector 

The gauge sector is composed of 12 gauge fields which mediate the interactions 

among the fermions fields 

                    
 

 
   

    
  

 

 
       

 

 
   
    

                                      

 

Where    ,   
 and     

 is the field strength of the associated gauge fields given by: 

 

            
      

      
     

     
 
  

                                               

 

                                                                                                       

   

           
       

      
     

     
   

                                                  

 

The tensors     and     are the SU(2) and SU(3) structure constants,    and   are the weak-

isospin and the strong coupling, respectively (L.F.Li, 1991). 

 

2.5.2. Fermions Sector 

The gauge interaction of fermions can be derived from the covariant derivative, once the 

various charges of the fields are known. The peculiarity of the SM is that the left-handed part 

of fermions has a different coupling compared to the right-handed one. For instance, only 

left-handed fields couple to W bosons (Falcone, 2002). 

                             ∑   ̅   
                                                               

 

Where   is the electron field, with the sum running over the left- and right-handed field 

components of the leptons and quarks.  
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Depending on the fermions species, the covariant derivative takes the form  
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Here   are the usual Dirac matrices,    is the coupling strength of the hypercharge 

interaction, W is the hypercharge,    are the generators of SU     (simply the Pauli 

matrices), and   are the generators of SU    (the Gell-Mann matrices) (A.J.G.hey, 1993) 

2.5.3. Higgs Sector 

The Higgs-gauge boson interactions generated by the covariant derivative 

 

    (   )
 
                                                     

Where 

          
            

                                                   

This scalar particle has been discovered by the ATLAS (al, 2012) and CMS (al, 2012) 

experiments, which is compatible with the SM. Higgs expectations with a mass 126 GeV. 

 

2.5.4. Yukawa sector 

From symmetry considerations we are free to add gauge-invariant interactions between the 

Scalar fields and the fermions, these are called the Yukawa terms in the Lagrangian and they 

are responsible of generating fermions masses and the mixing between different 

families(Falcone, 2002). 
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2.5.5. Gauge Fixing and Ghosts 

Gauge fixing is necessary when the gauge fields are quantized. Quantization means to 

develop a path integral formalism for the gauge theory. The path integral is diverging as one 

integrate over an infinite set of gauge-equivalent configuration, here the gauge fixing is used 

to pick up one arbitrary representative, therefore, giving meaning to the path integral. On 

other hands, the gauge invariance we look for in gauge theory, a naive path integral approach 

would spoil it. The solution is given by what is called the Faddev-Popov procedure, where 

they introduced an identity expression consisting of a functional integral over a gauge fixing 

condition times a functional determinant over anticommuting fields in the path integral. The 

latter gives rise to what is known as ghost fields, which keep the gauge freedom within the 

theory, but are not physical particles (because ghost violate the spin-statistics 

relation)(L.F.Li, 1991). As such, we need to add terms in the Lagrangian like 

                                
 

 
    

                                                         

                          ̅ 
   

                                                                          

 

2.6.   Problems with the Standard Model: 

Although the Standard Model of particle physics is very successful, with no confirmed 

accelerator data that contradict it, there are many theoretical reasons to consider it 

unsatisfactory and to expect some physics beyond the Standard Model(Majee, March, 2008). 

2.6.1. Dark Matter: 

The SM does not have any dark matter candidates, as opposed to observational cosmology. 

2.6.2. Gauge Hierarchy problem: 

The symmetry  lack of  protecting the Higgs mass and the large hierarchy between the weak 

scale and the Planck scale makes it difficult to explain light Higgs mass within the 

SM. This is known as the gauge hierarchy problem which is basically a naturalness issue 

withThe SM. On the other hand, the other parameter of this theory, namely the   coupling λ 

is natural. This is so because, in the limit λ→ 0, we have a free scalar theory, which indeed 

has higher symmetry (L.F.Li, 1991). 

2.6.3. Gravity is not included: 

Though the unification of the electromagnetic and weak interactions was achieved in the SM 

and the strong interaction appears to be part of the unification, the SM does not include the 

effects of gravity. Note that the effects of gravity become important at energies of the order 
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of the Planck scale,         GeV. The SM is treated as an effective theory at a natural 

cut-off scale. The ultimate goal in particle physics is to unify all the fundamental forces in 

nature (Weinberg, 1996). 

2.7. Beyond the Standard Model: 

Most of the Beyond the Standard Model (BSM) physics have been constructed to solve the 

gauge hierarchy problem (Majee, March, 2008). The models that have been discussed in the 

literature may be categorized as follows: 

2.7.1. Super Symmetry (SUSY): 

Super symmetry (SUSY) is a space-time symmetry which relates the bosonic degrees of 

freedom to the fermionic degrees of freedom. The beautiful idea of supersymmetry helps to 

solve the gauge hierarchy problem, the one loop radiative correction for the Higgs mass due 

to scalar particles in the loop. In a supersymmetric the transformation changes a boson to a 

fermion and vice versa. Thus, if Qis the generator of this transformation then 

       〉           〉             〉        〉 

Therefore in Super symmetry there is” a superpartner” for each elementary particle: 

selectron, smuon,stau,squarks, photino, higgsino, etc see table 1.2.  

Supersymmetry offer the unification of gauge couplings at single point           see 

figure (2.3). Henceforth,Supersymmetry has been studied intensively as a direct possible 

extension to the SM which we refer to as the Minimum Supersymmetry (MSSM). 

For more details or further explanation on supersymmetry we refer the interested reader to 

Ref.(J. Louis, 1998) and references therein.  
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Table 1.2: Supersymmetric partners with the Standard Model members 

Nature  spin 0 spin ½                       
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Figure (2.3) Unification of inverse fine structure constants in 4D MSSM, the unification takes  

place at            

 

2.7.2.    Extra Dimensions: 

In the SM the hierarchy problem is arising due to the huge ratio of the Planck scale,    , or 

the General unification theory( GUT) scale,   , to the electroweak scale. As discussed in the 

previous section, SUSY provides a natural way to solve this hierarchy problem (Majee, 

March, 2008). In that case, the supersymmetric particles are situated around the TeV scale. 

Actually to solve the hierarchy problem if we incorporate any new physics it should appear 

around that scale to address the huge ratio. More recently, a new kind of physics, Extra 

Dimension (ED), was introduced in particle physics. One might ask a question how do we 

distinguish supersymmetry particles from extra dimension particles? Practically we can 

distinguish a fermion from a bosonic particle by measuring the spin of the particle at the 

Large Hadron Collider (LHC) or the International Linear Collider (ILC), and then we can 

have a distinct signature of the physics of extra dimension from that of 

supersymmetry(Majee, March, 2008). 

Historically, Extra dimension was first introduced by Kaluza and Klein in 1920, to unify the 

electromagnetic interaction with the gravitational one by generating the photon from the extra 

components of the five-dimensional metric (T.~Kaluza, 1921). Nowadays in a more popular 
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and fundamental theory, namely, string theory, it is common to use more than one space 

dimension, as the theory is consistent only in the extra-dimensional scenario. There are many 

open questions about the extra dimension, e.g, what would be nature of the extra dimension, 

what is the size of it and many more. A huge number of phenomenological studies have been 

pursued in this subject in this decade (H.~-U.~Yee, 2003). Let us have a closer look on some 

of these. 

 

2.7.2.1. Scalar Particle in ED: 

In addition to the four space-time coordinates x= (x, t), let us denote the extra space-type 

coordinate y, compactified on a circle of radius R. Thus, the Lagrangian of a free complex 

Scalar       with mass m will be a function of both x and y coordinates with a condition 

that the field at y = 2πR will match with that at y = 0, i.e. it has a periodicity of 2πRalong the 

y direction. So one can expand it in a Fourier series as: 
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The five dimensional Lagrangian is given by  

        ∫   {   
               

    }                                

With M= 0, 1,2,3,5 

The equation of motion can be obtained by varying the above integral: 

   
                                                                                                   

Where the n-the KK mode mass is given by: 

  
     

  

  
                                                                                                    

Integrating the equation (2.31) and comparing with the effective 4D dimensional lagrangian 

we get 
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Now the covariant derivatives read 
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2.7.2.2. Gauge Fields and Gauge Fixing: 

The Lagrangian for an Abelian gauge field and gauge fixing is given by  
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Where   is the gauge fixing parameter and              . The gauge 

fixing term eliminates the mixing between   and the extra polarization   . 

In the Feynman-’t Hooft gauge   , the equations of motion for   can be obtained: 

 

                                         
    

                                                                                  

Assigning even parity to the field   
  and its Fourier expansion is  
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Similarly the effective gauge field lagrangian in 4D is given by 
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2.7.2.3. Fermion Particle in ED 
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The Lagrangian for fermion is given by the Dirac lagrangian: 

          ̅                                                                              

                                  

Fermions are assigned to 5D representations of this group        to yield: 
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then the effective 4D dimension is  
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  Chapter III 

Renormalization Group Equations 

3.1. Introduction 

This chapter we will discuss the Renormalization Group Equations (RGEs) in which that will 

be used in our numerical calculations and results. 

3.2. Renormalization Group Equations: 

The renormalization group, in quantum field theory (QFT), tells us how different couplings 

evolve with energy (Collins, 1984). 

3.2.1. What is renormalization? 

In Quantum Field Theory (QFT), Green function is a most important thing to be calculated. 

In perturbative QFT these quantities are divergent. The systematic way to remove these 

divergences is known as renormalization. The renormalization theory is implemented to 

remove all the divergences in loop integrals from the physical measurable quantities. These 

loop diagrams are supposed to give finite results to the physical quantities but they give 

infinities instead. This tells us that our theory has missed some information. One might ask a 

question where these infinities are come from. These infinities arise from the integration over 

all momentum. In other words, the infinities occur because we let our theory go to arbitrary 

high energy (UV). There are different ways to cancel these infinities. In order to renormalize 

the theory we need a reference point which is also arbitrary, different choices of this 

reference point lead to different sets of parameters for the theory, but physics should not 

depend on the arbitrary choice of the reference point and be invariant. This invariance leads 

to the renormalization group equation. In quantum field theory it is a useful method to 

examine the behavior of physics at a different scale knowing the same at some other scale. 

Thus, measuring the observables in a low energy experiment one can compare with the 

values predicted from a theory at a higher scale, e.gat the GUT scale and certify about the 

correctness of the theory. In the standard model, variations of the gauge coupling constants 

with energy are given by the following renormalization group equations (RGEs) (Collins, 

1984). 
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Where   stands for                            and the right-hand-side is known as the   

Function of the corresponding coupling constants. 

In the above equations the co-efficient    can be calculated for any      group as 

   [
  

 
      

 

 
       

 

 
     ]                              

Where:  

 In the above equation   is the number of fermions and   is the number of higgs scalar and 

       . For the representation the      ,            refer to the gauge boson,fermions, 

and higgs scalar contribution respectively(A.~Abdalgabar, 2013).  

  

3.3. Calculation of  eta Function for the Gauge Couplings Constant in the SM: 

Equation (3.2) can be calculated from the Feynman diagrams presented in figure (3.1). We do 

not calculate here all the diagrams (only their results will be given). We give a detail 

calculation for one diagram figure (3.1 b). 

 

 

Figure (3.1) The one-loop gauge field self correction diagrams in the Standard model 
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    +                           (3.3) 

We will calculate the contribution of figure (3.1.b) in details: 

                          ∫
   

     
  (       

   ̸ 

  
) (       

 ( ̸  ̸)

      
)(3.4) 

We have 

                              ,            ̸                                             (3.5) 

Then equation (3.4) becomes  

                 
    ∫

   

     
                      

        
                 (3.6) 

From Trace Approach  we have   

                                                            (3.7) 

Using the above equation the numerator simplified to  

                    (         )                                       (3.8) 

                                                 

                   

                                                        (3.9) 

So    

                               
    ∫

   

     
        

        
                                 (3.10) 

To calculate the above integral we using Feynman integral parameterization  

                               
 

  
 ∫

 

           
  

 

 
                                                   (3.11) 

 

Now Let  

                                                                                               (3.12)  
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Insert equation (3.12) in equation (3.11) we obtain   
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                                                       (3.13)  

Inserting equation (3.13) in equation (3.10) yield 

          
       

    

     
∫   ∫   

 

 

        

               
                         (3.14) 

Introduce new variable q 

                                                                                 (3.15) 

The numerator of equation (3.14) becomes 

                        (          ) 

                            (          ) 

                                            

                                                               (3.16) 

And the denominator in equation (3.14) becomes  

                                                                                          (3.17) 

Plugging equation (3.16) and (3.17) in equation (3.14) yield 
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∫   ∫
   

     
           

              

 

 

 ∫   ∫
   

     

 

 

       (          )
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              )

  
 

   (3.18) 

This equation can be written as  

                    
                                  (3.19) 

Using the following standard integrals 
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We get  
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From the beta function   

       ∫               
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                                                                                          (3.25) 

From equations (3.24) and (3.25) equation (3.23) becomes 
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Similarly     becomes  
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And  
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From equations (3.26) and (3.28) we can see that 
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Therefore, 
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Now calculation of the coefficients   is as follow   

For the strong interaction (  ):       : We have  

         ,                   ,                           (3.39) 

Thus  

                                
  

 
     

 

 
                                            (3.40) 

For the weak interaction (  ):       : We have  

           
 

 
 ,                   ,                           (3.41) 

Therefore,  
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For the electromagnetism interaction (  ):      : 
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Then  
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   +                                                    (3.45) 

 

3.4 Beta Function for Gauge Coupling Constant in ED 

We assume all the standard model particles can access the full space-time (bulk scenario).So 

all the fields have Kaluza-Klein (KK) expansions. The zero-mode will be identified as the 

standard model fields and the rest will be the excited KK states and will contribute at 

energy    . 

The gauge coupling constants RGEs in ED are given by  

          
   

  
   

    
            

    
                               

The beta-function coefficients   
   are those of the usual SM given in (3.45), which 

correspond to the zero-mode states, while the new beta-function coefficients   
   are given 

by   
   (

  

  
  

 

 
 
 

 
)                                 , and,          

     , 

                        for          (  is the cut-off scale in which the couplings 

constant do meet).These beta-function coefficients correspond to the contributions of the 

appropriate Kaluza-Klein states at each massive Kaluza-Klein excitation level. 
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Figure (3.2) Contribution of extra dimension fields to gauge couplings unification 

                       
 

 
∫
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We have  

                                          
                                              (3.48) 

Insert equation (3.48) in equation (3.47) yield 
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The nominator of equation (3.49) becomes  

                                              (3.50) 

By using Feynman integral in equation (3.11) yield 
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By introduce new variable q 
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Let  
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And    

                          ∫
   

     
∫   
 

 

              

              
                                           (3.56) 

 

Then  
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Comparing with the standard integrals we get 
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Therefore,  
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)  (3.60) 

And 

                                                                                                     (3.61) 

Therefore between the scale    , where the first KK states areexcited, and the cutoff scale, 

there are finite quantum corrections of the KK states to the gauge coupling. The one-loop 

evolution equation for the gauge coupling from these cumulative effects of the KK modes 

change equation (3.2) to  

   [
  

 
      

 

 
       

 

 
        

 

 
     ]                  

Now calculation of the coefficients    are modified in the presence of the KK particles as  

for the strong interaction (  ):        

                                      (3.63) 

Therefore,  
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        (3.64) 

For the week interaction (  ):        

      
 

 
                                (3.65) 
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Then  
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Finally For the electromagnetic interaction (  ):       we have  
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So  

    * 
 

 
   

  

  
 

 

 
+  

 

 
  

  

  
             (3.68) 

Thus  
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+                                      (3.69) 

 

 

 

3.5. ED Beta Function for Gauge Coupling Constant in ED (Brane Case): 

We shall now consider the case of Brane localized matter fields for coupling. In this case 

there are no contributions from fermions to the gauge couplings in ED  

(Ammar Abdalgabar, 2016). 

The general case in ED:   

           *
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               (3.70) 

And we calculate the gauge couplings coefficients in this scenario of the three forces 

(            ) without excited KK fermions we obtain. 

               *
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+                      (3.71) 

Where: η is number of fermions generations among interaction and takes the values  

(         ) 
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When     the fermions fields are localized in the Brane (Brane case) the equation (3.70) 

becomes  
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     +                 (3.72) 

And equation (3.71) becomes 
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+                       (3.73) 

When     the fermions in the Bulk and we recover our early equation (3.69) 

The equation (3.71) for     becomes  
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And for     
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Chapter IV 

 

 

Numerical Results, Discussions and Conclusion 

 

4.1. Numerical Results and Discussions: 

This chapter shall present our numerical results and discussion for some selected results. We 

will utilize the technique of the renormalization group equations at one-loop level for gauge 

couplings in the standard model and extra dimensions; we will obtain a set of RGEs and solve 

them numerically by using Mathematica software. For our numerical calculations we assume 

the fundamental scale is not far from the range of the LHC run 2 and set the compactification 

radii to be                                    with the initial values adopted at the 

   scale discussion as follows: for the gauge couplings                     

                    . 

Here in this thesis we discuss different possibilities for the matter fields, such as the case of 

bulk propagating or brane localized fields. We will discuss in both scenarios the evolution of 

the inverse fine structure constant which is related to the gauge couplings by         ⁄ .In 

brane case the SM chiral fermions are located on a boundary and in the 5D picture do not 

have Kaluza-Klein (KK) modes so they will not contribute to our RGEs. The SM Higgs live 

in the bulk. The gauge fields also live in the bulk. We will also explore a model in which the 

third generation lives in the bulk, this too may unify. We compute the one-loop RGEs for the 

gauge couplings in different localization scenarios. We present some selected plots and 

comment on other similar cases.  
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Figure (4.1) Evolution of the inverse fine structure constants in the standard model  

      

Figure (4.1) shows that all three standard model inverse fine structure constants    
  
 

  
are 

trying to unify themselves at some higher scale for one-loop level and in fact higher order 

loop correction does not change the result much as its effects is very small that means we 

need a new physics that have new particles to change the running of gauge coupling. This 

new physics could be either Supersymmetry or Extra Dimension models.   

  

 

Figure (4.2) Evolution of the inverse fine structure constants in ED (Bulk Case) 
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It is clear from equ(3.45) that the presence of the extra dimensions has a substantial effect on 

the values of these gauge couplings. Remarkably, however, it turns out that there always exists a 

value of      for which the gauge couplings may unify. 

Figure (4.2) show the inverse fine structure constant   
    in Bulk Case with           . 

As can be seen from the figure the ED particles give very good unification as expected and 

extra dimension may bring the unification down to a lower value, and the inverse fine 

structure constants nearly meet around      GeVin comparison with the standard model case. 

As can be noted from figure (4.2) the unification scale of the energy lowered from (       ) 

in the SM see figure (4.1) to (     ) GeV in ED. This is due to the fact that the couplings 

constant run as power law rather than logarithmic fashion running.   

 

Figure (4.3) Evolution of the inverse fine structure constants in ED Brane Case 

 

Figure (4.3) shows the running of coupling constants, the inverse fine structure constants  
   

with          . As one cross the threshold KK particle the contribution of KK particle 

becomes more and more significant and the unification scale also in this scenario is decreased 

as observed in the bulk scenario but the only difference is that the   
   and   

  is increased 

and   
   is decreased in Brane Case and all the inverse fine structure constants   

   nearly 

meet around                           for                           respectively. 
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Figure (4.4) Evolution of the inverse fine structure constants in ED in general case 

 

Figure (4.4) present the evolution of inverse fine structure constants in ED model for general 

case            where (solid line)is for     (brane case),(dot-dashed line) is for     

and( dashed line) is for    (bulk case),the evolution of the bulk field and brane localized 

cases for several choices of compactification scale for the extra-dimensions in the ED model 

were performed. We find that there is a difference in the   
  evolution where it increases in 

the brane case and decreases in the bulk propagating case.  

A sufficient condition for unification in a five dimensional model is that 

    
  
     

  

  
     

   

does not depend on (i, j), where   
  are the five dimensional beta function coefficients, at 

one-loop. 

It is easy to check that although these relations are not satisfied exactly in our case, 

The y are nevertheless approximately satisfied: 
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This remains true independently of the value of η, which shifts all  
   by a fixed 

Amount. Thus, we expect that gauge coupling unification will continue to hold to 

a good degree of accuracy. 

In order to get precise unification additional fields are required, here a precise unification of 

the three gauge coupling is achieved by adding three real scalar fields in extra dimension. We 

assume these three additional fields transforming in the adjoint of SU(2) and have odd parity 

as result the contribution of these  new fields modify the RGEs in equation (3.71) to  

   [
 

  
  
  

 
   

  

 
]  [

 

 
  
 

 
  
 

 
]    

Which lead to unification of the three gauge couplings as shown in figure (4.6) and figure 

(4.7) Clearly these additional fields will appear at scale of     . 

 

 

 

 



38 
 

 

Figure (4.5) the evolution of the Weinberg angle for three different values of the  

 

compactification where the solid line represents the SM case. 

Furthermore we present the evolution of Weinberg mixing angle as function of energy scale.  

Note that evolution trajectories evolve until the unification scale of gauge couplings unify. 

Once the KK states begin to contribute the new contributions from the extra dimensions 

change the behavior; that is, it increases until we reach the cutoff scale. One can see that for 

          ,        can rise from 0.23 to 0.4. This result may be useful, at least from a 
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model building perspective, as many extra-dimensional models such as gauge-Higgs 

unification models in ED predict for many choices of the gauge group large values of        

from a group theory point of view. However, this value is the one expected in the energy 

range of coupling unification, which once evolved back to the 

electroweak scale and may indeed be close or compatible to the measured value. 

 

 

Figure (4.6) Unification of couplings with additional scalar fields in bulk case. 

 

 

Figure (4.7) Unification of couplings with additional scalar fields in brane case. 
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4.2. Conclusion: 

We derived the one loop renormalization group equation for the gauge couplings in the 

universal extra dimension for different matter field localization (brane case and bulk case) 

compactified in a circle. We discussed the evolution of inverse fine structure constants as 

function of energy scales in various scenarios in the five dimensional descriptions with a 

large enough extra dimensional scale as to make the extra dimensional features practically 

relevant to the phenomenology of the model. In other words we require a compactifications 

scale                             scale and not simply an (almost) GUT scale of extra 

dimension. Such a criteria is useful to rule out certain models, for instance by this criteria one 

can straightforwardly rule out at extra dimensional models in which the first and second 

generation are in the bulk, with the third generation either in the bulk or on a brane, as such a 

models can unify only with an extra dimensional scale of the order of the GUT scale. We 

have shown here in both scenarios (brane and bulk) the gauge couplings do not unify at single 

energy scale as observed in the SM only the unification scale is lowered to small energy scale 

for different compactification scale. We proposed a model in which the gauge couplings 

indeed unified at single point by adding three extra scalar fields in the extra dimension. 

Furthermore we studied the evolution of Weinberg angle in both scenarios. 

4.3 Recommendation 

We may go to the evolution up to two loop level even higher, the two loop RGEs for the 

gauge and Yukawa couplings are entangled, so we expect few percent change on the 

evolution of gauge couplings due to the appearance of Yukawa couplings this also might 

change   
   because of the large size of   . In models with extra dimension the one-loop 

running of Yukawa couplings is clearly insufficient, since higher order corrections can be just 

as important at scales few times above  
 

 
. Although this type of large corrections, to claim 

unification one needs to make sure that    stays perturbative up to the unification scale. As 

we highlighted in our discussion the coupling constants do not unify at single energy scale 

this will open the possibility to look for different model such as supersymmetry or 

supersymmetry in extra dimensions even with additional field to get a precise unification. We 

leave these two points to future works.  
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