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Chapter I 

 

  Introduction 

1.1 General Introduction: 

The Universe is made of elementary particles, ruled by a few fundamental forces of nature. Some 

of these particles are stable, but some of them just have a lifetime of a fraction of second. It's said 

that all these particles coexisted together during the Big Bang. 

Particles Physics is the study of the basic nature of energy, of matter, of force, of time or space.   

It works on discovery the simplest constituents of matter (elementary particles), and to 

understand the fundamental forces interacting among them. 

Elementary Particles are too small to see or study directly, so we examine them by colliding 

particles at high energies and analyzing the results. 

 1.2 Particles Accelerator and High Energy Physics: 

The study of particles physics began with the discovery of electron in 1897 by J.J.Thomson. 

Around 1930, new particles were detected using Cosmic Rays as a source of energy, since it was 

the only high energy source known by that time, starting with the discovery of the positron in 

1931, and the muon in 1937. The discovery of new particles was so much that the construction of 

High Energy Accelerators was impulse, providing intense beams of known energy that lead us to 

discovery of the quark substructure of matter. 

One reason for why high energies became so important comes from quantum mechanics, 

which describes particles as waves, whose wavelengths are established by the de Broglie’s  

 expression    
 

 
  where p the beam momentum, and h the Planck's constant, which means  

 that beams with higher momentums have shorter wavelengths, bringing higher resolutions, 

providing finer detail in the structure of fundamental particles.  

To reach very high collision energies, many of the current accelerators are colliders in which two  

particles beams are accelerated in opposite directions in order to collide them; doing this almost 

all  particle energy can be employed for production of new particles, being able to obtain high collision 

energies to study the structure of matter. 

The energy needed for particles discovery is increasing more and more with time. 

 Some examples of colliders are Tevatron at Fermilab, or the LHC at CERN. 
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Since 1939, the accelerators development has grown so much that the energy has 

increased from        from the original cyclotron of 13cm diameter to the        

for the LHC of 27 km diameter. 

1.3 Important of the study: 

An important feature of extra-dimensional models is the impact of the large number of KK 

modes on the renormalization group (RG) running of physical parameters. The RG running in 

extra-dimensional models has been investigated and studied. It has been shown that the RG 

evolution changes from the typical logarithmic running in four-dimensional standard models to 

an effective power-law running at high energies in extra dimension. This means that sizable 

running could take place at relatively low energy scales. As such Extra space-time dimensions 

naturally lead to unification to gauge coupling constant at intermediate mass scales, and 

moreover it provides a natural mechanism for explaining the Yukawa fermion couplings 

hierarchy and this has the potential to address the fermion masses hierarchy. Furthermore in 

extra dimension Yukawa couplings too evolve with a power-law dependence on the mass scale. 

1.4 Objectives:  

The main objective is to derive the renormalization group equations for the Yukawa coupling 

constants at one loop level in extra dimension model, and to study the evolution of Yukawa 

couplings as function of energy scale in universal extra dimension model. 

1.5 Outlines: 

The outline of the dissertation is as follows: 

We introduce in Chapter I a general introduction to topics. Chapter II will discuss the theory of 

the standard model and extra dimension model. Chapter III will concern with the technique of 

renormalization group equations. Chapter IV shall present our numerical results, discussions and 

conclusions. 
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Chapter II 

The Standard model and new physics 

2.1. Introduction  

This  Chapter will present a general review of the Standard Model of particle physics (SM), 

extension of the SM such as supersymmetry and extra dimension. 

2.2. What is the standard model (SM?)  

The standard model of particle physics is the mathematical theory that describes the weak, 

electromagnetic and strong interactions between leptons and quarks; the theory of electroweak of 

the standard model was introduced by Glashow, Salam and Weinberg in the early 1970’s (Salam, 

1968) (Weinberg S. , 1967) (S.L.Glashow, 1961).
 
The standard model asserts that the material in 

the universe is made up of elementary fermions interacting through fields; the particles 

associated with the interacting fields are called bosons.                                             
 

The elementary particles assignments in the standard model are as follows: 

Quarks                     ( 
 
)
 
              (

 
 
)
 
           (

 
 
)
 
                                       

Leptons                   (  
 
)
 
             (

  
 
)
 
            (

  
 
)
 
                                         

Gauge bosons       {

          

                     
           

                                                                     

Higgs boson            {                                                                                                                      
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Table 2.1 shows characteristics of quarks in the Standard Model 

  (* Q   is the charge,    is the triplet isospin and 
 

   is the hyper charge) 

Quarks and leptons are fundamental building blocks of matter; all of them are fermions and have 

spin(
 

 
) , they are classified as left-handed isospin doublets and right-handed isospin singlet’s; 

and will be described by the Dirac equation. Quarks interact through the electromagnetic and 

weak interactions and also through the strong interaction.  Leptons interact only through the 

electromagnetic interaction (if they are charged) and the weak interaction (A.D.Martin, 1984). 

Gauge bosons having spin (1) are the mediators of interactions between quarks or leptons; there 

are massless bosons, the photon   , and three massive ones, the W+, W− and the Z        . 

Electromagnetic, weak and strong interactions are mediated by photons  , weak bosons W±, Z° 

and gluons g, respectively. Interaction strength depends on which gauge bosons propagate 

between quarks or leptons (Guigg, 1983). 

Quark      
  

 
 

 
        

Mass 

 

u 

 

+2/3 

 

1/2 

 

1/6 

 

1.5 ~ 5 MeV 

 

d 

 

-1/3 

 

-1/2 

 

1/6 

 

3 ~ 9 MeV 

 

s 

 

-1/3 

 

-1/2 

 

1/6 

 

60 ~ 170 MeV 

 

c 

 

+2/3 

 

1/2 

 

1/6 

 

1.47 ~ 1.83 GeV 

 

b 

 

-1/3 

 

- 1/2 

 

1/6 

 

4.6 ~ 5.1 GeV 

 

t 

 

+2/3 

 

1/2 

 

1/6 

 

174.3 ± 3.2 ± 4.0 GeV 
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The Higgs boson with spin (0) is introduced for the Higgs mechanism to generate mass to 

elementary particles, which is operative in the theories with spontaneous symmetry breaking of 

local gauge symmetries (P.~W.~Higgs, 1964). 

 

Table 2.2 shows elementary particle interactions 

Interaction Coupling  strength Mediator Spin 

 

 Electromagnetic 

 

  
  

  
 

 

   
 

 

Photon 

 

1 

 

Weak 

 

                   

 

3 Weak bosons 

 

1 

 

 Strong 

 

   
  

 

  
      

 

8 Gluons 

 

1 

 

Gravitational 

 

                       

 

Graviton 

(Still to be 

discovered) 

 

2 

 

Table 2.3 shows possible Quarks and Lepton interaction with all the forces 

Elementary particles            Gluons 

Quarks       

Leptons       

(  means interact and   means don’t interact) 
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2.3.     Symmetries and Particle Content in standard model: 

The Standard Model is believed to be a (highly successful theory) based on the local gauge 

groups. The gauge group for the standard model is: 

 

                                                                                                                                     

Where: 

 The SU (3) gauge group or color group is the symmetry group of strong interactions, This group 

acts on the quarks which are the elementary constituents of matter and the interaction force is 

mediated by the gluons which are the gauge bosons of the group (J.donoghue, 1994).  

The quarks and the gluons are colored fields. The corresponding coupling is denoted 

by                                   , The SU (3) color symmetry is exact and 

consequently the gluons are massless. 

The theory of strong interactions based on color SU (3) is called Quantum Chromo dynamics 

(QCD). 

The              is the gauge group of the unified weak and electromagnetic interactions. 

Where        is the weak isospin group, acting on left-handed fermions, and        is the 

hypercharge group. 

The SU (2) group has three gauge bosons are denoted by     
    

     
    None of these gauge 

bosons (and neither   ) are physical particles, linear combinations of these gauge bosons will 

make up the photon as well as the W± and the Z◦ boson. 

 

As matter content for the first family, we have: 

   (
  

  
*                                         (

  

  
*                                                             

The explicit values for the hypercharges of the particles above are as follows 

        
 

 
                              

 

 
        

 

 
         

 

 
                     

Under SU (3) the lepton fields               are singlets, i.e. they do not transform at all. This 

Means that they do not couple to the gluons. The quarks on the other hand form triplets Under 
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SU (3). The strong interaction does not distinguish between left- and right-handed Particles 

(Guigg, 1983). 

However, since we ultimately want massive weak gauge bosons, we will have to break the         

       × SU (2) gauge group spontaneously, by introducing some type of Higgs scalar (Quigg, 

2007). 

  2.4. The Higgs mechanism: 

A mechanism that gives mass to the SM particles and keeps the Lagrangian invariant under 

gauge symmetries (P.~W.~Higgs, 1964) (Quigg, 2007). 

If mass terms for gauge bosons and for left/right-chiral fermions are introduced by hand into the 

theory, they destroy the gauge invariance of the theory. This problem has been solved by means 

of the Higgs mechanism in which masses are introduced into gauge theories in a consistent way. 

The solution of the problem is achieved at the expense of a new fundamental degree of freedom, 

the Higgs field, which is a scalar field. 

This Scalar field is denoted by   and has hypercharge      and can interaction with each 

other, the interaction between fermion fields and the Higgs field is of Yukawa type. 

The Higgs doublet Lagrangian should contain a “spontaneous symmetry breaking” potential 

Which will give the Higgs a VEV (Vacuum Expectation Value) and self-interactions, and kinetic 

terms which will generate the gauge boson masses and interactions between the Higgs and the 

gauge bosons (L.F.Li, 1991). 

 

  (
  

  
)                                                                  

And the potential is given by 

      
 

 
      

 

 
                                       

 

Which involves two new real parameters         we demand      for the potential to be 

bounded; otherwise the potential is unbounded from below and there will be no stable vacuum 

state. 

  Takes the following two values: 
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•      Then the vacuum corresponds to   , the potential has a minimum at the origin (see 

figure 2.1 right panel). 

•      Then the potential develops a non-zero Vacuum Expectation Value (VEV) and the 

minimum is along a circle of radius 
 

  
 

   

  
 (see figure 2.1 left panel). 

 
 

 

 

 

Fig 2.1 shows that The Higgs potential      with:    in the left panel, the case      

and the right panel for the case      as a function of | |       

 

2.5.    The lagrangian of the standard model:  

The Lagrangian of the standard model is the sum of the gauge, matter, Yukawa and Higgs 

interactions. It is given by: 

                                                                                

The first term is built up by the gauge fields and their self- interactions: 

 

        
 

 
    

    
  

 

 
       

 

 
   

    
                                                                         

 

With the field strengths defined as: 
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The tensors       and      are the SU (2) and SU (3) structure constants,    and       are the 

weak-isospin and the strong coupling, respectively. 

 

The second term summarizes the fermion-gauge boson couplings 

         ∑ ̅                                                                                             

 

Where   is the fermion field. 

With the sum running over the left- and right-handed field components of the leptons and quarks. 

Depending on the fermion species, the covariant derivative takes the form: 

              
    

 

 
       

   
                                                

   is the hypercharge coupling. 

The Higgs-gauge boson lagrangian generated by the covariant derivative: 

 

                                                                                       

 

Where the covariant derivative    is defined as: 

   (   
  

 
    

   

 
    

  *                                                                            

 

Yukawa couplings are uniquely fixed by gauge invariance and the Lagrangian given by 

 

           
   

    
 
    

   
     

 
    

   
    

 
                          

 

2.6. Gauge Fixing and Ghosts: 

Gauge fixing is necessary when the gauge fields are quantized. Quantization means to develop a 

path integral formalism for the gauge theory. The path integral is diverging as one integrate over 

an infinite set of gauge-equivalent configuration, here the gauge fixing is used to pick up one 

arbitrary representative, therefore, giving meaning to the path integral. On other hands, the gauge 
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Invariance we look for in gauge theory, a naive path integral approach would spoiled it. The 

solution is given by what is called the Faddev-Popov procedure, where they introduced an 

identity expression consisting of a functional integral over a gauge fixing condition times a 

functional determinant over anti commuting fields in the path integral. The latter gives rise to 

what is known as ghost fields, which keep the gauge freedom within the theory, but are not 

physical particles (because ghost violate the spin-statistics relation) (McMahon, 2008). As such, 

we need to add terms in the Lagrangian like:  

  

               
 

 
 
 

 
    

                                           

 

         ̅ 
   

                                                            

 

2.7.   Problems with the Standard Model: 

Although the Standard Model of particle physics is very successful, with no confirmed 

accelerator data that contradict it, there are many theoretical reasons to consider some new 

physics beyond the Standard Model. The list below summarizes some issues with the standard 

model (A.~Abdalgabar, 2013). 

2.7.1. Dark Matter:   

 

The SM does not have any dark matter candidates, as opposed to observational cosmology. 

 

2.7.2. Gauge Hierarchy problem: 

 

The Hierarchy problem is the question of why there is such a huge difference between the 

electroweak scale                 and the plank scale                . This is also 

known as the naturalness problem. 

 

 

2.7.3.   Gravity is not included: 
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Though the unification of the electromagnetic and weak interactions was achieved in the SM and 

the strong interaction appears to be part of the unification, the SM does not include the effects of 

gravity. Note that the effects of gravity become important at energies of the order of the Planck 

scale                . Since The ultimate goal in particle physics is to unify all the 

fundamental forces in nature. 

2.7.4 Gauge group: 

The SM does not explain the choice of        ⨂      ⨂       why are there three 

families and four interactions? Why 3+1 space time dimensions? 

 

2.8.   Beyond the Standard Model: 

The problems mentioned above in the SM cannot represent a fundamental theory of the Universe 

but it can be an effective field theory at low energies. A physical theory may exist beyond the 

SM, Supersymmetry (SUSY) and universal extra dimensions (UED) have evolved into a new 

paradigm with many tools to solve the large number of outstanding issues that remains 

unanswered in the SM.                                                                               

  

  2.8.1. Super symmetry (SUSY): 

Supersymmetry is a transformation which turns bosons into fermions, and fermions into bosons. 

If it is asymmetry of the Lagrangian, then every fermion must have a bosonic partner and the 

vice versa, and the interactions are restricted by the symmetry. When we supersymmetrize 

(exactly) the Standard Model, we will therefore double the number of particles but the number of 

coupling constants stays (almost) the same. 

Alternatively, it is to say that Supersymmetry is the idea that there is” a superpartner” for each 

elementary particle: selectron, smuon, stau, squarks, photino, higgsino, etc. Supersymmetry 

provides an elegant way to solve the hierarchy problem, gauge couplings unification. We will not 

discuss the supersymmetry furthermore; we refer interested reader to go to Ref (J. Louis, 1998).  

 

  2.8.2. Universal Extra Dimensions (UED): 
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A new kind of physics, Extra Dimension (ED), was introduced in particle physics by Kaluza and 

Klein in 1920, to unify the electromagnetic interaction with the gravitational one by generating 

the photon from the extra components of the five-dimensional metric (T.~Kaluza, 1921). Extra 

dimension and supersymmetry introduced new particles so we need to distinguish these new 

particles. In particle physics if we can distinguish a fermion from a bosonic particle by 

measuring the spin of the particle at the Large Hadron Collider (LHC) or the International Linear 

Collider(ILC), then we can have a distinct signature of the physics of extra dimension from that 

of Supersymmetry. Since the major difference between SUSY and UED is that the new heavy 

particles have different spin (Majee, March, 2008). 

 

2.8.2.1 Scalar particle in UED: 

In addition to the four space-time co-ordinates x (x, t), let us denote the extra space-type 

coordinate by y, compactified on a circle or radius R (A.~Abdalgabar, 2013). Thus, the 

Lagrangian of a free complex scalar         with mass m will be a function of both x and y co-

ordinates with a condition that the field at y = πR will match with that at y = 0, i.e. it has a 

periodicity of πR along the y 

direction. So one can expand it in a Fourier series by assigning an even parity to the scalar field 

as: 

       
 

    
      ∑

 

   
⌈         

  

 
 ⌉                                                    

 

   

   

The five dimensional Lagrangian is given by  

        ∫  {                  
    }                                                                 

With M= 0, 1,2,3,5 

The equation of motion can be derived by varying the above integral with respect to the field  : 

   
                                                                                                                     

Where the n-th KK mode mass is given as: 
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Plugging equation (2.22) into equation (2.23) we obtain the effective four dimensional 

lagrangian 

                                  

                                                                                                                                            

                                                                                                                                                                                                                                                           

 Where:  

         
   

     (  
  

 
  

        
 

 
  

   )                                                       

         
    

     (  
  

 
  

        
 

 
  

   )                                                       

         
    

     (  
  

 
  

    
    

 

 
  

   
)                                                       

   being the usual three Pauli matrices.  

2.8.2.2 Gauge fields and Gauge fixing: 

The Lagrangian for an Abelian gauge field and gauge fixing given by  

          ∫     
 

 
       

 

  
    

         
                                           

Where   is the gauge fixing parameter and               . The gauge 

fixing term eliminates the mixing between    and the extra polarization   . 

In the Feynman-’t Hooft gauge      , the equations of motion for    can be obtained: 
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And the effective four dimensional lagrangian is given by 

 

               
 

 
(   

               
                

           )                                                     

 
 

 
(   

               
                

           )                           

 
 

 
(   

             
              

         )   

                                    

2.8.2.3 Fermion particle in UED: 

The Lagrangian for the Dirac field in 5D is given by: 

         ∫   ̅                                                                                             

        

                                                            

               ̅ 
         

      ̅ 
         

   
 

    ̅ 
       

     ̅ 
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Chapter III 

Renormalization Group Equations 

3.1 Introduction: 

This chapter shall discuss the Renormalization Group Equations (RGEs) method and calculation 

of beta function for gauge couplings and Yukawa couplings in Standard model and Extra 

dimension model. 

3.2 Renormalization Group: 

The renormalization group in quantum field theory (QFT) tells us how different couplings 

behave with energy (L.~-X.~Liu A. a., 2011). 

3.2.1 What is renormalization? 

In Quantum Field Theory (QFT), Green function is the most important thing to be calculated. In 

perturbative QFT these quantities are divergent. The systematic way to remove these divergences 

is known as renormalization (Collins, 1984).  

The renormalization theory is implemented to remove all the divergences in loop integrals from 

the physical measurable quantities. These loop diagrams are supposed to give finite results to the 

physical quantities but they give infinities instead. This tells us that our theory has missed some 

information. One might ask where do these infinities come from. These infinities arise from the 

integration over all momentum. In other words, the infinities occur because we let our theory go 

to arbitrary high energy (UV) (Majee, March, 2008). 

There are different ways to cancel these infinities. In order to renormalize the theory we need a 

reference point which is also arbitrary, Different choices of this reference point lead to different 

sets of parameters for the theory, but physics should not depend on the arbitrary choice of the 

reference point and be invariant. This invariance leads to the renormalization group. 

 In quantum field theory it is a useful method to examine the behavior of physics at a different 

scale knowing the same at some other scale. Thus, measuring the observables in a low energy 

experiment one can compare with the values predicted from a theory at a higher scale, e.g. at the 

GUT scale and certify about the correctness of the theory. In the standard model, variations of 

the gauge coupling constants with energy are given by the following renormalization group 

equations (RGEs) (A.~Abdalgabar, 2013). 
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Where   stands for                              and the right-hand-side of equation (3.1) is 

known as the    function of the corresponding coupling. 

In the above equations the coefficient    can be calculated for any       group as 

 

    
  

 
      

 

 
       

 

 
                            

Where: 

                        Refer to the gauge boson, Fermionic and Higgs scalar contribution 

respectively.    is number of fermion flavor and    is the number of scalar field. 

 

3. 3 Calculation of  eta Function (   for the gauge couplings constant in the SM: 

We now turn our attention to diagrams with loops. In quantum field theory some of these loops 

diagrams will diverge and we must take care to treat the divergent integrals correctly. We will 

derive the gauge coupling relation given in equation (3.3) and use this relation to discuss the 

qualitative features of the renormalization group follow in renormalizable field theories in next 

chapter. Here we will compute the gauge boson self-energy in detail at the one-loop level. The 

contribution for the gauge couplings RGEs is shown in figure (3.1). 
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Figure 3.1 Feynman diagrams contributing to the gauge couplings in SM  

Calculation of Fig (a) gives us:  

         
           

 
∫

   

     
     

      

        
                                                                                        (3.4) 

Where: 

                                                              

           
                      

               

      
                     

                                                

      
                      

                

Using the trace approach  

                       

Hence 
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                                          (            )   

              (           )  (           )              

               

Then  

                       [                        ]   (             

                                                          )                                                      (3.7) 

This lead to   

   [                               ]                          

Then  

   [           ]                                                                                                 

After a little algebra we get  

                                                                         

So that  

       
           

      
 ∫     

        

        

 
           

 
 ∫

                   

        
                                       

We have 

               
                                                                                                        

Then  

       
         

  

      
 ∫

                   

        
                                   

By using Feynman parameterization 
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 ∫

 

           
   

 

 

                                                                                           

And let 

                                                                                                              

We obtain   

       
          

  

      
      ∫   ∫

          

               
                          

 

 

 

By introducing new variable    

                                                                                                                             

the numerator             becomes  

                                                                                                 

                                                                                       

Then  

  (             )                                                                                          

And the denominator                   becomes  

                                                                                                            

Thus  

           
          

  

      
      ∫   ∫    

(             )

              

 

 

               

Using the standard integrals (Weinberg S. , 1996): 

∫     
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∫     
 

       

  

 

             
  

 
   (  

 
  )

         
 
 

                                       

Therefore Eq (3.22) becomes:  

         
          

  

      
      (

    
 
  (  

 
 
 ) 

           
 
 

 ∫   
 

          
 
 

 

 

    

    
  

 
   (  

 
 
 )

      
 
 

 ∫   
        

          
 
 

 

 

,                                                                              

Where:             

 Comparing the beta function integral with Eq (3.25)  

         ∫                                                                        
 

 

 

And the relation  

       
        

      
                                                                                

Yield  

∫   
 

          
 
 

 

 

     
 (

 
 )  (

 
 )

    
                                                     

And 

∫   
        

             

 

 

 
 (

 
 )  (

 
 )

    
 

 (
 
   )  (

 
   )

      
               

So that Eq (3.25) becomes: 
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      (

    
 
  (  

 
 
 ) 

           
 
 

 
 (

 
 
)  (

 
 
)

    
  

    
  

 
   (  

 
 
 )

      
 
 

{
 (

 
 
)  (

 
 
)

    
 

 (
 
 
  ) (

 
 
  )

      
} ,                                                   

We have  

                                                                                                 

Then  

 (  
 

 
*  

    
 
  

   
 
  

                                                                           

So that we get 

                        
         

  

      
 (  

 

 
* [

  

  
      

  

 
    ]                                                                                                          

Calculation of Fig (b) is similar to Fig (a) gives us 

           ∫
   

     
            (

  

  
*          (

  ̸   ̸ 

      
)                  

                       ∫
   

     
  (      

  

  
   

  ̸   ̸ 

      
  )                            

We have  

                                                                                                         

                 [                    ]                             

Likewise we get 

        
 

 
 

(                         (  
 
 ))
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Similarly the calculation of Fig (c) gives: 

       ∫
   

     
         ( 

    

  
*          

 ( ̸   ̸)

     
                  

Then  

              ∫
   

     
(
       

 ( ̸   ̸)

        
)                                        

We have  

                                                                                                              

The numerator can be written as: 

       
 ( ̸   ̸)       

 (     )                                                       

Hence  

     
                                                                                            

Therefore 

                         
         (  

 
 )

           
 
 

                                                      

Calculations of Fig (d) give 

                           
   

     
    [      

 

 
     ]  (  

 

 
*                       

Calculations of Fig (e) give 

                      
 

 
  

   

     
[      

   ] (  
 

 
*                                        

Calculations of Fig (f) give 
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*
     

 
     +  (  

 

 
*                                      

 

Calculations of Fig (g) give 

                   
 

 
∫

   

     
                            

            (             )                                          

            (             ) ( 
    

  
*               

                
                                                                                            

Then  

                
 

 
        

  ∫
   

     
  {(             )  (             )

 (             )}  ( 
    

  
*                                                    

It is not difficult to show that Eq (3.50) give zero 

                                                                                                                                                           

Calculations of Fig (h) give  

          ∫
   

     
         

( ( ̸   ̸))

      
(       )

( ( ̸   ̸))

      
         

(     )

  
         

                ∫
   

     
   
(  ( ̸   ̸)  ( ̸   ̸)     )

                
                                                     

We have 

       (      
 

 
     )                                                                                                    
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So we have 

     
          

  

      
[          ] (  

 

 
*                     

Now summing all the results in equations 

 ((3.33),(3.38),(3.44),(3.45),(3.46),(3.47),(3.51)and(3.55)) yield 

                     *
   

     
(
  

 
*      +  (   

 ⁄ )   
 ⁄        (   

 ⁄ )             

 (
  

 
*

   

     
      (   

 ⁄ )                                                                            

Where  

   [
  

 
      

 

 
        

 

 
        ]                           

3.4 Calculation of the coefficient     in the Standard Model (SM): 

Firstly for the strong interaction       

The gauge bosons (gluons) belong to the adjoint representation which imply  (     )    , and 

the fermion is belonging to the fundamental representation 

For one generation of fermion only    and    contribute, therefore 

                           
 

 
 

 

 
                         

If we work with Weyl fermions                 then we must include the factor  
 

 
 for each 

helicity, which follows from         
 

 
        

 

 
             

 

       
 

 
 

 

 
                                                                          

 

Since the Higgs is not colored under       then           
We thus finally 
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   (

  

 
    

 

 
    *                                                  

 

Secondly for the weak interaction         

We have   (     )                           
 

 
  thus we get 

  
   (

  

 
    

 

 
     

 

 
   

 

 
*  

  

 
                                                     

Finally for        

There will be no gauge boson contributions in    since they do not carry hypercharge. For the 

fermions and Higgs scalar we take their hypercharges from Table 3.1, therefore  

 

  
   (   

 

 
(
 

  
   

 

 
   

 

 
   

 

 
  *  

 

 
 

 

 
*   

  

 
                

 

But we always use the       normalization, that is     √
 

 
    

 Therefore 

 

  
    

  

 
 

 

 
  

  

  
                                                                                              

 

In general way  

 

  
   ( 

  

  
  
  

 
    *                                                                                                

3.4 The CKM Matrix:  

When we consider all the generations of quarks, there are possibilities for their mixing. This 

mixing is described by the CKM Matrix, which has four observable parameters, including three 

mixing angles and one phase. It appears upon the diagonalization of Yukawa matrices by using 

two unitary matrices         (K.~S.~Babu, 1987). 

Where the CKM matrix is given by: 

                                                                                                                       

The form of the CKM matrix that describes the quark sector mixing is parameterized as  
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      (

         
         
         

+                                                                                     

In other words, the CKM matrix arises from a consideration of the square of the quark Yukawa 

coupling matrices being diagonalized by using two unitary matrices U and V 

        
    

    
      

    
  

        
    

    
      

    
  

Where   
    

    
  and   

    
    

  are the eigenvalues of the   
    and   

    respectively. More 

details about the variation of CKM matrix for example see (A.~S.~Cornell, 2010) (K.~S.~Babu, 

1987). 

3.5 One-loop Yukawa couplings 

The beta function of the Yukawa couplings is given by: 
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3.6 Calculation of the Yukawa couplings factor in the Landau gauge: 

At each excited KK level, the one-loop corrections to the Yukawa couplings arise from the 

diagrams exactly mirroring those of the SM ground states. Note that for the closed fermion loop 

diagrams one need to count the contributions from both the left-handed and right-handed KK 

modes of each chiral fermion to the self-energy of the gauge filed. Additional contributions to 

the Yukawa couplings come from the fifth component of the 5D gauge field at each KK excited 

level as shown in figure (3.2). 

 

 

Figure 3.2 show the Feynman diagrams contributing to Yukawa coupling in the Landau gauge 

Let us calculate the numerical coefficients appeared in equation (3.70).  

Calculation of the factor   
 : 

Calculation of Fig (a) gives  
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Where 
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After integration the above integral we get 
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Calculation of Fig (b) gives 
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By similar way we get 
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Calculation of Fig (c) likewise gives 

 

 
 

 

  
     

   
 
 

 

 

      
 

 

 
                                                   

Calculation of Fig (d) likewise gives 

  
 

  
                

 
 

      
 

                                      

Then adding Eqs ((3.80), (3.84), (3.85), (3.86)) together gives 

  
 
 

 

 

      
   

 
 

 

 

      
 

 

 
   

 
 

 

 

      
 

 

 
    

 
 

      

  
  

 
  
 

 

      
                                                                                          

Which match exactly the number in equation (3.70).  

Calculation of the factor    
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Calculation of fig(c) gives 
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Equation (3.89) becomes 
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After integration we get  
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Likewise calculation of Fig (f) gives  

 

 
 

 

  
        

 
 

 

 

      
                 

 
 

And Fig (b) has no contribution to   
   since the right handed fermion does not couple to W 

bosons. 

 

So adding Eq (3.96) to Eq (3.97) gives 

   
 
 

 

 

      
 

 

 
     

 
 

 

 

      
  

  

 
    

 
 

      
               

This confirms the coefficient of   
  in equation (3.70). 

 

Calculation of the factor   
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Then we get  

 

 
 

 

  
     

  
 

 
    

 
 

      
 

 

 
                                  

Likewise calculation of fig (b), using the following relation 

 
  
 
    

 

 
                                                                        

We obtain 
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Similarly calculation of fig (a) gives 
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And calculation of fig (d) + fig (e) gives 
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Consider adding now Eqs ((3.102), (3.105), (3.108) and (3.109)) to give 
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Rescale it with SU (5) normalization. 

 
   

  
   

 
 

      
  

   

  
   

 
 

      
 

 

 
  

   

   
   

 
 

      
            

 

Finally this result agrees with the coefficient of   
  in equation (3.70). 
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Chapter IV  

 Numerical Result and discussion  

4.1 Introduction: 

 This chapter present the numerical results and discussion for the gauge coupling constants and 

Yukawa couplings behavior in 4D and 5D Standard model. We set the compactification energy 

scale to be                          .  Only some selected plots will be shown and we 

will comment on the other similar cases not explicitly presented here. We quantitatively analyses 

and explore these quantities in UED model, though we observed similar behaviors for all values 

of    . Initial values we shall adopt at the    scale are given in table 4.1. 

 

4.2 Numerical results for gauge couplings evolution in 4D and 5D Standard Model: 

The generic structure of the one-loop RGEs for the gauge couplings is given by: 

 

    
   

  
   

    
             

    
                                                        

Where 
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  Where    is the cut-off energy scale, s(t) is the sum of KK states. 

 

The numerical coefficients appearing in equation (4.1) are given by: 
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Table 4.1 shows initial values at    scale (where               used in our numerical 

calculations. Data are taken from Ref (Z.~-z.~Xing H. a., 2008). 

 

Parameter Value (90% CL) 
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Figure 4.1: shows relation between the gauge coupling constants behavior and energy scale in 

4D Standard Model. 

 

Figure 4.1 present the evolution of gauge coupling constants in the standard model as function of 

energy scale, as can be seen from this figure the three gauge couplings tend to unify at some high 

energy scale approximately at            . But these couplings constant do not unify at one 

point. The gauge couplings run in the usual logarithmic fashion. Therefore the gauge coupling 

constants in the SM do not unify.  
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Figure 4.2: shows the evolution of the gauge coupling constants as function of energy scale in 

5D Standard Model. 

 

Furthermore, as depicted in figure 4.2 the running of the three gauge couplings g1, g2 and g3 in 

5D SM changes from logarithmic running to power law running this is due to the contribution of 

KK states at energy greater than   
 

 
 .  As expected extra dimension lowered the unification 

energy scale. We found that the evolution of g3 decrease faster, we also found that g1 and g2 

approximately remain constant for energies below         and suddenly increase faster for 

energies exceeds          and the unification scale occur  approximately at            

which is lower compared  to the unification scale in the standard model  at            in 

other words, by comparing the gauge coupling constants running between the 4D SM and 5D 

SM we can see that the behavior of the gauge couplings in both cases is difference and the 

unification in 5D SM occur at lower energy scale, this can be explained due to the sum of KK 

state      that present in equation(4.1).  
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4.3 Numerical results for Yukawa coupling evolution in 4D and 5D Standard Model: 

This is a theory project in which analytic computations are carried out. However it is expected 

that some calculations need to be performed numerically by using dedicated numerical packages 

(Mathematica). 

The figure (4.3), figure (4.4) and figure (4.5) represent the evolution of down quarks Yukawa 

coupling hd in the bulk case where the (solid line) represents the SM case with three different 

radii of compactification scale, 1TeV (red-dot line), 5 TeV (blue-dashed line) and 13 TeV 

(green-dashed line). 

 

 

Figure 4.3: shows the evolution of the down quark Yukawa coupling as function in energy scale 

in 5D SM for three different values of the compactification scales R. 

 
  

Once the first KK threshold is reached, the contributions from the KK states become more and 

more important due to the power law running where the second term on the right hand side of 

Eq. (4.1) depends explicitly on the cutoff, which has finite quantum corrections to the beta 
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functions at each massive KK excitation level. Therefore, the running of the Yukawa couplings 

deviates from their normal trajectories and starts to run faster. Similarly, for the Yukawa 

couplings, the up Yukawa couplings decrease by increasing the energy scale as shown in figure 

(4.9), figure (4.10) and figure (4.11).   

 

  

Figure 4.4: show the evolution of the strange quark Yukawa coupling as function of the energy 

scale in 5D SM for three different values of the compactification scales R. 
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Figure 4.5: show the evolution of bottom quark Yukawa coupling as function of energy scale in 

5D SM for three different values of the compactification scales R. 

 

 

Figure 4.6: show the evolution of electron Yukawa coupling as function of energy scale in 5D 

SM for three different values of the compactification scales R. 
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In fact, the Yukawa couplings also receive finite one-loop corrections at each KK level and 

whose magnitudes depend upon the cut off energy scale we take it where the gauge couplings do 

unify. We present the numerical analysis of the one-loop calculation of the lepton Yukawa 

couplings (electron, muon and tau Yukawa couplings) in figure (4.6), figure (4.7) and figure 

(4.8).  As can be seen from these figures the evolutions of leptons sector have small variation in 

five dimensional models. This implies that the Yukawa couplings of the leptons have a slowed 

evolution well before the unification scale. Beyond that point new physics would come into play.  

 

 

Figure 4.7: show the evolution of muon Yukawa coupling as function of energy scale in 5D SM 

for three different values of the compactification scales R. 
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Figure 4.8: show the evolution of tau Yukawa coupling as function of energy scale in 5D SM for 

three different values of the compactification scales R. 

 

 

 

Figure 4.9: show the evolution of up quark Yukawa coupling as function of energy scale in 5D 

SM for three different values of the compactification scales R. 
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Figure 4.10: show the evolution of charm quark Yukawa coupling as function of energy scale in 

5D SM for three different values of the compactification scales R. 

 

 

Figure 4.11: show the evolution of top quark Yukawa coupling as function of energy scale in 5D 

SM for three different values of the compactification scales R. 
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4.4 Conclusions: 

In conclusion, the five dimensional standard models with compactification radius near the TeV 

scale imply exciting phenomenology for collider physics. It is found that the evolution of the 

gauge couplings has a rapid variation in the presence of the KK modes and this leads to a much 

lower unification scale than the SM. The running of Yukawa couplings for the three families has 

a sizable variation in five dimensional models. We quantitatively discussed these quantities 

for                            observing similar behaviors for all values of the 

compactification radius below these scale their trajectory run in the usual SM logarithmic 

fashion. We have shown that the scale dependence is not logarithmic; it shows a power law 

behavior. Therefore, the five dimensional models has substantial effects on the Yukawa 

couplings and promises exciting phenomenology for upcoming collider physics results, 

especially with the Large Hadron Collider now being operational and already starting 

explorations of the TeV scale where the possibility of KK excitations to SM particles exists. 

After all, only experiments will tell us if any of these ideas are relevant. 

 

4.5 Recommendation: 

This work can be extended in a number of ways and we discuss just a few. In this work we 

considered only the bulk scenarios in which all SM field have access to full space. We leave 

other possibilities for future work in which the 1st and 2nd generation are in the bulk, with the 

3rd generation either in the bulk or on a brane. 

It is Also important to confirm these results and conclusions made at one loop that are sensitive 

to this scale are still consistent and under control at two (and higher) loops. For instance one 

might be concerned that one loop linear sensitivity to the cutoff behaving as    do not result in 

terms of the form       at two-loop, which would then indicate a breakdown of perturbation 

theory at renormalization scales of the order of the compactification radius. 
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