الآي ـــــة بسم الله الرحمن الرحيم

قال تعالى: (وَالشَّمْسُ تَجْرِي لِمُسْتَقَرِّ لَهَا ذَلِكَ تَقْدِيرُ الْعَزِيزِ الْعَلِيمِ)

صدق الله العظيم

الايه 38 : سورة يس

DEDICATION

To my parents

To my family

To my teachers

To my friends

To any person help us to overcome any problem in our project

ACKNOWLEDGEMENT

We would like to thank the various electrical engineering department teachers and doctors at at sudan university of science and technology who helped create this project . by giving us the courage to complete our work. Finally, we thank Ust. gaffar for all his patience and everlasting.

ABSTRACT

The world population increases rapidly as a result power is needed. power nowadays depend on traditional resources such as oil and coal .but these cause air pollution .so scientists begin to think of other resources of power, they produced electricity from renewable energy that is obtained from the sun and wind. The solar power is most important clean renewable power which is mainly found in hot countries. besides technology that helps to produce electricity from solar power is needed. The obstacle that faces producing the maximum amount of electricity, is the apparent movement of the sun that makes it change its position. The objective of this research is to design a solar tracking system to harness the maximum solar irradiance. An arduino is used to control the movement of the tracking system. An arduino is programmed to detect the sun light during the day by using light dependent resisters LDR. Then a signal is sent to the servo motor to control the movement of the solar panel to get the maximum solar irradiance. The result of the simulation obtained by proteus program approved the efficiency of the system.

مستخلص

يزداد عدد سكان العالم يوما بعد يوم مما يؤدي لزيادة الطلب على الطاقة. معظم الطاقة المنتجة تعتمد على المصادر التقليدية كالبترول والفحم. هذه المصادر تسبب تلوث البيئة ،لذلك اهتم العلماء بالاستفادة من مصادر الطاقة المتجددة والنظيفة كالرياح وضوء الشمس لتوليد الكهرباء. تعتبر الطاقة الشمسية من اهم مصادر الطاقة المتجددة لتوفرها خصوصا في الدول الحارة .اضافة الى ذلك توفر التكنولوجيا المستخدمة لتوليد الكهرباء من الطاقة الشمسية ولكن المشكلة التي تعيق انتاج اكبر قدر ممكن من الطاقة هو حركة الشمس وتغير موقعها خلال اليوم والسنة. الهدف الاساسي لهذا البحث هو تصميم نظام تتبع شمسي للحصول على اكبر قدر من ضوء الشمس . تم استخدام الاردوينو في حركة النظام. ثم برمجة الاردوينو للكشف على ضوء الشمس باستخدام مقاومة ضوئية متغيره ثم ترسل الاشارة لمحرك الخدمة لتحريك الالواح الشمسية للحصول على اكبر قدر من ضوء الشمس. الخدمة لتحريك الالواح الشمسية للحصول على اكبر قدر من ضوء الشمس. النظام.

TABLE OF CONTENT

الآية	I
Dediction	II
Acknowledgement	III
Abstract	IV
Table Of Contents	V
List Of Figures	VI
CHAPTER ONE	
INTRODUCTION	
1.1 General	1
1.2 Problem statement	1
1.3 Objectives	1
1.4 Methodology	2
1.5 Research Outline	2
CHAPTER TWO	
SOLAR ENERGY AND SUN TRACKER	
2.1 Introduction about solar energy	3
2.2 Solar-Cells	7
2.3 Sun Track	9

2.4 Types of Trackers	11
CHAPTER THREE	
LITERITURE REVIEW	
3.1 Introduction	13
3.2 Types of control theory	14
3.3 Role of control theory	15
3.4 Arduino	16
3.5 Servo motor	21
CHAPTER FOUR	
SIMULATION AND DESIGN	
4.1 Introduction	24
4.2 List of Components	24
4.3 Electrical Circuit	26
4.4 Operation of tracking system	26
4.5 Movement and positioning conditions	27
4.6 Design	32

CHAPTER FIVE	
CONCLUSION AND RECOMMENDATION	
5.1 Conclusion	34
5.2 Recommendation	34
5.3 Programming code	35
References	38

LIST OF FIGURES

2.1	Solar cell	7
2.2	Daily directional movement of dual-sun tracker	10
2.3	The difference between fixed frame and dual-axis tracker	12
3.1	Arduino architecture	17
3.2	arduino plug in	18
3.3	arduino uno components	19
3.4	Light Detecting Resistors	23

4.2	servo motor components	25
4.3	Connection diagram	26
4.4	servo off-mode	27
4.5	servo1 clockwise rotation	28
4.6	servo1 anticlockwise rotation	29
4.7	servo2 clockwise rotation	30
4.8	servo2 anticlockwise rotation	31
4.9	Full-design	33