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Abstract 

We formulated space-time in terms of twistors. In this formulation 

the points of space-time (events) are derived from twistors. So twistors 

are shown to be the primitive objects from which all concepts of space-

time arise. Differential equations, describing conformal fields may be 

written in twistor terms. We utilized complex structure in 𝑅3 to construct 

geometrical solutions for Laplace equation, wave equation and monopole 

equation. The complex space used is the so called mini – twistor  space 

and the solutions in all the above cases is given by a contour integral of   

a twistor function over a bundle space of one–dimensional complex 

projective space. 
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 المستخلص

كان من الإلتفاف نستمد نقاط الزمكان حسب شروط الإلتفاف، بهذه الصيغة قمنا بصياغة الزم

كان. حيث من خلالها  تنبثق كل مفاهيم الزموبالتالى يمكن إعتباره بأنه الكائنات البدائيه التى 

نجد أن المعادلات التفاضليه التى تصف الحقول الإمتثاليه يمكن معالجتها بدلالة الإتفاف. 

لات لابلاس والموجه إستخدمنا البناء المركب لفضاء إقليدس لإنشاء حلول هندسيه لكل من معاد

والميغناطيس أحادى القطب. إن الفضاء المركب المستخدم هو فضاء الإلتفاف الأصغر. ولقد 

تمت حلول المعادلات السابقة  بواسطة التكامل الكنتورى لدالة الإلتفاف على فضاء الحزمه 

 للفضاء الإسقاطى المركب.
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Introduction 

Twistors were introduced by Sir Roger Penrose and his associates 

since 1960, as a new way of describing the geometry of space-time where 

the ordinary space–time concepts can be translated into twistor terms. 

The primary geometrical object is not a point in Minkowiski space but a 

null straight line (a twistor) or, more generally, a twisting congruence of 

null lines. It turns out that twistor algebra has the same type of 

universality in relation to the Lorentz group. Thus, twistor theory is a 

applicable to quantum field theory and free fields of zero- rest- mass. It 

also formulates other fields such as Yang Mills fields. The original 

motivation was to unify general relativity and quantum mechanics in a 

non-local theory based on complex numbers. The application of twistor 

theory to differential equations and integrability has been an unexpected 

spin off from the twistor programme. It has been developed over the last 

30 years by the Oxford school of Penrose and Atiyah with the crucial 

early input from Ward, Hitchin and further contributions from Lionel 

Mason, George Sparling, Paul Tod, Nick Woodhouse and others.  

Penrose realized that using the space-time continuum picture to 

describe physical processes is inadequate not only at the plank scales of 

10−33𝑐𝑚 but also at the much larger scales of elementary particles or 

perhaps atoms, where the quantum becomes important. He believes that 

space time is created out of quantum processes themselves at the sub a 

tom level. 

The mathematical tool in field theories is not suitable for the new 

formulation since the field equations are based on well-behaved functions 

varying smoothly in space time. Thus his mathematical tool is geometry 

Instead of differential equations. However, space –time descriptions of 

the normal kind have been used at the atomic or particle level for long 

time with extraordinary accuracy. Thus, this new geometrical picture 

must, at that level, be mathematically equivalent to the normal space–

time picture in the scene that some kind of mathematical Transformation 

must exist between the two pictures. 

 The initial attempt to formulate discrete space – time used spinors 

as the building block. The spinors is a mathematical object that is used in 

the quantum theory to describe the spin of the elementary particles. It is 

the simplest quantum object having only two possible states- spin up and 
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spin down. It is argued that if the distinction between a spin up and spin 

down is to have meaning within a quantum theory set in empty space, it 

seems to imply the spinors actually create their own space – a sort of 

quantum version of the more familiar space time. The rules for putting 

spinors together involve pure addition and subtraction and have nothing 

to do with the ideas of continuity. They join together to form a spin 

network.  

Twistor theory offers another alternative to the space-time 

continuum, considering that the basic objects describing the geometry of 

the space-time are four-dimensional complex vectors, called twistors. In 

this approach the points are obtained from intersections of twistors, 

becoming secondary objects. Twistor theory attempts to reformulate basic 

physics in twistor language. Similar to strings, twistors are basic objects 

with a dual character. They are used to replace the points as the basic 

geometric objects, but can also be used to describe elementary particles. 

Interactions between particles are explained by means of twistor 

diagrams. One of the many advantages of twistor theory is that it has a 

natural complex character, which is needed in working with quantum 

mechanics. 

In this thesis, we discuss the twistor space and some applications 

for differential equations representing the non Abielian monopole 

equation. The structure of this paper is as follows. 

In chapter one we introduced the basic concepts used in this 

research, such as manifold, differential manifold, fiber bundle and 

tensors. 

 In chapter two we introduced the basic concepts and techniques 

used in spinor and twistor theory. This is necessary in order to understand 

why we are interested in the topics discussed in this research. Section 2.1 

presents some basic spinor theory, focusing on the properties used here. 

One of the main features of twistor theory is that it is conformal. In 

section 2.2 we see how the conformal group arises naturally in the 

spinorial setting. This chapter ends with the presentation in section 2.3 of 

some important concepts and results in twistor theory, ending with the 

representation of points as intersections of twistors. 

In chapter three we studied the zero rest mass field equations and 

their twistor solutions.  
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  Chapter four delt with the basic concepts used in this chapter, such 

as complex projective space CPn and holomorphic line bundle. Section 

(2) dealt with a complex structure on 𝑅3.  In this section we defined the 

twistor space to be the space of oriented lines in R3, it is infact the non- 

trivial tangent bundle T S2. Differential equations in R3 in terms of 

twistor functions have been treated in section (3). In this section we 

motivated Penrose transform by introducing the solution of the wave 

equation by a closed contour integral of a twistor function. Similarly 

integrating of an appropriate twistor function along a closed contour 

integral delivers a solution of a harmonic equation. The closed contour on 

both cases is in the one – dimensional complex projective space. The last 

section provided a twistor solution to the monopole equation. This 

equation is infact shown to be the itegrability conditions for linear Lax 

equations that were interpreted geometrically as null 2- planes that 

correspond to the points of the twistor space 𝑇 via the incidence relation 

given by an equation (30) that yields two affine coordinates (𝜆 , 𝜂) where 

𝜆 = 𝜋0 𝜋1⁄  and 𝜂 =
𝜔

𝜋2
 correspond to the homogenous coordinates  

(𝜔 , 𝜋0 , 𝜋1 ) on the twistor space 𝑇. Thus we constructed holomorphic 

vector bundle over the twistor space 𝑇. 

In chapter five we study advance application of twistor theory:  
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 بسم الله الرحمن الرحيم

Chapter One 

Manifolds and Tensors 

1.1 Introduction to Manifold: 

Basically an m-dimensional (topological) manifold is a topological 

space 𝑀 which is locally homeomorphic to 𝑅𝑚. A more precise definition 

is: 

1.1.1 Definition: (Topological n-Manifolds) 

A topological space 𝑀 is called a topological n-manifolds, 𝑛 ∈ ℕ, if  

(i)  𝑀 is Hausdorff, 

(ii)  for any 𝑝 ∈ 𝑀 there exists a neighborhood 𝑈 of 𝑝 which is                      

homeomorphic to an open subset 𝑉 ⊂ 𝑅𝑚, and           

(iii) 𝑀 has a countable bases of open sets. 

1.1.2 Definition: (Coordinate Charts) 

       Let 𝑀 be a topological n-manifold. A coordinate chart of 𝑀 is a pair 

(𝑈, 𝑥), where  

(i)  𝑈 ⊂ 𝑀 is open    

     (ii)       𝑥 ∶ 𝑈 → 𝑥𝑈 ⊂  𝑅𝑛  is a homeomorphism, 𝑥𝑈 ⊂  𝑅𝑛, open  

1.1.3 Definition: (Compatible Charts) 

        We see that two charts (𝑈, 𝑥) and (𝑉, 𝑦) of a topological manifolds 

are 𝐶∞ -Compatible if 𝑈 ∩ 𝑉 = ∅ or  

𝑧 = 𝑦 ∘ 𝑥−1|𝑥(𝑈∩𝑉): 𝑥(𝑈 ∩ 𝑉) → 𝑦(𝑈 ∩ 𝑉)                 (1.1) 

is a 𝐶∞-diffeomorphism,  
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Fig (1) 

 1.1.4 Definition: (A 𝑪∞-Atlas)          

      A 𝐶∞-atlas, 𝒜 or simply an atlas on a locally Euclidean space 𝑀 is a 

set of  𝐶∞ -compatible charts such that 

𝑀 = ⋃ 𝑈(𝑈,𝑥)∈𝒜                                    (1.2) 

     An atlas 𝒜 is said to be maximal if it is not contained in a larger 

atlas; in other words, if 𝑈 is any other atlas containing  𝑀 , then  𝑈 =  𝑀  

1.1.5 Definition: (A differentiable or (Smooth) n- Manifold)  

      A differentiable n-manifolds or (smooth n- manifold) is a pair 

(𝑀,𝒜), Where 𝑀 is a topological n-manifold and 𝒜 is a maximal 
C -

atlas of 𝑀, also called a differentiable structure of  𝑀. 

1.1.6 Note 

          We abbreviate 𝑀 or 𝑀𝑛 and say that 𝑀 is a 𝐶∞-manifold, a 

differentiable manifold, or a smooth manifold. 

1.1.7 Definition  

         Let (𝑀𝑚,𝒜 ) and (𝑁𝑛, ℬ ) be 𝐶∞-manifold. We say that a mapping 

𝑓:𝑀 → 𝑁 is  𝐶∞ (or smooth) if each local representation of 𝑓 (with 

respect to 𝒜 and ℬ) is 𝐶
∞. More precisely, if the composition 𝑦 ∘ 𝑓 ∘ 𝑥−1  

is smooth mapping 𝑥(𝑈 ∩ 𝑓−1𝑉) → 𝑦𝑉 for every charts (𝑈, 𝑥) ∈ 𝒜 and 

(𝑉, 𝑦) ∈ ℬ.We say that 𝑓:𝑀 → 𝑁 is 𝐶∞- diffeomorphism if  𝑓 is 𝐶∞ and 

it has an inverse 𝑓−1  is  𝐶∞ , too. 
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Fig (2) 

1.1.8 Remark 

         Equivalently, 𝑓:𝑀 → 𝑁  is 𝐶∞ if, for every 𝑝 ∈ 𝑀, there exist 

charts (𝑈, 𝑥)  in 𝑀. And (𝑉, 𝑦) in 𝑁 such that 𝑝 ∈ 𝑈, 𝑓𝑈 ⊂ 𝑉, and 𝑦 ∘ 𝑓 ∘

𝑥−1 is 𝐶∞(𝑥𝑈).   

1.1.9 Example: 

 (i)    𝑀 = 𝑅𝑛,  𝒜 = {𝑖𝑑}, �̅� = a canonical structure. 

 (ii) If 𝑀 is a differentiable manifold and 𝑈 ⊂ 𝑀 is open, then 𝑈 is a                         

differentiable manifold in a natural way        

(iii) Product manifolds. Let (𝑀,𝒜 ) and (𝑁, ℬ ) be differentiable       

manifolds and let 𝑝1:𝑀 × 𝑁 → 𝑀 and 𝑝2:𝑀 × 𝑁 → 𝑁 be the 

projections. 

 Then 

𝐶 = {(𝑈 × 𝑉, (𝑥 ∘ 𝑝1, 𝑦 ∘ 𝑝2)): (𝑈, 𝑥) ∈ 𝒜, (𝑉, 𝑦) ∈ ℬ}          (1.3) 

 is 𝐶∞-atlas on 𝑀 ×𝑁. For example 

 

(i) Cylinder 𝑅1 × 𝑆1  

(ii) Tours 𝑆1 × 𝑆1 = 𝑇2 
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1.1.10 Tangent Space 

        Let  𝑀 be a differentiable manifold, 𝑝 ∈ 𝑀 and 𝛾: 𝐼 → 𝑀 a 𝐶∞-path 

such that 𝛾(𝑡) = 𝑝 for some 𝑡 ∈ 𝐼, where  𝑡 ∈ 𝐼  is an open interval.  

 

Fig (3) 

Write 

𝐶∞(𝑝) = {𝑓: 𝑈 → 𝑅 |𝑓 ∈ 𝐶∞(𝑈),𝑈 𝑠𝑜𝑚𝑒 𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑝}. 

1.1.11 Note 

Here 𝑈 may depend on 𝑓, therefore we write 𝐶∞(𝑝) instead of 

𝐶∞(𝑈). 

Now the path 𝛾 defines a mapping  �̇�𝑡: 𝐶
∞(𝑝) → 𝑅, 

�̇�𝑡𝑓 = (𝑓 ∘ 𝛾)
′(𝑡)                                            (1.4) 

1.1.12 Note 

The real-valued function  𝑓 ∘ 𝛾  is defined on some neighborhood of  𝑡 ∈

𝐼  and  (𝑓 ∘ 𝛾)′(𝑡) is its usual derivative at t. 

Interpretation: We may interprete �̇�𝑡𝑓 as ”a derivative of 𝑓 in the 

direction of 𝛾 at the point p” 
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1.1.13 Example:( 𝑴 = 𝑹𝒏)  

  If 𝛾 = 𝛾
1, …… , 𝛾𝑛: 𝐼 → 𝑅𝑛 is smooth path and �́� = �́�1(𝑡), …… , �́�𝑛(𝑡)  is 

the derivative of  𝛾 at 𝑡, the 

�̇�𝑡𝑓 = (𝑓 ∘ 𝛾)
′(𝑡) = �́�(𝑝)�́�(𝑡) = �́�(𝑡) ∙ ∇𝑓(𝑝)                  (1.5) 

. 

 

Fig (4) 

In general: The mapping �̇�𝑡  satisfies: 

Suppose 𝑓. 𝑔 ∈ 𝐶∞(𝑝)  pCgf ,  and  𝑎, 𝑏 ∈ 𝑅.  Then  

(i)  �̇�𝑡(𝑎𝑓 + 𝑏𝑔) = 𝑎�̇�𝑡𝑓 + 𝑏�̇�𝑡𝑔,  

(ii)  �̇�𝑡(𝑓𝑔) = 𝑔(𝑝)�̇�𝑡𝑓 + 𝑓(𝑝)�̇�𝑡𝑔.  

 We see that �̇�𝑡 is a derivation. 

 Motivated by the discussion above we define 

1.1.14 Definition: (A Tangent Vector)  

A tangent vector of  𝑀, 𝑝 ∈ 𝑀 is a mapping 𝑣: 𝐶∞(𝑝) → 𝑅  that satisfies: 

  

(i) 𝑣(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑣(𝑓) + 𝑏𝑣(𝑓), 𝑓, 𝑔 ∈ 𝐶∞(𝑝), 𝑎, 𝑏 ∈ 𝑅   

(ii) 𝑣(𝑓𝑔) = 𝑔(𝑝)𝑣(𝑓) + 𝑓(𝑝)𝑣(𝑓) 
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1.1.15 Definition: (The Tangent Space) 

     The tangent space at 𝑝 is (𝑅-) linear vector of tangent vector at p, 

denoted by 𝑇𝑝𝑀  or 𝑀𝑝 

1.1.16 Definition (Tangent Map) 

      Let 𝑀𝑚 and 𝑁
𝑛

 be differentiable manifolds and let 𝑓:𝑀 → 𝑁 be 𝐶
∞ 

map. The tangent map of  𝑓 at 𝑝 is a linear map 𝑓∗: 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁   

defined by  

(𝑓∗𝑣)𝑔 = 𝑣(𝑔 ∘ 𝑓), ∀𝑔𝜖𝐶
∞(𝑓(𝑝)), 𝑣 ∈  𝑇𝑝𝑀                (1.6) 

We also write 𝑓∗𝑝 or 𝑇𝑝𝑓 

1.1.17 Remarks 

It easily seen that 𝑓∗𝑣 is a tangent vector at 𝑓(𝑝)  for all 𝑣 ∈ 𝑇𝑝𝑀  and that  

𝑓∗ is linear  

1.1.18 Tangent Bundle 

      Let 𝑀 be a differentiable manifold. We define the tangent bundle 𝑇𝑀 

of  𝑀 as a disjoint union of all tangent spaces of  𝑀, i.e. 

𝑇𝑀 = ⋃ 𝑇𝑝𝑀𝑝∈𝑀                                     (1.7) 

Points in 𝑇𝑀 are thus pairs (𝑝, 𝑣), where 𝑝 ∈ 𝑀 and  𝑣 ∈ 𝑇𝑝𝑀. We 

usually abbreviate 𝑣 = (𝑝, 𝑣),  because the condition 𝑣 ∈ 𝑇𝑝𝑀 determines 

𝑝 ∈ 𝑀 uniquely. 

Let 𝜋: 𝑇𝑀 → 𝑀  be the projection 

   𝜋(𝑣) = 𝑝,   if    𝑣 ∈ 𝑇𝑝𝑀                            (1.8) 

The tangent bundle 𝑇𝑀 has a canonical structure of a differentiable 

manifold.  
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1.1.19 Definition: (Sub Manifolds) 

 Let 𝑀 and 𝑁  be differentiable manifold and NMF :  be 𝐶∞ map. 

We say that  

(i)       𝑓 is a submersion if 𝑓∗𝑝 ∶ 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁  is surjective ∀𝑝 ∈ 𝑀  

(ii) 𝑓 is an immersion if𝑓∗𝑝 ∶ 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁 is injective ∀𝑝 ∈ 𝑀 

(iii) 𝑓 is an embedding if 𝑓 is an 𝑓 ∶ 𝑀 → 𝑓𝑀 immersion and is a 

homeomorphism. 

 If 𝑀 ⊂ 𝑁 and the inclusion 𝑖 ∶ 𝑀 → 𝑁,   𝑖(𝑝) = 𝑝  is an embedding, 

we say that 𝑀 is a submanifold of 𝑁. 

1.1.20 Remark  

  If  𝑓:𝑀𝑚 → 𝑁𝑛 is an immersion, then 𝑚 ≤ 𝑛 and is the 

codimension of  𝑓. 

1.1.21 Examples  

(i) If 𝑀1………𝑀𝑘 are smooth manifolds, then all projections   

𝜋𝑖 :𝑀1 × ……×𝑀𝑘 → 𝑀𝑖 are submersions. 

(ii)  (𝑀 = 𝑅, 𝑁 = 𝑅2) ∝: 𝑅 → 𝑅2, 𝛼(𝑡) = (𝑡, |𝑡|) is not differentiable 

at t = 0. This 𝛼is not an immersion 

 

 Fig (5) 

(iv) ∝ ∶ 𝑅 → 𝑅2, 𝛼(𝑡) = (𝑡3, 𝑡2)  is 𝐶∞ but not an immersion since 

∝́ (0) = 0. 
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                                    Fig (6) 

(v) ∝ ∶ 𝑅 → 𝑅2, 𝛼(𝑡) = (𝑡3 − 4𝑡,  𝑡2 − 4) is 𝐶∞ and an immersion 

but not an embedding (𝛼(±2) = (0,0)) . 

 

Fig (7) 

(vi) The map ∝  (in the picture below) has an inverse but it is not an  

embedding since the inverse in not continuous. 

 

Fig (8) 

(vii) The following ∝ is an embedding 
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Fig (9) 

1.1.22 Definition: (Orientation) 

        A smooth manifold 𝑀 is orientation if it admits a smooth atlas 

{(𝑈𝛼 , 𝑥𝛼)} such that for every 𝛼 and 𝛽, with 𝑈𝛼 ∩ 𝑈𝛽 = 𝑊 ≠ ∅, the 

Jacobian determinant of 𝑥𝛽 ∘ 𝑥𝛼
−1 is a positive at each point  𝑞 ∈ 𝑥𝛼𝑊, 

i.e. 

𝑑𝑒𝑡(𝑥𝛽 ∘ 𝑥𝛼
−1)

′
(𝑞) > 0, ∀𝑞 ∈ 𝑥𝛼𝑊                           (1.9) 

 

 

 

Fig (9) 

   In the opposite case 𝑀 is non orientable. If 𝑀 is orientable, then an atlas 

satisfying (1.9) is called an orientation of 𝑀. Furthermore, 𝑀 (equipped 

with such atlas) is said to be oriented. We say that two atlases satisfying 

(1.9) determine the same orientation if their union satisfies (1.9), too. 
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1.2 Fibre Bundles 

1.2.1 Definition: (Fibre Bundle)  

A fibre bundle over a topological space 𝑋 is a collection                

(𝐸, 𝜋, 𝐹) satisfying the following conditions 

(i)  𝐸  and  𝐹 are topological spaces. 

(ii)  𝜋 ∶ 𝐸 → 𝑋  is a continuous surjection. 

(iii)   For all 𝑥 ∈  𝑋  there is a neighbourhood 𝑈 ∋  𝑥 and a 

homeomorphism  𝜑 : 𝜋−1(𝑈) → 𝑈 × 𝐹  making the following 

diagram commute 

 

Fig (10) 

We call 𝐸 the total space, 𝑋 the base space, 𝜋 the projection, 𝐹 the fibre, 

and (𝑈, 𝜑) a local trivialisation. 

1.2.2 Remark  

Morally, a fibre bundle is a space 𝐸 which is locally a direct 

product of spaces 𝑋 and 𝐹 

1.2.3 Example 

  The direct product 𝑋 × 𝐹  is called the trivial bundle with fibre 𝐹 

over 𝑋. 
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1.2.4 Defnition: (A local Section)  

A local section of the fibre bundle (𝐸, 𝜋, 𝐹, 𝑋) over an open set 

𝑈 ⊂ 𝑋  is a map  𝑠 ∶  𝑈 →  𝐸  such that 𝜋 ∘  𝑠 =  𝑖𝑑𝑋. The space of 

local sections over 𝑈 is denoted Γ(𝑈, 𝐸). 

1.2.5 Remark  

The sections of a fibre bundle form a sheaf on 𝑋. We abuse notation by 

referring to this sheaf as 𝐸, when it is convenient. 

1.2.6 Definition: (Transfer Function) 

Let (𝜑𝑖, 𝑈𝑖) and (𝜑𝑗,   𝑈𝑗)  be two local trivialisations with                 

𝑈𝑖𝑗 = 𝑈𝑖⋂𝑈𝑗 ≠  ∅ . Then on 𝑈𝑖𝑗 × 𝐹 we define the transfer function 

𝑇𝑖𝑗 = 𝜑𝑖  ∘ 𝜑𝑗
−1                                   (1.10) 

1.2.7 Remark  

This is a homeomorphism by definition of 𝜑𝑖  and  𝜑𝑗  . 

1.2.8 Definition: (The Transition Function)  

  Denote the homeomorphism group of F by Homeo(𝐹). Define 

the transition function 𝑡𝑖𝑗 ∶  𝑈𝑖𝑗  →  𝐻𝑜𝑚𝑒𝑜(𝐹)  by 

𝑇𝑖𝑗(𝑥, 𝑓)  =  (𝑥, 𝑡𝑖𝑗(𝑥)𝑓)                                (1.11) 

1.2.9 Remark 

  The transition functions for a fibre bundle tell us how to glue 

together the locally trivial areas on overlaps. They can be regarded as 

encoding the twisting of the fibre bundle. Clearly if 𝐸 is the trivial bundle 

𝑋 ×  𝐹  then one can choose all transition functions such that 

𝑡𝑖𝑗(𝑥)  =  𝑖𝑑𝐹                                          (1.12) 

1.2.10 Lemma  

The transition functions satisfy the following relations 
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(i) 𝑡𝑖𝑗(𝑥)  =  𝑖𝑑𝐹  on 𝑈𝑖. 

(ii) 𝑡𝑖𝑗(𝑥)𝑡𝑗𝑖(𝑥)  =  𝑖𝑑𝐹  𝑜𝑛 𝑈𝑖 ∩  𝑈𝑗 

(iii) 𝑡𝑖𝑗(𝑥)𝑡𝑗𝑘(𝑥)𝑡𝑘𝑖(𝑥)  =  𝑖𝑑𝐹  𝑜𝑛 𝑈𝑖 ∩  𝑈𝑗 ∩  𝑈𝑘.   

1.2.11 Remark  

Apply the language of Cech cohomology to maps  𝑈 →

 𝐻𝑜𝑚𝑒𝑜(𝐹) taking the abelian group operation to be pointwise 

multiplication. The conditions (ii) and (iii) then say that the transition 

functions {𝑡𝑖𝑗} form a 1-cochain and a 1-cocycle respectively. 

1.2.12 Theorem: (Reconstructing Fibre Bundles)   

  Let 𝑋 be a space with open covering  {𝑈𝑖}. Suppose we are given a 

space 𝐹, a group 𝐺 ≤  𝐻𝑜𝑚𝑒𝑜(𝐹) and functions 𝑡𝑖𝑗 ∶  𝑈𝑖𝑗  →  𝐺 

satisfying the 1-cocycle condition. Then there exists a fibre bundle 𝐸 over 

𝑋 with fibre 𝐹 and transition functions  𝑡𝑖𝑗 . 

Proof 

 Let �̃�  = ⨆𝑖(𝑈𝑖  ×  𝐹)  endowed with the product topology. Define 

an equivalence relation on  �̃�  by  

 (𝑥, 𝑓)  ∼  (𝑦, 𝑔)  iff   𝑥 =  𝑦    𝑎𝑛𝑑    𝑔 =  𝑡𝑖𝑗(𝑥)𝑓             (1.13) 

Whenever (𝑥, 𝑓)  ∈  𝑈𝑖  ×  𝐹 and (𝑦, 𝑔)  ∈  𝑈𝑖  ×  𝐹. Note that we 

required the cocycle condition for this to be transitive. Now we let 𝐸 =

 �̃� ~⁄  endowed with the quotient topology. 

There is a natural projection 𝜋 ∶  𝐸 →  𝑋  given by 𝜋([𝑥, 𝑓])  =  𝑥. 

Wedefine local trivialisations 𝜑𝑗  ([𝑥, 𝑓])  =  (𝑥, 𝑓), which are 

homeomorphisms by construction of 𝐸, and clearly satisfy the required 

commutative diagram. Finally on 𝑈𝑖𝑗    we have  

   𝜑𝑖  ∘ 𝜑𝑗
−1(𝑥, 𝑓)  =  (𝑥,  𝑡𝑖𝑗(𝑥)𝑓)                       (1.14) 
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So the transition functions are  𝑡𝑖𝑗 . 

1.2.13 Remark   

We have an immediate converse to the statement in Remark 3:9, 

namely if we can choose all transition functions such that   𝑡𝑖𝑗(𝑥)  =  𝑖𝑑𝐹 

then the bundle is trivial. 

1.2.14 Lemma  

Let (𝐸, 𝜋, 𝐹) be a fibre bundle over 𝑋 with transition functions 𝑡𝑖𝑗 

relative to a covering 𝑈𝑖 of 𝑋. Suppose we are given a collection of maps 

𝑓𝑖 ∶  𝑈𝑖  →  𝐹 satisfying on  𝑈𝑖𝑗 

𝑓𝑗(𝑥)  =  𝑡𝑗𝑖(𝑥)𝑓𝑖(𝑥)                                  (1.15) 

Then {𝑓𝑖} determines a global section of 𝐸 and all global sections arise in 

this way. 

Proof 

  Let 𝜑𝑖: 𝜋
−1(𝑈𝑖) → 𝑈𝑖 × 𝐹be the local trivialisations inducing the 

transition functions 𝑡𝑗𝑖 . Then 𝑓𝑖 determines a local section 𝑓𝑖 of  𝐸 over 

𝑈𝑖 by 

𝑓𝑖(𝑥)  = 𝜑𝑖
−1(𝑥, 𝑓𝑖(𝑥))                              (1.16) 

 

Now on 𝑈𝑖𝑗 we have 

𝑓𝑗(𝑥) = 𝜑𝑖
−1(𝑥, 𝑓𝑖(𝑥)) =  𝜑𝑗

−1 (𝑥, 𝑡𝑗𝑖𝑓𝑖(𝑥)) 

= 𝜑𝑗
−1𝜑𝑗𝜑𝑖

−1 (𝑥, 𝑓𝑖(𝑥)) =  𝑓𝑖(𝑥)                     (1.17) 

So the local sections glue to form a global section  𝑓. Conversely if  𝑓 is a 

global section then by restriction we obtain local sections 𝑓 on 𝑈𝑖 with 

𝑓𝑖 = 𝑓𝑗   on 𝑈𝑖𝑗 . 

 

Defining 𝑓𝑖(𝑥)  =  𝑝𝑟𝑜𝑗2 ∘  𝜑𝑖 ∘  𝑓(𝑥) we have 

 

(𝑥, 𝑓𝑗(𝑥)) =  𝜑𝑗𝜑𝑖
−1 (𝑥, 𝑓𝑖(𝑥)) =  (𝑥, 𝑡𝑗𝑖𝑓𝑖(𝑥))              (1.19) 

on 𝑈𝑖𝑗 as required. 
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1.2.15 Definition  

 Let (𝐸, 𝜋, 𝐹) be a fibre bundle over 𝑋, and 𝐺 a subgroup of 

𝐻𝑜𝑚𝑒𝑜(𝐹). A 𝐺-atlas for (𝐸, 𝜋, 𝐹) is a collection (𝑈𝑖; 𝜑𝑖) of local 

trivialisations such that 𝑋 = ⋃𝑈𝑖 and the induced transition functions are 

𝐺-valued. 

 

1.2.16 Definition  

A G-bundle (𝐸, 𝜋, 𝐹, 𝐺) is a fibre bundle with a maximal G-atlas. 𝐺 

is called the structure group of the bundle. 

 

1.2.17 Remark 

  By definition of transition functions we consider the structure 

group 𝐺 to have a natural left action on the fibre 𝐹. We see that for a 

certain class of bundles one can also define a right action of 𝐺 on the total 

space 𝐸. This distinction is conceptually important as we develop the 

theory. 

1.2.18 Lemma  

Consider a G-bundle (E, 𝜋, F) over 𝑋. Let 𝐻 be the set of transition 

functions at  𝑥 ∈  𝑋. Then  𝐻 =  𝐺. 

 

Proof 

Clearly  𝐻 ⊂  𝐺. Let 𝑔 ∈  𝐺 and ℎ ∈  𝐻. Then there are local 

trivialisations  𝜑𝑖 and 𝜑𝑗 in some neighbourhood 𝑈 of 𝑥 such that 

 

(𝑥, ℎ. 𝑓) = 𝜑𝑖 ∘ 𝜑𝑗(𝑥, 𝑓)   for all 𝑓 ∈  𝐹                 (1.20) 

Define 

𝜑𝑘  =  (𝑖𝑑𝑈  × 𝑔ℎ
−1)  ∘ 𝜑𝑖  ∶  𝜋

−1(𝑈)  →  𝑈 × 𝐹          (1.21) 

 

a local trivialisation.  Note that  𝜑𝑘 must be in the 𝐺-atlas of  𝐸 for it is 

maximal. Moreover 

 

𝜑𝑘 ∘ 𝜑𝑗(𝑥, 𝑓)  =  (𝑥, 𝑔ℎ
−1ℎ. 𝑓)  =  (𝑥, 𝑔. 𝑓)                (1.22) 

 

so 𝑔 ∈  𝐻 as required. 
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1.2.19 Remark  

Every fibre bundle can be considered as a G-bundle by choosing 

𝐺 =  𝐻𝑜𝑚𝑒𝑜(𝐹). More generally an 𝐻-bundle is clearly a 𝐺-bundle if   

𝐻 ≤ 𝐺. 

The converse is more subtle, and motivates the following definition. 

 

1.2.20 Definition  

Let 𝐸 be a 𝐺-bundle, and suppose there exists a choice of local 

trivialisations such that the transition functions take values in 𝐻 ≤  𝐺. 

Then we say that the structure group of 𝐸 is reducible to 𝐻. 

1.2.21 Example  

A bundle is trivial iff its structure group is reducible to  {𝑖𝑑} 

 

1.2.22 Remark  

We note without proof that the reducibility of structure groups is 

related to spontaneous symmetry breaking in Yang-Mills theory and the 

identification of Riemannian metrics in differential geometry. 

 

1.2.23 Definition  

Let (𝐸𝑖 , 𝜋𝑖  , 𝐹𝑖) be fibre bundles over 𝑋𝑖 for 𝑖 =  1, 2. A morphism 

of fibre bundles is a continuous map 𝑓  ∶  𝐸1  →  𝐸2 mapping each fibre 

𝜋1
−1(𝑥) of 𝐸1 onto a fibre 𝜋1

−1 (𝑦)  of  𝐸2. 

1.2.24 Definition (Cotangent Bundle) 

 We defined earlier that the differential of a function 𝑓 ∈ 𝐶∞(𝑝)  at 

𝑝 is a linear map 𝑑𝑓𝑝: 𝑇𝑝𝑀 → 𝑅  

𝑑𝑓𝑝𝑣 = 𝑣𝑓, 𝑣 ∈ 𝑇𝑝𝑀                                   (1.23) 

 Hence 𝑑𝑓𝑝 ∈  𝑇𝑝𝑀
∗ (= the dual of 𝑇𝑝𝑀). We call 𝑇𝑝𝑀

∗ the 

cotangent space of  𝑀 at p .If (𝑈, 𝑥), 𝑥 = (𝑥1, ……𝑥𝑛) is a chart at 𝑝 and 

((𝜕1)𝑝, …… (𝜕𝑛)𝑝)  is the basis of  𝑇𝑝𝑀 consisting of coordinate vectors, 

then differentials 𝑑𝑥𝑖
𝑝
, 𝑖 = 1,……𝑛 of function 𝑥𝑖 (at 𝑝) form the dual 

basis of 𝑇𝑝𝑀
∗.Hence the differential ( at 𝑝) of function 𝑓 ∈ 𝐶∞(𝑝)can be 

written as 

𝑑𝑓𝑝 = (𝜕𝑖)𝑝𝑓𝑑𝑥𝑖
𝑝. 
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      We define the cotangent bundle of 𝑀 as a disjoint union of all 

cotangent spaces of 𝑀  

𝑇𝑀∗ = ⋃ 𝑇𝑝𝑀
∗

𝑝∈𝑀                                 (1.24) 

1.3 Tensors  

1.3.1 Definition: (Multilinear Mapping)     

    Let 𝑉1, …… , 𝑉𝑘 and 𝑊 be (real) vector spaces. A mapping 

𝐹: 𝑉1, … … , 𝑉𝑘 → 𝑊 is called a multilinear (more precisely, k-linear) if it is 

linear in each variable, i.e.  

𝐹(𝑣1, …… , 𝑎𝑣𝑖 + 𝑏𝑣𝑖 ……𝑣𝑘) = 𝑎𝐹(𝑣1, ……𝑣𝑖 , … 𝑣𝑘) + (𝑣1, ……𝑣𝑖 , … 𝑣𝑘) (1.25) 

And 𝑎, 𝑏 ∈ 𝑅 𝑖 = 1,………𝑘   for all 

1.3.2 Definition (Dual Space) 

       Let 𝑉 be a finite dimensional (real) vector space. A linear map

RVw :  is called a covector on 𝑉 and the vector space of all covectors 

(on 𝑉) is called the dual space of  𝑉 and denoted by 𝑉∗  

1.3.4 Definition: (Covariant Tensor) 

    A multilinear function 𝑇: 𝑉𝑘 → ℝ is called a covariant tensor of 

degree 𝑘 on 𝑉, and the set of all covariant tensor of degree 𝑘 is denoted  

𝑇𝑘(𝑉).  if  𝑇, 𝑆 ∈ 𝑇𝑘(𝑉)  and  𝑎 ∈ ℝ ,we define 

(𝑆 + 𝑇)(𝑣1 , … 𝑣𝑘) = 𝑆(𝑣1 , … 𝑣𝑘) + 𝑇(𝑣1 , … 𝑣𝑘)             (1.26) 

And 

(𝑎𝑆)(𝑣1 , … 𝑣𝑘) = 𝑎𝑆(𝑣1 , … 𝑣𝑘)                        (1.27) 

1.3.5 The Tensor Product Operation: 

 The Tensor Product Operation ⊗∶  𝑇𝑘(𝑉) × 𝑇𝑙(𝑉) → 𝑇𝑘+𝑙(𝑉) is 

defined by  

(𝑆 ⊗ 𝑇)(𝑣1 , … , 𝑣𝑘, 𝑣𝑘+1, … , 𝑣𝑘+𝑙) = 𝑆(𝑣1 , … 𝑣𝑘)𝑇(𝑣𝑘+1 , … 𝑣𝑘+𝑙)          (1.28) 
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1.3.6 Note 

       It is not true in general that 𝑆 ⊗ 𝑇 =  𝑇 ⊗ 𝑆. 

1.3.7 The Identities of Tensor Product 

 The following of ⊗ are easy to establish 

(i) (𝑆1 + 𝑆2) ⊗ 𝑇 = 𝑆1⊗𝑇 + 𝑆2⊗𝑇 , 

(ii) 𝑆(𝑇1 + 𝑇2) = 𝑆 ⊗ 𝑇1 + 𝑆 ⊗ 𝑇2 

(iii) (𝑎𝑆) ⊗ 𝑇 = 𝑆⊗ (𝑎𝑇) = 𝑎(𝑆 ⊗ 𝑇),  

(iv) (𝑆 ⊗ 𝑇)⊗ 𝑈 =  𝑆 ⊗ (𝑇⊗𝑈). 

And so both (𝑆 ⊗ 𝑇)⊗ 𝑈, 𝑆 ⊗ (𝑇⊗𝑈) are simply written as 𝑆 ⊗

𝑇⊗𝑈. 

1.3.8 Note 

       (i) The first three identities above, indicate that ⊗ is bilinear, 

while the last indicate that ⊗ is associative  

      (ii) 𝑇1(𝑉) = 𝑉
∗ (The dual of 𝑉). 

1.3.9 Theorem 

        Let  𝑒1, …… , 𝑒2 be a basis for 𝑉,  and let 𝑒1, …… , 𝑒𝑛 be the dual 

basis of  𝑉∗,  so that 

𝑒𝑖(𝑒𝑗) = 𝛿𝑗
𝑖 = {

1, 𝑖𝑓 𝑖 = 𝑗
0, 𝑖𝑓 𝑖 ≠ 𝑗

}                                (1.29) 

Then the set of all k-fold tensor products 𝑒𝑝1⊗𝑒𝑝2⊗…⊗ 𝑒𝑝𝑘, 1 ≤

𝑝1,𝑝2,…… , 𝑝𝑘 ≤ 𝑛 is a basis for 𝑇𝑘(𝑉), which therefore has dimension 

𝑛𝑘. 

1.3.10 Lemma  

         The set of all  {𝑝1,𝑝2,…… , 𝑝𝑘}: 1 ≤ 𝑝1,𝑝2,…… , 𝑝𝑘 ≤ 𝑛  is the set of 

all ranges of function,  𝑝: 1,… , 𝑘 → 1,… , 𝑛  𝑖𝑛  𝑘 → 𝑛  notation, the set of 
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all 𝑒𝑝1⊗𝑒𝑝2⊗…⊗ 𝑒𝑝𝑘 could be written 𝑒𝑝: 𝑝 ∈ 𝑛
𝑘
 where 

𝑒𝑝 =𝑒
𝑝1⊗𝑒𝑝2⊗…⊗𝑒𝑝𝑘

 . 

Proof 

𝑒𝑝1⊗…⊗ 𝑒𝑝𝑘(𝑒𝑞1, … , 𝑒𝑞𝑘) = 𝑒
𝑝1(𝑒𝑞1). 𝑒

𝑝2 (𝑒𝑞2)…𝑒
𝑝𝑘 (𝑒𝑞𝑘)= 

= 𝛿𝑞1
𝑝1. 𝛿𝑞2

𝑝2…𝛿𝑞𝑘
𝑝𝑘 

= {
1, 𝑖𝑓 p1 = 𝑞1, … , 𝑝𝑘 = 𝑞𝑘

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

= {
1, 𝑖𝑓 𝑝 = 𝑞

0, 𝑖𝑓 𝑝 ≠ 𝑞 
 }                                  (1.30) 

 

Hence 

𝑒𝑝 (𝑒𝑞) = 𝛿𝑞 
𝑝

={
1, 𝑖𝑓 𝑝 = 𝑞

0, 𝑖𝑓 𝑝 ≠ 𝑞 
 }                           (1.31) 

Then, if 𝑉1, …… , 𝑉𝑘 are 𝑘 vectors in 𝑉  with 𝑉𝑖 =∑ aij
𝑛

𝑗=1
𝑒𝑗 and 𝑇 ∈

𝑇𝑘(𝑉), then 

T(𝑣1, … , 𝑣𝑘) = ∑ 𝑎1𝑞1𝑎2𝑞2…𝑎𝑘𝑞𝑘𝑇(𝑒𝑞1 , … , 𝑒𝑞𝑘)

𝑛

𝑞1,…,𝑞𝑘=1

 

= ∑ 𝑇(𝑒𝑞1 , … , 𝑒𝑞𝑘)𝑒
𝑞1𝑛

𝑞1,…,𝑞𝑘=1 ⨂…⨂𝑒𝑞𝑘(𝑣1, … , 𝑣𝑘)        (1.32) 

Thus   

𝑇 = ∑ 𝑇(𝑒𝑞1 , … , 𝑒𝑞𝑘)𝑒
𝑞1⨂𝑛

𝑞1,…,𝑞𝑘=1 …… .⨂𝑒𝑞𝑘            (1.33) 

i.e  

𝑇 = ∑ 𝑇(𝑒𝑞)
𝑞∈𝑛

𝑘 𝑒𝑞 = ∑ 𝐶𝑞𝑒
𝑞

𝑞∈𝑛
𝑘                      (1.34) 

 Where 
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𝐶𝑞 = 𝑇 (𝑒𝑞) = 𝑇(𝑒𝑞1 , … , 𝑒𝑞𝑘)                        (1.35) 

And 

𝑇(𝑉1, … . . , 𝑉𝑘) = ∑ 𝐶𝑞𝑒
𝑞

𝑞∈𝑛
𝑘 (𝑣1, … , 𝑣𝑘)                (1.36) 

Consequently 

{𝑒𝑝}
𝑝∈𝑛

𝑘  span  𝑇𝑘(𝑉)                                (1.37) 

   Suppose now that there are numbers {𝑎𝑝}
𝑝∈𝑛

𝑘 , such that 

∑ 𝑎𝑝𝑒
𝑝

𝑝∈𝑛
𝑘 = 0                                   (1.38) 

Then 

0 = ∑ 𝑎𝑝𝑒
𝑝

𝑝∈𝑛
𝑘 (𝑒𝑞) = ∑ 𝑎𝑝𝛿𝑞

𝑝

𝑝∈𝑛
𝑘 = 𝑎𝑞                  (1.39) 

Thus 𝑎𝑞 = 0, for all 𝑞 ∈ 𝑛
𝑘
, and therefore {𝑒𝑝}

𝑝∈𝑛
𝑘 are linearly 

independent, and 𝑑𝑖𝑚(𝑇𝑘(𝑉) = 𝑛
𝑘),  where 𝑛 = 𝑑𝑖𝑚 𝑉. For this reason 

we write 

𝑇𝑘(𝑉) = 𝑉
∗⊗……⊗𝑉∗ (k factors) = ⨂1

𝑘𝑉∗          (1.40) 

If  𝑇 ∈  𝑇𝑘(𝑉), and if we write 

𝑇 = ∑ 𝑇𝑞1,…,𝑞𝑘𝑒
𝑞1𝑛

𝑞1,…,𝑞𝑘=1 ⨂𝑒𝑞2⨂…⨂𝑒𝑞𝑘                 (1.41) 

where 𝑇𝑞1…𝑞𝑘 = 𝑇(𝑒𝑞1, … , 𝑒𝑞𝑘), then the set of 𝑛𝑘 numbers 𝑇𝑞1,…,𝑞𝑘 are 

called the components of T relative to the given bases {𝑒1, …… , 𝑒𝑛}  

and(its dual) {𝑒1, …… , 𝑒𝑛} of  𝑉 and 𝑉∗ respectively. 

1.3.9 Definition: (Contravariant Tensors)  

        We define the space of contravariant tensors of degree 𝑠, denoted 

𝑇𝑠 as 𝑇𝑠 = 𝑉 ⊗…⊗𝑉  (s times). Then every contravariant tensor 𝑘 of 

degree 𝑠 can be expressed uniquely as a linear combination 



20 

 

𝐾 = ∑ 𝐾𝑖1…𝑖𝑠𝑛
𝑖1,…,𝑖𝑠=1

𝑒𝑖1⊗…⊗ 𝑒𝑖𝑠                       (1.42) 

 where 𝐾𝑖1…𝑖𝑠 are components  (they are 𝑛𝑠 numbers) of 𝐾 with respect to 

the basis {𝑒1, …… , 𝑒𝑛}  of  𝑉. 

 we can write for short 

𝐾 = ∑ 𝐾𝑝
𝑝∈𝑛

𝑠 𝑒𝑝                                    (1.43) 

 

1.3.10 Definition: (Mixed Tensor Space) 

 We define the (mixed) tensor space type (𝑟, 𝑠) or tensor space of 

contravariant degree 𝑟 and covariant degree 𝑠, as the tensor product 

𝑇𝑠
𝑟 = 𝑇𝑟⊗𝑇𝑠 = 𝑉⊗…⊗𝑉⊗V∗⊗…⊗V∗              (1.43) 

 (𝑉: 𝑟 times, V∗: 𝑠 times) in particular  𝑇0
𝑟 = 𝑇𝑟 , 𝑇𝑠

0 = 𝑇𝑠, 𝑇0
0 = 𝑅. 

An element of  𝑇𝑠
𝑟 is called a tensor of type (𝑟, 𝑠). 

1.3.11 Remark 

  (i)    𝑇𝑘(𝑉) , 𝑇𝑙(𝑉) and  𝑇𝑙
𝑘   are vector spaces in a natural way. 

  (ii)   We make a convention that both 0-covariant and 0- contravariant   

tensor are real numbers, i.e. 𝑇0(𝑉) =  𝑇0(𝑉) = 𝑅   

1.3.12 Examples 

(i) Any linear map 𝑤:𝑉 → 𝑅  is 1-covariant tensor. Thus 𝑇1(𝑉) = 𝑉
∗.       

Similarly 𝑇1(𝑉) = 𝑉∗∗ = 𝑉  

(ii) If 𝑉 is an inner product space, then any inner product on 𝑉 is a 2-

covariant tensor (a bilinear real -valued mapping, i.e. a bilinear 

form). 

(iii)   The determinant is an n-covariant tensor on nR . 
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1.3.13 Definitions 

In terms of a basis {𝑒1, … , 𝑒𝑛} of 𝑉 and the dual basis {𝑒1, … , 𝑒𝑛} 

of  V∗, every tensor 𝐾 of type (𝑟, 𝑠) can be expressed uniquely as: 

 

𝐾 = ∑ 𝐾𝑗1,…,𝑗𝑠
𝑖1,…,𝑖𝑟 = 𝐾𝑗1,…,𝑗𝑠

𝑖1,…,𝑖𝑟𝑒𝑖1⊗…⊗ 𝑒𝑖𝑟⊗𝑒𝑗1⊗…⊗ 𝑒𝑗𝑠

𝑖1,…,𝑖𝑟;𝑗1,…,𝑗𝑠

 

= ∑ 𝐾𝑞
𝑝

𝑝∈𝑛
𝑟
,𝑞∈𝑛

𝑠 𝑒𝑝𝑒
𝑞                              (1.44) 

𝐾𝑗1,…,𝑗𝑠
𝑖1,…,𝑖𝑟 (there are 𝑛(𝑟+𝑠)𝑜𝑓 𝑡ℎ𝑒𝑚) are called the components of 𝐾 with 

respect to the basis {𝑒1, … , 𝑒𝑛} of  𝑉, and its dual {𝑒1, … , 𝑒𝑛} of  V∗. 

1.4 Linear Transformation 

If 𝑓: 𝑉 → 𝑊 is a linear transformer it induces a linear 

transformation  𝑓∗: 𝑇𝑘(𝑊) → 𝑇𝑘(𝑉) defined by 

 (𝑓∗𝑇)(𝑣1, … , 𝑣𝑘) = 𝑇(𝑓𝑣1, … , 𝑓𝑣𝑘)                         (1.45) 

for 𝑇 ∈  𝑇𝑘(𝑊) and 𝑣1, … , 𝑣𝑘 ∈ 𝑉 , it is true that 𝑓∗(𝑆 ⊗ 𝑇) = 𝑓∗(𝑆) ⊗

 𝑓∗(𝑇). As an example of a covariant tensor of degree 2 on ℝn , is an 

inner product <,> ∈ 𝑇2(ℝ
𝑛) 

< 𝑥, 𝑦 > = 𝑇(𝑥, 𝑦) = ∑ 𝑥𝑖𝑦𝑗𝑖,𝑗 𝑇(𝑒𝑖, 𝑒𝑗)  = ∑ 𝑇𝑖𝑗𝑥
𝑖𝑦𝑗𝑖,𝑗       (1.46) 

𝑇 = ∑ 𝑇𝑖𝑗𝑒
𝑖⊗𝑒𝑗𝑖,𝑗 ,                             (1.47) 

where 𝑇𝑖𝑗 = 𝑇𝑗𝑖  𝑎𝑛𝑑 ∑ 𝑇𝑖𝑗𝑥
𝑖𝑥𝑗𝑖,𝑗 > 0 𝑖𝑓 𝑥 ≠ 0.  

        Generally, we define an inner product on 𝑉 to be a covariant tensor 

T of degree 2 such that T is symmetric, that is 𝑇(𝑣,𝑤) = 𝑇(𝑤, 𝑣), for 

𝑤, 𝑣 ∈ 𝑉, and such that 𝑇 is positive definite: 𝑇(𝑣, 𝑣)  ≠ 0. 

𝑇 = ∑ 𝑇𝑖𝑗𝑖,𝑗 𝑒𝑖⊗𝑒𝑗,    𝑇𝑖𝑗 = 𝑇𝑗𝑖 ,    ∑ 𝑇𝑖𝑗𝑖,𝑗 𝑣𝑖𝑣𝑗 > 0  if  𝑣 ≠ 0      (1.48) 
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It is a standard result, that if 𝑇 is an inner product on  𝑉, then 𝑉 has an 

orthonormal basis with respect to 𝑇, i,e a basis {𝑒1, … , 𝑒𝑛}  such that  

𝑇(ei, ej) = 𝛿𝑖j                                       (1.49)  

Then 𝑇 has the simple expansion. 

𝑇 = 𝑒1⊗𝑒1 + 𝑒2⊗𝑒2 +⋯+ 𝑒𝑛⊗𝑒𝑛                     (1.50) 

 And 

𝑇(𝑣, 𝑤) = 𝑣1𝑤1 + 𝑣2𝑤2 +⋯𝑣𝑛𝑤𝑛 = ∑ 𝑣𝑖
𝑛
1 𝑤𝑖               (1.51) 

If  𝑣 = (𝑣1, …… , 𝑣𝑛), 𝑤(𝑤1, …… ,𝑤𝑛) relative to the orthonormal basis  

 

1.5 Alternating Covariant Tensors 

       A tensor 𝑤 ∈  𝑇𝑟(𝑉) is called alternating (or skew-symmetric) if, 

𝑤(𝑣𝜎(1), … , 𝑣𝜎(𝑘))  =  (𝑠𝑔𝑛 𝜎) 𝑤(𝑣1, … , 𝑣𝑛) for all permutations 𝜎 of 

{1,… , 𝑘} such a tensor is called a 𝑘-form on 𝑉, the set of all alternating 

covariant tensors of degree k is a subspace of  𝑇𝑘(𝑉) denoted by 𝛬𝑘(𝑣). 

  If  𝑇 ∈  𝑇𝑟(𝑉), we define 𝐴𝑙𝑡(𝑇) by  

Alt(T)(v1, … , vn) =
1

kǃ
∑ (sgn σ) ∗ T(vσ(1), … , vσ(k))σ∈Sk        (1.52) 

where 𝑆𝑘 is the set of all permutation of  {1, 2, … , 𝑘}. 

 

1.5.1 Lemma 

 

(i)            If 𝑇 ∈ 𝑇𝑘(𝑉, then  𝐴𝑙𝑡(𝑇)  ∈  𝛬𝑘(𝑣). 

(ii)            If  𝑤 ∈ 𝛬𝑘  (v) , then  𝐴𝑙𝑡(𝑤) = 𝑤. 

(iii) If  𝑇 ∈ 𝑇𝑘(𝑉), then 𝐴𝑙𝑡(𝐴𝑙𝑡 𝑇) = 𝐴𝑙𝑡 𝑇. 

i,e (𝐴𝑙𝑡)2 = 𝐴𝑙𝑡 (idempotent) or 𝐴𝑙𝑡 ∶  𝑇𝑘(𝑉) →  𝛬𝑘  (𝑉)  the range of Alt 

is a projection . 
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It follows that 𝑇𝑘(𝑉)  =  𝛬𝑘(𝑉)  ⊕ 𝑆 𝑘(𝑉) where 𝑆𝑘(𝑉) = 𝑁(𝐴𝑙𝑡) 

(the null space of Alt) is called the space of symmetric tensor of degree.  

          Thus 𝑇 is symmetric if  T(vσ(1), … , vσ(k)) = 𝑇(v1, … , vn). 

Proof 

(i) Noting that for a fixed permutation 𝜂 → 𝜎 ∘  𝜂 is bijection on 

𝑆𝑘, we have 

(AltT)(vp(1), … , vp(k)) =
1

kǃ
∑ (sgn σ) T(vσ°p(1), … , vσ∘p(k))σ∈Sk   

 

=
1

kǃ
∑ (sgn σ ∘ p−1) T(vσ∘ p−1∘p(1), … , vσ∘ p−1∘p(k))

σ∈Sk

 

=
sgn p

kǃ
 ∑ (sgn σ) T(vσ(1), … , vσ(k)) = (sgn p)(Alt T)(v1, … , vn)σ∈Sk . 

            ∴ 𝐴𝑙𝑡(𝑇) ∈ Λk(V).  

(ii)  if  𝑤 ∈ Λk(V), then 

 

Alt( w)(v1, … , vn) 

=
1

kǃ
 ∑ (sgn σ) (vσ(1) ,   … , vσ(k)) =

1

kǃ
 ∑ (sgn σ)2 T(v1, … , vk)

σ∈Skσ∈Sk

 

= [
1

kǃ
 ∑ (sgn σ)2 ]w(v1, … , vn)

σ∈Sk

 

= w(v1, … , vn), 

∴ 𝐴𝑙𝑡 (𝑤) = 𝑤                                       (1.53) 

 

(iii) If 𝑇 ∈  𝑇𝑘(𝑉) then 𝐴𝑙𝑡 (𝑇) ∈ 𝛬𝑘(𝑉) by (i). Hence            

𝐴𝑙𝑡(𝐴𝑙𝑡 𝑇) = 𝐴𝑙𝑡 𝑇 by (b). Now  if 𝑤 ∈ Λk(V)  𝜑 ∈ ΛL(V)  

then 𝑤⊗𝜑 is usually not in Λk+L(V) we there for define a new 

product 
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1.6 The Wedge (or Exterior) Product 

   The wedge (or exterior) product  Λ ∶ Λk(V) × ΛL(V) → Λk+L(V) by  

𝑤Λ𝜑 =
(𝑘+𝐿)!

𝑘!𝐿!
𝐴𝑙𝑡(𝑤⨂𝜑)                                (1.54) 

1.6.1 Properties of 𝜦 

The following properties of 𝛬 are true 

(i) (𝑤1 +𝑤2)𝛬 𝜂 =  𝑤1𝛬𝜂 + 𝑤2𝛬 𝜂,  

(ii) 𝑤 𝛬 (𝜂1 +  𝜂2) =  𝑤 𝛬 𝜂1 +  𝑤𝛬𝜂2 , 

(iii) (𝑎𝑤)𝛬 𝜂 = 𝑤𝛬(𝑎𝜂) = 𝑎(𝑤 𝛬 𝜂) (𝑎 ∈ ℝ) , 

(iv)  𝑤𝛬𝜂 = (−1)𝜂 𝛬 𝑤  where  𝑤 ∈ Λk(V) , 𝜂 ∈ ΛL(V).  

(v) 𝑓∗(𝑤 𝛬 𝜂) =  𝑓∗(𝑤) 𝛬 𝑓∗(𝜂) 

(vi) (𝑤 𝛬 𝜂)𝜑 = 𝑤𝛬(𝜂 𝛬 𝜑) 

and so we just write  𝑤 𝛬 𝜂 𝛬 𝜑 for either 

𝑤 Λ η Λ 𝜑 =
(𝑘+𝐿+𝑚)!

𝑘!𝐿!𝑚!
𝐴𝑙𝑡(𝑤 ⨂ η ⨂𝜑)                      (1.55) 

1.6.2 Note   

             Since a k-form w is alternating it follows that if  𝑤 ∈ Λk(V) then 

w(v1, … , vn) = 0, if any one of the 𝑘 argument is repeated, it then 

follows that w(v1, … , vR) = 0, if the vectors {v1, … , vk} are linearly  

dependent , and there for Λk = 0 if  𝑘 > 𝑛, where 𝑛 =  𝑑𝑖𝑚 𝑉. 

1.6.3 Theorem  

        The set of all 𝑒𝑝1𝛬…Λ𝑒𝑝𝑘 , 1 ≤ 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘 ≤ 𝑛 is a basis 

for  Λk(V)  which there fore haes dimension  [
𝑛
𝑘
] =

𝑛!

𝑘!(𝑛−𝑘)!
. 

Proof 

 If   𝑤 ∈  𝛬𝑘(𝑉) ⊂  𝑇𝑘(𝑉)  then we can write 

𝑤 = ∑ 𝑎𝑝1𝑝2…𝑝𝑘
𝑛
𝑝1,…,𝑝𝑘=1

𝑒𝑝1⨂𝑒𝑝2⨂…⨂𝑒𝑝𝑘              (1.56) 

Thus 
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w = Alt (w)  = ∑ 𝑎𝑝1𝑝2…𝑝𝑘
𝑛
𝑝1,…,𝑝𝑘=1

𝐴𝑙𝑡(𝑒𝑝1⨂𝑒𝑝2⨂…⨂𝑒𝑝𝑘)   (1.57) 

Since each of 𝐴𝑙𝑡(𝑒𝑝1⨂𝑒𝑝2⨂…⨂𝑒𝑝𝑘) is a constant (o,
+1

𝑘!
, 𝑜𝑟 

−1

𝑘!
) times 

one of 𝑒𝑝1𝛬…Λ𝑒𝑝𝑘 , 1 ≤ 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘 ≤ 𝑛, these elements  span 

Λk (V). 

[𝐴𝑙𝑡(𝑒𝑝1⨂𝑒𝑝2⨂…⨂𝑒𝑝𝑘) =
1

𝑘!
𝛿𝑞
𝑝
𝑒𝑞1𝛬…Λ𝑒𝑞𝑘,           (1.58) 

where 

𝛿𝑞
𝑝
= det(𝛿𝑞𝑖

𝑝𝑖) = 𝑠𝑔𝑛 𝜎 , 𝑖𝑓 𝑝 = 𝑞 ∘ 𝜎 ]                 (1.59) 

 

To show that {𝑒𝑝1𝛬𝑒𝑝2Λ…Λ𝑒𝑝𝑘}1 ≤ 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘 ≤ 𝑛, is 

independent, we note that  

ep1Λep2Λ…Λepk(eq1 , … , eqk) = {
sgn σ, if p = q ∘ σ = δq

p

0  ,     otherwise
      (1.60) 

Thus if 

∑ ap1p2…pke
p1Λep2Λ…Λepk1≤p1< p2<⋯< pk ≤ n = 0          (1.61) 

Then for  1 ≤ 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘 ≤ 𝑛, we have 

 

0 = ∑ 𝑎𝑝1𝑝2…𝑝𝑘𝑒
𝑝1𝛬𝑒𝑝2Λ…Λ𝑒𝑝𝑘1≤p1< p2<⋯< pk ≤n (𝑒𝑞1, … , 𝑒𝑞𝑘)   

= ∑ 𝑎𝑝1𝑝2…𝑝𝑘𝛿𝑞
𝑝

1≤p1< p2<⋯< pk ≤n = 𝑎𝑞1𝑞2…𝑞𝑘                  (1.62) 

 

If  w ∈ Λk(V)  then 

𝑤 = ∑ 𝑤𝑝𝑒
𝑝1𝛬𝑒𝑝2Λ…Λ𝑒𝑝𝑘1≤p1< p2<⋯< pk ≤n                    (1.63) 

Where 

𝑤𝑝 = 𝑤𝑝1𝑝2…𝑝𝑘 = 𝑤(𝑒𝑝1, 𝑒𝑝2 , … , 𝑒𝑝𝑘)                          (1.64) 
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1.6.4 Note 

          if dim 𝑉 = 𝑛, then ΛnV  has dimension1, this means that n-forms 

on 𝑉 are multiple of any non-zero one. 

  1.6.5 Example  

        The determinant function 𝐷 an n-form on ℝ𝑛  the element of Λn 

(ℝ𝑛) uniquely determined by setting D(𝑒1, … , 𝑒𝑛) = 1, and its value 

D(𝑥1, … , 𝑥𝑛) at n-tuple < 𝑥1, … , 𝑥𝑛 >∈ ℝ𝑛 × ℝ𝑛 ×…× ℝ𝑛 is the 

determinant of the matrix 𝑥 = (𝑥𝑖𝑗), whose 𝑗 the column is 𝑥𝑗 , 𝑗 =

1,… , 𝑛. Thus 

D = D(𝑒1, … , 𝑒𝑛) 𝑒
1𝛬𝑒2Λ…Λ𝑒𝑛 = 𝑒1𝛬𝑒2Λ…Λ𝑒𝑛 

∴ 𝐷(𝑥1, … , 𝑥𝑛) = 𝑒1𝛬𝑒2Λ…Λ𝑒𝑛(𝑥1, … , 𝑥𝑛) 

=  𝑛! 𝐴𝑙𝑡(𝑒1⨂𝑒2⨂…⊗ 𝑒𝑛)(𝑥1, … , 𝑥𝑛) 

= n!
1

n!
∑ (𝑠𝑔𝑛 𝜎)(𝑒1⨂…⊗ 𝑒𝑛)(𝑥𝜎(1), … , 𝑥𝜎(𝑛))

𝜎∈𝑆𝑛

 

        = ∑ (𝑠𝑔𝑛 𝜎)𝜎∈𝑆𝑛 𝑥1𝜎(1)𝑥2𝜎(2)…𝑥𝑛𝜎(𝑛)                     (1.65) 

1.6.6 Example: 

   (i)  |
𝑥11 𝑥12
𝑥21 𝑥22

| = ∑ (𝑠𝑔𝑛 𝜎)𝜎∈𝑆2 𝑥1𝜎(1)𝑥2𝜎(2) 

𝑆2 :  (
1,2
1,2
)  𝑠𝑔𝑛 = 1,   (

1,2
2,1
) 𝑠𝑔𝑛 = −1. 

∴ ∑(𝑠𝑔𝑛 𝜎)

𝜎∈𝑆2

𝑥1𝜎(1)𝑥2𝜎(2) = 𝑥11𝑥22 − 𝑥12𝑥21 

 

(iii)  |

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33

| = ∑ (𝑠𝑔𝑛 𝜎)𝜎∈𝑆3 𝑥1𝜎(1)𝑥2𝜎(2)𝑥3𝜎(3) 

𝑆3 :  (
1,2,3
1,2,3

)  𝑠𝑔𝑛 = 1,   (
1,2,3
2,1,3

) 𝑠𝑔𝑛 = −1, (
1,2,3
3,2,1

)  𝑠𝑔𝑛 = −1,    
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        (
1,2,3
1,3,2

) 𝑠𝑔𝑛 = −1, (
1,2,3
2,3,1

)  𝑠𝑔𝑛 = 1,   (
1,2,3
3,1,2

) 𝑠𝑔𝑛 = 1. 

∴ ∑(𝑠𝑔𝑛 𝜎)

𝜎∈𝑆3

𝑥1𝜎(1)𝑥2𝜎(2)𝑥3𝜎(3) = 𝑥11𝑥22𝑥33 + 𝑥12𝑥23𝑥31 + 

𝑥13𝑥21𝑥32 − 𝑥12𝑥21𝑥33 − 𝑥13𝑥22𝑥31 − 𝑥11𝑥23𝑥32. 

 

1.6.7 lemma  

         Let 𝑒1, … , 𝑒𝑛 be a basis for 𝑉 and let w ∈ Λn(V). If   𝑣𝑗 = ∑ 𝑎𝑖𝑗𝑒𝑖
𝑛
𝑖=1  

, 1 ≤ 𝑗 ≤ 𝑛, are 𝑛 vectors in 𝑉, then 

𝑤( 𝑣1, … , 𝑣𝑛) = 𝑑𝑒𝑡(𝑎𝑖𝑗)𝑤( 𝑒1, … , 𝑒𝑛)                   (1.66) 

Proof 

  Define  𝜂 ∈  𝑇𝑛(ℝ
𝑛) by 

𝜂(𝑎1, … , 𝑎𝑛) = 𝑤(∑ 𝑎𝑖1𝑒𝑖
𝑛
𝑖=1 , … , ∑ 𝑎𝑖𝑛𝑒𝑖

𝑛
𝑖=1 )              (1.67) 

Then η ∈ Λn(ℝ𝑛) and so 

𝜂 = 𝜆. 𝑑𝑒𝑡 , 𝜆 ∈ 𝑅                                   (1.68) 

Hence 𝜂 (𝛿1, … , 𝛿𝑛) = 𝜆1 = 𝑤(𝑒1, … , 𝑒𝑛)so that 

w(𝑣1, … , 𝑣𝑛) =  w(∑𝑎𝑖1𝑒𝑖

𝑛

𝑖=1

, … ,∑𝑎𝑖𝑛𝑒𝑖)

𝑛

𝑖=1

 

=  𝜂 (𝑎1, … , 𝑎𝑛)                                    (1.69) 

 

= 𝑤(𝑒1, … , 𝑒𝑛). 𝑑𝑒𝑡(𝑎1, … , 𝑎𝑛)  =  𝑑𝑒𝑡(𝑎𝑖𝑗)𝑤(𝑒1, … , 𝑒𝑛)           (1.70) 

it follows that for 1 ≤ p1 < p2 < ⋯ < pk  ≤ n, 

(𝑒𝑞1𝛬𝑒𝑞2Λ…Λ𝑒𝑞𝑘)(𝑣1, … , 𝑣𝑛) = det(tij)                      (1.71) 
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where tij = 𝑒
𝑞𝑖(𝑣𝑗), it is true that if 𝑓: 𝑉 → 𝑉 is linear and 𝑑𝑖𝑚 𝑉 = 𝑛 , 

then  𝑓∗: 𝛬 𝑛(𝑉) →  𝛬 𝑛(𝑉) is multiplication by 𝑑𝑒𝑡 𝑓. 

  Now let 𝑀 be a C∞-manifold with each point 𝑝 ∈ 𝑀, we have associated 

a vector space, the tangent space 𝑀𝑝, thus we can perform tensor products 

on 𝑀𝑝 ,and get the tensor spaces 𝑇𝑘(𝑀𝑝), space of covariant tensors of 

degree 𝑘 on  𝑀𝑝, i.e 

𝑇𝑘(𝑀𝑝) = 𝑀𝑝
∗⨂𝑀𝑝

∗⨂…⨂𝑀𝑝
∗ = ⨂1

𝑘𝑀𝑝
∗                     (1.72) 

Similarly 𝑇𝑘(𝑀𝑝), space of contra variant tensors of degree 𝑘 on 𝑀𝑝: 

𝑇𝑘(𝑀𝑝) =  𝑀𝑝⊗ 𝑀𝑝  ⊗ …⊗𝑀𝑝 = ⨂1
𝑘𝑀𝑝               (1.73)  

 and the space of tensors of type (𝑟, 𝑠), 

  𝑇𝑠
𝑟(𝑀𝑝) = 𝑀𝑝⊗…⊗𝑀𝑝⨂Mp

∗  ⨂…⨂Mp
∗ = 𝑇𝑟(𝑀𝑝)⨂𝑇𝑠(𝑀𝑝)    (1.74) 

 Also 𝛬𝑘(𝑀𝑝) is space of alternating (skew-symmetric) covariant tensors 

of degree 𝑘 (𝑘-forms) over 𝑀𝑝. 

1.7 Transformation Laws for Tensors 

         For a change of a basis of  𝑉, the components of tensors are subject 

to the following transformations. 

Let  𝑒1, … , 𝑒𝑛  𝑎𝑛𝑑 𝑒1, … , 𝑒𝑛, be two basis of 𝑉 related by a non-singular 

linear transformation, 

𝑒𝑖 = ∑ 𝐴𝑖
𝑗

𝑗 𝑒𝑗 , 𝑖 = 1,… , 𝑛,          𝑒𝑖 = ∑ 𝐵𝑖
𝑗

𝑗 𝑒𝑗 , 𝑖 = 1,… , 𝑛         (1.75) 

 where B = (𝐵𝑗
𝑖) is the inverse matrix of the matrix 𝐴 =  (𝐴𝑗

𝑖) (here 𝑖 is a 

row index (the upper index), 𝑗 a column index (the lower index)) so that 

∑ 𝐴𝑖
𝑗
𝐵𝑗
𝑘

𝑗 = 𝛿𝑘
𝑖  ,the corresponding change of the dual basis in 𝑉∗ is given 

by 

 𝑒
𝑖
= ∑ 𝐵𝑗

𝑖
𝑗 𝑒𝑗, 𝑖 = 1,… , 𝑛,       𝑒𝑖 = ∑ 𝐴𝑗

𝑖
𝑗 𝑒

𝑗
, 𝑖 = 1,… , 𝑛.       (1.76) 

To derive the first equation we have  
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𝑒
𝑖
= ∑ 𝑒

𝑖
(𝑒𝑗)𝑗 𝑒𝑗 = ∑ 𝑒

𝑖
(𝐵𝑗

𝑘𝑒𝑘)𝑗,𝑘 𝑒𝑗 = ∑ 𝐵𝑗
𝑘( 𝑒

𝑖
 𝑒𝑘)𝑗,𝑘 𝑒𝑗,    (1.77) 

∑ 𝐵𝑗
𝑘𝛿𝑘
𝑖

𝑗,𝑘 𝑒𝑗 = ∑ 𝐵𝑗
𝑖

𝑗 𝑒𝑗                                   (1.78) 

And for the second 

𝑒𝑖 =∑𝑒𝑖  (𝑒𝑗)

𝑗

𝑒
𝑗
=∑𝑒𝑖  (𝐴𝑗

𝑘𝑒𝑘)

𝑗,𝑘

𝑒
𝑗
 

= ∑ 𝐴𝑗
𝑘𝛿𝑘
𝑖

𝑗,𝑘 𝑒
𝑗
= ∑ 𝐴𝑗

𝑖
𝑗 𝑒

𝑗
.                           (1.78) 

If 𝑘 is a contravariant tensor of degree its components 𝐾𝑖1… 𝑖𝑟  and  𝐾
𝑖1… 𝑖𝑟

 

with respect to 𝑒 𝑖 and  𝑒𝑖 respectively, are related by 

 𝐾
𝑖1… 𝑖𝑟

= ∑ 𝐵𝑗1
𝑖1

𝑗1,…,𝑗𝑟 …𝐵𝑗𝑟
𝑖𝑟𝐾𝑗1… 𝑗𝑟                          (1.79) 

Also 

𝐾𝑖1… 𝑖𝑟 = ∑ 𝐴𝑗1
𝑖1

𝑗1,…,𝑗𝑟 …𝐴𝑗𝑟
𝑖𝑟𝐾

𝑗1… 𝑗𝑟
.                          (1.80) 

Similarly, the components of a covariant tensor 𝐿 of degree 𝑠 are related 

by 

𝐿𝑖1… 𝑖𝑠 = ∑ 𝐴𝑖1
𝑗1

𝑗1,…,𝑗𝑠 …𝐴𝑖𝑠
𝑗𝑠𝐿𝑗1…𝑗𝑠                             (1.81) 

and 

𝐿𝑖1…𝑖𝑠 = ∑ 𝐵𝑖1
𝑗1

𝑗1,…,𝑗𝑠 …𝐵𝑖𝑠
𝑗𝑠𝐿𝑗1… 𝑗𝑠,                           (1.82) 

For a tensor 𝑘 type (𝑟, 𝑠):  

𝐾 = ∑ 𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟

𝑖1,…,𝑖𝑟,𝑗1,…,𝑗𝑠 𝑒𝑖1⨂…⨂𝑒𝑖𝑟⨂𝑒
𝑗1⨂…⨂𝑒𝑗𝑠 , 

= ∑ 𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟

𝑖1,…,𝑖𝑟,𝑗1,…,𝑗𝑠 𝑒𝑖1⨂…⨂𝑒𝑖𝑟⨂𝑒
𝑗1⨂…⨂𝑒

𝑗𝑠         (1.83) 

We have the following transformation of components:  

𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟

= ∑ 𝐵𝑘1
𝑖1

𝑘1,…,𝑘𝑟,𝑚1,…,𝑚𝑠 …𝐵𝑘𝑟
𝑖𝑟𝐴𝑗1

𝑚1 …𝐴𝑗𝑠
𝑚𝑠𝐾𝑚1,…,𝑚𝑠

𝑘1… 𝑘𝑟  ,         (1.84) 
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𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟 = ∑ 𝐴𝑘1

𝑖1
𝑘1,…,𝑘𝑟,𝑚1,…,𝑚𝑠 …𝐴𝑘𝑟

𝑖𝑟 𝐵𝑗1
𝑚1 …𝐵𝑗𝑠

𝑚𝑠𝐾𝑚1,…,𝑚𝑠
𝑘1… 𝑘𝑟

.         (1.85) 

1.8 Tensor bundles  

Let 𝑀 be a smooth manifold 

   We define tensor bundles on M as disjoint unions  

(i)  𝑘-covariant tensor bundle 

𝑇𝑘𝑀 = ⋃ 𝑇𝑘(𝑇𝑝𝑀)𝑝∈𝑀                                 (1.86) 

(ii) 𝑙 -contravariant tensor bundle 

𝑇𝜄𝑀 = ⋃ 𝑇𝜄(𝑇𝑝𝑀)𝑝∈𝑀                                   (1.87) 

(iii)  (𝑘, 𝑙)-tensor bundle 

𝑇𝜄
𝑘𝑀 = ⋃ 𝑇𝜄

𝑘(𝑇𝑝𝑀)𝑝∈𝑀                             (1.88) 

equipped with natural 𝐶∞-structures. 

We identify 

𝑇0𝑀 = 𝑇0𝑀 = 𝑀 × 𝑅 

𝑇1𝑀 = 𝑇𝑀∗ 

𝑇1𝑀 = 𝑇𝑀 

𝑇0
𝑘𝑀 = 𝑇𝑘𝑀 

𝑇𝑙
0𝑀 = 𝑇𝑙𝑀                                      (1.89) 

1.9 Tensor Fields 

1.9.1 Definition: (Tensor Fields) 

        A tensor field of type (𝑟, 𝑠) on a subset 𝑁 of a manifold 𝑀 is an 

assignment of a tensor 𝐾𝑝 ∈ 𝑇𝑠
𝑟(𝑀𝑝) to each point 𝑝 ∈ 𝑁. In a coordinate 

neighborhood 𝑈 with a local coordinate system(𝑥1, … , 𝑥𝑛), we take 
𝜕

𝜕𝑥𝑖
 , 𝑖 = 1,… , 𝑛 , as a basis for each tangent space 𝑀𝑝, 𝑝 ∈  𝑈 and         
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𝑑𝑥𝑖  , 𝑖 = 1,… , 𝑛 as the dual basis of 𝑀𝑝
∗. Under a change of coordinate 

(𝑥
1
, … , 𝑥

𝑛
) these are related by transformations:  

𝜕

𝜕𝑥
𝑖 = ∑

𝜕𝑥𝑗

𝜕𝑥
𝑖

𝜕

𝜕𝑥𝑗𝑗    , 𝐴𝑖
𝑗
=
𝜕𝑥𝑗

𝜕𝑥
𝑖 , 

 
𝜕

𝜕𝑥𝑖
=∑

𝜕𝑥𝑗

𝜕𝑥𝑖
𝜕

𝜕𝑥𝑗
𝑗

   , 𝐵𝑖
𝑗
=
𝜕𝑥

𝑗

𝜕𝑥𝑖
   

𝑑𝑥
𝑖
= ∑

𝜕𝑥
𝑖

𝜕𝑥𝑗𝑗 𝑑𝑥𝑗  ; 𝑑𝑥𝑖 = ∑
𝜕𝑥𝑖

𝜕𝑥
𝑗𝑗 𝑑𝑥

𝑗
 ;  𝐵𝑗

𝑖 =
𝜕𝑥

𝑖

𝜕𝑥𝑗
 ; 𝐴𝑗

𝑖 =
𝜕𝑥𝑖

𝜕𝑥
𝑗 .   (1.90) 

A tensor field 𝐾 of type (𝑟, 𝑠) defined on 𝑈 is the 𝑛 expressed by: 

K=∑ 𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟

𝑖1,…,𝑖𝑟,𝑗1,…,𝑗𝑠

𝜕

𝜕𝑥𝑖1
⨂…⨂

𝜕

𝜕𝑥𝑖𝑟
⨂𝑑𝑥𝑗1⨂…⨂𝑑𝑥𝑗𝑠      (1.91) 

 where 𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟 are functions on 𝑈, called the components of 𝐾 with 

respect to the local coordinate system (x1,…,xk). We say that 𝐾 is smooth 

(of class 𝐶∞) if its components 𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟 are functions of class 𝐶∞.under a 

change of coordinates (𝑥
1
, … , 𝑥

𝑛
) the components of 𝐾 transform 

according to 

𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟

= ∑
𝜕𝑥

𝑖1

𝜕𝑥𝑝1𝑝1,…,𝑝𝑟,𝑞1,…,𝑞𝑠 …
𝜕𝑥

𝑖𝑟

𝜕𝑥𝑝𝑟
.
𝜕𝑥𝑞1

𝜕𝑥𝑗1
…
𝜕𝑥𝑞𝑠

𝜕𝑥𝑗𝑠
𝐾𝑞1,…,𝑞𝑠
𝑝1… 𝑝𝑟        (1.92) 

𝐾𝑗1,…,𝑗𝑠
𝑖1… 𝑖𝑟 = ∑

𝜕𝑥𝑖1

𝜕𝑥𝑝1
𝑝1,…,𝑝𝑟,𝑞1,…,𝑞𝑠 …

𝜕𝑥𝑖𝑟

𝜕𝑥𝑝𝑟
.
𝜕𝑥

𝑞1

𝜕𝑥𝑗1
…
𝜕𝑥

𝑞𝑠

𝜕𝑥𝑗𝑠
𝐾𝑞1,…,𝑞𝑠
𝑝1… 𝑝𝑟

 .     (1.93) 

1.9.2 Example: 

(i)  for 𝐾 of type (1, 0): 

𝐾
𝑖
=∑

𝜕𝑥
𝑖

𝜕𝑥𝑗
𝑗

𝐾𝑗  ; 𝐾𝑖 =∑
𝜕𝑥𝑖

𝜕𝑥
𝑗

𝑗

𝐾
𝑗
. 

 

(iv) for 𝐾 of type (0, 1): 
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𝐾𝑖 =∑
𝜕𝑥𝑗

𝜕𝑥𝑖
𝑗

 𝐾𝑗;  𝐾𝑖𝑑 =∑
𝜕𝑥

𝑗

𝜕𝑥𝑖
𝑗

𝐾𝑗 . 

 

(iii)  For 𝐾 of type (0, 2): 𝑘 ∈ 𝑇2
0  

𝐾𝑖𝑗  𝐾
𝑖𝑗
=∑

𝜕𝑥𝑘

𝜕𝑥
𝑖

𝑘,𝐿

𝜕𝑥𝐿

𝜕𝑥
𝑗
 𝐾𝑘𝐿;  𝐾𝑖𝑗 =∑

𝜕𝑥
𝑘

𝜕𝑥𝑖
𝜕𝑥

𝐿

𝜕𝑥𝑗
𝐾𝑘𝐿 . 

Because  

𝐾𝑖𝑗 = 𝐾(
𝜕

𝜕𝑥
𝑖
,
𝜕

𝜕𝑥
𝑗) = 𝐾 (∑

𝜕𝑥𝑘

𝜕𝑥
𝑖

𝑘

𝜕

𝜕𝑥𝑘
,∑

𝜕𝑥𝐿

𝜕𝑥
𝑗

𝐿

𝜕

𝜕𝑥𝑖
) 

=∑
𝜕𝑥𝑘

𝜕𝑥
𝑖

𝑘,𝐿

𝜕𝑥𝐿

𝜕𝑥
𝑗
 𝐾𝑘𝐿 

Since all tensor bundles are smooth manifolds, we may consider their 

smooth sections. 

1.9.3 Definition 

  We say that a section 𝑠:𝑀 → 𝑇𝑙
𝑘𝑀  is a (𝑘, 𝑙)-tensor field (recall 

that 𝜋 ∘ s = i𝑑𝑚 , and so  𝑠(𝑝) ∈ 𝑇𝑙
𝑘 ((𝑇𝑝𝑀)). A smooth -tensor field is 

a smooth section   𝑀 → 𝑇𝑙
𝑘. Similarly, we define (smooth) k-covariant 

tensor fields and 𝑙 -contravariant tensor fields. Since 𝑂-covariant and 0-

contravariant tensors are real numbers, (smooth) 0-covariant tensor fields 

and (smooth) 0-contravariant tensor fields are (smooth) real-valued 

functions. 

Denote 

𝑇𝑘(𝑀)  = {smooth sections on 𝑇𝑘(𝑀)} 

             = {smooth k-covariant tensor fields} 

𝑇𝑙(𝑀)    ={smooth sections on 𝑇𝑙(𝑀)} 
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             = {smooth 𝑙 -contavariant tensor fields} 

 𝑇𝑙
𝑘(𝑀) = {smooth sections on 𝑇𝑙

𝑘(𝑀)} 

             = {smooth (𝑘, 𝑙)-tensor fields}. 

If  (𝑈, 𝑥), 𝑥 = (𝑥1, 𝑥2, … . . 𝑥𝑛), is a chart and 𝜎 is a tensor field in 𝑈, we 

may write 

𝜎 = 𝜎𝑖1…….𝑖𝑘  𝑑𝑥
𝑖1⊗…   ⊗ 𝑑𝑥𝑖𝑘 , if 𝜎 is a k-covariant tensor field, 

𝜎 = 𝜎𝑗1………𝑗𝑙  𝜕𝑗1⊗…   ⊗ 𝜕𝑗𝑙, if 𝜎 is an 𝑙 -contravariant tensor field, or 

𝜎 = 𝜎𝑖1…….𝑖𝑘
𝑗1………𝑗𝑙𝑑𝑥𝑖1⊗…   ⊗ 𝑑𝑥𝑖𝑘𝜕𝑗1⊗…   ⊗ 𝜕𝑗𝑙, if 𝜎 is a (𝑘, 𝑙)-tensor 

field. Functions  𝜎𝑖1…….𝑖𝑘 ,  𝜎𝑗1………𝑗𝑙    and    𝜎𝑖1…….𝑖𝑘
𝑗1………𝑗𝑙  are called the 

component functions of 𝜎 with respect to the chart (𝑈, 𝑥). Again we 

have: 

1.9.4 Lemma  

         Let  𝜎 be a (𝑘, 𝑙)-tensor field on 𝑀. Then the following are 

equivalent: 

(i)  𝜎 ∈ 𝑇𝑙
𝑘(𝑀) 

 (ii)  The component functions of 𝜎 (with respect to any chart) are    

smooth; 

(iv)  if  𝑈 ⊂ 𝑀 is open and  𝑥1………𝑥𝑛 ∈ 𝒯(𝑈) are smooth vector 

fields in U and  𝑤1………𝑤𝑙 ∈ 𝒯1(𝑀) are smooth covector fields 

in U, then the function 

𝑝 ↦ 𝜎(𝑋1,…… ,𝑋𝑘  , 𝑤
1………𝑤𝑙  )                  (1.94) 

is smooth. 
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1.10 Differential Forms 

1.10.1 Definition: (A 1-form) 

Let 𝑇𝑝,𝑞(𝑀) = ⋃ 𝑇𝑝,𝑞(𝑇𝑥𝑀)𝑥∈𝑀 . A 1-form on 𝑀 is a function                

𝛼 ∶ 𝑀 → 𝑇0,1(𝑀) such that 𝛼𝑥 ∈ 𝑇
0,1(𝑇𝑥𝑀) and (for any 𝑌 ∈ Γ(TM)) the 

function 𝛼(𝑌) given by 𝛼(𝑌)(𝑥) = 𝛼𝑥(𝑌𝑥) is in 𝐶∞(𝑀). 

  A tensor field of type (𝑝, 𝑞) on 𝑀 is a function 𝑆:𝑀 → 𝑇𝑝,𝑞(𝑀) 

such that 𝑆𝑥 ∈ 𝑇
𝑝,𝑞(𝑇𝑥𝑀) and (for any 1-forms 𝛼1, … , 𝛼𝑝 and vector 

fields 𝑌1, … , 𝑌𝑞 on 𝑀) the function 𝑆(𝛼1, … , 𝛼𝑝, 𝑌1, … , 𝑌𝑞) given by 

𝑆(𝛼1, … , 𝛼𝑝, 𝑌1, … , 𝑌𝑞)(𝑥) = 𝑆(𝛼1𝑥, … , 𝛼𝑝𝑥 , 𝑌1𝑥, … , 𝑌𝑞𝑥)       (1.95) 

is in 𝐶∞(𝑀) . The space of all tensor fields of type (p, q) on 𝑀 is denoted 

by 𝒥𝑝,𝑞(𝑀). 

1.10.2 Definition: (A k-form) 

A k-form on 𝑀 is a tensor field 𝜔 ∈ 𝒥0,𝑘(𝑀)  such that 𝜔𝑥 ∈

Λ𝑘(𝑇𝑥𝑀). The space of k-form on 𝑀 is denoted by Λ𝑘(𝑀). For 𝛼 ∈

Λ𝑖(𝑀) and 𝛽 ∈ Λ𝑗(𝑀) we define 𝛼 ∧ 𝛽 ∈ Λ𝑖+𝑗(𝑀) by 

(𝛼 ∧ 𝛽)𝑥 = 𝛼𝑥 ∧ 𝛽𝑥 . If 𝜑:𝑈 → ℝ𝑛                   (1.96) 

is a chart 𝜑 = (𝑥1, … , 𝑥𝑛)( 𝑥𝑖 ∈ 𝐶∞(𝑈))  then  𝑑𝑥1, … , 𝑑𝑥𝑛 are defined 

to be those 1-forms on 𝑈 with 𝑥𝑖(𝜕𝑗) = 𝛿𝑗
𝑖. 

 Any 𝜔 ∈ Λ𝑘(𝑀) can be written on 𝑈 as 

𝜔 =
1

𝑘!
∑𝜔𝑖1…𝑖𝑘 𝑑𝑥

𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘                       (1.97) 

Where 𝜔𝑖1…𝑖𝑘 = 𝜔(𝜕𝑖1 , … , 𝜕𝑖𝑘) ∈ 𝐶
∞(𝑈). 
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1.10.3 Definition 

If 𝑓 ∈ 𝐶∞(𝑀), then 𝑑𝑓 ∈ Λ1(𝑀) is defined by 𝑑𝑓(𝑌) = 𝑌[𝑓] for 

arbitrary 𝑌 ∈ Γ(𝑇𝑀).  For 𝜔 ∈ Λ𝑘(𝑀), we define 𝑑𝜔 to be the             

(𝑘 + 1) −form that when restricted to 𝑈 is given by  

𝑑𝜔 =
1

𝑘!
∑𝑑(𝜔𝑖1…𝑖𝑘) ∧ 𝑑𝑥

𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘 

=
1

𝑘!
∑𝜕𝑖[𝜔𝑖1…𝑖𝑘] 𝑑𝑥

𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘 .                      (1.98) 

We can prove that, as define, is independent of the choice of coordinates. 

In fact, 𝑑𝜔 can be defined (without reference to coordinates) as that (𝑘 +

1) −form such that for any 𝑋1, … , 𝑋𝑘+1 ∈ 𝛤(𝑇𝑀) we have  

𝑑𝜔(𝑋1, … , 𝑋𝑘+1) = ∑(−1)𝑖+1𝑋𝑖

𝑘+1

𝑖=1

[𝜔(𝑋1, … , �̂�𝑖 , … , 𝑋𝑘+1)] 

+∑ (−1)𝑖+𝑗1≤𝑖<𝑗≤𝑛 𝜔([𝑋𝑖 , 𝑋𝑗], 𝑋1, … , �̂�𝑖 , … , �̂�𝑗 , … , 𝑋𝑘+1)     (1.99) 

 

where the circumflex means that symbol beneath it is to be omitted. The 

operator 𝑑: Λ𝑘(𝑀) → Λ𝑘+1(𝑀) called exterior differentiation. 

 If 𝛼 ∈ Λ𝑖(𝑀) and 𝛽 ∈ Λ𝑗(𝑀), then (from the coordinate 

definition) we easily obtain 𝑑(𝛼 ∧ 𝛽) = 𝑑𝛼 ∧ 𝛽 + (−1)𝑖𝛼 ∧ 𝑑𝛽, and 

𝑑2 ≡ 𝑑 ∘ 𝑑 = 0.                                     (1.100) 

1.4.6 Definition 

   If 𝑓:𝑀 → 𝑁 is a map and 𝜔 ∈ Λ𝑘(𝑁), then the pull-back            

𝑓 ∗ 𝜔 ∈ Λ𝑘(𝑀) is defined by 

(𝑓 ∗ 𝜔)𝑥(𝑌1, … , 𝑌𝑘) = 𝜔𝑓(𝑥)(𝑓∗𝑥𝑌1, … , 𝑓∗𝑥𝑌𝑘)for 𝑌1, … , 𝑌𝑘 ∈ 𝑇𝑥𝑀. (1.101) 

When 

  𝑘 = 0, 𝑓 ∗ 𝜔 ≡ 𝜔°𝑓 ∈ 𝐶∞(𝑀).                       (1.102) 
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 It can be proved that 

𝑑𝑓 ∗ 𝜔 = 𝑓 ∗ 𝑑𝜔, 𝑓 ∗ (𝛼 ∧ 𝛽) = (𝑓 ∗ 𝛼) ∧ (𝑓 ∗ 𝛽)            (1.103) 

And 

 (𝑓°𝑔) ∗ 𝜔 = 𝑔 ∗ 𝑓 ∗ 𝜔.                           (1.104) 

1.10.4 Definition 

In order to integrate forms, we introduce some topological notions. 

A subset 𝑊 ⊂ 𝑀 is closed if its complement 𝑊𝑐 ≡ {𝑥 ∈ 𝑀|𝑥 ∉ 𝑊} is 

open 

 

1.11 Differential Calculus 

   Let 𝑘 be a commutative ring with unit and A a commutative and 

associative algebra over 𝑘 having 1 as its element. In Applications, 𝑘 will 

usually be the real number field and 𝐴 the algebra of differentiable 

functions on a manifold. 

1.11.1 Definition 

  A derivation X is a map X : A → A such that 

(i) 𝑋 ∈  𝐻𝑜𝑚𝑘(𝐴, 𝐴),  and 

(ii) 𝑋(𝑎𝑏)  =  (𝑋𝑎)𝑏 +  𝑎(𝑋𝑏) for every 𝑎, 𝑏 ∈  𝐴 

  If no non-zero element in k annihilates A, k can be identified with a 

subalgebra of A and with this identification we have  𝑋𝑥  =  0 for every 

𝑥 ∈  𝑘. In fact, we have only to take 𝑎 =  𝑏 =  1 in (ii) to get 𝑋1 =  0 

and consequently  𝑋𝑥  = 𝑋1  =  0. 

We shall denote the set of derivations by 𝐶. Then 𝐶 is obviously an A-

module with the following operations: 

 

(i) (𝑋 +  𝑌)(𝑎)  =  𝑋𝑎 +  𝑌𝑎  

     (ii)      (𝑎𝑋)(𝑏)  =  𝑎(𝑋𝑏) 𝑓𝑜𝑟 𝑎, 𝑏 ∈  𝐴 𝑎𝑛𝑑 𝑋, 𝑌 ∈  𝐶. 
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We have actually something more: If 𝑋, 𝑌, ∈  𝐶, then [𝑋, 𝑌]  ∈  𝐶. 

1.11.2 The Properties of Bracket Product 

This bracket product has the following properties: 

(i) [𝑋1  +  𝑋2, 𝑌]  =  [𝑋2, 𝑌]  + [𝑋2, 𝑌] 

(ii) [𝑋, 𝑌]  =  −[𝑌, 𝑋] 

(iii) [𝑋, [𝑌, 𝑍] ]  + [𝑌, [𝑍, 𝑋] ]  + [𝑍, [𝑋, 𝑌] ]  =  0, 

 

for 𝑋, 𝑌, 𝑍 ∈  𝐶. The bracket is not bilinear over 𝐴, but only over k. We 

have 

[𝑋, 𝑎𝑌](𝑏) = {𝑋(𝑎𝑌) − (𝑎𝑌)(𝑋)} (𝑏) = (𝑋𝑎)(𝑌𝑏) + 𝑎[𝑋, 𝑌](𝑏) (1.105) 

so that 

[𝑋, 𝑎𝑌]  =  (𝑋𝑎)𝑌 +  𝑎[𝑋, 𝑌] 𝑓𝑜𝑟 𝑋, 𝑌 ∈  𝐶, 𝑎 ∈  𝐴.       (1.106) 

The skew commutativity of the bracket gives 

[𝑎𝑋, 𝑌]  =  −(𝑌𝑎)𝑋 +  𝑎[𝑋, 𝑌]                       (1.107) 

 When A is the algebra of differentiable functions on a manifold, 𝐶 is the 

space of differentiable vector fields. 
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Chapter Two 

Twistor Theory 

2 .1 Spinors 

The machinery of twistor theory is best presented in terms of 

spinors. These can be regarded as the square root of Minkowski 

geometry. Indeed they lie in the fundamental representation of  𝕊𝕃(2, ℂ), 

a double cover of the proper orthochronous Lorentz group. Much as the 

introduction of the imaginary unit 𝑖 simplifies and clarifies elementary 

algebra, the language of spinors allows a unified treatment of physical 

theories. 

We begin by demonstrating the fundamental isomorphism 

identifying Hermitian spinors with real vectors. This immediately extends 

to a dictionary between real tensors and higher valence spinors, which we 

use liberally. Simple algebraic properties of spinors are developed 

rigorously, including the definition of a covariant derivative on a spinor 

field. 

We rewrite physical field equations in spinor language, to facilitate 

their solution by twistor methods.  

2.1.1 Definition: (A Minkowski Space-Time 𝑴) 

A Minkowski space-time 𝑀 is a four-dimensional real manifold 𝑅4 

with line element given by the following expression: 

 

𝑑𝑠2 = 𝜂𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 = (𝑑𝑥0)2 − (𝑑𝑥1)2 − (𝑑𝑥2)2 − (𝑑𝑥3)2 (2.1) 

 

where 𝜂𝑎𝑏 = 𝑑𝑖𝑎𝑔(+1,−1,−1,−1) is the Minkowski metric. Here 𝑥0 =

𝑐𝑡 denotes the temporal coordinate, with c the speed of light, the     

remaining coordinates (𝑥1, 𝑥2, 𝑥3) represent spatial coordinates. The 

indices a, b assume the values 0, 1, 2, and 3 in this formula. Throughout 

this thesis, we will use Einstein's convention where summation is 

assumed on repeated indices. 

 

2.1.2 The Light Cone Structure 

Each point in Minkowski space-time can be characterized by four 

coordinates with respect to an arbitrary origin  (𝑥0, 𝑥1, 𝑥2, 𝑥3). Such a 

point is called an event in space-time. To each event we can associate a   
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corresponding light-cone given by the vanishing of the form 𝑑𝑠2 in (2.1). 

This surface determines three regions of interest in space-time:  

(i) The interior of the cone, characterized by 𝑑𝑠2  > 0. This inequality 

implies that the interior of the cone is causal; since the speed of 

propagation is less than c. Vectors joining the event 𝐸 with points 

in the interior of the light-cone are called time-like vectors. The 

upper half of the cone is called future light-cone, and the lower half 

is called past light-cone. 

(ii) The surface of the cone, characterized by 𝑑𝑠2 = 0, where the speed 

of propagation is equal to 𝑐. Vectors joining the event 𝐸 with 

points on the surface of the cone are called null vectors, of length 

equal to zero. 

(iii) The exterior of the cone, characterized by 𝑑𝑠2 < 0, this inequality 

implies that the exterior of the cone is acausal, due to the speed of 

propagation being greater than 𝑐. Vectors joining 𝐸 with points 

outside of the cone are called space-like vectors. 

 

 
 

Figure 11: The light-cone associated to 

an event 𝐸 in Minkowski space-time. 

 

We should mention that the meaning of the inequalities defining these 

regions depends on the signature chosen. Here we will work with a 
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signature (+ - - -). In a signature (- + ++), space-like vectors are 

characterized by 𝑑𝑠2 > 0. 

 

2.1.3 Definition: (Lorentz Transformation)  

  A Lorentz transformation Λ𝑏
𝑎  is a linear transformation of 𝑀 that 

preserves the metric 𝜂𝑎𝑏: 

 

Λ𝑐
𝑎Λ𝑑
𝑏𝜂𝑎𝑏 = 𝜂𝑐𝑑                                       (2.2) 

or, in matrix notation 

Λ𝑇𝜂Λ = 𝜂                                           (2.3) 

 

2.1.4 The Lorentz Group 𝑳 = 𝕆(𝟏, 𝟑) 

The Lorentz group 𝐿 = 𝕆(1 , 3) is the group of all such linear 

transformations. 

  

2.1.5 Note  

From (2.3) we have 

 

                                (𝑑𝑒𝑡Λ)2 = 1 or  𝑑𝑒𝑡Λ = ±1                      (2.4)  

 

The Lorentz group is not connected, having four components. We are 

particularly interested in the one that contains the identity and preserves 

the time orientation, denoted 𝐿+
↑ : Here  +  denotes the sign of the 

determinant preserving the overall orientation, and ↑ means that Λ0
0 > 0, 

which preserves the time orientation. 𝐿+
↑  is doubly covered by 𝕊𝕆(1 , 3)  

 

2.1.6 The Spin Space 

                In the Minkowski space 𝑀, consider a vector                       

𝑉𝑎 = (𝑉0, 𝑉1, 𝑉2, 𝑉3) (in some orthonormal frame). We use here the 

abstract index notation introduced by Penrose, where the index a merely 

indicates the type of quantity (vector, form, etc.) rather than assuming 

numerical values.  

 

To each such vector one can associate by a one-to-one 

correspondence a Hermitian matrix as follows: 

 

𝑓:𝕄 →ℳ2(ℂ) 
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𝑓(𝑉𝑎) = 𝑉𝐴�́� =
1

√2
[ 𝑣
0 + 𝑣3 𝑣1 + 𝑖𝑣3

𝑣1 − 𝑖𝑣2 𝑣0 − 𝑣3
]                      (2.5) 

where the matrix 𝑉𝐴�́� can be written also as: 

 

𝑉𝐴�́� = (𝑉
00́ 𝑉01́

𝑉10́ 𝑉11́
):                                   (2.6) 

 

The spinor indices 𝐴 , �́� take the values 0 , 1 and  0́ , 1́ , respectively, and 

the prime stands for complex conjugation. 

 

The determinant of the matrix 𝑓(𝑉𝑎) is half the length of the vector  𝑉𝑎: 

 

det 𝑓(𝑉𝑎) =
1

2
[(𝑉0)2 − (𝑉1)2 − (𝑉2)2 − (𝑉3)2] =  

1

2
𝜂𝑎𝑏𝑉

𝑎𝑉𝑏  (2.7) 

 

2.1.7 Definition  

 We define spinor space to be a 2-dimensional complex vector 

space 𝑆 with elements 𝛼𝐴 where A = 0, 1. These are called spinors acts. 

𝕊𝕃(2, ℂ) on 𝑆 in the natural way 

 

𝜑: 𝕊𝕃(2, ℂ) × 𝑆 → 𝑆  
 

(𝐴, 𝛼 )  ⟼ 𝐴𝛼                                        (2.8) 

2.1.8 Definition  

We define conjugate spinor space to be the 2-dimensional complex 

vector space �́� consisting of the complex conjugates of elements of 𝑆. The 

elements are also called spinors but are written 𝛽�́� to distinguish them 

from elements of  𝑆. 𝕊𝕃(2, ℂ) acts on �́� according to 

 

𝜑: 𝕊𝕃(2, ℂ) × �́� → �́� 

 

(𝐴, 𝛽) ⟼ �̅�𝛼                                        (2.9) 

2.1.9 Definition:  

       Let 𝑀𝐵
𝐴 be an element of  𝕊𝕃(2, ℂ), and  �̅��́�

�́� its Hermitian conjugate. 

We can define a linear transformation of the vector 𝑉𝑎 by  
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𝑉𝑎 ⟼  𝑉𝐴�́� ↦ 𝑀𝐵
𝐴 𝑉𝐵�́��̅��́�

�́�                               (2.10) 

 

If the vector 𝑉𝑎 is null and future-pointing, the rank of  𝑓(𝑉𝑎) becomes 

equal to one. In this case  𝑉𝐴�́�  can be factored as: 

 

 𝑉𝐴�́� = 𝛼𝐴�̅� �́�                                          (2.11) 

 

where 𝛼𝐴 is a complex two-dimensional vector, and �̅� �́�  is its complex 

conjugate: 

𝛼𝐴 = [𝛼
0

𝛼1
]       and  �̅� �́� = [�̅��́� �̅�1́]                       (2.12) 

 

The vectors  𝛼𝐴 determine a complex two-dimensional vector space 𝑆 on 

which 𝕊𝕃(2, ℂ) acts, called spin space. 

 

2.1.10 Definition: 

The following spaces can also be defined 

 

(i)  𝑆̅ = �́�: the complex conjugate spin space with elements  𝛽�́�  

(ii) 𝑆∗: the dual spin space with elements  𝛾𝐴  

(iii)  𝑆∗́ : the dual of the complex conjugate spin space, with elements 𝛿�́�  

2.1.11 Properties of Spinor 

1.  Note that the spinors in (2.12) have valence one. Higher valence 

spinors can be obtained by considering tensor products of the spin 

spaces defined above  S  , 𝑆 ́ , 𝑆∗ an 𝑆∗́ :  

 

             𝐴……𝐵 ⏟    
𝑘1


2

...
k

CA   

         Φ       𝐸…𝐹⏟  
𝑘3


4

...
k

FE    ∈  ( S
k1

 ) ⊗ ( S
k


2
) ⊗ ( S

k3

) ⊗ ( S
k4

)    

(2.13) 

  

where we used the notation 
 

S
k1

  to mean  𝑆 ⊗…⊗ 𝑆⏟      
𝑘1
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2.  In our discussion of the five-dimensional conformal algebra we 

will use the concepts and properties of symmetric and 

antisymmetric spinors. For a spinor 𝑆 of valence 𝑛 we have: 

 

𝑆(𝐴…..𝐵) =
1

𝑛!
∑ 𝑆𝜎(𝐴)……..𝜎(𝐵)𝜎                                (2.14) 

and 

𝑆[𝐴…..𝐵] =
1

𝑛!
∑ 𝑠𝑖𝑔𝑛(𝜎)𝑆𝜎(𝐴)……..𝜎(𝐵)𝜎                       (2.15) 

 

where the sum is on all permutations 𝜎 and 𝑠𝑖𝑔𝑛(𝜎) = ±1, 

depending on whether 𝜎 is an odd or an even permutation. These 

results hold for both primed and unprimed indices. 

 

3. Symmetric spinors factorize into outer products of spinors of 

valence one: 

𝑆(𝐴…….𝐵) =∝𝐴 … .𝛽𝐵                             (2.16) 

 

The spinors ∝𝐴 … . 𝛽𝐵are called the principal null directions of the 

spinor 𝑆(𝑝, 𝑛, 𝑑, 𝑠). This is a significant simplification of spinor 

calculus. We will see shortly that antisymetric spinors simplify as 

well. 

4.  In a two-dimensional space, any completely skew quantity with 

more than two indices is identically equal to zero. There is thus a 

unique completely skew two index spinor (up to complex 

multiples), denoted 𝜖𝐴𝐵. This spinor is preserved by SL(2,C), much 

in the way the metric 𝜂𝑎𝑏 is preserved by the Lorentz 

transformations in (2.2): 

 

𝑀𝐴
𝐵𝑀𝐶

𝐷𝜖𝐴𝐵 = 𝜖𝐴𝐶                                      (2.17) 

 

for any 𝑀𝐵
𝐴 ∈ 𝕊𝕃(2, ℂ) . It follows that each spin space has such a 

spinor attached, and whether we mention it explicitly or not, by S 

we will generally mean the pair  (𝑆, 𝜖𝐴𝐵). 

  

5. The spaces (𝑆, 𝜖𝐴𝐵) and  (�́�, 𝜖�́��́�) are related by an anti-

isomorphism called complex conjugation. It is usually denoted by 

an overbar: 
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𝛼𝐴 ∈  𝑆 ⟹ 𝛼𝐴̅̅ ̅̅ = �̅� �́�  ∈ 𝑆; 

𝛼 �́� ∈  �́� ⟹ 𝛼 �́�̅̅ ̅̅ = �̅�𝐴  ∈ 𝑆                              (2.18) 

 

This extends to higher valence spinors as well, for example: 

 

𝛼𝐴𝐵𝐶�́�̅̅ ̅̅ ̅̅ ̅̅ = �̅� DCBA                               (2.19) 

 

6. We should remark here that if 𝜖𝐴𝐵 is chosen such that   𝜖01 = 1  in 

some basis of  𝑆, we can write: 

 

𝜖𝐴𝐵 = 𝜖
𝐴𝐵 = (

0 1
−1 0

) = 𝜖�́̅��́� 𝜖 ̅
�́��́�                    (2.20) 

 

7. By convention, primed and unprimed indices can be commuted: 

 

𝑇
DCBA  = 𝑇

BAC  = 𝑇
BCA    :                       (2.21) 

 

In general, the order among primed (unprimed) indices matters: 

 

𝑇
CBA  ≠ 𝑇

CAB                               (2.22) 

 

8. Similar to the use of the metric 𝜂𝑎𝑏 to raise and lower indices in 

Minkowski space, the spinor 𝜖𝐴𝐵 provides an isomorphism between 

the spin-space S and its dual 𝑆∗ by raising and lowering indices of 

spinors. Since 𝜖𝐴𝐵 is skew, one must be very careful when 

performing these operations; the adjacent indices must be 

descending to the right in order to avoid introducing a sign change. 

For example: 

𝜖𝐴𝐵𝛼𝐵 = 𝛼
𝐴, 

𝛽𝐵𝜖𝐴𝐵 = −𝛽
𝐵𝜖𝐵𝐴 = −𝛽𝐴                              (2.23) 

 

Likewise, 𝜖�́��́� and 𝜖 �́��́�  raise and lower indices in the complex 

conjugate space �́�  and its dual 𝑆∗́ : 

 

𝜖 �́��́�𝛾�́� = 𝛾
�́� ∈ �́� ; 

𝜌�́� 𝜖�́��́� = −𝜌
�́� 𝜖�́��́� = −𝜌�́� ∈  𝑆

∗́                      (2.24) 
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9. Some important identities satisfied by the 𝜖𝐴𝐵 spinor are: 

 

𝜖𝐴𝐵𝛼𝐶𝐵 = 𝛿𝐶
𝐴, and     𝜖𝐴𝐵𝜖

𝐶𝐵 = 𝛿𝐴
𝐶                         (2.25) 

 

where 𝛿𝐴
𝐶  is the spinor Kronecker delta, satisfying: 

 

𝛿𝐴
𝐵 = 𝜖𝐴

𝐵 = −𝜖𝐴
𝐵                                   (2.26) 

We also have: 

 

𝜖𝐴[𝐵𝜖𝐶𝐷] = 0                                       (2.27) 

 

and 

𝜖𝐴𝐵𝜖
𝐶𝐷 = 𝛿𝐴

𝐶𝛿𝐵
𝐷 − 𝛿𝐴

𝐷𝛿𝐵
𝐶                             (2.28) 

 

These relations lead to 

𝜖𝐴
𝐴 = 2                                         (2.29) 

 

10  All spinors 𝛼𝐴 are null with respect to 𝜖𝐴𝐵, in the sense that 

 

𝜖𝐴𝐵𝛼
𝐴𝛼𝐵 = 𝛼𝐵𝛼

𝐵 = 0:                         (2.30) 

 

The complex conjugate relation holds as well. 

11.  A Hermitian spinor is a spinor with equal number of primed and 

unprimed indices such that the spinor and its complex conjugate 

are the same: 

𝛼
𝐴𝐵 DC ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = �̅�

CDBA  = 𝛼
CDBA                   (2.31) 

Note  

the skew spinor  𝜖𝐴𝐵   is Hermitian. The Hermitian spinor  𝜖𝐴𝐵 ,   

𝜖�́��́�corresponds in fact to the metric  𝜂𝑎𝑏: 

 

𝜂𝑎𝑏 = 𝜖𝐴𝐵𝜖�́��́�                                (2.32) 

 

12.  The correspondence between Hermitian spinors and tensors can be 

made rigorous by means of the Infeld-van der Waerden symbols, 

which establish a one-to-one correspondence between Hermitian 

spinors with 𝑛 primed and 𝑛 unprimed indices, and tensors of 
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valence 𝑛; in this process each tensor index a is replaced by a pair 

of spinor indices 𝐴�́�. For example, the correspondence between a 

vector 𝑉𝑎 and a spinor 𝑉𝐴�́� is given by 

 

𝑉𝐴�́� ≡ 𝑉𝑎𝜎𝑎
𝐴�́� 

𝑉𝑎 ≡ 𝑉𝐴�́�𝜎𝐴�́�
𝑎  :                                   (2.33) 

 

For more properties of the mixed spinor-tensor symbols   𝜎𝑎
𝐴�́�. For 

simplicity, we will omit writing these symbols for the remaining of 

this thesis. 

 

13.  We mentioned in property (3) that antisymmetric spinors simplify. 

They do so with the help of the skew tensor  𝜖𝐴𝐵, as follows: a 

skew pair of indices can be removed as an  𝜖  spinor with a 

contraction on the removed indices: 

 

𝑆…[𝐴𝐵]… =
1

2
𝜖𝐴𝐵𝑆…𝐶   𝑐….                         (2.34) 

 

From this point of view, any spinor can be reduced to a 

combination of  𝜖 spinors and symmetric spinors. The same 

property holds for complex conjugate spinors as well. This, 

together with property (3),  and the fact that spinor indices only 

take two values, shows that spinor calculus is much simpler than 

tensor calculus. 

 

14.  An example of interest that will be used in section 3.3 is a valence 

two skew tensor, 𝑆𝑎𝑏. Such a tensor can be written as: 

 

𝑆𝑎𝑏 = 𝑆 BBAA  = 𝑆
BAAB  = 𝑆

AB
𝜖

BA  + 𝑆̅
BA  𝜖

AB
     (2.35) 

 

where 𝑆𝐴𝐵and 𝑆
BA   are symmetric spinors, called the anti-self-

dual (a.s.d.) and self-dual (s.d.) parts of 𝑆𝑎𝑏, respectively, 

satisfying: 

𝑇∗ 𝑎𝑏 = −𝑖𝑇𝑎𝑏 and  𝑇𝑎𝑏 = 𝑆 AB
𝜖

BA                  (2.36) 
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And 

𝑇∗ 𝑎𝑏 = 𝑖𝑇𝑎𝑏     and   𝑇𝑎𝑏 = 𝑆�́̅��́�𝜖𝐴𝐵                  (2.33) 

 

In a Lorentzian space-time, 𝑆𝐴𝐵 and 𝑆�́̅��́� are related by the complex 

conjugation anti-isomorphism. In general, a complex space-time 

and a four complex-dimensional Riemannian manifold cannot be 

distinguished, which allows the following property to bevalid in 

both types of spaces. The arena for twistors, as it will be shown 

soon, is a complexified compactified Minkowski space-time. One 

can define an operation of complex conjugation in complexified 

space- times, but this map is not invariant under general 

holomorphic coordinate transformations in a complex space. In this 

case, a real quantity is replaced by its complex conjugate, but a pair 

of complex conjugate quantities (𝜌, �̃�)  is replaced by independent 

complex quantities (𝜌, �̃�). 

 

15.  The dual of a skew two-tensor 𝑆𝑎𝑏 is given by: 

 

S*

𝑎𝑏
=
1

2
𝜀𝑎𝑏 cd

cdS                                      (2.37) 

 

where 𝜀𝑎𝑏𝑐𝑑  is a completely skew four-tensor. The spinor version 

of  𝜀𝑎𝑏𝑐𝑑 is: 

 

𝜀𝑎𝑏𝑐𝑑 = 𝜖𝐴�́�𝐵�́�𝐶�́�𝐷�̇� = 𝜖𝐴𝐵𝐶𝐷�́��́��́��̇�                   (2.38) 

 

which can be simplified by using property (13) as 

 

𝜀𝑎𝑏𝑐𝑑 = 𝑖(𝜖𝐴𝐶𝜖𝐵𝐷𝜖�́��́�𝜖�́��̇� − 𝜖𝐴𝐷𝜖𝐵𝐶 𝜖�́��̇�𝜖�́��̇�)         (2.39) 

 

Raising the last two indices, we obtain: 

 

𝜀𝑎𝑏
𝑐𝑑 = 𝑖 (𝛿𝐴

𝐶𝛿𝐵
𝐷𝛿�́�

�́�𝛿�́�
�́� − 𝛿𝐴

𝐷𝛿𝐵
𝐶𝛿�́�
�́�𝛿�́�
�́�)                      (2.40) 

 

which, used in (2.37), leads to: 

 

S*

𝑎𝑏
= −𝑖𝑆𝐴𝐵𝜖�́��́� + 𝑆�́��́�𝜖𝐴𝐵 :                     (2.41) 
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16.  We end this section by introducing a brief description of the spinor 

connection. A spinor field 𝛼𝐴 defines a null a.s.d. skew vector 

(with a sign ambiguity)  

 

𝐹𝑎𝑏 = 𝐹𝐴𝐵𝜖 BA  + �̅� BA  𝜖𝐴𝐵                            (2.42) 

 

where 𝐹𝐴𝐵; and �̅� BA   are symmetric. By using property (3) we can 

factorize both spinors and write: 

 

𝐹𝑎𝑏 = 𝛼𝐴𝛼𝐵𝜖 BA  + �̅��́� �̅�𝐵 𝜖𝐴𝐵                        (2.43) 

 

The Levi-Civita connection ∇𝑎 of the Minkowski space 𝑀 extends 

uniquely for null a.s.d. skew two-vectors to define a connection 

∇𝐴�́� on the spin bundles, provided: 

 

∇𝐴�́� 𝜖𝐵𝐶 = 0 = ∇𝐴�́� 𝜖 CB                              (2.44) 

 

All these properties seem to point to the fact that spinor calculus is 

indeed much simpler than tensor calculus.  

2.2 The Conformal Group 𝑪(𝟏, 𝟑) 
One of the main features of twistor theory is that it is a conformal 

theory. This section shows that the conformal character arises naturally in 

spinor calculus, and consequently, becomes a natural part of twistor 

theory. 

 

2.2.1 The Conformal Map 

  A conformal map is a map of the Minkowski space- time 𝑀 to 

itself which preserves its conformal structure, that is sends the metric 𝑔𝑎𝑏 

to 

�̃�𝑎𝑏  =  Ω
2𝑔𝑎𝑏                                       (2.45) 

 

for some nowhere zero smooth function Ω: 

 

We should mention here that (𝕄, 𝑔𝑎𝑏) and (𝕄, �̃�𝑎𝑏 ) have identical 

causal structures if and only if 𝑔𝑎𝑏 and �̃�𝑎𝑏 are related by a conformal 
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transformation. The conformal structure of a space-time is in fact the null 

cone structure of that space-time. 

 

In addition to all the spinor quantities defined in the previous 

section, one natural step in constructing the spinor calculus is to find the 

analogue of the Lie derivative from tensor calculus, that is to find an 

expression for the Lie derivative of a spinor 𝛼𝐴 in the direction of a 

vector field 𝑋𝑎. 

 

It can be shown that this is possible only for conformal Killing 

vectors 𝑋 which satisfy: 

 

ℒ𝑋 𝑔𝑎𝑏 =  𝑘𝑔𝑎𝑏,                                  (2.46) 

 

for constant 𝑘, and indices a, b = 0 , 1, 2, 3. Here ℒ𝑋 denotes the Lie 

derivative in the direction of the vector 𝑋. 

(2.46) can be written as: 

∇(𝑎𝑋𝑏) =
1

2
𝑘𝑔𝑎𝑏                                   (2.47) 

 

with general solution of the form: 

 

𝑋𝑎  =  𝑝𝑎 −𝑀𝑎𝑏𝑥
𝑏  +  𝐷𝑥𝑎  +  [2(𝑞 . 𝑥)𝑥𝑎 − 𝑞𝑎(𝑥 . 𝑥)]       (2.48) 

 

where  𝑝𝑎 , 𝑀𝑎𝑏 = −𝑀𝑏𝑎,  𝐷  and 𝑞𝑎 are constants of integration. 

 

The Killing vectors generate the conformal group 𝐶(1, 3). From 

(2.48) we can see that 𝐶(1, 3) is fifteen-dimensional, depending on the 

following parameters: 

 

(i) Ten of them, 𝑝𝑎 and 𝑀𝑎𝑏, generate the Poincaré group which is 

given by the semidirect sum of the translations 𝑝𝑎and the 

Lorentz transformations 𝑀𝑎𝑏: 

𝑥𝑎  ⟼ 𝑀𝑏𝑎𝑥
𝑏  +  𝑝𝑎  =  −𝑀𝑎𝑏𝑥 

𝑏 + 𝑝𝑎:                 (2.49) 
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The Lorentz transformations preserve the metric 𝑔𝑎𝑏, the 

translations  𝑝𝑎 act on  𝑥𝑎 as: 

 

𝑥𝑎 ⟼ 𝑥𝑎 + 𝜉𝑎,                                   (2.50) 

where 𝜉𝑎 is a constant. 

As the full symmetry group of relativistic field theories, the 

representations of the Poincaré group describe all elementary 

particles and is therefore of major importance. 

(ii) 𝐷 defines a dilation, sending 

𝑥𝑎  ⟼  𝜌𝑥𝑎                                 (2.51) 

for   𝜌 > 0; 

(iii) Four of them, 𝑞𝑎, define the special conformal transformations. 

If the meaning of  𝑝𝑎,  𝑀𝑎𝑏 and  𝐷 is obvious, that is not the 

case with the special conformal transformations. To determine 

their significance, set all the parameters equal to zero, except 

𝑞𝑎, in (2.48). We obtain the equation: 

 

𝑋𝑎 =
𝜕𝑥𝑎

𝜕𝑠
= 2(𝑞 ∙ 𝑥)𝑥𝑎 − 𝑞𝑎(𝑥 ∙ 𝑥)                     (2.52) 

with solutions: 

 

𝑥𝑎(𝑠) =
𝑥𝑎(0)−𝑠𝑞𝑎∆(0)

1−2𝑠(𝑞∙𝑥(0))+𝑠2(𝑞∙𝑞)∆(0)
                           (2.53) 

where  ∆ =  𝑥𝑎𝑥
𝑎  =  𝑥 ∙  𝑥. 

 

2.2.2 Note  

We obtain infinite values of 𝑋𝑎 at the zeros of the quadratic 

denominator. This suggests introducing some points at infinity in 

Minkowski space, thus compactifying it. The role of the special 

conformal transformations is to interchange the points at infinity with 

finite points of 𝕄. 

To describe the points at infinity, one considers first                        

a six-dimensional real manifold with a flat metric of signature (2, 4) 

which in coordinates (t, v, w, x, y, z) has the form: 

 

𝑑𝑠2  =  𝑑𝑡2  +  𝑑𝑣2 −  𝑑𝑤 2 − 𝑑𝑥2 −  𝑑𝑦2 −  𝑑𝑧2           (2.54) 
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The 𝕆(2, 4) null cone is then given by: 

 

𝑡 2 + 𝑣2 −𝑤2 − 𝑥2 − 𝑦2 − 𝑧2  =  0:                    (2.55) 

 

The group 𝕆(2, 4) preserves the form (2.54) and is 2-1 isomorphic 

to the conformal group 𝐶(1, 3): 

 

The compactified Minkowski space 𝕄𝑐 consists of 𝕄 with a null 

cone at infinity, and the special conformal transformations interchange 

this cone with the null cone of the origin. 

 

 
Figure 12: The null cones of the 

origin and infinity. 

Although we started this section with the apparent goal of defining 

a spinor Lie derivative, the real purpose was to show that the conformal 

group arises naturally in spinor theory. Like the Lorentz group, the 

conformal group is not connected either. The component of interest is the 

one that contains the identity, denoted by 𝐶+
↑(1, 3), doubly covered by 

𝕊𝕆(2, 4). 
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2.3 Elements of Twistor Theory 

2.3.1 The Concept of A twistor 

There are many ways to visualize a twistor: 

 

(i) Geometrically, a (null) twistor can be described as an entire light 

ray (the "life" of a photon: its past, present, and future). A space-

time event 𝐸 will then be thought of as the family of light rays that 

pass through 𝐸, with an 𝑆2 topology. This family of light rays is 

called a celestial sphere. 

(ii) Twistors can also be defined in terms of physical quantities 

characterizing the classical system of zero-rest-mass, such as 

(null) momentum 𝑃𝑎, and angular momentum 𝑀𝑎𝑏. In this 

approach, twistors transform in a natural way under the group 

𝕊𝕌 (2, 2), and in particular under the Poincaré group. Twistors can 

also be defined as elements of the natural representation space 𝐶4 

for  𝑆𝑈(2, 2), via the following covering maps: 

 

𝕊𝕌(2,2)
2:1
→ 𝕊𝕆(2,4)

2:1
→ 𝐶+

↑(1,3)                     (2.60) 

 

(iii) Twistors can be viewed as solutions to a diferential equation, 

called twistor equation. 

(iv) From another geometric point of view, the locations of twistors 

can be described in terms of the geometry of a three-dimensional 

complex projective space, as totally null 2-surfaces, called  𝛼-

planes: 

2.3.2 Complexifed Minkowski Space-Time 

 

For a complete description of twistors we will need an upgrade of 

the Minkowski space time, namely the complexifed compactifed 

Minkowski space, ℂ𝕄𝑐. We discussed briefy the compactifcation of  𝕄, 

denoted 𝕄𝑐, in section (2.2) 

2.3.3 Definition 

ℂ𝕄 is a four-dimensional complex manifold, ℂ4, endowed with a 

non-degenerate complex bilinear form 𝜂, such that: 

 

η(z,w)  ≡  z0w0-z1w1-z2w2-z3w3=zawa                  (2.61) 
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where  z=(𝑧0, 𝑧1, 𝑧2, 𝑧3)  and  𝑤 = (𝑤0, 𝑤1, 𝑤2, 𝑤3) are arbitrary four-

complex dimensional vectors. 

 

As in the real case, to each vector 𝑧𝑎 in ℂ4 we can attach a matrix  

𝑧𝐴�́�: 

𝑧𝑎 → 𝑧𝐴�́� = (𝑧
0 + 𝑧3 𝑧1 + 𝑖𝑧2

𝑧1 − 𝑖𝑧2 𝑧0 − 𝑧3
)                       (2.62) 

 

but this matrix is not Hermitian in general 

 

2.4 The Twistor Equation 

2.4.1 Definition The Twistor Equation 

 

 The twistor equation  is a solution of a diferential equation: 

 

∇�́� )( BA  = 0                                         (2.63) 

 

Here ∇𝐴�́� denotes the spinor covariant derivative from equation (2.44). 

 

Twistor theory is a conformal theory. This is derived from the fact 

that (2.63) is invariant under a conformal rescaling of the metric tensor, 

and of the epsilon spinor: 

 

�̃�𝑎𝑏 = Ω
2gab     and    𝜖�̃�𝐵 = Ω𝜖𝐴𝐵                      (2.64) 

2.4.2 Solution of Twistor Equation 

 

The general solution of (2.63), depending on the point  𝑥 ∈ ℂ𝕄, 

has the form: 

𝜁𝐴(𝑥) = 𝑤𝐴 − 𝑖𝑥𝐴�́�𝜋�́�                                 (2.65) 

 

where w𝐴 is a constant of integration, and 𝜋�́�  is a constant associated 

with this specifc solution. x𝐴�́� is the spinor version of the position vector 

x𝑎 with respect to some origin. 
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2.4.3 Note  

    The solutions 𝜁𝐴 are completely determined by the four complex 

components of w𝐴 and 𝜋�́� in a spin-frame at the origin. 

 

2.4.4  Difinition :The Twistor 𝒁𝜶 

The twistor Zα is pair of Spinors (𝑤𝐴, 𝜋�́�) if   𝑍𝛼 represented by 

 (wA, πÁ) then we can take twistor components  

                  𝑍𝛼 = (𝑍0, 𝑍1, 𝑍2, 𝑍3) = (𝑤0, 𝑤1, 𝜋0́, 𝜋1́)              (2.66) 

2.4.5 Difinition: a Conjugate Twistor 

We define a conjugate twsitor �̅�𝛼 = (�̅�, �̅�
�́�)  to have components 

�̅�𝛼 = (�̅�0, �̅�1, w̅
𝐴0́ , �̅��́�1) 

 

2.4.6 Definition: The Twistor Space 

 

The collection of all twistors determines a four-dimensional 

complex vector space, called twistor space, and denoted by 𝑇. 

 

The four complex components of  𝑍𝛼  completely determine the 

solutions 𝜁𝐴(𝑥). 𝜁𝐴 is called the spinor field associated with the twistor 

𝑍𝛼. 

2.4.8 Definition 

A twistor is a pair of spinors related by a diferential equation, or as 

a nonzero four-dimensional complex vector. 

 

2.4.9 Geometrically 

 The location of the twistor 𝑍𝛼 is given by the vanishing of the 

associated spinor  𝜁𝐴. This gives the equation: 

 

𝜁𝐴(𝑥) = 0 ⟹ 𝑤𝐴 = 𝑖𝑥𝐴�́�𝜋�́�                                  (2.67) 

 

2.4.10 A Complex Conjugate Twistor Equation: 

Since in spinor theory each equation is accompanied by its 

complex conjugate, we can also define a complex conjugate twistor 

equation: 
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∇𝐴 0)( 
 BA                                        (2.68) 

With solution 

𝜑�́�(𝑥) = 𝜁 �́� − 𝑖𝑥𝐴�́�𝜐𝐴                               (2.69) 

 

2.4.11 Definition: The Dual Twistor Space 

The pair of spinors (𝜐𝐴, 𝜁
�́�)determines a dual twistor 𝑊𝛼, and the 

collection of all dual twistors is called the dual twistor space,𝑇∗. 

 

2.5 Twistor Pseudonorm 

2.5.1 Definition: (The Norm of A twistor  

 

We defne the norm of a twistor by: 

 

𝑧𝛼𝑧�̅�=wA�̅�𝐴 + 𝜋�́��̅�
�́�=w0�̅�0+w1�̅�1 + 𝜋0́�̅�

0́ + 𝜋1́�̅�
1́;            (2.70) 

 

where we used that the conjugate of  𝑧𝛼 

 

2.5.2 Definition: The (pseudo) Norm 

By introducing new variables (𝑤, 𝑥, 𝑦, 𝑧) ∈ 𝑧𝛼 via the relations  

 

𝑤0 = 𝑤 + 𝑦,  𝑤1 = 𝑤 + 𝑧 ,  𝜋0́ = 𝑤 − 𝑦,    𝜋1́ = 𝑤 − 𝑧            (2.71) 

 

(2.70) becomes: 

 
1

2
𝑧𝛼𝑧�̅� = 𝑤�̅� + 𝑥�̅� − 𝑦�̅� − 𝑧𝑧̅                        (2.72) 

𝑧𝛼𝑧�̅� is called the (pseudo) norm of the twistor 𝑧𝛼. 

 

2.5.3 The Helicity of The Twistor 𝒛𝜶 

The following quantity is called the helicity of the twistor 𝑧𝛼: 

 

∑   =  
1

2
𝑧𝛼𝑧�̅� 
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2.5.4 Classification of Twistor 

Based on the sign of the helicity, twistors can be classified as: 

 

(i)  Null, if    ∑ = 0 . This defnes the space of null twistors, ℕ: 

(ii)  Right-handed, if    ∑ > 0. This defines the top half   𝕋+ of the    

twistor space  𝕋: 

(iii)  Left- handed, if   ∑ < 0. This defines the bottom half  𝕋− of  𝕋 

 

The case when the helicity is equal to zero is of particular interest. For a 

fixed twistor, 𝑤𝐴 and 𝜋�́� are constant spinors, equation (2.67) can then be 

regarded as an equation for  𝑥𝐴�́� . 

The solution of this equation is in general complex, and is given by 

                            𝛾𝑧: 𝑥
𝐴�́�  = 𝑥𝐴�́�(0) + 𝜆𝐴𝜋 �́�                        (2.73)        

where  𝜆𝐴 is an arbitrary spinor and  𝑥𝐴�́� (0)  is a particular solution. 

Since the Minkowski space is an affine space, we can adjust the origin 

such that the particular solution is in fact the solution at the origin. 

 

If real solutions exist, then  𝑥𝐴�́� = �̅�𝐴�́� , and we obtain that: 

𝑧𝛼𝑧�̅�= wA�̅�𝐴 + 𝜋�́��̅�
𝐴 ́ = i xA�́�𝜋�́��̅�𝐴 - i�̅�

A�́��̅�𝐴𝜋�́� = 0          (2.74)                

We see that real points can only exist in the region of the twistor space of 

zero helicity. 

It can be shown that if (2.74) holds and  𝜋�́� ≠ 0 , the solution space of 

(2.67) in 𝕄 is a null geodesic for real values of r: 

xA�́� = 𝑥A�́�(0) + 𝑟�̅�𝐴𝜋 �́�                             (2.75) 

If   𝜋�́� = 0,  the twistor  (𝑤𝐴, 0) can be regarded as a twistor at 

infnity, lying in the compactifcation of the Minkowski space. This twistor 

is denoted by  𝐼𝛼𝛽 and is represented 

by the matrix: 

𝐼𝛼𝛽 = (
0 0

0 𝜖𝐴�́́�
)                                       (2.78) 
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Its dual (and twistor complex conjugate) is: 

 

𝐼𝛼𝛽 = (𝜖
𝐴𝐵 0
0 0

)                                      (2.79) 

 

This is one other way of obtaining the compactification of the 

complexifid Minkowski space, by adding a twistor at infinity. 

 

The infinity twistors are objects which break the conformal invariance: 

the conformal group 𝕊𝕌(2, 2) acts on the twistor space ≈ ℂ4 {0}⁄ , but 

only the Poincaré group (which is a subspace of  𝕊𝕌(2, 2)) preserves  

𝐼𝛼𝛽. 

 

2.6 𝜶-Planes and 𝜷-Planes 
The locus of a twistor 𝑍𝛼 in ℂ𝕄  is given by the region in which its 

associated spinor field 𝜁𝐴 vanishes, leading to the equation: 

 

𝑤𝐴 = 𝑖𝑥𝐴�́�𝜋�́�                                       (2.80) 

 

The solution of this equation is described in (2.73). Since  𝜆𝐴 varies, we 

obtain a family of vectors 𝑥𝐴�́� passing through    𝑥𝐴�́� (0). Their endpoints 

determine a complex two-plane with tangent vectors of the form 

 

            𝑣𝐴 = 𝜆𝐴𝜋 �́�                                      (2.81) 

for fixed  𝜋 �́� and varying  𝜆𝐴. 

One can easily show that these vectors are null: 

 

𝑣𝑎𝑣
𝑎 = (𝜆𝐴𝜆𝐴)(𝜋

�́�𝜋�́�) = 0                           (2.82) 

And mutually orthogonal: 

 

𝑣𝑎𝑤𝑎 = (𝜆
𝐴𝜇𝐴)(𝜋

�́�𝜋�́�) = 0                             (2.83) 

 

This last relation also tells us that the metric 𝜂 this complex two-plane 

inherits from the Minkowski space is null, since: 

 𝜂(𝑣, 𝑤) = 𝜂𝑎𝑏𝑣
𝑎𝑤𝑏 = 𝑣

𝑎𝑤𝑎 = 0                         (2.84) 
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It follows that the locus of the twistor  𝑧𝛼 is a null two-plane in 

complexified Minkowski space. Such a plane consists of all the end 

points of the complex vectors 𝜆𝐴𝜋 �́� originating from the point  𝑥𝐴�́� (0), 

and is called an 𝛼-plane.  𝛼-planes are totally nulltwo-planes that are self-

dual.  

 

 

Figure 13: The 𝛼-plane is determined by the 

endpoints of the vectors corresponding to the 

solutions of the null twistor equation. 

2.6.1 Solutions of the Null Twistor Equation. 

Similarly, the location of a dual twistor 𝑊𝛼  in ℂ𝕄 is a null two-

plane, called a 𝛽 -plane, which has the property of being anti-self-dual. 

By setting  𝜑�́� = 0 equal to zero, we obtain the following equation for  

𝑥𝐴�́�. 

𝜁 �́� = 𝑖𝑥𝐴�́�𝑣𝐴                                           (2.85) 

 

with solution 

𝑥𝐴�́� = 𝑥𝑜
𝐴�́� + 𝜌�́�𝑣𝐴                                      (2.86) 

 

where  𝜌�́� varies and 𝑣𝐴 is fixed. 

 

 It is very important to note that in complex Minkowski space, 

there are two distinct families of totally null two-planes: the 𝛼-planes 

corresponding to 𝑍𝛼 twistors, and the 𝛽-planes corresponding to dual 
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twistors  𝑊𝛼 . This will be of interest when we discuss the interpretation 

of the twistor space as a quadric in 𝐶𝑃5. 

 

In the case when 𝜋�́�  =  0, there is no finite locus of the twistor 𝑍𝛼. 

If, additionally, 𝑤𝐴 is nonzero, then the locus of the twistor 𝑍𝛼 can be 

interpreted as a generator of the null cone at infinity. 

 

2.7 Projective Twistor Space 

We saw from equation (2.73) that a twistor  𝑧𝛼 = (wA, π�́�) 

determines an 𝛼 -plane; it is obvious that a multiple of 𝑍∝ will determine 

the same 𝛼 -plane. Viceversa, an 𝛼 –plane determines a twistor, but not 

uniquely, only up to a scale factor  𝜆: 

 

(wA, π�́�)~(λw
A, λπ�́�)                                   (2.87) 

for  𝜆 ∈ 𝐶𝑛 {0}⁄  . This freedom is not a shortcoming of twistor theory, in 

fact it is of interest when one brings in quantum physics. 

Equation (2.87) states that an 𝛼 -plane is an equivalence class of 

twistors [𝑧∝] , called projective twistor. The set of all such equivalence 

classes (𝛼 -planes) determine the projective twistor space, ℙ𝕋, in which 

the 𝛼 -planes are represented by points. 

The extra information contained in the twistor space  𝕋 compared 

to  ℙ𝕋  is the choice of scale for the spinor  π�́�   associated to a particular 

𝛼 -plane. 

Since the twistors   𝑧∝  are defined in ℂ4 and obey the equivalence 

relation (2.87), it follows that the projective twistor space  ℙ𝕋 can be 

represented by a three dimensional complex projective space. 

In general, we will use the notation  𝑧∝ even if we refer to the 

equivalence class [𝑧∝], but in that case the components of  𝑧∝ in (14) will 

be written between square brackets and referred to as "homogeneous 

coordinates" of the corresponding point in ℙ𝕋. 

  Similarly , 𝛽 -planes correspond to points in a dual projective 

twistor space, denoted ℙ𝕋∗, also represented by a ℂℙ3.In the projective 

twistor space, the norm of a twistor is not well-defined any longer, but the 

sign of the norm can still be used to divide the projective twistor space 

into three regions,  ℙ𝕋+  , ℙℕ   and  ℙ𝕋− , corresponding to   ∑  > 0 ,    

∑ = 0   and    ∑  < 0   respectively. 

 



60 

 

2.8 Twistor Space and Minkowski Geometry   

A twistor with 2𝑠 = 𝑍𝛼�̅�𝛼 = 0 represents a null real straight line 

(i.e. the word line of some particle of zero spin) 

(i) If 𝑆 ≠ 0 there is no such real line, but there is in a certain sense a 

"complex line". 

(ii) When 𝑆 = 0   , 𝑍∝ and   𝜆 𝑍∝ (𝜆 ≠ 0 ) represent the same line so 

that the most directly geometrically interpretable twistor space is 

the space N of equivalence classes  {𝜆𝑍∝} when 𝑆 = 0   𝑍∝ ≠ 0  

i,e.  

𝑵 = {{𝜆𝑍∝: 𝜆 ≠ 0, 𝜆 𝜖 ℂ}   ∶ 𝑍∝�̅�𝛼 =   0, 𝑍
∝ ≠ 0}                   (36) 

Which represents the set of null line in 𝐌 we shall therefore consider the 

space 𝑪 of equivalence classes of twistors, defined like 𝐍 but without the 

requirement 𝑠 = 0 (fig 14) this is complex projective three space ℂ𝑃(3) 

which has three complex or six real dimensions. 

 

                    Fig (14) projection of twistor space into 𝑪 

It is not just the complexification of  𝐍, which would have ten real 

dominions. In fact even the complex points of 𝑪 may be represented as 

real structure in 𝑴. The conformal transformations of  𝑀 correspond to 

proactive point transformations of  𝑪  preserving 𝑵. 
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We now consider the space of lines (projective lines) in ℙ𝕋 an see 

the corresponding image in  𝑴. 

A line in  ℙ𝕋 is  ℂℙ1 given by the intersection of two planes 

𝑍𝛼𝐴𝛼 = 𝑍
𝛽𝐵𝛽 = 0                                     (2.88) 

Of course there is some freedom in the choice of  𝐴𝛼  and  𝐵𝛽. 

What is the space of these lines in ℙ𝕋? 

Each is determined by a skew simple (0,2)  twistor  𝐿∝𝛽. The 

condition for simplicity can be written 

 

          3𝐿∝[𝛽𝐿𝛾𝛿] = 𝐿∝𝛽𝐿𝛾𝛿 + 𝐿∝𝛾𝐿𝛿𝛽 + 𝐿∝𝛿𝐿𝛽𝛾 = 0            (2.89)           

 

which defines a quadric 𝑄 in  𝐶𝑃 5 (called the Klein quadric). By 

changing the coordinates we can see that 𝑄 is actually the space of 

generators of the cone 

 

𝑇2 +  𝑉 2  − 𝑊2 − 𝑋2  −  𝑌 2  −  𝑍2  =  0               (2.90) 

In  ℂ6.  

Here is the change of coordinates: 

 

𝑇 =
𝑖

√2
(𝐿03  −  𝐿12) 

𝑉 =  𝐿03  +  
1

2
𝐿01 

𝑊 =  𝐿23  +  
1

2
𝐿01 

𝑋 =
𝑖

√2
(𝐿02  −  𝐿13) 

  

𝑌 =
−1

√2
(𝐿02  −  𝐿13) 

 

𝑍 =
−𝑖

√2
(𝐿12  −  𝐿02)                                  (2.91) 

 

Here is the embedding of  𝕄 in the cone: 
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𝑋𝑎 → (𝑥0,
1

2
(1 − 𝑥𝑏𝑥𝑏), −

1

2
(1 + 𝑥𝑏𝑥𝑏) , 𝑥

1, 𝑥2, 𝑥3) 

 

Thought of in R6 our cone is the 𝑂(2, 4) null cone of 

 

𝑑𝑠2  =  𝑑𝑇2  +  𝑑𝑉 2  −  𝑑𝑊2  −  𝑑𝑋2  −  𝑑𝑌 2  −  𝑑𝑍2.           (2.92) 

  

Each of its generators (except those for which W − V = 0) meets the 

plane 

𝑊 −  𝑉 =  1                                        (2.93) 

 

in a point, and the intersection of this plane and the cone is just 

Minkowski space 𝕄. 

 

So the space of generators is a compactification  𝕄𝑐 of 𝑀. It is the 

conformal compactification: the extra generators form a null cone at 

infinity. 

 

We have shown that there is a four real dimensional family of lines 

in ℙ𝕋 corresponding to 𝕄, but we have not so far shown how to identify 

them in ℙ𝕋. 

For a twistor 𝑍 to lie on a line L it must satisfy two linear 

equations. Except when the line is given by  𝑍2  =  𝑍3  =  0, these can be 

written 

(𝑍
0

𝑍1
) =

𝑖

√2
(𝑥

0 + 𝑥3 𝑥1 + 𝑖𝑥2

𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3
) (𝑍

2

𝑍3
)                         (2.94) 

 

Where 𝑥𝑎 is the space-time point corresponding to 𝐿. More 

concisely, if we write  𝑍𝛼 = (𝑤𝐴, 𝜋�́�) we have 

 

𝑤𝐴 = 𝑖𝑥𝐴�́�𝜋�́�                                         (2.95) 

 

If 𝑍 also lies on the line corresponding to 𝑦𝐴�́� , then 

 

𝑥𝐴�́�𝜋�́� = 𝑦
𝐴�́�𝜋�́�                                    (2.96) 
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and so the matrix  𝑥𝐴�́� − 𝑦𝐴�́�  must be singular. The condition for this is 

that  𝑥𝑎 and  𝑦𝑎are null-separated. If in 

𝑤𝐴 = 𝑖𝑥𝐴�́�𝜋�́�                                        (2.97) 

 

we think of the twistor as fixed and solve for the point 𝑥𝐴�́� we find that 

 

𝑥𝐴�́� = 𝑥0
𝐴�́� + 𝜇𝐴𝜋 �́�                                     (2.98) 

for arbitrary 𝜇𝐴. 

 

So 𝑍𝛼 = (𝑤𝐴, 𝜋�́�)  corresponds to this alpha-plane: it is a totally null two 

complex dimensional plane in complex Minkowski space. 

 

ℙ𝕋                                                                      ℂ𝕄𝑐 

       Complex Projective line                                            point 

 

     Point                                                             alpha-plane 

 

        Intersection of lines                                       null-separation of points                                                   

In general an alpha-plane will have no real point, but when it does it 

contains a whole real null ray: if  𝑥0
𝐴�́� is real then so is 

 

𝑥𝐴�́� = 𝑥0
𝐴�́� + 𝑟�̅�𝐴𝜋 �́�                                 (2.99) 

for any real 𝑟. 

 

If  𝑍𝛼 is the twistor for this alpha-plane then 

 

                    ∑ (𝑍) = 𝑤𝐴�̅�𝐴 + �̅�
�́�𝜋�́�                       

                                         = 𝑍0�̅�2  +  𝑍1�̅�3 + �̅�0𝑍2  +  �̅�1𝑍3 

=  0.                                                        (2. 100) 

 

This Hermitian form ∑  divides ℙ𝕋 into three regions: 

 

∑(𝑍)  >  0                                             ℙ𝕋+ 

∑(𝑍) =  0                                              ℙℕ 

∑(𝑍)  <  0                                             ℙ𝕋− 
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ℙℕ is the space of real null rays: it is a five real dimensional manifold 

with a 𝐶 − 𝑅 structure. We could imagine discovering projective twistor 

space this way. 

 

If  𝑥𝐴�́� is real then any 𝑍 lying on the corresponding line in ℙ𝕋 satisfies 

𝑤𝐴 = 𝑖𝑥𝐴�́�𝜋�́�                                   (2.101) 

 

And hence has ∑(𝑍) =  0. 

Thus points in real (compactified) Minkowski space correspond to lines 

lying entirely in ℙℕ. 

Any two twistors on a given line in ℙℕ represent null rays through the 

Corresponding point in 𝕄. 

So intrinsically the line in ℙℕ is the celestial sphere of the space-time 

point. 

Lines lying entirely in ℙ𝕋+ correspond to points 

 

𝑧𝐴�́� = 𝑥𝐴�́� − 𝑖𝑦𝐴�́�𝜋�́�                                    (2.102) 

 

with 𝑦𝐴�́� timelike and future-pointing, or in other words points 𝑧𝐴�́� in the 

future tube. 

This will lead later to a very elegant twistor description of positive 

frequency, using the fact that positive frequency fields can be 

characterized by having holomorphic extensions into the future tube. 

2.9 Geometric Correspondences 

We saw that points in ℙ𝕋 correspond to 𝛼 -planes, and from (2.75) 

we have that points in ℙℕ correspond to null geodesics. If an 𝛼 -plane 

contains a real point, then it will contain the whole null geodesic given in 

(2.75). 
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Figure 15: Geometric correspondences in the complexified 

Minkowskispace, PT and PN. 

 

Figure (15) describes some of the geometric correspondences 

mentioned in this section: for 𝑋 and 𝑌 null twistors, their corresponding 

null geodesics, 𝛾𝑋 and  𝛾𝑌, meet at the point 𝑝. The points 𝑝 and 𝑞 are 

said to be null separated if there is a null geodesic 𝛾  joining them. Each 

point will be represented in ℙ𝕋 by a projective line (𝐿𝑝 and 𝐿𝑞), and the 

null geodesic 𝛾 joining 𝑝 and 𝑞 in ℂ𝕄, becomes the intersection point of 

𝐿𝑝 and 𝐿𝑞  in ℙ𝕋. Each null twistor is represented by a point in ℙ𝕋, and 

the point at the intersection of the null geodesics 𝛾𝑋 and 𝛾𝑌 is represented 

by a line passing through the points corresponding to the two null twistors 

𝑋 and 𝑌 . 

Other geometric correspondences can be made as follows: if we 

interpret (15) as an equation with 𝑥𝐴�́�  fixed and solve for (wA, πÁ), we 

obtain that 

𝑤𝐴 = 𝑖𝑥𝐴�́�𝜋`�́�                                           (2.103) 
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with  𝜋�́�  arbitrary, which defines a complex two-plane. 

Factorization by the equivalence relation (35) leads to a 𝐶𝑃1, with 

the two-sphere topology. The fixed space-time point 𝑥 determines a 

Riemann sphere in  ℙ𝕋.  If  𝑥 is real, this sphere lies entirely in ℙℕ. 

 

We obtain that a complex space-time point corresponds to a sphere 

in ℙ𝕋, and a real space-time point corresponds to a sphere in ℙℕ. 

 

2.10 Space-Time Points as Intersection of Twistors 

Consider two null twistors 𝑍1
𝛼  and  𝑍2

𝛼 with their respective null 

geodesics, 𝛾𝑍1  and 𝛾𝑍2  defined as in (2.75). Since 𝑍1
𝛼  and  𝑍2

𝛼  are null, 

they satisfy 

𝑍1
𝛼�̅�1∝ = 𝑍2

𝛼�̅�2∝ = 0                                  (2.103) 

 

The condition for these geodesics to meet at a point 𝑃𝜖 𝕄  is  

 

𝑍1
𝛼�̅�2∝ = 0                                         (2.104) 

 

This is called incidence of twistors condition. 

 

Since real points can only exist in ℕ, we may define a point in the 

real Minkowski space 𝕄 by the intersection of two null geodesics. From 

(2.103) and (2.104) it follows that any nontrivial linear combination of 

the null twistors  𝑍1
𝛼  and  𝑍2

𝛼 

 

𝑍𝛼 = 𝜆𝑍1
𝛼 + 𝜇𝑍1

𝛼                                 (2.105) 

 

For   (𝜆, 𝜇) ∈ 𝐶2 (0,0)⁄    will also be null and will define a null 

geodesic, 𝛾𝑧, which intersects the other two geodesics at the same 

intersection point, 𝑝 ∈ 𝕄. Since 𝜆  and  𝜇 are arbitrary, (2.105) defines a 

family of null geodesics intersecting at 𝑃, that is it defines the null cone 

of the point P. 
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Figure 16: Points are 

represented by intersections of null twistors. 

 

This null cone is a two-dimensional subspace of the twistor space 

𝕋, lying entirely in ℕ, or can be thought of as a projective line 𝐿𝑝 lying in 

ℙℕ. 

The family of null geodesics corresponding to the null twistor 𝑧∝ in 

(2.105), intersecting at the point 𝑃, can be interpreted as actually 

representing the point 𝑃. 

 

In general, any two-dimensional subspace of  𝕋 can be interpreted 

as a point in Minkowski space, but the point is not real unless 𝑍1
𝛼  and  𝑍2

𝛼  

are null and orthogonal. 

 

Consider now the lines in ℙ𝕋 which do not lie entirely in ℙℕ. An 

arbitrary line passing through the two points 𝑍1
𝛼  and  𝑍2

𝛼   is given by: 

 

𝑃𝛼𝛽 = 𝑍1
𝛼𝑍2

𝛽
− 𝑍2

𝛼𝑍1
𝛽
                                    (2.106) 

 

The point 𝑃 corresponds thus (up to proportionality) to a simple 

skew 2-index twistor 𝑃𝛼𝛽, satisfying: 

 

𝑃𝛼𝛽 = 𝑃[𝛼𝛽] ,        and    𝑃[𝛼𝛽𝑃𝛾]𝛿 = 0                      (2.107) 

 

Finally, for 𝑃𝛼𝛽 to represent a finite point of 𝕄, it is also required 

that 
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𝑃𝛼𝛽𝐼𝛼𝛽 ≠ 0,                                     (2.108) 

 

where 𝐼𝛼𝛽  is  one of the infinity twistors defined in (2.78). 

 

It has been shown thus that twistor geometry can be used to replace 

entirely the pointwise approach to the structure of space-time. 
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Chapter Three 

Zero–Rest Mass Field Equations 

3.1 The Zero-Rest Mass Equation 

3.1.1 Definition: (Helicity Operator)  

The helicity operator ℎ on a particle state is defined as the 

projection of the spin operator 𝑠 along the direction of the momentum 

operator 𝑝.  Mathematically we write ℎ = (𝑝 ∙ 𝑠) |𝑝|⁄ . 

 

3.1.2 Remark.  

Helicity is a good quantum number for massless fields, since we 

cannot boost to a frame which changes the sign of the momentum. 

 

3.1.3 Definition: (Weyl Equations)  

We define the Weyl equations for spinor field  𝜓𝑅, 𝜓𝐿 on 𝑀  by 

 

�̅�𝜇𝜕𝜇𝜓𝑅 = 0   and   𝜎𝜇𝜕𝜇𝜓𝐿 = 0                           (3. 1) 

 

where 𝜎𝜇 = (1 , 𝜎𝑖)  and  �̅�𝜇 = (1 , −𝜎𝑖) . These describe massless non-

interacting fermion fields. 

 

3.1.4 Lemma  

𝜓𝑅 has helicity +1/2 and  𝜓𝐿 has helicity −1/2. 

 

Proof 

 Fourier transforming the first equation we obtain 

 

𝜎𝑖𝑝𝑖𝜓𝑅(𝑝) = 𝐸𝜓𝑅(𝑝)                                       (3.2) 

 

Since 𝑚 =  0 we have 𝐸 =  |𝑝| and thus 

 

 (𝜎 ∙ 𝑝) |𝑝|𝜓𝑅(𝑝)⁄ =   𝜓𝑅(𝑝)                              (3.3) 

 

Recall that for spin 1/2 particles we define 𝑆 =  𝜎 2⁄  whence 
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ℎ 𝜓𝑅(𝑝) =
1

2
𝜓𝑅(𝑝)                                      (3.4) 

 

as required. The negative helicity case follows similarly. 

  

3.1.5 Lemma  

The Weyl equations may equivalently be written 

 

∇𝐴�́� 𝛼
𝐴 =  0      and        ∇𝐴�́�𝛽�́� = 0                        (3.5) 

 

where 𝛼𝐴 has helicity −1/2 and 𝛽�́� has helicity +1/2. 

 

Proof  

By convention we choose 

 

𝛼 =  𝜓𝐿 ∈ 𝑆       and          𝛽�́� = 𝜓𝑅 ∈  �́�
∗.                   (3.6) 

 

Now recall that 

 

∇𝐴�́� 𝛼𝐴 = ∑𝜎𝑎 ∇𝑎   and          ∇𝐴�́�= ∑𝜎
𝑎 ∇𝑎  .                 (3.7) 

 

The result follows easily. 

 

3.1.6 Definition: (Maxwell's Equations)  

We define Maxwell's equations for a bivector field 𝐹 on 𝑀 by 

 

𝑑𝐹+  =  0             and         𝑑𝐹−  =  0                        (3.8) 

 

where 𝐹+ is the 𝑆𝐷 and 𝐹− the 𝐴𝑆𝐷 part of  𝐹. These describe a 

masslessnon-interacting source-free electromagnetic field. 

 

3.1.7 Remark  

We note that 𝐹+ describes a field of helicity +1, while 𝐹− describes a 

field of helicity  −1  

 

3.1.8 Lemma.  

Maxwell's equations may equivalently be written 
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∇𝐴𝐴 ́ 𝜓𝐴𝐵 = 0          and           ∇𝐴�́� 𝜓�́��́� = 0                  (3.9) 

 

where  𝜓𝐴𝐵 has helicity -1 and  𝜓�́��́� has helicity +1. 

 

Proof 

 An easy calculation shows that Maxwell's equations are equivalent 

to 

 

∇𝑎𝐹𝑎𝑏
+ = 0                                        (3.10) 

 

and 

∇𝑎𝐹𝑎𝑏
− = 0                                        (3.11) 

 

Now write 

 

𝐹𝑎𝑏 = 𝜓𝐴𝐵 ∈�́��́�+ 𝜓�́��́� ∈𝐴𝐵    and       ∇𝑎 = ∇𝐴�́�                (3.12) 

 

and we're done. 

 

3.1.9 Definition: (Zero Rest Mass (ZRM) Equations) 

 We define the zero rest mass (ZRM) equations for symmetric 

valence 𝑛 spinor fields 𝜓𝐴…..𝐵 and  𝜓�́�………�́� on 𝑀 by 

 

     ∇𝐴�́� 𝜓𝐴…..𝐵 = 0  for helicity −𝑛 2⁄  

∇𝐴�́� 𝜓�́�………�́� = 0 for helicity  𝑛 2⁄  

∇𝐴�́� ∇𝐴𝐴 ́ 𝜓 = 0  for helicity  0                         (3.13) 

3.2 Whittaker's Formula 

Ultimately we are interested in fields on space-time (solutions of 

some field equation -for example the wave equation) and their description 

as objects in the twistor space. As a first step we consider Laplace's 

equation in 𝑅3 (a static solution to the wave equation), now the twistorial 

description is essentially a classical formula of Whittaker (1903). 

The formula of Whittaker states that, up to a translation in space a 

(local) complex valued solution to Laplace's equation in 𝑅3. 
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𝜕2𝜑

 𝜕𝑥1
2
+
𝜕2𝜑

𝜕𝑥2
2
+
𝜕2𝜑

𝜕𝑥3
2
= 0                                (3.14) 

is given by an integral 

 

 𝜑(𝑥) = ∫ 𝑓(𝜃, 𝑥3 + 𝑖𝑥1 cos 𝜃 + 𝑖𝑥2  sin 𝜃)𝑑𝜃
2𝜋

0
                  (3.15) 

 

where 𝑓(𝑧, 𝑤) is a complex analytic function in 2-variables (with 

singularities away from the path of integration). Before proving this 

formula let us give it a different interpretation. 

 

Set 

        𝑞 = 𝑥1 + 𝑖𝑥2   , 𝑢 = 𝑥3   𝑎𝑛𝑑    𝑒𝑥𝑝 (𝑖𝜃) = 𝑒𝑥𝑝(𝑖𝜃)           (3.16) 

 

to be the unit circle over which we take a contour integration. Then 

 

   𝑞 − 2𝑖𝑧𝑢 + 𝑧2 �̅� = −2𝑖𝑒𝑖𝜃(𝑥3 + 𝑖𝑥1 cos 𝜃 + 𝑖𝑥2 sin 𝜃)       (3.17) 

So that we may equivalently write the integral 

 

 𝜂 =
1

2
((𝑥 + 𝑖𝑦) + 2𝑧𝜁 − (𝑥 + 𝑖𝑦)𝜁2)                    (3.18) 

(up to a modification of  𝑓)  as 

 

𝜑(𝑥) =
1

2𝜋𝑖
 ∮ 𝑓(𝑧, 𝑞 − 2𝑖𝑧𝑢 + 𝑧2 �̅�)𝑑𝑧                  (3.19) 

 

We see that the 2nd argument  𝑤 = 𝑞 − 2𝑖𝑧𝑢 + 𝑧2�̅� , up to a factor of 2, 

is the incidence relation between a twistor (𝑧, 𝑤) and the corresponding 

line in 3-space. It is therefore natural to view 𝑓(𝑧, 𝑤) as a function 

defined on a domain of twistor space 𝑇𝐶𝑃1. 

3.2.1 Note  

Given a point 𝑥 ∈ 𝑅3, the set of twistors incident with 𝑥 (the set of 

lines passing through 𝑥) form a copy of  𝐶𝑃1 ⊂ 𝑇𝐶𝑃1 which we 

write 𝐶𝑃1(𝑥) . We then consider the integration as taking place along a 

contour contained in 𝐶𝑃1(𝑥). We therefore very loosely have the 

correspondence: 

harmonic function on a domain of 𝑅3⟷ holomorphic function 

𝑓(𝑧, 𝑤)on a domain of twistor space + choice of contour. 
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3.2.2 Proof of Whittaker's Formula  

We establish the formula (3.18). Now a solution 𝜑 to Laplace's 

equation ∆𝜑 = 0  is analytic. Let 𝑥0 be a regular point for 𝜑: by 

translation we may suppose that 𝑥0 is the origin and we expand 𝜑 in a 

power series about the origin: 

 

𝜑 = ∑ 𝑎𝐼𝑥
𝐼 = 𝑎0 +𝐼 𝑎1𝑥

1 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎11(𝑥
1)2 + 𝑎12𝑥

1𝑥2 +.     (3.19) 

 

If we write this in homogeneous parts: 

𝜑 = 𝑄0 + 𝑄1 + 𝑄2 +⋯                            (3.20) 

where 𝑄𝑛 is homogeneous of degree 𝑛, then it is easily seen that each 𝑄𝑛 

is also harmonic. 

 Now in 3 variables, there are 2𝑛 +  1 linearly independent 

harmonic homogeneous polynomials of degree  𝑛 , e.g. 𝑛 =  1:  x , y,  

𝑛 =  2 : 𝑥𝑦 , 𝑦𝑧 , 𝑥𝑧 , 𝑥2 − 𝑦2, 𝑦2 − 𝑍2. These can be generated as 

follows: 

Consider the function of   𝑢 , 𝑥1, 𝑥2, 𝑥3 , homogeneous of degree 𝑛 

in 𝑥, given by 

 

(𝑥3 + 𝑖𝑥1 cos 𝑢 + 𝑖𝑥2 sin 𝑢)𝑛 = ∑ 𝑔𝑘(𝑥) cos 𝑘𝑢 + ∑ ℎ𝑘(𝑥) sin 𝑘𝑢
𝑛
𝑘=1

𝑛
𝑘=0    (3.21) 

                                                                             

Then  𝑔𝑘 = 𝑔𝑘(𝑥
1, 𝑥2, 𝑥3) and  ℎ𝑘 = ℎ𝑘(𝑥

1, 𝑥2, 𝑥3) form (2𝑛 + 1) 

linearly independent harmonic functions of degree n. By the theory of 

Fourier series 

 

𝑔𝑘(𝑥) =
1

𝜋
∫ (𝑥3 + 𝑖𝑥1 cos 𝑢 + 𝑖𝑥2 sin 𝑢)𝑛 cos 𝑘𝑢𝑑𝑢
2𝜋

0
          (3.22) 

 

ℎ𝑘(𝑥) =
1

𝜋
∫ (𝑥3 + 𝑖𝑥1 cos 𝑢 + 𝑖𝑥2 sin 𝑢)𝑛 sin 𝑘𝑢𝑑𝑢
2𝜋

0
         (3.23) 

 

which gives the required form. 
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3.2.3 Example 

 Set 𝑓(𝑧, 𝑤) = 𝑧 𝑤⁄ . This function has simple poles at                   

𝑧 = 𝑖 (𝑢 ± |𝑥|) �̅�⁄  .  Evaluate the contour integral  

 

𝜌𝑃(𝜁) = (
1

2
((𝑥 + 𝑖𝑦) + 2𝑧𝜁 − (𝑥 + 𝑖𝑦)𝜁2), 𝜂)          (3.24)  

 

along a contour surrounding the pole 𝑖 (𝑢 + |𝑥|) �̅�⁄ , but not surrounding 

the other pole. To be more specific, take the contour  |𝑥| = 2, then the 

above property is satisfied for {𝑅3: 𝑞 ≠ 0,0 > 9|𝑥|2 − 16𝑢2} . 

 

 Set {𝑥 ∈ 𝑅3: 𝑞 ≠ 0,0 < 9|𝑥|2 − 16𝑢2}. Then for  𝑥 ∈ 𝑈 , calculating the 

residue, the integral (3.24) gives the harmonic function 

 

             𝜑(𝑥) =
𝑢+|𝑥|

2�̅�|𝑥|
                                           (3.24) 

 

Well-defined off the 𝑥3-axis q = 0. Note that (3.24) only determines the 

harmonic function for 𝑥 ∈ 𝑈, where as the function clearly extends to 

𝑅3 {𝑥3 − 𝑎𝑥𝑖𝑠}⁄ . 

If on the other hand we let  𝑥 ∈ 𝑉 = {𝑥 𝜖 𝑅3 ∶ 𝑞 ≠ 0, 0 > 9|𝑞|2 −

16𝑢2} , the contour surrounds the other pole and we get a different 

harmonic function 

               𝜑(𝑥) = −
𝑢−|𝑥|

2�̅�|𝑥|
                                          (3.25) 

 

In order to describe the harmonic function 𝜑  in terms of twistor 

space we have to work a bit harder! We avoid discussion of twistor 

cohomology, but to give a flavour of what occurs, we outline the 

procedure to determine a global solution. Take an appropriate open cover 

{𝑈𝑖} of twistor space 𝑇𝐶𝑃1.  

3.2.4 Note  

For a given 𝑥 𝜖 𝑅3, the integration takes place along a contour in 

the corresponding Riemann sphere 𝐶𝑃1(𝑥) ⊂ 𝑇𝐶𝑃1  (this is where 

𝑓(𝑧, 𝑤) is defined!) Suppose that 𝑈1⋂𝑈2 ⊃ 𝐶𝑃
1(𝑥) and let 𝑉1 =

𝑈1⋂𝐶𝑃
1(𝑥), 𝑉2 = 𝑈2⋂𝐶𝑃

1(𝑥). Then we require the contour to lie in 

𝑉1⋂𝑉2. Furthermore we require the twistor function f to be defined in a 

neighbourhood of this contour - in fact in 𝑈1⋂𝑈2and we write it as  𝑓12. 
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More generally, with respect to the open cover  {𝑈𝑖}, we have a collection 

of twistor functions ffijg defined on the intersections 𝑈𝑖⋂𝑈𝑗 . These must 

satisfy the cocycle conditions and define an element of cohomology. In 

the space-time context this is the basis of the Penrose transform (an 

integral transform) relating sheaf cohomology on twistor space and zero-

rest-mass felds on space time. 

The twistor function is replaced by an element of the cohomology 

group and the field now becomes a function of an element of the 

cohomology group. 

 

3.3 Integral Formulae 

3.3.1Definition  

We define the future tube of complexified Minkowski space by: 

 

𝐶𝑀+  =  𝐶 ℊ−1(𝑇+) 
3.3.2Remark  

Recall that in quantum field theory we discard negative frequency 

fields, for they correspond to unphysical negative energy particles. 

Therefore we are most interested in solving the 𝑍𝑅𝑀 equations for 

positive frequency fields. We note a field 𝜑𝐴……𝐵 on Minkowski space is 

of positive frequency if it can be extended to the forward tube 𝐶𝑀+ by 

analytic continuation. Using hyperfunctions one may obtain the converse 

statement also. Motivated by this, we shall seek solutions of the 𝑍𝑅𝑀 

equations defined on 𝐶𝑀+. 

 

3.3.3 Theorem  

Recall the helicity 𝑛/2  𝑍𝑅𝑀 equations for a valence 𝑛 spinor field 

𝜓�́�………�́� , namely 

∇𝐴�́� 𝜓�́�………�́� = 0                                    (3.26) 

 

These have solutions on 𝐶𝑀𝑐 given by 

 

𝜓�́�………�́�(𝑥) =
1

2𝜋𝑖
 ∮ 𝜋�́�…… 𝜋�́�𝑝𝑥  𝑓(𝑍

𝛼)𝜋�́�  𝑑𝜋
�́�             (3.27) 

where  

 

(i) 𝑓 is homogeneous of degree (−𝑛 −  2) in 𝑍𝛼 

(ii) 𝑍𝛼 = (𝑤𝐴 , 𝜋�́�  ) 
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(iii) 𝑝𝑥 denotes restriction to the line ℙ1 ⊂ ℙ𝑇 defined by 𝑥 via the 

twistor correspondence 

(iv) 𝜋�́� are homogeneous coordinates on ℙ1 

(v) the contour is arbitrary, provided it avoids the singularities of 𝑓 and 

varies continuously with 𝑥 

 

Proof 

 First observe that the integral is well-defined on ℙ1, since the 

entire integrand (including the difierential) has homogeneity 0 in 𝜋�́�. 

Applying the chain rule we obtain 

 

∇𝐴�́� 𝑝𝑥𝑓(𝑍
𝛼) =

𝜕

𝜕x𝐴�́�
 𝑝𝑥𝑓(𝑤

𝐴 , 𝜋�́�  ) =  𝑝𝑥
𝜕𝑓

𝜕𝑤𝑐
 
𝜕𝑤𝑐

𝜕x𝐴�́�
= 𝑖𝜋�́�𝑝𝑥

𝜕𝑓

𝜕𝑤𝐴
  (3.28) 

 

Now difierentiating under the integral sign we get 

 

∇𝐶�́�𝜓�́�………�́� =
1

2𝜋
 ∮ 𝜋�́�…… 𝜋𝐵  ́  𝜋�́�𝑝𝑥

𝜕𝑓

𝜕𝑤𝑐
𝜋�́�  𝑑𝜋

�́�               (3.29) 

 

which is clearly symmetric in �́� ……… �́� and so satisfies the ZRM 

equations in the form of Lemma. 

 

3.3.4 Remark  

We may regard 𝑓 as a section of 𝑂(−𝑛 −  2) on ℙ3.  

 

3.3.5 Remark  

Our proof is incomplete, for we have not demonstrated that an 

appropriate contour exists. We see in Example 3.4.7 that this is indeed a 

nontrivial problem. We leave this subtle point to the rigorous methods of 

3.1.3 There, we solve the problem using the fact that ℂ𝑀+ is Stein. 

 

3.3.6 Theorem  

The helicity  −𝑛 2⁄   𝑍𝑅𝑀 equations for a valence n spinor field  𝜓𝐴…..𝐵 

have solutions on ℂ𝑀+ given by 

 

𝜓𝐴…..𝐵(𝑥) =  
1

2𝜋𝑖
 ∮ 𝑝𝑥

𝜕𝑓

𝜕𝑤𝐴
………

𝜕𝑓

𝜕𝑤𝐵
𝑓(𝑍𝛼)𝜋�́�  𝑑𝜋

�́�            (3.30) 
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where 𝑓 is homogeneous of degree (𝑛 −  2) in  𝑍𝛼 and all other notation 

is as in the previous theorem. 

 

3.3.7 Example (Wave Equation)  

The alert reader may notice that we have not explicitly verified our 

formulae in the case n = 0. This is not hard to check, so instead we 

compute an example to develop our intuition. Consider the twistor 

function 

𝑓(𝑍𝛼) =
1

(𝐴𝛼𝑍
𝛼)(𝐵𝛽𝑍

𝛽)
                                  (3.31) 

 

This has homogeneity -2 in 𝑍𝛼 so applying Theorem 3.4.1 should yield a 

solution to the wave equation. For convenience set 

 

𝛼 �́� = 𝑖𝐴𝐴𝑥
𝐴�́� + 𝐴�́�  and    𝛽�́� = 𝑖𝐵𝐴𝑥

𝐴�́� + 𝐵�́�            (3.32) 

 

so that the integral reads 

 

𝜓(𝑥) =  
1

2𝜋𝑖
 ∮

1

(𝛼�́�𝜋�́�)(𝛽
�́�𝜋�́�)

 𝜋�́�  𝑑𝜋
�́�                      (3.33) 

 

Observe that an appropriate contour exists iff the poles are distinct. 

Indeed any choice of contour varying continuously with 𝑥 and enclosing 

one of the poles becomes singular when the poles coincide. If we want 

𝜓(𝑥) to be well-defined on ℂ𝑀+ we need to place some restriction on 𝐴𝛼 

and  𝐵𝛽. 

 

Now 𝐴𝛼 and 𝐵𝛽 define a line 𝐿 in ℙ𝑇 and hence a point 𝑦 𝜖 𝑀 via the 

dual twistor correspondence. We see that 𝜓(𝑥)) is singular at precisely 

those  𝑥 ∈ ℂ𝑀 which are complex null separated from y. We have that 

𝜓(𝑥) is singular iff  𝐿𝑥 ≡ ℓ(𝑥)  intersects 𝐿 in ℙ𝑇. Therefore it sufices to 

choose 𝐴𝛼 and 𝐵𝛽 such that 𝐿 lies entirely in ℙ𝑇− for 𝜑 to be well-

defined on  ℂ𝑀+. 

 

We may now assume that the poles are distinct, so in particular   

 

𝛼 �́�𝛽�́� ≠ 0                                          (3.34) 
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Let 𝑧 be a coordinate on ℙ1 given by 

 

𝜋�́� = 𝛼�́� + 𝑧𝛽�́�                                     (3.35) 

 

Then the integral becomes 

 

𝜓(𝑥) =  
1

2𝜋𝑖
 ∮

𝑑𝑧

(𝛼�́�𝜋�́�)𝑧
=  

1

𝛼�́�𝜋�́�
                          (3.36) 

 

by the residue theorem. Now since 𝐴𝛼 and 𝐵𝛽 lie on the line defined by 𝑦 

we have, by the dual twistor correspondence 

 

𝐴�́� = −𝑖𝑦𝐴�́� 𝐴𝐴  and   𝐵�́� = −𝑖𝑦𝐴�́� 𝐵𝐴                     (3.37) 

 

Whence we obtain 

 

𝛼 �́�𝛽�́� = 𝐴𝐴 𝑥
𝐴�́�  𝐵𝐵𝑥𝐵�́� − 𝐴𝐴 𝑦

𝐴�́�  𝐵𝐵𝑥𝐵�́� − 𝐴𝐴 𝑥
𝐴�́�  𝐵𝐵𝑦𝐵�́�   +  𝐴𝐴 𝑦

𝐴�́�  𝐵𝐵𝑦𝐵�́�                                                       

(3.38) 

 

Now using the relations 

 

 𝑥0�́� 𝑥1�́� =  𝑥
00́ 𝑥10́ +  𝑥

01́ 𝑥11́ = 𝑥11́ 𝑥10́ − 𝑥01́ 𝑥11́ = 0    (3.39) 

  

 𝑥0�́� 𝑥0�́� =  𝑥
1�́� 𝑥1�́�                                (3.40) 

We may conclude that 

𝐴𝐴 𝐵
𝐵 𝑥𝐴�́� 𝑥𝐵�́� =

1

2
 𝐴𝐴 𝐵

𝐵 𝑥2                         (3.41) 

Treating the other terms similarly we obtain 

𝜓(𝑥) =   
2

𝐴𝐴 𝐵
𝐴(𝑥−𝑦)2

                                 (3.42) 

It is now trivial to check that 𝜓(𝑥) satisfies the wave equation, as 

required. 
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3.3.8 Example (𝑨𝑺𝑫 Coulomb Field) 

It is claimed that the twistor function 

 

𝑓(𝑍𝛼) = log
𝑍1𝑍2−𝑍0𝑍3 

𝑍2𝑍3
                                       (3.43) 

 

Produces an 𝐴𝑆𝐷 Coulomb field 𝐹𝜇𝑣 where 𝐹0𝑗 ≡ 𝐸𝑗 ≡ 𝑖𝐵𝑗   and 

 

𝐸 ∝ 𝑟 𝑟3⁄  

 

Let 𝐹 be an 𝐴𝑆𝐷 Coulomb field. Then by Theorem we may write 

 

𝐹𝑎𝑏 = 𝐹𝐴�́�𝐵�́� = 𝜑𝐴𝐵𝜖�́��́�                                (3.44) 

 

In particular we have 

 

𝐸𝑥 = 𝐹01 = −𝜑01  

                                     𝐸𝑦 = 𝐹02 =
1

2
(𝜑11 − 𝜑00) 

𝐸𝑧 = 𝐹03 = −
1

2
𝑖(𝜑00 − 𝜑11)                           (3.45) 

 

Now we calculate 𝜑𝐴𝐵 using the contour integral formula 

 

𝜑𝐴𝐵(𝑡, 𝑥, 𝑦, 𝑧) =  𝜓𝐴…..𝐵(𝑥) =  
1

2𝜋𝑖
 ∮𝑝𝑥

𝜕𝑓

𝜕𝑤𝐴
………

𝜕𝑓

𝜕𝑤𝐵
𝑓(𝑍𝛼)𝜋�́�  𝑑𝜋

�́�   

=
1

2𝜋𝑖
 ∮
(𝛿𝐴
0𝜋1́ −𝛿𝐴

1𝜋0́)(𝛿𝐵
0𝜋1́ −𝛿𝐵

1𝜋0́) 

(𝑥1�́�𝜋�́�𝜋0́− 𝑥
0�́�𝜋�́�𝜋1́)

2 𝜋�́�𝑑𝜋
�́�                (3.46) 

 

Choosing local coordinates  𝜋�́� = (1 , 𝜁) and using the convention 

(𝑥
00́ 𝑥01́

𝑥10́ 𝑥11́
) =

1

√2
 (
t + x y + iz
y − iz t − x

)                 (3.47) 

we get 

𝜑𝐴𝐵 =
1

2𝜋𝑖
 ∮ 𝑑𝜁 

(𝛿𝐴
1𝜋1́ −𝛿𝐴

0  𝜁)(𝛿𝐵
1𝜋1́ −𝛿𝐵

0𝜁) 

(1 √2(𝑦−𝑖𝑧)⁄ + √2𝑥𝜁− 1 √2(𝑦+𝑖𝑧)𝜁2⁄ )
2 𝜋�́�𝑑𝜋

�́�              (3.48) 
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This has double poles at 

ζ =
−√2 x±√2x2+2y2+2z2

−√2 (y+iz)
                                (3.49) 

Denote these ζ1 and ζ2. The residue at ζ1 is 

𝑟1 = 𝜌𝜌𝜁1
𝑑

𝑑𝜁

2(𝛿𝐴
1𝜋1́ − 𝛿𝐴

0 𝜁)(𝛿𝐵
1𝜋1́ − 𝛿𝐵

0𝜁)

(𝑦 + 𝑖𝑧)2(𝜁 − 𝜁2)
2

 

=
1

2𝑟2
(−𝛿𝐴

0(𝛿𝐵
1 − 𝛿𝐵

0𝜁1) − 𝛿𝐵
0(𝛿𝐴

1 − 𝛿𝐴
0𝜁1))  

+(𝛿𝐵
0(𝛿𝐴

1 − 𝛿𝐴
0𝜁1)(𝛿𝐵

1 − 𝛿𝐵
0𝜁1) (y + iz) 𝑟⁄ )                  (3.50) 

Now we calculate explicitly 

φ01 = 
1

2𝑟2
(−1 − 𝜁_1 (𝑦 + 𝑖𝑧)    ⁄ 𝑟) =

𝑥

2𝑟3
  

φ00 = 
1

2𝑟2
(2𝜁1 + 𝜁1

2(y + iz) ⁄ 𝑟) 𝑟 =
(𝑦 − 𝑖𝑧)

2𝑟3
 ⁄  

φ00 =
(𝑦−𝑖𝑧)

2𝑟3
                                       (3.51) 

Whence we fiend 

 

𝐸𝑥 =
𝑥

2𝑟3
 ,                𝐸𝑦 =

𝑦

2𝑟3
                    𝐸𝑧 =

𝑧

2𝑟3
          (3.52) 

as required. 

3.3.9 Remark  

It is natural to ask whether we can formulate an inverse twistor 

transform. Given a 𝑍𝑅𝑀   field 𝜑 on 𝐶𝑀+, what is the set of twistor 

functions which yield 𝜑 under the Penrose integral? This is not 

immediately obvious. Suppose we are given 𝑓 producing 𝜑 via the 

integral formula with contour 𝛤 at 𝑥. Let ℎ and ℎ̃h be holomorphic on 

opposite sides of 𝛤. Then certainly 𝑓 + ℎ − ℎ̃  will also generate 𝜑. 

Indeed we now proceed to reformulate the ideas of this section in the 

language of sheaves, thus obtaining a bijective transform. 
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3.4 Penrose Transform  

3.4.1. Radon Transform 

 Integral geometry goes back to Radon who considered the 

following problem: let 𝑓: 𝑅2 → 𝑅 be a smooth function with suitable 

decay conditions at ∞ (for example a function of compact support as 

shown below) 

 

 
 

and let  𝐿 → 𝑅2 be an oriented line. Define a function on the space of 

oriented lines in 𝑅2 by 

                         𝜙(𝐿) = 
L

f                                         (3.53) 

 

Radon has demonstrated that there exists an inversion formula 𝜙→ f. 

Radon’s construction can be generalized in many ways and it will become 

clear that Penrose’s twistor theory is its far reaching generalization. 

Before moving on, it is however worth remarking that an extension of 

Radon’s work has led to Nobel Prize awarded (in medicine) for pure 

mathematical research! It was given in 1979 to Cormack, who unaware of 

Radon’s results had rediscovered the inversion formula for (3.53), and 

had explored the set-up allowing the function  f  to be defined on a non-

simply connected region in 𝑅2  with a convex boundary. If one only 

allows the lines which do not pass through the black region 
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Fig (17) 

 

or are tangent to the boundary of this region, the original function f may 

still be reconstructed from its integrals along such lines. In the application 

to computer tomography, one takes a number of 2𝐷 planar sections of 3D 

objects and relates the function f  to the (unknown) density of these 

objects. The input data given to a radiologist consist of the intensity of the 

incoming and outgoing x-rays passing through the object with intensities 

𝐼0 and 𝐼1 respectively 

𝜙(𝐿) =  
L I

dI
𝑙𝑜𝑔𝐼1 − 𝑙𝑜𝑔𝐼0 = − 

L

f

(

                    (3.54) 

where dI/I = −f (s) ds
𝑑𝐼

𝐼
= −𝑓(𝑠)𝑑𝑠 is the relative infinitesimal intensity 

loss inside the body on aninterval of length ds. 

 

The Radon transform then allows to recover f from this data, and 

the generalization provided by the support theorem becomes important if 

not all regions in the object (for example patient’s heart) can be x-rayed. 

 

3.4.2John Transform 

The inversion formula for the Radon transform (3.53) can exist 

because both 𝑅2 and the space of oriented lines in 𝑅2 are two 

dimensional. Thus, at least naively, one function of two variables can be 

constructed from another such function (albeit defined on a different 

space). This symmetry does not hold in higher dimensions, and this 

underlines the following important result of John. Let 𝑓:ℝ3 → ℝ be a 
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function (again, subject to some decay conditions which makes the 

integrals well defined) and let L ⊂  𝐿 ⊂ 𝑅3be an oriented 

line. Define 

                                         𝜙(𝐿) = 
L

f

                                  
(3.55)

              
 

, or  

  𝜙(𝛼1 , 𝛼2, 𝛽1 ,𝛽2) = ∫ 𝑓(𝛼1𝑠 + 𝛽1 ,𝛼2𝑠 + 𝛽2, 𝑠)𝑑𝑠
∞

−∞
        (3.56) 

 

where (α,β) parametrize the four-dimensional space T of oriented lines in 

𝑅3. (Note that this parametrization misses out the lines parallel to the 

plane 𝑥3 = const. The whole construction can be done invariantly without 

choosing any parametrization, but here we choose the explicit approach 

for clarity.) The space of oriented lines is four dimensional, and 4 > 3 so 

expect one condition on φ. Differentiating under the integral sign yields 

the ultrahyperbolic wave equation 

 

                              
𝜕2∅

𝜕𝛼1𝜕𝛽2
−

𝜕2∅

𝜕𝛼2𝜕𝛽1
= 0                                 (3.57) 

 

And John has shown that all smooth solutions to this equation arise from 

some function on 𝑅3. This is a feature of twistor theory an unconstrained 

function on twistor space (which in this case is identified with 𝑅3) yields 

a solution to a differential equation on spacetime. After the change of 

coordinates 

 

𝛼1 = 𝑥 + 𝑦 ,  𝛼2 = 𝑡 + 𝑧, 𝛽1 = 𝑡 − 𝑧 = t − z,  𝛽2 = 𝑥 − 𝑦        (3.58) 

 

the equation becomes which may be relevant to physics two times! The 

integral formula given in the following section corrects the ‘wrong’ 

signature to that of the Minkowski space and is a starting point of twistor 

theory. 

3.4.3 Penrose Transform 

In 1969, Penrose gave a formula for solutions to the wave equation 

in the Minkowski space  

 

∅(𝑥, 𝑦, 𝑧, 𝑡) = ∮ f ((𝑧 + 𝑡) + (𝑥 + 𝑖𝑦)𝜆, (𝑥 − 𝑖𝑦) − (𝑧 − 𝑡)𝜆, 𝜆)
Γ⊂ℂℙ1

𝑑𝜆 

(3.59) 
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Here Γ ⊂ ℂℙ1 is a closed contour and the function 𝑓 is holomorphic on 

ℂℙ1 except some number of poles. Differentiating the RHS verifies that 

 

𝜕2∅

𝜕𝑡2
−
𝜕2∅

𝜕𝑥2
−
𝜕2∅

𝜕𝑦2
−
𝜕2∅

𝜕𝑧2
= 0                           (3.60) 

 

Despite the superficial similarities, the Penrose formula is 

mathematically much more sophisticated than John’s formula (3.56). One 

could modify a contour and add a holomorphic function inside the 

contour to f without changing the solution φ.  

 

 The question we now discuss is how fields in 𝑀 are represented in 

twistor space. We shall find that the general zero-rest-mass free fields can 

be remarkably concisely represented by holomorphic (complex analytic) 

functions g(𝑍𝛼) and 𝑓(𝑊𝛼)on the twistor space and its dual, C*. But in 

order to make the correspondence we must take suitable contour integrals. 

Thus only the residues at the poles of 𝑓 will be physically meaningful; 

consequently formalism will be based on contour integrals in 𝐶. 

3.4.4 Lemma  

A function 𝑓(𝑥𝐴�́�, 𝜋 �́�) on 𝐹 pushes down to a function on 𝑃 iff 

𝜋 �́�∇𝐴�́�𝑓 = 0  in every coordinate chart. 

 

Proof  

We demonstrate that this is equivalent to the stated condition in our 

preferred patch (𝑃𝐼 ,𝑀𝐼 , 𝐹𝐼 ). Then the general result follows by a 

combinatorial argument. Clearly 𝑓(𝑥𝐴�́�, 𝜋�́�) yields a function on 𝑃𝐼 iff is 

constant each 𝛼-plane defined by 𝑥𝐴�́� and 𝜋�́�. We observe 

 

𝜋 �́�∇𝐴�́�𝑓 = 0 ⟺ ∇𝐴�́�𝑓 = 𝜉𝐴𝜋�́� for some 𝜉𝐴(𝜋) 

⟺ 𝑓 = 𝜉𝐴𝜋�́�𝑥
𝐴�́� = 𝜉𝐴𝑤𝐴                          (3.61) 

and the result follows. 

 

3.4.5 Remark  

In particular a function  𝑓(𝑥𝐴�́�, 𝜋�́�) on 𝐹 pushes down to a twistor 

function iff the given condition holds in the non-projective sense. We 

shall make frequent use of this observation 
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3.4.6 Theorem 

                                        𝐻1(ℙ𝑇+, 𝑂(−𝑛 −  2)) ≅

                         {ZRM fields 𝜑�́�…….�́�  𝑜𝑓 ℎ𝑒𝑙𝑖𝑐𝑖𝑡𝑦 𝑛 2⁄ 𝑜𝑛 𝐶𝑀+}          (3.62)                     

 

where we may view the set of 𝑍𝑅𝑀 fields as a group under addition since 

the ZRM equations are linear. 

 

Proof 

 The avour of the proof is as follows. We construct a short exact 

sequence of sheaves culminating in the sheaf of germs of the desired 

𝑍𝑅𝑀 fields. Recalling the long exact sequence in cohomology, we obtain 

the require disomorphism by identifying certain sheaves as zero. 

 

Define the sheaves 𝒵𝑛(𝑚) on 𝐹+ by stipulating that φ�́�…..�́�(𝑥, 𝜇)  must 

satisfy the following conditions 

 

(i) φ�́�…..�́� is a symmetric holomorphic valence n primed spinor 

field on 𝐹+ 

 

(ii) φ�́�…..�́� is homogeneous of degree 𝑚 in 𝜋 

(iii) φ�́�…..�́� satisfies the 𝑍𝑅𝑀 equation ∇𝐴�́� φ�́�…..�́� = 0  throughout 

𝐹+ 

 

3.4.7 Note 

  Immediately that 𝒵𝑛(0) consists of symmetric n index primed 

spinor fields which are independent of 𝜋, so there is a canonical sheaf 

isomorphism 

 

𝒵𝑛(0) ≅  {𝑍𝑅𝑀 𝑓𝑖𝑒𝑙𝑑𝑠  φ�́�…..�́�   𝑜𝑓 ℎ𝑒𝑙𝑖𝑐𝑖𝑡𝑦 𝑛 2⁄  𝑜𝑛 ℂ𝑀+}      (3.63) 

 

Define a sheaf morphism 

𝑃 ∶  𝒵𝑛+1(𝑚 − 1) →  𝒵𝑛(𝑚)                           (3.64) 

 

φ�́��́�…..�́� ⟼ 𝜋 �́� φ�́��́�…..�́�                               (3.65) 
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We claim that this morphism is surjective, and it suffices to check this 

locally by Theorem.  Let  φ�́��́�…..�́� ∈  𝒵𝑛(𝑚) be arbitrary. Define 

pointwise for each (𝑥𝐴�́�, 𝜋�́�) ∈ 𝐹
+  

 

φ0�́�…..�́�  
1

2𝜋0
φ�́�…..�́�                                   (3.70) 

φ1�́�…..�́�  
1

2𝜋1
φ�́�…..�́�                                   (3.71) 

which we can do since 𝜋�́� ≠  0  ∈ 𝐹 by definition. When 𝜋�́� =  0   or 

𝜋�́� ≠  0  individually an obvious modiffcation can be made. Then clearly 

φ�́��́�…..�́�  ∈  𝒵𝑛+1(𝑚 − 1)  and around every point of 𝐹+  there exists a 

neighbourhood in which 𝑃(φ�́�…..�́�  )  =   φ�́�…..�́�. 

 

Consider the special case 𝑚 =  0. Let 𝐾 denote the sheaf kernel of 𝑃: 

𝒵𝑛+1(−1).  Define on 𝐹+ the sheaves 

 

𝑇 (𝑛) =  {
𝑠𝑐𝑎𝑙𝑎𝑟𝑓𝑖𝑒𝑙𝑑𝑠 𝑓( 𝑥, 𝜋)ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛
𝑖𝑛 𝜋 𝑤ℎ𝑖𝑐ℎ 𝑝𝑢𝑠ℎ 𝑑𝑜𝑤𝑛 𝑡𝑜 𝑡𝑤𝑖𝑠𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

} 

 

We claim that 𝐾 is isomorphic to 𝑇 (−𝑛 −  2). Indeed let 𝒳�́�…..�́�  ∈  𝐾 be 

an (𝑛 +  1) index spinor field on 𝐹+, homogeneous of degree −1 in 𝜋. 

Then since 𝒳�́�…..�́� symm`etric we may write 

 

𝒳�́�…..�́� = 𝛼(�́�… . . 𝛽𝐵)́                                (3.72) 

We then deduce 

 

𝜋 �́� 𝛼(�́�… . . 𝛽𝐵)́  = 0 ⟹ 𝜋 �́�… . 𝜋�́�𝛼(�́�… . . 𝛽�́� = 0 

⟹ 𝜋 �́�𝛼�́� = 0 

⟹ 𝜋 �́�𝛼�́� = 0,… . 𝜋
�́�𝛽�́� = 0 

⟹𝒳�́�…..�́� = 𝜋�́�… . 𝜋�́�𝑓(𝑥, 𝜋) = 0                  (3.73)  

Now since 𝜋 ≠ 0 the 𝑍𝑅𝑀 equations imply 

 

𝜋𝐴 ́ ∇
𝐴�́�𝑓 = 0                                      (3.74) 
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which is precisely the condition that 𝑓 pushes down to a twistor function. 

Observe also that 𝑓 is homogeneous of degree (−𝑛 −  2) in  𝜋. The 

converse is obvious. 

 

We thus have a short exact sequence of sheaves 

 

0 →  𝑇 (−𝑛 −  2)
𝜋�́�….𝜋�́�
→    𝒵𝑛+1(−1)

𝜋�́�
→ 𝒵𝑛(0)  ⟶ 0          (3.75) 

 

Whence we obtain a long exact sequence of cohomology 

 

… → 𝐻0(𝐹+, 𝑍𝑛+1(−1)) → 𝐻
0(𝐹+, 𝑍𝑛(0))

𝛿∗

→ 

 

𝐻1(𝐹+, 𝑍𝑛+1(−𝑛 − 2)) → 𝐻
1(𝐹+, 𝑍𝑛+1(−1))               (3.76) 

 

We now identify these groups. 

 

(i)  Suppose 𝑠(𝑥, 𝜋) ∈ 𝐻0(𝐹+, 𝑍𝑛+1(−1)). Then s is a global 

section of  𝑍𝑛+1(−1)  over 𝐹+. For fixed 𝑥, 𝑠 defines a global 

section of 𝑂(−1) over ℙ1, so 𝑠 =  0. Thus 

𝐻0(𝐹+, 𝑍𝑛+1(−1)) = 0. 

(ii) 𝐻0(𝐹+, 𝑍𝑛(0))  is clearly the desired group of ZRM fields on 

𝐹+. 

(iii)  Observe that we may canonically identify 𝑇 (−𝑛 −  2) with the 

sheaf of twistor functions homogeneous of degree (−𝑛 −  2) on 

𝑇+ which itself is naturally intepreted as the sheaf 𝑂(−𝑛 −  2) 

on ℙ𝑇+, . We may therefore write 𝐻1(𝐹+, 𝑇(−𝑛 − 2)) ≅

 𝐻1(ℙ𝑇+, 𝑂(−𝑛 −  2), ) 

(iv) We note without proof that ℂ𝑀+ is Stein. Since 𝑍𝑛+1(−1) is a 

sheaf of holomorphic sections of a vector bundle. Thus the 

pullback  𝒢 of  𝑍𝑛+1(−1) to ℂ𝑀+ has 𝐻1(ℂ𝑀+, 𝒢) = 0. Recall 

that  𝐻1(ℙ1, 𝑂(−1))  =  0. Hence the pullback ℋ of 𝑍𝑛+1(−1) 

to ℙ1 has 𝐻1(ℙ1,ℋ)  =  0. Applying a suitable K�̈�nneth 

formula, we get 𝐻1(𝐹+, 𝑍𝑛+1(−1)) = 0. 

Therefore we may conclude that 𝛿∗ provides the required isomorphism in 

the statement of the theorem, and our proof is complete. 
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3.4.8 Remark  

  We may regain the contour integral formulation of the Penrose 

transform by explicitly analysing the map(𝛿∗)−1. Recall that to define 𝛿∗ 

we 𝐹+ consider the cochain complex of sheaves on 𝐹+ 

 

0 → 𝐶0(𝑇(−𝑛 − 2)) → 𝐶0( 𝑍𝑛+1(−1)) → 𝐶
0( 𝑍𝑛(−1)) → 0 

 ↓ 𝑑 ↓ 𝑑 ↓ 𝑑 

 

0 → 𝐶1(𝑇(−𝑛 − 2)) → 𝐶1( 𝑍𝑛+1(−1)) → 𝐶
1( 𝑍𝑛(−1)) → 0 

 ↓ 𝑑 ↓ 𝑑 ↓ 𝑑 

 

Choose a cover which is Leray for all the given sheaves on  𝐹+ and 

work with Cech cohomology. 

 

Let 𝑓𝑖𝑗  ∈  𝐻
1(ℙ𝑇+, 𝑂(−𝑛 −  2)). Then by commutativity of the 

above diagram 

 

𝜋�́�… . 𝜋�́� 𝑓𝑖𝑗  ∈  𝐻
1(ℙ𝑇+, 𝑂(−𝑛 −  2))                       (3.78) 

 

Therefore we may write 

 

𝜋�́�… . 𝜋�́� 𝑓𝑖𝑗 = 𝜌[𝑖𝜓𝑗]�́�…..�́�                               (3.79) 

 

for 𝜓𝑗�́�…..�́� ∈ 𝐶
0( 𝑍𝑛+1(−1)). Now define 

 

𝜓𝑗�́�…..�́� = 𝜓𝑗�́�…..�́�  𝜋
�́� ∈ 𝐶0( 𝑍𝑛(0))                         (3.80) 

 

and note that 𝜓𝑗�́�…..�́�  ∈ 𝐻
0( 𝑍𝑛(0))  by the isomorphism         

𝐻1(𝑇(−𝑛 − 2)) ≅ 𝐻0( 𝑍𝑛(0))   proved above. Thus there is a ZRM 

field 𝜓�́�…..�́� with 

𝜌𝑗𝜓�́�…..�́� = 𝜓𝑗�́�…..�́� = 𝜓𝑗�́�…..�́�   𝜋
�́�                           (3.81) 

 

Now for fixed 𝑥 we know that 𝜌𝑥𝑓𝑖𝑗  defines an element of  𝑂(−𝑛 − 2) 

over ℙ1.Therefore 𝜋�́�… . 𝜋�́� 𝜌𝑥  𝑓𝑖𝑗 is an element of 𝑂(−1) over ℙ1. 

Employing Sparling's formula we may therefore write 
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𝜓𝑗�́�…..�́� =  𝜋
�́�  
1

2𝜋𝑖
 ∮(𝜁�́�𝜋�́�)

−1
𝜁�́�… 𝜁�́�  𝜌𝑥𝑓01(𝑤

𝐴, 𝜁�́�)𝜁�́�𝑑𝜁
�́�   

= 
1

2𝜋𝑖
 ∮ 𝜁�́�… 𝜁�́� 𝜌𝑥𝑓01(𝑤

𝐴, 𝜁�́�)𝜁�́�𝑑𝜁
�́�                       (3.82) 

 

3.4.9 Remark  

We lacked some rigour in our proof above, failing to mention the 

subtleties involved in comparing sheaves on different spaces. More 

complete reasoning requires the use of spectral sequences, which we have 

not discussed.  

 

3.4.10 Theorem 

  

𝐻1(ℙ𝑇+, 𝑂(𝑛 −  2)) ≅  {𝑍𝑅𝑀 𝑓𝑖𝑒𝑙𝑑𝑠 𝜓𝐴…..𝐵 𝑜𝑓 ℎ𝑒𝑙𝑖𝑐𝑖𝑡𝑦 −𝑛 2⁄  𝑜𝑛 ℂ𝑀+}(3.83) 

 

Proof 

  This proof has a similar flavor to the previous argument. Define on 

𝐹+  the following sheaves 

 

𝐾(𝑛)  =  {ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓(𝑥, 𝜋) ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛 𝑖𝑛 𝜋} 

𝑄𝐴(𝑛 +  1) =  𝑓 𝑠𝑝𝑖𝑛𝑜𝑟 𝑓𝑖𝑒𝑙𝑑𝑠  𝜓𝐴(𝑥, 𝜋)ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒      

(𝑛 +  1)𝑖𝑛  𝜋�́� 𝑎𝑛𝑑 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝜋�́�∇
𝐴�́�𝜓𝐴 = 0 

  

Define a sheaf morphism 𝐷𝐴 ∶  𝜅(𝑛)  → 𝑄𝐴(𝑛 +  1)  by 

 

𝐷𝐴𝑓 = 𝜋
�́� ∇𝐴�́�𝑓                                    (3.84) 

 

Let 𝑇 (𝑛) denote the kernel of 𝐷𝐴 and identify as before 

 

𝑇 (𝑛) = {𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑖𝑒𝑙𝑑𝑠 𝑓(𝑥, 𝜋) ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛 

𝑖𝑛 𝜋 𝑤ℎ𝑖𝑐ℎ 𝑝𝑢𝑠ℎ 𝑑𝑜𝑤𝑛 𝑡𝑜 𝑡𝑤𝑖𝑠𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠} 

 

Now we have a short exact sequence of sheaves 

 

0 →  𝑇 (𝑛) ↪  𝜅(𝑛)
𝐷𝐴
→ 𝑄𝐴(n +  1)  

 

whence we obtain a long exact sequence of cohomology 
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0 → 𝐻0(𝐹+, 𝑇(𝑛))  → 𝐻0(𝐹+, 𝜅(𝑛))  → 𝐻0(𝐹+, 𝑄𝐴(n +  1))
𝛿∗

→ 

𝐻1(𝐹+, 𝑇(𝑛))𝐻1(𝐹+, 𝜅(𝑛))  

 

We investigate each of these groups in turn. 

  

(i) Let 𝑓 ∈  (𝐹+, 𝑇(𝑛)). Then we may write 

 

𝑓(𝑥, 𝜋) =  𝜇�́�…�́�(𝑥) 𝜋
�́�… 𝜋�́�                          (3.85) 

 

where 𝜇�́�…�́� is a symmetric holomorphic spinor field on 'ℂ𝑀+. The 

push down condition is 

 

𝜋�́�𝜋 �́�… 𝜋�́�∇𝐶�́�𝜇�́�…�́�  = 0                        (3.86) 

 

∇𝐶(�́�  𝜇�́�…𝐵)́  = 0                                (3.87) 

 

Hence we may identify 𝐻0(𝐹+, 𝑇 (𝑛)) with the group 𝑇 (𝑛) of  𝜇�́�…�́� 

on ℂ𝑀+ satisfying this equation. 

 

(ii) Let  𝜆 ∈ 𝐻0(𝐹+, 𝜅(𝑛)). Then we may write 

 

𝜆 =  𝜆�́�…�́�(𝑥) 𝜋
�́�… 𝜋�́�                        (3.88) 

 

where  𝜆�́�…�́� is a symmetric holomorphic spinor field on ℂ𝑀+. 

There are no additional constraints on  𝜆�́� … �́�  so we identify 

𝐻0(𝐹+, 𝜅(𝑛)) with the group Λ𝑛 of such  𝜆�́� … �́� . 

 

(iii)  Let  𝜓𝐴 ∈  𝐻
0(𝐹+, Q𝐴(𝑛 + 1))  and write 

 

𝜓𝐴 = 𝜓𝐴�́�….�́�(𝑥)𝜋
�́�… 𝜋�́�                       (3.89) 

 

where 𝜓𝐴�́�….�́� is a holomorphic spinor field on ℂ𝑀+ symmetric 

in its (𝑛 +  1) primed indices. The defining condition for 

Q𝐴(𝑛 + 1) gives 
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𝜋�́�𝜋 �́�… 𝜋�́�∇�́�
𝐴𝜓�́�…..𝐶 𝐴́ = 0 

 

⟺ ∇(�́�
𝐴 𝜓�́�…..𝐶 )𝐴́ = 0                                  (3.90) 

 

We identify 𝐻0(𝐹+, Q𝐴(𝑛 + 1))with the group 𝜓𝑛+1
1  of  𝜓�́�….�́�

𝐴  on ℂ𝑀+ 

satisfying this equation. 

 

(iv)  As in the previous proof, we somewhat unrigorously write 

𝐻1(𝐹+, 𝑇 (𝑛)) =  𝐻1(ℙ𝑇+, 𝑂(𝑛)). 

 

(v)  Recall that 𝐻1(ℙ1, 𝑂(𝑛)). Also  𝜅(𝑛) is coherent analytic as a 

sheaf of sections of the trivial ℂ-bundle over  𝐹+. Using again 

that ℂ𝑀+ is Stein, and an appropriate Kunneth formula we 

obtain 𝐻1(𝐹+, 𝜅(𝑛)) = 0. 

 

Rewriting the long exact sequence in our new notation we have the 

section 

 

0 → 𝑇(𝑛) ↪ Λ𝑛
𝜎
→ 𝜓𝑛+1

1
𝛿∗

→ 𝐻1(ℙ𝑇+, 𝑂(𝑛)) → 0 

 

where the reader may easily check that 𝜎 is given by 

 

𝜎(𝜆�́�…�́�) =  ∇(�́�
𝐴 𝜆�́�… 𝐶)́                                    (3.91) 

 

We now relate this sequence to 𝑍𝑅𝑀 fields using Hertz potentials. Let 

Φ𝑛+2 denote the group consisting of (𝑛 +  2) unprimed index 𝑍𝑅𝑀 

fields 𝜑𝐴…𝐷  on ℂ𝑀+. Define a group homomorphism 𝑃 ∶  𝜓𝑛+1
1  →  Φ𝑛+2 

by   

𝑃(𝜓𝐴�́�…..�́�) = ∇(𝐵…
�́� ∇�́�

𝐷𝜓𝐴)�́�….�́�                           (3.92) 

 

We check that this is well-defined by computing 

 

∇�́�
𝐴∇(𝐵…

�́� ∇�́�
𝐷𝜓𝐴)�́�….�́� = ∇�́�

𝐵… . ∇�́�
𝐷∇(�́�

𝐴 𝜓�́�….𝐷)𝐴́ = 0                (3.93) 
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which may be verified by expanding out the symmetrisers on each side. 

Moreover observe that 𝑃 is surjective. We know that given 𝜑𝐴…𝐷 ∈

 Φ𝑛+2 there exists  𝜓𝐴�́�….�́� defined on ℂ𝑀+ such that 

 

𝜑𝐴…𝐷 = ∇�́�
𝐵… . ∇�́�

𝐷𝜓𝐴�́�….�́�  

 

∇�́�
𝐴𝜓𝐴�́�….�́� = 0                                    (3.94) 

 

since ℂ𝑀+ is simply connected and has vanishing second homotopy 

group. In particular we immediately have  𝜓𝐴�́�….�́� ∈  𝜓𝑛+1
1   as required. 

 

Finally we claim that 𝑘𝑒𝑟(𝑃) =  𝑖𝑚(𝜎). For the reverse inclusion 

we compute 

 

∇(𝐵…
�́� ∇�́�

𝐷∇𝐴)�́�𝜆�́�…�́�….�́�= ∇�́�
𝐵 … . ∇�́�

𝐷∇(�́�
𝐴 𝜓�́�….𝐷)𝐴́ = 0           (3.95) 

 

We therefore have an exact sequence 

 

0 → 𝑇(𝑛) ↪ Λ𝑛
𝜎
→ 𝜓𝑛+1

1
𝑃
→ Φ𝑛+2                  (3.96) 

 

 

Comparing with (3.1) we obtain Φ𝑛+2 ≅ 𝐻
1(ℙ𝑇+, 𝑂(𝑛)) as required. 

 

3.4.11 Remark  

We observe that an explicit inverse twistor transform exists in this 

case. Given a 𝑍𝑅𝑀 field 𝜓𝐴….𝐷 

let  𝜓𝐴�́�….�́� be a Hertz potential. We must construct a cover {𝑈𝑗} of ℙ𝑇+ 

and twistor functions 𝑓𝑗𝑘 on 𝑈𝑗𝑘. Choose {𝑈𝑗} with the property that. 

 

There exists 𝑌 𝑗
𝛼 ∈  ℙ𝑇+ such that for all 𝑧𝛼 ∈ 𝑈𝑗 the line joining 𝑌 𝑗

𝛼  and  

𝑧𝛼  lies entirely in ℙ𝑇+.  

 

Now suppose 𝑧𝛼 ∈ 𝑈𝑗⋂𝑈𝑘. Denote by 𝑌𝑗 , 𝑌𝑘  and 𝑍  the ∝-planes 

in ℂ𝑀+corresponding to 𝑌 𝑗
𝛼, 𝑌 𝑘

𝛼 and 𝑧𝛼. Observe that 𝑌𝑗  intersects 𝑍 in a 



93 

 

point 𝑝𝑗 ∈ ℂ𝑀
+ defined by the line joining 𝑌 𝑗

𝛼 and 𝑧𝛼 in ℙ𝑇+. Similarly 

we define 𝑝𝑘 =  𝑌𝑘⋂𝑍 ∈ ℂ𝑀
+. 

 

We now hypothesise an integral formula for 𝑓𝑗𝑘. Let 𝑍 𝛼 = (𝑤𝐴, 𝜋�́�). 

 

 Choose an arbitrary contour Γ𝑗𝑘 from 𝑝𝑗 to 𝑝𝑘 lying in 𝑍 and define 

 

𝑓𝑗𝑘(𝑍 
𝛼) = ∫ 𝜓𝐴�́��́�….�́�  𝜋

�́� …𝜋�́�𝑑𝑥𝐴�́�
Γ𝑗𝑘

                   (3.97) 

 

We must check that 𝑓𝑗𝑘 is indendendent of Γ𝑗𝑘, defines a 1-cocycle and 

reproduces the potential 𝜓𝐴�́��́�….�́� under 𝛿∗
−1

.  

 

3.5 The Solutions of Zero Rest Mass Equation 

The question we now discuss is how fields in 𝑀 are represented in 

twistor space. We shall find that the general zero-rest-mass free fields can 

be remarkably concisely represented by holomorphic (complex analytic) 

functions g(𝑍𝛼) and 𝑓(𝑊𝛼) on the twistor space and its dual C*. But in 

order to make the correspondence we must take suitable contour integrals. 

Thus only the residues at the poles of 𝑓 will be physically meaningful; 

consequently the subsequent formalism will be based on contour 

integration in C. 

The solutions of the equations (3.13) can be represented by a set of 

quantities 𝜙𝑟(𝑷, 𝑂
𝐴, 𝜄𝐵) where 𝑟 = 0,1,…𝑛; 𝑂𝐴, 𝜄𝐵 are a pair of basis 

spinors at the point P and   

                𝜙𝑟 = 𝜙𝐴𝐵….𝐿   𝜄
𝐴… 𝜄𝐷⏟  
𝑟

 𝑂𝐸 … 𝑂𝐿⏟      
𝑛−𝑟

                         (3.98) 

Now 𝑂𝐴 and 𝜄𝐵 define null twistor through P, namely 𝑈𝛼 , 𝑉𝛽  say, i.e.  

𝑈𝛼 ↔ (𝑂𝐴, −𝑖𝑝
𝐴𝐴′𝑂𝐴),     𝑉𝛽 ↔ (𝜄𝐵, −𝑖𝑝

𝐵𝐵′𝜄𝐵).                (3.99) 

Thus we have the quantities: 

Φ𝑟(𝑈𝛼 , 𝑉𝛽) =  𝜙𝑟(𝑃, 𝑂
𝐴, 𝜄𝐵),                  𝑟 = 0,… . . 𝑛         (3.100) 
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If 𝑈𝛼  and , 𝑉𝛽  are restricted to be null twistors with real intersection, Φ𝑟 

represent a zero-rest-mass field in 𝑀. Such a field may be regarded as 

defined on some three-parameter initial set (Cauchy hypersurface) and 

thence extended over the rest of space by the field equations. In twistor 

terms it would be economic if we could describe the field on 𝑀 by some 

field on the (complex) 3-space C, or C*. So far it appears that we must 

define the field on pairs of points 𝑈,  𝑉 in C*. 

 Let us take the point P and define a standard tensor and spinor 

reference frame  such that: 

 

𝑢 = 𝑝00
′
= 
𝑝0 + 𝑝1

√2
 ;                      𝜉 =  𝑝01

′
= 
𝑝2 + 𝑖 𝑝3

√2
 

𝜉 ̃ = 𝑝01
′
= 

𝑝2−𝑖 𝑝3

√2
                        𝑣 =  𝑝11

′
= 

𝑝0− 𝑝1

√2
           (3.101) 

 

𝜉 ̅ =  𝜉 ̃, 𝑢 =  �̅� , 𝑣 = �̅�  if and only if 𝑝𝑎 is real. The field equations 

(3.13) become: 

𝜕𝜙𝑟

𝜕𝜉 ̃
=
𝜕𝜙𝑟+1

𝜕𝑢
;      𝜕𝜙𝑟/𝜕𝑣 =  𝜕𝜙𝑟+1/𝜕𝜉 𝑟 = 𝑜, … , 𝑛 − 1     (3.102) 

These equation are automatically satisfied if 

𝜙𝑟 = 
1

2𝜋𝑖
∮ 𝜆𝑟𝐹(𝜆, 𝑢 + 𝜆𝜉 ̃, 𝜉 +  𝜆𝑣)𝑑𝜆
𝐾

                   (3.103) 

Where 𝐹 is a holomorphic (i.e. analytic or regular in the complex sense) 

function of three complex variables, the contour 𝐾 being taken to 

surround the poles of  𝐹 in a suitable way. The resulting field will always 

be analytic in the real sense with respect to 𝑢, 𝑣, 𝜉, 𝜉 ̃, but we may 

represent non- analytic fields as limits of analytic fields as limits of 

analytic ones.     ` 

A real null factor at 𝑝𝑎 = (𝑢, 𝑣, 𝜉, 𝜉 ̃) has direction given by 

𝑑𝑢: 𝑑𝑣: 𝑑𝜉: 𝑑𝜉 ̃ where: 

𝑑𝑢 + 𝜆𝑑𝜉 ̃ = 0 = 𝑑𝜉 + 𝜆𝑑𝑣                             (3.104) 
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for some complex 𝜆 (possibly infinite). For the Minkowski metric is 

2(𝑑𝑢 𝑑𝑣 −  𝑑𝜉 𝑑𝜉 ̃) so that  𝑑𝑢 𝑑𝑣 =  𝑑𝜉 𝑑𝜉 ̃ for all null direction. Thus 

𝑑𝑢: 𝑑𝑣: 𝑑𝜉: 𝑑𝜉 ̃ = 𝜆�̅� ∶ 1 ∶  −𝜆 ∶  −�̅�. The corresponding null twistor is 

𝑈𝛼 +  𝜆𝑉𝛼 = 𝑊𝛼  ↔ (�̅�𝐴, �̅�
𝐴′) where  

 

�̅�𝔄𝜋𝔄 , ∝  (
𝑑𝑣 −𝑑𝜉 ̃
−𝑑𝜉 𝑑𝑢

)                                (3.105) 

And   

 𝜆 = �̅�1/�̅�0  =  𝑊1/𝑊0 . 

Thence, as 

�̅�𝐴
′
= −𝑖𝑝𝐴𝐴

′
 𝜋𝐴′, 

 

(𝑊2,𝑊3) = (�̅�
0′ , �̅�1

′
) = −𝑖(�̅�0 , �̅�1) (

𝑢 𝜉

𝜉 ̃ 𝑣
) = −𝑖𝑊0(𝑢 + 𝜆𝜉 ̃, 𝜉 + 𝜆𝑣).                                                                         

(3.106) 

Thus  

(𝑊0,𝑊1,𝑊2,𝑊3) =  𝑊0(1, 𝜆, −(𝑢 + 𝜆𝜉 ̃),−𝑖(𝜉 + 𝜆𝑣)). 

If we therefore set: 

𝑓(𝑊𝛼) = (𝑊0)
−𝑛−2𝐹(𝑊1/𝑊0, 𝑖𝑊2/𝑊0, 𝑖𝑊3/𝑊0)         (3.107) 
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Figure17. The Kerr theorem 

Then 𝑓(𝑊𝛼) is homogeneous of degree −𝑛 − 2 in 𝑊𝛼. (We can now 

check that this has the correct transformation properties under rotation for 

spin 
1

2
 𝑛). The final formula is: 

Φ𝑟(𝑈𝛼 , 𝑉𝛽) =  
1

2𝜋𝑖
∮ 𝜆𝑟𝑓(𝑈𝛼 + 𝜆𝑉𝛼)𝑑𝜆𝐾

          (3.108) 

We may now generalize by taking any 𝑈𝛼 , 𝑉𝛽  (no longer necessary null) 

thus defining complex fields on complex points 𝑈[𝛼 𝑉𝛽]. It seems 

(although there is as yet no completely satisfactory theorem) that the set 

of such fields is extremely general. For a particular field it is clear that 𝑓 

is not unique since all the contour integrals remain the same under 𝑓 →

 𝑓 + ℎ where ℎ is regular inside the contour. We may regard this as a sort 

of gauge invariance. This non-uniqueness of 𝑓 would clearly lead to 

difficulties for any proposed explicit formula giving 𝑓 in terms of  𝜙𝐴….𝐿. 

It is however easy to construct special type of solution for 𝑓. For example 

𝜙𝐴….𝐿 is called null if: 

𝜙𝐴𝐵….𝐿 = 𝛼𝐴𝛼𝐵 … . 𝛼𝐿                                 (3.109) 

And such a field arises when the contour surrounds only a single simple 

pole [24]. (Note that a general symmetric spinor may be written as 
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symmetrized product of one-spinors). More generally, the algebraically 

special fields 

𝜙𝐴𝐵….𝐿 = 𝛼(𝐴𝛼𝐵𝛽𝑐 …𝜆𝐿)                         (3.110) 

If 𝜙 is algebraically special (e.g.null) there is associated with it a 

shearfree null congruence. 

 If 

𝑓(𝑊𝛼) = 𝑝(𝑊𝛼)/𝑞(𝑊𝛼)                             (3.111) 

Then  𝑞(𝑊𝛼) = 0 is a four (real) dimensional surface in a six dimensional 

space (𝐶), and intersects. The 5-dimensional surface 𝑁 in a 3-

dimensional set of points (fig.17). This represents 3-parameter null 

congruence in 𝑀. By a theorem of R. P. Kerr this congruence must be 

shearfree. The theorem is that acongruence of null lines is shearfree if and 

only if it is representable in 𝐶 as the intersection of 𝑁 with a complex 

analytic surface 𝑆 in 𝐶 (or as a limiting case of such an intersection). It 

was partly this theorem that motivated the study of holomorphic functions 

in twistor space. 

If we suppose 𝑞 = 0  is a plane (i.g 𝑞(𝑊𝛼) = 𝐴
𝛼𝑊𝛼) then we obtain the 

above method a “linear” system of null lines in 𝑀 (a Robinson 

congruence), which we may consider to be a geometrical picture of the 

(complex) twistor 𝐴𝛼 (which previously had no intuitively obvious 

picture associated with it). These “Robinson” congruences are largely 

what led to the name twistor, for they are shearfree, and twist with a 

handedness dependent on the sign of  𝐴𝛼�̅�𝛼. 

If we consider the source free spin 
1

2
 𝑛 massless field in 𝑀 (compactified 

Minkowski space), which has the correct peeling-off behavior toward 

infinity, then the field will not match at infinity unless we take a fourfold 

covering for odd 𝑛 (two fold for  𝑛 ≡ 0 mod 4). (This reflected in the 

behavior of the integrals introduced above since the homogeneity degree 

of 𝑓(𝑍) is −𝑛 − 2 and twistors are 4-valued). Rather than work with 

awkward covering spaces, however, we shall make the convention that a 

source-free field with the correct peeling-off properties is to be regarded 

as continuous across infinity if it has the right “Grgin discontinuity” at 
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infinity (i.e. a general free wave of spin 
1

2
 𝑛 should jump by a factor of  

𝑖𝑛+2). 

Consider then the fields with correct peeling-off and Grgin behavior 

(which momentum Eigen state, for example, do not have). These may be 

uniquely) split into positive and negative energy fields. A process 

equivalent to Grgin's harmonic analysis technique applied to the positive 

energy fields is the following. Instead of �̅�0 = �̅�
2 etc., let us take twistor 

coordinates so that we get the more natural-looking �̅�ℵ = (�̅�
0,

�̅�1 , −�̅�2, −�̅�3),  the Hermitiam form 𝑍𝛼�̅�𝛼, of signature      ( + + −−), 

being now diagonalised. The orthonormal basis {𝐸𝑖𝛼} then has two 

vectors of positive and two of negative length. These points give us four 

planes (fig.18) and the simplest possible function of positive frequency 

has as its singular region just the planes shaded in fig.18. A general 

function for spin 
1

2
 𝑛 fields of positive frequency is: 

𝑓(�̅�𝛼) = ∑
(𝑍0)

𝑎0(𝑍𝛼)
𝑎1

(𝑍2)
𝑎2+1(𝑍3)

𝑎3+1
𝑓𝑎0𝑎1𝑎2𝑎3     𝑎0𝑎1𝑎2𝑎3             (3.112) 

Where 𝑓𝑎0𝑎1𝑎2𝑎3 is a constant and 𝑎0𝑎1𝑎2𝑎3  are non negative integers 

satisfying 𝑎0 + 𝑎1 + 𝑛 = 𝑎2 + 𝑎3 .  If S is the set of singularities of this 

function then assuming suitable convergence 𝑆 ∩ 𝐶−∗  is disconnected in 

two pieces, and so will yield a positive frequency field. 

3.6 Quantization 

We start out by considering how to connect the spin 𝑠 of relativistic 

dynamics, which appeared in the classical twistor picture of regular 

momentum discussed above with spin 𝑠 of the zero-rest-mass fields just 

considered. 

The momentum of a particle with zero-spin was described by 

𝜋𝐴, (�̅�𝐴𝜋𝐴′ = 𝑝𝑎 ) while the position of the centre of mass is then 

determined by 𝜔𝐴 = 𝑖𝑋𝐴𝐴′𝜋𝐴′  As 
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Figure.18 

𝑍𝛼 ↔ (𝜔𝐴, 𝜋𝐴′)                      �̅�𝛼 ↔ (�̅�𝐴′ , �̅�
𝐴′   

We find that  

𝑖𝑍𝛼𝑑 �̅�𝛼  ↔ 𝑖𝜔𝐴𝑑�̅�𝐴 + 𝜋𝐴′  𝑑�̅�
𝐴′ 

= −𝑋𝐴𝐴
′
𝜋𝐴′𝑑�̅�𝐴 + 𝜋𝐴′𝑑(𝑋

𝐴𝐴′�̅�𝐴) 

= 𝑋𝐴𝐴
′
𝜋𝐴′𝑑�̅�𝐴 + 𝜋𝐴′𝑑(𝑋

𝐴𝐴′)�̅�𝐴 + 𝜋𝐴′𝑋
𝐴𝐴′𝑑�̅�𝐴 

= 𝜋𝐴′  �̅�𝐴𝑑𝑋
𝐴𝐴′ = 𝑃𝑎𝑑𝑋

𝑎                           (3.113) 

If 𝑋𝐴𝐴
′
 is real. Thus, taking the exterior derivative, 

𝑖𝑑𝑍𝛼 ∧ 𝑑 �̅�𝛼 = 𝑑𝑃𝑎 ∧ 𝑑𝑋
𝑎                          (3.114) 

And the right hand side is just the two-form preserved under canonical 

transformations, i.e. by Hamiltonian equations. (For a fuller account of 

this correspondence). This suggests that we should regard 𝑖𝑍𝛼 ,  �̅�𝛼 as 

canonically conjugate variables. Thus in the passage to a quantum theory 

we should expect 𝑖𝑍𝛼 ,  �̅�𝛼  to become canonically conjugate operators 

(with  �̅�𝛼 ∝ 𝜕/𝜕𝑍
𝛼 , etc.).  

In the operator form 
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𝑃𝑎 = 𝑖𝜕/𝜕𝑥
𝑎                (and 𝑋𝑎 = −𝑖𝜕/𝜕𝑃𝑎) 

𝑃𝑎𝑋
𝑏 − 𝑋𝑏𝑃𝑎 = 𝑖𝛿𝑎

𝑏 ,                                    (3.115) 

Units being chosen so that ℎ = 1. Thus we shall want 

 

𝑍𝛼 = 𝜕/𝜕 �̅�𝛼                  ( �̅�𝛼 = −𝜕/𝜕𝑍
𝛼) 

And  

𝑍𝛼 �̅�𝛽 −  �̅�𝛽𝑍
𝛼 = 𝛿𝛽

𝛼 ,                                  (3.116) 

Where these operators are taken to act on functions 𝑓( �̅�𝛼). Now 𝜙 is 

essentially given by 𝑓( �̅�𝛼), and it is clear from taking complex 

conjugates that solutions of ∇�́�𝑃𝜃�́� �́�……�́� = 0  are similarly described by a 

function 𝑔(𝑍𝛼). Now 

𝑍𝛼𝑓(�̅�) =
𝜕

𝜕 �̅�𝛼
𝑓(�̅�);                          �̅�𝛼𝑓(�̅�) =  �̅�𝛼𝑓(�̅�) 

 𝑍𝛼𝑔 = 𝑍𝛼𝑔(𝑍);                               �̅�𝛼𝑔(𝑍) = −
𝜕

𝜕𝑍𝛼
𝑔(𝑍)     (3.117) 

Previously we had 𝑍𝛼 �̅�𝛼 = 2𝑠, where 𝑆𝑎 = 𝑠𝑃𝑎, 𝑠 being the spin parallel 

to the direction of motion. So consider the operator 𝑆 defined by  

4𝑆 ≔ 𝑍𝛼 �̅�𝛼 +  �̅�𝛼𝑍
𝛼 = 2( �̅�𝛼𝑍

𝛼 + 2) = 2(𝑍𝛼 �̅�𝛼 − 2)        (3.118) 

Then 

𝑠𝑔(𝑍𝛼) =
1

2
 ((𝑛 + 2) − 2)𝑔(𝑍𝛼) = 𝑠𝑔(𝑍𝛼)              (3.119) 

For g is homogeneous of degree (−𝑛 − 2) and 2𝑠 = 𝑛 whereas 

𝑍𝛼𝜕𝑔(𝑍)/𝜕𝑍𝛼 gives 𝑘𝑔(𝑍𝛼) where 𝑘 is the homogeneity degree. (One 

may, incidentally, say that the fact that 𝛿𝛽
𝛼 = 4 in twistor space, i.e. its 4-

dimensionality, is related to the need for the degree (−𝑛 − 2) in the 

definition of 𝑓). We also find 𝑆𝑓( �̅�𝛼) = 𝑠𝑓( �̅�𝛼) if 𝑛 = −2𝑠, so that the 

twistor field corresponding to spinors with primed indices are of opposite 

helicity, as we expect. The fact the spin is half-integral is a consequence 

of the one valuedness of   𝑓. 
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We may inquire what is the effect of  𝑍𝛼 , �̅�𝛼 when acting on the fields 

𝜙…. Consider 

𝑓(𝑊𝛼) → (𝑄
𝛼𝑊𝛼)𝑓(𝑊𝛼),                               (3.120) 

Which is the result of 𝑄𝛼 �̅�𝛼. If 𝑄𝛼 ↔ (𝑄𝐴, 𝑄𝐴′), eq. (3.120) corresponds 

to: 

𝜙𝐴𝐵….𝐿 → �̃�
𝐴𝜙𝐴𝐵….𝐿 = 𝜓𝐵….𝐿                         (3.121) 

Where �̃�𝐴 = 𝑄𝐴 − 𝑖𝑋𝐴𝐴
′
𝑄𝐴′, and 𝜓𝐵….𝐿 satisfies the zero-rest-mass field 

equation for spin (𝑛 − 1). 

Similarly, if 𝑅𝛼 ↔ (𝑅𝐴, 𝑅
𝐴′), the operator 𝑅𝛼𝑍

𝛼 acts so that: 

𝑓(𝑊𝛼) → 𝑅𝛽
𝜕

𝜕𝑊𝛽
𝑓(𝑊𝛼);                           (3.122) 

𝜙𝐴𝐵….𝐿 →
1

2
𝑖(𝑛 + 1)𝜙(𝐴𝐵….𝐿∇𝑀)𝑀′�̃�

𝑀′ + 𝑖�̃�𝑀
′
𝛻𝑀′𝑀𝜙𝐴𝐵….𝐿 = 𝑋𝐴𝐵….𝑀,   (3.123)                                                                      

 

 where 𝑋𝐴𝐵….𝑀 is a solution of the zero-rest-mass field equation for 

spin(𝑛 + 1). Thus  �̅�𝛼 raises, and 𝑍𝛼 lowers, the helicity by one half. 
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Chapter Four 

Applications of Twistor Space in 3D 

4.1 3D Twistors and The Biharmonic Equation 

The use of complex variable techniques in applied mathematics, 

and especially fluid dynamics, is dominated by two-dimensional 

applications through the prescription 

 

𝑤 =  𝑥 +  𝑖𝑦                                          (4.1) 

 

On the other hand, in the context of relativistic physics in four or 

more dimensions, the use of twistor methods due to 𝑅. Penrose and co-

workers is becoming an ever more present tool in the hands of theoretical 

physicists. The focus of much of the published work has been on time-

independent problems within the general context of theoretical relativistic 

physics. In this section the idea is to present such methods as being a 

routinely useful tool in traditional applied mathematics. To this end, an 

example of the application of twistor theory to viscous fluid flow is 

presented. In particular, the solution of various biharmonic problems will 

be presented using contour integral techniques. The ultimate goal of this 

work is a better understanding of the Navier-Stokes equations through the 

geometry of holomorphic complex variable techniques at first sight, even 

our most basic goal might seem to be an unreasonable proposal. For 

example, the biharmonic equation in two dimensions, with the            

𝑤 =  𝑥 +  𝑖𝑦 prescription, amounts to 

 

𝜕𝑤
2𝜕�̅�

2 = 0                                           (4.2) 

 

with the general real solution 

 

𝛹 = 𝑅𝑒{�̅�𝑓(𝑤) + 𝑔(𝑤)}                                    (4.3) 

 

where 𝑓 and 𝑔 are both locally holomorphic. This is generally regarded as 

going outside the holomorphic context as it involves �̅� in an essential 

way. We shall show that equation (4.3) is in fact the two-dimensional 

projection of an essentially holomorphic three-dimensional result. 
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4.2.1 The Navier-Stokes Equations: 

The Navier-Stokes equations are the set of nonlinear partial 

differential equations that describe the flow of fluids 

 

4.2.2 Steady Viscous Incompressible Flow  

A large class of fluids can be characterized by their density 𝜌 a 

scalar field not presumed to be constant, and their dynamic viscosity 𝜇. 

The flow is characterized by a velocity vector field 𝑣, and an associated 

scalar pressure field p .  

  Conservation of mass is expressed by the continuity equation 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑣) = 0

  
                                       (4.4) 

and the conservation of momentum is expressed by the Navier-Stokes 

equations  

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑣. 𝛻 𝑣) = −𝛻 𝑝 + 𝜇∇2𝑣                            (4.5) 

4.2.3 Remedial Fluids 

       If the fluid is incompressible in the sense that is a constant in both 

time and space, we have the condition: 

 

𝛻. 𝑣 = 0                                                  (4.6) 

                                           

To analyze matters further, we introduce the vorticity vector 

 

𝑤 = 𝛻  × 𝑣                                                 (4.7) 

 

We demand incompressibility but allow for non-zero vorticity. We let 

 

𝐻 = (𝑝 +
1

2
𝑝𝑣2)                                          (4.8) 

 
 

4.2.4 Recasting of Navier-Stokes 

  If 𝛻. 𝑣 = 0 then ∇2𝑣 = −𝛻 × 𝑣  using simple identities from vector 

calculus the Navier-Stokes equations may then be recast in the form 
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𝜌 (
𝜕𝑣

𝜕𝑡
− 𝑣  × 𝑤) + 𝛻 (𝑝 +

1

2
𝜌𝑣2) = −𝜇𝛻 × 𝑤                 (4.9) 

 

Taking the curl of this, we get vorticity equation 

 

𝜕𝑤

𝜕𝑡
+ 𝑣. 𝛻 𝑤 − 𝑤. 𝛻 𝑣 = 𝑣∇2𝑤                      (4.10) 

                             
 

where the kinematic viscosity  𝑣 = 𝜇 𝜌⁄  

  

4.2.5 The ‘Stream Vector Potential 

Since the velocity field is divergence-free, we may introduce a 

vector potential Ψ such that 

 

𝑣 = ∇ × Ψ                                                 (4.11) 

 

and furthermore we may choose it so that it is divergence free 

 

∇.Ψ = 0                                                 (4.12) 

 

In theoretical physics, notably electromagnetic theory, this is known as 

setting a gauge condition. The tradition in fluid dynamics is to mainly use 

the vector potential only when it can be reduced to a single function using 

some type of symmetry. The resulting object is a stream function. For 

example, planar 2𝐷 flow is obtained by setting (and note that this 

automatically satisfies the gaugecondition) 

 

Ψ = −𝜓(𝑥, 𝑦)𝑒 𝑧                                          (4.13) 

 

4.2.6 Good Idea in 3D Too 

       We will work with the full vector form. First of all we note that 

under the assumption that Ψ satisfies ∇.Ψ = 0. 

  

𝑤 = −∇2Ψ                                           (4.14) 

 



105 

 

and the vorticity equation becomes, denoting 
  

𝜕

𝜕𝑡
  by: 

 

∇4Ψ =
1

𝑣
{(( ∇2Ψ). ∇)∇ × Ψ − ((∇ × Ψ). ∇) (∇2Ψ) + ∇2Ψ̇}        (4.15)  

 

or indeed as 

 

∇4Ψ =
1

𝑣
{∇ × ((∇ × Ψ) × ∇2Ψ)Ψ} + ∇2Ψ̇                    (4.16)  

 

This latter representation of the Navier-Stokes equations is well-known in 

the 2𝐷 planar casewhere it reduces to the equation 

 

∇4Ψ =
1

𝑣

𝜕(𝜓. ∇2𝜓)

𝜕(𝑥, 𝑦)
                                    (4.17) 

4.1.7 Potential Flow 

Here 𝑤  is zero and  ∇4Ψ = 0 vorticity equations satisfied as 

identity. The potential 𝜙 is 

𝜙(𝑟) = ∫(∇ × Ψ). 𝑑𝑟′                           (4.18) 

and is harmonic conjugate of 𝜓 in 2D case  

∇4𝜙 = 0             ,                     ∇2Ψ = 0                 (4.19) 

4.2.8 The Biharmonic Limit  

When viscosity 𝑣 → ∞, ignore  non-linearities time-independent Navier-

Stokes equations reduce to 

∇4Ψ = 0                                         (4.20) 

 

which is the biharmonic limit, also known as Stokes flow. We want to 

understand the biharmonic structure for the 3D vector version of 

 

𝜕4𝜓

𝜕𝑤2𝜕𝑤
2 = 0                                       (4.21) 
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We shall focus on the solution of this equation by complex variable 

methods. It is now well known (see for example lack of any solution for 

asymptotically uniform two-dimensional flow past a cylinder. However, 

in attempting to construct a twistor description of fluid flow we must be 

able to at least solve the biharmonic equation. It is to this that we now 

turn.
 

 

4.2.9 Twistor Solutions of The Laplace and Biharmonic Equation 

We need anew picture to proceed. It is very well known that the 

Laplace equation can be solved in terms of holomorphic functions in two 

dimensions. Among devotees of twistor methods, and student of 

Bateman, Whittaker, it is known that this can be carried out in three 

dimensions. Want to extend to the biharmonic case .This can be done. 

This is at least an opportunity to explain how to use complex methods in 

3 dimensions. In 2 𝐷 we let  𝑧 = 𝑥 + 𝑖𝑦 . What also have a 𝑧 ? (Never put 

𝑧 = 𝑥 + 𝑖𝑦) but what complex structure do we use ? the key is twistor 

space for 3𝐷 

The twistor space associated with 3R  is first, as a real space, the set 

of oriented straight lines in 3R . Relative to some origin 𝑂. Let r denote 

the position vector of the point on a given line nearest to 𝑂. Then 𝑟 is 

orthogonal to the direction of the line, which we denote by u  with 𝑢. 𝑢 =

1.  So the set of oriented straight lines is the set. 

 

𝑇𝑆2 = {(𝑟, 𝑢)𝜖𝑅3 × 𝑆2|𝑟. 𝑢 = 0}                          (4.22) 

 

This set is a naturally the tangent bundle to a complex manifold, where 

𝑆2as the Riemann sphere 𝐶𝑃1. This 𝑇𝐶𝑃1 (complex tangent bundle) is 

the twistor space. 

 

4.2.11 Defining A Points I 

How do we define a point in ordinary space in terms of some 

structure on 𝑇𝐶𝑃1? A point may be regarded as the intersection of all 

straight lines through it. This means that a point is necessarily some 

vector field in 𝑇𝐶𝑃1 that is defined globally. 
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4.2.12 Defining A Points II 

To see the implications of this we introduce two open sets that 

cover 𝐶𝑃1. We can take coordinates for the sphere as 𝜉 on one patch 

(covering everything except infinity), and 𝜉̅ =
1

𝜉
 on another patch, 

covering everything except  �̅� = 0. Over each of these respective patches 

we can define coordinates for the tangent bundle as (𝜂, 𝜉)  and (�̅�, 𝜉̅) , 

where the relevant vector fields are, respectively 

 

𝜂
𝜕

𝜕𝜉
          ,      �̅�

𝜕

𝜕𝜉̅
                                          (4.23) 

 

4.2.13 Defining A Points III 

Consider now a holomorphic vector field. On the   patch it can be 

written as 

𝑓0(𝜉)
𝜕

𝜕𝜉
   

                                          
(4.24) 

 

for some 0f , and on the 𝜉 patch, it can be written as 

 

𝑓1(𝜉)
𝜕

𝜕�̃�
                                            (4.25)  

for some 𝑓1. 

 

4.1.14 Defining A Points IV 

  On the intersection of the two patches equality of the two 

representations gives us 

𝑓1(𝜉
−1)(−𝜉2)

𝜕

𝜕𝜉
= 𝑓0(𝜉)

𝜕

𝜕𝜉
                          (4.26) 

If we make a Taylor series expansion of both functions,  

𝑓𝑖(𝜉) =∑𝑎𝑛
′𝑖

0

𝑛

𝜉𝑛  
                                      

(4.27)  

Deduce that the coefficients 
i

na vanish if  𝑛 >  2. , the global vector field 

smust be of the form, for example on the   patch: 
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𝜂(𝜉) = 𝑎 + 𝑏𝜉 + 𝑐𝜉2
                                  

(4.28) 

 

so that such quadratics are the only holomorphic vector fields, and these 

correspond to points of 
3C , parametrized in some way by  (a, b, c). 

 

4.1.15 Summary of Reality and Metric  

Further analysis of this system allows the identification of real 

points in 
3R , and the construction of a natural metric. The points are real 

if and only if 

𝑐 = −�̅�             and      𝑏 = −�̅�                  (4.29) 

 

The induced metric is proportional to the discriminant of the quadratic, 

and we shall normalize matters such that 

 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
1

4
𝑑𝑏2 − 𝑑𝑎𝑑𝑐

                      
 (4.30) 

 

The metric for real points: 

 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
1

4
𝑑𝑏2 + 𝑑𝑎𝑑�̅�

                      
 (4.31) 

 

4.1.16 The Final Point Correspondence 

If we pick our coordinate system such that the real part of a is  , we see 

that we can take the imaginary part of a to be ±y  and set  b = ±2z.  

The convention is to set: 

 

𝜂𝑟(𝜉) = (𝑥 + 𝑖𝑦) + 2𝑧𝜉 − (𝑥 − 𝑖𝑦)𝜉
2                       (4.32) 

 

This gives us the correspondence between real points in 3𝐷 and global 

holomorphic vector fields 

 

4.1.17   Solving the Scalar Laplace Equation 

We consider a function 𝑓(𝜂, 𝜉) defined on twistor space. This can 

then be thought of as restricted to the special global sections of twistor 

space represented by 𝜂𝑟(𝜉), and the 𝜉 dependence integrated out by 

integration over a contour C. We set: 
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𝜙(𝑟) = ∫ 𝑓(𝜂𝑟(𝜉), 𝜉)𝑑𝜉𝑐
                            

  (4.33) 

 

4.1.18 Laplace II 

 It is easy to check 𝜙 satisfies the scalar Laplace’s equation. To see 

this observe that   

 

𝜕𝑘𝑓(𝜂𝑟(𝜉), 𝜉)

𝜕𝑥𝑘
= (1 − 𝜉2)𝑘

𝜕𝑘𝑓

𝜕𝜂𝑘
|𝜂 =𝜂𝑟

                

 (4.34) 

𝜕𝑘𝑓(𝜂𝑟(𝜉), 𝜉)

𝜕𝑦𝑘
= 𝑖𝑘(1 + 𝜉2)𝑘

𝜕𝑘𝑓

𝜕𝜂𝑘
|𝜂 =𝜂𝑟

                

 (4.35) 

𝜕𝑘𝑓(𝜂𝑟(𝜉), 𝜉)

𝜕𝑧𝑘
= (2𝜉)𝑘

𝜕𝑘𝑓

𝜕𝜂𝑘
|𝜂 =𝜂𝑟

                     

 (4.36) 

 

and that adding these three expressions with 𝑘 =  2 gives zero identically   

for any choice of 𝑓. 

 

4.1.19 Note 

 many different choices of 𝑓 will give rise to the same. Such 

choices differ by the additions of functions that are holomorphic inside or 

outside of 𝐶, so that one must pursue a cohomological approach in order 

to state a formal isomorphism between structures on twistor space and 

solutions of the Laplace equation. 

4.1.20 Solving the Scalar Biharmonic Equation 

How do we modify the integrand 𝑓(𝜂𝑟(𝜉), 𝜉), say to some 

holomorphic function g, to arrange that ∇4𝑔 = 0  but ℎ(𝑟 , 𝜉 )? We try to 

build 𝑔 from 𝑓  by multiplying by some prefactor, so that: 

 

𝑔 = ℎ(𝑟, 𝜉)𝑓(𝜂𝑟 , 𝜉)                                     (4.37) 

Now 

 

∇2𝑔 = ∇2ℎ𝑓 = 𝑓∇2ℎ + ℎ∇2𝑓 + 2∇ℎ∇𝑓 = 𝑓∇2ℎ + 2∇ℎ∇𝑓       (4.38) 

               

 

That is, as f  satisfies the Laplace equation. 
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∇2𝑔 = 𝑓∇2ℎ = 2∇ℎ∇𝑓                                (4.39) 

4.1.21 Biharmonics II 

If we furthermore choose ℎ to be linear in  𝑟  matters simplify further and 

we have 

 

∇2𝑔 = 2∇ℎ∇𝑓                                         (4.40) 

 

Let us set, w.l.o.g, ℎ = 𝑢(𝜉). 𝑟, so that. ∇ℎ = 𝑢(𝜉) We also note that 

 

∇𝑓 =
𝜕𝑓

𝜕𝜂
∇𝜂 =

𝜕𝑓

𝜕𝜂
(1 − 𝜉2, 𝑖(1 + 𝜉2), 2𝜉)

                        
 (4.41) 

 

4.1.22 Biharmonics III 

Putting this all together, we arrive at 

 

∇2𝑔 = ∇2ℎ𝑓 = 2𝑢(𝜉). (1 − 𝜉2, 𝑖(1 + 𝜉2), 2𝜉)
𝜕𝑓

𝜕𝜂
= 2𝜂𝑢(𝜉)(𝜉)

𝜕𝑓

𝜕𝜂
   (4.42)

                        
  

 

We can now see that ∇
4𝑔 = 0 of this last expression vanishes identically, 

while this expression does not itself vanish unless 

 

𝜂𝑢(𝜉)(𝜉) = 0
                                          

(4.42)
   

 

4.1.23 Biharmonics IV 

  To see what is happening, we can now make matters more explicit.  

We let 

𝑢(𝜉) = 𝑢1(𝜉), 𝑢2(𝜉), 𝑢3(𝜉)                             (4.43) 

Then 

𝑢. 𝑟 = 𝑢1(𝜉)𝑥 + 𝑢2(𝜉)𝑦 + 𝑢3(𝜉)𝑧                     (4.44) 

And 

 

𝜂𝑢(𝜉)(𝜉) = (𝑢1(𝜉) + 𝑖𝑢2(𝜉)) + 2𝑢3(𝜉)𝜉 − (𝑢1(𝜉) − 𝑖𝑢2(𝜉))𝜉
2    (4.45) 
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4.2.24 Biharmonics  

   In terms of these variables the proposed integral representation for 

solutions of the 3𝐷 scalar biharmonic equation is just 

  

𝛹 = ∫ 𝑑𝜉[𝑥𝑢1(𝜉) + 𝑦𝑢2(𝜉) + 𝑧𝑢3(𝜉)]𝑓(𝜂𝑟(𝜉), 𝜉)𝑐            
(4.46) 

 

or indeed , with  𝑤 =  𝑥 +  𝑖𝑦 

 

𝛹 =
1

2
∫ 𝑑𝜉[𝑤𝑔 − (𝜉) + �̅�𝑔 + (𝜉) + 2𝑧𝑢3(𝜉)]𝑓(𝜂𝑟(𝜉), 𝜉)  𝑐

  

  (4.47)  

 

where 

𝑔±(𝜉) = 𝑢1((𝜉) ± 𝑖𝑢2(𝜉))                                   (4.48) 

 

4.2.25 The Scalar Biharmonic Problem In 2D 

 Suppose we want no 𝑧-dependence. We set 03 u  and  𝑤 = 𝑥 +  𝑖𝑦, so 

that 

𝛹 = ∫𝑑𝜉[𝑤𝑔 − (𝜉) + �̅�𝑔 + (𝜉)]𝑓(𝜂𝑟(𝜉), 𝜉)  
𝑐

            

  (4.49) 

We can write this in the equivalent form 

 

𝛹 = 𝑤∫𝑑𝜉𝑓1(𝜂𝑟(𝜉), 𝜉) + �̅� ∫𝑑𝜉𝑓2(𝜂𝑟(𝜉), 𝜉)      
𝑐𝑐

        

  (4.50) 

 

Now consider the second term. This is �̅�∅(𝑥, 𝑦, 𝑧)  where ∅ is a solution 

of  Laplace’s equation and is just 

 

𝜙(𝑥, 𝑦, 𝑧) = ∫𝑑𝜉𝑓2(𝜂𝑟(𝜉), 𝜉)                           
𝑐

  

  (4.51) 

 

We want this not to depend on 𝑧 either. But this looks awkward given 

that 

𝜂𝑟(𝜉) = (𝑥 + 𝑖𝑦) + 2z𝜉 − (𝑥 − 𝑖𝑦)𝜉
2                       (4.52)  

 

Actually it is not 
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𝜙(𝑥, 𝑦, 𝑧 + ℎ 2⁄ ) = ∫𝑑𝜉𝑓2(𝜂𝑟(𝜉) + ℎ𝜉, 𝜉)         
𝑐

       

  (4.53) 

 

The equation we need is 

 

𝜙(𝑥, 𝑦, 𝑧 + ℎ 2⁄ ) = 𝜙(𝑥, 𝑦, 𝑧)                          (4.54) 

 

This does not require that 

 

𝑓2(𝜂𝑟(𝜉) + ℎ𝜉, 𝜉) = 𝑓2(𝜂𝑟(𝜉), 𝜉)                  (4.55) 

Instead we need 

 

𝑓2(𝜂𝑟(𝜉) + ℎ𝜉, 𝜉) = 𝑓2
′(𝜂𝑟(𝜉), 𝜉) + 𝑔0(𝜂, 𝜉, ℎ) − 𝑔1(𝜂, 𝜉, ℎ)         (4.56) 

 

where 𝑔0  is holomorphic on and inside 𝐶 and  g1 is likewise outside. 

Cauchy’s theorem. Let’s take 𝐶 to be unit circle, or to be deformable to 

the unit circle. Now differentiate w.r.t h then set ℎ = 0. We obtain, for 

some 𝐺𝑖, 

𝜉
𝜕𝑓2
𝜕𝜂
= 𝐺0(𝜂, 𝜉) − 𝐺1(𝜂, 𝜉)                             (4.57)   

 

We integrate this w.r.t. 𝜂 and divide by 𝜉. We obtain, for some 𝐻𝑖, 

 

𝑓2 =
𝐻0(𝜂, 𝜉)

𝜉
−
𝐻1(𝜂, 𝜉)

𝜉

                                

(4.58) 

and recall that 𝐻0 must be holomorphic inside C and 𝐻1 holomorphic 

outside. Now we evaluate the integral of Eq. (4.51) using calculus of 

residues. The first term in Eq. (4.55) is easy, and we get 

 

2𝜋𝑖𝐻0(𝜂𝑟(0), 0) = 𝐾(𝑤)                          (4.59) 

 

for some function 𝐾(𝑤), giving a contribution to 𝜙  of  �̅�𝑘(𝑤) When we 

calculate the contribution of the second term of  Eq. (4.55) to the integral 

of Eq. (4.51), we make the transformation 𝜉 → 𝜉 and obtain an integrand 

that is a function of  �̃� = (𝑥 − 𝑖𝑦) − 2𝑧𝜉 − (𝑥 + 𝑖𝑦)𝜉2. Taking the 
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residue at  𝜉 = 0 gives a function of  �̅�  =  𝑥 −  𝑖𝑦, also to be multiplied 

by  �̅�. 

The other two terms in Eq. (4.50) may be treated similarly. We end 

up with four terms contributing to: 

 

Ψ = �̅�𝐾2(𝑤) + �̅��̃�2(�̅�) + 𝑤𝐾1(�̅�) + 𝑤�̃�1(𝑤)         (4.60) 

 

When Ψ is real we must have Eq. (4.24). So the fully holomorphic picture 

in three dimensions projects, via the calculus of residues, to a two-

dimensional picture and generates the familiar yet superficially non-

holomorphic two-dimensional representation of solutions to biharmonic 

(and Laplace) equations. In three dimensions our functions are contour 

integrals. 

 

4.1.26 The Axis-Symmetric Scalar Problem 

 We go back to the representation 

  

Ψ =
1

2
∫𝑑𝜉[𝑤𝑔 − (𝜉) + �̅�𝑔 + (𝜉) + 2𝑧𝑢3(𝜉)]
𝑐

𝑓(𝜂𝑟(𝜉), 𝜉)      (4.61) 

 

with 𝑤 =  𝑥 +  𝑖𝑦. We can regard this as three pieces, where we discard 

the factors of a half: 

 

Ψ− = 𝑤∫ 𝑑𝜉𝑔 − (𝜉)𝑓(𝜂𝑟(𝜉), 𝜉) = 𝑤𝜓−𝑐                 
 (4.62) 

Ψ+ = �̅� ∫ 𝑑𝜉𝑔 + (𝜉)𝑓(𝜂𝑟(𝜉), 𝜉) = �̅�𝜓+𝑐                  
(4.62) 

Ψ3 = 𝑧 ∫ 𝑑𝜉𝑢3(𝜉)𝑓(𝜂𝑟(𝜉), 𝜉) = 𝑧𝜓0𝑐                     
 (4.63) 

 

In order to develop axis-symmetric solutions, we need to understand the 

action of the group of rotations about the z-axis. We need to bear in mind 

the formula 

𝜂 = 𝑤 + 2𝑧𝜉 − �̅�𝜉2                            (4.64) 

 

with w = x + iy. Under a rotation about the z-axis,  𝑧 → 𝑧 and             

 𝑤 → 𝑒𝑥𝑝(𝑖∅)𝑤 this is compatible with the action                            

(𝜂, 𝜉) → 𝑒𝑥𝑝(𝑖∅)(𝜂, 𝜉). In seeking axis-symmetric solutions for 𝜓±,0 we 

need to arrange that 
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𝑑𝜉𝑔 − 𝑓 → 𝑒𝑥𝑝(−𝑖∅)𝑑𝜉𝑔 − 𝑓                        (4.65) 

𝑑𝜉𝑔 + 𝑓 → 𝑒𝑥𝑝(𝑖∅)𝑑𝜉𝑔 + 𝑓                            (4.66) 

𝑑𝜉𝑢3𝑓 → 𝑑𝜉𝑢3𝑓                                        (4.66) 

 

To treat all of these situations together, we consider the case where. 

𝑑𝜉ℎ(𝜂, 𝜉) → 𝑒𝑥𝑝(𝑖𝑚∅)𝑑𝜉ℎ(𝜂, 𝜉) . To this end we consider the contour of 

integration to be the unit circle and consider a basic set 

 

ψ𝑛,𝑚 =
1

2𝜋𝑖
∫𝑑𝜉

𝜂𝑛

𝜉𝑛+1−𝑚
                              

(4.68) 

 

where for 𝜓0  , 𝑚 =  0, and for 𝜙±, 𝑚 =  ±1. So our task now is to 

calculate 

ψ𝑛,𝑚 =
1

2𝜋𝑖
∫𝑑𝜉

𝜂𝑛

𝜉𝑛+1−𝑚
(𝑤 + 2𝑧𝜉 − �̅�𝜉2)𝑛 

                

(4.69) 

 

By multiplying these by the relevant factors of 𝑤,𝑤, 𝑧 for 𝑚 =  −1, 1, 0 

we get an interesting set of axis-symmetric biharmonic functions. The 

functions 𝑛,𝑚 themselves are now contour integral solutions of Laplace’s 

equation. This is of course of interest in itself. 

 

To evaluate this set we let y = 0 since  𝜓𝑛,𝑚(𝑟, 𝜃, 𝜙) = 𝑒
𝑖𝑚𝜙(𝑟, 𝜃, 0). 

Then, we have, in spherical polar coordinates 

 

ψ𝑛,𝑚 =
1

2𝜋𝑖
∫𝑑𝜉𝜉𝑚−1(2 cos(𝜃) + sin(𝜃))𝑛 

                         

(4.70)
    

            
 

Parametrizing the integral as  𝜉 = 𝑒𝑖𝑡, we obtain 

 

ψ𝑛,𝑚 =
(2𝑟)𝑛

2𝜋
∫𝑑𝑡𝑒𝑖𝑚𝑡 (cos(𝜃) + (

1

𝜉
− 𝜉) sin(𝜃) sin(𝑡))

𝑛
 

      

(4.71)    

                   

 Performing some manipulations, we see that, discarding normalizations, 

if   𝑛 ≠ 1. 
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ψ𝑛,𝑚𝛼 {
𝑟𝑛𝑃𝑛

𝑚(cos(𝜃))
1
𝑟𝑘+1

𝑃𝑘
𝑚(cos(𝜃))

    
𝑛 = 0,1,2,3,………………

𝑛 = −𝑘 − 1, 𝑘 = 1,2,3, …

  

    (4.72) 

 

When 𝑛 =  −1 matters are quite subtle as the integral branches 

depending on the sign of z! A full treatment of this is rather beyond the 

scope of this paper but we note that in this case, 

 

ψ𝑛,𝑚 =
1

2𝜋𝑖
∫𝑑𝜉

𝜉𝑚

𝑤 + 2𝑧𝜉 − �̅�𝜉2
 

                      

(4.73) 

                      

The quadratic in the denominator has two roots ± given by 

 

𝜉± =
−𝑧±𝑟

−�̅�
,   𝑟 = √𝑥2 + 𝑦2 + 𝑧2     , �̅� = 𝑥 − 𝑖𝑦             (4.73) 

 

These roots are located, using standard spherical polar coordinates, at 

 

𝜉+ = 𝑒
𝑖𝜃 tan (

𝜃

2
) ,  𝜉− = 𝑒

𝑖𝜃 cot (
𝜃

2
)   

              
(4.74) 

and we can write 

                     
 

ψ−1,𝑚 =
−1

2𝜋𝑖�̅�
∫𝑑𝜉

𝜂𝑚

((𝜉 − 𝜉+)(𝜉 − 𝜉−))
 

                  

(4.75) 

 

The details of the global evaluation of this are lengthy. We note here that 

when 𝑧 >  0,  |𝜉+| < 1 and when 𝑚 ≥  0, the single residue inside the 

unit circle  

ψ−1,𝑚 =
−𝜉+

𝑚

�̅�(𝜉+ − 𝜉−)
=
𝜉+
𝑚

2𝑟
                             (4.76) 

                     
 

so in particular we obtain the Coulomb field in the region 𝑧 >  0 when  

𝑚 =  0. The reader is invited to explore the other cases. 

 

3.2.27 Axis-Symmetric Stokes Flow  

This is traditionally modelled in terms of the Stokes stream 

function Ψ𝑆(𝑟, 𝜃). The components of the velocity field are given by 
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u𝑟 =
1

𝑟2 sin 𝜃

𝜕Ψ𝑠
𝜕𝜃
     , u𝜃 =

1

𝑟 sin 𝜃

𝜕Ψ𝑠
𝜕𝑟
                   (4.77) 

      

What this representation is really telling us, as is made clear in modern 

fluid theory, is that the vector potential  Ψ  for the flow is given by 

 

 Ψ = −
Ψ𝑠

𝑟 sin(𝜃)
𝑒𝜙                               (4.78)     

 

as is revealed, together with the fact that Ψ it is divergence-free, by 

elementary calculations with the curl and div operator expressed in a 

spherical basis. A further elementary calculation in vector calculus shows 

that symmetric for an axis-symmetric function 𝑓(𝑟, 𝜃) 
 

∇ × (∇ ×
𝑓

𝑟 sin(𝜃)
𝑒𝜙) = −

−1

𝑟 sin(𝜃)
(𝐸2𝑓)𝑒𝜙

                 
(4.79) 

 

where the operator  𝐷2 is given by 

 

𝐷2𝑓 =
𝜕2𝑓

𝜕𝑟2
+
sin 𝜃

𝑟2
𝜕

𝜕𝜃
(
1

sin𝜃

𝜕𝑓

𝜕𝜃
)

                       

(4.80) 

 

The biharmonic condition may be expressed as the scalar 𝑃𝐷𝐸 

 

𝐷4Ψ𝑠 = 0                                        (4.81) 

4.1.29 Cartesian Basis 

However, this representation in some ways obscures the underlying 

simplicity of the problem. To see why, we need to work with the problem 

in the full vector form, and, perhaps surprisingly, recast it in a Cartesian 

basis. In this way we can use the contour integral technology already 

developed for the scalar biharmonic problem. We write the basis vector 

𝑒𝜙 in the form 

 

𝑒𝜙 =
−𝑦𝑒𝑥 + 𝑥𝑒𝑦

√𝑥2 + 𝑦2
=
−𝑦𝑒𝑥 + 𝑥𝑒𝑦
𝑟 sin(𝜃)

=
1

𝑟 sin(𝜃)
𝑅𝑒{𝑤[𝑖𝑒𝑥 + 𝑒𝑦]}  (4.82) 
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where 𝑤 =  𝑥 +  𝑖𝑦 as before. We could equally well write this down in 

terms of  𝑤. Now recall that the full vector potential is given in terms of 

the Stokes streamfunction by the relation) 

 

Ψ = −
Ψ𝑠

𝑟 sin(𝜃)
𝑒𝜙                                         (4.83)    

and if  Ψ𝑠 is real we can write the vector potential as 

 

Ψ = 𝑅𝑒 {Ψ𝑠
Ψ𝑠𝑤

𝑟2 sin2(𝜃)
[𝑖𝑒𝑥 + 𝑒𝑦]}

                    

   (4.84) 

 

The components of this with respect to a Cartesian basis must satisfy the 

scalar biharmonic equation, or indeed, as a special case, the Laplace 

equation. We now appeal to equation (4.62), where we note that  Ψ− is 

just a harmonic function. It follows that we can write the parts of Ψ𝑠 that 

are biharmonic  

 

4.1.30 Cartesian Analysis 

Cartesian components must satisfy the scalar biharmonic equation 

 

Ψ𝑠 = 𝑟
2 sin2(𝜃)𝑔(𝑟, 𝜃) = 𝑤𝑤

1

2𝜋𝑖
∫𝑑𝜉

1

𝜉
𝑓 (
𝜂

𝜉
)                             

 

for some complex function 𝑓. 𝑓 can be expanded as a Laurent series:  

Here g iharmonic and axis-symmetric and can therefore be written in 

terms of the ψ𝑛,0  functions given in equation (4.69) or indeed in terms of 

normal Legendre functions and powers of 𝑟 via a Laurent expansion of 

𝑓 in the form 

Ψ𝑠 = 𝑤𝑤
1

2𝜋𝑖
∫𝑑𝜉 ∑

𝑎𝑛
𝜉𝑛+1

𝑛=∞

𝑛=−∞

(𝑤 + 2𝑧𝜉 − 𝑤𝜉2) 𝑛                  (4.85) 

 

 The terms in the series can be evaluated in terms of Legendre 

functions.We argue that these relations are the natural axis-symmetric 

versions of (4.60). Of course, in general, we need to add in harmonic 

components, just as in the 2𝐷 planar case where we can add to    any 

pair 𝑘1(𝑤) and  wk2 of holomorphic and anti-holomorphic functions. To 
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treat this we look again at the representation in a Cartesian basis, this time 

in the form: 

 

Ψ =
Ψ𝑠

𝑟 sin(𝜃)
(− sin(𝜙)𝑒𝑥 − cos(𝜙)𝑒𝑦)                  (4.86) 

 

We deduce that the function 

 

Ψ = −
Ψ𝑠

𝑟 sin(𝜃)
𝑒±𝑖∅                                  (4.87) 

 

must be harmonic and therefore a solution of Laplace’s equation with     

𝑚 =  ±1 as described above. By packaging this up as before, we can 

write these harmonic contributions to Ψ𝑠, say Ψ𝑆𝐻 in the elegant form 

 

Ψ𝑆𝐻 =
w̅

2𝜋𝑖
∫𝑑𝜉𝛽 (

𝜂

𝜉
) +

w

2𝜋𝑖
∫𝑑𝜉

1

𝜉2
𝛾 (
𝜂

𝜉
)                         (4.88) 

 

for some choice of complex functions 𝛽 and 𝛾 . 

 

4.1.31 The Stokes Stream Function 

  The contour integral solution for the Stokes stream function for 

axis-symmetric biharmonic flow 

 

Ψ𝑆 = 𝑤𝑤
1

2𝜋𝑖
∫𝑑𝜉

1

𝜉
𝑓 (
𝜂

𝜉
) +

w̅

2𝜋𝑖
∫𝑑𝜉𝛽 (

𝜂

𝜉
) +

w

2𝜋𝑖
∫𝑑𝜉

1

𝜉2
𝛾 (
𝜂

𝜉
) (4.89) 

 

where 𝜂 is written in terms of zyx ,,   and where 𝑓, 𝛽, 𝜂,  have Laurent 

series expansions that generate expansions in terms of powers of 𝛾 and 

regular 𝜂 and modified  (𝛽, 𝛾) functions. 

  

4.1.34 Example: (Simple Twistor Function) 

𝑓  constant gives a contribution to Ψ𝑆  proportional to 

 

𝑤𝑤 = 𝑟2 sin2(𝜃)                                  (4.90) 
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We also know (at least locally) that the choice 𝑓(𝑧) = 1 𝑧⁄  gives a 

Coulomb field and a contribution to Ψ𝑠   proportional to 

 

𝑤𝑤

𝑟
= 𝑟 sin2(𝜃)                                        (4.91) 

 

Another interesting contribution can be generated by the choice       

𝛽(𝑧) =
1

𝑧2
 , where an elementary exercise in the calculus of residues leads 

to a contribution to Ψ𝑠  of the form 

 

𝑤𝑤

r3
=
1

r
sin2(𝜃)                                         (4.92) 

 

If we take a general linear combination of these three in the form 

 

sin2(𝜃) {𝐴 r2 + 𝐵𝑟 +
𝐶

r
}   

                             
(4.93) 

 

we obtain a valid stream function. The particular choice 

 

Ψ𝑠 =
𝑈

2
sin2(𝜃) {r2 +

3𝑎𝑟

2
+
𝑎3

2r
} 

                          

(4.94)   

 

gives the well-known stream function for very viscous flow around a 

sphere of radius 𝑎 and uniform flow at  rate 𝑈 at infinity. Having non-

dimensionalized we would, for example, scale so that 𝑎 =  1. In general 

we have a contour integral technique for solving the PDE given by 

equation (4.81). 

 

4.1.35 Small but Non-Vanishing Reynolds Number 

A natural question to ask is to wonder how much of the above is 

dependent on the purely linear structure that arises in the biharmonic 

limit. We cannot yet answer this question for a general Reynolds number 

in three dimensions, but we can observe that something very interesting 

happens when we (i) go back to two dimensions and (ii) consider the case 

of a small but non-zero Reynolds number.  

 Let us go back to the non-dimensional form of (4.17). This is 
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𝐷4𝜓 = R
𝜕(𝜓, 𝛻2𝜓)

𝜕(𝑥, 𝑦)
                                (4.95)   

 

In terms of the complex variable 𝑤 =  𝑥 +  𝑖𝑦, we can write this in the 

form 

 

𝑖
𝜕4𝜓

𝜕𝑤2𝜕�̅�2
=
𝑅

2
(
𝜕𝜓

𝜕𝑤

𝜕3𝜓

𝜕𝑤𝜕�̅�2
−
𝜕𝜓

𝜕�̅�

𝜕3𝜓

𝜕�̅�𝜕𝑤2
)                        (4.96)   

 

Rather than pursuing the approach of Legendre (1949) and Ranger (1991, 

1994) we can consider instead the interesting physical case of small but 

non-vanishing Reynolds number. Let us assume that the solution for   

may be written as 

 

𝜓 = 𝜓0 + 𝑅𝜓1 + O(𝑅
2)                       (4.97)   

and that 

𝜓0 = 𝑅𝑒{�̅�𝑓0(𝑤) + 𝑔0(𝑤)}                      (4.98)              

 

This is a very strong assumption, and it is well known that this 

assumption of a power series dependence on the Reynolds number may 

fail. There may not indeed be a sensible form for 𝜓0 over a simple 

domain of interest. We illustrate that the low Reynolds number 

perturbation equation may indeed be integrated using holomorphic 

methods. The result may be of use in refining the results for a certain sub-

class of problems where there is both a meaningful 𝜓0 and the inertia 

terms in the Navier-Stokes equations (i.e. the non-linear terms) arising 

from 𝜓0 remain small over the entire domain of interest. Under these 

strong assumptions we can proceed. The equation for 𝜓1 is, under these 

assumptions, 

 

𝑖
𝜕4𝜓1

𝜕𝑤2𝜕�̅�2
=
1

8
(𝑓0
"(𝑤)̅̅ ̅̅ ̅̅ ̅̅  [�̅� 𝑓0

′(𝑤) + 𝑔0
′(𝑤) + 𝑓0(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ] − 𝑓0

"(𝑤)[𝑤𝑓0
′(𝑤)̅̅ ̅̅ ̅̅ ̅̅ +

𝑔0
′(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑓0(𝑤)])                                                        (4.99) 
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This may be solved almost explicitly as follows. We let 

𝐹(𝑤), 𝐺(𝑤),𝐻(𝑤) be holomorphic functions with the properties 

 

𝐹′(𝑤) = 𝑓0(𝑤) ,     𝐺
′(𝑤) = 𝑔0(𝑤)  ,    𝐻

"(𝑤) = 𝑓0(𝑤)𝑓0
"(𝑤)       (4.100) 

 

Then a particular solution to Eq. (4.99) is given by 

 

𝜓1𝑃 =
1

4
Im((𝑤𝐹′(𝑤) − 2𝐹(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝐹(𝑤) + 𝐹′(𝑤)̅̅ ̅̅ ̅̅ ̅̅ 𝐺(𝑤) +

𝑤2

2
𝐻(𝑤)̅̅ ̅̅ ̅̅ ̅)   

 

and a complementary function exists in the obvious form 

 

𝜓1𝐶𝐹 = Re{�̅�𝑓1(𝑤) + 𝑔1(𝑤)}                           (4.101)  

 

Where 𝑓1 and 𝑔1 are arbitrary holomorphic functions. So we can see that 

apart from the practical issue on constructing the integrals in Eq. (4.100), 

the first perturbation can be constructed by separate integration of the w 

and w components. In fact, we have shown that the perturbative non-

linear problem may be solved in terms of free holomorphic functions 

𝐹, 𝐺, 𝑓1, 𝑔1 and the solution, apart from the construction of 𝐻, is given 

explicitly in terms of this holomorphic information. This observation 

gives some hope that a corresponding three-dimensional structure might 

exist 

4.2 Non-Abelian Monopoles and Euclidean Mini-Twistors 

4.2.1 Complex structure on 𝐑𝟑 

 It is well known that the problem of finding harmonic functions in 

𝑅2 can be solved ‘in one line’ by introducing complex numbers: any 

solution of a two-dimensional Laplace equation ∅𝑥𝑥  +  ∅𝑦𝑦  =  0 is a 

real part of a function holomorphic in 𝑥 +  𝑖𝑦. This technique fails when 

applied to the Laplace equation in three dimensions as 𝑅3 cannot be 

identified with 𝐶𝑛 for any 𝑛. 

We shall associate a two-dimensional complex manifold with the 

three-dimensional Euclidean space. Define the twistor space T to be the 

space of oriented lines in 𝑅3. Any oriented line is of form 𝒗 +  𝑠𝒖, 𝑠 ∈

 𝑅 where 𝒖 is a unit vector giving the direction of the line and 𝒗 is 
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orthogonal to 𝒖 and joins the line with some chosen point (say the origin) 

in 𝑅3. 

 

T =  {(u, v)  ∈  s2 × R3, u ·  v =  0} 

 

 

 
 

and the dimension of  T is a four. For each fixed 𝒖 ∈  𝑆2 this space 

restricts to a tangent plane to 𝑆2. The twistor space is the union of all 

tangent planes—the tangent bundle  𝑇 𝑆2.  
 

This is a topologically non-trivial manifold: locally it is 

diffeomorphic to 𝑆2  ×  𝑅2  but globally it is twisted in a way analogous 

to the M¨obius strip. 

 

 

Reversing the orientation of lines induces a map  τ ∶  T →  T given 

by τ(u, v)  =  (−u, v). The points p =  (x, y, z) in  R3 correspond to two 

spheres in T given by τ -invariant maps 

 

u →  (u, v(u)  =  p − (p ·  u)u)  ∈  T                    (102) 

                                                 

which are sections of the projection  T →  S2. 
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4.2.2 Differential Equations and Twistor Functions  

Introduce the local holomorphic coordinates on an open set  U ⊂

 T  where u =  (0, 0, 1) by 

 

λ =  
u1 + iu2

1 − u3
∈  CP1 = S

2,      η =
v1 + iv2

1 − v3
+

u1 + iu2

(1 − u3)
2
v3            (103) 

                          

and analogous complex coordinates  (λ ̃, η̃) in an open set  U ̃ containing  

u =  (0, 0, 1). On the overlap 

 

λ ̃ =  1/λ                 ,            η̃ =  −η/λ2.                      (104) 

                  

In the holomorphic coordinates, the line orientation reversing involution  

τ  is given by 

τ(λ, η) = (−
1

λ
, − 

η̅

λ̅2 
).                                  (4.105) 

 

From equation (102) we get the τ -invariant holomorphic map  

  

λ →  (λ, η =  (x +  iy)  +  2λz − λ2(x −  iy)).                (4.106)                         

 

4.2.3 Harmonic Functions  

To find a harmonic function at 𝑃 =  (𝑥, 𝑦, 𝑧) 

(i) Restrict a twistor function 𝑓 (𝜆 , 𝜂) defined on  𝑈 ∩ �̃� to a line 

(4.106)  𝑃 ̆ = 𝐶𝑃1 = 𝑆2 

(ii)  Integrate along a closed contour integral 

 

∅(𝑥 , 𝑦 , 𝑧) = ∮ 𝑓(𝜆 , (𝑥 + 𝑖𝑦) + 2𝜆𝑧 − 𝜆2(𝑥 − 𝑖𝑦) )𝑑𝜆
Γ⊂𝑃 ̆

 (4.107) 

        
    

      

(iii) Differentiate under the integral to verify 

 

𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
+ 

𝜕2∅

𝜕𝑧2
= 0                             (4.108) 

 

This formula was already known to Whittaker  
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4.2.4 Abelian Monopole Equation 

Small modification of the formula can be used to solve a first-order 

linear equation for a function  and a magnetic  

Potential 𝐴 = (𝐴1, 𝐴2, 𝐴3 )of the form 

 

 ∇∅ = ∇ ∧ 𝐴                                  (4.109) 

This is the abelian monopole equation.  

Geometrically, the one-form 𝐴 = 𝐴𝑗𝑑𝑥
𝑗 is a connection on a 𝑈(1) 

principal bundle over 𝑅3 , and  ∅  is a section of the adjoint bundle. 

 

Taking the curl of both sides of this equation implies that ∅ is 

harmonic, and conversely given a harmonic function ∅ locally one can 

always find a one-form 𝐴 such that the abelian monopole equation holds. 

4.2.5 Non-Abelian Monopoles Equation 

Replacing 𝑈(1) by a non-Abelian Lie group generalizes this picture to 

some equations on 
3R  in the following way: 

Let 
 
(𝐴𝑗 , ∅) be anti- Hermitian traceless 𝑛 by 𝑛 matrices on 3R . Define 

the non-abelian magnetic field 

 

𝐹𝑘𝑙 = 
𝜕𝐴𝑙

𝜕𝑥𝑘
−
𝜕𝐴𝑘

𝜕𝑥𝑙
+ [𝐴𝑘 , 𝐴𝑙 ],   𝑘, 𝑙 = 1,2 ,3.                     (4.110) 

The non-Abelian monopole equation is a system of nonlinear PDEs 

 
𝜕∅

𝜕𝑥𝑗
+ [𝐴𝑗 , ∅ ] =  

1

2
 𝜀𝑗𝑘𝑙𝐹𝑘𝑙                              . (4.111) 

These are three equations for three unknowns as ( 𝐴, ∅)
 
are defined up to 

gauge transformations 

 

𝐴 → 𝑔𝐴𝑔−1 − 𝑑𝑔𝑔−1, ∅ → 𝑔∅𝑔−1for 𝑔 = 𝑔(𝑥, 𝑦 , 𝑡) ∈ 𝑆𝑈(𝑛) (4.112)       

 

and one component of  𝐴  (say 𝐴1) can always be set to zero. 

4.2.6 Twistor Solution to the Monopole Equation 

The twistor solution to the monopole equation consists of the 

following steps: 
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• Given (𝐴𝑗(𝑋), ∅(𝑋)) solve a matrix ODE along each oriented line 

x(s) = v +  su 
𝑑𝑉

𝑑𝑠
+ (𝑢𝑗𝐴𝑗 + 𝑖∅)𝑉 = 0

                              
(4.113) 

Space of solutions at 𝑝 ∈ 𝑅3 is a complex vector space 𝐶𝑛. 

 

• This assigns a complex vector space 𝐶𝑛 to each point of  𝑇, thus giving 

rise to a complex vector bundle over T with patching matrix(𝜆 , 𝜆,̅  𝜂, �̅�) ∈

𝐺𝐿(𝑛 , 𝐶). 

 

 
• The monopole equation (4.111) on 𝑅3 holds if and only if this vector 

bundle is holomorphic, i.e. the Cauchy–Riemann equations 

 

        
𝜕𝐹

𝜕𝜆,̅
= 0 ,                            

𝜕𝐹

𝜕�̅�
= 0      

                     
(4.114)

  
hold. 

• Holomorphic vector bundles over 𝑇𝐶𝑃1are well understood. Take one 

and work backwards to construct a monopole. We shall work through the 

details of this reconstruction in the proof of theorem 4.2.8 

4.2.7 The Ward Model and Lorentzian Mini-Twistors 

In this section, we shall demonstrate how mini-twistor theory                                     

can be used to solve nonlinear equations in 2+1 dimensions. 

 

  Let 𝐴 = 𝑑𝜇𝑑𝑥𝜇  and ∅ be a one-form and a function respectively 

on the Minkowski space,1 with values in a Lie algebra of the general 

linear group. They are defined up to gauge transformations (4.112) where 

g takes values in  𝐺𝐿(𝑛, 𝑅).  
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  Let 𝐷𝜇 = 𝜕𝜇 + 𝐴𝜇 
be a covariant derivative, and define              

𝐷∅ = 𝑑∅ + [𝐴, ∅]. The Ward model is a system of  PDEs (4.111) where 

now the indices are raised using the metric on 𝑅2,1 . If the metric and the 

volume form are chosen to be  

 

ℎ = 𝑑𝑥2 − 4𝑑𝑢𝑑𝑣 ,        𝑣𝑜𝑙 = 𝑑𝑢 ∧ 𝑑𝑥 ∧ 𝑑𝑣          (4.115) 

 

where the coordinates (𝑥, 𝑢, 𝑣) are real the equations become 

𝐷𝑥∅ = 
1

2
 𝐹𝑢𝑣                   𝐷𝑢∅ = 𝐹𝑢𝑥 ,              𝐷𝑣∅ =   𝐹𝑥𝑣             (4.116) 

 

where 𝐹𝜇𝑣 = [𝐷𝜇 , 𝐷𝑣]. These equations arise as the integrability 

conditions for an over determined system of linear Lax equations 

   

 𝐿0Ψ = 0  , 𝐿1Ψ = 0                                     (4.117) 

Where 

   

        𝐿0 = 𝐷𝑢 − 𝜆(𝐷𝑥 +  ∅),             𝐿1 = 𝐷𝑥 −  ∅ − 𝜆𝐷𝑣               (4.118) 

 

and  Ψ = Ψ(𝑥 , 𝑢 , 𝑣 , 𝜆) takes values in 𝐺𝐿(𝑛, 𝐶). We shall follow and 

‘solve’ the system by establishing a one-to-one correspondence between 

its solutions and certain holomorphic vector bundles over the twistor 

space 𝑇. This construction is of interest in soliton theory as many known 

integrable models arise as symmetry reduction and/or choosing a gauge in 

(4.117). To this end, we note a few examples of such reductions.  

 

•  Choose the unitary gauge group 𝐺 =  𝑈(𝑛). The integrability  

conditions for (4.118) imply the existence of a gauge 𝐴𝑣 = 0, and  

𝐴𝑥 = −𝜙,  and a matrix 𝐽 ∶ 𝑅2,1 → 𝑈(𝑛) such that 

 

𝐴𝑢 = 𝐽
−1𝜕𝑢  𝐽  ,      𝐴𝑥 = − ∅ =  

1

2
 𝐽−1𝜕𝑥 𝐽.             (4.119) 

With this gauge choice equations (4.116) become the integrable chiral 

model 

𝜕𝑣(𝐽
−1𝜕𝑢  𝐽) − 𝜕𝑥(𝐽

−1𝜕𝑥  𝐽) = 0                      (4.120) 
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This formulation breaks the Lorentz invariance of (4.116) but it allows 

the introduction of a positive definite energy functional. Where more 

details can be found. 

• Solutions to equation (4.116) with the gauge group 𝑆𝐿(2, 𝑅) which are 

invariant under a null translation given by a Killing vector 𝐾 such that the 

matrix 𝐾 ⅃ 𝐴 is nilpotent are characterized by the 𝐾𝑑𝑉 equation. 

• The direct calculation shows that the Ward equations with the gauge 

group 𝑆𝐿(3, 𝑅) are solved by the ansatz 

 

 

∅ = (
0 0 1
0 0 0
−𝑒𝜓 0 0

)

  

𝐴

 
𝐴 =

1

2
(
0 0 1
0 0 0
𝑒𝜓 0 0

)𝑑𝑥 + (
𝜓𝑢 0 0
1 −𝜓𝑢 0
0 0 0

)𝑑𝑢 + (
𝑒−2𝜓 0 0
1 0 𝑒𝜓

0 0 0

)𝑑𝑣

   

  

iff  𝜓(𝑢, 𝑣) satisfies the Tzitz´eica equation 

 

𝜕2𝜓

𝜕𝑢𝜕𝑣
= 𝑒𝜓 − 𝑒−2𝜓                                    (4.121) 

 

This reduction can also be characterized in a gauge invariant manner 

using the Jordan normal forms for the Higgs fields for details.  

 

4.2.8 Null Planes and Ward Correspondence 

The geometric interpretation of the Lax representation (4.117) is 

the following. For any fixed pair of real numbers (𝜂, 𝜆) the plane 

 

    𝜂 = 𝑣 + 𝑥𝜆 + 𝑢𝜆
2                               (4.122) 

 

is null with respect to the Minkowski metric on 𝑅2,1, and conversely all 

null planes can be put in this form if one allows 𝜆 = ∞. The two vector 

fields  

𝛿0 = 𝜕𝑢 − 𝜆𝜕𝑥 ,        𝛿1 = 𝜕𝑥 − 𝜆𝜕𝑣                  (4.123) 
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span this null plane. Thus the Lax equations (4.117) imply that the 

generalized connection (𝐴, ∅)  is flat on null planes. This underlies the 

twistor approach, where one works in a complexified Minkowski 

space𝑀 = 𝐶3, and interprets  (𝜂 , 𝜆)  as coordinates in a patch of the 

twistor space 𝑇 = 𝑇𝐶𝑃1, with 𝜂 ∈  𝐶 being a coordinate on the fibres and 

𝜆 ∈  𝐶𝑃1  being an affine coordinate on the base. We shall adopt this 

complexified point of view from now on. 

 It is convenient to make use of the spinor formalism based on the 

isomorphism  

𝑇 = 𝑆⨂𝑆,                                       (4.124)   

where  𝑆  is the rank two complex vector bundle (spin bundle) over 𝑀 

and ⊙ is the symmetrized tensor product. The fibre coordinates of this 

bundle are denoted by (𝜋0, 𝜋1) and the sections 𝑀 →  𝑆 are called 

spinors. We shall regard S as a symplectic bundle with an anti-symmetric 

product 

𝑘 ∙ 𝜌 = 𝑘0𝜌1 − 𝑘1𝜌0 = 𝜀(𝑘, 𝜌)                      (4.125) 

on its sections. The constant symplectic form  𝜀 is represented by a matrix 

 

𝜀𝐴𝐵 = (
0 1
−1 0

)                                      (4.126) 

 

This gives an isomorphism between 𝑆 and its dual bundle, and thus can 

be used to ‘rise and lower the indices’ according to 𝑘𝐴 = 𝑘
𝐵𝜀𝐴𝐵, 𝑘

𝐴 =

𝑘𝐵𝜀𝐴𝐵, where 𝜀𝐴𝐵𝜀
𝐴𝐵 is an identity endomorphism. 

 

Rearrange the spacetime coordinates (𝑢, 𝑥, 𝑣) of a displacement vector as 

a symmetric two-spinor 

 

𝜀𝐴𝐵 = (
𝑢 𝑥

2⁄
𝑥
2⁄ 𝑣

)                               (4.127) 

such that the spacetime metric is  

ℎ = −2𝑑𝑥𝐴𝐵𝑑𝑥
𝐴𝐵                         (4.128) 
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The twistor space of  𝑀 is the two-dimensional complex manifold 𝑇 =

𝑇𝐶𝑃1. Points of 𝑇 correspond to null 2-planes in 𝑀 via the incidence 

relation 

𝑥𝐴𝐵𝜋𝐴𝜋𝐵 = 𝜔                                 (4.129) 

 

Here (𝜔 , 𝜋0 ,𝜋1) are homogeneous coordinates on 𝑇 as (𝜔, 𝜋𝐴) ∼

(𝑐2𝑤, 𝑐𝜋𝐴 ), where 𝑐 ∈  𝐶∗. In the affine coordinates 𝜆 ∶=
𝜋0

𝜋1
, 𝜂 ∶=

𝜔 (𝜋)2⁄  equation (4.129) gives (4.128). 

 

  The projective spin space 𝑃(𝑆) is the complex projective line 𝐶𝑃1. 

The homogeneous coordinates are denoted by   𝜋𝐴 = (𝜋0 , 𝜋1  ) , and the 

two-set covering of  𝐶𝑃1  lifts to a covering of the twistor space T: 

 

          𝑈 = {(𝑤, 𝜋𝐴), 𝜋1 ≠ 0} ,      �̃� = {(𝑤, 𝜋𝐴), 𝜋0 ≠ 0}.               (4.130) 

 

The functions  𝜆 = 𝜋0 𝜋1⁄  ,  �̃� = 1 𝜆⁄   are the inhomogeneous coordinates 

in 𝑈 and �̃�, respectively. It then follows that  𝜆 = −𝜋1 𝜋0⁄  . 

 

Fixing (𝑤, 𝜋𝐴)gives a null plane in 𝑀. An alternative interpretation 

of (4.128) is to fix 𝑥𝐴𝐵.This determines was a function of  𝜋𝐴, i.e. a 

section of 10    when factored out by the relation (𝑤, 𝜋𝐴) =

(𝑐2𝑤, 𝑐𝜋𝐴). These are embedded rational curves with self-intersection 

number 2, as infinitesimally perturbed curve 𝜂 +  𝛿𝜂   𝑤𝑖𝑡ℎ  𝛿𝜂 =  𝛿𝑣 −

 𝜆𝛿𝑥 + 𝜆2 𝛿𝑢   generically intersects (4.126) at two points. Two curves 

intersect at one point if the corresponding points in  𝑀 are null separated. 

This defines a conformal structure on 𝑀. 



130 

 

 
The space of holomorphic sections of  𝑇𝐶𝑃1 → 𝐶𝑃1 is 𝑀 = 𝐶3. The real 

spacetime 𝑅2+1 arises as the moduli space of those sections that are 

invariant under the conjugation 

 

𝜏(𝑤, 𝜋𝐴 = (�̅�, �̅�𝐴))                                 (4.131) 

 

which corresponds to real 𝑥𝐴𝐵. The points in 𝑇 fixed by 𝜏 correspond to 

real null planes in 𝑅2,1 . The following result makes the mini-twistors 

worthwhile. 

 

4.2.8 Theorem  

There is a one-to-one correspondence between: 

 

(i)  The gauge equivalence classes of complex solutions to (4.112) in 

the complexified Minkowski space 𝑀 with the gauge group 

𝐺𝐿(𝑛, 𝐶). 

(ii)  Holomorphic rank 𝑛 vector bundles 𝐸 over the twistor space 𝑇 

which are trivial on the holomorphic sections of  𝑇𝐶𝑃1 → 𝐶𝑃1. 

 

Proof. 

Let (𝐴, ∅) be a solution to (4.116). Therefore we can integrate a 

pair of linear PDEs 𝐿0𝑉 = 𝐿1𝑉 = 0, where 𝐿0, 𝐿1  are given by (4.118). 

This assigns an n-dimensional vector space to each null plane  𝑍 in a 

complexified Minkowski space, and so to each point  𝑍 ∈ 𝑇. It is a fibre 

of a holomorphic vector bundle   𝜇: 𝐸 →  T. The bundle 𝐸 is trivial on 
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each section, since we can identify fibres of  𝐸|𝐿𝑃  at 𝑍0, 𝑍1  because 

covariantly constant vector fields at null planes 21, ZZ  coincide at a 

common point   𝑝 ∈ 𝑀. 

 

Conversely, assume that we are given a holomorphic vector bundle  

𝐸  over 𝑇 which is trivial on each section. Since 𝐸|𝐿𝑃 is trivial and 𝐿𝑃 ≅

𝐶𝑃1, the Birkhoff–Grothendieck theorem gives 

 

𝐸 |  𝐿𝑝 = 𝑂  ⨁𝑂………𝐶𝑋 ……⨁𝑂                           (4.132) 

and the space of sections of 𝐸 restricted to 𝐿𝑃 is 𝐶𝑛. This gives us a 

holomorphic rank n vector bundle �̃� over the complexified three-

dimensional Minkowski space. We shall give a concrete method of 

constructing a pair (𝐴, 𝜙) on this bundle which satisfies (4.131). Let us 

cover the twistor space with two open sets 𝑈 and �̂�  as in (4.130).  

Let 

      ℵ ∶  𝜇−1(𝑈) → 𝑈 × 𝐶𝑛,                  ℵ̃ ∶  𝜇−1(�̃�) → �̃� × 𝐶𝑛     (4.133) 

 

be local trivializations of 𝐸, and let 𝐹 = ℵ ̃ ° ℵ ∶ 𝐶𝑛 → 𝐶𝑛 be a 

holomorphic patching matrix for a vector bundle 𝐸 over 𝑇𝐶𝑃1 defined on 

𝑈 ∩ �̂� . Restrict  𝐹  to a section (4.129) where the bundle is trivial, and 

therefore F can be spli: 

 

𝐹 = �̃� 𝐻−1,                                      (4.134) 

 

where the matrices 𝐻 and �̃� are defined on 𝑀 ×  1CP  and are 

holomorphic in 𝜋𝐴 around𝜋𝐴 = 0𝐴 = (1,0) and 𝜋𝐴 = 𝑙𝐴 = (0,1) 

respectively. As a consequence of  𝛿𝐴𝐹 = 0  the splitting matrices satisfy 

 

𝐻−1𝛿𝐴𝐻 = �̃�
−1𝛿𝐴�̃� = 𝜋

𝐵Φ𝐴𝐵                       (4.135) 

 

for some Φ𝐴𝐵(𝑥
𝜇)  which does not depend on 𝜆. This is because the RHS 

and LHS are homogeneous of degree 1 in 𝜋𝐴 and holomorphic around  

𝜆 =  0 and  𝜆 =  ∞, respectively. 

 Decomposing 
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Φ𝐴𝐵 = Φ(𝐴𝐵) + 𝜀𝐴𝐵∅                           
(4.136) 

gives a one-form Φ𝐴𝐵𝑑𝑥
𝐴𝐵

 and a scalar field 𝜙 = (1 2⁄ )𝜀
𝐴𝐵Φ𝐴𝐵 

on the 

complexified  Minkowski space, i.e. 

 

Φ𝐴𝐵 = (
𝐴𝑢 𝐴𝑥 + ∅

𝐴𝑥 − ∅ 𝐴𝑣
)
                            

(4.137) 

The Lax pair (4.116) becomes 

 

   𝐿𝐴  =  𝛿𝐴 + 𝐻
−1𝛿𝐴𝐻                            (4.138) 

where 𝛿𝐴 = 𝜋
𝐵𝜕𝐴𝐵,  so that 

 

𝐿𝐴(𝐻
−1)  =  −𝐻−1(𝛿𝐴𝐻)𝐻

−1 + 𝐻−1(𝛿𝐴𝐻)𝐻
−1 = 0            (4.139) 

and Ψ = 𝐻−1 is a solution to the Lax equations regular around 𝜆 = 0. Let 

us show explicitlythat (4.117) holds. Differentiating (4.135) with respect 

to  𝛿𝐴 yields 

 

𝛿𝐴(H−1δAH) = − (H
−1𝛿𝐴𝐻)(H−1δAH)                  (4.140) 

which holds for all  𝜋𝐴 if  

𝐷𝐴(𝐶Φ𝐵
𝐴) = 0,                               (4.141) 

 

where 𝐷𝐴𝐶 = 𝜕𝐴𝐶 + Φ𝐴𝐶. This is the spinor form of the Yang–Mills–

Higgs system (3.112).  

• To single out the Euclidean reality conditions leading to non-abelian 

monopoles (4.111) on 𝑅3  with the gauge group SU(n), the vector bundle 

𝐸 must be compatible with the involution. This comes down to  𝑑𝑒𝑡𝐹 =

 1  and 

𝐹∗(𝑍) = 𝐹(𝜏(𝑍))                                    (4.142) 

where  𝑍 ∈ 𝑇 and * denotes the Hermitian conjugation. 

•  To single out the Lorentzian reality conditions, the bundle must be 

invariant under the involution (4.131). Below we shall demonstrate 

how the gauge choices leading to the integrable chiral model 

(4.120) can be made at the twistor level. 

Let 
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ℎ = 𝐻(𝑥𝜇 ,  𝜋𝐴 = 𝑂𝐴) ,             ℎ̃ = �̃�(𝑥𝜇 , 𝜋𝐴 = 𝑙𝐴)      (4.143) 

so that 

 

                    Φ𝐴0 = ℎ
−1 𝜕𝐴0 ℎ ,                Φ𝐴1 = ℎ̃

−1 𝜕𝐴1 ℎ̃           (4.144) 

 

The splitting matrices are defined up to a multiple by an inverse of a non-

singular matrix 𝑔 = 𝑔(𝑥𝜇) independent of  𝜋𝐴 

 

          𝐻 = 𝐻𝑔−1 ,                                  �̃� = �̃�𝑔−1                  (4.145) 

We choose g such that ℎ ̃ = 1 so 

 

Φ𝐴1 = 𝑙
𝐴 Φ𝐴𝐵  = 0                                    (4.146) 

and 

Φ𝐴𝐵 = −𝑙𝐵𝑂
𝐶ℎ−1 𝜕𝐴𝐶  ℎ                              (4.147) 

i.e. 

𝐴𝑥 + ∅ =  𝐴𝑣 = 0 

0 VXAB AA 
                            (4.148) 

This is the Ward gauge with 𝐽(𝑥𝜇) = ℎ. In this gauge, the system 

(3.141) reduces to 

𝜕1
𝐴Φ𝐴0 = 0                                        (4.149) 

 

which is (4.120). The solution is given by 

 

𝐽 (𝑥𝜇) = Ψ−1 (𝑥𝜇 , 𝜆 = 0)                             (4.150) 

where Ψ =  𝐻−1 is a solution to the Lax pair. 

 

• In the abelian case 𝑛 =  1 the patching matrix becomes a function 

defined on the intersection of two open sets, and we can set 𝐹 =  𝑒𝑥𝑝(𝑓 ) 

for some 𝑓. The nonlinear splitting (4.145) reduces to the additive 
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splitting of  𝑓 which can be carried out explicitly using the Cauchy 

integral formula. The Higgs field is now a function that satisfies thewave 

equation and is given by the formula 

 

𝜙 = ∫
𝜕𝑓

𝜕𝑤
 𝜌 . 𝑑𝜌

Γ                                  
(4.151) 

where Γ is a real contour in a rational curve 𝑤 = 𝑥𝐴𝐵𝜋𝐴𝜋𝐵. If the 

Euclidean reality conditions are chosen, we recover the Whittaker 

formula (4.107). 
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CHAPTER FIVE 

Applications of Twistor Space in Six Dimensions  

5.1 Spinors in Six Dimensions 

In the following, we shall be working with the complexification of 

flat six-dimensional space-time M6 ≔ C6. Notice that reality conditions 

leading to real slices of M6 with Minkowski or split signature can be 

imposed if desired.  

 

5.1.1 The Spin Bundle 

The spin bundle on M6  is of rank eight and decomposes into the 

direct sum S⊕ S̃  of the two rank-4 sub bundles of anti-chiral spinors, S, 

and chiral spinors, S̃. There is a natural isomorphism identifying S and S̃ 

with the duals S̃∨ and S∨  (for details; this identification basically works 

via an automorphism of the Clifford algebra corresponding to charge 

conjugation). Therefore, we may exclusively work with, say, S and S∨. 

 

 We shall label the corresponding spinors by upper and lower 

capital Latin letters from the beginning of the alphabet, e.g. ψA for a 

section of S and ψA for a section of  S∨, with A, B,… . = 1,… , 4. 

 

5.1.2 The Tangent Bundle 

We may identify the tangent bundle TM6 with the anti-symmetric 

tensor product of the chiral spinor bundle with itself via 

 

                                  TM6 ≅ S ∧ S                                             (5.1) 

 

∂M ≔
∂

∂xM

σ̃∗
↔∂AB ≔

∂

∂xAB
             (5.2) 

 

Here, we coordinatised M6 by xM, for M,N, . . . =  1, . . . , 6 and used the 

identification 

 

σ̃ ∶ x = xM → σ̃(x) = xAB                                (5.3)  

 

  

with  
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   xAB = σ̃M
ABxM⟺ xM =

1

4
σAB
M xAB                         (5.4) 

 

where  σ̃M
AB,  σAB

M  are the six-dimensional sigma-matrices. 

 

The induced linear mapping  σ̃∗ is explicitly given as  

 

              ∂AB =
1

4
σAB
M ∂M                                         (5.5) 

 

and the (flat) metric ηMN on M6 can be identified with the Levi-Civita 

symbol  
1

2
εABCD in spinor notation. Hence, 

 

                                σAB
M =

1

2
εABCDσ̃

MCD                                   (5.6) 

 

And we can raise and lower indices according to: 

 

∂AB =
1

2
εABCD ∂

CD      ⟺    ∂AB =
1

2
εABCD ∂CD           (5.7) 

 

For any two six-vectors  p =  (pM) and q =  (qM), we shall write: 

 

p · q ∶=  pMq
M  =

1

4
 pABq

AB =
1

8
εABCDp

ABqCD,             (5.8) 

 

and we have 

p2 ∶=  p · p = √det  pAB.                                  (5.9) 

 

5.2. Zero Rest Mass Fields in Six Dimensions: 

Next we wish to discuss zero-rest-mass fields in the six-

dimensional spinor-helicity formalism. 

  

Let us start by considering a momentum six-vector  p = (pM). If 

we impose the null-condition  p2 = 0, then we have  

 

det 𝑝𝐴𝐵 = 0 = det p
AB.                                    (5.10) 

These equations are solved most generally by: 
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PAB = kAakBbε
ab   and          pAB = k̃Aȧk̃Bḃεȧḃ       (5.11) 

 

with a, b, . . . , ȧ , ḃ, . . . =  1, 2  and  εab = −εba and εȧḃ = −εbȧ̇.  

 

 We shall refer to such a momentum as null-momentum. Moreover, 

transformations of the form kAa → Ma
bkAb and k̃Aȧ → M̃

ḃ
ȧk̃Aḃ  with 

detM  =  1 = det M̃  will leave p  invariant, which shows that the 

indices  a, ȧ, . ..  are little group indices. The little group of (complex) null-

vectors in six dimensions is therefore  𝖲𝖫 (2, ℂ) × 𝖲𝖫 (2, ℂ)̃ .  

 

Notice that kAak̃
Aḃ = 0 since pAB =

1

2
εABCDp

CD, which, in turn, 

shows that kAa and k̃Aḃ are not independent. Notice also that kAa has 4 ×

2 = 8 components, but three of them can be fixed by little group 

transformations. 

 

 Thus, kAa has indeed exactly the five independent components 

needed to describe the (five-dimensional) null-cone in six dimensions. 

 

Fields form irreducible representations of the Lorentz group which 

are induced from representations of the little group. In six dimensions, the 

spin label of fields therefore has to be generalized to a pair of integers, 

labelling the irreducible representations of the little group 𝖲𝖫 (2, ℂ) ×

𝖲𝖫 (2, ℂ)̃ .  

 

As an example of zero-rest-mass fields, let us consider the fields in 

the 𝒩 =  (2, 0) tensor multiplet. This multiplet is a chiral multiplet and 

hence the fields transform trivially under the 𝖲𝖫 (2, ℂ)̃  subgroup.  

 

Amongst these fields, there is a self-dual three-form H =  dB, 

which transforms as the (5.29) of the little group. 

  

In spinor notation, H has components HAB = ∂C(ABB)
C, where BB

C 

is trace-less and denotes the components of a two-form potential B in 
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spinor notation. In addition, we have four Weyl spinors ψA
I  in the  (5. 1) 

and five scalars ϕIJ in the trivial representation  (1, 1)  of the little group.  

 

Notice that the a priori six components of ϕIJ = −ϕJI are reduced 

to five by the condition ϕIJΩIJ = 0, where I, J, . . . =  1, . . . , 4 and ΩIJ is an 

invariant form of the underlying R-symmetry.  

 

In the following, we shall work with complex fields. The zero-rest-

mass field equations (i.e. the free equations of motion) for the fields in 

the tensor multiplet read as: 

 

HAB = 0  with  ∂ACHCB = 0,      ∂ABψB = 0,     □ϕ = 0      (5.12) 

 

where we suppressed the R-symmetry indices. 

 

 Notice that the second equation is the Bianchi identity (which, of 

course, is equivalent to the field equation for self-dual three forms). The 

corresponding plane waves are given by the expressions (i ≔ √−1  ) 

 

HAB ab = kA(akBb)e
ix.p ,   ψAa = kAae

ix.p  and  ϕ = eix.p      (5.13) 

 

This follows from straightforward differentiation. Here, the 

representations of the little group formed by the fields become explicit. 

 

 Furthermore, since 

HAB = ∂C(ABB)
C
                                    (5.14) 

 

 we can express the plane waves of HAB in terms of the plane 

waves of the potential two-form BB
A. To this end, we note that in spinor 

notation, gauge transformations of BB
A are mediated by gauge parameters 

 

 ΛAB = Λ[AB]  via  BB
A → BB

A + ∂ACΛCB − ∂BCΛ
CA.               (5.15) 

 

We shall choose Lorenz gauge, which in spinor notation reads as 

  

∂[ABB]
C = 0 = ∂C[ABC

B].                                (5.16) 
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The residual gauge transformations are given by gauge parameters 

that obey ∂ ∙ A = 0. Let us now choose reference spinors μAa and define 

the null-momentum 

 

 qAB ≔ μAaμBbε
ab so that p ·  q ≠  0.                       (5.17) 

 

Then the plane waves of the potential two-form BB
A in Lorenz 

gauge are given by: 

 

BB
A
ab
= k(a

A kBb)e
ix∙p    with ka

A ≔ −2i
qABkBa

p∙q
             (5.18) 

 

Clearly, BB
A is trace-less and one can check that ∂C(ABB)

C
 yields the 

components for HAB𝐻𝐴𝐵, given in (5.13).Since 

  

∂CABC
B = 0                                        (5.19) 

we also have 

 

HAB = ∂C(ABC
B) = 0                                 (5.20) 

 

  Which implies that BB
A does indeed yield a self-dual field strength. 

Furthermore, the choice of μAa is irrelevant since changes in μAa merely 

correspond to (residual) gauge transformations of BB
A, a fact that is 

already familiar from four dimensions. One may analyze other spin fields 

in a very similar way and we shall present a few more comments in 

Remark 5.1 below. 

  

We shall mostly be interested in chiral zero-rest-mass fields, i.e. 

fields forming representations (2h + 1, 1), h ∈
1

2
ℕ0, of the little group 

𝖲𝖫 (2, ℂ) × 𝖲𝖫 (2, ℂ)̃ . These fields will carry 2h symmetrized spinor 

indices. Specifically, using the conventions: 

 

[k] ≔⊗k det S⋁  ,   [−k] ≔ [k]∨     and    [0] ≔ [k]  ⊗ [−k]   for k ∈ ℕ   

, S[±k] ≔ S⊗O
M6
[±k] for some Abelian sheaf  S on M6.     (5.21) 
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We shall denote the sheaf of chiral zero-rest-mass fields on M6 by 𝒵h,  

              𝒵h =

{
ker{∂AB: (⊙2h S∨)[1] → (⊙2h−1 S∨⊗O

M6
S)0[2]}     for  h ≥

1

2
,

ker{□ ≔
1

4
∂AB ∂AB ∶ [1] → [2]}                                         for   h = 0,

   

(5.22) 

 

Here, the subscript zero refers to the totally trace-less part. The factors 

[±k] are referred to as conformal weights, as they render the zero-rest-

mass field equations conformably invariant.  

 

For the discussion of conformal weights in the four-dimensional 

setting. 

 

Remark  

Recall that there is a potential formulation of zero-rest-mass fields in four 

dimensions. This formulation generalizes to six dimensions, as we shall 

demonstrate now. Consider an h ∈  
1

2
ℕ∗ from the potential fields 

 

BA
A1…..A2h−1 = BA

(A1…..A2h−1) ∈ H0(M6, (⊙2h−1 S⊗O
M6
S⋁)0[1]  (5.23) 

 

We derive a field strength HA1….A2s ∈ H
0(U,  ⊙2h S∨)) according 

to 

 

HA1….A2h ≔ ∂(A1B1 …∂A2h   1 B2h       1BA2h)
B1….B2h−1            (5.24) 

 

The equations 

 

HA1….A2h ≔ ∂A(A1BA
A2….A2h) = 0      (5.25) 

 

Then imply that 

∂AA1HA1….A2h = 0         (5.26) 

 

Furthermore, the pair of spinors (HA1….A2h ,H
A1….A2h) is invariant under 

gauge transformations of the form 
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BB
AA1….A2h−   2 → BB

AA1….A2h−   2 + [∂CBΛ
C(AA1….A2h−   2) − ∂C(AΛCB

A1….A2h −  2]
0
     

              (5.27) 

 

Where the subscript zero refers again to the totally trace-less part and 

ΛAB
A1…A2h  −   2 = Λ[AB]

(A1…A2h  −   2)  is totally trace-less itself. 

 

Note 

 the traces of [∂CBΛ
C(AA1…..A2h−   2) − ∂C(AΛCB

A1…A2h−2)] always drop 

out of the above definition of  (HA1….A2h ,H
A1….A2h). Altogether, the 

spinor field HA1….A2h can therefore be regarded as a section of the sheaf 

𝒵h.  

 

5.3 Twistor Space of Six-Dimensional Space-Time 

In this section, we shall review a particular twistor space associated 

with 𝑀6 that is a very natural generalization of known twistor spaces and 

suitable for the description of chiral theories in six dimensions. Here we 

shall present a detailed discussion of its constructions from an alternative 

point of view. 

 

5.3.1 Remark. 

We shall always be working with locally free sheaves and therefore 

we shall not make a notational distinction between vector bundles and 

their corresponding sheaves of sections. We shall switch between the two 

notions freely depending on context. 

 

5.3.2 Twistor Space From Space-Time 

Let us consider the projectivisation ℙ(S∨) of the dual anti-chiral 

spin bundle S∨. 

 

 Since S∨ is of rank four, ℙ(S∨)  → M6 is a ℙ3-bundle over M6. 

Hence, the projectivisation ℙ(S∨) is a nine-dimensional complex 

manifold  F9 ≅ ℂ6 × ℙ3, the correspondence space.  

 

We take 

(x, λ)  =  (xAB, λA)                                  (5.28) 
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as coordinates on F9, where λA are homogeneous coordinates on ℙ3. 

 

Consider now the following vector fields on F9: 

 

VA = λB
∂

∂xAB
                  (5.29) 

5.3.3 Note 

 λAV
A = 0  because of the anti-symmetry of the spinor indices in 

the partial derivative. These vector fields define an integrable rank-3 

distribution on F9, which we call twistor distribution. Therefore, we have 

a foliation of F9 by three-dimensional complex manifolds.  

 

The resulting quotient will be twistor space, a six-dimensional manifold 

denoted by ℙ6. We have thus established the following double fibration: 

 

F9 

π1      π2 

P6    M6 

(5.30) 

Let (z, λ)  =  (𝓏A, λA) be homogeneous coordinates on P7 and assume 

that λA ≠  0. This effectively means that we are working on the open 

subset 

ℙ0
7 ≔ ℙ7\ℙ3              (5.31) 

 

of ℙ7, where the removed ℙ3 is given by 𝓏A ≠ 0 and λA = 0.  

 

In the double fibration (5.30), the projection π2 is the trivial projection 

and 

  

π1 ∶  (x
AB, λA) → (𝓏

A, λA) = (x
AB, λB) = (x

AB λB, λA).       (5.32) 

 

Thus, P6 forms a quadric hypersurface inside 𝑃0
7 , which is given by  the 

equation 

𝓏AλA = 0           (5.33) 

 

We shall refer to the relation 
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𝓏A = xAB λB          (5.34) 

 

as incidence relation, because it is a direct generalisation of Penrose’s 

incidence relation in four dimensions. 

5.4 Geometric Twistor Correspondence. 

The double fibration (5.30) shows that points in either of the base 

spaces M6 and P6 correspond to subspaces of the other base space: 

 

For any point x ∈ M6, the corresponding manifold                      x̂ ≔

π1(π2
−1(x)) ↪ P6 is a three dimensional complex manifold bi-

holomorphic to ℙ3 as follows from (5.34). 

 

Conversely, for any fixed p = (𝓏, λ) ∈ P6, the most general solution to 

the incidence relation (5.34) is given by 

 

xAB = x0
AB + εABCDμCλD,                          (5.35) 

 

where x0
AB is a particular solution and  μA is arbitrary. This defines a 

totally null-plane π2(π1
−1(p)) in M6.  

 

This plane is three-dimensional because of the freedom in the choice of 

μA given by the shifts μA → μA + ϱλA for ϱ ∈ ℂ which do not alter the 

solution (5.35). 

 

Altogether, points in space-time correspond to complex projective three-

spaces in twistor space while points in twistor space correspond to totally 

null three-planes in space-time. 

 

Thus, twistor space parametrises all totally null three-planes of space-

time. 

 

5.5 Twistor Space as A normal Bundle. 

The above considerations imply that P6 can be viewed as a 

holomorphic vector bundle over ℙ3, where the global holomorphic 

sections are given by the incidence relation (5.34). In fact, (5.34) shows 

that P6 is a rank-3 subbundle of the bundle 𝒪ℙ3(1) ⊗ ℂ4 → ℙ3, whose 
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total space is ℙ0
7. Here and in the following, 𝒪ℙ3(1) denotes the dual 

tautological bundle over ℙ3. 

 

To identify the sub bundle P6, let us denote by NY|X the normal bundle of 

some complex sub manifold Y of a complex manifold  X, i ∶  Y ↪   X. This 

bundle is defined by the following short exact sequence: 

 

0 → TY → i
∗TX → NY|X → 0                    (5.36) 

 

Let us now specialise to Y =  ℙ3 and X =  ℙ7 with coordinates (𝓏A, λA) 

on ℙ7 as before. 

 

If ℙ3 ↪ ℙ7 is given by 𝓏A = 0  and  λA ≠ 0, then 

 

 Tℙ3 = 〈
∂

∂λA
〉                                          (5.37) 

 And 

  

 Tℙ7 = 〈
∂

∂𝓏A
 ,

∂

∂λA
〉.                                         (5.38) 

 

The normal bundle of Nℙ3|ℙ7 of  ℙ3 inside ℙ7  is given by 

 

0 → Tℙ3 → i
∗Tℙ7 → Nℙ3|ℙ7 → 0                             (5.39a) 

 

which implies that 

                Nℙ3|ℙ7 ≅ 𝒪ℙ3(1)⊗ ℂ4,                   (5.39b) 

 

Since the coefficient functions of the basis vector fields  
∂

∂𝓏A
  and 

∂

∂λA
  are 

linear in the coordinates. Hence, the 𝓏A can be regarded as fibre 

coordinates of  Nℙ3|ℙ7, while the λA are base coordinates. Using these 

results, we find that our twistor space P6 fits into the short exact sequence 

 

0 → P6 → Nℙ3|ℙ7
k 
→𝒪ℙ3(2) → 0 ,               (5.40a) 
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Where 

k ∶ (𝓏A, λA) → 𝓏
A λA.                    (5.40b) 

 

Note 

   The sequence (5.40a) can be regarded as an alternative definition 

of twistor space. 

 

Again, we see that P6 is a rank-3 subbundle of 𝒪ℙ3(1)⊗ ℂ4 → ℙ3 as 

stated earlier.  

 

It also shows that P6 is the normal bundle of ℙ3 inside the quadric 

hypersurface ℚ6 ↪ ℙ7 given by the zero locus 

 

 𝓏A λA = 0.                                     (5.41) 

 

Moreover, notice that the open subset ℚ6 ∩ ℙ0
7 can be identified with  P6. 

 

5.6 Space-Time From Twistor Space 

Next we wish to address the problem of how to obtain space-time 

𝑀6, and in particular the factorisation (5.2) of the tangent bundle, from 

twistor space using (5.40a). To this end, consider the long exact sequence 

of cohomology groups induced by the short exact sequence (5.40a),  

 

  0 → H0(ℙ3, P6) → H0(ℙ3, Nℙ3|ℙ7)
k 
→H0(ℙ3, 𝒪ℙ3(2)) → 

→ H1(ℙ3, P6) → H1(ℙ3, Nℙ3|ℙ7) → H
1(ℙ3, 𝒪ℙ3(2)) → ⋯.   (5.42) 

 

where we have slightly abused notation by again using the letter 𝑘. To 

compute these cohomology groups, we recall a special case of the Borel–

Weil–Bott theorem: 

 

5.6.1 Lemma: (Bott’s Rule) 

 Let V be an n-dimensional complex vector space. Consider its 

projectivisation ℙ(V) together with the hyperplane bundle 𝒪ℙ(V)(1). 

Furthermore, set 

 

𝒪ℙ(V)(k) ≔⊗
k 𝒪ℙ(V)(1), 𝒪ℙ(V)(−k) ≔ 𝒪ℙ(V) 

∨ (k)            (5.44) 
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And 

𝒪ℙ(V)(0) ≔ 𝒪ℙ(V) for k ∈ ℕ .                         (5.45) 

 

Then 

 

Hq (ℙ(V), 𝒪ℙ(V)(k)) ≅ {
⊙k V∨                                 for q = 0 𝔈 k ≥ 0

⊙−k−n V⊗ det V       for q = n − 1
0                                     otherwise ,     

𝔈k ≤ −n 

(5.46) 

 

where det  V ≡ ΛnV. From Bott’s rule for V = ℂ4, we find that 

 

 H1(ℙ3, Nℙ3|ℙ7) = 0 = H
1(ℙ3, 𝒪ℙ3(2))                  (5.47) 

  

 and furthermore 

H1(ℙ3, P6) = 0,                             (5.48) 

 

Since k is surjective. Therefore, the long exact sequence of cohomology 

groups (5.42) reduces to 

 

0 → H0(ℙ3, P6) → H0(ℙ3, Nℙ3|ℙ7)
k 
→H0(ℙ3, 𝒪ℙ3(2)) → 0    (5.49) 

 

By applying Bott’s rule again, we deduce from the latter sequence that 

 

dimℂH
0 (ℙ3, P6)  =  6                             (5.50) 

 

Because of (5.43) and (5.45), we may now apply Kodaira’s theorem of 

relative deformation theory to conclude that there is a six-dimensional 

family of deformations of ℙ3 inside the quadric hypersurface ℚ6 ↪ ℙ7. 

We shall denote this family by M6 and the individual deformation of ℙ3 

labelled by x ∈ M6 as  x̂. 

 

Next we define the correspondence space F9 according to 

 

F9 ≔ {(p, x) ∈ P6 ×M6|p ∈ x̂},                (5.51) 
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5.6.2 Note  

  F9 is fibred over both P6 and M6. The typical fibres of  π2: F
9 →

P6 are complex projective three-spaces ℙ3. Hence, we have again 

established a double fibration of the form (5.30), where the fibres of F9 →

P6 are three-dimensional complex submanifolds of  M6. 

 

On FF99, we may consider the relative tangent bundle, denoted by TTππ11, 

along the fibration ππ11::  FF
99 →→ PP66. It is of rank three and defined by 

 

0 → Tπ1 → TF9 → π1
∗Tℙ7 → 0.                  (5.52) 

 

By construction, the vector fields VA given in (5.29) annihilate             

𝓏A = xABλB  and therefore, Tπ1 can be identified with the twistor 

distribution generated by VA, cf. (5.29). Hence, sections μA of Tπ1 are 

defined up to shifts by terms proportional to λA (recall that  λAV
A = 0). 

Then we define a bundle  N on F9 by 

 

0 →  Tπ1  →  π2 
∗ T M6  →  N →  0 

μA  →  ε
ABCDμCλD                                 (5.53) 

ξAB  →  ξABλB  

 

Clearly, the rank of N is three and the restriction of N to the fibre π2
−1(𝑥) 

of F9 → P6 for x ∈ M6 is isomorphic to the pull-back π1
∗NX̂|P6 of the 

normal bundle Nx̂|P6  of  x̂ ↪ P6. Thus, N can be identified with π1
∗Nx̂|P6. 

 

These considerations allow us to reconstruct the tangent bundle T M6 from 

twistor space. In fact, we may apply the direct image functor (with regard 

to π2) to the short exact sequence (5.53). Since both direct images π2∗Tπ1 

and π2∗
1 Tπ1vanish, we obtain 

 

T M6 ≅ π2∗π1
∗Nx̂|P6      ⇔     (T M6)x ≅ H

0(x̂, Nx̂|P6).        (5.54) 

 

Elements of H0(x̂, Nx̂|P6) are given in terms of elements of H0(ℙ3, P6) by 

allowing the latter to depend on x. One can check that this dependence is 

holomorphic in an open neighbourhood of x. 
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What remains to be understood is how the explicit factorisation (5.29) of 

the tangent bundle emerges from the above construction and in particular 

from H0(ℙ3, P6). To show this, we consider the Euler sequence for ℙ3, 

 

0 → 𝒪ℙ3 → 𝒪ℙ3(1) ⊗ ℂ4 → Tℙ3 → 0.            (5.55) 

 

Upon dualising this sequence and twisting by 𝒪ℙ3(2), we  

 

0 → Ωℙ3
1 𝒪ℙ3(2)⊗→ 𝒪ℙ3(1) ⊗ ℂ4 → 𝒪ℙ3(2) → 0      (5.56) 

 

By comparing with (5.40a), we may conclude that 

 

P6 ≅ Ω1(2)  with   Ωp(k) ∶  Ω
ℙ3
p
⊗𝒪ℙ3(k),                  (5.57) 

 

Thus, elements of  H0(ℙ3, P6)  can also be viewed as elements of 

H0(ℙ3, Ω1(2)). The latter are of the form ω = ωABλAdλB with        

ωAB = −ωBA. Since 

 

Sx ≅ H
0(x̂, 𝒪x̂(1))                   (5.58)  

 

via sA → sAλA for sA ∈ Sx , we indeed find the factorization         

(T M6)x ≅ Sx ∧ Sx. This concludes our construction of space-time from 

twistor space. 

 

5.6.2 Remark  

Notice that an identification of the form (5.29) amounts to 

choosing a (holomorphic) conformal structure. This can be seen as 

follows: 

 

 Let X be a six-dimensional complex spin manifold. The first definition of 

a conformal structure on X (and perhaps the standard one) assumes an 

equivalence class [g], the conformal class, of holomorphic metrics g on X. 

  

Two given metrics g and g′ are called equivalent if 

 

 g′ =  γ2g                                        (5.59) 
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For some nowhere vanishing holomorphic function γ. Thus, a conformal 

structure is a line subbundle L in TX
∨⊙TX

∨. 

 

An alternative definition of a conformal structure assumes a factorisation 

of the form TX ≅ S ∧ S, where S is the rank-4 chiral spin bundle.  

This isomorphism in turn gives (canonically) the line subbundle 

det S∨ ≡ Λ4S∨  in TX
∨  ⊙ TX

∨ since upon using splitting principle 

arguments, one finds the identification 

 

 KX ≔ detTX
∨ ≅ ⊗3 det S∨                                     (5.60) 

 

for the canonical bundle KX. Hence, det S∨ can be identified with the line 

bundle L from above, and the metric g is then of the form γ2εABCD. 

  

5.7 Penrose Transform in Six Dimensions 

Having defined twistor space, we would like to understand 

differentially constrained data on space-time in terms of differentially 

unconstrained data on twistor space. Specifically, we are interested in the 

chiral fields introduced in Section 5.2 and prove the following theorem: 

 

5.7.1 Theorem  

Consider the double fibration (5.30). Let U ⊂ M6 be open and 

convex and set U′ ∶=  π2
−1(U) ⊂ F9 and Û ≔ π1(π2

−1(U)) ⊂ P6, 

respectively. For h ∈
1

2
ℕ0, there is a canonical isomorphism  

 

𝒫: H3 (Û, 𝒪Û(−2h − 4))  →  H
0(U, 𝓏h),         (4.1) 

 

Where 𝓏h is the sheaf of chiral zero-rest-mass fields defined in (5.22). 

This transformation is called the Penrose transform. 

5.8 Cohomological Considerations 

5.8.1Relative de Rham Complex 

 The starting point of our considerations is the double fibration 

(5.30). As a first tool in proving the Penrose transform, we introduce the 

relative differential forms Ωπ1
p

, i.e. the differential p-forms along the 

fibres of the fibration π1: F
9  → P6. 
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We have already introduced the corresponding relative tangent bundle in 

(5.52). Simply dualising this sequence, we obtain the definition of the 

sheaf of relative one-forms from 

 

0 → π1
∗ΩP6
1 →  ΩF9

1  →  Ωπ1
1  →   0.              (5.61) 

 

Recall from our previous discussion that in our parametrisation, sections 

μA of the relative tangent bundle Tπ1 are defined up to shifts by terms 

proportional to λA.  

 

This, in turn, induces the condition  ωAλA = 0 on sections ωA of  Ωπ1
1 . 

We shall come back to this point when discussing the direct images of  

Ωπ1
1 . 

 

In general, we introduce the relative p-forms Ωπ1
p

 on F9 with respect to 

the fibration π1: F
9 → P6 according to  

 

0 → π1
∗ΩP6
1 ∧  Ω

F9
p−1
 →  Ω

F9
p
 → Ωπ1

p
→   0             (5.62) 

 

Thus, relative p-forms have components only along the fibres of   

π1: F
9 → P6 (i.e. any contraction with a vector field which is a section of 

π1
∗TP6 vanishes). The coefficient functions in local coordinates, however, 

depend on both the base and the fibre coordinates. Note that the 

maximum value of p here is three.  

 

If we let Prπ1: ΩF9
p
 → Ωπ1

p
 be the quotient mapping, we can define the 

relative exterior derivative dπ1 by setting 

 

dπ1 ≔ Prπ1 ∘ d ∶  Ωπ1
p
→ Ωπ1

p+1
           (5.63) 

 

Where d is the usual exterior derivative on F9. 

 

 In local coordinates (xAB, λA) on F9, the relative exterior 

derivative can be presented in terms of the vector fields (5.29). 
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Next, observe that the relative differential dπ1 induces the relative de 

Rham complex. 

 

This complex is given in terms of an injective resolution of the 

topological inverse π1
−1𝒪P6 of  𝒪P6 on the correspondence space  F9: 

 

0 →  π1
−1𝒪P6  →  𝒪F9  

dπ1
→  Ωπ1

1  
dπ1
→  Ωπ1

2  
dπ1
→  Ωπ1

3  →  0.     (5.64) 

 

A natural question is now if the sheaves Ωπ1
p

 have an interpretation in 

terms of certain pull-back sheaves from space-time and twistor space. 

 

 5.8.2 Note  

 The vectors fields (5.29) are given by  

 

                                           VA =
1

2
εABCDλB ∂CD                              (5.65) 

 

where ∂AB are the vector fields spanning TM6. 

 

In terms of the  VA, the map dπ1:  𝒪F9  → Ωπ1
1  reads explicitly as 

 

VA: f →  ωA = VAf =  
1

2
εABCDλB ∂CDf,          f ∈  𝒪F9.             (5.66) 

 

This shows that ωA = VAf is a section of 

π2
∗(det S∨  ⨂ 𝒪

M6
S)⨂ 𝒪

F9
π1
∗  𝒪P6(1). 

 

Clearly, it is not the most general section of this sheaf, since we have 

 

  λAω
A = λAV

Af = 0                                 (5.67) 

 

 see also our comments given below (5.62). For a general section sA of 

π2
∗(det S∨  ⨂ 𝒪

M6
S)⨂ 𝒪

F9
π1
∗  𝒪P6(1), the map λA ∶  s

A → sAλA gives a 

section of π2
∗ det S∨  ⨂ 𝒪

F9
π1
∗  𝒪P6(2)  and its kernel gives Ωπ1

1 . 

Altogether, we conclude that Ωπ1
1 fits into the following short exact 

sequence: 
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0 →  Ωπ1
1 → π2

∗(det S∨  ⨂ 𝒪
M6
S)⨂ 𝒪

F9
π1
∗  𝒪P6(1)  → 

→ π2
∗ det S∨  ⨂ 𝒪

F9
π1
∗  𝒪P6(2) →  0             (5.68) 

 

Using the notation (5.21), we then obtain the following proposition: 

 

5.8.3 Lemma  

 The sheaves appearing in the relative de Rham sequence (4.5) can 

be canonically identified as follows. With Ωπ1
p (k) ≔ Ωπ1

p
⨂ 𝒪

F9
π1
∗  𝒪P6(k), 

we have 

 

0 → Ωπ1
p
→ π2

∗(ΛpS)[p]⨂ 𝒪
F9
π1
∗  𝒪P6(p)  →  π2

∗ [1]⨂ 𝒪
F9
Ωπ1
p−1
(2)  →  0 

(5.69) 

Proof: 

 Using the fact that short exact sequences of the form 0 → ε →

ℱ → ℒ → 0, where ℒ is the sheaf of sections of some line bundle, always 

induce 0 → Λpℰ → Λpℱ → Λp−1ℰ⨂ℒ → 0, the sequence (5.68) 

immediately leads to (5.69).  

 

Finally, we point out that the relative de Rham sequence (5.64) has a 

natural extension via twisting by a holomorphic vector bundle. 

Specifically, let E → P6 be a holomorphic vector bundle over P6  and 

consider the pull-back bundle π1
∗E over the correspondence space F9. We 

may tensor (5.64) by π1
−1𝒪P6(E), which is the sheaf of sections of π1

∗E 

that are constant along π1: F
9 → P6. Because 𝒪F9(π1

∗E) ≅ π1
∗  𝒪P6(E) and 

 𝒪F9⨂π1−1𝒪P6
π1
−1𝒪P6(E) are canonically isomorphic, we find 

 

0 → π1
−1𝒪P6(E) → Ωπ1

0 (E)
dπ1
→ … .

dπ1
→ Ωπ1

3 (E) → 0,           (5.70a) 

 

where we have defined 

 

Ωπ1
0 (E) ≔ 𝒪F9(π1

∗E) and  Ωπ1
p (E) ≔ Ωπ1

p
⨂𝒪

F9
𝒪F9(π1

∗E),     (5.70b) 
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5.8.4 Direct Image Sheaves. 

 The next important ingredient for our subsequent discussion isthe 

direct images of Ωπ1
p
(E) with respect to the fibration π2: F

9 → P6 for the 

special case E =  𝒪P6(k), k ∈ ℤ . To compute those, we shall make use 

of the following lemma: 

5.8.5 Lemma  

 Let V be a four-dimensional complex vector space together with 

its projectivisation ℙ(V ). Using the shorthand notations Ωp(k) ∶

  Ωℙ(V )
p

⨂𝒪ℙ(V ) (k) and  Ω0(k) ≔ 𝒪ℙ(V )(k), we have the following list 

of sheaf cohomology groups: 

 

Hq(ℙ(V ), Ω0(k)) ≅ {
⊙k V⋁                             for   q = 0  𝔈  k ≥ 0

⊙−k−4 V⨂ det V        for q = 3 𝔈 k ≤ −4  
0                                                         otherwise

 

(5.71a) 

 

Hq(ℙ(V ), Ω1(k)) ≅

{
 
 
 
 

 
 
 
 [

⊙k−1 V⨂V

⊙k V
]

⋁

                   for   q = 0  𝔈  k ≥ 2

ℂ                                           for   q = 1  𝔈  k = 0 

 V⋁⨂  det V                             for   q = 3  𝔈  k = −3  

[
⊙−k−3 V⋁⨂V

⊙−k−4 V⋁
]

⋁

⨂ det V         for   q = 3  𝔈  k < −3       

0                                             otherwise,                    

 

(5.71b)   

 

Hq(ℙ(V ), Ω2(k)) ≅

{
 
 
 

 
 
 
V⨂ det  V⋁                                            for   q = 0  𝔈  k = 3,

⊙k−3 V⋁⨂V

⊙k−4 V⋁
⨂det  V⋁                   for   q = 0  𝔈  k > 3,

ℂ                                                          for   q = 2  𝔈  k = 0,

⊙−k−1 V⨂V

⊙−k V
                                       for   q = 3  𝔈  k ≤ −2,

0                                                        otherwise,                 

 

(5.71c) 

 

 

Hq(ℙ(V ), Ω3(k)) ≅ {
⊙−k−4 V∨⨂ det V∨                 for   q = 0  𝔈  k ≥ 4  

⊙−k V                                        for   q = 3  𝔈  k ≤ 0 
0                                           otherwise              
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(5.71d) 

 

Notice that here, we are essentially computing the Dolbeault cohomology 

groups H
∂̅

p,q
(ℙ3, 𝒪ℙ3(k)) of the complex projective three-space ℙ3 with 

values in 𝒪ℙ3(k) via the Dolbeault isomorphism. 

 

Proof: 

 We already know the cohomology groups (5.71a) from Bott’s rule 

given in Lemma 5.6.1 Moreover, after computing (5.71b), all remaining 

cases follow directly from (5.715.71a) and (5.71b) via Serre duality.17 In 

fact, we find the cohomology groups (5.71c) and (5.71d) from 

 

            Hq(ℙ(V ), Ω2(k)) ≅ [H3−q(ℙ(V ), Ω1(−k))]
∨
       

Hq(ℙ(V ), Ω1(k)) ≅ [H3−q(ℙ(V ), Ω0(−k))]∨       (5.72) 

 

To compute (5.71b), let us consider the Euler sequence (5.55). We can 

dualise this sequence and twist by 𝒪ℙ(V )(k) to obtain 

 

0 →  Ω1(k)  → Ω0(k − 1)⨂V⋁  →  Ω0(k)  →   0.         (5.73) 

 

From this sequence and Bott’s rule, we derive the long exact sequences of 

cohomology groups 

 

        0 →  H0(ℙ(V ), Ω1(k))   →   H0(ℙ(V ), Ω0(k − 1)⨂V⋁)
k
→ 

k
→ H0(ℙ(V ), Ω0(k)) →  H1(ℙ(V ), Ω1(k))  → 0 ,          (5.74a) 

 

And 

0 →  H3(ℙ(V ), Ω1(k))   →   H3(ℙ(V ), Ω0(k − 1)⨂V⋁)  → 

→ H3(ℙ(V ), Ω0(k))  → 0,                                (5.74b) 

 

where we used H2(ℙ(V ), Ω1(k)) = 0. 

 

Let us start with Hq(ℙ(V ), Ω1(k)) for q = 0, 1. For k < 0, the sequence 

(5.74a) together with Bott’s rule yield that 
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 H0(ℙ(V ), Ω1(k)) = 0 = H1(ℙ(V ), Ω1(k))                 (5.75) 

 

while for k = 0 we find 

  

H0(ℙ(V ), Ω1(0)) = 0                                 (5.76) 

 

And 

H1(ℙ(V ), Ω1(0)) ≅ H0(ℙ(V ), Ω0(0)) ≅ ℂ.                (5.77) 

 

For k = 1, (5.74a) also shows that 

 

 H0(ℙ(V ), Ω1(1)) = 0 = H1(ℙ(V ), Ω1(1))               (5.78) 

 

while for k ≥ 2 we find H1(ℙ(V ), Ω1(k)) = 0 since k is surjective. 

 

 The rest of H0(ℙ(V ), Ω1(k)) then follows from the short exact sequence 

 

0 →  H0(ℙ(V ), Ω1(k))  → ⊙k−1 V⋁⨂V⋁ →⊙k V⋁ → 0.       (5.79) 

 

It remains to find H3(ℙ(V ), Ω1(k)). The sequence (4.13b) and Bott’s 

rule show that for k ≥ −2, H3(ℙ(V ), Ω1(k)) = 0. while for k = −3, we 

get H3(ℙ(V ), Ω1(−3)) ≅ V∨⨂det V. For k < −3, (4.13b) reads as 

 

0 →  H3(ℙ(V ), Ω1(k)) →⊙−k−3 V⨂ det V⨂V⋁ →⊙−k−4 V⨂ det V

→ 0   

(5.80) 

which gives the remaining cases for H3(ℙ(V ), Ω1(k)). This completes 

the proof.  

Next, we compute the direct image sheaves π2∗
q
Ωπ1
p
(𝒪P6(k)). 

Using the short-hand notation Ωπ1
p (k): Ωπ1

p
(𝒪P6(k)), we have the 

following proposition: 
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5.8.6 Proposition  

 

   Let kp ∶= 2p + k. The direct image sheaves π2∗
q
Ωπ1
p
(k) are given 

by 

 

π2∗
q
Ωπ1
0 (k) ≅ {

⊙k0 S                                  for   q = 0  𝔈  k0 ≥ 0

(⊙−k0−4 S∨)[1]              for   q = 3  𝔈 k0 ≤ −4

0                                         otherwise            

  

(5.81a) 

 

π2∗
q
Ωπ1
1 (k) ≅

{
  
 

  
 
(
⊙k1−1 S∨⨂𝒪

M6
S∨

⊙k1 S∨
)

⋁

[1]      for   q = 0  𝔈  k1 ≥ 2

[1]                                                for   q = 1    𝔈  k1 = 0

(⊙−k1−3 S∨⨂𝒪
M6
S)
0
[2]      for   q = 3  𝔈  k1 ≤ −3

0                                                 otherwise                         

 

(5.81b) 

 

π2∗
q
Ωπ1
2 (k) ≅

{
  
 

  
 (⊙

k2−3 S⨂𝒪
M6
S)
0
[1]           for   q = 0  𝔈  k2 ≥ 3

[2]                                              for   q = 2  𝔈  k2 = 0

(
⊙−k2−1 S∨⨂𝒪

M6
S∨

⊙−k2 S∨
) [2]    for   q = 3  𝔈  k2 ≤ −2

0                                                otherwise               

 

(5.81c) 

And  

 

π2∗
q
Ωπ1
3 (k) ≅ {

(⊙k3−4 S)[2]                          for   q = 0  𝔈  k3 ≥ 4

(⊙−k3 S∨)[3]                          for   q = 3  𝔈  k3 ≤ 0

0                                                otherwise              

 

(5.81d) 

 

where (⊙ι S∨⨂𝒪
M6
S)
0
 is the totally trace-less part of ⊙ι S∨⨂𝒪

M6
S  

which is 
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(⊙ι S∨⨂𝒪
M6
S)
0
≅ {
S                                       for  ι = 0,
⊙ιS∨⨂𝒪

M6
S

⊙ι−1S∨
                  for   ι ≥ 0 

         (5.82) 

 

Proof 

 By definition of direct image sheaves, our task is to compute the 

cohomology groups Hq(π2
−1(U), Ωπ1

p (k)) for open sets U ⊂ M6. 

 

 Notice that it suffices to work with Stein open sets U so that U′ ≔

π2
−1(U) ≅ U × ℙ3 ⊂ F9 since there are arbitrarily small Stein open sets 

on M6. We could now apply the direct image functor to the short exact 

sequences of Proposition 5.8.3 to obtain the direct images. There is, 

however, a quicker way of computing these. 

 

Consider the case when p = 0. It is rather straightforward to see 

that in this case, we have the identification 

 

Hq(U′, Ωπ1
0 (k)) ≅ {holomorphic functions : U → Hq(ℙ3, 𝒪ℙ3(k))} (5.83) 

 

and we can directly apply the results of Lemma 5.8.3 The other 

cohomology groups can be characterised analogously. 

 

 We first recall our discussion of the relative one-forms, Ωπ1
1 (0) =

Ωπ1
1   that led to the sequence (5.69).  

 

Let 

 (x, λ)  =  (xAB, λA)                                (5.84) 

 

be local coordinates on F9, as before.  

 

Then the components ωA of a relative one-form ω are of weight 

one in λ and obey ωAλA.  

 

This essentially implies that                        

 

   ωA =
1

2
εABCDωBCλD,                                 (5.85) 



158 

 

where ωAB = −ωBA depends (holomorphically) on x. Together 

with our results for the twistor space P6 presented at the end of Section 

5.3.2, we may conclude that: 

 

Hq(U′, Ωπ1
1 (0)) ≅ {holomorphic functions : U → Hq(ℙ3, Ω1(2)} (5.86) 

 

This argument generalizes to the remaining cohomology groups 

Hq(U′, Ωπ1
p
) for  p =  2, 3, and we have 

 

Hq(U′, Ωπ1
p (0)) ≅ {holomorphic functions : U → Hq(ℙ3, Ωp(2p))[p]} 

(5.87) 

Therefore, if we let  kp ∶=  2p +  k, we obtain 

 

Hq(U′, Ωπ1
p (k)) ≅ {holomorphic functions : U → Hq (ℙ3, Ωp(kp)) [p]} 

(5.88) 

 

In summary, all the cohomology groups Hq(π2
−1(U), Ωπ1

p
(k))  are 

characterised in terms of the cohomology groups appearing in Lemma 

5.8.5 for V = S∨, which yields (5.81).  

 

So far, we have computed the direct images of the sheaves Ωπ1
p
(k).The 

resolutions (5.64) and (5.70a) also contain the topological inverse sheaves 

π1
−1𝒪P6 and π1

−1𝒪P6(𝒪P6(k)), respectively. The direct images of these 

sheaves are computed using spectral sequences. 

 

 In the following, we shall merely recall a few facts about spectral 

sequences and we refer to for a more detailed account. 

 

For us, a spectral sequence is basically a sequence of two-dimensional 

arrays of Abelian groups 

 

 Er = (Er
p,q
) for r = 1, 2, . ..                            (5.89) 

 

which are labelled by p, q =  0, 1, 2, . .. together with differential 

operators dr ∶  Er
p,q
 →  Er

p+r,q−r+1
  that obey 
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dr ∘ dr = 0.                                        (5.90) 

 

In addition, the arrays are linked cohomologically from one order to the 

next. Specifically, we have 

 

Er+1
p,q
≅ Hp,q(Er) ≔

ker dr: Er
p,q
→ Er

p+r,q−r+1

im dr: Er
p−r,q+r−1

 → Er
p,q                    (5.91) 

 

There also is a well-defined limit of the spectral sequence in terms of the 

inductive limit 

E∞
p,q
= lim
r→∞

𝑖𝑛𝑑 Er
p,q

                          (5.92) 

 

If U ⊂ M6 is open and U′ ∶= π2
−1(U), the resolution (5.70a) yields a 

spectral sequence with initial terms 

 

 E1
p,q
≅ Hq(U′, Ωπ1

p
(E))                             (5.93) 

 

and differential operators d1: E1
p,q
 → E1

p+1,q
 induced by dπ1: Ωπ1

p
(E) →

Ωπ1
p+1
(E).  

This spectral sequence converges to the cohomology group  

 

E∞
p,q
≅ Hp+q(U′, π1

−1𝒪P6(E))                            (5.94) 

 

which is mnemonically written as  

 

Hq (U′, Ωπ1
p (E)) ⟹ Hp+q(U′, π1

−1𝒪P6(E)).                    (5.95) 

`` 

Altogether, we have the following proposition: 

 

5.8.6 Proposition  

 Let U be an open set in M6 and let  U′ ∶= π2
−1(U) ⊂ F9. Then there 

is a spectral sequence 

 

E1
p,q
≅ Hq (U′, Ωπ1

p (k)) ⟹ Hp+q(U′, π1
−1𝒪P6(k))           (5.96) 

 



160 

 

where the differential operators d1: E1
p,q
 →  E1

p+1,q
 are induced by the 

relative exterior derivative  dπ1: Ωπ1
p
(k) → Ωπ1

p+1
(k).  

 

Hence, we have an explicit way of computing Hq(U′, π1
−1𝒪P6(k)) in 

terms of the cohomology groups Hq(U′, Ωπ1
p
(k)). 

 

5.9 Cohomology Groups of Topological Inverse Sheaves. 

 The final ingredient we need is a result due to Buchdahl. Above 

we have computed the direct images of sheaves on the correspondence 

space F9 along the fibration π2: F
9  → M6 to obtain certain sheaves on 

space-time M6. 

  

In the Penrose transform, these sheaves on F9 originate from 

sheaves on twistor space. To connect the cohomology groups of both 

kinds of sheaves, we can use the following proposition: 

 

5.8.7 Lemma  

Let X and Y be complex manifolds and π ∶ X →  Y a surjective 

holomorphic mapping of maximal rank with connected fibres.  

 

Furthermore, let 𝖲 be an Abelian sheaf on Y . If there is an n0 > 0 such 

that Hq(π−1(p), ℂ) = 0 for q =  1, . . . , n0 and for all p ∈ Y , then  

 

π∗ ∶  Hq(Y, 𝖲) →  Hq(X, π−1𝖲)                       (5.97) 

 

is an isomorphism for q =  0, . . . , n0 and a monomorphism for  q = n0 +

1. The requirements of this proposition for the projection π1: F
9  → M6 

are always satisfied in our setting. Because we always work with convex 

subsets U ⊂ M6, we always have the isomorphism Hq(U′, 𝖲) ≅

Hq(Û, π1
−1 𝖲), where U′ ∶= π2

−1(U) ⊂ F9  and Û ≔ π1(π2
−1(U)) ⊂ P6.  

 

In a compactified version of the twistor correspondence, one has to 

supplement Theorem 4.1 by the above requirements. 
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 Proof 

We are now ready to prove Theorem 5.8.3 We shall first proof the case 

h > 0, that is −2h − 4 < −4, and then come to the case h = 0, which is 

slightly more complicated. 

 

Case 𝐡 > 𝟎. Recall that sections ψ of the sheaf 𝒵h defined in (2.9) obey 

the free field equation 

 

∂ABψBA1…..A2h−1 = 0                           (5.98) 

 

We thus have to prove that, 

 

𝒫 ∶  H3(Û, 𝒪Û(−2h − 4)) →  H
0(U,𝒵h)            (5.99) 

 

is an isomorphism. We already know from Proposition 4.4 that 

 

H3(Û, 𝒪Û(−2h − 4)) ≅ H
3(U′, π1

−1 𝒪Û(−2h − 4)        (5.100) 

 

which reduces (5.99) to 

 

H3(U′, π1
−1 𝒪Û(−2h − 4) ≅ H

0(U,𝒵h)     (5.101) 

 

Firstly, we notice that there is a particular spectral sequence, the Leray 

spectral sequence  Lr = (Lr
p,q
), which gives 

 

L2
p,q
≅ Hp (U, π2∗

q
 Ωπ1
l (−2h − 4)) ⟹ Hp+q (U′, Ωπ1

l (−2h − 4))  (5.102) 

 

For fixed l, Proposition 4.2 for h > 0 tells us that π2∗
q
 Ωπ1
l (−2h − 4) = 0 

if q ≠  3. Thus, the Leray spectral sequence Lr
p,q

 is degenerate at the 

second level. Therefore, we have 

 

L∞
p,q
≅ L2

p,q
  for  p, q ≥  0 ,                      (5.103) 

 

cf. (5.92). Recall that if a spectral sequence (Er
p,q
) has the property that 

for some r0, Er0
p,q
= 0  for q ≠ q0, then 
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 Er0
p,q0 ≅ Hp+q0.                                 (5.104) 

 

This property together with (5.102) then imply 

Hp (U′, Ωπ1
l (−2h − 4)) ≅ {

Hp−3 (U, π2∗
3 Ωπ1

l (−2h − 4))            for  p ≥ 3

0                                                              for  p < 3
 

(5.106) 

 

Secondly, Proposition 4.3 yields another spectral sequence Er = (Er
p,q
)  

with 

E1
p,q
≅ Hq (U′, Ωπ1

p (−2h − 4)) ⟹ Hp+q(U′, π1
−1𝒪P6(−2h − 4)) 

(5.107) 

Explicitly, the r = 1 array in this sequence reads as (k = −2h − 4): 

 

H0 (U′, Ωπ1
0 (k))

dπ1
→   H0 (U′, Ωπ1

1 (k))
dπ1
→  H0 (U′, Ωπ1

2 (k))
dπ1
→ H0 (U′, Ωπ1

3 (k)) 

H1 (U′, Ωπ1
0 (k))

dπ1
→   H1 (U′, Ωπ1

1 (k))
dπ1
→  H1 (U′, Ωπ1

2 (k))
dπ1
→ H1 (U′, Ωπ1

3 (k)) 

H2 (U′, Ωπ1
0 (k))

dπ1
→   H2 (U′, Ωπ1

1 (k))
dπ1
→  H2 (U′, Ωπ1

2 (k))
dπ1
→ H2 (U′, Ωπ1

3 (k)) 

H3 (U′, Ωπ1
0 (k))

dπ1
→   H3 (U′, Ωπ1

1 (k))
dπ1
→  H3 (U′, Ωπ1

2 (k))
dπ1
→ H3 (U′, Ωπ1

3 (k)) 

H4 (U′, Ωπ1
0 (k))

dπ1
→   H4 (U′, Ωπ1

1 (k))
dπ1
→  H4 (U′, Ωπ1

2 (k))
dπ1
→ H4 (U′, Ωπ1

3 (k)) 

   ⋮                         ⋮                          ⋮                             ⋮ 

(5.108) 

We may now replace these cohomology groups by Hq (U′, Ωπ1
p (k)) using 

(5.106) to obtain 

 

     0                                        0                                       0 

     0                                        0                                       0 

     0                                        0                                       0 

H0 (U, π2∗
3  Ωπ1

0 (k)) →   H0 (U′, π2∗
3 Ωπ1

1 (k)) → ⋯→ H0 (U′, π2∗
3 Ωπ1

3 (k)) 

H1 (U, π2∗
3  Ωπ1

0 (k)) → H1 (U′, π2∗
3 Ωπ1

1 (k)) → ⋯ → H1 (U′, π2∗
3 Ωπ1

3 (k)) 

H2 (U, π2∗
3  Ωπ1

0 (k))  →   H2 (U′, π2∗
3 Ωπ1

1 (k)) → ⋯ → H2 (U′, π2∗
3 Ωπ1

3 (k)) 

H3 (U, π2∗
3  Ωπ1

0 (k)) →   H3 (U′, π2∗
3 Ωπ1

1 (k)) → ⋯→ H3 (U′, π2∗
3 Ωπ1

3 (k)) 

(5.109) 
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This diagram together with  (5.91) then yield the following identification: 

 

E2
0,3 ≅ ker {H0 (U, π2∗

3  Ωπ1
0 (−2h − 4))  → H0 (U, π2∗

3  Ωπ1
1 (−2h − 4))} 

(5.110) 

 

Furthermore, all Er
p,q
= 0 for p + q = 3 with q ≠ 3, and E2

0,3 ≅ E3
0,3 ≅

⋯E∞
0,3

. From Proposition 4.2, it follows that π2∗
3  Ωπ1

0 (−2h − 4) ≅

(⨀2hS⋁)[1]  and  π2∗
3  Ωπ1

1 (−2h − 4) ≅ (⨀2h−1S⋁⨂𝒪US)0[2]. 

 

 In addition, the relative exterior derivative dπ1: H
3 (U′, Ωπ1

0 (k))  →

 H3 (U′, Ωπ1
1 (k)) induces the differential operator 

 

∂AB ∶  H0 (U, π2∗
3 Ωπ1

0 (−2h − 4))  →  H0 (U, π2∗
3 Ωπ1

1 (−2h − 4)) 

(5.111) 

In summary, from (4.28) and (5.107) we may therefore conclude that 

 

H3 (Û, 𝒪Û(−2h − 4)) ≅ H
3(U′, π1

−1𝒪Û(−2h − 4)) ≅ E2
0,3 ≅ H0(U,𝒵h) 

(5.112) 

Case 𝐡 = 𝟎. The proof for h = 0 is similar to the one presented above 

albeit somewhat more difficult. Firstly, we shall be dealing with a 

second-order partial differential operator and secondly, on a more 

technical level, the appropriate spectral sequence will degenerate 

differently. 

 

Recall that 𝒵0 is the sheaf of solutions to the Klein–Gordon equation. 

That is, its sections describe scalar fields on space-time forming the 

trivial representation  under the little group. We wish to prove that 

 

𝒫 ∶  H3 (Û, 𝒪Û(−4)) → H
0(U,𝒵0)       (5.113) 

 

is an isomorphism. Again, by virtue of Proposition 4.4, we only need to 

show that 

H3(U′, π1
−1𝒪Û(−4)) ≅ H

0(U,𝒵0)       (5.114) 
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From lemma 5.8.3, we see that 

 

π2∗
q
 Ωπ1
l (−4) ≅ {

[1]                 for  (q, l) = (3,0)
[2]                for  (q, l) = (2,2)
0                  otherwise             

        (5.115) 

 

When (q, l) = (3, 0), the corresponding Leray spectral sequence (5.102) 

yields 

 

Hp (U′, Ωπ1
0 (−4)) ≅ {

Hp−3 (U, π2∗
3 Ωπ1

0 (−4))Hp−3(U, [1])     for       p ≥ 3 

0                                                                      for       p ≥ 3
  

(5.116) 

 

Moreover, with (5.115) the Leray spectral sequence (5.102) also gives 

 

Hp (U′, π2∗
p
 Ωπ1
l (−4)) = 0  for p, q ≥ 0 and l = 1,3            (5.117) 

 

When (q, l) = 2, 2), we derive 

 

Hp (U′, Ωπ1
2 (−4)) ≅ {

Hp−2 (U, π2∗
2 Ωπ1

2 (−4)) ≅ Hp−2(U, [2])     for       p ≥ 2

0                                                                         for         p > 2
 

(5.118) 

 

Next, the r = 1 part of the spectral sequence (5.107) for h = 0 is given 

by 

 

H0 (U′, Ωπ1
0 (−4)) 

dπ1
→   H0 (U′, Ωπ1

1 (−4))
dπ1
→   H0 (U′, Ωπ1

2 (−4))
dπ1
→   H0 (U′, Ωπ1

3 (−4))  

H1 (U′, Ωπ1
0 (−4)) 

dπ1
→   H1 (U′, Ωπ1

1 (−4))
dπ1
→   H1 (U′, Ωπ1

2 (−4))
dπ1
→   H1 (U′, Ωπ1

3 (−4)) 

H2 (U′, Ωπ1
0 (−4)) 

dπ1
→   H2 (U′, Ωπ1

1 (−4))
dπ1
→   H2 (U′, Ωπ1

2 (−4))
dπ1
→   H2 (U′, Ωπ1

3 (−4)) 

H3 (U′, Ωπ1
0 (−4)) 

dπ1
→   H3 (U′, Ωπ1

1 (−4))
dπ1
→   H3 (U′, Ωπ1

2 (−4))
dπ1
→   H3 (U′, Ωπ1

3 (−4)) 

H4 (U′, Ωπ1
0 (−4)) 

dπ1
→   H4 (U′, Ωπ1

1 (−4))
dπ1
→   H4 (U′, Ωπ1

2 (−4))
dπ1
→   H4 (U′, Ωπ1

3 (−4)) 

    ⋮                              ⋮                             ⋮                           ⋮ 

(5.119) 

Our above calculations show that the second and fourth columns of 

this diagram are zero, while the first and third ones are non-zero in 
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general. Hence, the differential operator d1 on E1
p,q

 vanishes identically 

and therefore, we have the identification E1
p,q
≅ E2

p,q
. Substituting (5.116) 

– (5.118) into this diagram, we eventually find 

 

0                        → 0 →             0           → 0 

0                        → 0 →             0           → 0 

0                         → 0 → H0(U, [2])    → 0 

H0(U, [1])         → 0 → H1(U, [2])    → 0 

H1(U, [1])         → 0 → H2(U, [2])    → 0 

H2(U, [1])         → 0 → H3(U, [2])    → 0 

H3(U, [1])         → 0 → H4(U, [2])    → 0 

(5.120) 

 

Furthermore, the differential operator d2 on E2
0,3

  maps E2
0,3

 to E2
2,2

 and 

since E1
p,q
≅ E2

p,q
 and thus, E2

0,3 ≅ H0(U, [1])  and E2
2,2 ≅ H0(U, [2]) , 

respectively, we have a map □ ∶  H0(U, [1]) → H0(U, [2] which is 

induced by d2. One can see that this map is a composition of first-order 

differential operators and it is indeed the one we defined in (5.22). 

Finally, we note that 

 

E2
0,3 ≅ ker{□ ∶  H0(U, [1]) → H0(U, [2]}             (5.121) 

  

together with E2
0,3 ≅ ⋯ ≅ E∞

0,3
. Altogether, 

 

H3 (Û, 𝒪Û(−4)) ≅ H
3(U′, π1

−1𝒪Û(−4)) ≅ E3
0,3 ≅ H0(U,𝒵0)   (5.122) 

 

which completes the proof for h = 0. 

 

5.10. Integral Formulæ 

Similarly to four dimensions, we can write down certain contour 

integral formulæ yielding solutions to the zero-rest-mass field equations 

in six dimensions.  

5.10.1 Integral Formulæ on Twistor Space 

Let us choose a sufficiently fine open Stein covering 
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 �̂� = {Ûa}                                        (5.123)  

of  Û. We shall make use of the abbreviations  Ûab ≔ Ûa ∩ Ûb,  Ûabc ≔

Ûa ∩ Ûb ∩ Ûc, etc. 

The simplest choice for Û is a lift of the standard cover of ℙ3 to Û 

requiring four patches Ûa, a = 1,… ,4,. In this case, there is only one 

quadruple overlap of four patches, and a holomorphic function 

 

 f̂−2h−4 = f̂−2h−4(𝓏, λ)                            (5.124) 

 

on  Û1234 ⊂ Û of homogeneity −2h − 4 represents an element of 

H3(Û , 𝒪Û(−2h − 4)). For simplicity, we shall assume a ˇCech cocycle 

f̂−2h−4 of this form in the following. Note that this is not the most general 

way of representing elements of H3(Û , 𝒪Û).  This, however, requires 

merely a technical extension of our discussion below using branched 

contour integrals. 

 

Let us now restrict to h ≥ 0 and construct zero-rest-mass fields ψ ∈

 H0(U,𝒵h). That is, ψ forms the representation (2h + 1, 1) of the little 

group 𝖲𝖫(2, ℂ) × 𝖲𝖫(2, ℂ) cf. (5.22). 

 

We start from a ˇCech cocycle f̂−2h−4, which we restrict to x̂ ≅ ℙ3 to 

obtain f̂−2h−4 = f̂−2h−4(x ∙ λ, λ) on the intersection Û1234⋂x̂. Using the 

holomorphic 𝖲𝖫(4, ℂ)-invariant measure on ℙ3 given by 

 

Ω(3,0) ≔
1

4!
εABCDλAdλB ∧ dλC ∧ dλD                   (5.125) 

 

we can write down the contour integral 

 

ψA…A2h(x) = ∮ Ω
(3,0)λA… λA2h f̂−2h−4(x ∙ λ, λ)𝒞

           (5.126) 

 

where the contour 𝒞 is topologically a three-torus contained in Û1234. 

Clearly 

 

∂ABψBA1…A2h−1 = 0  for h > 0 and □ψ = 0 for h = 0,          (5.127) 
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as follows from straightforward differentiation under the integral. 

 

5.10.2 Integral Formulæ on Thickened Twistor Space. 

More recently, similar integral formulæ were discussed by the 

cohomology groups H3(Û , 𝒪Û(2h − 4)). with h > 0. However, these 

cohomology groups yield trivial space-time fields. Therefore, their 

integral formulæ make only sense if one thickens (via infinitesimal 

neighbourhoods) P6 into its ambient space ℙ∘
7 ≅ 𝒪ℙ3(1)⨂ℂ

4. 

Thickenings of manifolds occur in various twistor geometric contexts. 

The most prominent examples appear in the twistor descriptions of Yang–

Mills theory and Einstein gravity in four space-time dimensions. 

 

To thicken our twistor space P6, consider 𝒪ℙ7 , the sheaf of 

holomorphic functionson ℙ∘
7, and ℐ, the ideal subsheaf of 𝒪ℙ∘7 consisting 

of those functions that vanish on P6 → ℙ∘
7. ℓ-th order thickening (or ℓ-th 

infinitesimal neighbourhood) of P6 inside ℙ∘
7 is the scheme P[ℓ] 

6  defined 

by 

P[ℓ] 
6 ≔ (P6, 𝒪ℙ7/ℐ

ℓ+1                             (5.128) 

5.10.3 Note  

We recover the twistor space as the zeroth order thickening, i.e. 

P[0]
6 = P6 Moreover, a cover of P6 will also form a cover of P[ℓ] 

6 . The 

spaces P[ℓ] 
6 can be thought of as the jets of the embedding of P6 into the 

larger manifold ℙ∘
7.  

 

In local coordinates (zA, λA) on ℙ∘
7, we have  

 

(zA, λA)
i+1 = 0 for i ≥ ℓ                             (5.129) 

But 

 

 (zA, λA)
i ≠ 0 for 0 < i ≤ ℓ on P[ℓ] 

6 .                      (5.130) 

 

This implies that on the first order thickening P[1] 
6  , the four vector fields 

∂

∂zA
  are linearly independent and act freely on functions on P[1] 

6 . 

Differential operators of order ℓ constructed out of these four vector 

fields act freely on functions on P[ℓ] 
6 . As we shall see momentarily, this 
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fact is the essential ingredient for writing down a contour integral leading 

to zero-rest-mass fields. 

Proceeding analogously to four dimensions, we shall now construct a 

second contour integral by replacing λA in (5.126) by the derivatives 
∂

∂zA
  

and adjusting the homogeneity of f̂−2h−4  for h > 0 accordingly. The 

resulting 2h derivatives in the contour integral should act freely, and 

therefore we have to consider a thickening of Û ⊂ P6 to 2h-th order, that 

is,    Û[2h] ⊂ P
6
[2h]. 

 

 Let 

f̂2h−4
[2h]

= f̂2h−4
[2h]

(z, λ)                                    (5.131) 

 

be a representative of the cohomology group  

 

H3(Û[2h] , 𝒪Û[2h](2h − 4)) for h > 0.                   (5.132) 

It is expanded as 

 

          f̂2h−4
[2h] (𝓏, λ) = ĝ(λ) + ∑

1

l!
𝓏A1 …𝓏A2hĝA1….Al(λ)l≥1      (5.133)

   

where the coefficients ĝA1….Al for l ≤ 2h are uniquely defined for 0 <

l ≤ 2h. We may rewrite the above expansion as 

 

f̂2h−4
[2h] (𝓏, λ) =

1

(2h)!
𝓏A1 …𝓏A2h f̂A1….A2h(𝓏, λ) + ⋯,                (5.134) 

 

where the ellipsis denotes terms that contain at most 2h − 1 factors of 

𝓏A. As the coefficients f̂A1….A2h are uniquely fixed, they can be extracted 

from f̂2h−4
[2h]

. Upon restriction to x̂ ≅ ℙ3 we may write 

 

f̂A1….A2h(x ∙ λ, λ) =
∂

∂𝓏A1
…

∂

∂𝓏A2h
f̂2h−4
[2h] (𝓏, λ)|

𝓏=x∙λ
               (5.135) 

 

The latter relation can then be used to construct the contour integral 

formula 

ψA1….A2h(x) = ∮ Ω
(3,0) f̂A1….A2h(x ∙ λ, λ)𝒞

                       (5.136) 
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             = ∮ Ω(3,0)f̂A1….A2h
∂

∂𝓏A1
…

∂

∂𝓏A2s
f̂2h−4
[2h] (𝓏, λ)

𝒞
|
𝓏=x∙λ

        (5.137) 

where the contour is again a three-torus. By differentiation under the 

integral, one may check that this is indeed a zero-rest-mass field, i.e. 

 

∂ABψBA1….A2h−1 = 0,                                  (5.138) 

Since 
∂

∂xAB
= λ[A

∂

∂𝓏B]
                                      (5.139)  

  

under the integral. 

 

More generally, we can write down the following contour integral, which 

interpolates between the above two formulæ (5.126) and (5.137): 

 

ψA1….A2h(x) = ∮ Ω
(3,0)λ(A1 … . λAj+h

∂

∂𝓏Aj+h+1
…

∂

∂𝓏A2h)
f̂−2j−4
[h−j] (𝓏, λ)

𝒞

|
𝓏=x∙λ

 

(5.140) 

Here, j = −h, . . . , h and the indices A1… .A2h are symmetrised in the 

integrand. Again, it is straightforward to check that these fields satisfy the 

field equation ∂ABψBA1….A2h−1 = 0. 

 

5.11 Minitwistors and Monopoles 

5.11.1Minitwistor Space  

The twistor space used to describe monopoles on three dimensional 

space-time 𝑀3 ∶=  ℂ3 is Hitchin’s minitwistor space 𝑃2. It can be 

regarded as the tangent space of ℙ1 or, equivalently, the total space of the 

holomorphic line bundle 𝑂 ℙ1(2)  →   ℙ
1. 

 

In the twistor picture, the restriction of the moduli space of sections from 

𝑀4 to 𝑀3 amounts to restricting the line bundle 𝑃3 to the diagonal ℙ1 

with  𝜇𝛼  =  𝜆𝛼 in the base ℙ1  ×  ℙ1 of  𝑃3. We can achieve this by 

quotenting by the distribution 

 

𝐷 𝑃3 = 〈𝜇
𝛽𝜆𝛽 (𝜆𝛼

𝜕

𝜕𝜇𝛼
− 𝜇𝛼

𝜕

𝜕𝜆𝛼
)〉                     (5.141) 
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That is, 𝑃2 ∶=  𝑃2/𝐷 𝑃3 , and the holomorphic line bundle 

𝑂ℙ1 × ℙ1(1, 1)  → ℙ
1  ×  ℙ1 reduces to the line bundle 𝑂ℙ1 (2)  →  ℙ

1. 

The correspondence space is obtained by taking the quotient of 𝐹6 by the 

distribution 

  

𝐷 𝐹6 = ⟨
𝜕

𝜕𝑥[12]
, 𝜇𝛽𝜆𝛽 (𝜆𝛼

𝜕

𝜕𝜇𝛼
− 𝜇𝛼

𝜕

𝜕𝜆𝛼
)⟩               (5.142) 

so that 

𝑃4 ∶=
𝑃6

𝐷 𝑃6 
≅ ℂ3  ×  ℙ1 .                         (5.143) 

 

Here, we have the double fibration 

 

 

with 𝜋7 ∶  (𝑥
𝛼𝛽 , 𝜇𝛼) 7 →  (𝑧, 𝜇𝛼)  =  (𝑥

𝛼𝛽𝜇𝛼𝜇𝛽, 𝜇𝛼) and π8 being the 

trivial projection. In the case of  𝑃2, we have a geometric twistor 

correspondence between points in 𝑀2 and holomorphic embeddings 

ℙ1 ↪ 𝑃2, as well as between points in 𝑃2 and two-planes in 𝑀3. 

5.11.2Note  

that the twistor distribution here is of rank two and it is generated 

by the vector fields  𝜇𝛼𝜕
𝛼𝛽,  i.e. 

 

  𝑃2  ≅ 𝐹4 〈𝜇𝛼𝜕
𝛼𝛽〉⁄     with 𝜕𝛼𝛽 = 𝜀𝛼𝛾𝜀𝛽𝛿

𝜕

𝜕𝑥𝛾𝛿
 .             (5.144) 

5.11.3 Remark  

There is an alternative way of obtaining the minitwistor space from 

the ambitwistor space in the non-Abelian setting. Firstly, one reduces to 

the miniambitwistor space underlying a Penrose–Ward transform for 

solutions to the three-dimensional Yang–Mills–Higgs theory. Restricting 

to BPS solutions then amounts to restricting the miniambitwistor space to 

the minitwistor space. 
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Penrose–Ward transforms. The construction of the Abelian monopole 

equations in the twistor context has been discussed extensively in the 

literature comments in the following. 

The Penrose–Ward transform works here in the familiar way. A 

holomorphic vector bundle over 𝑃2 which becomes holomorphically 

trivial upon restriction to the submanifolds 

𝑥  ≅  ℙ1 ↪ 𝑃2  can be pulled back to 𝐹4. 

 Specifically, we have 

 

 𝑓   =  { 𝑓𝑎𝑏}  ∈  𝐻
1(�̂� , 𝑂�̂� ) for  �̂� ⊂  𝑃2.                  (5.145) 

 

The pull-back of 𝑓  can be split holomorphically, 

 

  𝑓′𝑎𝑏 = 𝜋7
∗ 𝑓′𝑎𝑏  =  ℎ′𝑎 − ℎ′𝑏.                           (5.146) 

 

 Using the Liouville theorem, this allows us to introduce a global 

relative one-form 𝐴′ with components 

 

𝐴′𝛼 ∶= 𝜇𝛽  𝜕
𝛼𝛽ℎ′𝑎  = : 𝜇𝛽(𝐴

𝛼𝛽  −  𝜀𝛼𝛽∅) ,             (5.147) 

 

where the fields on the right-hand-side depend only on space-time. From 

the flatness condition on the corresponding curvature, we obtain 

 

𝑓𝛼𝛽  =  𝜕𝛼𝛽∅ ,                                       (5.148) 

 

where 𝑓𝛼𝛽 is the curvature of 𝐴𝛼𝛽. This is the spinorial form of the 

Bogomolny monopole equation 

 

 𝐹 ∶=  𝑑𝐴 = ⋆3 𝑑∅                                (5.149) 

in three dimensions 
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List of Symbols 

  No                              Symbols                      Meaning   

1 𝑀 Topological n-manifold 

2 𝑇𝑝𝑀 Tangent vector at p 

3 𝑇𝑝𝑀
∗ Cotangent space of  𝑀 at p 

4 𝑇𝑀 Tangent bundle of 𝑀 

5 𝑇𝑀∗ Cotangent bundle of 𝑀 

6 Λ The wedge (or exterior) product 

7 ∇𝐴�́� Spinor covariant derivative 

8 Zα Twistor 

9 T Twistor space 

10 �̅�𝛼 Conjugate twsitor 

11 𝑇∗ Dual twistor space 

12 ZRM Zero Rest Mass 

13 SD Self-dual 

14 ASD Anti-self-dual 

15   Density 

16 Λ𝑏
𝑎

 Lorentz transformation 
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