

Sudan University of Science and Technology College of Graduate Studies Department of Physics

Study on the Effect of Bending Optical Fiber and Temperature on the output of Laser Intensity

دراسة أثر إنحناء الألياف البصرية ودرجة الحرارة على شدة الليزر الخارج منه

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Physics

By

Adam Abdallah Kheralla Adam

Supervisor

Dr. Amel Abdallah Ahmed Alfakey

Dedication

I dedicate this research to my family
And to all who helped me.

Acknowledgement

First, all my thanks to the

Allah Who has given me

The opportunity to complete this research,

I would like to thank my

Supervisor: Dr .Amel Abdallah Ahmed Alfakey

I am grateful to all whom helped me to complete this

research

Abstract

Studying the effect of bending angle of fiber optics and the effect of temperature on laser intensity were performed. The results obtained were analyzed and found that; the increasing of bending angle decreases the output laser intensity through fiber optics according to the bending on the room temperature. Then the effect of the temperature were studied and found that; the temperature affected on the laser intensity output for the optical fiber. According to that; it is preferred to decrease the bending angle and temperature when using the fiber optics for information transmission.

تم بعد ذلك دراسة أثر درجة الحرارة ووجد أن لدرجة الحرارة أثر واضح علي شدة الليزر الخارج من الليف البصرى. إعتمادا علي ذلك يفضل تقليل الإنحناءات ودرجة الحرارة عند إستخدام الألياف البصرية لنقل المعلومات.

Table of Content

No	Contents	Page
	Ahoy Quran verse	I
	Dedication	II
	Acknowledgment	III
	Abstract	IV

	المستخلص	V		
	Table of contents	VI		
	Chapter One			
Introduction				
(1-1)	Introduction	1		
(1-2)	Literature review	2		
(1-3)	Objectives	3		
(1-4)	Problem statement	3		
(1-5)	Thesis Presentation	4		
	Chapter Two			
	Properties of Laser			
(2-1)	Introduction	5		
(2-2)	Basic construction and principle of laser	5		
(2-3)	Three and four level laser medium	6		
(2-4)	Laser pumping sources	7		
(2-4-1)	Electron pumping	7		
(2-4-2)	Optical pumping	8		
(2-5)	Properties of laser radiation	9		
(2-5-1)	Monochromaticity	9		
(2-5-2)	Directionality	9		
(2-5-3)	Coherence	10		
(2-5-4)	Focusability	11		
(2-6)	Types of laser	12		
(2-6-1)	Solid laser	12		
(2-6-2)	Semiconductor laser	13		
(2-6-3)	Gas laser	13		
(2-6-4)	Liquid laser	14		
	Chapter Three Optical Fiber			

(3-1)	Introduction	15		
(3-2)	Transmission lines	15		
(3-3)	Physical fundamentals of optical fiber 16			
(3-4)	Snell's law and critical angle for total internal reflection 17-21			
(3-5)	Optical fiber types	21		
(3-5-1)	Step index fiber 21			
(3-5-2)	Graded Index fiber	22		
(3-5-3)	Multimode	23		
(3-6)	Single mode	24		
(3-7)	Cylindrical optical fiber	25		
(3-8)	Planar waveguide	26		
(3-9)	Propagation of light in optical fibers	26-33		
(3-10)	Type TE (Or H) Modes	33-36		
(3-11)	Type TH (Or E) Modes:	36		
(3-12)	Numerical aperture	36-37		
(3-13)	Attenuation in optical fibers	37-39		
(3-14)	Optical absorption:	39		
(3-15)	Scattering	40		
(3-16)	Bending loss	41-42		
(3-17)	Link attributes	42-43		
(3-18)	Influence of temperature on the optical	43-44		
(3-19)	Influence of temperature on refractive index profile 44			
(3-20)	Influence of temperature on α and Δn	45		
(3-21)	Influence of temperature on some guidance parameters of optical fibers	45		
(3-22)	Advantages of optical fiber transmission	45-47		
(3-23)	Disadvantages of optical fiber transmission	47		
	Chapter Four			
Experiment				

(4.1)	Introduction	48
(4.2)	Apparatus	48
(4.3)	Methods	48
(4.4)	Results	49-50
(4.5)	Discussion	50-51
(4.6)	Conclusion	52
(4.7)	Reference	53