الاية

بِسُِ مِٱنتَهِٱلرَّحْمَزِٱلرَّجِي مِ

قال تعالي :

﴿ قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ﴾

سورة البقرة (٣٢)

DEDICATION

To our mothers and fathers, Sisters and brothers, our teachers, and our colleagues

ACKNOWIEDGEMENT

A special thanks to our lecturer **Mohanad Hamad Eljack Elameen** for his countless hours of reading, encouraging, and most of all patience throughout the entire process.

We would like to acknowledge and thank our school division for allowing us to Conduct our research and providing any assistance requested. Special thanks to the engineer Ashraf Mohammed for his continued support.

Finally we would like to thank the beginning teachers, mentorteachers and administrators in our school division that assisted us with this project. Their excitement and willingness to provide feedback made the completion of this research an enjoyable experience.

ABSTRACT

Proportional, Integral and derivative (PID) controllers a control strategy that has been successfully used over many years. Most widelyused controller in the industries because of their simplicity, robustness and successful practical application.

PID controller have many type (P, PI, PD, PID) is this research will study the design and theory of it.

Many tuning methods have been proposed for PID controllers. In this study will compare some of these tuning methods for step input with third order system with the aid of MATLAB and SIMULINK we extract the results and compare the result.

مستخلص

المتحكمة التناسبية التفاضلية التكاملية (PID) هي استراتيجية تحكم تم تطبيقها بنجاح على مر السنين في نطاق واسع و ذلك لبساطتها ومتانتها و النجاح العملي عند تطبيقها.

للمتحكمة عدة انواع (P, PI, PD and PID) سنقوم بدراسة المتحكمة من حيث التصميم والنظرية.

اقترحت العديد من الأساليب لضبط (توليف) وحداتها، في هذه الدراسة سنقوم بمقارنة بعض طرق الضبط لنظام من الدرجة الثالثة ومحاكته بمساعدة برنامجي (SIMULINK and) واستخراج النتائج.

TABLE OF CONTENTS

	Page
الاية	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
مستخلص	V
TABLE OF CONTENTS	vi
LIST OF FIGUERS	vii
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii
CHAPTER ONE	
INTRODUCTION	
1.1 Introduction	1
1.2 Objectives	4
1.3 Methodology	4
1.4 Thesis structure	4
CHAPTER TOW	
LITERATURE REVIEW	
2.1 Background	5
CHAPTER THREE	
PID THEORY	
3.1 Chapter review	9

3.2 The PID controller types	9
3.2.1 The proportional controller	9
3.2.2 The integral controller	17
3.2.3 The derivative controller	22
3.2.4 The proportional integral derivative controller	29
CHAPTER FOUR	1
SIMULATION AND RESULTS	
4.1 Introduction	35
4.2 System tests	35
4.2.1 Open loop response	35
4.2.2 closed loop response	36
4.3 Tuning methods	38
4.3.1 Ziegler Nichols open loop method	38
4.3.2 Ziegler Nichols closed loop method	39
4.3.3 Cohen coon method	41
4.3.4 Chien-Hrones-Reswick PID tuning	42
4.3.5 The Wang-Juang-Chan tuning method	45
4.4 The results and compare	45
CHAPTER FIVE	
CONCLUSION AND RECOMMENDATIONs	
5.1 Conclusion	48
5.2 Recommendations	48

LIST OF FIGURES

Figur	Title	Page
e		
3.1	Block diagram of a proportional controller	10
3.2	Proportional controller acting on a motor	10
3.3	Second order type one system step response with gain of 1	13
3.4	Root locus of second order system	13
3.5	Second order plant response with gain of 400	14
3.6	Root locus of a third order system	15
3.7	Step response for type one third order system with K=1, k=100	15
3.8	step response for type one third order system with K=120	16
3.9	Type zero proportional controlled system	18
3.10	P only system operating at 0.2 damping ratio	18
3.11	Step response for P only compensated system	19
3.12	Root locus for PI controller with 0.2 damping ratio and no zeros	19
3.13	Normalized step response for P and PI controller with pure	20
	integration and no zeros	
3.14	Full PI compensator with zero added	20
3.15	Root locus of PI with zero added	21
3.16	Step response for P and PI system with zero added	21
3.17	Parallel form of PI controller	22
3.18	Type zero system before PD compensation	24
3.19	Type zero compensated system with zero at -3	25
3.20	Type zero compensated system with zero at -4	26
3.21	Type zero compensated system with zero at -7	27
3.22	Normalized step responses for uncompensated and derivative	28

	compensated system	
3.23	Step responses for uncompensated and derivative compensated	28
	system	
3.24	Implementation of PD controller	28
3.25	Ideal PID representation	29
3.26	System before PID implementation	31
3.27	Root locus of derivative compensated system	32
3.28	Step responses for uncompensated and derivative compensated	33
	system	
3.29	PID compensated root locus	34
3.30	Step responses for uncompensated, derivative and PID	34
4.1	Open loop response of the system	36
4.2	Root locus of the system	36
4.3.a	Closed loop without gain	37
4.3.b	Closed loop response with K=10	37
4.3.c	Closed loop response with K=72	37
4.4	Open loop parameter identification	38
4.5	Block diagram of the system using Simulink	39
4.6	System response using PID controller tuned by the open loop	39
	method	
4.7	Closed-loop system with a proportional controller	40
4.8	Sustained oscillation with period P _{cr}	40
4.9	System response using a PID controller tuned by the closed loop	41
	method	
4.10	System response using PID controller tuned by the cohen coon	42
	method	
4.11	System with PID controller tuned using CHR 0% overshoot	44

	method	
4.12	System with PID controller tuned using CHR 20% overshoot	44
	method	
4.13	System with PID controller tuned using the Wang-Gang-Chain	45
	method	
4.14	System responses all curves	47

LIST OF TABLES

3.1	Relationships between input, system type, static error constants	12
	and steady state error	
4.1	Open loop tuning method parameters	38
4.2	Ziegler-Nichols tuning rule based on critical gain K _{cr} and critical	40
	period P _{cr}	
4.3	Controller parameters of cohen-coon method	41
4.4	CHR is tuning for set-point regulation	43
4.5	CHR is tuning for disturbance rejection	43
4.6	PID parameters for each tuning methods	46
4.7	Parameters of the system response	46

LIST OF ABBREVIATION

Р	Proportional controller
PI	Proportional and integrator controller
PID	Proportional, integrator and derivative controller
PD	Proportional and derivative controller
PLCs	Programmable logic controllers