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CHAPTER TWO 

PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) 

CONTROLLER 

 

2.1 Introduction 

Feedback control is a control mechanism that uses information from 

measurements. In a feedback control system, the output is sensed. There are two 

main types of feedback control systems:  

 Positive feedback. 

 Negative feedback.  

The positive feedback is used to increase the size of the input but in a negative 

feedback, the feedback is used to decrease the size of the input. The negative 

systems are usually stable. 

A PID is widely used in feedback control of industrial processes on the market in 

1939 and has remained the most widely used controller in process control until 

today. Thus, the PID controller can be understood as a controller that takes the 

present, the past, and the future of the error into consideration. After digital 

implementation was introduced, a certain change of the structure of the control 

system was proposed and has been adopted in many applications. But that 

change does not influence the essential part of the analysis and design of PID 

controllers.[1] 

PID control is an important ingredient of a distributed control system. The 

controllers are also embedded in many special purpose control systems. PID 

control is often combined with logic, sequential functions, selectors, and simple 

function blocks to build the complicated automation systems used for energy 

production, transportation, and manufacturing. Many sophisticated control 



 

strategies, such as model predictive control, are also organized hierar

PID control is used at the lowest level; the multivariable controller gives the set

points to the controllers at the lower level. The PID controller can thus be said

be the “bread and butter 

in every control engineer’s tool box.

PID controllers have survived many changes in technology, from mechanics

pneumatics to microprocessors via electronic tubes, transistors,

circuits. The microprocessor has had a dramatic influence

Practically all PID controllers made today are based

has given opportunities to provide additional features

scheduling, and continuous adaptation.[2]

2.2 PID Controller Structure 

The controller is used in a closed loop unity feedback system according to Fig. 

2.1. 

Figure 2.1: Block scheme of closed loop control system

The variable e denotes the tracking error, which is sent to the PID controller, 

reference variable and y 

A proportional–integral

control loop feedback. This

1. Proportional controller (PC)

2. Integral controller (IC)

3. Derivative controller (DC)
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model predictive control, are also organized hierar

used at the lowest level; the multivariable controller gives the set

to the controllers at the lower level. The PID controller can thus be said

butter ’t’ of control engineering. It is an important

in every control engineer’s tool box. 

PID controllers have survived many changes in technology, from mechanics

pneumatics to microprocessors via electronic tubes, transistors,

circuits. The microprocessor has had a dramatic influence on the PID controller. 

Practically all PID controllers made today are based on microprocessors. This 

has given opportunities to provide additional features like automatic tuning, gain 

scheduling, and continuous adaptation.[2] 

ID Controller Structure  

The controller is used in a closed loop unity feedback system according to Fig. 

Figure 2.1: Block scheme of closed loop control system

denotes the tracking error, which is sent to the PID controller, 

y is controlled (output) variable. 

integral–derivative controller (PID controller) is a method of the 

control loop feedback. This method is composing of three controllers

1. Proportional controller (PC) 

2. Integral controller (IC) 

Derivative controller (DC) 

model predictive control, are also organized hierarchically. 

used at the lowest level; the multivariable controller gives the set 

to the controllers at the lower level. The PID controller can thus be said to 

’t’ of control engineering. It is an important component 

PID controllers have survived many changes in technology, from mechanics and 

pneumatics to microprocessors via electronic tubes, transistors, integrated 

the PID controller. 

on microprocessors. This 

like automatic tuning, gain 

The controller is used in a closed loop unity feedback system according to Fig. 

 

Figure 2.1: Block scheme of closed loop control system 

denotes the tracking error, which is sent to the PID controller, w is 

derivative controller (PID controller) is a method of the 

method is composing of three controllers [1]: 



 

2.3 PID Representation 

The PID controller is quite sophisticated and three different

be given. First, there is a symbolic

the three terms can be selected 

there is a time domain operator form (Figure 2.2(b)), and finally, there is a

Laplace transform version of the PID controller (Figure2.2(c)). This gives the 

controller an s-domain operator interpretation and allows the link between the 

time domain and the frequency domain to enter the discussion of 

performance.  

Fig

2.4 The Algorithm

We will start by summarizing the key

“textbook” version of the PID algorithm is described by:

�(�) = � ��(�) +
�

��
∫

�

�

where y is the measured process variable, 

control signal and e is the control error (

often called the set point. The control signal is thus a sum of

term (which is proportional to the error), the I term (whi

integral of the error), and the D term (which is proportional to the derivative of 

the error). The controller parameters are proportional gain 

and derivative time Td 
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PID Representation  

The PID controller is quite sophisticated and three different representations can 

ven. First, there is a symbolic representation (Figure 2.2(a)), where 

the three terms can be selected to achieve different control actions. Secondly, 

there is a time domain operator form (Figure 2.2(b)), and finally, there is a

Laplace transform version of the PID controller (Figure2.2(c)). This gives the 

domain operator interpretation and allows the link between the 

time domain and the frequency domain to enter the discussion of 

Figure 2.2: PID controller representation 

The Algorithm 

We will start by summarizing the key features of the PID controller. The

“textbook” version of the PID algorithm is described by: 

�(�
�

)��+ ��
��(�)

��
�                                               

is the measured process variable, r the reference variable, 

is the control error (e = ysp– y). The reference

often called the set point. The control signal is thus a sum of three terms: the P 

term (which is proportional to the error), the I term (which is proportional to the 

integral of the error), and the D term (which is proportional to the derivative of 

the error). The controller parameters are proportional gain K, integral time 

 

representations can 

representation (Figure 2.2(a)), where each of 

ieve different control actions. Secondly, 

there is a time domain operator form (Figure 2.2(b)), and finally, there is a 

Laplace transform version of the PID controller (Figure2.2(c)). This gives the 

domain operator interpretation and allows the link between the 

time domain and the frequency domain to enter the discussion of PID controller 

 

features of the PID controller. The 

                        (2.1) 

the reference variable, u is the 

). The reference variable is 

three terms: the P 

ch is proportional to the 

integral of the error), and the D term (which is proportional to the derivative of 

, integral time Ti, 



 

2.5 PID Control of Plants

Figure 2-2 shows a PID control of a plant. If a mathematical

can be derived, then it is possible to apply various design

determining parameters of the controller that will meet the transient and steady

state specifications of the closed

complicated that its mathematical model cannot be easily obtained, then an 

analytical approach to the design of a PID controller is not possible. Then we 

must resort to experimental approaches to the tuning of PID con

process of selecting the controller parameters to meet given performance 

specifications is known as controller tuning. Ziegler and Nichols suggested rules 

for tuning PID controllers (meaning to set values 

experimental step responses or based on the value of 

stability when only proportional control action is used. Ziegler

which are briefly presented in

 

2.6 PID Terms 

2.6.1 Proportional term

The proportional term (

error. 

Using only P control gives a stationary error in all cases except when the system

control input is zero and the system process value equals the desired value. In 

Figure 2.4 the stationary error in the system process value appears after a change 

in the desired value (ref). Using a too large 
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PID Control of Plants 

a PID control of a plant. If a mathematical model of the plant 

can be derived, then it is possible to apply various design

determining parameters of the controller that will meet the transient and steady

state specifications of the closed-loop system. However, if the plant is so 

complicated that its mathematical model cannot be easily obtained, then an 

analytical approach to the design of a PID controller is not possible. Then we 

must resort to experimental approaches to the tuning of PID con

process of selecting the controller parameters to meet given performance 

specifications is known as controller tuning. Ziegler and Nichols suggested rules 

for tuning PID controllers (meaning to set values Kp, T,and 

ep responses or based on the value of K, that results in marginal 

stability when only proportional control action is used. Ziegler

which are briefly presented in 

Figure 2.3: PID control of a plant. 

Proportional term 

The proportional term (P) gives a system control input proportional with the 

control gives a stationary error in all cases except when the system

control input is zero and the system process value equals the desired value. In 

the stationary error in the system process value appears after a change 

desired value (ref). Using a too large P term gives an unstable system.

model of the plant 

can be derived, then it is possible to apply various design techniques for 

determining parameters of the controller that will meet the transient and steady-

em. However, if the plant is so 

complicated that its mathematical model cannot be easily obtained, then an 

analytical approach to the design of a PID controller is not possible. Then we 

must resort to experimental approaches to the tuning of PID controllers. The 

process of selecting the controller parameters to meet given performance 

specifications is known as controller tuning. Ziegler and Nichols suggested rules 

and T) based on 

that results in marginal 

stability when only proportional control action is used. Ziegler-Nichols rules, 

 

) gives a system control input proportional with the 

control gives a stationary error in all cases except when the system 

control input is zero and the system process value equals the desired value. In 

the stationary error in the system process value appears after a change 

term gives an unstable system. 



 

 

Figure 2.

2.6.2 Integral term 

The integral term (I) gives an addition 

system control input. The summing of the error will continue until the system 

process value equals the desired value, and this

when the reference is stable. The most common use of th

together with the P term, called a 

response and often an oscillating system. Figure 2.

a I and PI controller. As

and the I controller response

Figure 2.5
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Figure 2.4: Step response P controller 

 

) gives an addition from the sum of the previous errors to the

system control input. The summing of the error will continue until the system 

value equals the desired value, and this results in no stationary error 

reference is stable. The most common use of the I 

term, called a PI controller. Using only the I 

oscillating system. Figure 2.5 shows the step responses to 

controller. As seen the PI controller response have no stationary error 

controller response is very slow. 

 

Figure 2.5: Step response I, P and PI controller

from the sum of the previous errors to the 

system control input. The summing of the error will continue until the system 

results in no stationary error 

I term is normally 

I term gives slow 

shows the step responses to 

controller response have no stationary error 

controller 



 

2.6.3 Derivative term

The derivative term (D

the system control input. A rapid change in the error will give an addition to the 

system control input. This improves the response to a sudden change in the 

system state or reference value. The 

a PD or PID controller. A t

Figure 2.6 shows D and 

controller gives a faster rising

that the D term essentially behaves

thus easily introduces instability 

Figure 2.

2.7 Effects of Proportional, Integral and Derivative Action

Proportional control is illustrated 

with Ti =∞ and Td=0. The figure shows that there is always

proportional control. The error will decrease with

tendency towards oscillation will also increase.

Figure 2.8. illustrates the effects of adding integral. It follows from(2.7)

that the strength of integral action increases with decreasing integral time

figure shows that the steady state error disappears when integral

The properties of derivative action are illustrated in
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Derivative term 

D) gives an addition from the rate of change in the error to 

control input. A rapid change in the error will give an addition to the 

control input. This improves the response to a sudden change in the 

reference value. The D term is typically used with the 

controller. A to large D term usually gives an unstable system. 

and PD controller responses. The response of the 

controller gives a faster rising system process value than the P 

term essentially behaves as a high pass filter on the error signal and 

s easily introduces instability in a system and make it more sensitive to noise.

 

Figure 2.6: Step response D and PD controller 

Effects of Proportional, Integral and Derivative Action

onal control is illustrated in figure 2.7 the controller is given

=0. The figure shows that there is always a steady state error in 

proportional control. The error will decrease with increasing gain, but the 

tendency towards oscillation will also increase. 

Figure 2.8. illustrates the effects of adding integral. It follows from(2.7)

that the strength of integral action increases with decreasing integral time

figure shows that the steady state error disappears when integral

es of derivative action are illustrated in figure 2.9 figure 2.9 

) gives an addition from the rate of change in the error to 

control input. A rapid change in the error will give an addition to the 

control input. This improves the response to a sudden change in the 

term is typically used with the P or PI as 

es an unstable system. 

controller responses. The response of the PD 

P controller. Note 

ter on the error signal and 

system and make it more sensitive to noise. 

 

Effects of Proportional, Integral and Derivative Action 

he controller is given by (2.7) 

a steady state error in 

increasing gain, but the 

Figure 2.8. illustrates the effects of adding integral. It follows from(2.7) 

that the strength of integral action increases with decreasing integral time Ti. The 

figure shows that the steady state error disappears when integral action is used. 

figure 2.9 figure 2.9 



 

illustrates the effects of adding derivative

chosen so that the closed

increasing derivative time, but d

too large. Recall that derivative action can

by linear extrapolation over the

understand that derivative

large. In Figure 2.9 the period of oscillation is about 6 s for the system without 

derivative action. Derivative action

a 1s (one sixth of the period). Also notice that the 

when derivative time is increased.

Figure 2.7: Simulation of a closed

The process transfer function is P(s)=1/(s+1)^3

Figure 2.8: Simulation of a closed

The process transfer function is  

K=1 
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illustrates the effects of adding derivative action. The parameters K and T

chosen so that the closed-loop system is oscillatory. Damping increases with 

increasing derivative time, but decreases again when derivative time becomes 

too large. Recall that derivative action can be interpreted as providing prediction 

by linear extrapolation over the time Td. Using this interpretation it is easy to 

understand that derivative action does not help if the prediction time T

the period of oscillation is about 6 s for the system without 

action. Derivative action ceases to be effective when Td is larger than

a 1s (one sixth of the period). Also notice that the period of oscillation

when derivative time is increased. 

 

Simulation of a closed-loop system with proportional control.

The process transfer function is P(s)=1/(s+1)^3 

 

Simulation of a closed-loop system with proportional and integral 

control. 

The process transfer function is  �(�)1/(� + 1)� , and the controller gain is 

action. The parameters K and Ti are 

Damping increases with 

hen derivative time becomes 

be interpreted as providing prediction 

. Using this interpretation it is easy to 

p if the prediction time Td is too 

the period of oscillation is about 6 s for the system without 

ceases to be effective when Td is larger than 

period of oscillation increases 

loop system with proportional control. 

loop system with proportional and integral 

, and the controller gain is  
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Figure 2.9: Simulation of a closed-loop system with proportional, integral and 

derivative control. 

The process transfer function is (�)1/(� + 1)� , the controller gain is K=3, and 

the integral time is Ti =2. 

2.8 PID Controller Tuning Methods 

In the previous chapter the basic PID control schemes were discussed. This 

chapter will present some tuning methods for PID controller. It is interesting to 

note that more than half of the industrial controllers used today utilize PID or 

modified PID control schemes. Analog PID controllers are mostly hydraulic, 

pneumatic, electric, and electronic types or their combinations.  

Currently, many of these controllers are transformed into digital forms through 

the use of microprocessors. Because most of PID controllers are adjusted in 

field, many different types of tuning methods have been proposed in the 

literature.  

Using these tuning methods delicate and fine tuning of PID controllers can be 

made in field industry. Also automatic tuning methods of the PID controller have 

been developed and some of the PID controllers may possess on line automatic 

tuning capabilities.  

Modified forms of PID control, such as I-PD control and two degrees of freedom 

PID control, are currently in use in industry. Many practical methods for 

switching (from manual to automatic operation) and gain scheduling are 

commercially available. 
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The usefulness of PID controllers lies in their general applicability to most 

control systems; in the field of process controls systems, it is a well-known fact 

that the basic and modified PID control schemes have proved their usefulness in 

providing satisfactory control, although they may not provide optimal control in 

many given situations. 

All general methods for control design can be applied to PID control. A number 

of special methods that are tailor made for PID control have also been developed 

these methods are often called tuning methods. Irrespective of the method used, 

it is essential to always consider the key elements of control, load disturbances, 

sensor noise, process uncertainty and reference signals. To obtain rational 

methods for designing controllers it is necessary to define the main purpose of 

the control system, and the design methods differ with respect to the knowledge 

of the process dynamics they require. A PI controller is described by two 

parameters (K and Ti) and a PID controller by three or four parameters (K, Ti, 

Td, and N). 

2.8.1 Ziegler-Nichols Rules for Tuning PID Controllers 

Ziegler and Nichols proposed rules for determining values of the proportional 

gain K, integral time T, and derivative time T, based on the transient response 

characteristics of a given plant. Such determination of the parameters of PID 

controllers or tuning of PID controllers can be made by engineers on-site by 

experiments on the plant. (Numerous tuning rules for PID controllers have been 

proposed since the Ziegler-Nichols proposal. They are available in the literature 

and from the manufacturers of such controllers). 

There are two methods called Ziegler-Nichols tuning rules: the first method and 

the second method. We shall give a brief presentation of these two methods. 

First Method: In the first method, we obtain experimentally the response of the 

plant to a unit-step input, as shown in Figure 2.10. If the plant involves neither 

integrator(~n) or dominant complex-conjugate poles, then such a unit-step 



 

response curve look S-

the response to may a step input exhibits an S

curves may be generated experimentally or from a dynam

plant. 

The S-shaped curve may be characterized by two constants, delay time L and 

time constant T. The delay time and time constant are determined by drawing a 

tangent line at the inflection point of the S

intersections of the tangent line with the time axis and line 

Figure 2.10. The transfer

first-order system with a transport lag as follows

     
�(�)

� (�)
=

�����

����
                

                 

Figure 2.10

Figure 2.11

12 

-shaped, as shown in Figure 2.11.This method applies if 

the response to may a step input exhibits an S-shaped curve. Such step

curves may be generated experimentally or from a dynamic simulation of the 

shaped curve may be characterized by two constants, delay time L and 

The delay time and time constant are determined by drawing a 

tangent line at the inflection point of the S-shaped curve and determining 

intersections of the tangent line with the time axis and line c(t) 

. The transfer function C(s)/U(s) may then be approximated by a 

order system with a transport lag as follows: 

                                                                                           

 

Figure 2.10 Unit-step response of a plan 

 

 

Figure 2.11: S-shaped response curve 

 

 

 

shaped, as shown in Figure 2.11.This method applies if 

shaped curve. Such step-response 

ic simulation of the 

shaped curve may be characterized by two constants, delay time L and 

The delay time and time constant are determined by drawing a 

shaped curve and determining the 

c(t) = K, as shown in 

) may then be approximated by a 

                                              (2.2) 
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Table 2.1: Ziegler-Nichols Tuning Rule Based on Step Response of Plant (First 

Method) 

Type of 

Controller 

 

KP 

 

Ti 

 

Td 

P T/L Inf 0 

PI 0.9T/L L/0.3 0 

PID 1.2T/L 2L 0.5L 

 

Ziegler and Nichols suggested to set the values of Kp,Ti and Td according to the 

formula shown in Table 2.1. 

Notice that the PID controller tuned by the first method of Ziegler-Nichols rules 

gives 

��(�) = −�� �1 +
1

���
+ ���� 

           = 1.2
�

�
(1 +

�

���
+ .5��                                                 

           = 0.6 ∗
(��

�

�
)�

�
                                                                                       (2.3)            

Thus, the PID controller has a pole at the origin and double zeros at s = -1/L, 

Second Method: In the second method, we first set Ti = inf and Td = 0. Using the 

proportional control action only (see Figure 2.12), increase K, from 0 to a critical 

value Kcr at which the output first exhibits sustained oscillations.(If the output 

does not exhibit sustained oscillations for whatever value K, may take, then this 

method does not apply.) Thus, the critical gain Kc, and the corresponding period 

Pcr, are experimentally determined. Ziegler and Nichols suggested that we set 

the values of the parameters K, T, and Td according to the formula shown in 

Table 2.1 



 

Figure 2.12 Closed

 

Figure 2.13

 

 

2.9 Filtering 

Differentiation is always sensitive to noise. This is clearly seen from the

Transfer function G(s)=s

larges. The following example is also illuminating.

EXAMPLE (2.1): 

Differentiation amplifies high frequency noise

Consider the signal is: 

�(�) = sin � + �(�) =

where the noise is sinusoidal noise with frequency ω. The derivative of

the signal is: 

��(�)

��
= cos � + �(�) =

The signal to noise ratio for

ratio of the differentiated signal is 

large. 
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Closed-loop system with a proportional controller.

 

Figure 2.13 Sustained oscillation with period Pcr.

Differentiation is always sensitive to noise. This is clearly seen from the

function G(s)=s of a differentiator which goes to infinity for

larges. The following example is also illuminating. 

Differentiation amplifies high frequency noise 

 

) sin � + ��sinω��                                              

where the noise is sinusoidal noise with frequency ω. The derivative of

( ) cos � + ��ω cosω� t                                              

The signal to noise ratio for the original signal is1/�� but the signal to

ratio of the differentiated signal is ω/�� . This ratio can be arbitrarily

 

loop system with a proportional controller. 

Pcr. 

Differentiation is always sensitive to noise. This is clearly seen from the 

differentiator which goes to infinity for 

                                           (2.4) 

where the noise is sinusoidal noise with frequency ω. The derivative of 

                                       (2.5) 

but the signal to noise 

. This ratio can be arbitrarily high if ω is 
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In a practical controller with derivative action it is therefor necessary to limit the 

high frequency gain of the derivative term. This can be done by implementing 

the derivative term as 

      � = −
����

�����/�
�                                                                          (2.6)   

Instead of � = ���� The approximation given by (2.6) can be interpreted as the 

ideal derivative	��� filtered by a first-order system with the time constant ��/�. 

The approximation acts as a derivative for low-frequency signal components. 

The gain, however, is limited to KN. This means that high-frequency 

measurement noise is amplified at most by a factor KN. Typical values of N are 

8 to 20. 

Further limitation of the high-frequency gain 

The transfer function from measurement	� to controller output � of a PID 

controller with the approximate derivative is 

        �(�) = −� �1 +
�

���
+

���

�����/�
�                                                        (2.7)  

This controller has constant gain at high frequencies 

          lim�→∞�(�) = −�(1 + �)                                                              (2.8) 

It is highly desirable to roll-off the controller gain at high frequencies. This can 

be achieved by additional low pass filtering of the control signal by 

            �(�) =
�

�������
�                                                                              (2.9)    

Where �� is the filter time constant and n is the order of the filter. The choice of 

�� is a compromise between filtering capacity and performance. 

The value of �� can be coupled to the controller time constants in the same way 

as for the derivative filter above. If the derivative time is used, 

 �� = ��/� is a suitable choice. If the controller is only PI,	�� = ��/�  may be 

suitable. 

The controller can also be implemented as 
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           �(�) = −�(1 +
�

���
+ ���)

�

(�����/�)�
                                            (2.9) 

This structure has the advantage that we can develop the design methods for an 

ideal PID controller and use an iterative design procedure. The controller is first 

designed for the process �(�). The design gives the controller parameter ��. An 

ideal controller for the process �(�)
�

(�����/�)�
   is then designed giving a new 

value of	�� etc. Such a procedure will also give a clear picture of the trade-off 

between performance and filtering [2]. 

2.10 Digital PID Controller 

Digital PID is commonly used because it is more suitable to design for a 

complex system for the purpose of reducing cost, and is more immune to noise 

than an analog PID.  

digital controllers are being used in many  large and  small-scale control systems, 

replacing the analog controllers. It is now a common practice to implement PID 

controllers in its digital version, which means that they operate in discrete time 

domain and deal with analog signals quantized in a limited number of levels.  

The trend toward digital rather than analog controls is mainly due to the 

availability of low-cost digital computers. This controller has been widely used 

in many different areas such as aerospace, process control, manufacturing, 

robotics, automation and transportation system. It is one of the most powerful 

and efficient controller. process measurements are usually of an analog nature: 

the temperature of the furnace, the rate of flow through a pipe, the pressure of a 

fluid, etc. These are all analog quantities, infinitely variables not discrete (e.g. 

counting the number of units passed by on a conveyor belt), the majority of 

measurements in the industry world are analog. 



 

Figure 

2.10.1 Analog to digital 

converter (DAC) 

In order for any digital device to successfully interface with an analog signal, 

that signal must be digitized by means of analog

This section will not endeavor to explore the intricate details

but merely to discuss ADC performance in the context of process measurements.

The digital-to-analog converters or DACs, are generally used to produce the 

analog drive signal required to final control elements.

Digital PID based control system consist of ADC at the input side of the 

converter comparator based generated error signal in to digital signal.
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Figure 2.14 a simple digital controller 

Analog to digital converter (ADC) and digital to analog 

In order for any digital device to successfully interface with an analog signal, 

that signal must be digitized by means of analog-to-digital converter or ADC. 

This section will not endeavor to explore the intricate details of ADC circuitry, 

but merely to discuss ADC performance in the context of process measurements.

Figure 2.15 ADC 

analog converters or DACs, are generally used to produce the 

analog drive signal required to final control elements. 

PID based control system consist of ADC at the input side of the 

converter comparator based generated error signal in to digital signal.

 

digital to analog 

In order for any digital device to successfully interface with an analog signal, 

digital converter or ADC. 

of ADC circuitry, 

but merely to discuss ADC performance in the context of process measurements. 

 

analog converters or DACs, are generally used to produce the 

PID based control system consist of ADC at the input side of the 

converter comparator based generated error signal in to digital signal. 
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2.10.2 Digital PID design 

Several methods can be used to design a digital PID. One of the methods is to 

design an analog PID first, then convert the s-domain into the  z-domain with 

appropriate approximation. A digital PID can also be directly designed by the 

root locus and direct response methods. 

 Conversion from Analog to Digital PID  

The conversion from s-domain into z-domain is quick and  easy. The conversion 

can be done by using difference approximation, ZOH (zero-order hold), bilinear 

transformation or first-order hold. In this section, the difference approximation 

equation is derived.  

The proportional term in PID can be approximated as: 

          ���(�)                                                                (2.10) 

 The backward rectangular rule approximation of integral term in PID: 

           ����(� − 1)                                                                       (2.11) 

  Also, the backward difference approximation of derivative term in PID:  

         
��

�
[�(�) − �(� − 1)	]	                                                           (2.12) 

However, the integral term requires previous information. Thus, the summation 

of the three terms becomes, where T denotes the sample period: 

      �(�) = ���(�) + �(�) +
��

�
[�(�) − �(� − 1)                       (2.13) 

      �(�) = �(� − 1) + ����(� − 1)                                              (2.14) 

Equation 3.13 is the position algorithm of the present control output. The 

velocity algorithm for the PID is: 

  �(� − 1) = ���(� − 1) + �(� − 1) +
��

�
[�(� − 1) − �(� − 2)       (2.15) 

      �(� − 1) = �(� − 2) + ����(� − 2)                                              (2.16) 

By subtracting Equation 3.14 from Equation 3.13, the digital PID is 

approximated as: 



 

      �(�) − �(� − 1) =

																																										

Figure 

 

 Direct root locus design 

Root locus design for a digital PID is similar to an analog PID. Basically, the 

rules for drawing the root locus for both are the same except that stability, 

frequency and damping ratio are ch

In terms of stability, it is suggested that the poles be placed in the right

plane, and inside the unit circle. The closer the poles are to the origin, the faster 

the settling time will be. The procedure to design a digital PID is exactly the 

same as an analog PID, where the poles and zeros work together to shape the 

root loci to the desired location. 

Even though there is no need to physically build a controller algorithm as the 

analog PID, one needs to consider whether the digital PID is realizable (i.e. the 
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) = ��[�(�) − �(� − 1)] + ����(� − 1) +

						2�(� − 1) + �(� − 2)                                  

Figure 2.16: Digital PID Controller 

Direct root locus design  

Root locus design for a digital PID is similar to an analog PID. Basically, the 

rules for drawing the root locus for both are the same except that stability, 

frequency and damping ratio are changed.  

In terms of stability, it is suggested that the poles be placed in the right

plane, and inside the unit circle. The closer the poles are to the origin, the faster 

the settling time will be. The procedure to design a digital PID is exactly the 

same as an analog PID, where the poles and zeros work together to shape the 

root loci to the desired location.  

Even though there is no need to physically build a controller algorithm as the 

nalog PID, one needs to consider whether the digital PID is realizable (i.e. the 

) +
��

�
[�(�) −

                                  (2.17) 

 

Root locus design for a digital PID is similar to an analog PID. Basically, the  

rules for drawing the root locus for both are the same except that stability, 

In terms of stability, it is suggested that the poles be placed in the right-hand 

plane, and inside the unit circle. The closer the poles are to the origin, the faster 

the settling time will be. The procedure to design a digital PID is exactly the 

same as an analog PID, where the poles and zeros work together to shape the 

Even though there is no need to physically build a controller algorithm as the 

nalog PID, one needs to consider whether the digital PID is realizable (i.e. the 
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controller does not requires future variables). If the controller is not 

programmable, the digital PID needs to be redesigned. Modification such as 

adding another pole inside the unit circle can possibly make the controller 

realizable.  

 Direct frequency design  

Direct frequency design is useful especially in deadbeat control, a method to 

make the system meet commands one sample time later than the desired time.  

Using direct frequency design, system requirements are first considered, and 

written in the form of a transfer function. The controller and system transfer 

function is set equal to the desired transfer function. Then, the proportional, 

integral and derivative terms can be solved. This is illustrated in Equation below: 

          �(�) =
�(�)

�(�)
=

�(�)�(�)

���(�)�(�)
                                                         (2.18)                                                                 

2.10.3 Tuning for digital PID 

The procedure of Ziegler-Nichols tuning for a digital PID is the same as tuning 

an analog PID. The main difference between them is the sampling time, if the 

sampling time designed for the digital PID is small compared to system 

response, an analog tuning method like Ziegler-Nichols works well in a digital 

PID. However, if the sampling time is larger than the system response, the tuning 

becomes inaccurate. Thus, it is important to select and design the sampling time 

wisely, in order to achieve optimum performance. 
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Table 2.2: Comparison of  Digital and Analog PID Controllers 

Digital PID Controllers Analog PID Controllers 

More economical because of 

cheap components and the 

simple design algorithm 

Comparatively expensive due to the 

complexity of the design algorithm. 

Fully integrated and compact. A large number of operational amplifiers 

and other components are needed. 

High noise immunity.    Noise susceptibility is high. 

More flexibility because of the 

ability to program and reprogram 

our chip. 

Redesigning is required for any change 

in the system parameters. 

High accuracy with faster 

processing and low power 

consumption. 

Less accurate with more processing time 

and power consumption is higher. 

  

 




