Sudan University of Science and Technology

College of Engineering

School of Electrical and Nuclear Engineering

Homeand IndustrialSafety Using FireandGasDetectionSystem

السلامة السكنية والصناعية باستخدام نظام الكشف

عن الغاز والحريق

A Research Submitted in Partial fulfillment for the Requirements of The Degree of B.Sc. (Honors) in Electrical Engineering

Prepared By:

TAHA HASSAN ABDALKAREEM

MOHAMMAD ALMAHDI ALTAYEB

ZAINELABDEEN IBRAHIM AHMED

TAHA DAFA ALLAH ALAMIN

Supervised By

UST: MOHANAD HAMAD ELJACK

بسم الله الرحمن الرحيم

قال الله تعالى:

((قل هل يستوى الذين يعلمون والذين لا يعلمون))

صدق الله العظيم

سورة الزمر (9)

DEDICATION

Our thanks and deep appreciation to our great parents our source of inspiration and love who dedicated their live to empower us with carriage and support .Our gratitude and special thanks to our supervisor and KHARTOUM refinery.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah for endowing us for with health, patience, and knowledge to complete this work.

ABSTRACT

Gas leakage and fire outbreaks in industrial as well as houses have led to wide destruction and losses in the past. Gas leakages and fire outbreaks both spread widely and lead to even greater losses of life and property if proper action is taken on time. So here we propose a system that detects gas as well as fire outbreaks and alerts as accordingly so that proper action may be taken to control it. For this our system uses gas sensor along with a temperature sensor interfaced to the microcontroller. the microcontroller is also in turn connected to LCD screen and buzzer to show the alerting part. As soon as the fire start the rise in temperature is recorded by out temperature sensor. When temperature rises beyond certain limit it send signal to the microcontroller the microcontroller process the signal and display the fire alert status on LCD screen and also sound the buzzer. Now the gas monitor too constantly monitors for any gas leakages. As so as any gas is detected at the sensor it sends the signal to the microcontroller. the microcontroller now process this data and sound the buzzer and also display the gas alert message on LCD screen.

مستخلص

تسرب الغاز والحريق في المنشات الصناعية في الماضي ادى الى خسائر في الارواح والممتلكات, لذلك السبب تم اقتراح نظام تلقائي يقوم بالكشف عن تسرب الغاز والنارو يقوم باصدار تنبيهات الخطر ومن ثم يتخذ اجراءات ملائمة للحد من انتشار الحريق.

استخدم في هذا المشروع حساس للكشف عن ارتفاع درجة الحرارة واخر يقوم بالكشف عن الغازات المتسربة وربطهما بوحدة تحكم عبر شاشة لعرض قراءات درجة الحرارة والغاز موصلة بوحدة التحكم.

TABLE OF CONTENT

subject	PAGE	
الاية	I	
DEDICATION	II	
ACKNOWLEDEGMENT	III	
ABSTRACT	IV	
مستخلص	V	
TABLE OF CONTENTS	VI	
LIST OF FIGURES	IX	
LIST OF TABLES	IIX	
LIST OF ABBREVIATIONS	IIIX	
CHAPTER ONE		
INTRODUCTION		
1.1 Introduction 1		
1.2 Problem definition 2		
1.3 Objective	2	
1.4 Methdology	3	
1.5 Project layout 3		
CHAPTER TWO		
OVERVIEW OF FIREFIGHTING SYSTEM		
2.1Overview	4	
2.20ld Tactics And Tools		
2.3Classification of Fires	5	
2.4 Fire Alarm System	5	
2.4.1 Conventional Fire Alarm System	6	
2.4.2 Addressable System	6	
2.4.3 Wirles Fire Alarm System	7	

2.5 Key Components of Fire Alarm system	7	
2.5.1 Control Panel	7	
2.5.2 Detectors	8	
CHAPTER THREE		
DESCRIPTION OF COMPONENTS SYSTEM		
3.1System Layout	9	
3.2Input Unit	10	
3.2.1LM35 Temperature sensor	10	
3.2.2Smoke sensor	10	
3.2.3Flame Sensor	12	
3.3System Processor	13	
3.4Output Unit	13	
3.4.1Transistor –NPN(548)	14	
3.4.2 Relay	14	
3.4.3 Pump	16	
3.4.4Light Emitting Diode	17	
3.4.5 Buzzer	17	

CHAPTER FOUR		
SIMULATION AND RESULTS		
4.1Programming Microcontroller	19	
4.2Machine Code	19	
4.3High Level Language	20	
4.4Code Simulator	22	
4.4.1 AVR Simulator	22	
4.4.2AVR Studio	23	
4.4.3Proteus VSM	23	
4.5Download A program Into Microcontroller	24	
4.6Software Description	24	
4.7 Flow Chart	25	

4.8System Operation	26	
4.9Simulation Design	26	
4.10Results	27	
4.11Discussion	28	
CHAPTER FIVE		
CONCLUSION AND RECOMMENDATIONS		
5.1Conclusion	29	
5.2Recommendation	29	
5.3References	31	

LIST OF FIGURES

FIGURE	TITLE	PAGE
3.1	Hardware Implementation of Automatic	
	Firefighting System	9
3.2	LM35 Temperature Sensor	10
3.3	Smoke Sensor	11
3.4	Smoke Sensor Circuit	11
3.5	Flame Sensor	13
3.6	BC548 transistor	14
3.7	Relay	15
3.8	Pump	16
3.9	Light Emitting Diode (LED)	17
3.10	Buzzer	18
4.1	Flow Chart	25
5.1	Fire and Gas detection simulation system	27

LIST OF TABLES

TABLE	TITLE	PAGE
5.1	The Results When Operating The System	28

LIST OF ABBREVIATION

IMO	International maritime organization		
ISO	International standard organization		
NFPA	National free protection agency		
IMO FSS	International maritime organization fire		
	safety system		
BLEVES	Boiling liquid expending vapor		
	explosion		
UV	Ultra violet Radiation		
IF	Infra- red		
MCU	Microcontroller		
DSP	Digital Signal Processor		
ADC	Analog –to-Digital-Convertor		
DAC	Analog-to-Digital Convertor		
I/O	Input /Output		
CU	Control Unit		
CPU	Central Processor Unit		
PC	Personal Computer		
NC	Normally Close Contact		
NO	Normally Open Contact		
AVR	Advance Virtual RISC		
PIC	Peripheral Interface Controller		
EEPROM	ROM Electrically Erasable programmable Read Only		
	Memory		
AVRASM	AVR Assembler		
DCS	Distributed control system		