<u>آية</u>

قال تعالى: {قُلْ هَلْ يَسْتُو ِ يِ الْآذِين يَعْلَمُ وَنَ الْآذِينَ لَا يَعْلَمُ وَنَ الْآذِينَ لَا يَعْلَمُ ونَ الْآدِين يَعْلَمُ ونَ الْآدِين يَعْلَمُ ونَ الْآدِين لَا يَعْلَمُ ونَ الْآدَي الْآدِينَ لَا يَعْلَمُ وَنَ اللّهِ اللّهُ اللّهُ

To my parents, lovely Dad & Mom

"Taj Elser & Hayat"

To my lovely brothers, sister

Acknowledgment

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah, the Almighty, for the strengths and his blessing in completing this thesis.

I am very grateful to my supervisor, Dr. Jacqueline John George, whose supervision and guidance helped me to develop an understanding of the research area, and I greatly appreciate the time she spent in improving the quality of this thesis.

I am thankful to my batch mates and friends for their support and being such a good company.

I extend my gratitude to researchers and scholars whose papers and thesis have been utilized in my project.

Finally, I thank my family for their love, support and encouragement without which this would not have been possible.

ABSTRACT

In this thesis, the impact of clipping noise on Visible light communication systems employing asymmetrically clipped optical OFDM in the presence of double-sided signal clipping is investigated. MATLAB program was used to the BER performance. The simulation compared two cases where the clipping noise is ignored and where it is present for multi-level quadrature amplitude modulation (*M*-QAM) schemes. The results showed that BER performance of ACO-OFDM based VLC is more severely degraded with the increase of the modulation order And the ACO-OFDM is robust to the clipping effects and it is more suitable for applications with lower radiated average optical power and zero biasing.

المستخل<mark>ص</mark>

في هذه الاطروحة, تمت دراسة تأثير ضوضاء القطع على انظمة الاتصالات الضوئية المتمثلة في القطع الغير متماثل للتقنية تقسيم الترددات المتعامدة الضوئي في وجود القطع ذو الوجهين للاشارة. تم اسنخدام برنامج الماتلاب لدراسة اداء معدل الخطأ في البتات. في المحاكاة تمت مقارنة حالتين في حالة وجود ضوضاء قطع وفي حالة تجاهل ضوضاء القطع للتضمين السعوي الرباعي متعدد المستويات. أظهرت النتائج أن معدل الخطأ في البتات في القطع الغير متماثل للتقنية تقسيم الترددات المتعامدة الضوئي يتدرج بزيادة قيمة التضمين وأن القطع الغير متماثل للتقنية تقسيم الترددات المتعامدة ممانع لتأثير القطع وهو اكثر ثباتا للتطبيقات معدل الاشعاع الضوئي المنحفض و تحامل صفري

Table of Contents

Content	Page	
Dedication	П	
Acknowledgment		
Abstract	IV	
Contents	VI	
List of Figures	VШ	
List of Tables	XI	
Abbreviations	XIV	
Chapter One: Introduction		
1.1 Preface	2	
1.2 Problem Statement	3	
1.3 Objectives	4	
1.4 Methodology		
1.5 Thesis Outlines	4	
Chapter Two: Literature Review		
2.1 Introduction		
2.2 Historical Background	7	
2.3Literature review	8	
2.4 Comparison of VLC with Other Communication Technologies	9	
2.4.1 VLC versus Radio Waves	9	
2.4.2 VLC versus Infrared Communication	10	
2.5 VLC for Indoor Communication	11	

2. 6 VLC Applications	12	
2.7 Basic VLC System structure		
2.6.1 Intensity Modulation and Direct Detection	15	
2.6.2 White LEDs	15	
2.6.4 Photodiodes		
2.6.3 VLC Modulation Techniques	17	
Chapter Three: Methodology		
3.1 Introduction	22	
3.2 ACO-OFDM system model	22	
Chapter Four: The Simulation and Results		
4.1 Introduction	38	
4.2 System assumptions	38	
4.3Simulationflowcharts	39	
4.4 Results and discussion	40	
Chapter Five: Conclusion & Recommendation		
5.1 Conclusion	52	
5.2 Recommendation	53	
Reference	54	
Appendix		

List of Figures

Figure	Page		
Figure 2.1: The visible spectrum	11		
Figure 2.2: Car-to-car visible light communication between head and tail			
Figure 2.3: VLC in an aircraft cabin			
Figure 2.4: Medical equipment sensitive to radio wakes can work with VLC			
Figure 2.5: VLC in underwater communications			
Figure 2.6: The basic structure of VLC system			
Figure 2.7: Trichromatic white LEDs, Single-chip white LEDs.			
Figure 2.8: Chromacity diagram for CSK			
Figure 3.1 Block diagram of the ACO-OFDM based VLC system.	24		
Figure 3.2: Attenuation factor of the clipping noise as a function of the normali	zed		
clipping levels in ACO-OFDM	33		
Figure 3.3: Time domain signal in DSP, $x_{DSP}(k)$, in ACO-OFDM			
Figure 3.4: Unfolded time domain signal in DSP, $\breve{x}_{DSP}(k)$, in ACO-OFDM	35		
Figure 4.1: ACO-OFDM Flow Chart	39		
Figure 4.2: BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with 4-QAM modulation and no			
clipping noise	41		
Figure 4.3: BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with 16-QAM modulat	ion and no		
clipping noise	42		
Figure 4.4: BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with 64-QAM modulation and			
no clipping noise	43		
Figure 4.5: BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with different biasing power and			
no clipping noise	44		
Figure 4.6 BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with different power transmitted			
and zero biasing, no clipping noise	45		
Figure 4.8: BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with 4QAM modulation and			
with clipping noise	46		

Figure 4.9: BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with 16-QAM modulation are	ıd
with clipping noise	47
Figure 4.10: BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with 64QAM modulation and	nd
with clipping noise	48
Figure 4.11: BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with different biasing power	r
and with clipping noise	49
Figure 4.12 BER versus SNR ($\Gamma_{b(elec)}$), for ACO-OFDM with different power	
transmitted ,zero biasing and with clipping noise	50

List of Tables

Figure	Page
Table4.1: Simulation Parameter	38

Abbreviations

ACO-OFDM	Asymmetrically Clipped Optical OFDM
APDs	Avalanche photo-diodes
AWGN	Additive White Gaussian Noise
BER	Bit Error Rate
CCDF	Complementary cumulative distribution function
СР	Cyclic prefix
CSK	Color Shift Keying
DCO-OFDM	DC Biased Optical OFDM
DD	Direct Detection
FOV	Field-of-view
FFT	Fast Fourier Transform
ICI	Inter carrier interference
IFFT	Inverse Fast Fourier Transform
IM	Intensity Modulation
LED	Light Emitting Diode
LOS	Line of Sight
OFDM	Orthogonal Frequency Division Multiplexing
OWC	Optical Wireless Communication
SSL	solid-state lighting
SNR	Signal to Noise Ratio
VLC	Visible Light Communication
VLCC	Visible light communications consortium
ZF	Zero forcing equalizer