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Chapter (1) 

The Basic Notation of Stochastic Calculus 

Section (1.1): Probability Space, Random Variables and 

Distribution Function 

The random theory of probability stems in the work of A.N. Kolmogorov 

published in 1933. Kolmogorov associates a random experiment with 

probability space, which is a triplet,(      ), consisting in the set of 

outcomes,  , a  -filed,  , with Boolean algebra properties, and a probability 

measure, P. In the following each of these elements will be discussed in 

more detail. 

 Now we discuss the Sample Space. 

 A random experiment in the theory of probability is an experiment whose 

outcome cannot be determined in advance. These experiments are done most 

of the time mentally. When an experiment is performed, the set of all 

possible outcomes is called the sample space, and we shall denote it by  . 

One can regard this also as the states of the world, understanding by this all 

possible states the world might have. For instance, flipping a die will 

produce the sample space with two states        while rolling a die yields a 

sample space with six states.  Piking randomly a number between 0 and 1 

corresponds to a sample space which is the entire segment         

 All subsets of the sample space   forms a set denoted by   . The reason for 

this notation is that the set of parts of   can be put into bijective 

correspondence with the set of binary functions           . The number of 

elements of this set is      , where |  | denotes the cardinal of  .  If the set is 

finite, | | = n, then   has    elements. If   is infinite countable(I.e. can be 

put into bijective correspondence with the set of natural numbers), then      

is infinite and its cardinal is the same as that of the real number set  .the 

next couple of examples provide example of set    in the finite and infinite 

cases.                                                                                                    
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Examples (1.1.1): 

Flip a coin and measure the occurrence of outcomes by   and  : 

 associate a   if the outcome does not occur and      if the outcome occurs. 

We obtain the following four possible assignments: 

{   ,                                       

so the set of subsets of       can be represented as   sequences of length   

formed with   and  :                            

These corresponds in order to                  which is         

Example (1.1.2):  

Pick a natural number at random. Any subset of the sample space 

corresponds to a sequence formed with   and  .for instance, the subset 

          correspond to the sequence              having1 on the 1st, 

 rd,  th, and  th places and   in rest. It is known that the number of these 

sequences is infinite and can be put into bijective correspondence with the 

real numbers set  . This can be also written as     =| |. 

In the following we study the Events and Probability. 

 The set    has the following obvious properties 

1. It contains the empty set    

2. If contains a set A, then it contains also its complement         

3. It is closed to unions, i.e., if         is a sequence of set, then their 

union         also belongs to     

Any subset   of    that satisfies the previous three properties is called          

a  -field.The set belonging to   are called events. This way, the 

complement of an event, or the union of events is also an event. We say that 

an event occurs if the outcome of the experiment is an element of that 

subset. The chance of occurrence of an event measured by a probability 

function           which satisfies the following two properties  

1.         
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2. For any mutually disjoin events          ,                                       

                                                     . 

The triplet         is called a probability space. This is the main setup in 

which the probability theory works. 

Example (1.1.3): 

In the case of flipping a coin, the probability space has the following 

element: 

                             and   defined by  

               
 

 
        

 

 
           .    

Example (1.1.4): 

Consider a finite sample space               with 

 the  -filed       and probability given by 

         ⁄        .  

Then          is called the classical probability space. 

 

 

Figure (1.1) 

If any pullback    (     ) is known, then the random variable            

      is   -measurable. 
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Now we discuss the Random Variables: 

Since the  -field   provides the knowledge about which events are possible 

on the considered probability space, then  can be regarded as the 

information component of the probability space          A random 

variable   is a function that assigns a numerical value to each state of the 

world,         such that values taken by   are known to someone who 

has access to the information    More precisely, given any two numbers 

      , then all the states of the world for which   takes values between 

    forms a set that is an event 

(an element of     i.e.             

                  

Another way of saying it is that   is an  -measurable function. It world 

noting that in the case of the classical field of probability the knowledge is 

maximal since  =    and hence the measurability of random variables is 

automatically satisfied. From now on instead of measurable we shall 

introduce conditional expectation. 

Example (1.1.5): 

Consider the experiment of flipping three coins. In this case   is the set of 

all possible triplets. Consider the random variable   which gives the number 

of tails obtained. For instance 

                       The sets  

                                                

                                                             

obviously belong to     and hence   is a random variable. 

Example (1.1.6): 

A group is a set of elements, called nodes, and a set unordered pairs of 

nodes, called edges. Consider the set of nodes  
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               and the set of edges 

               (     )           )}. 

 Define the probability space (     ), where  

1.   the sample space is       (the complete graph); 

2.  the  -field   is the set of all subgraphs of  ; 

3. the probability is given by           ⁄   where      is the number 

of nodes of the graph  . 

As an example of a random variable we consider            = the total 

number of edges of the graph    Since given    one can count the total 

number of edges of each subgraph, It follows that    is  -measurable, and 

hence it is a random variable. 

Now we present the Distribution Functions. 

 Let   be a random variable on the probability space        . The 

distribution function of   is the function            defined by 

                

The distribution function is non-decreasing and satisfies the limits  

                           
   

    
       

If we have                 

 

  
            

Then we say that      is the probability density function of    A useful 

property which follows from the Fundamental Theorem of calculus is 

                       ∫        
 

 

 

In the case of discrete random variable the aforementioned integral is 

replaced by the following sum 

         ∑        

     

              

In the following we study the Basic Distributions. 
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We shall recall a few basic distributions, which are most often seen in 

applications.  

Normal distribution A random variable   is said to have a normal 

distribution if its probability density function given by  

     
 

 √  
             ⁄   

with   and     constant parameter, see fig.(1.2a).  

The mean and variance are given by     

                  

Log-normal distribution Let   be normally distributed with mean   and 

variance      

Then the random variable      is said log-normal distributed. The mean 

and variance of Y are given by 

                  ⁄                       
(   

  )  

 

 
Figure (1.2) 

a Normal distribution; b Log-normal distribution; c Gamma distribution; 
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 d Beta distributions. 

The density function of the log-normal distributed random variable   is 

given by            

     
 

  √  
 

 
         

                 

see fig.(1.2b). 

Gamma distribution A random variable X is said to have a gamma 

distribution with parameters          if its density function is given by  

     
         

      
            

where        denotes the gamma function, see Fig.(1.2c).  The mean and 

variance are       

                                                   

The case     is known as the exponential distribution, see Fig.(1.2a). 

In this case                            
 

 
                 

 

Figure(1.3) 

a Exponential distribution; b Poisson distribution. 

The particular case when       and     the   -distribution with 
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   degrees of freedom. This characterizes a sum of   independent standard 

normal distribution. Beta distribution A random variable   is said to have a 

beta distribution with parameters         if its probability density 

function is of the form      

     
            

      
        

Where B(α,β) denotes the beat function. See Fig.(1.2d). for two particular 

density function. In the case  

                
 

   
                                   

        
  

             
  

Poisson distribution A discrete random variable   is said to have a Poisson 

probability distribution if               

       
  

  
                    

with λ > 0 parameter, see Fig.(1.3b). In this case        and 

            

Now we discuss the Independent Random Variables.  

Roughly speaking, two random variables   and Y are independent if the 

occurrence of one of them does not change the probability density of the 

other. More precisely, if for any sets      , the events      

                      

are independent, then   and Y are called Independent Random Variables. 

Proposition (1.1.7): 

Let         independent random variables with probability density function 
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                  Then the product random variable    has the probability 

density function             

Proof: Let          be the probability density of the product     

Using the independence of sets we have 

                                                   

                                                                          

                                                                      

                      

Dropping the factor      yields the desired result.  

Now we study the Expectation. 

A random variable         is called integrable if  

∫             ∫    
  

          

The expectation of an integrable random variable   is given by 

     ∫           ∫  
  

       

Where      denotes the probability density function of  . Customary the 

expectation of   is denoted by   and it is also called mean. In general, for 

any continuous function       we have  

        ∫              ∫     
  

        

Proposition (1.1.8): 

The expectation operator   is linear, i.e. for any integrable random variables. 

        

1.                               

2.                   
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Proof: It follows from the fact that the integral is a linear operator. 

Proposition (1.1.9): 

Let         be two independent integrable random variable. Then 

                                

Proof: This is a variant of Fubini’s Theorem. Let            denote the 

probability densities of             respectively. Since         are 

independent, by proposition (1.1.7) we have            Then 

        ∬                ∫         ∫                    

Now we presents the Radon-Nikodym’s Theorem. 

This section is concerned with existence and uniqueness result that will be 

useful later in defining conditional expectations. Since this section is rather 

theoretical, it can be skipped at a first reading. 

Proposition (1.1.10): 

Consider the probability space (     ), and let   be a  -filed included in    

It      a  -predictable random variable such that  

∫                       
 

 

then          

Proof: In order to show that     almost surely, it suffices to prove that 

                We shall show first that   takes values as small as 

possible with probability one, i.e.       we have                

To do this                   Then 

              ∫    
 

  

∫    
 

 

 
∫      

 

 

and hence           Similarly             Therefore 
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Taking     leads to             This can be formalized as follows. 

Let     

 
  and consider                   with          Then 

                 (⋂   

 

   

)     
   

         

Corollary (1.1.11):  

If   and   are  -predictable random variables such that  

                              ∫    
 

∫                          
 

                               

then            

Proof: Since ∫                
 

 by proposition (1.1.10) we have 

            

Theorem (1.1.12): (Radom-Nikodym) 

Let         be a probability space and   be a  -field included in    Then 

for any random variable   there is  

a  -predictable random variable   such that 

∫    
 

∫                 
 

                                                            

we shall omit the proof but discuss a few aspects. 

1. All  -filed    contain impossible and certain events  ,      . 

making     yields       

∫     
 

∫         
 

 

which is            

2. Radom-Nikodym’s theorem states the existence of    In fact this is 

unique almost surely. In order to show that, assume there are two  
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   -predictable random variables   and    with the aforementioned property. 

Then from Equation (1.1) yields 

∫     
 

∫                  
 

 

 Apply corollary (1.1.11) yields               

Now we present the Conditional Expectation.  

Let   be a random variables on the probability space          Let    be a 

 -fields contained in    Since    is  predictable, the expectation of    given 

the information   must be   itself. This shall be written as            It 

is natural to ask what is the expectation of    given the information    This is 

a random variable denoted by        satisfying the following properties: 

1.        is  -predictable; 

2. ∫          
 

∫     
 

      

       is called the conditional expectation of   given    

We owe a few explanations regarding the correctness of the aforementioned 

definition. The existence of the  -predictable random variable        is 

assured by the Radom-Nikodym theorem. The almost surely uniqueness is 

an application of Proposition (1.1.10) (see the discussion point 2 of Theorem 

(1.1.12)). 

It worth noting that the expectation of  , denoted by      is a number, 

while the conditional explanation        is a  random variable. When are 

they equal and what is their relationship? The answers is inferred by the 

following solved example. 

Example (1.1.13): 

Show that if          then               

Proof: We need to show that       satisfies conditions 1 and 2. 

The first one is obviously satisfied since any constant is  -predictable. The 

latter condition is checked on each set of  .  
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We have         

∫         
 

     ∫    ∫         
  

 

∫    
 

∫                     
 

 

Example (1.1.14): 

Show that  [      ]        i.e. all conditional expectations have the same 

mean, which is the mean of    

Proof: Using the definition of expectation and taking     in the second 

relation of the aforementioned definition, yields 

 [      ]  ∫           ∫          
  

 

which ends the proof. 

Example (1.1.15):  

The conditional expectation of   given the total information   is the random 

variable   itself, i.e. 

          

Proof: The random variable   and        are both  -predictable (from the 

definition of the random variable). From the definition of the conditional 

expectation we have 

∫          
 

∫     
 

      . 

Corollary (1.1.11) implies that          almost surely. 

General properties of the conditional expectation are stated below without 

proof. The proof involves more or less simple manipulations of integrals and 

can be taken as an example for the reader. 
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Proposition (1.1.16): 

Let  and   be two random variable on probability space (        We have  

1. Linearity: 

                                     ; 

2. Factoring out the predictable part: 

                                         

if   is  -predictable. In particular,             

3. Tower property: 

                                

4. Positivity:              

                                                          

5. Expectation of a constant is a constant 

                                           

6. An independent condition drops out     

                                                

if   is independent of  . 

Section (1.2): Limits of Sequences and Stochastic Processes 

Now we discuss the Inequalities of Random Variables. 

This section prepares us Limits of sequences of random variables and limits 

of sequences and stochastic processes. We shall start with a classical 

inequality result regarding expectation. 

Theorem (1.2.1): (Jensen’s Inequality) 

 Let       be a convex function and let   be an integrable random  

variable on the probability space (        If      is integrable, then 

                

almost surely (i.e. the inequality might fail on a set of measure zero). 
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Figure (1.4) 

Jensen’s inequality                 for a convex function    

Proof: Let         Expand   in Taylor series about   and get  

                     
 

 
              

with   in between   and    Since   is convex,        and hence  

                      

which means the graph of      is above the tangent line at (      )  

Replacing   by the random variable    and taking the expectation yields  

                                              

                                         

This proves the result. 

Figure (1.4) provides a graphical interpretation of Jensen’s inequality. 

 If the distribution of   is symmetric, then the distribution of      is 

skewed, with                   

It worth noting that the inequality is reversed for   concave. We shall 

present next a couple of applications. 
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A random variable       is called square integrable if 

      ∫        

 

      ∫   

 

          

Application (1.2.2): 

If   is a square integrable random variable, then it is integrable. 

Proof: Jensen’s inequality with          become  

              

Since the right side is finite, it follows that         so   is integrable. 

Application (1.2.3): 

If       denotes the moment generating function of the random variable   

with mean    then       

         . 

Proof: Applying Jensen inequality with the convex function         

Yields 

           . 

Substituting    for   yields 

                                                                                                                                                                  

Using the definition of the moment generating function 

             

and that               , then Equation (1.2) leads to the desired 

inequality. 

The variance of a square integrable random variable   is defined by  
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By application(1.2.2) we have           so there is a constant       

called standard deviation, such that   

  
          

Theorem (1.2.4): (Markov’s Inequality) 

Prove the following inequality 

              
 

  
                    for any       

Proof: Let                  Then 

        ∫            ∫           
  

∫        
 

 

       ∫      
 

                    

Dividing by    leads to the desired result. 

Theorem (1.2.5): (Tchebychev’s Inequality) 

If   a random variable with mean   and variance     show that 

                          
  

  
  

Proof:                    Then 

                      ∫              ∫            
  

 

   ∫      
 

                                                     

Dividing by   leads to the desired inequality. 

Theorem (1.2.6): (Chernoff bounds) 

Let   is a random variable. Then for any     we have 
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1.        
 [   ]

   
          

2.        
 [   ]

   
          

Proof: 1. Let     and denote         By Markov’s inequality  

 (     )  
    

   
  

Then we have  

                 (       ) 

                         (     )  
    

   
 

      

   
  

2. The case     is similar. 

In the following we shall present an application of the Chernoff bounds for 

the normal distributed random variables. Let   be a random variables 

normally distributed with mean   and variance     It is known that its 

moment generating function is given by          

                
 
 
    

  

Using the first Chernoff bound we obtain  

       
    

   
  

       
 
 
    

       

which implies 

        
   
   

        
 
 
     

  

It is easy to see that the quadratic function             
 

 
      has 

the minimum value reached for   
     

  
 

   
   

      (
   

  
)   
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 Substituting in the previous formula, we obtain the following result: 

Proposition (1.2.7): 

If   is a normal distributed variable, with            then             

        
      

     

Example (1.2.8): 

Let   be a Poisson random variable with mean      

1. Show that the moment generating function is            (    )  

2. Use Chernoff  bound to show that  

                      (    )     

Markov’s, Tchebychev’s and Chernoff’s inequalities will be useful later 

when computing limits of random variables. 

Then next inequality is called Tchebyche’s inequality for monotone 

sequences of numbers. 

Lemma (1.2.9): 

Let (  ) and (  ) be two sequences of real numbers such that either  

                               

 or 

                               

If (  ) and a sequence of non-negative numbers such that 

∑      

 

   

 

then 
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(∑   

   

  ) (∑     

   

)  ∑   

   

     

Proof: Since the sequences (  ) and (  ) are either both increasing or both 

decreasing 

(     )(     )   . 

Multiplying by the positive quantity      and summing over   and   we get  

∑                      

   

 

 Expanding yields 

.∑   

 

/ (∑       

 

)  (∑     

 

) .∑     

 

/ 

        .∑     

 

/ (∑     

 

)  (∑   

 

) .∑       

 

/     

Using 

∑      

 

   

 

the expression becomes 

∑         ∑     

 

  ∑     

 

 

 

 

which end the proof. 

Next we present a meaningful application of the previous inequality. 

Proposition (1.2.10): 

Let   be a random variable and   and   be two functions, both or increasing  
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both decreasing. Then     

              

                                                                                                   

Proof: If   is a discrete random variable, with outcomes            

inequality Equation (1.3) becomes  

∑                 ∑           ∑           

  

 

 

 

where              . Denoting                      and 

        ), the inequality transforms into  

∑       

 

 ∑     

 

∑     

 

  

which holds true by Lemma (1.2.9). 

If   is a continuous random variable with the density function        the 

inequality Equation (1.3) can be written in the integral form 

             ∫    
 

           ∫    
 

      ∫        
 

                       

Let            be a partition of the interval   with 

            Using Lemma (1.2.9) we obtain the following inequality 

between Riemann sums  

∑                    ∑             

 

  ∑             

 

  

 

 

where                      and             Taking the limit 

 ‖  ‖    we obtain Equation (1.4) which leads to the desired result. 

Now we discuss the Limit of Sequences of Random Variables. 

 Consider a sequence         of random variable defined on the probability 
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 space        . There are several ways of making sense of the limit 

expression      
   

    and they will be discussed in the following: 

(1)  Almost Certain Limit. The sequence   converges almost certainly to  , 

if for all states of the world    except a set of probability zero, we have  

          
   

                                

More precisely, this means            

 (     
   

          )   , 

and we shall write   -    
   

    . An important example where this type of 

limit occurs is the Strong Law of Large Number: 

If   is a sequence of independent and identically distributed random 

variables with the same mean    then   -    
   

       

 
    

It worth noting that this type convergence is known also under the name of 

strong convergence. This is the reason why the aforementioned theorem 

bares its name. 

(2)  Mean Square Limit. Another possibility of convergence is to look at the 

mean square deviation of    from  . We say that    converges to   in 

the mean square if 

   
   

             

More precisely, this should be interpreted as 

   
   

∫(          )
 

          

this limit we be abbreviated by   -    
   

      The mean square 

convergence is useful when defining the Ito integral. 

Example (1.2.11): 

Consider a sequence    of random variables such that there is a constant    

with                 Show that 



 

 

23 

 

  -    
   

     . 

Proof: Since we have 

               
               

              

                             
                              

                                    

the right side tends to   when taking the limit    .  

(3)  Limit in Probability or Stochastic Limit. The random variable    is the 

stochastic limit of   if for   large enough the probability of deviation 

from   can be made smaller than any arbitrary    More precisely, for any 

    

     
   

                       

This can be written also as 

   
   

                       

This limit is denoted by   -    
   

      .  

It worth noting that both almost certain convergence and convergence in 

mean square imply the stochastic convergence. Hence, the stochastic 

converge is weaker than the aforementioned two convergence cases. This is 

the reason why it is also called the weak convergence. One application is the 

weak Law of Large Numbers: 

           are identically distributed with expected value   and if any finite 

number of them are independent, then   -    
   

       

 
    

Proposition (1.2.12): 

The convergence in the mean square implies the stochastic convergence. 

Proof: Let   -    
   

    . Let     arbitrary fixed. Applying Markov’s 

inequality with            and      yields  
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The right side tends to 0 as      Applying the Squeeze Theorem we 

obtain       

   
   

               

which means that    convergence stochastic to    

Example (1.2.13): 

Let    be a sequence of random variables such that                    

Prove that   -    
   

      

Proof:  Let     be arbitrary fixed. We need to show 

                      
   

                                                                              

From Markov’s inequality (see Example (1.2.4)) we have 

                      
       

 
             

Using squeeze Theorem we obtain Equation (1.5). 

Remark (1.2.14): 

The conclusion still holds true even in the case when there is a     such 

that                     

(4) Limit of Distribution. We say the sequence    convergence in 

distribution to   if for any continuous bounded function     We have 

                                                      

      
   

                            

This type of limit is even weaker than the stochastic convergence, 

 i.e. it is implied by it.an application of the limit in distribution is obtained if 

consider            In this case, if   converges in distribution to    then 

the characteristic function of    converges to the characteristic function of 
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 .  In particular, the probability density of    approachers the probability 

density of    

It can be show that the convergence in distribution is equivalent with 

    
   

            

Whenever   is continuous at  , where    and   denote the distribution 

function of    and    respectively. This is the reason why this convergence 

bares its name. 

In the following study the Properties of Limits. 

Lemma (1.2.15): 

If   -    
   

     and   -    
   

      

1-         -    
   

          

2-         -    
   

          

Proof: Since   -    
   

      then     
   

    
      Applying the Squeeze 

Theorem to the inequality 

              
   

Yields    
   

       . Then  

   
   

           
   

(    
      

   
      ) 

                              
   

    
      

   
                   

                           

Similarly, we have the    
   

    
        

   
        and    

   
            

Then    
   

   
    

   
   

    Using the correlation formula 
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and the fact                  yields 

                  
   

  

Since    
   

  
 
   

    from the Squeeze Theorem it follows that 

   
   

            . 

Taking     in the relation 

                               

yields    
   

         . Using the previous relations, we have 

   
   

               
   

    
          

                                          

                            
   

    
       

   
           

   
    

   

                                                   

which means    -    
   

           

Proposition (1.2.16): 

If the sequence of random variable    and    converge in then square, then  

1.   -    
   

          -    
   

     -    
   

   

2.   -     
   

          -    
   

              

Proof:  1. Let   -    
   

     and   -    
   

      Consider the sequences 

  
       and   

        Then 

   -    
   

  
    and   -    

   
  

     Applying Lemma (1.2.15) yields  

                                       -    
   

   
    

      

This is equivalent with 

                                      -    
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which becomes 

                                      -    
   

             

Now we present the Stochastic Processes. 

 A stochastic process on the probability space (     ) is a family of random 

variables    parameterized by    , where     . if   is an interval we 

say that    is a stochastic process in continuous time. If   =           we 

shall say that    is a stochastic process in discrete time. The later case 

describes a sequence of random variables. The aforementioned types of 

convergence can be easily extended to continuous time. For instance,    

converges in strong sense to          if      

 (      
   

          )      

The evolution in time of a given state of the world     given by the 

function         is called a path or realization of     The study of 

stochastic processes using computer simulations is based on retrieving 

information about the process    given a large number of it realization. 

Consider that all information accumulated until time   is contained by 

 -field     

This means that    contains the information of which events have already 

occurred until the time    and which did not. Since the information is 

growing in time, we have      

        

for any        with    . The family   is called filtration. 

A stochastic process    is called adapted to the filtration    if   is 

  -predictable, for any    . 

Example (1.2.17): 

Here there are a few examples of filtrations: 
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1.    represents the information about the evolution of a stock until of time 

 , with      

2.    represents the information about the evolution of a Black-Jack game 

until of time  , with      

Example (1.2.18): 

If   a random variable, consider the conditional expectation                

            

From the definition of the conditional expectation, the random variable    is 

  -predictable, and can be regarded as the measurement of   at time   using 

the information   . If the accumulated knowledge    increases and 

eventually equals the  -field    then            i.e. we obtain the entire 

random variable. The process   adapted to     

Definition (1.2.19): 

A process          is called a martingale with respect to the filtration     if  

1.    is integrable for each    ; 

2.    is adapted to the filtration   ; 

3.                       

Remark (1.2.20): 

The first condition states that the unconditional forecast is finite 

        ∫     
 

       

Condition   says that the value    is known, given the information set      

The third relation asserts that the best forecast of unobserved future values is 

the last observation on     

Remark (1.2.21): 

If the third condition is replaced by 
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then    is called a submartingale; and if it is replaced by  

                             

then    is called a supermartingale. 

It worth noting that    is submartingale if and only if    is supermartingale. 

Example (1.2.22): 

Let    denote Mr. Li Zhu’s salary after   years of work in the same 

company. Since    is known at time   and it is bounded above, as all salaries 

are, then the first two conditions hold. Being honest Mr. Zhu expects today 

that is his future salary will be the same as today’s, 

                 for      This means that     is a martingale. 

Example (1.2.23): 

If in the previous example Mr. Zhu is optimistic believes as today that his 

future salary will increase, then    is a submartingale. 

Example (1.2.24): 

If   is an integrable random variable on (     ), and    is a filtration, 

           is a martingale. 

Example (1.2.25): 

Let    and    be martingale with respect to the filtration     Is the process 

     a martingale with respect to     

In the following, if    is stochastic process, the minimum amount of  

Information resulted from knowing the process     until time   is denoted 

           In the case of a discrete process, we have            

Example (1.2.26): 

Let        be a sequence of integrable independent random variables. 
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Let                     If          then   is a          -

submartingal. In addition, if         and     
           then 

  
           is a          -martingal. 

Example (1.2.27): 

Let        be a sequence of independent random variables with 

         for    . Then               is a          -martingal. 
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Chapter (2) 

Properties of Stochastic Processes 

Section (2.1): The Brownian Motion and Poisson Process 

The observation made first by the botanist Robert brown in 1827, that small 

pollen grains suspended in water have a very irregular and unpredictable 

state of motion, led to definition of the Brownian motion, which is 

formalized in the following. 

Definition (2.1.1): 

A Brownian motion process is stochastic process         which satisfies  

1. The process starts at the origin,     ; 

2.    has stationary, independent increments; 

3. The process    is continuous in t; 

4. The increments       are normally distributed with mean zero and 

variance                                          

The process         has all the properties of a Brownian motion that 

starts at  . Since       is stationary, its distribution function depends only 

on the time interval      i.e. 

                                 

From condition 4 we get that    is normally distributed with mean 

         and                              

           

Let        Since the increment are independent, we can write 
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Proposition (2.1.2): 

A Brownian motion process    is a martingale with respect to the 

information set               

Proof: Let     and write                Then  

                            

                                                                         

                                                      

where we used that    is    -measurable (from where            ) and 

that the increment        is independent of previous values of    

contained in the information set               

A process with similar properties as the Brownian motion was introduced by 

wiener. 

Definition (2.1.3): 

A Wiener process    is a process adapted to a filtration such that  

1. The process starts at the origin,       

2.    is an   -measurable with    
     for all     and  

          
                            

3. The process    is continuous in     

Since    is a martingale, its increments are unpredictable and hence 

            in particular          It is easy to show that  

                                     

The only property    has and    seems not to have is that the increments are 

normally distributed. However, there is no distinction between these two 

processes, as the following result states.  

Theorem (2.1.4): (Lévy) 

A Wiener process is a Brownian motion process. 



 

 

33 

 

In stochastic calculus we often need use infinitesimal notations and its 

properties.     denotes infinitesimal increments of a Wiener process in the 

time interval     the aforementioned properties become 

                        and       
       

Proposition (2.1.5): 

If    is a Wiener process with respect to the information set    then 

     
    is a martingale. 

Proof:  Let      Using that the increments       and        
  are 

independent of the information set    and applying proposition (1.1.14) 

yields 

    
                  

      

                         
                    

      

                         
                                

      

                       
                            

      

                       
                       

   

                       
       

and hence     
          

     for      

The following result states the memoryless property of Brownian motion. 

Proposition (2.1.6): 

The conditional distribution of       given the present    and the past  

          depends only on the present. 

Proof:  Using the independent increment assumption, we have       
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Since    is normally distributed with mean 0 and variance  , its density 

function is                                        

      
 

√   
    

    

Then its distribution function is   

                                        
 

√   
∫     

  

 

  

   

The probability that     is between the values a and b is given by 

          
 

√   
∫     

  

 

 

           

Even if the increments of a Brownian motion are independent, its values are 

still correlated.  

Proposition (2.1.7): 

Let        Then  

1.               

2.             √
 

 
. 

Proof: 1. Using the properties of covariance  
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Since           

We can arrive to the same result starting from the formula 

                                                         . 

Using the tower property and that    is a martingale, we have  

         [          ]   [          ]              
      

so               

2.  The correlation formula yields  

                                        
          

          
 

 

√ √ 
 √

 

 
                                              

Remark (2.1.8): 

Removing the order relation between   and  , the previous relation can be 

also stated as 

                                   √
        

         
. 

Now we discuss the Geometric Brownian Motion.  

The process              is called geometric Brownian motion. 

A few simulation of this process are depicted. The following result will be 

useful in the sequel. 

Lemma (2.1.9): 

We have                ⁄ , for      

Proof:  Using the definition of the expectation 

        ∫            
 

√   
∫   

  

  
           ⁄     

 where we have used integral formula 
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∫            
 

 
 

  

  
              

with     

  
 and      

Proposition (2.1.10): 

The geometric Brownian motion        is 

 Log-normally distributed with mean    ⁄  and variance         

Proof: Since    is normally distributed, then        will have a log-

normal distribution. Using Lemma (2.1.9) we have  

                    ⁄                   
                           

and hence the variance is                                                                       

                         
        

      (   ⁄ )
 

         

The distribution function can be obtained by reducing to the distribution 

function of a Brownian motion 

   
                     

                          
      

  
 

√   
∫   

  

     
   

  

 

The density function of the geometric Brownian motion        is given 

by 

     
 

  
   

    {

 

 √   
            ⁄         

                                            

 

In the following we discuss the Integrated Brownian Motion. 

The stochastic process 



 

 

37 

 

                           ∫   

 

 

       

 is called integrated Brownian motion. 

Let                     with    
  

 
  Then    can be 

written as a limit of Riemann sums  

      
   

∑    
    

 

   

   
   

   
      

 
  

We are tempted to apply the Central Limit Theorem, but    
 are not 

independent, so we need to transform the sum into a sum of independent 

normally distributed random variables first. 

   
      

    

   (   
   )       (   

      
)    (   

        
) 

 =                                                                                            (2.1) 

Since the increments of a Brownian motion are independent and normally 

distributed, we have                              

                                                                   

                                                                   

                                               ……………………… 

                                                                                 

Recall now the following variant of the central limit Theorem: 

Theorem (2.1.11): 

If    are independent random variables normally distributed with mean    

and variance        then the sum          is also normally distributed 

with mean         and variance   
      

   Then  
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                                (  
            

 
  )  

with      

 
. Using Euation(2.1) yields     

 
   

      

 
  (  

            

   
  )  

 Taken the limit we get                                

    (  
  

 
)  

Proposition (2.1.12): 

The integrated Brownian motion    has a Gaussian distribution with mean 0 

and variance    ⁄   The mean and the variance can be also computed in a 

direct way as follows. By Fubini’s theorem we have 

        ∫      
 

 

 ∫ ∫   

 

  

     ∫ ∫   
 

 

 

     ∫      
 

 

      

 Since         . Then the variance is given by 

                    
        

      
   

    ∫     
 

 

 ∫       
 

 

  ∫ ∫   

 

 

       
 

 

 

            ∫ ∫     

 

 

       
 

 

 ∫ ∫             
           

 

                         ∫ ∫             
  

 ∫ ∫             
  

                      

where   

                                            

The first integral can be evaluated using Fubini’s theorem 
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∫ ∫             
  

 ∫ ∫  
  

     ∫  ∫  
 

 

     
 

 

 ∫
  

 

 

 

   
  

 
  

Similarly, the latter integral is equal to     

∫ ∫             
  

 
  

 
  

Substituting in Equation (2.2) yields         

        
  

 
 

  

 
 

  

 
  

Now we discuss the Exponential Integrated Brownian motion. 

If     ∫   
 

 
   denotes the integrated Brownian motion, the process 

       

is called the exponential integrated Brownian motion. The process starts at 

         Since    is normally distributed, then    is log-normally 

distributed. We shall compute the mean and the variance in a direct way.  

                   
  

                

     
                 

   

   
   

  

             
        

   
   

   
  

         

Now we study the Brownian Bridge. 

Let process           is called the Brownian bridge tied down at both 

0 and 1. Since we can also write 
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using that the increments       and         are independent and 

normally distributed, with        

                                  

it follows that    is normally distributed with 

                                    

                                          

                                                 

                                     

This can be also stated by saying that the Brownian bridge tied 0 and 1 is a 

Gaussian process with mean 0 and variance          

Now we present the Brownian Motion with Drift.  

The process               is called Brownian motion with drift. The 

process    tends to drift off at a rate  . It starts at      and it is a Gaussian 

process with mean 

                  

and variance    

                                                

Now we study the Bessel Process.  

This section deals with the process satisfied by the Euclidean distance from 

the origin to a particular following Brownian motion in     More precisely, 

if               are independent  

Brownian motions, let                       be a Brownian motion in 

        The process  

       (      )  √                

is called n-dimensional   Bessel process.  
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The probability density of this process is given by the following result. 

Proposition (2.1.13): 

The probability density function of         

       {

 

      ⁄     ⁄  
      

  

  
      

                                               

 

with 

 (
 

 
)  {

(
 

 
  )                                                       

(
 

 
  ) (

 

 
  )  

 

 

 

 
√                      

 

Proof: Since the Brownian motions               are independent, their 

joint density function is 

   
    

    
       

    
 

       ⁄
  (  

      
 )   ⁄          

In the next computation we shall use the following formula of integration 

that follows from the use of polar coordinates 

                       ∫       
       

        ∫     
 

 

                                        

where           is a function on    with spherical symmetry, and where      

        
    ⁄

    ⁄  
 

is the area of the      -dimensional sphere in     

Let      The distribution function of     is  

              ∫       
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                              ∫
 

       ⁄
  (  

      
 )     ⁄    

     
 

  
      

    

              

                   ∫     
 

 

(∫
 

       ⁄
  (  

      
 )     ⁄   

      

)       

                
       

       ⁄
∫     

 

 

        ⁄                                          

Differentiating yields  

      
 

  
      

       

       ⁄
      

  

   

                               
 

      ⁄     ⁄  
      

  

                 

It worth noting that in the  -dimensional case aforementioned density 

becomes a particular case of a Weibull distribution with parameters     

and       wald’s distribution                 

      
 

 
  

   

                  

Now we discuss The Poisson Process.  

A Poisson process describes the number of occurrences of a certain event 

before time  , such as: the number of electrons arriving at an anode unit 

time  ; the number of cares arriving at a gas station unit time  ; the number 

of phone calls received in a certain day unit time  ; the number of visitors 

entering a museum in a certain     day unit time  ; the number of earthquakes 

occurred in Japan during time interval        the number of shocks in the 

stock market from the beginning of the year    unit time  ; the number of 

twisters that might hit Alabama during a decade. 

In the following we study the Definition and Properties. 

The definition of a Poisson process is stated more precisely in the following. 
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Definition (2.1.14): 

A Poisson process is a stochastic process         which satisfies  

1. The process starts at the origin,       

2.    has stationary, independent increments; 

3. The process     is right continuous in  , with left hand limits; 

4. The increments        with        have a Poisson distribution 

with parameter         i.e. 

           
        

  
          

It can be show that condition 4 in the previous definition can be replaced by 

the following two conditions: 

                                                                                                                    

                                                                                                                                                     

where      denotes a quantity such that     
   

     ⁄     This mean the 

probability that a jump of size   occurs in the infinitesimal interval    is 

equal to      and the probability that at least   events occur in the same 

small interval is zero. This implies that the random variable     may take 

only two values,   and    and hence satisfies 

                                                                                                                                                                           

                                                                                                                                                                 

The fact that        is stationary can be stated as  

                                ∑
     

  

 

   

      

From condition   we get the mean and variance of increments 

                                              

In particular, the random variable     is Poisson distributed with           
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and             The parameter   is called the rate of the process. This 

means that the events occur at the constant rate    

Since the increments are independent, we have 

                           
    

                                                                 
   

                                                                   
   

                                                                                                                                                                       

As a consequence we have the following result: 

Proposition (2.1.15): 

Let        Then  

1.              ; 

2.             √
 

 
  

Proof: 1. Using Equation (2.8) we have 

                                               

2.  Using the formula for the correlation yields   

            
          

                
  ⁄

 
  

        ⁄
 √

 

 
  

It worth noting the similarity with Proposition (2.1.7). 

Proposition (2.1.16): 

Let     be   -adapted. Then the process          is a martingale. 

Proof: Let      and write                Then  
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where we used that     is   -measurable (and hence            ) and that 

the increment        is independent of of pervious and the information set 

    Subtracting    yields 

                 , 

or            . Since it is obvious that     is   -adapted, it follows that  

   is a martingale. 

It worth noting that the Poisson Process    is not a martingale. The 

martingale process            is called the compensated Poisson 

process. 

 Now we discuss the Interarrival times. 

For each state of the world    the path         is a step function that 

exhibits unit jumps. Each jump in the path corresponds to an occurrence of a 

new event. Let    be the 

 a random variable which describes the time of the 1st jump. Let     be the 

time between the 1st jump and the second one. In general, denote by     the 

time elapsed between the      th and  th jumps. The random variables  

   are called interarrival times. 

Proposition (2.1.17): 

The random variables     are independent and exponentially distributed with 

mean         ⁄   

Proof: We start by noticing that the events        and        are the 

same, since both describe the situation that no events occurred until time     

Then                      

                                          

and hence the distribution function of     is 
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Differentiating yields the density function        

   
    

 

  
   

           

It follows that     is has an exponential distribution, with         ⁄ .The 

conditional distribution of    is 

                                               

   
            

       
                              

                   
                                     

       
 

                        
                                        

                  
 

                              

which is independent of  .Then     is independent of     and exponentially 

distributed. A similar argument for any    leads to the desired result. 

 Now we present the Waiting times. 

The random variable                is called the waiting times 

until the  th jump. The event          means that there are   jumps that 

occurred before or at there are at least   events that happened up to time     

the event is equal to          Hence the distribution function of    is 

given by 

   
                        ∑

     

  

 

   

  

Differentiating we obtain the density function of the waiting time    
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Writing                             

   
    

        

   ⁄       
  

It turns out that     has a gamma distribution with parameters     and 

    ⁄   It follows that          

      
 

 
                

 

  
  

The relation     
   

        states that the expectation of the waiting time 

gets unbounded large as      

Now we discuss the Integrated Poisson process. 

The function      is a continuous with the exception of a set of countable 

jumps of size 1. It is known that such functions are Riemann integrable, so it 

makes sense to define the process     

   ∫      
 

 

 

 

Figure (2.1) 
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The Poisson process     and the waiting time             The shaded 

rectangle has area            

Called the integrated Poisson process. The next result provides a relation 

between the process     and the partial sum of the waiting times      

Proposition (2.1.18): 

The integrated Poisson process can be expressed as 

       ∑   

  

   

  

Let       Since     is equal to   between the waiting times    and         

the process     which is equal to the area of the subgraph of    between   

and    can be expressed as  

   ∫     
 

 

                                             

Since             the difference of the last two terms represents the area 

of last the rectangle, which has the length       and the length    Using 

associativity, a computation yields 

                                                     

Substituting in the aforementioned relation yields 

                                

                     ∑   

  

   

  

where replaced    by      

Proposition (2.1.19): 

 Let     and consider the partition 
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                                                    Then  

                                  
        

∑(     
    

)
 

   

   

                                      

where   

          
       

           

Proof: For the sake of simplicity we shall use the following notations 

                                 
    

          
    

  

The relation we need to prove can be also written as   

        
   

∑            

   

   

    

Let  

                               

It suffices to show that  

                                       [∑   

   

   

]                                                                        

                             
   

   [∑   

   

   

]                                                                        

The first identity follows from the properties of Poisson processes,        

[∑   

   

   

]  ∑      

   

   

 ∑         

   

   

         ∑              

   

   

 

For the proof of the identity Equation (2.11) we need to find first the 

variance of    
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and the fact that           Since     is a process with independent 

increments, then     [     ]    for      Then  

   [∑   

   

   

]  ∑          ∑    [     ]  

   

   

   

∑        

   

   

 

    ∑                

   

   

∑                    

   

   

 

 and hence 
 

[∑   

   

   

]                         
 

The previous result states that the quadratic variation of the martingale    

between   and   is equal to jump of the Poisson process between   and     

In the following we study the Fundamental Relation     
       

Recall Equation (2.9) 

                          
   

∑(     
    

)  

   

   

                                            

The right side can be regarded as Riemann-Stieltjes integral 

       ∫     
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while the left side can be regarded as a stochastic integral with respect to 

     
  

∫      
           

   
∑(     

    
) 

   

   

 

 

 

 Substituting in Equation (2.12) yields 

∫      
  

 

 

∫    

 

 

  

 for any      The equivalent differential form is 

                                 
                                                                                                                                                    

This relation will be useful in formal calculations involving Ito's formula. 

Now we discuss the Relation                    

In order to show that         in the mean square sense, it suffices to 

prove the limit 

                             
   

∑        

   

   

 (     
    

)                                  

Since this is thought as a vanishing integral of the increment process     

with respect to     

∫        
 

 

         

Denote  

   ∑        

   

   

 (     
    

)  ∑       

   

   

  

In order to show Equation (2.16) it suffices to prove that 

 1.           
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 Using the additivity of the expectation  

       [∑      
   

   

   

]  ∑    
        

   

   

 

Since the Poisson process    has independent increments, the property holds 

 for the compensated Poisson process     Then     
    and    

    are 

 independent for      and using the properties of variance we have            

           [∑    

   

   

   ]  ∑                ∑       

   

   

   

   

 

where we used 

                                   

If let            
 

   then  

         ∑               
   

   

∑                     

   

   

 

as    . Hence we proved the stochastic differential relation 

                                                                                                      (2.15) 

For showing the relation           we need to prove  

                           -     
   

                                                                   (2.16) 

where we have denoted 

   ∑         (     
    

)  ∑       
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Since the Brownian motion     and the process     have independent 

increments and     is independent of      we get  

      ∑  

   

   

         ∑  

   

   

               

where we used                  Using also                

                invoking the independent of     and      we get 

                                                   

                                                                            

Then using the independent of the terms in the sum, we get  

        ∑            

   

   

  ∑      

   

   

 

                               ∑                 

   

   

    

as      Since      is a random variable with mean zero and variance 

decreasing to zero, it follows that       in the mean square sense. Hence 

we proved that                 

                                                                                                                      

Section (2.2): Hitting Times and Convergence Theorem 

 Hitting times are useful in finance when studying barrier options and 

lookback options. For instance, knock-in options enter into existence when 

the stock price hits a certain barrier before option maturity. A lookback 

option is priced using the maximum value of the stock until the present time. 

The stock price is not a Brownian motion, but it depends on one. Hence the 

need of studying the hitting time for the Brownian motion. 

The first result deals with hitting time for a Brownian motion to reach the 
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 barrier      see fig (2.2)  

Lemma (2.2.1): 

 Let    be the first time the Brownian motion    hits    Then 

        
 

√  
∫      ⁄

 

   √ ⁄

    

 

Figure (2.2) 

The first hitting time    given by    
    

Proof: If   and   are two events, then 

                      (   )                  

                    ⁄           ⁄   ( )                                                               

Let      Using Equation (2.18) for  

              and                yields  

                             

                                                                                                                    



 

 

55 

 

If       the Brownian motion did not reached the barrier   yet, so we must 

have       Therefore 

                

If        then     
    Since the Brownian motion is a Markov process, 

it starts fresh at     Due to symmetry of the density function of a normal 

variable,    has equally chances to go up or go down after the time interval 

      It follows that 

             
 

 
  

Substituting in Equation (2.19) yields 

                 
 

√   
∫         ⁄

 

 

   
 

√  
∫      ⁄

 

 √ ⁄

    

If      symmetry reasons imply that the distribution of     is the same as 

that of     , so we get 

                 
 

√  
∫      ⁄

 

  √ ⁄

    

Theorem (2.2.2): 

Let     be fixed. Then the Brownian motion hits a in finite time with 

probability  . 

Proof: The probability that    hits a in finite time is  

           
   

           
   

 

√  
∫      ⁄

 

   √ ⁄

   

  
 

√  
∫      ⁄

 

 

                   

where we used the will known integral 



 

 

56 

 

∫      ⁄
 

 

   
 

 
∫      ⁄

 

  

   
 

 
√    

Remark (2.2.3): 

Even if the hitting time is finite with probability 1, its expectation       is 

infinite. This means that the expected time to hit the barrier is infinite. 

Corollary (2.2.4): 

A Brownian motion process returns to the origin in finite time with 

probability 1. 

Proof: Choose     and apply Theorem (2.2.2). 

Theorem (2.2.5): 

 Let           The  -dimensional Brownian motion 

                     hits the point       with probability zero. The 

same result is valid for any  -dimensonal Brownian motion, with       

Theorem (2.2.6): (The law of Arc-sine) 

The probability that a Brownian motion    dose not have any zeros in the 

interval (     ) is equal to 

                
 

 
 arcsin √

  

  
  

Proof: Let A(       ) denote the event that the Brownian motion     takes 

on the value   between    and      In particular,          ) denotes the event 

that    has (at least) a zero  between    and       

Substituting             ) and      
 in the following formula of 

conditional probability  

     ∫               ∫                 
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Figure (2.3) 

The event           ) in the Low of Acr-sine yields  

                 ∫             |   
  )    

                                   

 

√    

∫             |   
  ) 

 
  

   

 

  

    

Using the properties of    with respect to time translation and symmetry we 

have  

            |   
  )                            

                                                                    

                                                                    

                                          

                                                            (          )     

The last identity stating that     hits     before         Using Lemma 

(2.2.1) yields 

            |   
  )  

 

√          
∫  
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Substituting Equation (2.20) we obtain  

               

                        
 

√    

∫  
 

  

 

√          
∫  

 
  

         
 

   

    
 

  

              

                          
 

√          
∫ ∫  

 
  

         
   

  

   

 

   

 

 

      

The above integral can be evaluated                  
 

 
 arcsin √

  

  
  

Using                                  we obtain the desired 

result.  

Now we study the Limits of Stochastic Processes. 

Let         be a stochastic process. One can make sense of the limit 

expression      
   

    

In a similar way as we did in for sequences of random variables. We shall 

re-write the definitions for the continuous case. 

Now we will discuss the following: 

(1) Almost Certain Limit: The process     converges almost certainly to    if 

for all states of the world    except a set of probability zero, we have   

   
   

            

We shall write   -    
   

      It is also called sometimes strong 

convergence. 

(2) Mean Square Limit: We say that the process    converges to   in the 

mean square if          
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In this case we write   -    
   

      

(3) Limit in Probability or Stochastic Limit: The stochastic process    

converges in stochastic limit to    if     

   
   

                       

This limit is abbreviated by   -    
   

      

It world noting that, like in the case of sequences of the random variables, 

both almost certain convergence and convergence in mean square imply the 

stochastic convergence. 

(4) Limit in Distribution: We say that     converges in distribution to    if 

for any continuous bounded function      we have             

   
   

            

It worth noting that the stochastic convergence implies the convergence in 

distribution.  

Now we discuss the Convergence Theorems. 

The following property is a reformulation of Example (1.2.11) in the 

continuous setup. 

Proposition (2.2.7): 

Consider a stochastic process    such that           constant, and 

          as      Then   -    
   

      

Next we shall provide a few applications that show how some processes 

compare with powers of    for   large. 

Application (2.2.8): 

If     ⁄   then           

  -    
   

  

  
    



 

 

60 

 

Proof: Let     
  

  
   Then       

     

  
    and  

         
 

   
        

 

   
 

 

     
  for any      Since  

 

     
   as 

     applying Proposition(2.2.7) yields     -    
   

  

  
     

Corollary (2.2.9): 

We have    -    
   

  

 
    

Application (2.2.10): 

Let    ∫   
 

 
    If     ⁄   then   -    

   

  

  
     

Proof: Let    
  

  
  Then       

     

  
    and         

 

   
        

  

    
 

 

      
  for any      

Since  
 

      
   as      applying Proposition (2.2.7) leads to the desired 

result. 

Application (2.2.11): 

For any         we have   -    
   

      

  
    

Proof: Consider the process    
      

  
 

   

     
  Since  

                   
      

     
 

   ⁄

     
 

 

 
   

 
 
  

 

  
    as     

        
        

       
 

      

       
 

 

   
 

 

        
 

 

        
     

Proposition (2.2.7) leads to the desired result. 

Application (2.2.12): 

If     ⁄   then  
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  -    
   

       
   

  
    

 Proof: Let     
       

   

  
  There is an          such that           

     so   

   
  

  
  The mean and the variance satisfy  

                          
     

  
    

        
       

   
 

 

   
 

 

   
 

 

     
            

Apply Proposition (2.2.7) we get the desired result. 

Remark (2.2.13): 

The strongest result regarding limits of Brownian motion is called the law of 

iterated logarithms and was first proved by Lamperti: 

   
   

   
  

√       
    

almost certainly. 

Proposition (2.2.14): 

Let    be a stochastic process. Then  

  -    
   

       -    
   

  
     

Proposition (2.2.15): 

 Let    be a stochastic process such that there is  

a     such that       
     as      Then   -    

   
      

Application (2.2.16): 

We shall show that for any          

  -    
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Proof: Consider the process    
  

  
  By Proposition (2.2.14) it suffices to 

show   -    
   

  
     Since  

      
       

    *
  

 

   
+  

    
  

   
 

 

   
 

 

     
        

then Proposition (2.2.15) yields     -    
   

  
     The following result can be 

regarded as the L’Hospital’s rule for sequences: 

Lemma (2.2.17) : (Cesarό-Stoltz) 

 Let    and    be two sequences of real numbers,      If the limit 

   
   

       

       
 exists and it is equal to    then the following limit exists 

   
   

  

  
    

Proof: (sketch) Assume there are differential function   and   such that 

        and          (How do we  construct these function?) From 

Cauchy’s theorem there is a            such that  

     
   

       

       
    

   

           

           
    

   

      

      
  

Since       as      we can write the aforementioned limit also as  

   
   

     

     
    

(Here one may argue against this, but we recall the freedom of choice for the 

function  and   such that     can be any number between   and    ). 

 By Hospital’s rule we get                      
   

    

    
    

Making     yields    
   

  

  
    

The next application states that if a sequence is convergent, then the 

arithmetic average of its terms is also convergent, and the sequences have 

the same limit. 
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Example (2.2.18): 

Let    be a convergent sequence with    
   

      Let 

                     
          

 
 

be the arithmetic average of the first   terms. Show that     is convergent 

and 

   
   

      

Proof: This is an application of Cesarό-Stoltz lemma. to sequences           

              and       Since  

       

       
 

                     

       
 

    

 
  

then                

   
   

       

       
    

   
        

Applying the Cesarό-Stoltz lemma yields    

   
   

      
   

  

  
    

Proposition (2.2.19): 

Let    be a sequence of random variables on the probability space          

such that   

  -    
   

       

       
    

Then                      

  -    
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Proposition (2.2.20): 

Consider the sets 

                     
   

             

             
     

  ,       
   

     

     
   -           

 Since for any given stats of the world    the sequences          and  

         are numerical sequences, Lemma (2.2.17) yields the inclusion 

     This implies            Since         it follows that 

         which leads to the desired conclusion.  

Remark (2.2.21): 

Let    and    denotes the prices of two stocks in the day    The previous 

result states that if                          as      then 

               So, if the correlation of the daily changes of the stock 

price tends to 1 in the long run, then the stock prices correlation does the 

same. 

Example (2.2.22): 

Let    denotes the price of the a stock in the day    and assume that 

  -    
   

      

Then       

  -    
   

       

 
   and   -    

   
           ⁄     

This says, that if almost all future simulations of the stock price approach the 

steady state limit    the arithmetic and geometric averages converge to the 

same limit. The statement is a consequence of Proposition (2.2.19) and 

follows a similar proof as Example (2.2.18).  

Now we discuss The Martingale Convergence Theorem. 
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We state now a result which is a powerful way of proving almost certain 

convergence. 

Theorem (2.2.23): 

Let    be a martingale with bounded means      such that 

                                                                                                                                                              

Then there is     such that 

 (     
   

       )     

Since              
    the boundness condition Equation(2.21) can be 

replaced by its stronger version       such that     
                  

Example (2.2.24): 

It is known that            is martingale since 

       [ 
 

  
 
 ]    

 
          

 
  

 
     

by the Martingale convergence theorem there is number   such that 

         . as        

Now we study the Squeeze Theorem. 

The following result is the analog of the squeeze theorem from usual 

calculus. 

Theorem (2.2.25): 

Let          be sequences of random variables on the probability space 

        such that  

                   

If    and    converge to   as     almost certainly (or in mean square, or 

stochastic or in distribution), then    converges to   in similar mode. 
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Proof: for any state of the world     consider the sequences 

                      and           and apply the usual squeeze 

theorem to them. 

Remark (2.2.26): 

The previous theorem remains valid if   is replaced by a continuous positive 

parameter    

Example (2.2.27): 

 Show that   -    
   

         

 
    

Proof: Consider the sequences         
         

 
   and    

  

 
  From 

Application (2.2.16) we have   -    
   

      Applying the Squeeze Theorem 

we obtain the desired result. 
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Chapter (3) 

Stochastic Differentiation and Stochastic 

Integration 

Section (3.1): The Wiener Integral and the Poisson Integral  

This section deals with one of the most useful Stochastic called the Ito 

integral. This type of stochastic integration was introduced in 1944 by 

Japanese mathematician K. Ito, and was originally motivated by a 

construction of diffusion processes.  

Now we present the Nonanticipating Processes. 

Consider the Brownian motion     A process     is called nonanticipating 

process if    is independent of the increment        for any   and     with 

       Consequently, the process    is independent of the behavior of the 

Brownian motion in the future, i.e. it cannot anticipate the future. For 

instance,     
     

       are examples of nonanticipating processes, 

while       or  
 

 
         

   are not. 

Nonanticipating Processes are important because the Ito integral concept 

applies only to them. If    denotes the information known until time    

where this information is generated by the Brownian motion           

then any   -adapted process   is nonanticipating. 

Now we discuss the Increment of Brownian motion. 

It this section we shall discuss a few basic properties of the increments of 

Brownian motion which will be useful when computing stochastic integrals. 

Proposition (3.1.1): 

Let    be Brownian motion. If      we have  

1.          
        

2.             
            

Proof: 1. Using that                 we have  
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2. Dividing by standard deviation yields the standard normal random 

variable 
     

√   
         Its square, 

        

   
 is   -distributed with   degree 

of freedom. Its mean is   its variance is    This implies                                            

 *
       

 

   
+             

        

           *
       

 

   
+               

            

Remark (3.1.2): 

The infinitesimal version of the previous result is obtained by replaced     

with at  

1.      
       

2.        
           

We shall see in next section that the face    
  and    are equal in a mean 

square sense. 

 In the following we Present the Ito Integral. 

The Ito integral is defined in a way that is similar to the Riemann integral. 

The Ito integral is taken with respect to infinitesimal increments of a 

Brownian motion      which are random  

variables, while the Riemann integral considers integration with respect to 

the predictable infinitesimal changes     It worth noting that the Ito integral 

is a random variable, while the Riemann integral is just real number. Despite 

this fact, there are several common properties and relation between these 

two types of integral. 

Consider       and let            be a nonanticipating process with  
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 *∫   
 

 

 

  +     

Divide the interval       into   subintervals using the partition points 

                     

and consider the partial sums  

   ∑    

   

   

(     
    

)  

We emphasize that the intermediate points are the left endpoint of each 

interval, and this is the way they should be always chosen. Since the process 

   is nonanticipative the random variables    
 and      

    
 are 

independent; this is an important feature in the definition of the Ito integral. 

The Ito integral is the limit of the partial sum    

       
    

   ∫   

 

 

      

Provided the limit exists. It can be shown that the choice of partition dose 

not influence the value of the Ito integral. This is the reason why, for 

practical purposes, it suffices to assume the intervals equidistant, I.e. 

          
     

 
                            

The previous consequence is in the mean square sense, i.e. 

   
    

 [(   ∫   

 

 

   )

 

]     

Now we study the Existence of Ito integrals. 

It is known that the Ito stochastic integral ∫   
 

 
    exists if the process 

           satisfies the following two properties: 
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1. The parhs          are continuous on       for any state of the 

world      

2. The process    is nonanticipating for          

For instance, the following stochastic integrals exist: 

∫   
    

 

 

 ∫        
 

 

    ∫
       

 

 

 

     

Now we discuss the Examples of Ito integrals. 

An in the case of Riemann integral, using the definition is not an efficient 

way of computing integrals. The same philosophy applies to Ito integrals. 

We shall compute in the following two simple Ito integrals. 

 Now we study the Case       constant. 

In this case the partial sums can be computed explicitly 

   ∑    
      

    
 

   

   

 ∑        
    

 

   

   

           

and since the answer does not depend on    we have 

∫              
 

 

  

In particular, taking      since the Brownian motion starts at    we have 

the following formula      

∫     
 

 

    

Now we discuss The Case        

We shall integrate the process    between   and    Considering an 

equidistant partition, we take     
  

 
              The partial sums 

are given by 
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   ∑    
(     

    
) 

   

   

 

Since 

   
 

 
                

letting       
 and        

    
 yields  

   
(     

    
)  

 

 
     

  
 

 
   

  
 

 
(     

    
)

 
  

Then after pair cancelation the sum becomes  

                    
 

 
∑      

  

   

   

 

 
∑    

  

   

   

 

 
∑(     

    
)

 
   

   

 
 

 
   

  
 

 
∑(     

    
)

 
   

   

  

Using       we get   

   
 

 
  

  
 

 
∑(     

    
)

 
   

   

  

Since the first term is independent of     we have  

                  
    

      
 

 
  

         
    

 

 
∑(     

    
)

 
   

   

                        

It the following we shall compute the right term limit. Denote  

   ∑(     
    

)
 

   

   

  

Since the increments are independent, Proposition (3.1.1) yields  
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      ∑   (     
    

)
 

   

   

  ∑         
 

   

   

          

 

        ∑     (     
    

)
 

   

   

  ∑           
 

   

   

 
  

  
  

where we used that the partition is equidistant. Since    satisfies the 

condition 

              

                                        

By Proposition (2.2.7) we obtain   -    
    

      or   

                            
    

∑(     
    

)
 

   

   

                                                        

This states the quadratic of the Brownian motion is    Hence Equation (3.1) 

becomes  

  -    
    

   
 

 
  

  
 

 
   

We have obtained the following explicit formula of a stochastic integral  

∫   

 

 

    
 

 
  

  
 

 
   

In a similar way one can obtain    

∫   

 

 

    
 

 
   

    
   

 

 
       

It worth noting that the right side contains random variables depending on 

the limits of integration   and    
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Now we discuss the Fundamental Relation    
      

The relation discussed in this section can be regarded as the fundamental 

relation of stochastic calculus. We shall start by recalling Equation (3.2) 

                            
    

∑(     
    

)
 

   

   

                                                        

The right side can be regarded as a regular Riemann integral 

  ∫   
 

 

  

while the left side can be regarded as a stochastic integral with respect to 

   
  

∫      
 

 

 

         
   

∑(     
    

)
 

   

   

  

Substituting in Equation (3.3) yields  

∫      
 

 

 

 ∫   
 

 

                            

The differential form this integral equation is           

   
      

Roughly speaking, the process    
   which is the square of infinitesimal 

increments of Brownian motion, is totally predictable. This relation is plays 

a central role in stochastic calculus and it will be useful when dealing with 

Ito’s Lemma. 

In the following we discuss Properties of the Ito Integral. 

We shall start with some properties which are similar with these of the 

Riemann integral. 
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Proposition (3.1.3):   

Let                 be nonanticipating processes and      Then we  

 have  

1. Additivity:  

∫                 
 

 

     ∫        
 

 

    ∫        
 

 

     

2. Homogeneity: 

∫         
 

 

     ∫        
 

 

     

3. Partition properties : 

∫        
 

 

    ∫        
 

 

    ∫        
 

 

                 

Proof: We present the proof of part 1 only:  

Consider the partial sum sequences 

    ∑  (   
   )

   

   

      
    

     

   ∑  (   
   )

   

   

      
    

    

Since   -    
   

   ∫        
 

 
    and   -    

   
   ∫        

 

 
     

using Proposition (3.1.3) yields 

∫ (               )
 

 

                                                                      

            
   

∑  (   
   )
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 ∑  (   
   )

   

   

      
    

  ∑  (   
   )

   

   

      
    

   

            
   

                
   

            
   

                                           

    ∫        
 

 

    ∫        
 

 

                                                                     

Some other properties, such as monotonicity, do not hold in general.  

It is possible to have a nonnegative random variable    for which the random 

variable ∫      
 

 
 has negative values. 

Some of the random variable properties of Ito integral are given by the 

following result. 

Proposition (3.1.4): 

We have  

1. Zero mean:  

 *∫        
 

 

   +     

2. Isometry :                                                          

   [(∫        
 

 

   )

 

]   *∫          
 

 

+    

3. Covariance: 

           ∫          
 

 

     ∫        
 

 

        ∫        
 

 

            

 We shall discuss the previous properties giving rough reasons why they  

hold true.  

1.  The Ito integral is the mean square limit of the partial sums  
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   ∑    

   

   

      
    

   

where we denoted    
      

      Since      
     is nonanticipative  

process, then    
 is independent of the increments      

    
  and then we 

have                                                                                                                                              

                  ∑    

   

   

      
    

   ∑      

   

   

      
    

   

 ∑      

   

   

         
    

                     

because the increments have mean zero. Since each partial sum has zero 

mean, their limit, which is the Ito integral, will also have zero mean. 

2. Since the square of the sum of partial can be written as 

     
   ∑    

      
    

 

   

   

                                                         

          ∑    

       
    

    ∑    
      

    
    

      
    

  

   

   

   

     

using the independent yields 

               
   ∑  [   

 ]

   

   

 [      
    

  ]     

  ∑      
         

    
  

   

     
         

    
  

 ∑  [   

 ]         
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which are the Riemann sums of the integral ∫     
    

 

 
   ∫   

 

 
   , 

where the last identity follows from Fubini’s theorem . Hence      
    

converges to the aforementioned integral. It is yet  

3. Consider the partial sums 

   ∑    

   

   

(     
    

)          ∑    

   

   

(     
    

)  

Their product is  

         ∑    

   

   

(     
    

)   ∑    

   

   

    
   

   
    

                     

 ∑    
   

   
   

    
   ∑    

   
   

   
    

 

   

   

   

   

   
   

   
    

  

using that    and    are nonanticipative and that  

           
    

       
    

                                                                              

               
    

        
    

        

 *(     
    

)
 
+           

it follows that   

        ∑      
   

 

   

   

        
    

    ∑  *   
   

+

   

   

           

which the Riemann sum for the integral ∫        
 

 
    

From   and   it follows that the random variable ∫           
 

 
 has mean 

zero and variance  



 

 

78 

 

   *∫           

 

 

+   *∫        
 

 

 

  +  

From  and   it follows that 

   *∫           

 

 

+  *∫           

 

 

+  ∫                     
 

 

 

Corollary (3.1.5): (Cauchy’s Integral Inequality) 

Let              and               Then  

 ∫       

 

 

      (∫     
  

 

 

  ) (∫     
  

 

 

  )  

Proof : It follows from the previous theorem and from the correlation 

formula             
           

                ⁄     

Let    be the information set at time    This implies that    
 and      

    
 

are known at time    for any          It follows that the partial sum  

   ∑    

   

   

      
    

   

is   -predictable. The following result states that this is also valid in mean 

square: 

Proposition (3.1.6): 

The Ito integral ∫   
 

 
    is   -predictable. 

The following two results state that if the upper limit of an Ito integral 

replaced by the parameter   we obtain a continuous martingale. 

Proposition (3.1.7):  

For any     we have 
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 *∫            
 

 

  +  ∫           
 

 

 

Proof : Using part   Proposition (3.1.4) we get  

 *∫            
 

 

  +                                                                             

     *∫            ∫            
 

 

  

 

 

+                   

                      *∫            
 

 

  +    *∫            
 

 

  +                 

Since ∫          
 

 
 is   -predictable (see Proposition (3.1.6)), by part   of 

Proposition (1.1.16) 

 *∫            
 

 

  +  ∫          

 

 

  

Since ∫          
 

 
 contains only information between   and    it is 

unpredictable given the information set     as  

 *∫            
 

 

  +     

Substituting in Equation (3.4) yields the desired result. 

Proposition (3.1.8):  

Consider the process    ∫          
 

 
   Then    is continuous, i.e. for 

almost any state of the world      the path         is continuous.  

Proof:  A rigorous proof is beyond the purpose of this work. We shall 

provide a rough sketch. Assume the process         satisfies 

          
      for some       Let     be fixed and consider       
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Consider the increment         
    

  Using the aforementioned 

properties of the Ito integral we have 

        [     
    

]   *∫           

    

  

+                 

               
    [(∫           

    

  

)

 

]  ∫         
    

    

  

                  

  ∫            
    

  

 

The process    has zero mean for any     and it variance tends to   and 

     Using a convergence theorem yields that    tends to   in mean 

square,      This is equivalent with the continuity of    at     

Now we study the Wiener Integral. 

The Wiener integral is a particular case of the Ito stochastic integral. It is 

obtained by replacing the nonanticipating stochastic process         by the 

deterministic function       The Wiener integral ∫        
 

 
 is the mean 

square limit of the partial sums 

   ∑      

   

   

(     
    

)  

All properties of Ito integrals hold also for Wiener integral. The Wiener 

integral is a random variable with mean zero  

 *∫     
 

 

   +    

and variance     

 [(∫     
 

 

   )

 

]  ∫      
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However, in the case of Wiener integral we can say something about the its 

distribution. 

Proposition (3.1.9): 

The Wiener integral      ∫        
 

 
 is a normal random variable with 

mean 0 and variance  

          ∫                
 

 

 

  

Proof: Since increments       
    

 are normally distributed with mean 0 

and variance          then  

     (     
    

)                   

Since these random variables are independent, by the Central Limit Theorem 

(see Theorem( 2.1.11)), their sum is also normally distributed, with  

   ∑      

   

   

(     
    

)     ∑            
    

   

   

    

Taking     and                    

The normal distribution tends to 

 (  ∫         

 

 

)  

The previous convergence holds in distribution, and it still need to be in the 

mean square. We shall omit this essential proof detail.  

Section (3.2): Poisson Integration and Ito’s Multimensional 

Formula 

In this section we deal the integration with respect to the compensated 

Poisson process           which is a martingale. Consider       

and let            be a non-anticipating process with 



 

 

82 

 

 *∫   
   

 

 

+     

Consider the partition  

                    

of the interval        and associate the partial sums 

   ∑    
(     

    
)

   

   

  

For predictability reasons, the intermediate points are the left-handed limit to 

the endpoints of each interval. Since the process    is non-anticipative, the 

random variables     
 and       

    
 are independent. 

The integral of     
 with respect to    is the mean square limit of the partial 

sum     

       
   

   ∫     
   

 

 

  

provided the limit exists. More precisely, this convergence means that 

   
   

 [(   ∫     
   

 

 

)

 

]     

Now we study at Workout Example: the case        

me shall integrate the process     between   and   with respect to      

Considering the partition    
  

 
                The partial sums are 

given by  

   ∑     
(     

    
) 

   

   

 

Using    
 

 
                by letting       

 and 
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  we get (Where does a minus go?) 

    
(     

    
)  

 

 
     

  
 

 
   

  
 

 
(     

    
)

 
  

After pair cancelations we have  

   
 

 
∑      

 

   

   

 
 

 
∑    

 

   

   

 
 

 
∑(     

    
)

 
   

   

 

     
 

 
   

  
 

 
∑(     

    
)

 
                               

   

   

 

Since       we get     

 

 
  

  
 

 
∑(     

    
)

 
 

   

   

 

The second term on the right is the quadratic variation of     using Equation 

(2.9) yields that    converges in mean square towards 
 

 
  

  
 

 
  

   since 

      Hence we have arrived at the following formula 

∫     
   

 

 

 
 

 
  

  
 

 
  

   

similarly, one can obtain  

∫     
   

 

 

 
 

 
   

    
   

 

 
         

Proposition (3.2.1): 

We have  

1. Linearity: 

 

∫             ∫  
 

 

 

 

      ∫  
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2. Zero mean:  

 *∫     

 

 

+     

3. Isometry:           

 [(∫     

 

 

)

 

]   *∫      

 

 

+   

Now we discuss the Differentiation Rules.  

Most stochastic processes are not differentiable. For instance, the Brownian 

motion process    is a continuous process which is nowhere differentiable. 

Hence, derivatives like 
   

  
 do not make sense in stochastic calculus. The 

only quantities allowed to be used are the infinitesimal changes of the 

process, in our case       

The infinitesimal change of a process. The change in the process    between 

instances   and      is given by              when    is 

infinitesimally small, we obtain the infinitesimal change of process    

              

Some time it is useful to use equivalent formulation               

Now we present the Basic Rules. 

The following rules are the analog of some familiar differentiation rules 

from elementary calculus. 

(1)  The constant multiple rule: If    is stochastic processes and   is a 

constant, then  

             

The verification follows from a straightforward application of the 

infinitesimal change formula 
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(2)  The sum rule: If    and    are two stochastic processes, then  

                    

The verification is as in the following  

                                  

                                                                                  

(3)  The difference rule: If    and    are two stochastic processes, then 

                    

The proof is similar with the one for the sum rule. 

(4)  The product rule: If    and    are two stochastic processes, then 

                             

The proof is as follows  

                                     

                                                                       

                                                                   

where the second identity is verified by direct computation. If the process    

is replaced by the deterministic function       then the aforementioned 

formula becomes       

                                     

Since in most of practical cases the process    is an Ito diffusion 

                          

using the relation              the last term vanishes 

                            

and hence      



 

 

86 

 

                            

This relation looks alike the usual product rule. 

(5)  The quotient rule: If    and    are two stochastic processes, then 

 (
  

  
)  

                  

  
  

  

  
      

   

The proof follows from Ito’s formula and shall be postponed for the time 

being. When the process    is replaced by the deterministic function       

and    is an Ito diffusion then the previous formula becomes  

 (
  

    
)  

               

     
  

Example (3.2.2): 

We shall show that  

    
              

Applying the product rule and the fundamental relation       
      yields 

    
                                 

Example (3.2.3):  

Show that  

     
      

            

Solution: 

Applying the product rule and the previous exercise yields 

             
          

         
     

          
    

                 
                   

    
            

             
       

    
            

where we used      
     and          
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Example (3.2.4):  

Show that                   

Solution: 

Using the product rule and        we get  

                                  

Example (3.2.5): 

Let    ∫   
 

 
   be the integrated Brownian motion. Show that 

          

Solution: 

The infinitesimal change of    is  

             ∫     
    

 

       

Since    is a continuous function in    

Example (3.2.6): 

Let    
 

 
   

 

 
∫   

 

 
   be the average of the Brownian motion on the 

time interval        Show that  

    
 

 
(   

 

 
  )     

Solution: 

We have  

     (
 

 
)    

 

 
     (

 

 
)     

             
  

  
     

 

 
     

  

  
     ⏟
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(   

 

 
  )                   

Now we study the Ito’s Formula. 

Ito’s formula is analog of the chain rule from elementary calculus. We shall 

start by reviewing a few concepts regarding function approximations. 

 Let   be a differentiable function of the a real variable    Let    be fixed 

and consider the changes         and                   It is 

known from calculus that the following second order Taylor approximation 

holds 

              
 

 
                    

When   is infinitesimally close to     we replace    by the differential    

and obtain    

                                   
 

 
                                                                                 

In the elementary calculus, all the terms involving terms of equal or higher 

order to     are neglected; then the aforementioned formula becomes 

               

Now, if consider        be a differential function of   substituting in the 

previous formula we obtain the differential form of the well known chain 

rule         

           (    )        (    )         

We shall work out a similar formula in the stochastic environment. In this 

case the deterministic function      is replaced by a stochastic process      

The composition between differentiable function   and the process    is 

denoted by           Since the increments involving powers of     or 

higher are neglected, we may assume that the same holds true for the 

increment      i.e.            Then Equation (3.5) becomes  
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In the computation of     we may take into the account stochastic relations 

such as    
      or           

Now we present the Ito’s formula for diffusions. 

 The previous formula is a general case of Ito's formula. However, in most 

cases the increments     are given by some particular relations. An 

important case is when the increment is given by  

                        . 

A process    satisfying this relation is called an Ito diffusion. 

Theorem (3.2.7): ( Ito’s Formula for Diffusions) 

 If    is an Ito diffusion, and           then  

    *        
      

       

 
       +            

                          

Proof:  We shall provide a formal proof. Using the relation    
     and  

         we have  

            
                        

     

                     (      )
 
                                

    
 
 

                           
     

Substituting in Equation (3.6) yields 

                   
 

 
            

     

                              
 

 
              

    

             *        
      

       

 
       +            

                

In the case       we obtain the following consequence: 
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Corollary (3.2.8): 

Let           Then 

                                                                                                   

Particular cases: 

1. If          with   constant, then             and 

                    then Equation (3.8) becomes the following useful    

formula  

    
   

 

 
        

         
        

     A couple of useful cases easily follow: 

    
             

              
      

            

2. If           with   constant,                          

Therefore 

                 
 

 
          

In particular, for     we obtain the increments of a geometric Brownian 

motion 

               
 

 
       

3. If            then  

                  
 

 
         

In the case when the function          is also time dependent, the analog 

of (3.5) given by  
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Substituting      yields 

                                   
 

 
  

             
                

If    is an Ito diffusion we obtain an extra-term in Equation (3.7) 

    *                            
       

 
  

        +    

                                                                                                           

In the following we study the Ito’s formula for Poisson Processes. 

Consider the process           where          is the compensated 

Poisson Process. Using Equation (2.13)                     

   
      

Ito’s formula becomes                   

              
 

 
            

which is equivalent with    

    (       
 

 
       )     

 

 
           

For instance, if      
  

    
               

 which is equivalent with stochastic integral 

∫     
    ∫      

 

 

 

 

 ∫    

 

 

 

that yields  

∫    
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The left-hand limit is used for predictability reasons. 

Now we discuss the Ito’s multidimensional formula. 

If the process    depends on several Ito diffusion, say                then 

a similar Equation to (3.11) leads to   

                  
  

  
            

  

  
             

  

  
             

 
 

 

  

   
              

  
 

 

  

   
              

   

 
   

    
                                                               

Particular cases:  

In case when              with      
       

   independent 

Brownian motion, we have 

      
  

  
   

  
  

  
   

  
 

 

   

   
    

    
 

 

   

   
    

    

 
 

 

   

    
   

    
                                                                          

 
  

  
   

  
  

  
   

  
 

 
(
   

   
 

   

   
)                                              

The expression  

   
 

 
 
   

   
 

   

   
  

is called the Laplacian of    

We can rewrite the previous formula as 
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A function   with      is called harmonic. The aforementioned formula 

in the case of harmonic functions takes the very simple form  

    
  

  
   

  
  

  
   

   

Example (3.2.9): (The Product Rule) 

Let    and    be two processes. Show that  

                            

Solution: 

Consider the function            Since                   

  
     

             then Ito’s multidimensional formula yields  

                                                                

                                      
 

 
  

       
  

 

 
  

       
              

                                                        

Example (3.2.10): (The Quotient Rule)  

Let    and    be two processes. Show that 

 (
  

  
)  

                  

  
  

  

  
      

   

Solution: 

Consider the function        
 

 
  Since     

 

 
      

 

  
  

  
       

    
 

  
      

 

  
   then applying Ito’s multidimensional 

formula yields 

 (
  

  
)                                               
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Chapter (4) 

Stochastic Calculus Techniques and Stochastic 

Differential Equations 

Section (4.1): Stochastic Integration Techniques  

Computing a stochastic integral starting from the definition of the Ito 

integral is a quite inefficient method. Like in the elementary calculus, 

several methods can be developed to compute stochastic integrals in order to 

keep the analogy with the elementary calculus, we have called them 

Fundamental Theorem of Stochastic Calculus and integration by parts. The 

integration by substituting in more complicated in the stochastic 

environment and we have considered only a particular case of it, which we 

called the method of heat equation. 

In the following we discuss the Fundamental Theorem of Stochastic 

Calculus. 

Consider a process    whose increments satisfy the equation  

                Integrating formally between   and   yields 

             ∫    

 

 

 ∫            
 

 

                                                      

The integral on the left side can be computed as in the following. If consider 

the partition                      then 

∫            
   

∑ (     
    

)

   

   

       
 

 

 

since we canceled the terms in pairs. Substituting in formula (4.1) yields  

      ∫            
 

 
 and hence      (∫            

 

 
)  since    

is a constant. The following result its name from the analogy with the similar 

result from elementary calculus.  
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Theorem (4.1.1): (The Fundamental Theorem of Stochastic Calculus) 

 (i) for any      we have  

 (∫            
 

 

)              

(ii) If    is a stochastic process, such that             then  

 ∫             
 

 

            

We shall provide a few applications of the aforementioned theorem. 

Example (4.1.2): 

Verify the stochastic formula 

∫       
 

 

  
 

 
 

 

 
  

Let    ∫      
 

 
 and    

  
 

 
 

 

 
  From Ito’s formula   

     (
  

 

 
)   (

 

 
)  

 

 
            

 

 
          

and from the Fundamental Theorem of Stochastic Calculus  

     (∫       
 

 

)         

Hence          or             Since the process       has zero 

increments, then          constant. Taking      yields  

        ∫        
  

 

 
 

 

 

 

 

     

and hence      It follows that         which verifies the desired relation. 
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Example (4.1.3): 

Verify the formula  

∫       

 

 

 
 

 
   

     
 

 
∫   

    
 

 

 

Consider the stochastic processes    ∫       
 

 
    

 

 
   

      and 

   
 

 
∫   

    
 

 
 The Fundamental Theorem yields 

                 
 

 
  

     

Applying Ito’s formula 

     (
 

 
   

    )  
 

 
     

    (
 

 
)                             

                                                
 

 
      

             
 

 
   

                      
 

 
  

            

We can easily see that   

             

This implies                i.e              constant. Since 

            it follows that      This proves the desired relation. 

Example (4.1.4):  

Show that  

∫    
 

 

 

       
 

 
  

       

Consider the function        
 

 
       and let             Since 

                   and   
       then Ito’s formula provides  
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From the Fundamental Theorem we get  

∫    
       

 

 

 ∫    

 

 

          
 

 
  

       

Now we discuss the Stochastic Integration by Parts 

 Consider the process               with   and   differentiable. Using 

the product rule yields  

                                         

                  (          
 

 
         )

              
 

 
                             

Writing the relation in the interval form, we obtain the first integration by 

parts formula: 

∫                        |
 
 

 

 

 

 ∫              
 

 
∫               

 

 

 

 

 

This formula is to be used when integrating a product between a function of  

  and a function of the Brownian motion     for which an antiderivative is 

known. The following two particular cases are important and useful in 

application. 

1. If           the aforementioned formula takes the simple form 
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        ∫      
 

 

         |
   
   

 ∫          
 

 

                                   

It the worth noting that the left side is a Wiener integral. 

2. If         then the formula becomes  

 ∫                
 

 

|
   
   

 ∫       

 

 

                                          

Application (4.1.5): 

Consider the Wiener integral    ∫      
 

 
 From the general theory, see 

Proposition (3.1.9) it is known   is a random variable normally distributed 

with mean   and variance 

        ∫      
  

 
 

 

 

 

Recall the definition of integrated Brownian motion 

   ∫     
 

 

  

Equation (4.2) yields a relationship between   and the integrated Brownian 

motion  

   ∫          ∫     
 

 

 
 

 

        

and hence            This relation can be used to compute the 

covariance between    and     

                                                                    

                                       

                             ⁄     ⁄                  

                                      ⁄   
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where we used that             ⁄   The process    and    are not 

 independent. Their correlation coefficient is 0.5 as the following calculation 

show 

            
          

                  ⁄
 

   ⁄

   ⁄
   ⁄   

Application (4.1.6): 

If let      
  

 
 in formula (4.3), we get  

∫       
  

 

 
|
 
 

 
 

 
      

 

 

 

It worth noting that letting     and     we retrieve a formula proved by 

direct methods in a previous chapter 

∫       
  

 

 
 

 

 
 

 

 

 

Next we shall deduct inductively Equation (4.3) an explicit formula for the 

stochastic integral ∫   
     

 

 
 for   natural number. Letting      

    

   
 in 

Equation (4.3) and denoting      ∫   
    

 

 
 we obtain the recursive 

formula 

     
 

   
  

    
   

 
                  

Iterating this formula we have  
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Multiplying the second formula by  
 

 
  the third by   

 

 
 ( 

   

 
)  the 

fourth by  ( 
 

 
) ( 

   

 
) ( 

   

 
)  e.t.c., and adding and preforming the pair 

cancelations, yields  

    
 

   
  

    

        
 

 

 

 
  

  
 

 
( 

   

 
)

 

   
  

    

        
 

 
( 

   

 
) ( 

   

 
)

 

   
  

    

          
 

 

      

 

    

 
  

     

 

 

   
  

                                

           
 

 

      

 

    

 
 

 

 

 

 
(  

  
 

 
)                                                 

Using the summation notation we have  

   
 

   
  

    

                        ∑       
              

    

   

   

  
         

  

  

 

 
    

Since  

               
  

      
  

the aforementioned formula leads to the explicit formula 
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∫   
    

 

 

  

                 
 

   
  

    ∑       
  

          

   

   

  
         

  

  

 

 
  

The following particular cases might be useful in application  

            ∫   
     

 

 
  

  
 

 
  

  
 

 
                                                             

 

 

 

         ∫   
     

 

 
  

  
 

 
  

  
 

  
  

  
 

  
                                           

 

 

 

Application (4.1.7): 

Choosing          and            we shall compute the stochastic 

integral ∫     

 
         using the formula of integrating by part  

∫    
 

 

         ∫           
 

 

 

    

                                      |
 
 

 ∫       
 

 

        
 

 
∫           

    
 

 

 

                                      ∫    
 

 

        
 

 
∫    

 

 

        

              (  
 

 
) ∫    

 

 

             

The particular case   
 

 
 leads to the following exact formula of a 

stochastic integral  

                               ∫  
 
 

 

 

          
 
                                                       

In a similar way, we can obtain an exact formula for the stochastic integral  
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∫     

 
         as follows  

∫    
 

 

          ∫           
    

 

 

 

            |
 
 

  ∫    
 

 

        
 

 
∫    

 

 

        

Taking   
 

 
 yields the closed form formula  

                ∫  
 
 

 

 

            
 
                                                               

A consequence of the last two formulas and Euler’s formula  

                   

is                                 

∫  
 
 
   

 

 

     (   
 
 

    )                                                

A general form of the integration by parts formula. In general, if    and    

are two Ito diffusions, form the product formula 

                                                           

Integrating between the limit   and   

∫          ∫      

 

 

 ∫      

 

 

 ∫        
 

 

 

 

 

From the Fundamental Theorem  

∫          
 

 

                                                    

so the pervious formula takes the following form of integration by parts  
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∫        
 

 

          ∫      

 

 

 ∫        
 

 

 

This formula is of theoretical value. In practice, the term        needs to be 

computed using the rules   
      and          

In the following we study the Heat Equation Methods. 

In the elementary calculus the integration by substituting is the inverse 

application of the chain rule. In the stochastic environment, this we be the 

inverse application of Ito’s formula. This is difficult to apply in general, but 

there is a particular case of great importance. 

Let        be a solution of the equation 

                   
 

 
  

                                                                                     

This is called the heat equation without sources.  The non-homogeneous 

equation 

                     
 

 
  

                                                                                 

is called heat equation with sources. The function        represents the 

density of heat sources, while the function         is temperature at point   

at time   in a one-dimensional wire. If the heat source is time independent, 

then         i.e.   is a function of   only. 

Example (4.1.8):  

Find all solutions of the Equation (4.8) of the type  

                   

Substituting into Equation (4.8) yields  

 

 
             . 

Since the right side is a function of   only, while the right side is a function 

of variable    the only case on the previous equation is satisfied is when both 
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sides are equal to the some constant    This is called separation constant. 

Therefore      and      satisfy the equation  

              
 

 
          

Integrating yields             and                . It follows 

that 

                                  

with             arbitrary constants. 

Example (4.1.9): 

We find all solutions of the Equation (4.8) of the type  

                 

Substituting in the equation and dividing by          yields 

     

    
 

 

 

      

    
    

There is a separation constant   such that 
     

    
    and 

      

    
      

There are three distinct cases to discuss: 

1.      In this case         and              with              

real constants. Then  

                                                  

is just a linear function in    

2.      Let     such that         Then        
  

 
     and 

               with solution  

             ⁄                

                   

The general solution of  Equation (4.8) is 

             ⁄ (            )                   
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3.      Let     such that         Then       
  

 
     and 

                Solving yields  

                                                      ⁄   

                                         

The general solution of  Equation (4.8) in this case is  

            ⁄                                   

In particular, the function              ⁄           ⁄        ⁄       or any 

linear combination of them are solutions of the heat Equation (4.8). 

However, there are other solutions which are not of the previous type. 

Theorem (4.1.10): 

Let        be a solution of the heat Equation (4.8)  

and denote                  Then  

∫           

 

 

                  

Proof: Let              Applying Ito’s formula we get   

                 (    
 

 
  

  )     

Since     
 

 
  

     and                    we have  

                

Applying the Fundamental Theorem yields  

∫           

 

 

 ∫                           
 

 

 

Application (4.1.11): 

Show that  
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∫   

 

 

    
 

 
  

  
 

 
   

Choose the solution of the heat Equation (4.8) given by               

Then                     Theorem (4.1.10) yields  

∫    

 

 

    ∫           

 

 

       |
 
 

   
     

Dividing by 2 leads to the desired result. 

Application (4.1.12): 

Show that  

∫    
    

 

 

    
 

 
  

       

Consider the function         
 

 
       which is a solution of the heat 

Equation (4.8). Then                        Applying Theorem 

(4.1.10) yields 

∫    
    

 

 

    ∫           

 

 

        |
 
 

 
 

 
  

       

Application (4.1.13): 

 Let      Prove the identities  

∫   
   
 

    

 

 

    
 

  
(  

   
 

      )  

Consider the function          
   

 
      which is a solution of the  

homogeneous heat Equation (4.8). Then                     
   

 
     

Applying Theorem (4.1.10) to get 

∫     
   
 

   
 

 

    ∫           

 

 

        |
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Dividing by the constant    ends the proof. 

In particular, for     the aforementioned formula becomes  

∫   
 
 
   

 

 

      
 
 

                                                         

Application (4.1.14): 

Let      Prove the identities 

∫  
   
             

 

 

 

 

 
   
           

From the Example (4.1.9) we know         
   

         is a solution of 

the heat equation. Applying Theorem (4.1.10) to the function 

                   
   

          yields  

          ∫   
   
             

 

 

∫           

 

 

        |
 
 

 

                                         
   
         |

 
 

  
   
           

Divide by   to end the proof. If choose     we recover a result already 

familiar to the reader from Equation  (4.6) 

∫  
 
            

 

 

 
 
                                                          

Application (4.1.15): 

Let      Show that 

     ∫  
   
             

 

 

 

 

    
   
                                                   

Choose         
   

         to be a solution of the heat equation. 
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Apply Theorem (4.1.10) for the function 

                    
   

         to get  

 ∫      
   
                    |

 
 

 

 

                                            

                                                               
   
         |

 
 

  
   
             

And then divide by     

Application (4.1.16): 

Let        Show that  

   ∫   
 
 

 

 

   
  

 

        
 
  

  
 

     
 
  

  
 

                                              

We have that            ⁄         ⁄  is a solution of homogeneous heat 

equation. Since                      ⁄          ⁄   applying Theorem 

(4.1.10) we will get the result.  

Section (4.2): Stochastic Differential Equations. 

 Let    to be a continuous stochastic process. If small changes in the process 

   can be written as a linear combination of small changes in   and small 

increments of the Brownian motion     we may write  

                                                                                          

and called it stochastic differential equation. In fact, this differential relation 

has the following integral form meaning 

      ∫             
 

 

 ∫              

 

 

                           

where the last integral is taken in the Ito sense. Equation (4.14) is taken as 

the definition for the stochastic differential Equation (4.13), so the definition 

of stochastic differential equations is fictions. However, since it is 
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convenient to use stochastic differentials informally, we shall approach 

stochastic differential equations by analogy with ordinary differential 

equations, and try to present the same methods of solving equation in the 

function                       are called drift rate and volatility. 

 A process    is called a solution for the stochastic Equation (4.13) if it 

satisfies the equation. In the following we shall start with an example. 

Example (4.2.1): (The Brownian Bridge) 

Let        Show that the process 

                  ∫
 

     

 

 

          

is a solution of the stochastic differential equation  

    
    

   
                        

We shall perform a routine verification to show that    is a solution. First we 

compute the equation  
    

   
  

                    ∫
 

     

 

 

    

                               ∫
 

     

 

 

     

and dividing by     yields  

              
    

   
     ∫

 

     

 

 

                                     

Using               

 (∫
 

   

 

 

   )  
 

   
     

the product rule yields  
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                      ∫
 

   

 

 

    

       (∫
 

   

 

 

   ) 

        (    ∫
 

     

 

 

   )        
    

   
        

where the last identity comes from Equation (4.15) we just verified that the 

process     is a solution of the given stochastic equation. The question of 

how this solution was obtained in the first place, is the subject of study of 

the rest this  section. 

Now we study the Finding Mean and Variance. 

For most practical purposes, the most important information one needs to 

know about a process is its mean and variance. These can be found in some 

particular cases without solving explicitly the equation, directly from the 

stochastic equation. We shall deal in the present section with this problem. 

Taking the expectation in Equation (4.14) and using the property of the Ito 

integral as a zero mean random variable yields  

           ∫              
 

 

                                       

Applying the Fundamental Theorem of calculus we obtain  

 

  
                                                                  

We note that    is not differentiable, but its expectation       is. 

 This equation can be solved exactly in a few particular cases. 

1.  If                  and 
 

  
           with the exact solution 

         ∫     
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2. If                         with      and      continuous 

deterministic functions. Then  

 

  
                      

which is a linear differential equation in        Its solution is given by 

                            (   ∫           
 

 

  )                                            

where      ∫        
 

 
 It worth noting that the expectation       does not 

depend on the volatility term             

Example (4.2.2): 

If                                then 

                 

For general drift rates we cannot find the mean, but in the cases of concave 

drift rates we can find an upper bound for the expectation        

The following result will be useful in the sequel. 

Example (4.2.3): (Gronwall’s Inequality) 

 Let      be a non-negative function satisfying the inequality  

        ∫       
 

 

 

for        with     constant. Then 

                 

Proposition (4.2.4): 

Let    be a continuous stochastic process such that  
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with the function      satisfying the following conditions 

1.         for        

2.           for         

3.          

Then              for          

Proof: From the mean value theorem there is         such that 

                                                              

where we used that       is decreasing function. Applying Jensen’s 

inequality for concave function yields    

                   

Combining with Equation (4.18) we obtain                  

Substituting in the identity Equation (4.16) implies  

          ∫         
 

 

 

Applying Gronwall’s inequality we obtain              

Proposition (4.2.5): 

Let    be a process the satisfying stochastic equation  

                      

Then the mean and variance of    are given by  

                               

                        ∫       
 

 

         

where      ∫        
 

 
 

Proof: The expression of       follows directly from Equation (4.17) with 

     In order to compute the second moment we first compute  
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where we used Ito’s formula. If Let      
   the previous equation becomes 

                           √       

Applying Equation (4.16) with      replaced by       and      by         

yields  

                    ∫        
 

 

           

which is equivalent with 

    
            

  ∫        
 

 

           

It follows that the variance is 

                      
          

        ∫        
 

 

                 

Remark (4.2.6): 

We note that the previous equation is of linear type. This shall be solved 

explicitly in the end of this section. 

The mean and variance for a given stochastic process can be computed by 

working out the associated stochastic equation. We shall provide next a few 

examples.  

Example (4.2.7): 

We find the mean and variance of       with   constant. 
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From Ito’s formula 

                 
 

 
          

and integrating yields 

        ∫         
 

 
  

 

 

∫        
 

 

 

Taking the expectations we have  

          
 

 
  ∫           

 

 

 

If Let               then differentiating the previous relations yields the 

differential equation    

      
 

 
       

with the initial condition                 The solution is 

           ⁄   and hence  

             ⁄   

The variance  

                                    ⁄           (      )  

Example (4.2.8): 

We find the mean of the process    
    

We shall set up a stochastic differential equation for    
    Using the 

product formula and Ito’s formula yields  

         
                              

                (       
 

 
     ) 
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                                  (
 

 
   

      )            
         

Integrating and using that         yields 

      
   ∫ (

 

 
   

      )    ∫         
       

 

 

 

 

 

Since the expectation of an Ito integral is zero, we have 

        
    ∫ (

 

 
     

          )    
 

 

 

Let           
     Using           ⁄   the previous integral equation 

becomes 

     ∫ (
 

 
        ⁄ )    

 

 

 

Differentiating yields the following linear differential equation 

      
 

 
        ⁄  

with the initial condition         Multiplying by    ⁄  yields the following 

exact equation      ⁄           The solution is          ⁄   Hence we 

obtained that         
        ⁄   

Example (4.2.9): 

Show that for any integer     we have  

 [  
  ]  

     

    
           [  

    ]     

In particular,     
           

         From Ito’s formula we have 

    
      

       
      

 
  

       

Integrate and get 
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   ∫   

       
      

 
∫   

     
 

 

 

 

  

Since the expectation of the first integral on the right side is zero, taking the 

expectation yields the following recursive relation 

    
   

      

 
∫     

      
 

 

  

Using the initial values         and     
      the methods of 

mathematical induction implies that  [  
    ]     and  [  

  ]  
    

    
    

Now we discuss the Integration Technique. 

We shall start with the simple case when both the drift and the volatility are 

just functions of time     

Proposition (4.2.10): 

The solution    of the stochastic differential equation    

                     

Is Gaussian distributed with mean    ∫       
 

 
 and variance ∫        

 

 
  

Proof: Integrating in the equation yields  

      ∫  
 

 

   ∫         ∫      
 

 

 

 

    

Using the property of Wiener integrals, ∫     
 

 
    is Gaussian distributed 

with mean   and variance ∫        
 

 
  Then    is Gaussian (as a sum 

between a predictable function and a Gaussian), with  

                  *   ∫         ∫      
 

 

 

 

  +

    ∫           ∫      
 

 

 

 

       ∫      
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           *   ∫         ∫      
 

 

 

 

  +     *∫      
 

 

  + 

                   ∫        
 

 
   

which ends the proof. 

Example (4.2.11): 

We find the solution of the stochastic differential equation  

                        

Integrate between   and   and get 

     ∫   
 

 

 ∫         
  

 

 

 

 

 
 

 
 

 

 
   

      

Example (4.2.12): 

We solve the stochastic differential equation  

               
                   

Let    ∫     
 

 
 denote the integrated Brownian motion process.  

Integrating the equation between   and   and using Equation (4.4), yields  

   ∫    

 

 

 ∫          ∫   
    

 

 

      
 

 

 

 

  
  

 

 
  

  
 

 

    
 

 
  

  
 

 
  

  
 

 
  

Example (4.2.13): 

We solve the stochastic differential equation  

            ⁄                

and find       and          Integrating yields 
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    ∫      ∫    ⁄         

 

 

 

 

 
  

 
    ⁄                              

where we used Equation (4.11). Even if the process    is not Gaussian, we 

can still compute its mean and variance. By Ito's formula we have  

                  
 

 
          

Integrating between   and   yields 

      ∫          
 

 
∫         

 

 

 

 

 

where we used that               Taking the expectation in the 

previous relation yields  

           ∫           
 

 
∫            

 

 

 

 

 

From the properties of the Ito integral, the first expectation on the right side 

is zero. Denoting                  we obtain the integral equation  

      
 

 
∫        

 

 

 

Differentiating yields the differential equation  

       
 

 
     

with the solution           ⁄   Since                    it 

follows that         Hence  

            

Taking the expectation in Equation  (4.19) leads 

       *
  

 
+     ⁄          
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Since the variance of predictable function is zero. 

                   *
  

 
    ⁄      +  (   ⁄ )

 
           

                                   
  

 
                                           (4.20) 

In order the compute the last expectation we use Ito’s formula  

                                  and integrate to get 

               ∫          

 

 

  ∫         
 

 

 

Taking the expectation and used that Ito integrals have zero expectation, 

yields 

             ∫             
 

 

 

If denote                 the previous relation becomes an integral 

equation 

        ∫        
 

 

 

Differentiate and get               with the solution             

Since                      we have            Substituting in 

Equation (4.20) yields         
  

 
         

      

 
        

In conclusion, the solution    has the mean and the variance given by  

      
  

 
                      

 

Example (4.2.14): 

We solve the following stochastic differential equation  
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   ⁄                     

and then find the distribution of the solution    and its mean and variance. 

Dividing by    ⁄   integrating between   and    and using Equation (4.10) 

yields  

   ∫     ⁄
 

 

   ∫     ⁄    

 

 

    

                                       (      ⁄ )      ⁄       

                                            ⁄           

 Since     is a geometric Brownian motion, using proposition (2.1.10)  

                         ⁄                 ⁄      ⁄     
       

        ⁄   

                  [      ⁄       )     [    ⁄    ]             

                   

 The process    has the distribution of a sum between predictable function  

       ⁄  and the log-normal process        ⁄   

Example (4.2.15): 

We solve the stochastic differential equation 

           ⁄    
   

     ⁄              

Integrating between   and   and applying Equation (4.12) yields  

      ∫    ∫     ⁄
 

 

   
   

     ⁄     
 

 

 

            
  ⁄  

 

   ⁄
    

     ⁄    

        
  ⁄  

 

   ⁄
    

     ⁄           
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Now we discuss the Exact Stochastic Equation. 

The stochastic differential equation  

                                                                                                 

is called exact if there is a differential function        such that 

                                    
 

 
  

                                                          

                                                                                                                  

Assume the equation is exact. Then substituting Equation  (4.21) yields  

    (         
 

 
  

       )                   

Applying Ito’s formula, the previous equation becomes   

     (       )  

which implies               with   constant. Solving the partial 

differential equations system (4.22-4.23) requires the following steps: 

1. Integrate partially with respect to   in the second equation to obtain 

       up to an additive function       

2. Substitute into the first equation and determine the function       

3. The solution               with   determined from the initial 

condition on     

Example (4.2.16): 

We solve the stochastic differential equation  

           
                              

In this case                 and                The associated 

system is   
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Integrate partially in   in the second equation yields  

       ∫                        

Then                and   
        Substituting in the first equation 

yields 

                        

This implies           or     constant. Hence                  

and                   
     Since       it follows that      

The solution is           
    

Example (4.2.17): 

We find the solution of 

    (    
           )         

              

The coefficient functions are                      and 

                 The associated system is given by 

                       
 

 
  

          

                                                        

Integrate partially in the second equation yields  

       ∫                         

Then                and   
         and pugging in the first 

equation we get                          
 

 
      

After cancelations we get             so            Then  
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The solution process is given by                 
            

Using      we get      Hence the solution         
         

The next result deals with a closeness-type condition. 

Theorem (4.2.18): 

If the stochastic differential Equation (4.21) is exact, then the coefficient 

functions        and        satisfy the condition 

                                          
 

 
  

                                                                   

Proof: If the stochastic equation is exact, there is a function        

satisfying the system (4.22-4.23). Differentiating the first equation of the 

system with respect to   yields            
 

 
  

      Substituting 

      yields the desired relation. 

Remark (4.2.19): 

The Equation (4.24) has the meaning of a heat equation. The function        

represents the temperature measured at   at the instance    while     is the 

density of heat sources. The function        can be regarded as the potential 

from which the density of heat sources is derived by taking the gradient in    

It worth noting that Equation (2.24) is a just necessary condition for 

exactness. This means that if this condition is not satisfied, then the equation 

is not exact. In this case we need to try a different method to solve the 

equation. 

Example (4.2.20): 

Is the stochastic differential equation 

         
           

             exact? 

Collecting the coefficients, we have                           

Since                 and   
     the Equation (4.24) is not satisfied, 

and hence the equation is not exact. 
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Now we study the Integration by Inspection.  

When solving a stochastic differential equation by inspection we look for 

opportunities to apply the product or the quotient formula: 

                          

      (
  

    
)  

               

     
  

For instance, if the stochastic differential equation can be written as  

                       

the product rule brings the equation in the exact form                

which after integration leads to the solution               

Example (4.2.21): 

We solve  

         
                       

We can write the equation as 

      
                  

Which can be contracted to 

      
         

    

 We using the product rule we can bring it to the exact form          
    

With the solution       
     

Example (4.2.22): 

We solve the stochastic differential equation  

                     

If written the equation as                         

we note the exact expression formed by the last two terms 
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                   Then  

                  

which is equivalent with               . Hence  

                          

Example (4.2.23):  

We solve the stochastic differential equation 

              
             

Multiply by      to get 

              
                

After regrouping this becomes 

              
                  

Since               and     
              the previous relation 

becomes 

            
         

    

By the product rule, the right side becomes exact. 

           
    

and hence the solution is            
         

Example (4.2.24): 

We solve the equation  

                              

The equation can be written as  

          
               

Divide by               
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Applying the quotient rule yields  

 (
  

  
)    (

   

 
)       

Integrating between   and    yields  

  

  
  

   

 
         

So  

       
 

  
                

Using      yields     ⁄  and hence the solution is 

   
 

 
(   

 

 
)                    

Now we present the Linear Stochastic Equations.  

Consider the stochastic differential equation with drift term linear in    

                                      

This can be also written as  

                                 

Let      ∫        
 

 
 Multiplying by the integration factor         the left 

side of the previous equation becomes an exact expression  

                                                 

                                                                        

Integration yields  



 

 

128 

 

            ∫       
 

 

       ∫                 

 

 

                    

                                 (∫       
 

 

       ∫                 

 

 

)  

The first integral in the previous parenthesis is a Riemann integral, and the 

latter one is an Ito stochastic integral. Sometimes, in practical applications 

these integrals can be computed explicitly. When               the latter 

integrals becomes a Wiener integral. In this case the solution    is Gaussian 

with mean and variance given by  

                                   ∫       
 

 

       

              ∫        
 

 

           

Another important particular case is when α    α    β    β are 

constants and                The equation in this case is 

                           

and the solution takes the form 

           
β

α
(       ) ∫        

 

 

         

Example (4.2.25): 

We solve the linear stochastic differential equation  

                      

Write the equation as 

                    

and multiply by the integrating factor      to get 
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Integrate between   and   and multiply by      we obtain   

            ∫     
 

 

      ∫    

 

 

       
 

 
               

Example (4.2.26):  

We solve the linear stochastic differential equation  

                       

Multiply by the integrating factor    yields  

                          

Since                       integrating between   and   we get  

        ∫      
 

 

 ∫       
 

 

 

Dividing by    and performing the integration yields  

                  
 

 
      

      

Example (4.2.27): 

We solve the linear stochastic differential equation  

    (
 

 
    )                

Write the equation as  

    
 

 
                    

and multiply by the integrating factor     ⁄  to get 

 (    ⁄   )      ⁄       ⁄           

Integrating yields  
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    ⁄       ∫     ⁄
 

 

   ∫    ⁄          
 

 

 

Multiply by    ⁄  and use Equation (4.11) to obtain the solution  

        ⁄   (   ⁄   )           

Proposition (4.2.28): (The Mean-Reverting Ornstein-Uhlenbeck 

Process) 

Let   and α be two constants. Then the solution    of the stochastic 

equation  

                                                                                    

is given by  

                              α ∫     
 

 

                                                 

   is a Gaussian with mean and variance given by  

                  

                                            
  

 
          

Proof: Adding      to both side and multiplying by the integrating factor  

   we get 

                        

which after integrating yields  

                α ∫      

 

 

 

and hence  
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                                     ∫      

 

 

     

              ∫        

 

 

  

Since     is the sum between a predictable function and a Wiener integral, 

using proposition (3.1.9) it follows that     is a Gaussian, with  

                              * ∫        

 

 

+               

           *α ∫        

 

 

+  α     ∫     
 

 

 α     
     

 
 

                         
 

 
α                                   

The name of mean-reverting comes obviously from the fact that  

   
   

         

The variance also tends to zero exponentially,    
   

           A ccording 

to proposition (2.2.7), the process     

tends to   in the mean square sense. 

Proposition (4.2.29): (The Brownian Bridge) 

For       fixed, the stochastic differential equation  

    
    

   
                  

has the solution  

                  ∫
 

   
    

 

 

                                  

The solution has the properties      and  
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      almost certainly  

Proof: If let         the equation become linear in    

    
 

   
           

Multiplying by the integrating factor      
 

   
  yields  

 (
  

   
)   

 

   
     

which leads by integrating to 

  

   
   ∫

 

   
   

 

 

  

Making     yields        so 

    

   
     ∫

 

   
   

 

 

  

Solving for    yields  

                  ∫
 

   
   

 

 

            

Let         ∫
 

   
   

 

 
  First we notice that  

            *∫
 

   
   

 

 

+     

                         *∫
 

   
   

 

 

+                 

                              ∫
 

      
        

 

 

(
 

   
  )          

In order to show   -   
   

      we need to prove  
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 (     
   

       )     

Since                   it suffices to show that 

                                            (     
   

       )                                              

We evaluate the probability of the complementary event  

                                     (     
   

       )                     

for some      Since by Markov’s inequality  

               
       

  
 

      

  
 

holds for any        choosing     implies that  

                     

which implies Equation (4.28). 

the process Equation( 4.27) is called Brownian bridge because it joins 

     with       Since    is the sum between a deterministic linear 

function in   and a Wiener integral, it follows that is a Gaussian process, 

with mean and variance   

                        

                        

It worth noting that the variance is maximum at the midpoint         ⁄  

and zero at the end points   and    

Now we discuss the Method of Variance of Parameters. 

 Consider the following stochastic equation                        

                                                                                                                    

with   constant. This is the equation which is known in physics to model the 

linear noise. Dividing by    yields 
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switch to the integral form 

∫  
   

  
 ∫       

and integrate “blindly” to get              with   integration constant. 

This leads to the “pseudo-solution”  

           

The nomination “pseudo” stands for the fact that    does not satisfy the 

initial equation. We shall find a correct solution by the letting the parameter 

  to be a function of    In other words, we are looking for a solution of the 

following type  

                                                                                                               

where the function      is subject to be determined. Using Ito’s formula we 

get  

                    (        )                     ⁄                  

     
        ⁄             

Substituting the last term from the initial Equation (4.29) yields   

        
        ⁄          

which leads to the equation 

         ⁄     

With the solution       
  

 
     Substituting into (4.30) yields  

        
  

 
     

The value of the constant   determined by taking      This leads        

Hence we have obtained the solution of the equation (4.29) 
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Example (4.2.30): 

Use the method of the variance of parameter to solve the equation 

                                             

 Dividing by    convert the differential equation into the equivalent integral 

form  

∫  
 

  
    ∫        

The right side is a well-known stochastic integral given by  

∫       
  

 

 
 

 

 
    

The left side will be integrated “blindly” according to the rules of 

elementary Calculus  

∫  
 

  
            

Equating the last two relation and solving for    we obtain the “pseudo-

solution”         
  

 

 
    with   constant. In the order to get a correct 

solution, we let   to depend on   and     We shall assume that 

                     so we are looking for a solution of the form  

      
  

 
 
             

Applying Ito’s formula, we have  

      [ 
 

 
       

 

 
(         )]                      

Substituting the initial equation             yields  
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This equation is satisfied if we are able to choose the function      and 

      such that the coefficients of    and     vanish 

                   
 

 
           

From the equation   must be a constant. Substituting in the second equation 

it follows that   is also a constant. It turns out that the aforementioned 

“pseudo-solution” is in fact a solution. The constant       is obtained 

letting      Hence the solution is given by  

        
  

 
   

Example (4.2.31): 

Use the method of the variance of parameter to solve the stochastic 

differential equation 

                  

with   and   constant. 

After dividing by     we bring the equation into the equivalent integral form  

∫
   

  
 ∫     ∫       

Integrate on the left “blindly” and get 

               

where   is an integration constant. We arrive at the following “pseudo-

solution”               Assume the constant   is replaced by a function 

      so we are looking for a solution of the form 

                                                                                  

Apply Ito’s formula we get  
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      (        
  

 
)            

Substituting the initial equation yields  

(      
  

 
)       

which is satisfied for        
  

 
  with the solution       

  

 
         

Substituting into (4.31) yields the solution  

           
  

 
     

(  
  

 
)       

    
(  

  

 
)       

Now we present the Integrating Factors. 

The methods of integrating factors can be applied to a class of stochastic 

differential equation of type  

                                                                                                   

where   and   are continuous deterministic functions. The integrating 

factors is given by 

    ∫         
 
 ∫        

 

 

 

   

The equation can be brought to the following exact form  

                     

Substituting          we obtain that    satisfies the deterministic 

differential equation 

              ⁄      

which can be solved by either by integration or as exact equation. We shall 

exemplify this method with a few examples. 

Example (4.2.32): 

We solve the stochastic differential equation  
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with   and   constants. 

The integrating factors is given by     
 

 
         Using Ito’s formula, we 

can easily check that 

        
           

Using                  
      we obtain  

                 

Multiplying by     the initial equation becomes  

                      

and adding and subtracting          from the left side yields 

                                        

This can be written as 

                          

which is the virtue of the product rule becomes  

                

Integrating yields  

            ∫     
 

 

 

and hence the solution is  

   
 

  
   

 

  
∫     

 

 

        
 
 
     ∫   

 
 
                

   
 

 

 

Now we discuss the Existence and Uniqueness. 

An exploding solution consider the non-linear stochastic differential 
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 equation  

             
      

                ⁄                                      

We shall look for a solution of the type             Ito’s formula yields 

              
 

 
           

Equating the coefficients of    and     in the last two equations yields  

         
        

       
                                         

        
 

 
          

                
                                        

We note that Equation (4.35) implies Equation (4.36) by differentiation. 

 So it suffices to solve only ordinary differential equation  

                                         ⁄         

Separating and integrating we have 

∫
  

     
 ∫         

 

   
  

Hence a solution of  Equation (4.34) is 

   
 

    
  

Let    be the first time the Brownian motion    hits    Then the process    

is defined only for        is a random variable with           

and          the following theorem is the analog of Picard’s uniqueness 

result from ordinary differential equation: 

Theorem (4.2.33): ( Existence and Uniqueness)  

Consider the stochastic differential equation  
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where   is a constant and   and   are continuous function on         

satisfying  

1.                                            

2.                                                      

with     positive constants. There is a unique solution process    that is 

continuous and satisfies  

 *∫   
   

 

 

+     

The first condition says that the drift and volatility increase no faster than a 

linear function in    The second condition states that the functions are 

Lipschitz in the second argument. 
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