
SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

COLLEGE OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

INTELLIGENT SYSTEM FOR

ROUTING AN AMBULANCE

THE DISSERTATION SUBMITTED AS A PARTIAL FULFILLMENT

FOR THE REQUIREMENT OF BSC (HONOUR) DEGREE IN

COMPUTER SCIENCE

October 2015

بسم الله الرحمن الرحيم

SUDAN UNIVERSITY OF SCIENCE &

TECHNOLOGY

COLLEGE OF COMPUTER SCIENCE &

INFORMATION TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

INTELLIGENT SYSTEM FOR ROUTING AN

AMBULANCE
October 2015

PREPARED BY: SUPERVISOR:

Ahmed Mohammed Alkhair Dr. Hoida Ali

Abdalgadir

Jihad Fayez Abd Elmajed SIGNITURE:

…………… DATE: ……/………../……………..

اليةة

َنةٌ﴿قال تعالى ُه سِ ُذ ْأخُ َت َل ّيومُمُ ْلقَ ْلحَيّ ا َومُ ا ُه ّل ِإ َلـههَ ِإ َل ّلهُ ال

ِذي ّل َذا ا َلرْضِ مَن ِفي ا َومَا َواتِ ِفي السّمَا ّلهُ مَا ْومُمٌ َن َل َو

َل َو ُهمْ ْلفَ َومَا خَ ِهمْ ِديه ْيه َأ ْينَ َب َلمُ مَا ْع َيه ِه ِن ْذ ِإ ِب ّل ِإ ُه َد ْن ُع عِ َيهشْفَ

ّيهُ ُكرْسِ َع َوسِ ِبمَا شَاء ّل ِإ ِه ْلمِ ٍ مء مّنْ عِ ِبشَيْ ُطومُنَ ُيهحِي

ِظيمُ َع ْل ِليّ ا َع ْل َومُ ا ُه َو ُهمَا ُظ ُه حِفْ ُد ُؤو َيه َل َو َلرْضَ َوا َواتِ السّمَا

﴾
﴾ 255﴿البقرة اليهة

5

الحمد
 الحمـهد للـهه بعـهدد كلمـهاته الـهتي ل تنفـهذ الحمـهد للـهه بسـهعة علمـهه الـهذي ل يهنفـهذ

 الحمد لله منذ ان كان وحده ولم يهكن سومُاه احد ، الحمد لله منذ ان خلق القلـهـهم وخلـهـهق

 السمومُات والرض ، الحمد لله حين أسـهـهتومُى علـهـهى العـهـهرش ، الحمـهـهد للـهـهه حيـهـهن خلـهـهق آدم

 وسومُاه وكرمه على كثير مما خلق ، الحمد للـهـهه الـهـهذي علمـهـهه السـهـهماء وخلـهـهق لـهـهه حـهـهومُاء ،

 الحمد لله الذي أمر الملئككة بالسجومُد لـهـهه ، الحمـهـهد للـهـهه الـهـهذي علمـهـهه التومُبـهـهة فتـهـهاب عليـهـهه

 الحمد لله الذي جعله خليفة في الرض ، لك الحمد يها لله باليهمان ، ولك الحمـهـهد بالهـهـهل

 والمال والمعافاة ، بعثت فينا افضل انبيائكك بأفضل كتبك وجعلتنا من افضل المم فلـهـهك

الحمد على ذلك كله.

6

DEDICATION
For the one who hit the message and led the Secretariat advised the

nation to the Prophet of mercy and the light of the Worlds

Prophet Muhammad peace be upon him

To the one who teach me tender without waiting, to carry his name

proudly, I ask God to reach at your age to see the fruit picking has

come after a long wait and your star will remain guided by today and

tomorrow and forever

to my dear father

To the greatest unconditional and infinite love we will ever

experience in our existence...

To my dear mother

To my brothers and sisters: For their unconditional love, faith,

Understanding, and support.

7

http://boardofwisdom.com/togo/Quotes/ShowQuote?msgid=507587
http://boardofwisdom.com/togo/Quotes/ShowQuote?msgid=507587

ACKNOWLEDGMENTS
we would like to express our appreciation to our supervisor Dr. Hoida

Ali Abdalgadir Ahmed who has carefully answered our queries, provided

us with materials, checked our examples, and assisted us in a myriad

ways by her helpful comments on every stage and process of this

project.

We are also very grateful to our friends, family for their good support

and assistance throughout the production of this project.

ABSTRACT
The aim of this study is to find the route for an Ambulance from

the hospital - where the Ambulance is located - to the casualty

8

location through the Khartoum City road Network, by displaying the

route path to the user of the system.

To study the problem and test the proposed solution the

following steps has been performed: Create the Global Positioning

System (GPS) data base for Khartoum City road network from the

GPS data files, specify the hospital location where the ambulance is

located, specify the casualty location, find the route between these

two locations, and display the route path on the screen.

We have used SWI-Prolog to find the route path. We have also

created a java library (GPXParse) to parse the GPS data file (.gpx) to

strings to be used in creating prolog predicates and also to be stored

in the data base. Another java library (JPL) has been used to call the

prolog program from java and call java from the prolog program.

المستخلص

 الهـهـهدف مـهـهن هـهـهذه الدراسـهـهة ايهجـهـهاد المسـهـهار لسـهـهيارة السـهـهعاف مـهـهن المستشـهـهفى

 المومُجـهـهومُدة بهـهـها السـهـهيارة الـهـهى مكـهـهان المصـهـهاب (المريهـهـهض) فـهـهي شـهـهبكة شـهـهومُارع مديهنـهـهة

الخرطومُم ، بعرض المسار على شاشة مستخدم النظام.

9

 لدراسة المشكلة واختبار الحل المقترح تم تطبيق الخطومُات التالية: انشاء قاعدة

 بيانات جغرافية لشبكة شومُارع مديهنة الخرطومُم من ملفات بيانات نظـهـهام تحديهـهـهد المومُاقـهـهع

 العـهـهالمي ، تحديهـهـهد مومُقـهـهع المستشـهـهفى الـهـهتي تومُجـهـهد بهـهـها سـهـهيارة السـهـهعاف ، تحديهـهـهد مومُقـهـهع

 المصاب (المريهض) ، ايهجاد الطريهق بين هذيهن المومُقعين ، وعرض المسـهـهار علـهـهى شاشـهـهة

.مستخدم النظام

) ليهجاد المسار. كما قمنا بإنشاء مكتبة جافاSWI-Prologلقد قمنا بإستخدام ال(

)GPXParse.) لتحومُيهل ملف البيانـهـهات الجغرافيـهـهة (gpx) الـهـهى سلسـهـهل مـهـهن الحـهـهروف (

strings) ليتم إستخدامها في انشاء فرضـهـهيات الـهـهبرولومُق (predicatesوكـهـهذلك فـهـهي (

) لنـهـهداءJPLإنشاء قاعدة البيانات الجغرافية. كمـهـها قمنـهـها بإسـهـهتخدام مكتبـهـهة جافـهـها اخـهـهرى (

برنامج البرولومُق من برنامج الجافا والعكس.

TABLE OF TERMS
terminologyTerm abbreviation

Intelligent System for Routing an ISRA

10

Ambulance

Artificial IntelligenceAI

Travelling Salesman ProblemTSP

Constraint Logic ProgrammingCLP

Constraint Satisfaction Problem CSP

Constraint Optimization ProblemCOP

Operation ResearchOP

Input/outputI/O

Virtual MachineVM

Geographical Information

System

GIS

Global Positioning SystemGPS

Integrated Development

Environment

IDE

Java Development KitJDK

Hyper Text Markup LanguageHTML

Cascading Style SheetCSS

Personal Home PagePHP

Object Oriented ProgrammingOOP

TABLE OF FIGURES
Figur

e

numb

er

Subject Page

numb

er

2.1 A passive Constraint Example 7
2.2 An Active Constraint Example 8
3.1 System Environment 15

11

3.2 Creating data Flow Chart 16
3.3 Finding Route Flow Chart 17
4.1 Hospitals Database Table 20
4.2 Main Streets Database Table 20
4.3 Bystreets Database Table 21
4.4 System Main Screen 21
4.5 Entering Data File 22
4.6 Choose Data File 23
4.7 File Chosen Done Successfully 24
4.8 File Chosen Failed 24
4.9 Data Created Successfully 24
4.10 Data Creation Failed 24
4.11 Find Route 25
4.12 Entering Data Error 26

TABLE OF CONTENTS
Ahmed Mohammed Alkhair Dr. Hoida Ali Abdalgadir.......................................4

Jihad Fayez Abd Elmajed SIGNITURE: …………… DATE: ……/
………../……………..4

12

CHAPTER 1

INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1MOTIVATION
In today’s traffic world, when an accident occur on the road or

emergency situations at home, ambulance is so important to save

valuable human life. Transportation of patients to the hospital seems

simple but it is quite hard. Khartoum is metropolitan city with rapid

increase in population and vehicles, which result in high road density.

1.2PROBLEM STATEMENT
Metropolitan areas in Sudan facing the problem of high

population density which cause many emergency medical casualties.

Every year much valuable life lost due to delay in providing medical

care via ambulance and the main reason is that the ambulance

driver has no clear route to the casualty location. Even the

government had provided more road ways and bridges the problem

still arises. Most of the emergency hospital ambulances are unable to

reach their destination at time because of that reason. It is obvious

what happens to the patient till the ambulance reaches? Due to lack

in verification sometimes ambulance driver is unable to reach his

destination as reported.

1.3PURPOSE/GOAL
The main objective of this project is to build an expert system

for the ambulance routing on Khartoum road network. This Intelligent

System for Routing an Ambulance (ISRA) used for solving the routing

and location problems:

14

i-Define the ambulance location.

ii-Define the casualty location.

iii-Find the route between the two locations.

1.4 IMPORTANCE OF THE PROJECT
Our project is useful for all mankind especially those who get

serious injuries and need to get immediate medical attention. The

time to transfer patients to the hospital is quite vital and seconds are

so valuable to save ones life.

So we are looking forward to lives in Sudan by our project

Intelligent System for Routing an Ambulance (ISRA).

1.5SCOPE AND LIMITATION
In our system the dispatch center admin must enter the

location of the hospital where the ambulance is locate, then enter

the location of the casualty and the program will show him the route.

Our provided routing path doesn’t depend on time period or

distance. To select the shortest path we need all traffic signals in that

path to be green and that needs another technology to be

implemented in the system we leave that as a future challenge.

1.6RESEARCH STRUCTURE
This research consists of five chapters, the second chapter

talks about the research background and previous theoretical

studies, the third chapter includes the tools and techniques which

are used in the project, the fourth chapter includes the

implementation and programming and some scenarios for the

system ,and the fifth chapter includes the results and

recommendations and conclusions.

15

16

CHAPTER 2

 LITRETURE REVIEW

CHAPTER 2

LITRETURE REVIEW

2.1 ARTIFICIAL INTELLIGENCE
2.1.1 DEFINITION

Artificial intelligence (AI) is the intelligence exhibited by

machines or software. It is an academic field of study which studies

the goal of creating intelligence. Major AI researchers and textbooks

define this field as "the study and design of intelligent agents".

In which an intelligent agent is a system that perceives its

environment and takes actions that maximize its chances of success.

John McCarthy, who coined the term in 1955, defines it as "the

science and engineering of making intelligent machines". [3]

2.2 TRAVELLING SALESMAN

PROBLEM SHORT PATH
2.2.1 HISTORY

The origins of the travelling salesman problem (TSP) are

unclear. A handbook for travelling salesmen from 1832 mentions the

problem and includes example tours through Germany and

Switzerland, but contains no mathematical treatment. The travelling

salesman problem was mathematically formulated in the 1800s by

the Irish mathematician W. R. Hamilton and by the British

mathematician Thomas Kirkman. Hamilton’s Game was a

recreational puzzle based on finding a Hamiltonian cycle. The

18

http://en.wikipedia.org/wiki/Hamiltonian_cycle
http://en.wikipedia.org/wiki/Icosian_Game
http://en.wikipedia.org/wiki/Thomas_Kirkman
http://en.wikipedia.org/wiki/William_Rowan_Hamilton
http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Field_of_study
http://en.wikipedia.org/wiki/Intelligence

general form of the TSP appears to have been first studied by

mathematicians during the 1930s in Vienna and at Harvard, notably

by Karl Manger, who defines the problem.[7]

2.2.2 DEFINITION

TSP is a special case of the travelling purchaser problem. In

the theory of computational complexity, the decision version of the

TSP (where, given a length L, the task is to decide whether the graph

has any tour shorter than L) belongs to the class of NP-

complete problems. Thus, it is possible that the worst case running

time for any algorithm for the TSP increases super polynomial with

the number of cities. Starting at a home city, a traveling salesman

must visit several cities and then return home. The distance between

every city pair is specified and the salesman is to visit each city once

and only once.

2.3 CONSTRAINT LOGIC PROGRAMMING
2.3.1 DEFINITION

Constraint Logic Programming (CLP) is a tool for solving

constraint satisfaction problem (CSP). CSP is characterized by the

following features:

•A finite set S of integer variables X1, …, Xn, with values

from finite domains D1, …, Dn;

•A set of constraints between variables .

•A CSP solution is given by any assignment of domain

values to variables that satisfies all constraints. It may

non-unique or unique.

•A CSP solution may additionally minimize or maximize an

objective function. Then it is usually refers to constraint

optimization problem (COP), and its solution as optimum

solution.

19

http://en.wikipedia.org/wiki/Karl_Menger

2.3.2 THE REASON BEHIND CLP

A salient feature of CSP and COP is that all variables take

values from finite domains. In theory any CSP and COP can either

have no solution or be solved using an algorithmically simple

exhaustive search or direct enumeration approach.

So we use it to solving our problem because CLP provides very

good tools in our research domain.

2.3.3 CONSTRAINTS CONCEPT

It is understood to mean any-thing that limits the freedom of

action. However their meaning in imperative languages (like Pascal,

C, C ++) differs considerably from their meaning in CLP languages.

In imperative languages constraints are passive; that means

they may be used only if all their variables are grounded, and they

are used as tests for choosing the next step taken.

Figure 2.1: A passive Constraint example

Constraints in CLP languages are active; that means they may

be used also if some or all their variables are free. Active constraints

(denoted by various symbols like # for finite domains or $ for real or

20

symbolic domains) are used for initiating a search for such variable

groundings that satisfies them. [4]

Figure 2.2: An active constraint example

2.3.4 CLP AND ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) is usually understood to be this

branch of computer science that deals with creating tools for jobs

usually considered to need considerable human intelligence. Solving

these kinds of problems manually can put a high demand on the

intelligence of humans doing it, because they need to take into

account a huge numbers of relations, conflicting factors, and trade-

offs.

Researchers, designers and users of AI products have always

been confronted with the need to solve difficult complex problems.

Exactly the same problems are solved using constraint programming

technology.

2.3.5 CLP AND OPERATIONS RESEARCH

Operations Research (OR) is a discipline that aims to calculate

optimum or sub-optimum solutions to complex decision-making

problems, characterized by some clearly defined objective function

and limited resources. It is basically concerned with optimizing the

objective function which depends upon some decision variables that

can be manipulated to achieve the aim.

21

2.4 SWI-PROLOG
2.4.1 SWI-PROLOG HISTORY

SWI-Prolog started back in 1986 with the requirement for a

Prolog that could handle recursive interaction with the C-language:

Prolog calling C and C calling Prolog recursively. In those days Prolog

systems were not very aware of their environment and we needed

such a system to support interactive applications. Since then, SWI-

Prolog’s development has been guided by requests from the user

community, especially focusing on (in arbitrary order) interaction

with the environment, scalability, (I/O) performance, standard

compliance, teaching and the program development environment.

SWI-Prolog is based on a simple Prolog virtual machine called ZIP

[Bowen et al., 1983] which defines only 7 instructions. Prolog can

easily be compiled into this language, and the abstract machine

code is easily decompiled back into Prolog. As it is also possible to

wire a standard 4-port debugger in the virtual machine, there is no

need for a distinction between compiled and interpreted code.

Besides simplifying the design of the Prolog system itself, this

approach has advantages for program development: the compiler is

simple and fast, the user does not have to decide in advance

whether debugging is required, and the system only runs slightly

slower in debug mode compared to normal execution. The price we

have to pay is some performance degradation (taking out the

debugger from the VM interpreter improves performance by about

20%) and somewhat additional memory usage to help the compiler

and debugger.

22

SWI-Prolog extends the minimal set of instructions described in

[Bowen et al., 1983] to improve performance. While extending this

set, care has been taken to maintain the advantages of

recompilation and tracing of compiled code. The extensions include

specialized instructions for unification, predicate invocation, some

frequently used built-in predicates, arithmetic, and control (;/2, |/2),

if-then (->/2) and negation-by-failure (\+/1).

2.4.2 SWI-Prolog positioning

Most implementations of the Prolog language are designed to

serve a limited set of use cases. SWI-Prolog is no exception to this

rule. SWI-Prolog positions itself primarily as a Prolog environment for

‘programming in the large’ and use cases where it plays a central

role in an application. At the same time, SWI-Prolog aims at providing

a productive rapid prototyping environment. Its orientation towards

programming in the large is backed up by scalability, compiler

speed, program structuring (modules), support for multithreading to

accommodate servers, Unicode and interfaces to a large number of

document formats, protocols and programming languages.

Prototyping is facilitated by good development tools, both for

command line usage as for usage with graphical development tools.

Demand loading of predicates from the library and a ‘make’ facility

avoids the requirement for using declarations and reduces typing.

SWI-Prolog is traditionally strong in education because it is free

and portable, but also because of its compatibility with textbooks

and its easy-to-use environment.

2.4.3 THE REASONS BEHIND SWI-PROLOG

There are numbers of reasons motivate us to use SWI-Prolog as

implementation language such as:

•nice environment

23

•SWI-Prolog provides a good command line environment,

including ‘Do What I Mean’, auto completion, history and a

tracer that operates on single key strokes .

•Fast compiler

•Even very large applications can be loaded in seconds on

most machines. If this is not enough, there is the Quick

Load Format.

•Transparent compiled code

•SWI-Prolog compiled code can be treated just as

interpreted code, implies you do not have to decide

beforehand whether a module should be loaded for

debugging or not, and the performance of debugged code

is close to that of normal operation.

•Source level debugger

•The source level debugger provides a good overview of

your current location in the search tree, variable bindings,

your source code and open choice points.

•Profiling

•SWI-Prolog offers an execution profiler with either textual

output or graphical output. Finding and improving hotspots

in a Prolog program may result in huge speedups.

•Flexibility

•SWI-Prolog can easily be integrated with C, supporting

non-determinism in Prolog calling C as well as C calling

Prolog. It can also be embedded in external programs.

System predicates can be redefined locally to provide

compatibility with other Prolog systems.

•Threads

24

•Robust support for multiple threads may improve

performance and is a key enabling factor for deploying

Prolog in server applications .

•Interfaces

•SWI-Prolog ships with many extension packages that

provide robust interfaces to processes, encryption, TCP/IP,

TIPC, ODBC, SGML/XML/HTML, RDF, HTTP, graphics and

much more.

2.5 Previous Studies
In this section we will mention about previous works which have

motivated us in implementing this project. In ‘Ambulance

Management System using GIS’ by student Linkoping University in

Sweden, we see that he used GPS and GSM to find the accident

location and locates the nearest hospital, also he used VBA, ArcGIS

(network analyst) to develop the user interfaces.

In our system we will use GPS data to create road network data base

using MySQL, and we will design our interfaces using Java

(NetBeans) because we want our interfaces to be more user friendly

than interfaces in the mentioned project

25

26

CHAPTER 3

REQUIREMENTS AND ANALYSIS

CHAPTER 3

REQUIREMENTS AND ANALYSIS

3.1 REQUIREMENTS
3.1.1 USER REQUIREMENTS

1.Enter GPS data file to create GPS database.

2.Enter caller location.

3.Enter hospital location where ambulance is located in.

4.Find the route and display routing path in the screen.

3.1.2 SYSTEM REQUIREMENTS

1.Caller location must be string.

2.GPS data file must be .gpx file.

3.Hospital location must be string.

4.Both caller and hospital locations should be drop down menu

to avoid user data entering errors.

3.1.3 NON-FUNCTIONAL REQUIREMENTS

1.Ease of use :

i.A friendly Graphical User Interface.

ii.Does not need training to interact with the system.

2.Decrease the ratio of system failure probability .

Reliability of the system depends on how accurate does the caller
give his full address.

13

3.2 ANALYSIS
3.2.1 SYSTEM ENVIRONMENT

Figure 3.1: System Environment.

3.2.2 SYSTEM FLOW CHART

29

3.2.2.1 CREATING DATA FLOW CHART

 Start

 No

 Yes

 End

Figure 3.2: creating data flow chart

3.2.2.2 FINDING ROUTE FLOW CHART

Start

30

Choose your File

.gpx only

Display
error

message
into

screen

Did user insert valid
data file

Create the GPS database and
prolog data files

Display message into screen
to inform the user about
success of the creation

Choose the Caller

location

 End

Figure 3.3: Finding route flow chart

3.3 LANGUAGES USED
3.3.1 SWI-PROLOG

SWI-prolog is an advance edition of Prolog, it provides full

support of constraint logic programming which is our study area.

We use version 6.6.6 because it was the last stable version at project

implementation time, it has its own terminal to interact with it. So we

have done prolog code with that terminal running in windows

platform.

We used SWI-Prolog because it has very fast compiler which is

needed in our project because time is critical factor in our system,

31

Choose the hospital

location

Find the route with prolog

algorithm

Display the route path

into screen

and because its flexibility easily can be embedded in external

programs, beside it support multiple threads which can improve

performance, and it ships with many extension packages that

provide robust interfaces to processes, encryption, graphics and

much more.

3.3.2 NETBEANS IDE AND JAVA JDK

NetBeans IDE is the best tool to easily develop Java desktop,

mobile and web applications, as well as HTML5 applications with

HTML, JavaScript, and CSS. The IDE also provides a great set of tools

for PHP and C/C++ developers. It is free and open source and has a

large community of users and developers around the world.

We used it because it provides fast and smart code editing,

besides providing easy and efficient project management and it

supports rapid user interface development.

Java is an Object Oriented Programming (OOP) language

provides full support to build desktop, mobile and web applications.

We used java because it supports our study area with very

good functionality and reliability, as it also provides great libraries in

our domain.

32

CHAPTER 4

IMPLEMENTATION

CHAPTER 4

IMPLEMENTATION

4.1 Introduction:
This Chapter describes how we build our system and configure

it, it is also shows the final screens and the functionality of the

system as follows:

•Download and install Java JDK 8, NetBeans IDE 6.9M1 and SWI-

Prolog 6.6.6.

• Screens were designed by using Java Interface Builder which in

NetBeans.

•Download and install WAMPSERVER 2.5.

•Create database tables and create the relations between them

from phpMyAdmin .

4.2 The Database
4.2.1 Table shows the field of hospitals database table

Figure (4.1): hospitals database table

4.2.2 Table shows the field of main streets database

table

34

Figure (4.2): main streets database table

4.2.3 Table shows the field of bystreets database table

Figure (4.3): bystreets database table

4.3 Screens:
4.3.1 The main Screen

Figure (4.4): System main screen
Figure (4.4) shows the main screen of the system where the name

and the logo of the system are shown.

It has two buttons:

•The first button is for entering data to the system when user

click it will open new window.

•The second button is for getting route between the ambulance

location and the caller location

35

4.3.2 Entering Data File

Figure (4.5): Entering data file

Figure (4.5) shows the screen for entering data file from the local

disks or removable disks.

It has two buttons and a text field as follow:

•The text field is un-editable it shows the full path and the name

of the file which user was chosen .

•The first button is a choose button when the user click it will

open pop-up window to choose the file from local storages as

figure (4.6) shows.

•The second button is creating data when the user click it will

check the text field, if there is a text in it then will convert the

data file from .gpx to prolog predicate and save it in prolog file

and show message dialog of operation success as figure (4.9)

shows, if it is empty it will show message dialog with the error

of no file has been selected as figure (4.10) shows.

36

4.3.3 Choosing Data File from Local Storages

Figure (4.6): Choose data file

Figure (4.6) shows the screen for choosing data file from local

storages it only shows .gpx files and the directories of your local

storages and any other file will not show up here.

It has two buttons as follow:

•Open button when user click it will get the file which has been

selected and edit the text field with the full path of the file and

show message dialog of operation success as figure (4.7)

shows.

•Cancel button when user click, it will cancel the choosing

operation, close the current pop-up window and show message

dialog of operation has canceled as figure (4.8) shows.

37

Figure (4.7): File chosen done successfully

 Figure (4.7) shows message dialog to inform the user that file has

chosen successfully and ready to create the data.

Figure (4.8): File chosen failed

Figure (4.8) shows message dialog to inform the user that error has

occurred during choosing your file and tell him to try again.

4.3.4 Creating Data Done Successfully

Figure (4.9): data created successfully

Figure (4.9) shows message dialog to inform user that the chosen file

data successfully stored in the database and the prolog data also

created successfully.

4.3.5 Creating Data Failed

38

Figure (4.10): data creation failed

Figure (4.10) shows message dialog to inform user that he has to

choose some .gpx file to create data from it.

4.3.6 Find Route

Figure (4.11): Find Route

Figure (4.11) shows the screen of finding route between ambulance

location and emergency event location.

It has three drop-down lists and a button as follows:

•First drop-down list for choosing the ambulance location which

could be a hospital from the hospitals that stored earlier in the

database from the .gpx file when creating data.

39

•Second drop-down list is representing the main street in the

intersection where the emergency event had occurred, it is

retrieved from the database as hospitals .

•Third drop-down list is the bystreet in the intersection which

retrieved from the database also, but the items of it depends

on the main street, further more it only shows bystreets which

can intersect with current selected main street.

•Button for finding the route and display it on the screen, but it

validate the data if one of the drop-down lists is empty it will

display an error message on the screen as figure (4.12) show.

Figure (4.12): entering data error

Figure (4.12) shows error message to inform user that an error has

occurred during entering data because one or more field is empty,

and ask him to renter his data first.

4.4 The algorithm and prolog
The algorithm (maze solver)

We had took the road network as a maze with the start at the

ambulance location and the finish at the emergency event location.

The object is to find a path through the road network from the start

to the finish. First, we must represent the road network in a form

Prolog can use. So we had created a java library to convert the .gpx

file to prolog predicates, the library used to create the prolog data

file. If we can move from one position to another, we will say that

these two positions are connected. We enter a single fact in the

40

definition of the predicate connect/2 for each pair of connected

locations. Then we define a connected_to predicate using the

predicate connect:

connect('Khartoum ENT Hospital ',' El Qasr Street').

connect('Makka Hospital ',' Ebaid Khatim Street').

connect('Dream Le El Wilada Hospital ',' Basheer El Nefaidy Street').

...

connect('Khartoum Teaching Hospital ',' Army Street').

connect('El Khartoum Le Awram Hospital ',' El Mak Nimr Street').

connected_to(Location1,Location2) :- connect(Location1,Location2).

connected_to(Location1,Location2) :- connect(Location2,Location1).

A path throw road network is a list of position with Start in at

one end of the list and Finish at the other, such that every position in

the list is connected to the position before and after it. Initially our

path contains a single position Start which we place into a list. From

this initial path, we want to generate complete path from Start to

Finish. Once a solution is found, we want to display it.

find_route(Start,Finish) :- path([Start],Solution), write(Solution).

The procedure path will find the solution, of course when we

reach Finish we have a solution and our search is ended.

path([Finish|RestOfPath],[Finish|RestOfPath]).

At each intermediate step in our search for a solution to the

path through the road network, we have a list of the positions we

have already visited. The first member of this list is our current

position. We proceed by looking for a new position that we can reach

from our current position. This new position must be connected to

41

our current position. We don’t want to move around in a circle or

back and forth between the same positions; so our new position will

also have to be a location that isn’t already in the path we are

building.

path([CurrentLocation|RestOfPath],Solution) :-

 connected_to(CurrentLocation,NextLocation),

 \+ member(NextLocation,RestOfPath),

 path([NextLocation,CurrentLocation|RestOfPath],Solution).

If the procedure path reaches a point where it cannot find a

new position, Prolog will backtrack. Positions will be dropped off the

front of the path we have built until we reach a point where a new

position can be reached. Then the search will move forward again

until we reach Finish or another dead-end.

42

CHAPTER 5

RESULTS AND

RECOMMINDATIONS

CHAPTER 5

RESULTS AND

RECOMMINDATION

5.1INTRODUCTION

This section discusses the most important results that we have

achieved after the implementation of the system, and the

recommendations that we recommend to improve or add new

features can increase the interactive and efficiency of the system.

5.2RESULTS

After the implementation of the system and conduct tests to

verify the functionality required of the system has been reached

routes an ambulance through Khartoum City road networks which

offers:

1.Creating GPS data base from GPS data file.

2.Finding the route between ambulance location and casualty

location.

3.In the previous studies they used the GPS data file to create

the map but we parsed it and created our data base from it. As

we have more flexibility in our project because we can

implement the project in any city by just its GPS data and the

system will do the rest by creating GPS data base of the city.

After shifting from the manual system to our proposed system

we expect to deliver the casualty to the hospital within golden time.

45

As this proposed solution will affect the average death rate because

many casualties will be delivered in the best time to get medical

care. Also this solution can be implemented to any another city or

town and it will work well after creating GPS data base for that city or

town.

46

 RECOMMINDATIONS

1.Implement the project in all other Cities in Sudan.

2.When traffic data becomes available implement it in the

project to find the route based on it.

3.Put the system online or in cloud computing.

4.Create mobile version of the system .

5.Use Python and ArcGIS to build the system and compare it with

the existing one.

48

CONCLUSION

The Intelligent System for Routing an Ambulance (ISRA)

provides route to the ambulance drivers to go to their destinations in

the golden time and with that maybe save very valuable lives.

It also could be used to find route for another emergency

situations like police vehicles or even fire vehicles.

50

REFERENCES

1- Poole, David; Mackworth, Alan; Goebel,

Randy (1998). Computational Intelligence: A Logical Approach. New

York: Oxford University Press. ISBN 0-19-510270-3.

2- McCarthy, John; Minsky, Marvin; Rochester, Nathan; Shannon,

Claude (1955). "A Proposal for the Dartmouth Summer Research

Project on Artificial Intelligence". Archived from the original on 26

August 2007. Retrieved 30 August 2007.

3- McCarthy, John (12 November 2007). "What Is Artificial

Intelligence?".

4- Niederlinski , Antoni (2014). "A gentle guide to constraint logic

programming via eClipse" . Gliwice : Jacek Skalmierski Computer

Studio.

5- Wielimaker , Jan. (May 2014). "SWI-Prolog Reference Manual

updated for version 6.6.6".

6- Bellman, R. (1962), "Dynamic Programming Treatment of the

Travelling Salesman Problem".

7- Applegate, D. L.; Bixby, R. M.; Chvátal, V.; Cook, W. J. (2006), The

Traveling Salesman Problem, ISBN 0-691-12993-2.

52

http://en.wikipedia.org/wiki/Special:BookSources/0-691-12993-2
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/William_J._Cook
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://web.archive.org/web/20070826230310/http:/www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Nathan_Rochester
http://en.wikipedia.org/wiki/Marvin_Minsky
http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/Special:BookSources/0-19-510270-3
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.cs.ubc.ca/spider/poole/ci.html
http://en.wikipedia.org/w/index.php?title=Randy_Goebel&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Randy_Goebel&action=edit&redlink=1
http://en.wikipedia.org/wiki/Alan_Mackworth
http://en.wikipedia.org/w/index.php?title=David_Poole_(researcher)&action=edit&redlink=1

	Ahmed Mohammed Alkhair Dr. Hoida Ali Abdalgadir
	Jihad Fayez Abd Elmajed SIGNITURE: …………… DATE: ……/………../……………..

