

 بسى الله انزحًٍ انزحٛى

Sudan University of Science and

Technology

Faculty of Engineering

Aeronautical Engineering Department

Synthesize of Design of Inertial navigation

system (INS) using MEMS sensor

—Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science. (BSc Honor)

By:

Supervised by:

I

 الاية

 قال تعالى:

سَ ِ وَرِضْوَانٍ خَيٌْْ أَمْ مَنْ أَسَّ سَ بنُيْاَههَُ علَََ تقَْوَى مِنَ اللََّّ }أَفمََنْ أَسَّ

ُ لََ يََْدِي القَْوْمَ َ وَاللََّّ بنُيْاَههَُ علَََ شَفَا جُرُفٍ هَارٍ فاَنْْاَرَ بِهِ فِِ نََرِ جَََنََّّ

الِمِيَن{ الظَّ

 صدق الله العظيم

(901الاية) ةسورة التوب

II

Abstract

The purpose of this project is mainly to convey an elementary inertial

navigation system, and take advantage of the capabilities that the Micro-

Electromechanical system (MEMS) affords. The main aspects cover the simplicity,

intuition, and fairness in the design of inertial navigation system. A noticeable

tendency of cutting-off the cost of materials and facilities that are used to design any

system in general is in demand which stands no-distance from the intention behind

designating this system. Thus, using MEMS sensor and Programmable

microcontroller to emulate the inertial navigation system is quite affordable and

stands for the expected performance. The information yielded from the sensor as real-

time evaluation of the momentarily motion and deviation of the airplane is illustrated

on a Liquid crystal display (LCD), as a fair and neat technique of showing upshot

digitally. The outcome of the work achieved turns to stand up as simplified system for

the sake of understanding and building of affordable and yet reliable system, although

main components are not fully supported and a lot of restriction is applied, the final

project was carried down but in longer time. Furthermore, the need of well

understanding and studying of the inertial navigation system is considerable in order

to get more familiarize with the Inertial navigation system.

III

تجريدال

ٔالاسخفادة يٍ انبسٛط َظاو انًلاحت بانمصٕر انذاحٙ ػٍ انًشزٔع ْٕ انخؼبٛزانغزض الاساسٙ يٍ ْذا

انخٙ ٚغطٛٓا انًشزٔع شًهج انبساطت ٔانبذٚٓٛت نكٓزٔيٛكاَٛكٛاث انذلٛمت. انجٕاَبانًًٛزاث انخٙ ٚمذيٓا َظاو ا

ٙ انخ انًلاحظ اٌ ُْانك يٕٛل حجاِ حمهٛم حكهفت انًٕاد ٔانخصُٛغ فٙ حصًٛى َظاو انًلاحت بانمصٕر انذاحٙ. يٍ

نذنك اسخخذاو حمُٛاث انكٓزٔيٛكٛاَٛاث ظاو انًلاحت لا ٚسثُٙ ْذا انًٕٛلاو َٔحسخخذو نخصًٛى أ٘ َظاو بشكم ػ

انذلٛمت ٔ يخحكى دلٛك لابم نهبزيجت يٍ أجم يحاكاة حزكت ٔانخفاف انطائزة،ٔنمذ حٕافمج ْذِ انًكَٕاث يٍ حٛث

انخحصم ػهٛٓا يٍ انحساس ْٙ لٛاس نحظٙ نحزكت ٕلغ يُٓا. انبٛاَاث انخٙ حى خانسؼز انًُاسب ٔانذاء انً

،بانزغى يٍ اٌ انًكَٕاث نى حخٕفز بسٕٓنت ٔأٚضا ػذو انذػى ػزض كزٚسخانٙ انطائزة، ٔحى ػزضٓا فٙ شاشت

انكافٙ يٍ انجٓت انًصُؼت يًا ادٖ انٗ اسخغزاق انًزٚذ يٍ انٕلج ، نكٍ انُخٛجت الأخٛزة نهًشزٔع كاَج يزضٛت

،بالاضافت انٗ اَّ يٍ اجم فٓى َظاو انًلاحت بصٕرة أدق ، ٚجب دراست انًلاحت انجٕٚت انًؼخًذة ػهٗ انمصٕر

 انذاحٙ بخفصٛم أػًك.

IV

ACKNOWLEDGMENT

First and above all, we praise Allah, the almighty for providing us

this opportunity and granting us the capability to proceed successfully.

This thesis appears in its current form due to the assistance and guidance

of several people. I would therefore like to offer my sincere thanks to all

of them.

V

Dedication

In the memory of Ahmed Al-Bukhari

You left fingerprints in our life, must not be forgotten...

VI

Contents

 I ___ الاٚت

Abstract __ II

 III __ انخجزٚذ

ACKNOWLEDGMENT ___ IV

Dedication __ V

List of Figures ___ IX

List of Table __ XI

Abbreviation ___ XII

Symbols __ XIII

Chapter One: Introduction __ 1

1.1 Overview ... 1

1.2 Aim and objectives ... 2

1.2.1 Aim .. 2

1.2.2 Objectives .. 2

1.3 Problem statement .. 2

1.4 Proposed solution ... 2

1.5 Methodology .. 3

1.6 Thesis Outline .. 3

Chapter Two: Inertial Navigation System and MEMS sensor ___________________ 4

2.1 Introduction ... 4

2.2 Navigation methods ... 8

2.2.1 Pilotage .. 9

2.2.2 Dead reckoning .. 9

2.2.3 Celestial navigation .. 9

2.2.4 Radio navigation ...10

VII

2.2.5 Inertial navigation ...11

2.3 Inertial navigation system INS ...12

2.4 Basic principles of inertial navigation ..13

2.4.1 An accelerometer ...15

2.4.2 A gyroscope ..16

2.4.3 Gimballed Systems ..17

2.4.3.1Gimballed INS work 19

2.4.4 Strap down systems ...19

2.5 Disadvantages of INS ..21

2.6 Micro-Electro-Mechanical Systems (MEMS) ..22

Chapter Three: Proposed Inertial Navigation System using MPU6050 ___________ 24

3.1 Introduction ..24

3.2 Arduino Uno ...24

3.2.1 Programming ... 26

3.2.2 Warnings ...26

3.2.3 Power ..27

3.2.4 Memory ..27

3.2.5 Input and Output ...27

3.2.6 Interrupts .. 28

3.2.7 MPU (Microprocessor Unit) ..28

3.3 I
2
C ...29

3.4 GY521 ...30

3.5 Processing ..32

3.5.1 Toxic library ..33

3.6 Step 1: Wire circuit ..35

3.7 Step 2: Install I2Cdev & MPU6050 Libraries ..35

3.8 Step 3: Install Latest Version of Processing & ToxicLibs Library 37

VIII

3.9 Step 4: Run the simulation ..38

3.10 LCD (16 x2): ...39

3.11 Variable Resistor ...40

3.12 Another simulation by using LCD ...41

3.12.1 Step 1: Connection Pin LCD (16*2) with Arduino Uno 41

3.12.2 Step 2: Download the Liquid Crystal Library 42

Chapter Four: Results and Discussion ____________________________________ 46

4.1 Results ...46

Chapter Five: Conclusion and Recommendation ____________________________ 51

5.1 Conclusion ..51

5.2 Recommendation and Future work ..51

Reference __ 52

IX

List of Figures

Figure (1): old Chinese kites .. 5

Figure (2): Ornithopter .. 6

Figure (3): a sextant ..10

Figure (4): GPS satellite ..11

Figure (5): inertial navigation system..13

Figure(6):abasic inertial navigation system ...13

Figure (7): The XYZ frame is the inertial frame ECEF NWU frame is the local

navigational frame, where the axes are north (N), west (W), and up (U).14

Figure (8): aircraft reference frame ...14

Figure 9 Accelerometer ..15

Figure (10): Gyroscope ...16

Figure (11): (a) (b) Gimballed inertial system parts ..18

Figure (12): Strap-down system ..20

Figure (13): MEMS components ..23

Figure (14):Arduino Pins ..25

Figure (15):Arduino IDE ..26

Figure (16): MPU6050 ...29

Figure (17): I2C Bus works ..30

Figure (18): the schematic of the GY-521 break-out board for the MPU6050 chip31

Figure (19): GY-521 ...32

Figure (20): Sketch of the Processing software ...33

Figure (21): Teapot in levelled position ..34

Figure (22):Arduino Uno connected with GY-521 ..35

Figure (23): Total Pitch, Roll, and Yaw angles readings ...37

Figure (24): Simulation of the Teapot ...38

Figure (25):LCD (Liquid Crystal Display) ..39

Figure (26): Variable resistor ..40

Figure (27): LCD (16*2) and Arduino Uno Connection ..41

Figure (28):Calibration of MPU6050 GY-521 ..46

Figure((:92 Fetching the motion in serial monitor ..47

Figure (30):Parallel Display of Both LCD & Serial monitor48

file:///C:/Users/city%20soft/Desktop/New%20folder%20(3)/final%20project_3%20last%20updated.docx%23_Toc466415385

X

Figure(31):calibration of GY-521 motion ...49

Figure (:29) Simulation of GY-521 Through Teapot ..49

Figure (33): rotation motion about lateral axis ..50

XI

List of Table

Table 1 Description of GY-521 pins ...31

Table 2 Pins connection between Arduino & GY-521 ...32

Table 3 Pins connection between Arduino & LCD..41

XII

Abbreviation

ADF Automatic Direction Finder

DMP Digital Motion Processor

DOF Degrees of Freedom

GPS Global positioning system

IC Integrated circuit

ICSP In-Circuit Serial Programming

IDE Integrated Development Environment

IFR Instrument Flight Rule

ILS Instrument landing systems

IMU Inertial Measurement Unit

INS Inertial Navigation system.

LCD Liquid Crystal Display

MEMS Micro Electronic Mechanical System.

MPU Microprocessor Unit

NAVAIDS Navigation Aids

NDB Non-Directional Radio Beacon

VFR Visual Flight Rule

VOR Very High Frequency Omi-Directional Range

XIII

Symbols

 Roll angle

 Pitch angle

 Yaw angle

1

Chapter One: Introduction

1.1 Overview

Finding the way from one place to another is called (NAVIGATION), moving of

an aircraft from one point to another is the most important part for any kind of

mission, there was five basic forms of navigation are Pilotage, which essentially relies

on recognizing landmarks to know where you are. It is older than human kind, Dead

reckoning, which relies on knowing where you started from, plus some form of

heading information and some estimation of speed, Celestial navigation using time

and the angles between local vertical and known celestial objects (e.g., sun, moon, or

stars), Radio navigation which relies on radio-frequency sources with known locations

(including Global Positioning System satellites), finally Inertial navigation which

relies on knowing your initial position, velocity, and attitude and thereafter measuring

your attitude rates and accelerations, it is the only form of navigation that does not

rely on external references.

Inertial navigation is used in a wide range of applications including the navigation of

aircraft, recent advances in the construction of MEMS devices have made it possible

to manufacture small and light inertial navigation systems.

An inertial measurement unit (IMU), this sensor, coupled with the proper

mathematical background is capable of detecting accelerations and angular velocities

and then transforming those into the current position and orientation of the system.

The first type of INS developed was a gimballed system. the accelerometers are

mounted on a motorized gimballed platform which was always kept aligned with the

navigation frame, Pickups are located on the outer and inner gimbals which keep track

of the attitude of the stabilized platform relative to the vehicle on which the INS is

mounted, this setup has several detractors which make it undesirable, as Bearings are

not frictionless, Motors are not perfect.

Consumers power to keep the platform aligned with the navigational frame which is

not always good on an embedded system, cost is high due to the need for high quality

motors slip rings, bearings and other mechanical parts.

2

Recalibration is difficult, and requires regular maintenance by certified personnel

which could be difficult on an autonomous vehicle.

A strap-down system is a major hardware simplification of the old gimballed systems.

The accelerometers and gyros are mounted in body coordinates and are not

mechanically moved, this method overcomes the problems encountered with the

gimballed system, and most importantly reduces the size, cost, power consumption,

and complexity of the system, the major disadvantage is a substantial increase in

computing complexity.

1.2 Aim and objectives

1.2.1 Aim

To augment the safety of the aircraft by interface microelectromechanical system chip

with inertial navigation system and simulate the motion of aircraft.

1.2.2 Objectives

 Study of microelectromechanical system.

 Select a suitable method for simulating the motion of the aircraft.

 Display the outputs of system into liquid crystal display (LCD).

1.3 Problem statement

The existence of moving parts of the gyroscopes, contain friction between these parts,

produce errors, also cost is high due to the need for high quality motors slip rings,

bearings and other mechanical parts.

In addition to the complexity of conventional inertial navigation system in terms of

construction and operations, these different elements result considerable problems,

complexity and difficult of computing operations.

1.4 Proposed solution

 Avoiding the use of moving parts and reducing the cost by using the microprocessor

unit (MPU6050) sensor and Arduino microcontroller, and using certain codes by

computers to carry out operations of computing to reduce the complexity.

3

1.5 Methodology

The methodology will have used in the project contain of theoretical, analytical, and

simulation methods.

study of the inertial navigation system and MEMS were considered first to be able to

dive in the understanding of inertial navigation system operation

The design procedures for the microelectromechanical system MEMS with inertial

navigation system INS will be applied through the process:

1. Adoption of the Arduino Uno and MPU6050 as microcontroller and sensing

device respectively.

2. Uploading the programming code using the Arduino IDE.

3. Manipulation and illustration of the retrieved evaluations in an LCD.

4. Connection Arduino Uno and MPU6050 and calibration of motion of aircraft

about three axes in chapter three and four.

5. Programmed Arduino Uno with the (Arduino Software (IDE)).

6. Processing MPU6050 with Arduino Uno used Processing sketch

(MPUTeapot.pde), install Latest Version of Processing & ToxicLibs Library.

7. Install I2C and MPU6050 Libraries

8. Run the simulation, and at last Connection Pin LCD with Arduino Uno.

9. Evaluate, Analysis and discussion of the results.

1.6 Thesis Outline

Chapter one: introduction

Chapter two: Literature Review.

 Chapter three: proposed inertial navigation system using MPU6050.

 Chapter four: Result and discussion.

 Chapter five: Recommendation and conclusion.

 Appendices

https://www.arduino.cc/en/Main/Software

4

Chapter Two: Inertial Navigation System and MEMS sensor

2.1 Introduction

From the earliest times, people have moved from one place to another by finding or

'knowing' their way.

They crossed parts and rivers generally using landmarks, that is, navigation by

observation also used their understanding of celestial bodies, used sun and moon,

these techniques can only be used in clear weather conditions, this method of

navigation relies on the observation and recognition of known features or fixed

objects in our surroundings and moving between them. In technical narratives, the

locations of these features are often referred to as 'way-points'. an extension of this

process is navigation by following a map in this case, the navigator will determine his

or her position by observation of geographical features such as roads, rivers, hills and

valleys which are shown on the map. these features may be defined on the map with

respect to a grid system or 'reference frame' the use of reference frames is

fundamental to the process of navigation.

An ancient and well-established technique is to take sightings of certain of the fixed

stars to which the navigator can relate his or her position. The fixed stars effectively

define a reference frame which is fixed in space is commonly referred to as an

'inertial' reference frame. Navigation systems of this type, which rely upon

observation of the outside world, are known as 'position fixing' systems.

finding the way from one place to another is called NAVIGATION, moving of an

aircraft from one point to another is the most important part for any kind of mission.

Plotting on the paper or on the map a course towards a specific area of the earth, in the

past, used to be a task assigned to a specialized member of the aircraft's crew such a

navigator, such a task was quite complicated and not always accurate. Since it

depended on the observation, using simple maps and geometrical instruments for

calculations, today aerial navigation has become an art which nears to perfection.

Both external Navaids (Navigational Aids) and on-board systems help navigate any

aircraft over thousands of miles with such accuracy that could only be imagined a few

decades ago.

5

The first reference to the air traffic was during the hieroglyphic inscriptions in ancient

Egypt, where they found fees describe the flight of birds, there are also signs of

ancient China, where people are using kites for thousands of years.

Figure (1): old Chinese kites

It was not far from the Middle Ages that of Muslim Scholars, which absorbed the

mechanical correct the flight of birds. Before the start of scientific research

Aeronautics, people had already begun to think of ways to fly.

In the Greek era, making Icarus and his father Daadalus wings of feathers and glue

and flew them away from their imprisonment, when people began to learn how to fly

Air began to understand the basics and dynamic.

 One of the oldest scientists who have studied the foundations of air navigation was

Abbas ibn Firnas where he learned the dynamics of flight and work on it some

experiments, and that was in Cordoba in Andalusia in the eighth century, the early

Europeans scientists who have studied aeronautics was Roger Bacon and Leonardo da

Vinci. Fdavenci discuss how to fly when birds and drawing geometric diagrams of

what is known (ornithopter) as shown in figure (2). is the oldest flying machine in the

late fifteenth century, it was a failed design practice, either because the tippers were

small compared to the size flying machine to create enough lift force or a heavy

person can agitate, those Aloornotpetr have followed with interest the amateur until

they set up the so-called plane sailing the late 19th century. [1]

6

 Figure (2): Ornithopter

the earliest applications were on land, then as the desire developed to explore farther

afield, instruments were developed for marine applications, more recently, there have

been significant developments in inertial sensors, and systems for inertial navigation

on land, in the air, on or under the oceans as well as in space to the planets and

beyond.

During the thirteenth century, the Chinese discovered the properties of lodestone and

applied the principles of magnetism to fabricate a compass.

They used this instrument to navigate successfully across the south China Sea, this

device could be used irrespective of visibility but was difficult to use in rough

weather. The other significant development to help the long distance traveller was the

sextant, which enabled position fixes to be made accurately on land.

In the seventeenth century, Sir Isaac Newton defined the laws of mechanics and

gravitation, which are the fundamental principles on which inertial navigation is

based.

Despite this, it was to be about another two centuries before the inertial sensors were

developed that would enable the demonstration of inertial navigation techniques.

However, in the early eighteenth century, there were several significant

developments; Serson demonstrating a stabilized sextant and Harrison devising an

accurate chronometer, the former development enabling sightings to be taken of

7

celestial objects without reference to the horizon and the latter enabling an accurate

determination of longitude.

 These instruments, when used with charts and reference tables of location of celestial

bodies, enabled accurate navigation to be achieved, provided the objects were visible.

Foucault is generally credited with the discovery of the gyroscopic effect in 1852. He

was certainly the first to use the word, there were others, such as Bohneberger,

Johnson and Lemarle, developing similar instruments.

All of these people were investigating the rotational motion of the Earth and

the demonstration of rotational dynamics, they were using the ability of the spin axis

of a rotating disc to remain fixed in space, later in the nineteenth century, many fine

gyroscopic instruments were made, in addition there were various ingenious

applications of the gyroscopic principle in heavy equipment such as the grinding mill.

A significant discovery was made in 1890 by Professor G.H. Bryan concerning the

ringing of hollow cylinders, a phenomenon later applied to solid-state gyroscopes.

The early years of the twentieth century saw the development of the gyrocompass for

the provision of a directional reference, the basic principle of this instrument is the

indication of true north by establishing the equilibrium between the effect of its

pendulous and the angular momentum of the rotating base carrying the compass.

Initially, this instrument was sensitive to acceleration

Elmer and Lawrence Sperry improved the design of the gyrocompass with further

refinements by Brown and Perry. these instruments provided the first steps towards

all-weather, autonomous navigation, the Sperry brothers were also at the forefront of

the application of the gyroscopic effect to control and guidance in the early twentieth

century, they produced navigation and autopilot equipment for use in aircraft and

gyroscopes for use in torpedoes, rate of turn indicators, artificial horizons and

directional gyroscopes for aircraft were being produced in the 1920s.

There was significant progress during the early part of the twentieth century with the

development of stable platforms for fire control systems for guns on ships and the

identification of the concept for an inertial navigation system.

8

However, at this stage, the quality of the inertial sensors was not suitable for the

production and demonstration of such a system, there was much activity in various

pans of the world devising new types of inertial sensors, improving their accuracy

and, in 1949, the first publication suggesting the concept of the strap down technique

for navigation.

The pace of development and innovation quickened in the 1950s with many

significant developments for seaborne and airborne applications. more accurate

sensors were produced, with the accuracy of the gyroscope being increased

substantially.

It was also during the 1950s that the principle of force-feedback was applied to the

proof mass in an accelerometer to produce an accurate acceleration sensing

instrument. The early part of the 1950s saw the fabrication of a stabilized platform

inertial navigation system followed by the first crossing of the United States of

America by an aircraft using full inertial navigation. Inertial navigation systems

became standard equipment in military aircraft, ships and submarines during the

1960s, all of these applications using the so-called stable platform technology.

Major projects of this period in which inertial system technology was applied were the

ballistic missile programmers and the exploration of space, similar progress has taken

place in the last two decades; one major advance being the application of the micro-

computer and development of gyroscopes with large dynamic ranges enabling the

strap down principle to be realized, this has enabled the size and complexity of the

inertial navigation system to be reduced significantly for very many applications, the

use of novel methods has enabled small, reliable, rugged and accurate inertial sensors

to be produced that are relatively inexpensive, thus enabling a very wide range of

diverse applications as discussed below, this period has also seen significant advances

in the development of solid-state sensors such as optical fibre gyroscopes and silicon

accelerometers.[2]

2.2 Navigation methods

Air navigation is accomplished by various methods, the method or system that a pilot

uses for navigating through today's airspace system will depend on the type of flight

https://www.thebalance.com/the-national-airspace-system-explained-282584

9

that will occur (VFR or IFR), which navigation systems are installed on the aircraft,

and which navigation systems are available in a certain area.

 VFR (visual flight rule) a pilot will navigate using "dead rocking" combined with

visual observation (known as pilotage) with reference to appropriate maps, this

may supplement using radio navigation aids.

 IFR (instrumental flight rule), the pilot relies only on the airborne instruments,

that due to (weather, night, altitude etc.)

According to this method, there were five basic forms of navigation are as follows:

2.2.1 Pilotage

 which essentially relies on recognizing landmarks to know where you are, it is older

than human kind, is a term that refers to the sole use of visual ground references.

the pilot identifies landmarks, such as rivers, towns, airports, and buildings and

navigates among them, the trouble with pilotage is that often times.

 references aren't easily seen and can't be easily identified in low visibility conditions

or if the pilot gets off track even slightly.

2.2.2 Dead reckoning

which relies on knowing where you started from, plus some form of heading

information and some estimate of speed, involves the use of visual checkpoints along

with time and distance calculations. the pilot chooses checkpoints that are easily seen

from the air and also identified on the map, and then calculates the time it will take to

fly from one point to the next based on distance, airspeed, and wind calculations.

A flight computer aids pilots in computing the time and distance calculations, and the

pilot typically uses a flight planning log to keep track of the calculations during flight.

2.2.3 Celestial navigation

It's one of the oldest forms of navigation, and one of the first navigation aids used by

transport aircraft. celestial navigators use a device called a sextant to determine the

angle between a known star and the horizon, by using the angle, plus the time it was

measured, using time and the angles between local vertical and known celestial

objects (e.g., sun, moon, or stars).

10

 Figure (3): a sextant

2.2.4 Radio navigation

which relies on radio-frequency sources with known locations (including Global

Positioning System satellites), aircraft equipped with radio navigation aids

(NAVAIDS), pilots can navigate more accurately than with dead reckoning alone,

radio NAVAIDS come in handy in low visibility conditions and act as a suitable

back-up method for general aviation pilots that prefer dead reckoning, they are also

more precise.

There are different types of radio NAVAIDS used in aviation:

 ADF/NDB

An NDB is a no directional radio beacon is medium frequency navigational aid which

transmits non-directional signals, superimposed with a Morse code identifier and

received by an aircraft's ADF that is stationed on the ground and emits an electrical

signal in all directions.

 ADF Automatic Direction Finder is an aircraft radio navigation which senses

and indicates the direction to a Low/Medium Frequency non-directional radio

beacon (NDB) ground transmitter.

 GPS (Global Positioning System), navigation system based on the

transmission of signals from satellites provided and maintained by the United

States of America and available to civil aviation users.

11

The global positioning system has become the most valuable method of navigation in

the modern aviation world. GPS is probably the most common NAVAID in use today,

it provides precise location data, such as aircraft position, track, speed, and to pilots, it

has become a preferred method of navigating due to the accuracy and ease of use.

 Figure (4): GPS satellite

 VOR (VHF Omnidirectional Range), VORs were first used in the 1940s, and

they're still one of the most common radio navigation system in the US.

 is a radio-based NAVAID that operates in the very-high-frequency range.

 ILS an instrument landing system (ILS) is an instrument approach system

used to guide aircraft down to the runway from the approach phase of flight. It uses

both horizontal and vertical radio signals emitted from a point along the runway.

These signals intercept to give the pilot precise location information in the form of a

glideslope -- a constant-angle, stabilized descent path all the way down to the

approach end of the runway. ILS systems are widely in use today as one of the most

accurate approach systems available.

2.2.5 Inertial navigation

which relies on knowing your initial position, velocity, and attitude and thereafter

measuring your attitude rates and accelerations, it is the only form of navigation that

does not rely on external references.

12

2.3 Inertial navigation system INS

Inertial navigation has had a relatively short but intense history of development, much

of it during the half-century of the Cold War, with contributions from thousands of

engineers and scientists.

INS systems use a series of accelerometers and gyroscopes to determine their

position. In the 1960s, INS reached widespread usage in civilian and military aircraft

for worldwide navigation.

 use of inertial sensors and inertial navigation has developed rapidly in the recent past,

owing to a number of very significant technological advances, the rapid development

of micro electromechanical sensors and superior computer performance has provided

the stimulus for many new applications.

Methods of measuring position and velocity are just as numerous, they include fixed

land references such as beacons, devices measuring motion relative to a fixed medium

such as the ground, atmosphere, or earth’s magnetic field, and satellite navigation

systems like GPS (global positioning system).

However, varied all these methods may be, they all resemble each other in that they

involve measurement with respect to a reference with known position and velocity.

On one hand, this is part of the nature of the problem, since position is by definition

relative.

 However, there are numerous cases where a moving object’s initial position is

known, but its subsequent motions cannot be conveniently tracked with respect to a

reference. In these cases, an inertial navigation system is used.

Aircraft are perhaps the most important application today, because they often travel in

conditions of low visibility and must be able to maintain level flight without ground

references, even in cases where a reference is normally available, it might be

necessary to use an inertial navigation system in case of a momentary outage.

The operation of inertial navigation systems depends upon the laws of classical

mechanics as formulated by Sir Isaac Newton. Newton's laws tell us that the motion

13

of a body will continue uniformly in a straight line unless disturbed by an external

force acting on the body.

 Figure (5): inertial navigation system

2.4 Basic principles of inertial navigation

Inertia is the propensity of bodies to maintain constant translational and rotational

velocity, unless disturbed by forces or torques, respectively (Newton's first law of

motion).

 Figure(6):abasic inertial navigation system

14

An inertial reference frame is a coordinate frame in which Newton's laws of motion is

valid, inertial reference frames are neither rotating nor accelerating.

Inertial navigation uses several reference frames, which are shown in Fig (7) and (8).

Figure (7): The XYZ frame is the inertial frame ECEF NWU frame is the local

navigational frame, where the axes are north (N), west (W), and up (U).

 Figure (8): aircraft reference frame

15

Which: X1axis: oriented in the motion direction.

X3axis: perpendicular to the vehicle plane and in the up direction.

X2axis: to complete the right-handed triad.

Inertial sensors measure rotation rate and acceleration, both of which are vector

valued

Variables, inertial navigation system (INS) uses two types of sensors called

accelerometers and gyros to measure its motion parameters.

2.4.1 An accelerometer

 an electromechanical device that measures acceleration forces, these forces may be

static, there are many types of accelerometers developed, the vast majority is based on

piezoelectric crystals, but they are too big and to clumsy, a prototypical accelerometer

contains a mass suspended on a spring, with some way of measuring the extent to

which the spring is compressed.

 People tried to develop something smaller, that could increase applicability and

started searching in the field of microelectronics.

Figure 9 Accelerometer

16

When the accelerometer’s body is accelerated, a force is transmitted to the mass

through the spring, causing the spring to stretch or contract, this can then be

measured, and results in a value proportional to the accelerometer’s acceleration.

2.4.2 A gyroscope

 is a device that measures the rate of rotation around the gyro axis, the earliest gyros

were actual spinning gyroscopes which, when rotated perpendicularly to their spin

axis, will produce a force which can be measured.

Given the ability to measure the acceleration of vehicle it would be possible to

calculate the change in velocity and position by performing successive mathematical

integrations of the acceleration with respect to time, in order to navigate with respect

to our inertial reference frame, it is necessary to keep track of the direction in which

the accelerometers are pointing.

 Rotational motion of the body with respect to inertial reference frame may be sensed

using gyroscopic sensors that are used to determine the orientation of the

 Figure (10): Gyroscope

17

accelerometers at all times, given this information it is possible to resolve the

accelerations into the reference frame before the integration process takes place.

An INS consists of the following:

 An IMU (containing a cluster of sensors: accelerometers (two or more, but usually

three) and gyroscopes (three or more, but usually three).

 Instrument support electronics

 Navigation computers (one or more) calculate the gravitational acceleration (not

measured by accelerometers) and doubly integrate the net acceleration to

maintain an estimate of the position of the host vehicle.

There are many different designs of INS with different performance characteristics,

but they fall generally into two categories:

 gimbaled or stabilized platform techniques.

 strap down

 The original applications of INS technology used stable platform techniques.

In such systems, the inertial sensors are mounted on a stable platform and

mechanically isolated from the rotational motion of the vehicle. Platform systems are

still in use, particularly for those applications requiring very accurate estimates of

navigation data, such as ships and submarines.

Modern systems have removed most of the mechanical complexity of platform

systems by having the sensors attached rigidly, or “strapped down”, to the body of the

host vehicle, the potential benefits of this approach are lower cost, reduced size, and

greater reliability compared with equivalent platform systems, the major disadvantage

is a substantial increase in computing complexity.

2.4.3 Gimballed Systems

 Gimbal is a rigid frame with rotation bearings for isolating the inside of the frame

from external rotations about the bearing axes.

At least three gimbals are required to isolate a subsystem from host vehicle rotations

about three axes, typically labeled roll, pitch, and yaw axes.

18

 The gimbals in an INS are mounted inside one another, gimbals and torque servos are

used to null out the rotation of stable platform on which the inertial sensors are

mounted.

Gyros were initially located on a rotating platform connected to an outer housing via

low friction gimbals, accelerometers were attached to each gimballed gyro axis and

thus were held in a fixed orientation, any angular motion was sensed by the rotating

platform; this maintains the platform’s original orientation, pickoffs on the gimbals

measure the movement of the outer body around the steady platform and the

accelerometers measure the body’s acceleration in the fixed inertial axes.

The gimballed systems primary advantage is its inherently lower error. Since its three

orthogonal accelerometers are held in a fixed inertial orientation, only the vertically

oriented one will be measuring gravity (and therefore experiencing gravity-related

errors).

 Figure (11): (a) Gimballed inertial system parts

19

2.4.3.1 Gimballed INS work

The gyros of a type known as “integrating gyros” give an output proportional to the

angle through which they have been rotated, output of each gyro connected to a servo‐

motor driving the appropriate gimbal, thus keeping the gimbal in a constant

orientation in inertial space.

Gimballed systems have the advantage of simplicity of operation, the primary

function of the gyro in a gimballed system is to spin and maintain a high moment of

inertia, whereas strap down gyros need to actually measure the subtended angles of

motion.

2.4.4 Strap down systems

With fewer moving parts, strap down systems were developed using advanced

computer technologies.

Progress in electronics, optics, and solid state technology have enabled very accurate

reliable systems to be developed. Modern commercially available equipment's take

Figure (11) : (b) gimbeld system

20

advantage of integrated circuit technologies. Strap down systems are fixed to the

aircraft structure.

 The gyros detecting changes in angular rate and the accelerometers detecting changes

in linear rate, both with respect to the fixed axes.

These three axes are a moving frame of reference as opposed to the constant inertial

frame of reference in the gimballed system, the system computer uses this data to

calculate the motion with respect to an inertial frame of reference in three dimensions.

The strap down system’s main advantage is the simplicity of its mechanical design.

Gimballed systems require complex and expensive design for its gimbals, pickoffs,

and low-friction platform connections; strap down systems are entirely fixed to the

body in motion and are largely solid-state in design.

 Figure (12): Strap-down system

21

2.5 Disadvantages of INS

 Mean‐squared navigation errors increase with time.

 Cost, including:

1. Acquisition cost, which can be an order of magnitude (or more) higher than

GPS receivers.

2. Operations cost, including the crew actions and time required for

initializing position and attitude.

3. Maintenance cost. Electromechanical avionics systems (e.g., INS) tend to

have higher failure rates and repair cost than purely electronic avionics

systems (e.g., GPS).

 Size and weight, which have been shrinking

 Power requirements, which have been shrinking along with size and weight

but are still higher than those for GPS receivers.

 Heat dissipation, which is proportional to and shrinking with power

requirements.

22

2.6 Micro-Electro-Mechanical Systems (MEMS)

Micro-Electro-Mechanical Systems (MEMS) is then integration of mechanical

elements, sensors, actuators, and electronics on a common substrate through the

utilization of microfabrication technology or “micro technology”.

Microelectromechanical systems (MEMS) refer to a collection of microseconds and

actuators that can sense its environment and have the ability to react to changes in that

environment with the use of a microcircuit control.

 They include, in addition to the conventional microelectronics packaging, integrating

antenna structures for command signals into microelectromechanical structures for

desired sensing and actuating functions. Micro components make the system faster,

more reliable, cheaper, and capable of incorporating more complex functions. In the

beginning of 1990s, MEMS emerged with the aid of the development of integrated

circuit (IC) fabrication processes, in which sensors, actuators, and control functions

are fabricated in silicon.

Since then, remarkable research progresses have been achieved in MEMS under the

strong capital promotions from both government and industries. In addition to the

commercialization of some less integrated MEMS devices, such as micro

accelerometers, inkjet printer head, micro mirrors for projection, etc., the concepts

and feasibility of more complex MEMS devices have been proposed and

demonstrated for the applications in such varied fields as microfluidics, aerospace,

biomedical, chemical analysis, wireless communications data storage, display, optics,

etc.

23

 Figure (13): MEMS components

The physical mechanisms underlying MEMS accelerometers include capacitive, piezo

resistive, electromagnetic, piezoelectric, ferroelectric, optical, and tunneling.

The most successful types are based on capacitive transduction due to the simplicity

of the sensor element, small size, low power consumption, and stability over a wide

temperature range.

The first micro machined accelerometer was designed in 1979 at Stanford University,

but it took over 15 years before such devices became accepted mainstream products

for large volume applications.

 In the 1990s MEMS accelerometers revolutionized the automotive-airbag system

industry, since then they have enabled unique features and applications ranging from

hard-disk protection on laptops to game controllers. More recently, the same sensor-

core technology has become available in fully integrated, full-featured devices

suitable for industrial applications, micro machined accelerometers are a highly

enabling technology with a huge commercial potential. They provide lower power,

compact and robust sensing. Multiple sensors are often combined to provide multi-

axis sensing and more accurate data. Accelerometers are being incorporated into

more and more personal electronic devices such as media players and gaming devices,

also found real-time applications in controlling and monitoring military and aerospace

systems. Advantage that MEMS can bring relates with the system integration. Instead

of having a series of external components (sensor, inductor...) connected by wire or

soldered to a printed circuit board

24

Chapter Three: Proposed Inertial Navigation System using

MPU6050

3.1 Introduction

In this chapter, a basic IMU (Inertia Measurement Unit) sensors principles,

Arduino Uno, and a short brief for interfacing Arduino with the best IMU sensor

available i.e. MPU 6050 is introduced.

3.2 Arduino Uno

Arduino Uno is a microcontroller board based on the ATmega328P. It has 14

digital input/output pins (of which 6 can be used as PWM outputs), 6 analogue inputs,

a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP header and a reset

button. It contains everything needed to support the microcontroller; simply connect it

to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get

started. You can tinker with your UNO without worrying too much about doing

something wrong, worst case scenario you can replace the chip for a few dollars and

start over again.

"Uno" means one in Italian and was chosen to mark the release of Arduino

Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) were

the reference versions of Arduino, now evolved to newer releases. The Uno board is

the first in a series of USB Arduino boards, and the reference model for the Arduino

platform; for an extensive list of current, past or outdated boards see the Arduino

index of boards.

Arduino is an open-source electronics platform based on easy-to-use hardware

and software. Arduino boards can read inputs - light on a sensor, a finger on a button,

or a Twitter message - and turn it into an output - activating a motor, turning on an

LED, publishing something online. You can tell your board what to do by sending a

set of instructions to the microcontroller on the board. To do so you use the Arduino

programming language (based on Wiring), and the Arduino Software (IDE), based on

Processing.

Arduino was born at the Ivrea Interaction Design Institute as an easy tool for

fast prototyping, aimed at students without a background in electronics and

programming. As soon as it reached a wider community, the Arduino board started

25

changing to adapt to new needs and challenges, differentiating its offer from simple 8-

bit boards to products for wearable, 3D printing, and embedded environments. All

Arduino boards are completely open-source, empowering users to build them

independently and eventually adapt them to their needs. The software, too, is open-

source, and it is growing through the contributions of users worldwide.

The Arduino software is easy-to-use for beginners, yet flexible enough for

advanced users. It runs on Mac, Windows, and Linux, most microcontroller systems

are limited to Windows.

Teachers and students use it to build low cost scientific instruments, to prove

chemistry and physics principles, or to get started with programming and robotics.

Arduino is a key tool to learn new things. Anyone - children, hobbyists, artists,

programmers - can start tinkering just following the step by step instructions of a kit,

or sharing ideas online with other members of the Arduino community. Inexpensive -

Arduino boards are relatively inexpensive compared to other microcontroller

platforms.

 Figure (14):Arduino Pins

26

3.2.1 Programming

The Arduino Uno can be programmed with the (Arduino Software (IDE)).

Select "Arduino Uno from the Tools > Board menu (according to the microcontroller

on your board). The ATmega328 on the Arduino Uno comes preprogramed with a

bootloader that allows you to upload new code to it without the use of an external

hardware programmer. It communicates using the original STK500 protocol. You can

also bypass the bootloader and program the microcontroller through the ICSP (In-

Circuit Serial Programming) header using Arduino ISP or similar.

Figure (15):Arduino IDE

3.2.2 Warnings

The Arduino Uno has a resettable polyfuse that protects your computer's USB

ports from shorts and overcurrent. Although most computers provide their own

internal protection, the fuse provides an extra layer of protection.

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Hacking/Bootloader?from=Tutorial.Bootloader
https://www.arduino.cc/en/Main/ArduinoISP

27

If more than 500 mA is applied to the USB port, the fuse will automatically

break the connection until the short or overload is removed.

3.2.3 Power

The Arduino Uno board can be powered via the USB connection or with an

external power supply, External (non-USB) power can come either from an AC-to-

DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm

center-positive plug into the board's power jack. Leads from a battery can be inserted

in the GND and Vin pin headers of the POWER connector.

The board can operate on an external supply from 6 to 20 volts. If supplied

with less than 7V, however, the 5V pin may supply less than five volts and the board

may become unstable. If using more than 12V, the voltage regulator may overheat and

damage the board. The recommended range is 7 to 12 volts.

 The power pins are as follows:

 Vin. The input voltage to the Arduino board when it's using an external power

source (as opposed to 5 volts from the USB connection or other regulated

power source). You can supply voltage through this pin, or, if supplying

voltage via the power jack, access it through this pin.

 5V: This pin outputs a regulated 5V from the regulator on the board. The

board can be supplied with power either from the DC power jack (7 - 12V),

the USB connector (5V), or the VIN pin of the board (7-12V). Supplying

voltage via the 5V or 3.3V pins bypasses the regulator, and can damage your

board. We don't advise it.

 3.3V: A 3.3-volt supply generated by the on-board regulator. Maximum

current draw is 50 mA.

 GND. Ground pins.

3.2.4 Memory

The ATmega328 has 32 KB (with 0.5 KB occupied by the bootloader). It also

has 2 KB of SRAM and 1 KB of EEPROM.

3.2.5 Input and Output

See the mapping between Arduino pins and ATmega328P ports. The mapping

for the Atmega8, 168, and 328 is identical.

28

3.2.6 Interrupts

The processor at the heart of any Arduino has two different kinds of interrupts:

“external”, and “pin change”. There are only two external interrupt pins on the

ATmega168/328 (i.e., in the Arduino Uno/Nano/Due), INT0 and INT1, and they are

mapped to Arduino pins (2) and (3). These interrupts can be set to trigger on RISING

or FALLING signal edges, or on low level. The triggers are interpreted by hardware,

and the interrupt is very fast.

3.2.7 MPU (Microprocessor Unit)

 The MPU-60X0 is the world’s first integrated 6-axis Motion Tracking device

designed for the low power, low cost, and high-performance requirements of

smartphones, tablets and wearable sensors. It combines a 3-axis gyroscope, 3-axis

accelerometer on the same silicon die together, This combination of sensors is

frequently referred to as an IMU, or “Inertial Measurement Unit”, and it is used in

airplanes, spacecraft, GPS navigators (for use when GPS signals are unavailable) and

other devices. The number of sensor inputs in an IMU are referred to as “DOF”

(Degrees of Freedom), so a chip with a 3-axis gyroscope and a 3-axis accelerometer

would be a 6-DOF IMU, and a ("Digital Motion Processor") DMP all in a small

4x4x0.9mm package. The DMP can do fast calculations directly on the chip. This

reduces the load for the microcontroller (like the Arduino). The DMP is even able to

do calculations with the sensor values of another chip, for example a magnetometer

connected to the second (sub)-I2C-bus.

 The MPU-60X0 Motion Tracking device, with its 6-axis integration, on-board

Motion Fusion™, and run-time calibration firmware, enables manufacturers to

eliminate the costly and complex selection, qualification, and system level integration

of discrete devices, guaranteeing optimal motion performance for consumers.

http://en.wikipedia.org/wiki/Inertial_measurement_unit

29

Figure (16): MPU6050

The MPU-60X0 features three 16-bit analogue-to-digital converters (ADCs) for

digitizing the gyroscope outputs and three 16-bit ADCs for digitizing the

accelerometer outputs. For precision tracking of both fast and slow motions, the parts

feature a user-programmable gyroscope full-scale range of ±250, ±500, ±1000, and

±2000°/sec (dps) and a user-programmable accelerometer full-scale range of ±2g,

±4g, ±8g, and ±16g. Communication with all registers of the device is performed

using either I2C at 400kHz or SPI at 1MHz (MPU-6000 only). For applications

requiring faster communications, the sensor and interrupt registers may be read using

SPI at 20MHz (MPU-6000 only). Additional features include an embedded.

3.3 I
2
C

The I
2
C communication bus is very popular and broadly used by many

electronic devices because it can be easily implemented in many electronic designs

which require communication between a master and multiple slave devices or even

multiple master devices, well each device has a present ID or a unique device address

so the master can choose with which devices will be communicating.

The two wires, or lines are called Serial Clock (or SCL) and Serial Data (or

SDA). The SCL line is the clock signal which synchronize the data transfer between

the devices on the I2C bus and it’s generated by the master device. The other line is

the SDA line which carries the data.

30

Figure (17): I2C Bus works

The two lines are “open-drain” which means that pull up resistors needs to be attached

to them so that the lines are high because the devices on the I
2
C bus are active low.

Commonly used values for the resistors are from 2K for higher speeds at about 400

kbps, to 10K for lower speed at about 100 kbps.

Lastly, the MPU-6050 has a FIFO buffer, together with a built-in interrupt

signal. It can be instructed to place the sensor data in the buffer and the interrupt pin

will tell the Arduino, when data is ready to be read.

3.4 GY521

The InvenSense MPU-6050 sensor contains a MEMS accelerometer and a

MEMS gyro in a single chip. It is very accurate, as it contains 16-bits analog to digital

conversion hardware for each channel. Therefor it captures the x, y, and z channel at

the same time.

 Chip: MPU-6050.

 Power supply: 3.5V (But as there is a voltage regulator on the breakout board,

you can use 5V directly).

 Communication mode: standard IIC communication protocol.

 Chip built-in 16bit AD converter, 16bit data output.

 Gyroscopes range: +/- 250 500 1000 2000 degree/sec.

31

 Acceleration range: +/- 2g, +/- 4g, +/- 8g, +/- 16g.

Table 1 Description of GY-521 pins

Pins Description

VCC Power

GND Ground

SCL Serial CLock

SDA Serial DAta

XCL Auxiliary CLock

XDA Auxiliary DAta

INT INTerrupt

Figure (18): the schematic of the GY-521 break-out board for the MPU6050 chip

32

Figure (19): GY-521

Table 2 Pins connection between Arduino & GY-521

GY-521 Arduino Uno

VCC 3.3V

GND GND

SCL A5

SDA A4

D2 INT

3.5 Processing

 Is a flexible software sketchbook and a language for learning how to code

within the context of the visual arts. Since 2001, Processing has promoted software

literacy within the visual arts and visual literacy within technology. There are tens of

thousands of students, artists, designers, researchers, and hobbyists who use

Processing for learning and prototyping.

33

Figure (20): Sketch of the Processing software

3.5.1 Toxic library

 Is an independent, open source library collection for computational

design tasks with Java & Processing developed by Karsten “toxi” Schmidt (thus far).

The classes are purposefully kept fairly generic in order to maximize re-use in

different contexts ranging from generative design, animation, interaction/interface

design, data visualization to architecture and digital fabrication, use as teaching tool

and more.

The Processing sketch is called MPUTeapot.pde, even though the figure it displays is

a 3-D arrow, not a teapot.

 The 3-D airplane/arrow in the Processing sketch follows the rotation of the IMU

without significant jitter or lag. In addition, the demo easily performs rotations of any

angle, even those greater than 180 degrees.

http://processing.org/
http://postspectacular.com/

34

Figure (21): Teapot in levelled position

learn to wire a simple circuit to test MPU6050 with an Arduino and simulate the

YAW, PITCH and ROLL on a 3D model plane on the screen, this is intended as a

learning tool to get familiar with gyro modules, breakout boards and installing the

necessary libraries to Arduino IDE to allow you to make the best use of MEMS gyro

and save time instead of writing complex code from scratch.

Here's what you need:

 1 x Arduino UNO + USB cable

 1 x mini prototyping breadboard

 1 x GY-521 breakout board

 Some male-to-male or male-to-female jumper cables

 Soldering iron + solder

35

3.6 Step 1: Wire circuit

Figure (22):Arduino Uno connected with GY-521

3.7 Step 2: Install I2Cdev & MPU6050 Libraries

Iwe were to write the code from scratch, it would take ages and there would be a lot of

reverse engineering required to make good use of the module's proprietary Digital

Motion Processing (DMP) engine because Invensense intentionally released minimal

data on its MPU6050. Good thing someone has already done the hard work for us;

Jeff Rowberg wrote some Arduino libraries to obtain the accelerometer / gyro data

and handle all the calculations. They are available as a zip file from here:

https://github.com/jrowberg/i2cdevlib/zipball/master

Once unzipped, find the Arduino folder within it and copy the two folders "I2Cdev"

and "MPU6050" over to your Arduino "libraries" folder in the following directory:

C:\Program Files (x86)\Arduino\libraries

http://www.invensense.com/products/motion-tracking/6-axis/
https://github.com/jrowberg/i2cdevlib/zipball/master

36

Then open the Arduino IDE and in the examples section, you should find

MPU6050_DMP6 within MPU6050.

Directory of the MPU6050 code is :

.

 Open it, plug Arduino in, select the appropriate COM Port and upload the sketch.

 In the Serial Window, select a baud rate of 115200.

should be prompted that the MPU6050 connection was successful, test the data

collection by typing anything in the text bar and pressing enter, the data should start

showing up.

37

Figure (23): Total Pitch, Roll, and Yaw angles readings

Now we want to set the code to run the teapot demo to show the 3D simulation. Close

the serial window, then find and comment out the line #define

OUTPUT_READABLE_YAWPITCHROLL and uncomment the line //#define

OUTPUT_TEAPOT. Select "save as" and choose where you want to save the

modified code. Upload again but don't open the serial window this time.

3.8 Step 3: Install Latest Version of Processing & ToxicLibs Library

To run a 3D simulation of the yaw / pitch / roll values on an airplane on the screen,

we'll be running the teapot demo from the MPU6050_DMP6 example from Jeff

Rowberg's MPU6050 library. However, the Arduino IDE will only be acquiring the

data, to display the 3D simulation we'll need additional software: Processing.

Download Processing from here, then unzip to wherever you like:

 https://processing.org/download/?processing

We'll need one final library to get things running: ToxicLib.

https://processing.org/download/?processing

38

This library will be going into Processing's libraries folder instead of Arduino's. The

latest version of the ToxicLibs library is here:

https://bitbucket.org/postspectacular/toxiclibs/downloads/

The "libraries" folder of Processing can be found by following (starting from within

the processing folder): modes -> java -> libraries. Unzip ToxicLibs and place ALL the

contents there.

3.9 Step 4: Run the simulation

Last of all, open the Processing application file and then

File -> Open -> follow this directory C:\Program Files

(x86)\Arduino\libraries\MPU6050\Examples\MPU6050_DMP6\Processing\MPUTea

pot)

and open the MPUTeapot file.

Click the play button and the system should calibrate for about 20-30 seconds, leave

the gyro stationary during that period

Figure (24): Simulation of the Teapot

https://bitbucket.org/postspectacular/toxiclibs/downloads/

39

3.10 LCD (16 x2):

LCD (Liquid Crystal Display) screen is an electronic display module and find

a wide range of applications. A 16x2 LCD means it can display 16 characters per line

and there are 2 such lines. In this LCD, each character is displayed in 5x7 pixel

matrix. This LCD has two registers, namely, Command and Data

 A 16x2 LCD display is very basic module and is very commonly used in

various devices and circuits. These modules are preferred over seven segments and

other multi segment LEDs. The reasons being: LCDs are economical; easily

programmable; have no limitation of displaying special & even custom characters

(unlike in seven segments), animations and so on.

.

The command register stores the command instructions given to the LCD. A

command is an instruction given to LCD to do a predefined task like initializing it,

clearing its screen, setting the cursor position, controlling display etc. The data

register stores the data to be displayed on the LCD. The data is the ASCII value of the

character to be displayed on the LCD. Click to learn more about internal structure of a

LCD.

 Figure (25):LCD (Liquid Crystal Display)

http://www.engineersgarage.com/content/seven-segment-display
http://www.engineersgarage.com/content/led
http://www.engineersgarage.com/microcontroller/8051projects/create-custom-characters-LCD-AT89C51
http://www.engineersgarage.com/microcontroller/8051projects/display-custom-animations-LCD-AT89C51
http://www.engineersgarage.com/insight/how-lcd-works

40

3.11 Variable Resistor

A variable resistor is a device that is used to change the resistance according to

our needs in an electronic circuit. It can be used as a three terminal as well as a two-

terminal device. Mostly they are used as a three-terminal device. Variable resistors are

mostly used for device calibration.

As shown in the diagram below, a variable resistor consists of a track which

provides the resistance path. Two terminals of the device are connected to both the

ends of the track. The third terminal is connected to a wiper that decides the motion of

the track. The motion of the wiper through the track helps in increasing and

decreasing the resistance.

Figure (26): Variable resistor

41

3.12 Another simulation by using LCD

3.12.1 Step 1: Connection Pin LCD (16*2) with Arduino Uno

 Figure (27): LCD (16*2) and Arduino Uno Connection

Table 3 Pins connection between Arduino & LCD

LCD Arduino Uno

RS Pin (12)

EN(enable) (11)

D4 (7)

D5 (6)

D6 (5)

D7 (4)

R/W & Led- GND

Ed+ 5V

VEE Variable resistance (10K ohms),

Which connected to 5V & GND

42

3.12.2 Step 2: Download the Liquid Crystal Library

The Liquid Crystal Library is a core library for Arduino - there should be no need to

install it. If you need to install it for some reason, visit the Arduino site.

http://arduino.cc/en/Reference/Libraries

Now it is time to get some data from the accel-gyro module! To do this I simply used

the sample code which came with the documentation of the MPU6050 in order to read

the raw sensor data. For this sample to work, the I2Cdev and the MPU6050 libraries

need to be installed. Here is the code:

// I2Cdev and MPU6050 must be installed as libraries, or

else the .cpp/.h files

// for both classes must be in the include path of your

project

#include "I2Cdev.h"

#include "MPU6050.h"

 // Arduino Wire library is required if I2Cdev

I2CDEV_ARDUINO_WIRE implementation

// is used in I2Cdev.h

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

#include "Wire.h"

#endif

// class default I2C address is 0x68

// specific I2C addresses may be passed as a parameter

here

// AD0 low = 0x68 (default for InvenSense evaluation

board)

// AD0 high = 0x69

MPU6050 accelgyro;

//MPU6050 accelgyro(0x69); // <-- use for AD0 high

http://arduino.cc/en/Reference/Libraries
https://github.com/jrowberg/i2cdevlib
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

43

int16_t ax, ay, az;

int16_t gx, gy, gz;

 // uncomment "OUTPUT_READABLE_ACCELGYRO" if you want to

see a tab-separated

// list of the accel X/Y/Z and then gyro X/Y/Z values in

decimal. Easy to read,

// not so easy to parse, and slow(er) over UART.

#define OUTPUT_READABLE_ACCELGYRO

 #define LED_PIN 13

bool blinkState = false;

 void setup() {

// join I2C bus (I2Cdev library doesn't do this

automatically)

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

Wire.begin();

#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

Fastwire::setup(400, true);

#endif

 // initialize serial communication

// (38400 chosen because it works as well at 8MHz as it

does at 16MHz, but

// it's really up to you depending on your project)

Serial.begin(38400);

 // initialize device

Serial.println("Initializing I2C devices...");

accelgyro.initialize();

// verify connection

Serial.println("Testing device connections...");

44

Serial.print("MPU Connection ");

Serial.println(accelgyro.testConnection() ? "successful"

: "failed");

// configure Arduino LED for

pinMode(LED_PIN, OUTPUT);

}

void loop() {

// read raw accel/gyro measurements from device

accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

 #ifdef OUTPUT_READABLE_ACCELGYRO

// display tab-separated accel/gyro x/y/z values

Serial.print("a/g:\t");

Serial.print(ax); Serial.print("\t");

Serial.print(ay); Serial.print("\t");

Serial.print(az); Serial.print("\t");

Serial.print(gx); Serial.print("\t");

Serial.print(gy); Serial.print("\t");

Serial.println(gz);

#endif

 // blink LED to indicate activity

blinkState = !blinkState;

digitalWrite(LED_PIN, blinkState);

}

The result I got on the Serial Monitor looked like this:

45

the readings from the accelerometer are divided into the x/y/z values, and the readings

from the gyroscope are divided into its x/y/z components. But unfortunately, this data

wasn’t very usable in its current form. We still had to fuse the accelerometer and

gyroscope data together. The roll, pitch, and yaw angles are evaluated due to the

following equations:

 (

√

) ……………………………………………….... (equation 3.1)

 (

√

)………………………………………………... (equation 3.2)

 (
√

)……………………………………………… (equation 3.3)

46

Chapter Four: Results and Discussion

4.1 Results

The First calibration was carried out for the GY-521 to set the reference adjustment

which represents the airplane at its levelled situation.

The next evaluation was to try to tilt the GY-521 to sense the deviation as digital

information.

 Figure (28):Calibration of MPU6050 GY-521

For above figure, the calibration offsets are being achieved for the 6 degree of

freedom; the first 3 offsets were for (X, Y, Z) accelerometer, and the last three for

gyroscope.

The output scale for any setting is [-32768, +32767] for each of the six axes. The

default setting in the I2Cdevlib class is +/- 2g for the accel and +/- 250 deg/sec for the

gyro. If the device is perfectly level and not moving, then:

47

 X/Y accel axes should read 0

 Z accel axis should read 1g, which is +16384 at a sensitivity of 2g

 X/Y/Z gyro axes should read 0

Then, these resultant offsets were taken and replaced in the MPU6050 code,

As showed below to get accurate result and simulation.

 So the calibration offsets in Code :

 Figure((:92 Fetching the motion in serial monitor

48

At this figure, the code was uploaded and the serial monitor was activated by adding

any characteristic, so as shown in the figure, when the sensor (GY-521) was

oscillated, the results were presented in the display in 3 columns (Yaw, Pitch and Roll

respectively).

In addition to that, there is no line ending, which means it will keep giving results

until the serial monitor was closed or unplugging the Arduino from the PC.

 Figure (30):Parallel Display of Both LCD & Serial monitor

Now, the LCD was added for displaying with serial monitor. As showed in figure, the

results were presented parallel in both in LCD and Arduino.

49

 Figure(31):calibration of GY-521 motion

The Simulation of the motion of the GY-521 was illustrated using the

MPUTeapot add-on of the Processing Software.it shows momentarily motion and

deviation of the GY-521.

Figure (:29) Simulation of GY-521 Through Teapot

50

Processing software was used, an open source programming language and

environment (very similar to the Arduino IDE) that is particularly well suited for data

visualization.

 modified the Arduino sketch to send the processed sensor and filtered data through

the serial port, and wrote a Processing sketch to show the sensor and filter output as

applied to three 3-D rectangles.

This figure shows the momentarily rolling motion which is in this case is rolling

towards the left with accordance to the leading part which is pointing forwards.

 Figure (33): rotation motion about lateral axis

 In this case the rotation was mostly about the Lateral axis creating pitching

motion (pitch-up in this figure) which is successfully mimicked by the GY-521

http://www.processing.org/

51

Chapter Five: Conclusion and Recommendation

5.1 Conclusion

 The Arduino IDE and Arduino microcontroller were quite sufficient to

represent a simple and intuitive navigation system, to understand the way that a real

inertial navigation system operates, the Simulation was handled using the Teapot add-

on of the Processing Software, and the result was displayed in LCD, and the Whole

system delivered a good chance of experiencing the Inertial navigation System

starting from the calibration of sensors till reaching the final step which is Taking

decision upon the end user display.

5.2 Recommendation and Future work

As a result of viewing and experiencing the inertial navigation system,

considering that the system represents the motion around six axises of freedom,

adding the Compass will cover more three axes showing the course of a certain

vehicle which help in creating a comprehensive standalone system.

Furthermore, comparing the results obtained from this simplified inertial

navigation system with results fetched from a real implemented system to calculate

the reliability of the system upon the error rate of adjusting and calibrating the

sensors.

Also for augmenting the ability of monitoring the results, the use of graphical

LCD is considerable, to help deliver a clear way to build decisions upon eye

monitoring or digital recognition.

52

Reference

[1] Titterton, David, and John L. Weston. Strap down inertial

navigation technology. Vol. 17. IET, 2004.

[2] A Design Project Report Presented to the Engineering Division of the

Graduate School of Cornell University in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering (Electrical) by Maksim

Eskin Project Advisor: Bruce Land Degree Date: January 2006

[3] Aircraft Digital Electronic and Computer Systems:

Principles, Operation and Maintenance First edition 2007

[4] MEMS ACCELEROMETERS Author: Matej Andrejašiˇc

Mentor: doc. dr. Igor Poberaj, Marec 2008

APPENDIX I:

MPU6050 Calibration:

// I2Cdev and MPU6050 must be installed as libraries, or else

the .cpp/.h files

// for both classes must be in the include path of your project

#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"

// Arduino Wire library is required if I2Cdev

I2CDEV_ARDUINO_WIRE implementation

// is used in I2Cdev.h

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 #include "Wire.h"

#endif

// class default I2C address is 0x68

// specific I2C addresses may be passed as a parameter here

// AD0 low = 0x68 (default for SparkFun breakout and InvenSense

evaluation board)

// AD0 high = 0x69

MPU6050 mpu;

//MPU6050 mpu(0x69); // <-- use for AD0

/*

==

===========

 NOTE: In addition to connection 3.3v, GND, SDA, and SCL,

this sketch

 depends on the MPU-6050's INT pin being connected to the

Arduino's

 external interrupt #0 pin. On the Arduino Uno and Mega

2560, this is

 digital I/O pin 2.

 For the Galileo Gen1/2 Boards, there is no INT pin support.

Therefore

 the INT pin does not need to be connected, but you should

work on getting

 the timing of the program right, so that there is no buffer

overflow.

*

==

=========== */

/*

==

===========

 NOTE: Arduino v1.0.1 with the Leonardo board generates a

compile error

 when using Serial.write(buf, len). The Teapot output uses

this method.

 The solution requires a modification to the Arduino

USBAPI.h file, which

 is fortunately simple, but annoying. This will be fixed in

the next IDE

 release. For more info, see these links:

 http://arduino.cc/forum/index.php/topic,109987.0.html

 http://code.google.com/p/arduino/issues/detail?id=958

*

===

====== */

#define OUTPUT_READABLE_YAWPITCHROLL

// Unccomment if you are using an Arduino-Style Board

// #define ARDUINO_BOARD

// Uncomment if you are using a Galileo Gen1 / 2 Board

#define GALILEO_BOARD

#define LED_PIN 13 // (Galileo/Arduino is 13)

bool blinkState = false;

// MPU control/status vars

bool dmpReady = false; // set true if DMP init was successful

uint8_t mpuIntStatus; // holds actual interrupt status byte from

MPU

uint8_t devStatus; // return status after each device

operation (0 = success, !0 = error)

uint16_t packetSize; // expected DMP packet size (default is 42

bytes)

uint16_t fifoCount; // count of all bytes currently in FIFO

uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars

VectorFloat gravity; // [x, y, z] gravity

vector

Quaternion q; // [w, x, y,

z] quaternion container

float euler[3]; // [psi, theta, phi] Euler

angle container

float ypr[3]; // [yaw, pitch,

roll] yaw/pitch/roll container and gravity vector

//

===

=========

// === INTERRUPT DETECTION

ROUTINE ===

//

===

=========

// This function is not required when using the Galileo

volatile bool mpuInterrupt = false; // indicates

whether MPU interrupt pin has gone high

void dmpDataReady() {

 mpuInterrupt = true;

}

 //

==

// === INITIAL SETUP ===

// ==

void setup() {

 // join I2C bus (I2Cdev library doesn't do this automatically)

 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 Wire.begin();

 int TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)

 #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

 Fastwire::setup(400, true);

 #endif

 Serial.begin(115200);

 while (!Serial);

 // initialize device

 Serial.println(F("Initializing I2C devices..."));

 mpu.initialize();

 // verify connection

 Serial.println(F("Testing device connections..."));

 Serial.println(F("MPU6050 connection "));

 Serial.print(mpu.testConnection() ? F("successful") :

F("failed"));

 // wait for ready

 Serial.println(F("\nSend any character to begin DMP

programming and demo: "));

 while (Serial.available() && Serial.read()); //

empty buffer

 while (!Serial.available()); //

wait for data

 while (Serial.available() && Serial.read()); //

empty buffer again

 // load and configure the DMP

 Serial.println(F("Initializing DMP..."));

 devStatus = mpu.dmpInitialize();

 // supply your own gyro offsets here, scaled for

min sensitivity

 mpu.setXGyroOffset(220);

 mpu.setYGyroOffset(76);

 mpu.setZGyroOffset(-85);

 mpu.setZAccelOffset(1788); // 1688 factory default

for my test chip

 // make sure it worked (returns 0 if so)

 if (devStatus == 0) {

 // turn on the DMP, now that it's ready

 Serial.println(F("Enabling DMP..."));

 mpu.setDMPEnabled(true);

 // enable Arduino interrupt detection

Serial.println(F("Enabling interrupt detection (Arduino

external interrupt 0)..."));

 attachInterrupt(0, dmpDataReady, RISING);

 mpuIntStatus = mpu.getIntStatus();

 // set our DMP Ready flag so the main loop()

function knows it's okay to use it

 Serial.println(F("DMP ready! Waiting for first

interrupt..."));

 dmpReady = true;

 // get expected DMP packet size for later

comparison

 packetSize = mpu.dmpGetFIFOPacketSize();

 } else {

 // ERROR!

 // 1 = initial memory load failed

 // 2 = DMP configuration updates failed

 // (if it's going to break, usually the code

will be 1)

 Serial.print(F("DMP Initialization failed (code

"));

 Serial.print(devStatus);

 Serial.println(F(")"));

 }

 // configure LED for output

 pinMode(LED_PIN, OUTPUT);

}

//

===

=======

// === MAIN PROGRAM

LOOP ===

//

===

=======

void loop() {

 // if programming failed, don't try to do anything

 if (!dmpReady) return;

 // wait for MPU interrupt or extra packet(s)

available

 #ifdef ARDUINO_BOARD

 while (!mpuInterrupt && fifoCount < packetSize) {

 }

 #endif

 #ifdef GALILEO_BOARD

 delay(10);

 #endif

 // reset interrupt flag and get INT_STATUS byte

 mpuInterrupt = false;

mpuIntStatus = mpu.getIntStatus();

 // get current FIFO count

 fifoCount = mpu.getFIFOCount();

 // check for overflow (this should never happen

unless our code is too inefficient)

 if ((mpuIntStatus & 0x10) || fifoCount == 1024) {

 // reset so we can continue cleanly

 mpu.resetFIFO();

 Serial.println(F("FIFO overflow!"));

 // otherwise, check for DMP data ready interrupt

(this should happen frequently)

 } else if (mpuIntStatus & 0x02) {

 // wait for correct available data length,

should be a VERY short wait

 while (fifoCount < packetSize) fifoCount =

mpu.getFIFOCount();

 // read a packet from FIFO

 mpu.getFIFOBytes(fifoBuffer, packetSize);

 // track FIFO count here in case there is > 1

packet available

 // (this lets us immediately read more without

waiting for an interrupt)

 fifoCount -= packetSize;

 #ifdef OUTPUT_READABLE_YAWPITCHROLL

 // display Euler angles in degrees

 mpu.dmpGetQuaternion(&q, fifoBuffer);

 mpu.dmpGetGravity(&gravity, &q);

 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

 Serial.print("ypr\t");

 Serial.print(ypr[0] * 180/M_PI);

 Serial.print("\t");

 Serial.print(ypr[1] * 180/M_PI);

 Serial.print("\t");

 Serial.println(ypr[2] * 180/M_PI);

 #endif

 // blink LED to indicate activity

 blinkState = !blinkState;

 digitalWrite(LED_PIN, blinkState);

 }

}

