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Abstract 
Mellin Transform is method for the exact calculation of one-
dimensional definite integrals, and illustrates the application. 
The different types of singularity of a complex function f(z) are 
discussed and the definition of a residue at a pole is given. The 
residue theorem is used to evaluate contour integrals where the 
only singularities of f(z) inside the contour are poles. 

Every singularity of a holomorphic function is isolated, but 
isolation of singularities is not alone sufficient to guarantee a 
function is holomorphic. Many important tools of complex 
analysis and the residue theorem require that all relevant 
singularities of the function be isolated. 

 

 

 

 

 

 

 

 

 



V 
 

 الخلاصة
تحویل میلین ھو طریقة لحساب تكاملات محددة ذات بعد  واحد ویوضح تنفیذ 
ً ما یھتم بالتكاملات المغلقة التي یصعب التوصل الي طرق حلھا  التطبیقات ، وغالبا
بالطرق العادیة أو عن طریق جداول التكاملات المعتادة ومع ذلك توجد أسالیب 

بات شاقة ، ولكن ھذا التحویل یعتبر الأمثل أخري بسیطة التطبیق ولكن تتطلب حسا
  . وأكثر فائدة من الطرق الأخري 

ً لتعریف بقایا القطب ،   f(z)  وتم تعریف أنواع مختلفة من التفرد للدالة المركبة نظرا
ویتم إستخدام نظریة المتبقي لحساب التكاملات المغلقة وحیث كل النقاط الشاذة للدالة 

  .مسار المغلق تمثل أقطاب داخل ال f(z)  المركبة 

كل نقاط التفرد للدالة المركبة التامة ھي معزولة علي الرغم من ذلك لا یمكن الجزم 
  .بأن الدالة المركبة تامة 

العدید من الأدوات المھمة للتحلیل المركب ونظریة المتبقیات ذات صلة بالتفرد التي 
  .تجعل الدالة معزولة 

 

 

 

 

 

 

 



VI 
 

Introduction 
 
  In this research we have a singular point  z0  is called 
an isolated and isolated singular point of an analytic 
function f(z). 
   Isolated singular points include poles, removable 
singularities , essential singularities and branch points. 
Mellin was developer of the integral transform: 

(࢙){(࢞)ࢌ	}ࡹ :	= (࢙)ࣘ = න ࢞ࢊ(࢞)ࢌି࢙࢞
ஶ



																																																																		 

Known as the Mellin transform. 
   We will study some examples , then we proceed to look 
at the correspondence between the asymptotic 
expansion of a function and singularities of the 
transformed function. 
We use the Mellin transform in asymptotic analysis for 
estimating asymptotically harmonic sums. 
And also the Mellin Transform is an integral transform , 
which is closely connected . 
  And also is extremely useful for certain applications 
including solving Laplace’s equation in poler coordinates , 
as well as for estimating integrals. 
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Chapter (1) 
 

Residue Theorem and Examples 

Section(1.1) :  Theorem(Residue Theorem)  

     Let  R ⊆ ¢   be an open region and   w = f(z)  be a complex 
holomorphic function in R – {z1, z2, …,zn, …,zL} where 1≤n≤L  
and each point of the finite exceptional set  {z1, z2,…,zL}  is an 
isolated of  f(z) . Then ,for any  C  simple, closed and piecewise 
continuously differentiable contour such that  no singularity of 
f(z)  is on  C  and  C  encloses the isolated singularities z1, z2,…,zn 
but no other singularity , then the following integral equality 
holds : 

ර (ݖ)݂
శ

ݖ݀ = (ݖ)݂ݏܴ݁݅ߨ2
ݖ = ݖ



ୀଵ

																																								(1.1) 

Definition 1 

   Let  w = f(z)  be a complex function of  z ∈ ¢   holomorphic in   

,0)ܦ  − ¢ ܴതതതതതതതത)= {z∈C│|ݖ|˃ܴ}  we call residue at infinity of  w = f(z)  
the quantity  

Res f(z)   =  −	Res	ൣ భ
మ
	݂(భ)൧ 

                                   Z = ∞             Z = 0 

Theorem 1                                                                                                          
Let f(z) be holomorphic function ¢ −{a1,a2,…,an} where n≥0 
integer , with singularities a1, a2,…,an . 
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 Then, 

Res		f(z)
		z = aଵ

	+	Res		f(z)		z = aଶ
+ …. +	Res		f(z)		z = a୬

 +	Res		f(z)		z = aஶ
  = 0 

Proof: 

We consider any  R˃0  for which |ܽ|˂R ,for all  ݅=1,2,…,n  and 
|ܽ|˂

భ
ೃ  for all ܽ≠0. 

We have 

f(z)		ݏܴ݁
z = ∞	 =

f(z)		ݏܴ݁−
z = 0

= −
1
݅ߨ2

න
1
ଶݖ
݂ ൬

1
ݖ
൰ (1.2)																																																ݖ݀

శ(,భೃ)

 

We use the change of variable  w=	ଵ
௭
 , and we find  

Res	f(z) = −
1
݅ߨ2

න ݓ݀(ݓ)݂ = − Res		f(z)		z = aଵ	
+ Res		f(z)
		z = aଶ

+⋯+ Res		f(z)
		z = a୬

൨ ,
శ(,ଵ)

 

And the result follows. 

Examples : 
Example 1  
Find the integral   

ර
ݖ5 − 3
ݖ)ݖ − 2)

ݖ݀	
శ

 

If 

a) C = C(0,1) 
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b) C = C(0,3) 
c) C = C(4,1) 

First, we compute the residues of function  f(z) = ହ௭ିଷ
௭(௭ିଶ)

  at 

isolated singularities   z0 = 0 and  z0 = 2. 

 At all other point of ¢, this function is defined and 
holomorphic. 

Res		f(z)
		z = 2

ହ௭ିଷ  =            [(ݖ)݂ݖ]	=	
௭ିଶ

	          = ିଷ
ିଶ

   =  ଷ
ଶ
 

                                    z = 0                 z =0 

Res		f(z)
		z = 2

		=  ହ௭ିଷ
௭
	             =  

ଶ
 

                                  z =2 

So, by the residue theorem, we have:  

(a) Since  z =0  is only singularity in side  C = C(0,1), then 

ර
ݖ5 − 3
ݖ)ݖ − 2) ݖ݀	

శ
= .݅ߨ2

3
2 	=  ݅ߨ3	

(b) Now both singularities are in side C = C(0,3), and so  

ර
ݖ5 − 3
ݖ)ݖ − 2)

ݖ݀	 = 	)݅ߨ2
3
2
+	
7
2
	= ݅ߨ10

శ(,ଷ)

 

(c) Finally, in side C = C(4,1) there are no singularities of 
f(z).  

There  
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ර
ݖ5 − 3
ݖ)ݖ − 2)

ݖ݀	 = 0	.
శ(ସ,ଵ)

 

Example 2   
 Evaluate the integral   

න
ݖ݀

݁௭ − 1
శ

		if		C	 = 	C(0,3ߨ). 

Then ,by using the parameterization of  C = C(0,3ߨ)  given by 
			ܼ = ఏ݁ߨ3 	 with 0≤ߨ2≥ߠ . 

In side  C = C(0,3ߨ) ,the function ݂(ݖ) = ௗ௭
ିଵ

  has three 

singularities , namely  -2ߨ ,o  and  2݅ߨ 

We find that each of the three residues : 

Res		f(z)
		z = 0

  =  ௭
ିଵ

        =  ଵ

	         = ଵ

ଵ
   =  1 

                                 z=0          z=0   

Res		f(z)
		z = ݅ߨ2

		=		௭ିଶగ
ିଵ

            =      ଵ

	             = ଵ

ଵ
   =  1 

                                   z=2݅ߨ              z=2݅ߨ   

 

Res		f(z)
		z = ݅ߨ2−

	=  ௭ାଶగ
ିଵ

                 = ଵ

	                = ଵ

ଵ
   =  1 

                                      z=−2݅ߨ          z=−2݅ߨ   
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න
ݖ݀

݁௭ − 1
శ

	 = 1)݅ߨ2	 + 1 + 1) =  .	݅ߨ6	

Section(1.2)   Contour Integration and Improper 
Real Integrals  

   We are going to use integrations of complex functions along 
appropriately chosen contours to evaluate improper real 
integrals .This method is very powerful ,for it computes very 
difficult integrals and at same time proves their existence . 
Choosing the correct contour(s) and then applying the residue 
theorem .we are going to analyze the most important cases of 
such integral techniques which are sufficient for the needs of                                                                                   
an undergraduate student . 

Example 1         The integral  

න
ݔ݀

1 + ଶݔ
= arctan(∞)	– 	arctan(−∞) 	= 	

ߨ
2
	− 	

ߨ−
2
	= ߨ	

ஶ

ିஶ

 

Has been computed elementarily .For easy practice ,we will use 
contour integration to establish this result. 

We consider the complex function : 

                   f(z) = ଵ
ଵା௭మ

    in ¢ 

The denominator has two simple roots ,the  +݅  and  −݅ which 
are isolated singularities ,poles of order one . 

 So, 
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		(௭)݂		ݏܴ݁
Z = 	݅

 =  [(௭ି)	݂(௭)]         =  ቂ ష

(ష)(శ)
ቃ          =    ଵ

ଶ
 

                                               z=	݅                          Z=	݅ 

We consider any  R˃1  and the contour   C = [−ܴ, ܴ]+ ܵோା  
consisting of two parts:  

1-the straight segment of the  ݔ −axis[−ܴ, ܴ] from −ܴ to ܴ 
and, 

2-the positively oriented upper half of  C(0,R) , denoted by 
ܵோା . see figure (1.1)                          

                                                      y                                                                                                                                                          

                                                       ܴ  

                                                     ݅                   ܵோା 

 

 ݔ    ܴ                              0                  ܴ−                         

 

                                                               Figure (1.1) 

These parts are respectively parameterized by: 

ݖ} (1) = ݔ + ݅	| − ܴ ≤ ݔ ≤ ܴ} and  
(2) ൛ݖ = ܴ݁ఏ|0 ≤ ߠ ≤  . ൟߨ

 we have chosen the contour  C in this way , so that at least one 
of the singularities ,namely the  Z=+݅ , is enclosed in it . Then 
we apply the residue theorem, to find  
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න
ݖ݀

1 + ݁௭
= .	݅ߨ2	

1
2݅
	= (1.3)																																																																																												ߨ	

శ
 

Remark :   Since  ݂(ݔ) = ଵ
ଵା௫మ

   is an even function in  R  we 
also get: 

න
ݔ݀

1 + ଶݔ



ିஶ

= න
ݔ݀

1 + ଶݔ
=
ߨ
2
		 ,

ஶ



 

Or 

න
ݔ݀

1 + ଶݔ
= 2 න

ݔ݀
1 + ଶݔ

= 			2	 න
ݔ݀

1 + ଶݔ

ஶ





ିஶ

ஶ

ିஶ

 

Similarly we find  

න
ଶݔ

1 + ସݔ
ݔ݀ = 		2 න

ଶݔ

1 + ସݔ
ݔ݀



ିஶ

ஶ

ିஶ

= 		2න
ଶݔ

1 + ସݔ
ݔ݀

ஶ



=	
ߨ
√2

 

න
ݔ݀

1 + ݔ

ஶ

ିஶ

= 	2 න
ݔ݀

1 + ݔ



ିஶ

		= 		2න
ݔ݀

1 + ݔ

ஶ



		 = 	
ߨ2
3

 

න
ݔ݀

1 + ݔ
=		

ߨ

݊ sin ൬(݆ + ߨ(1
ܮ ൰

			 ,
ஶ



 

Where j=0,1,2,… and  ܮ ˃ j+1  integer  

 Result:  
  For all integers L and j such that ܮ ˃ j+1  and j=0,1,2,… we 
have: 
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න
ݔ

1 + ݔ
		ݔ݀ = 		

ߨ

ܮ sin ൬(݆ + ߨ(1
ܮ ൰

																																																																													(1.4)
ஶ



 

Examples 2 

(1) (a)  where  L=0,1,2,… integer , 0 < ߙ + 1 < 	then  ܮ

න
ఈݔ

1 + ݔ
		 = 		

ߨ

ܮ sin ൬(ߙ + ߨ(1
ܮ ൰

																																																																										
ஶ



 

     (b)   For  2n	> 2m+1  and   m=0,1,2,…  then 

න
ଶݔ

1 + ଶݔ
		 = 			

ߨ2

2݊ sin ൬(2݉ + ߨ(1
2݊ ൰

		= 		
ߨ

݊ sin ൬(2݉ + ߨ(1
2݊ ൰

		
ஶ

ିஶ

 

(2) For example  ߙ = ଵ
ଶ
  , Find   

 	

																න
ݔ
భ
మ

1 + ଶݔ
	ݔ݀

ஶ



 

Solution: 

ߙ = ଵ
ଶ
	 , L = 2 

න
ݔ
భ
మ

1 + ଶݔ
		ݔ݀		 = 		

ߨ

2 sin ቆ
(ଵଶ+ ߨ(1

2 ቇ
	= 	

ߨ
2 sin(135)

		= 	
ߨ
2. ଵ

√ଶ

																		
ஶ



	

න
ݔ
భ
మ

1 + ଶݔ
		ݔ݀		 = 		

√2
2
	 . 											ߨ

ஶ



 

(3)  in this example ,we have obtained the following : 
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න
ݔ
భ
మ

1 + ଶݔ
		ݔ݀		 = 		

ߨ
sin[(ߙ + [ߨ(1

										
ஶ



 

Notice that the only root of the denominator  z = -1 . 

We take as the branch cut the closed half line of none -negative 
real  

semi - axis {ݖ = ݔ + ݅	|ݔ ≥ 0} . 

We have chosen the positive continuous argument 

  0<arg(z)< 2ߨ ,we write  z = -1 = ݁గ  then : 

		(௭)݂		ݏܴ݁
Z = 	−1

= ቂ(௭ାଵ)௭
ഀ

(௭ାଵ)
ቃ             = (−1)ఈ  = ൫

గ
 ൯

ఈ

ߨߙ݅
 =  e 

                                         z=−1                            

From  0<r < 1 < R < ∞  and as appropriate contour 

 C = [ݎ, ,ܴ] + ோାܣ +[ܴ   , R݁ఏ = (ߠ)ோାܣ  ோି ,whereܣ + [ݎ

0< >r݁ఏ , 0 = (ߠ)ିܣ  and ߨ2> ߠ  . ߨ2> ߠ

By the residue theorem, 

we obtain  

න
ఈݖ 		
1 + ݖ

శ
ݖ݀ = න

ఈݖ 		
1 + ݖ

[,ோ]

ݖ݀ + න
		ఈݖ
1 + ݖ

ݖ݀	 + න
		ఈݖ
1 + ݖ

	
[ோ,]

	ݖ݀ + න
		ఈݖ
1 + ݖ

	
ೃష

	ݖ݀
ೃ
శ

 

න
ఈݖ 		
1 + ݖ

శ
ݖ݀ = ఈగ݁݅ߨ2 		, 
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                                                  y 

 ோାܣ                                   

          ିܣ                                              
                                                             arg(z)=0 

                                      -1        0        r            R          X                                                   
                                                          arg(z)=2࣊       

 

 

Figure(1.2) 

And we must take limits as  R→ ∞ and as  r→ 0ା 

We get : 

        (1)  Lim   ∫ ௭ഀ		
ଵା௭

	ೃ
శ ݖ݀ = 0 

              ܴ → ∞ 

       (2) Lim   ∫ ௭ഀ		
ଵା௭

	ೝష
ݖ݀ = 0 

ݎ               → 0ା 

   Next we must compute the two partial integrals  along the 
branch cut , that is over intervals [r,R] and  [R,r] . 

In the case of the (positive) segment [r,R] , as we travel along 
the contour the arc ܣି indicates ,that we approach the branch 
cut from above ,and so the limit of the  arg(z) is O . Hence along 
[r,R]  we compute the real integral   
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න
ఈ(݁ݔ) 	
1 + ݔ

	
ோ



 .	ݔ݀

Taking limits ,we get 

   (3)   Lim    ∫ ௫ഀ	
ଵା௫

	ோ
 ∫ =  ݔ݀ ௫ഀ	

ଵା௫
	ஶ

  ݔ݀

ݎ           → 0
ܴ → ∞ 

  But,in the case of (negative) segment [R,r] , we approach the 
branch cut from below , as arc	ܣோା  indicates and so the limit of 
the arg(z) is  2ߨ .Hence along [R,r] we must compute the 
integral   

න
ఈ(ଶగ݁ݔ) 	
1 + ݔ

	


ோ

 ݔ݀

(4) Lim     ∫ (௫మഏ)ഀ	
ଵା௫

	
ோ ଶగఈ݁− = ݔ݀ ∫ ௫ഀ	

ଵା௫
	ஶ

  ݔ݀
ݎ → 0
ܴ → ∞ 

  By the four computed pieces (1),(2),(3) and (4) , we find  

න
ఈݔ 	
1 + ݔ

	
ஶ



ݔ݀ − ݁ଶగఈන
ఈݔ 	
1 + ݔ

	
ஶ



ݔ݀ = 	 ൫1 − ݁ଶగఈ൯න
ఈݔ 	
1 + ݔ

	
ஶ



	ݔ݀ =  (1.5)				ఈగ݁	݅ߨ2	

Remark (1)       

For   ߙ ≥ 0  or  ߙ ≤ −1   

න
ఈݔ 	
1 + ݔ

	
ஶ



	ݔ݀ = 	∞	. 
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Example 3  

(a) To find    

න
	ఈݔ
ܾ + ݔ

	
ஶ



 	,	ݔ݀

We perform the  u – substitution  ݔ = ݔ݀ ⇒ ݑܾ =  , ݑܾ݀

	න
ఈݔ 	
1 + 	ݔ

ஶ



	ݔ݀ = 	න
ܾఈݑఈ 	
ܾ + 	ݑܾ

ஶ



ݑܾ݀ =		
ܾఈାଵ

ܾ 	න
ఈݑ 	
1 + 	ݑ

ஶ



	ݑ݀ = ܾఈ 	
ߨ

sin[(ߙ +  .	[ߨ(1

(b) To find   

න
	ݔ√

1 + ଶ√ݔ
	

ஶ



 ,	ݑ݀

 We perform the  u – substitution 

ݑ     = ݔ ⇔ ଶ√ݔ = ݑ
భ
√మ    and  ݀ݔ = ଵ

√ଶ
ݑ

భ
√మ

షభ݀ݑ   so , 

න
	ݔ√

1 + ଶ√ݔ
	ݔ݀ = 		

1
√2

	න
ݑ

ଷ
ଶ√ଶ

ିଵ
	

1 + ݑ
ݑ݀ = ∞	, Since		

3
2√2

− 1 > 0	.
ஶ



	
ஶ



 

Remark(2):     

  The integral evaluated in this example may be considered as 
integral of rational function of  sin(ߠ)  and cos(ߠ)	 which in a 
calculus course is treated with change of variables  

ݑ = tan൫ഇమ൯ ⇔ ߠ = ܿݎ2ܽ tan(ݑ) , called tangent of half – angle 
substitution.݀ߠ = ଶ

ଵା௨మ
[(ݑ)	tan	ܿݎ2ܽ]sin , ݑ݀	 = 	 ଶ௨

ଵା௨మ
  

,cos[2ܽܿݎ	tan	(ݑ)] =	ଵି௨
మ

ଵା௨మ
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   These results change an (indefinite) integral of a rational 
function of  sin(ߠ) and  cos(ߠ) into an (indefinite) integral of a 
rational function of  u , from this indefinite integral , we 
compute the definite .  

For example , we find that  

න
ߠ݀

−1 + sin(ߠ)
= 	

2
tan൫ఏଶ൯

+  (1.6)																																																																																						ܥ

So,         
                                             

ଶ
  

න
ߠ݀

−1 + sin(ߠ)
=

2
tan൫ఏଶ൯ − 1

			= 	
2

tan൫గସ൯ − 1
−

2
tan൫−గ

ଶ൯ − 1
	=

2
0
	−

2
−2

						

ഏ
మ

ିഏమ

 

                                             -ૈ


 

න
ߠ݀

−1 + sin(ߠ)
= ∞ + 1 = ∞	.

ഏ
మ

ିഏమ

																																																																																		 (1.7) 
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Chapter (2) 
 

Mellin Transform 

Section(2.1)   Basic concepts & Definitions 

Definition 1 

The Mellin Transform of a real function  ݕ =  with (ݔ)݂
0 < ݔ < ∞ or 0 ≤ x < (ݔ)݂	ݎ݁݀݅ݏ݊ܿ	݁ݓ]  ∞ = ݔ	ݎ݂	0 < 0] 
is defined by : 

(ݏ){(ݔ)݂	}ܯ :	= (ݏ)߶ = න ݔ݀(ݔ)௦ିଵ݂ݔ
ஶ



																																																																		(2.1) 

For all those s, s for which this integral exists . 

  This transform has a lot of applications in mathematics , 
engineering and computer science . The inverse transform is  

(ݔ){(ݏ)߶}ଵିܯ	 = 	
1
݅ߨ2

න ݏ݀(ݏ)߶௦ݔ
ାஶ

ିஶ

																																																																					(2.2) 

   For an appropriate constant C . we state that the Mellin 
transform exists if  ݔ݂(ݔ)  is absolutely integrable on (0,∞) 
for some  ݇ > 0 .Then ,the inverse transform also exists for 
c > ݇ .For example , the  Γ(p)  is the Mellin transform of 

(ݔ)݂  = ݁ି௫ , with  x	 ∈ 	 (0,∞) . Also,we have proved for all      
L =1,2,3,… integer and αϵR such that   L	> ߙ + 1 > 0   
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(or L−1 > ߙ > −1) we have 

		න
x

1 + x
dx		 = 		

π

L sin ൬(α + 1)π
L ൰

ஶ



 

Then ,under those condition , this integral can be viewed as 

       Mቄ ଵ
ଵା୶ై

ቅ(	α + 1) =   

ୱ୧୬ቀ(ಉశభ)ಘై ቁ
 

Replacing (α + 1) with S , We obtain the Mellin trans 

       Mቄ ଵ
ଵା୶ై

ቅ(s) =   

ୱ୧୬ቀ(౩)ಘై ቁ
 . 

Lemma: (Jordan΄s Lemma) 

If  0 ≤ θଵ < θଶ ≤ π and 	ߤ > 0 , 

න eିஜୱ୧୬(୲)dt <
π
μ

మ

భ

	.																																																																																																									(2.3) 

Proof:   

Since  ݁ିఓ௦(௧) > 0 ,  

We obtain 

න eିஜୱ୧୬(୲)dt ≤ 	න eିஜୱ୧୬(୲)dt = 	න eିஜୱ୧୬(୲)dt + න eିஜୱ୧୬(୲)dt


ಘ
మ

	 .

ಘ
మ







మ

భ

 

Using  ݑ = ߨ −  we find , ݐ
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නeିஜୱ୧୬(୲)dt


ಘ
మ

= 	න eିஜୱ୧୬(୲)dt

ಘ
మ

బ

	.	 

So , 

න eିஜୱ୧୬(୲)dt ≤ 	2නeିஜୱ୧୬(୲)dt

ಘ
మ

బ

	 .

మ

భ

 

  But , for  0 ≤ ݐ ≤ ಘ
మ  , we have that 	2ߨݐ ≤ sin(ݐ) . This 

inequality is seen graphically , since 	sin(ݐ) is a concave 

function in the interval ቂ0, గ
ଶ
ቃ , There fore , ݕ = sin(ݐ) is 

greater than or equal to the straight segment function 
௬ୀమഏݐ in ቂ0, గ

ଶ
ቃ . 

So, eିஜୱ୧୬(୲) ≤ e
షమಔ౪
ಘ   for all 	ݐ ∈ ቂ0, గ

ଶ
ቃ . 

Hence , 

න eିஜୱ୧୬(୲)	dt ≤ 	2න e
షమಔ౪
ಘ 	dt ≤ 2 ቀି

ଶஜ
ቁ ቂe

షమಔ౪
ಘ ቃ

π
2
0
	

ಘ
మ

బ

మ

భ

=	
ߨ−
ߤ
(eିஜ − 1) 

= గ
ఓ
(1 − eିஜ) < గ

ఓ
 . 

Remark  

Jordan’s Lemma also implies the following inequalities: 

(1) If	π ≤ θଵ < θଶ ≤ 2π  and ߣ > 0 ,  
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Then 

න eఒୱ୧୬(୲)dt< π
ߣ

మ

భ

 

(2) If  − 
ଶ
≤ θଵ < θଶ ≤


ଶ
  and  ߪ > 0 , then 

න eିఙୡ୭ୱ(୲)dt< π
ߪ
		 .

మ

భ

 

(3) If  
ଶ
≤ θଵ < θଶ ≤

ଷ
ଶ

  and  ߬ > 0 ,then 

න e߬cos(t)	dt < π
߬ 		 .

మ

θ1

 

Section(2.2)     Examples 
Example (1) 

New we can compute the Fresnel integrals by using contour 
integration ܿ݁ݐℎ݊݅ݏ݁ݑݍ	. 

න ܿ (ଶݔ)ݏ ݔ݀ = 	න sin(ݔଶ) dݔ
ஶ

బ

	= 	
ߨ2√
4

																																																																		(2.4)
ஶ

బ

 

We consider  ݂(ݖ) = eି௭మ , which holomorphic in C . 

This function has no singularities in C. 

  Then , for any  ܴ > 0 , we consider the contour  
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C = [0, ோା + [ܴeܣ +[ܴ
ഏ
ర , 0] , where  ܣோା  is positive oriented are 

parameterized by   ݖ = ܴeഇ  with   0 ≤ ߠ ≤ ಘ
ర	  

  Then , 

ර eି௭మdz = 		 න eି௭మdz
[,ோ]

		+	 න eି௭మdz
ೃ
శ

	+	 න eି௭మdz

[ோୣ
ഏ
ర ,]

	= 0
శ

 

New	,	

	 න eି௭మdz = න eି௫మdݔ
ோ



		 , and	,
[,ோ]

	

 

lim
ோ→ஶ

නeି௫మdݔ = 	න eି௫మdݔ
ோ



		= 	
ߨ√
2
																																																																									(2.5)	

ோ



 

  Next , since   e
ഏ
మ = ݅  and along   [ܴe

ഏ
ర , 0]  we have  ݖ = eܴݔ

ഏ
ర   

with  ܴ > ݔ > 0 , we get 

න eି௭మdz = 	න eି௫మୣ
ഏ
మ e

ഏ
ర dݔ



ோ

		= 	−න ቀe
ഏ
ర ቁ . eି௫మୣ

ഏ
మ dݔ

ோ



	 = −e
ഏ
ర නeି௫మୣ

ഏ
మ dݔ

ோ



		

[ோୣ
ഏ
ర ,]

=	 e
షഏ
ర න eି௫మdݔ

ோ



	.		 

 Lastly ,on  ܣோା  we get 
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න eି௭మdz = 	ܴ݅ න eିோమୣమೣ		eೣdݔ

గ
ସ



	.
ೃ
శ

 

We observe that  

eିோమୣమೣ  =  ݁ିோమ[ୡ୭ୱ(ଶ௫)ା௦(ଶ௫)]  =  ݁ିோమ ୡ୭ୱ(ଶ௫). ݁ିோమ ୱ୧୬(ଶ௫) . 

Therefore , ቚeିோమୣమೣ 	eೣቚ  =  ݁ିோమ ୡ୭ୱ(ଶ௫) 

So , we have  

ቮ න eି௭మdz
ೃ
శ

ቮ ≤ නหeି௭మห|dz|
ೃ
శ

≤ න eିோమୡ୭ୱ	(ଶம)	Rd߶ = 	ܴන eିோమୱ୧୬	(ଶ୳)	dݑ

గ
ସ



గ
ସ



 

=
ܴ
2
න eିோమୱ୧୬	(௩)	dݒ <

గ
ଶ



ܴ
2
	.
ߨ
ܴଶ

=	
ߨ
2ܴ

	 , ݒ) =  	(ݑ2

  (by Jordan’s Lemma)	 

Since			 lim
ோ→ஶ

ߨ
2ܴ

= 0	, we	get		 lim
ோ→ஶ

න eି௭మdݖ
ೃ
శ

	 = 	0	 

So, as  ܴ → ∞ , we finally get  

ߨ√
2
− e

ഏ
ర න eି௫మdݔ = 0

ஶ



 

Then , 
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න[cos(ݔଶ) − ݔd[(ଶݔ)݊݅ݏ݅ =
ߨ√
2
. e

షഏ
ర

ஶ



=
ߨ√
2
ቈ
√2
2
− ݅

√2
2
 =

ߨ2√
2

[1 − ݅]	. 

 Now , we separate the real and imaginary parts of this equality 
and obtain the final result  

න cos(ݔଶ) dݔ =
ߨ2√
4

= න sin(ݔଶ) dݔ																																																																							(2.6)
ஶ



ஶ



 

Example (2) 
In this example, we show that 

න eି௫మcos(4ݔ) dݔ = eିସ√ߨ		.																																																																																				(2.7)
ஶ

ିஶ

 

 For any  ܴ > 0 , we consider the rectangle contour in figure 2.1  

ܿା = [−ܴ, ܴ] + [ܴ, ܴ + 2݅] + [ܴ + 2݅, −ܴ + 2݅] + [−ܴ + 2݅, −ܴ] 

                                                           y 

                                                           2i                                                                                                                           

                                                                                  

                                       -R            0                R               x 

                                                     

Figure (2.1) for example 2 

A gain, as the previous example , we have  
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න eି௭మdz	 = 	0
శ

 

And so 

	 න eି௫మdݔ + න eି(ோା௬)మ݅dݕ + න eି(௫ାଶ)మdݔ
ିோ

ோ

ଶ



ோ

ିோ

+නeି(ோା௬)మ݅dݕ = 0


ଶ

 

Then, we have  

ቮන eି(ோା௬)మ݅dݕ
ଶ



ቮ ≤ නหeିோమeିଶୖ୧୷e௬మหdݕ
ଶ



 

= නeିோమe௬మdݕ ≤ 2eିோమeସ
ଶ



→ 0	, as	R → ∞ 

Similarly , 

ቮන eି(ோା௬)మ݅dݕ
ଶ



ቮ ≤ 2eିோమeସ → 0	, R → ∞	. 

Hence , taking limit as R→ ∞ , we get 

න eି௫మdݔ = න eି(௫ାଶ)మdݔ
ஶ

ିஶ

ஶ

ିஶ

	. 

Thus , 

Re  න eି(௫ାଶ)మdݔ
ஶ

ିஶ

൩ = Re  න eି௫మdݔ
ஶ

ିஶ

൩ = 	 න eି௫మdݔ
ஶ

ିஶ

	 =  .	ߨ√	

Developing this , we get  
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න eି௫మcos(4ݔ) dݔ = eିସ√ߨ		.
ஶ

ିஶ

 

Remark 1                            

Since   ݂(ݔ)= eି௫మcos(4ݔ)  is even , we get 

නeି௫మcos(4ݔ) dݔ = න eି௫మcos(4ݔ) dݔ =
eିସ√ߨ
2

ஶ





ିஶ

	

Remark 2 

 The equality of the imaginary parts gives 

න eି௫మsin(4ݔ) dݔ = 0
ஶ

ஶି

 

A fact already known, since the function  ݂(ݔ)= eି௫మsin(4ݔ)  is 
odd and the integral exists . 

Remark 3 

 For any  ܴ > 0, if we integrate  eି௭మ over the contour 	
ܥ = [0, ܴ] + [ܴ, ܴ + 2݅] + [ܴ + 2݅, 2݅] + [2݅, 0]	(=rectangle) . 
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Chapter (3) 
 

Infinite Isolated Singularities and Integrals 

Section (3.1)    

  Suppose we need to evaluate , 

න ݔ݀(ݔ)݂
ஶ

ିஶ

 

  By means of residues, where  ݂(ݖ)		is holomorphic  in the 
upper closed halt plane   Im(z) ≥ 0 , or in the lower closed halt 
plane   Im(z) ≤ 0   except at a set of (countably) infinite 

isolated singularities  ܣ = ൛ݖ│݊ ∈ ܰൟ . 

    Let us assume that we work in the upper closed half plane 
[	Im(z) ≥ 0] 

Then ,by the residue theorem, we get  

ර ݖ݀(ݖ)݂ = ݅ߨ2  (ݖ)݂ݏܴ݁
௭ୀ௭ೖಽ

శ

	,																																																																																	 (3.1) 

And so  

න ݔ݀(ݔ)݂ = (ݖ)݂ݏܴ݁݅ߨ2
ݖ = ݖ

ಽ

ୀଵ

ோಽ

ିோಽ

− න ݖ݀(ݖ)݂
ಽ

 

Taking limits as  ܮ → ∞ , we get  
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න ݔ݀(ݔ)݂
ஶ

ିஶ

= (ݖ)݂ݏܴ݁݅ߨ2
Z = ݖ

ஶ

ୀଵ

																																																																																				(3.2) 

    More generally ,we have computed the principal value of the 
integral, if this principal value exist, since the limit is taken over 
the symmetrical intervals  [ܴ, ܴ] → (−∞,∞)  as  ܮ → ∞. I.e , 

P. V. න ݔ݀(ݔ)݂
ஶ

ିஶ

= ݅ߨ2	 ܴ݁(ݖ)݂ݏ
Z = ݖ

		.																																																																								(3.3)
ஶ

ୀଵ

 

Example 1  
 We easily observe that the integral  

න
ݔ݀

(1 + (ݔ)	ଶ)coshݔ
= න

sech	(ݔ)
1 + ଶݔ

ݔ݀
ஶ

ିஶ

			exist	.
ஶ

ିஶ

 

We will try to evaluate it as a convergent infinite series.  

    The corresponding complex function  ݂(ݖ) = ଵ
(ଵା௭మ)ୡ୭ୱ୦	(௭)

 has 

singularities at the solutions of   (1 +  These . 0 = (ݖ)	ଶ)coshݖ

are  ݖ = ±݅   and  ݖ = ଶାଵ	
ଶ

∋ with z   ݅ߨ চ . 

  No singularity lies on the  ݔ −  and there are infinitely  ݏ݅ݔܽ
many isolated singularities in either of half planes.  

    We choose to work in the upper closed half plane in which 
the singularities are : 

݅	, ଵ
ଶ
,݅ߨ	 ଷ

ଶ
,	݅ߨ ହ

ଶ
,	݅ߨ …	 
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We have observed that the singularities are simple poles . Now, 
we must calculate their residues.  

Res	f(z)	
z = 	݅ = ௭ି

(௭ି)(௭ା)ୡ୭ୱ୦	(௭)
           = ଵ

ଶ௦()
   = ଵ

ଶ௦(ଵ)
 

                                                  z=	݅ 

For any   ݊ ≥ 1 integer we have  

Res	f(z)			
z = మషభ

మ గ
  = 

௭ି(మషభ)మ ഏ

(௭మାଵ)ୡ୭ୱ୦	(௭)
                   = ଵ

(௭మାଵ)௦(௭)
    

                                                 z=(మషభ)మ గ                            z=(మషభ)మ గ 

=	 ଵ

ଵିቀమషభమ ቁ
మ
గమ൨௦ቀ(మషభ)మ ഏቁ

	=	 ଵ

ଵିቀమషభమ ቁ
మ
గమ൨௦ቀ(మషభ)మ ഏቁ

 

=	 ଵ

ଵିቀమషభమ ቁ
మ
గమ൨(ିଵ)షభ

	= (ିଵ)

ቀమషభమ ቁ
మ
గమିଵ൨

 

So ,finally  

න
ݔ݀

(1 + (ݔ)	ଶ)coshݔ = 	݅ߨ2 ቐ
1

(1)ݏ2݅ܿ +	
(−1)

ቂ൫݊ − ଵ
ଶ൯
ଶ
ଶߨ − 1ቃ ݅

ஶ

ୀଵ

�		
ஶ

ିஶ

 

=
ߨ

cos	(1)
ߨ2

(−1)

ቂ൫݊ − ଵ
ଶ൯
ଶ
ଶߨ − 1ቃ

ஶ

ୀଵ

		, 

 And we see that this series converges absolutely.  

    since  ݂(ݔ) = ଵ
(ଵା௫మ)ୡ୭ୱ୦	(௫)

   is an even function, we also get 
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න
ݔ݀

(1 + (ଶݔ cosh(ݔ)



ିஶ

	= 

න
ݔ݀

(1 + (ݔ)	ଶ)coshݔ

ஶ



=	
ߨ

2cos	(1)
	+ ߨ	

(−1)

ቂ൫݊ − ଵ
ଶ൯
ଶ
ଶߨ − 1ቃ

																														(3.4)
ஶ

ୀଵ

 

Section (3.2)     Isolated Singularities on Coordinate 
Axis and Cauchy Principal Value  

      We begin by proving again result  

න
ݔ݀

(1 + (ݔ)	ଶ)coshݔ

ஶ



=	
ߨ

2cos	(1)
	+ ߨ	

(−1)

ቂ൫݊ − ଵ
ଶ൯
ଶ
ଶߨ − 1ቃ

ஶ

ୀଵ

																														(3.5) 

We have already seen the closed upper half plane the function 

ଵ = (ݖ)݂ 
(ଵା௭మ)ୡ୭ୱ୦	(௭)

    Has simple poles at 	݅	, భమ	݅ߨ,
య
మ݅ߨ	,

ఱ
మ݅ߨ	, … 

With corresponding residues:  

 ୖୣୱ	()			ୀ  = ଵ
ଶ୧ୡ୭ୱ	(ଵ)

                       

And for any  ݇ ≥ 1	 integer  

 
Res	f(z)			
z = (మೖషభ)

మ గ	 =  	 (ିଵ)ೖ

ቀ(మೖషభ)మ ቁ
మ
	గమିଵ൨

                   

And we obtain the result  

න
ݔ݀

(1 + (ݔ)	ଶ)coshݔ
= 	

ߨ
2cos	(1)

	+ ߨ	
(−1)

ቂ൫݊ − ଵ
ଶ൯
ଶ
ଶߨ − 1ቃ

ஶ

ୀଵ

ஶ
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 Remarks:  

1. Here, we first prove that  

න
ݔ݀

(1 + (ݔ)	ଶ)coshݔ

ஶ



=	
ߨ

2cos	(1)
	+ ߨ	

(−1)

൫݊ − ଵ
ଶ൯
ଶ
ଶߨ − 1

ஶ

ୀଵ

		, 

  Then:             

න
ݔ݀

(1 + (ݔ)	ଶ)coshݔ
= 	

ߨ
cos	(1)

	+ ߨ2	
(−1)

ቂ൫݊ − ଵ
ଶ൯
ଶ
ଶߨ − 1ቃ

ஶ

ୀଵ

ஶ

ିஶ

																												 (3.6) 

2.  If there were isolated singularities w’s of  f(z)  in the 
interior of the contour  ܥା’S   , then we should add the    

(ݖ)݂	ݏܴ݁	݅ߨ2
Z = w	

௪

 

  in the second side of the equality . 

3. Since by construction of contour  ܥା’S   we avoid a 
symmetrical interval  (ܲ − ߜ , ܲ +   ) around each pole  Pߜ
of  ݂(ݖ)	located in upper closed half plane , by letting  
ߜ → 0  we obtain : 

	P. V	න (ݕ݅)݂
ஶ



(ݕ݅)݀ = 	P. V	න
(ݕ݅)݀

[1 + [ଶ(ݕ݅) cosh(݅ݕ)

ஶ



 

= P. V	 න
ݕ݀

(1 − (ݕ)ଶ)cosݕ

ஶ



= 0		, 

And so  
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P. V	න
ݕ݀

(1 − (ݕ)ଶ)cosݕ

ஶ



= 0	. 

    4. The integrand function has infinitely many isolated simple            
poles on the negative imaginary half axis . Then in the same   
way , we get  

					P. V	 න
ݕ݀

(1 − (ݕ)ଶ)cosݕ

ஶ

ିஶ

= 0	,																																																																																		(3.7) 

Section (3.3)     Cauchy Principle Value                                                                                                                            

      If a function  ݂(ݔ)  has fintely many isolated singularities 
݅ with (ݔ) = 1,2, ….,n∈N, on the x-axis , we Pic small  ߝ > 0  
and big  ܴ > 0  and then 

P. V. න ݔ݀(ݔ)݂
ஶ

ିஶ

	= 

lim
ఌ→శ
ோ→ஶ

 න ݔ݀(ݔ)݂ + න ݔ݀(ݔ)݂ + න ݔ݀(ݔ)݂
ோ

௫ାఌ

௫ାఌ

௫ିఌ



ୀଵ

௫భିఌ

ିோ

	.																																						 (3.8)	 

 Now , we state: 

Theorem 1	 

  Suppose a complex function ݂(ݖ) with allowed to have finitely 
many simple (isolated) poles on the x axis . 

Then we have : 
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P. V. න ݔ݀(ݔ)݂
ஶ

ିஶ

[	݈݁݊ܽ	ℎ݂ܽ݁ݎ݁ݑ	ℎ݁ݐ	݊݅		(ݖ)݂	݂	ݏ݁ݑ݀݅ݏ݁ݎ]݅ߨ2=

+  [	ݏ݅ݔܽ	݈ܽ݁ݎ	ℎ݁ݐ	݊		(ݖ)݂	݂	ݏ݁ݑ݀݅ݏ݁ݎ]݅ߨ

Example (1) 
Find  

P. V. න
1

ସݔ − 1
.	ݔ݀

ஶ

ିஶ

 

The complex function ݂(ݖ) = ଵ
௭రିଵ

 

ଵ = (ݖ)݂
(௭మିଵ)(௭మାଵ)

 = ଵ
(௭ିଵ)(௭ାଵ)(௭ି)(௭ା)

 

Has two simple poles on the x – axis , the number  ݖ = 1 and 
ݖ = −1 , one simple pole , ݖ = ݅  in the upper half plane and 
saƟsfies the condiƟon of theorem 1 . The corresponding 
residues are : 

ୖୣୱ	()			
ୀభ = ௭ିଵ

(௭ିଵ)(௭ାଵ)(௭మାଵ)
         = ଵ

ଶ.(ଵାଵ)
 = ଵ

ସ
 ,   

                     z=1 

ୖୣୱ	()		
ୀିଵ =	 ௭ାଵ

(௭ିଵ)(௭ାଵ)(௭మାଵ)
          = ଵ

ିଶ.(ଵାଵ)
 =− ଵ

ସ
 , 

                                               z=1 
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ୖୣୱ	()		
ୀ = ௭ି

(௭మିଵ)(௭ି)(௭ା)
            = ଵ

ିଶ.(ଶ)
 =− ଵ

ସ
	 , 

ݖ                                               = ݅ 

Therefore, by theorem 1 we find  

P. V. න
1

ସݔ − 1
ݔ݀

ஶ

ିஶ

= ݅ߨ2	 ൬−	
1
4݅
		൰ + ݅ߨ	 ൬

1
4
	−	

1
4
൰ 	= 	−

ߨ
2
	. 

Example (2) 
  We continue with Example . There we have  

P. V. න
ݔ݀

(1 + (ݔ)	ଶ)sinhݔ
= P. V. න

csc	(ݔ)݀ݔ
1 + ଶݔ

		= 	0	,
ஶ

ିஶ

ஶ

ିஶ

 

 The singularities of  ݂(ݖ) = ଵ
(ଵା௭మ)ୱ୧୬୦	(௭)

   are roots of the 

denominator   ݃(ݖ) = (1 + ݖ : namely  (ݖ)	ଶ)sinhݖ = ±݅  and 
ݖ = ݇ with  ݅ߨ݇ ∈ চ . These roots of  ݃(ݖ)	 are simple , and so 
they are simple poles of  ݂(ݖ) . 

For  ݇ = 0 , we get the pole  ݖ = 0 , which is on the x – axis and  

 ୖୣୱ	()		ୀ = ௭
(ଵା௭మ)ୱ୧୬୦	(௭)

                = 1 . 

                                          z = 0 

ୖୣୱ	()		
ୀ =  ௭ି

(௭ି)(௭ା)ୱ୧୬୦	(௭)
              = ଵ

(௭ା)௦(௭)
            =	 ଵ

		ଶ(௦(ିଵ))
                                                                

																																																	z = ݅																										z = ݅ 
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              = ଵ
ଶ௦(ଵ)

 = − ଵ
ଶ
 csch(1) 

At  ݖ = ݇  with , ݅ߨ݇ ∈ ℕ , we find 

ୖୣୱ	()		
ୀగ = ௭ିగ

(ଵା௭మ)ୱ୧୬୦	(௭)
                =	 ଵ

(ଵିమగమ)(ିଵ)ೖ
 = (ିଵ)ೖషభ

గమቂమି൫భഏ൯
మ
ቃ
  . 

                                         z =  ߨ݇

 Therefore by Theorem 1 , and since the above principal value is 
zero , it must be  

−ቂ	.	ߨ. 1+2	ߨ ଵ
ଶ
csc	(1)ቃ+2ߨ∑ 	 (ିଵ)ೖషభ

గమቂమି൫భഏ൯
మ
ቃ
	ஶ

ୀଵ  

ߨ	= ቊ1 − csc(1) + ଶ
గమ
∑ 	 (ିଵ)

ೖషభ

ቂమି൫భഏ൯
మ
ቃ

ஶ
ୀଵ ቋ = 0, 

And the obvious fact that 

P. V. න
ݔ݀

(ܽଶ + (ݔ)	ଶ)sinhݔ
= P. V. න

csch(ݔ)
(ܽଶ + (ଶݔ

	ݔ݀	 = 	0	.
ஶ

ିஶ

ஶ

ିஶ

 

Example (3)  

Find				P. V. න
ݔ݀

2ݔ − 1

∞

−∞

 

The complex function  ݂(ݖ) = ଵ
௭మିଵ

 ,  

ଶݖ − 1 = 0 ⇒ ݖ	 = ±1 
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 We have two simple poles on real axis . 

The corresponding residues : 

ୖୣୱ	()		
ୀଵ =	 ௭ିଵ

(௭ିଵ)(௭ାଵ)
          = ଵ

ଶ
  , 

                                    z=1 
ୖୣୱ	()		
ୀିଵ =	 ௭ାଵ

(௭ିଵ)(௭ାଵ)
          = − ଵ

ଶ
  , 

                                    z=−1 

Therefore , by Residue Theorem  , we find 

P. V. න
ݔ݀

1 + ଶݔ

ஶ

ିஶ

= .ߨ2	 
1
2
−
1
2
൨ 	= 	0	. 
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Chapter (4) 
 

Infinite Isolated Singularities and Series 
   We consider a holomrophic function  ݂(ݖ)  in ₵ −  where  A , ܣ
⊂ ₵		is a countable set of isolated singularities of  ݂(ݖ). 

     Suppose we can find simple closed contours (circles , squares 
parallelograms , etc .)  ܥ  with interior  ܦ ,such that: 

(a)	₵ = ራܦ	, ܽ݊݀	
ஶ

ୀଵ

 

	(ܾ) lim
ୀஶ

ර ݖ݀(ݖ)݂ = 0	.																																																																																						(4.1)	
ಽ

 

Then 

(ܿ)
Res	f(z)		
z = ݓ

= 0	.																																																																																							(4.2)	
௪∈

 

 This allows us to evaluate certain infinite series , as we do in 
the following : 

Example 1  

  For any   a ∈ ₵  ,such that  ܽ ≠ ݊݅  with ݊ ∈ চ  (݅.e., ܽ   is not 
an integer) ,prove  


1

݊ଶ + ܽଶ
=	

ߨ
ܽ
	coth(ܽߨ)	,

ஶ

ୀିஶ
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From which we immediately obtain the result : 


1

݊ଶ + ܽଶ

ஶ

ୀଵ

= 	
ߨ
2ܽ

	coth(ܽߨ) 	−
1
2ܽଶ

	 = 	
1
2ܽ

ߨ coth(ܽߨ) −
1
ܽ
൨ 

We consider the function  

ଵ =(ݖ)݂
௭మାమ

  cot(ݖߨ) 

 Which has simple poles at  ݖ = ±ܽ݅  and  ݖ = ݊ ,for all  ݊ ∈ চ.  
In this case, are the(positively oriented) squares with vertices 
±(݊ + భ

మ) ± (݊ + భ
మ)݅ , for  n = 1,2,3,… (see figure 4.1) 

The residues are : 

ୖୣୱ	()		
ୀ = ଵ

ଶ
 cot(݅ܽߨ) = ିଵ

ଶ
 coth(ܽߨ) , 

ୖୣୱ	()		
ୀି = ଵ

ିଶ
 cot(−݅ܽߨ) = ିଵ

ଶ
 coth(ܽߨ) , 

                                                          y                                               

)                                                          + 
) 

 

                                     

                                      -൫ + 
൯	          0               ( + 

)                          ݔ 

                                       

)−                                          + 


             (
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                                          Figure  4.1 Contour for Example 1 

 And  ∀݊ ∈ চ , we have  

ୖୣୱ	()		
ୀ = (௭ି)ୡ୭ୱ	(గ௭)

(௭మାమ)௦(గ௭)
          = (ିଵ)



మାమ
 . ଵ
ୡ୭ୱ	(గ௭)

              = ଵ
గ(మାమ)

 

                                         z = ݊                                z = ݊ 

Now , 

lim
→ஶ

ර ݖ݀(ݖ)݂ = 0		
శ

 

Obviously , 

ර ݖ݀(ݖ)݂ =	 ଵ(n)ܫ + ଶ(n)ܫ + ଷ(n)ܫ + 		(4.3)																																																										ସ(n)ܫ
శ

 

With 

ଵ(n)ܫ 	= 	 න
1

ݔൣ − (݊ + ଵ
ଶ)݅൧

ଶ
+ ܽଶ

ݐܿ ቄߨ ቂݔ − (݊ + ଵ
ଶ
)݅ቃቅ ,	ݔ݀

(ାభమ)

ି(ାభమ)

 

(݊)ଶܫ 	= 	 න
1

ൣ(݊ + ଵ
ଶ) + ൧݅ݕ

ଶ
+ ܽଶ

ݐܿ ቄߨ ቂ(݊ + ଵ
ଶ) + ቃቅ݅ݕ ,	ݕ݀

(ାభమ)

ି(ାభమ)
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ଷ(n)ܫ 	= 	 න
1

ݔൣ + (݊ + ଵ
ଶ)݅൧

ଶ
+ ܽଶ

ݐܿ ቄߨ ቂݔ + (݊ + ଵ
ଶ)݅ቃቅ ,	ݔ݀

ି(ାభమ)

(ାభమ)

(݊)ସܫ 	

= 	 න
1

ൣ−(݊ + ଵ
ଶ) + ൧݅ݕ

ଶ
+ ܽଶ

ݐܿ ቄߨ ቂ−(݊ + ଵ
ଶ) + ቃቅ݅ݕ ,	ݕ݀

ି(ାభమ)

(ାభమ)

 

 We will show that for   j = 1,2,3,4 

lim
→ஶ

(݊)ܫ = 0																																																																																																																			(4.4) 

  We will do this for j = 1 and 2 , similarly  with j = 3 and 4 ,for  n 
large. 

ቚܿߨݐ ቂݔ)ߨ − ቀ݊ + ଵ
ଶቁ ݅)ቃቚ < 2	. 

 Hence ,for  n large 

|ଵ(n)ܫ| ≤ 		 න 	
2

ଶݔ + (݊ + ଵ
ଶ)
ଶ − ܽଶ

	ݔ݀ =

(ାభమ)

ି(ାభమ)

 

⎣
⎢
⎢
⎢
⎡

2

ට(݊ + ଵ
ଶ)ଶ − ܽଶ

݊ܽݐܿݎܽ

⎣
⎢
⎢
⎡ ݔ

ට(݊ + ଵ
ଶ)ଶ − ܽଶ⎦

⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎤

ି(ାభమ)

(ାభమ)

 

= ଶ

ට(ାభమ)
మିమ

 .ቐܽ݊ܽݐܿݎ 
ାభమ

ට(ାభమ)
మିమ

 − ݊ܽݐܿݎܽ −
ାభమ

ට(ାభమ)
మିమ

ቑ 

→ ଶ
ஶ
[arctan(1) − arctan	(−1)]=ଶ

ஶ
ቀగ
ସ
− ିగ

ସ
ቁ=	గ

ஶ
 = 0 ,as  ݊ → ∞ . 
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 Similarly, for  n large, we have  

|ଶ(n)ܫ| ≤ 		 න
1

ଶݕ + (݊ + ଵ
ଶ)
ଶ − ܽଶ

ݕ݀ → 0	, as	݊ → ∞	

(ାభమ)

ି(ାభమ)

 

And 

ଷ(n)ܫ 	→ ∞ , as  ݊ → ∞ and  ܫସ(n) 	→ 0 , as  ݊ → ∞  

Therefore, 	

lim
→ஶ

ර ݖ݀(ݖ)݂ = 0		


	

Then , 


Res	f(z)		
z = ݓ

= 0
௪∈

 

And so  

2	.
−1
2ܽ

	. coth(ܽߨ) 
1

ଶ݊)ߨ + ܽଶ)

ஶ

୬ୀିஶ

= 0	. 

Hence, we obtain the following : 

Result : 

∀ܽ ∈ ₵	, 
1

݊ଶ + ܽଶ =
ߨ
ܽ 	coth(ܽߨ)	.

ஶ

୬ୀିஶ

 

Corollary 1  

Notice that this final sum can be rewritten as  
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1

݊ଶ + ܽଶ

ஶ

ୀଵ

=
ܽߨ cosh(ܽߨ) − sinh	(ܽߨ)

2ܽଶsinh	(ܽߨ)
 

Corollary 2  

  By letting  a  be real in the above corollary , we find Euler΄s 
sum  


1
݊ଶ

ஶ

ୀଵ

=
ଶߨ

6
	. 

Example 2  
  By means of series summation ,we will evaluate the integral    

න
sin	(ܽݔ)
݁௫ + ܿ

ஶ



 	,	ݔ݀

Where  a , b and c  are appropriate complex constants.  

In the process, we will discover the conditions that a , b and c 
must satisfy.  

First , we rewrite the  sin(ax)  by its exponential form , and then 

we expand the integrand   ୱ୧୬	(௫)
್ೣା

   as an infinite series by 

means of the geometric series, as follows: 

ୱ୧୬	(௫)
್ೣା

 = ଵ
ଶ
൫݁௫ − ݁ି௫൯݁ି௫ 	 ଵ

ଵାష್ೣ
 .                                 (4.5) 
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To apply the geometric series expansion to the last fraction ,we 
need mini mum conditionหܿ݁ି௫ห < 1for all ݔ ∈ (0,∞) 
Therefore, we must stipulate the conditions : 

1) ܴ ݁(ܾ) > 0 
2) |ܿ| ≤ 1 

       Then, we have 

       ୱ୧୬	(௫)
್ೣା

 = ଵ
ଶ
൫݁௫ − ݁ି௫൯݁ି௫ 	∑ (−ܿ݁ି௫)ஶ

ୀ     

         =	ଵ
ଶ
∑ (−ܿ)ஶ
ୀ ൫݁[ି(ାଵ)]௫ − ݁ି[ା(ାଵ)]௫൯.         (4.6)                         

|(ܽ)݉ܫ| (3 < (0 + 1)ܴ݁(ܾ) = Re(b) . 

We observe that the function ݂(ݔ) = ୱ୧୬	(௫)
್ೣିଵ

   is continuous for 

ݔ > 0  and approaches the value  


 , as  ݔ → 0 . so, we can use 

as dominating function the following function 

(ݔ)݃ = ൝
0		݂݅			,	ܤ ≤ ݔ ≤ 1

|(ೌ)|ೣ

ೃ(್)ೣିଵ
		,			݂݅	1 < ݔ < ∞

�																																																				(4.7)                               

For  

ܤ	 = maxஸ௫ஸଵ|݂(ݔ)|   is finite . 

  Now , we integrate the above series, in (4.5) , term by term 
and use the fact for any real numbers ݑ, ,ݒ  the  ߚ	݀݊ܽ	ߙ
formula  
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න݁(ఈାఉ)௫		݀ݔ =
݁௩(ఈାఉ) − ݁௨(ఈାఉ)

ߙ + ߚ݅

௩

௨

																																																																							(4.8) 

  If  a , b and c  are complex constants , such that  ܴ݁(ܾ) > 0 , 
|(ܽ)݉ܫ| < ܴ݁(ܾ)  and |ܿ| ≤ 1 , then 
න
sin	(ܽݔ)
݁௫ + ܿ

ஶ



ݔ݀ = ܽ(−ܿ)
ஶ

ୀ

1
ܽଶ + ܾଶ(݊ + 1)ଶ

=
ܽ
ܾଶ


(−ܿ)ିଵ

݊ଶ + ൫൯
ଶ 																 (4.9)

ஶ

ୀ

 

Example 3 
  If  a , b and c  are complex constants, such that  ܴ݁(ܾ) > 0 , 
|(ܽ)݉ܫ| < ܴ݁(ܾ)  and |ܿ| < 1 , then 

න
cos	(ܽݔ)
݁௫ + 1

ஶ



ݔ݀ =
1
ܾ

(−ܿ)ିଵ	݊

݊ଶ + ൫൯
ଶ 			,																																																																							(4.10)

ஶ

ୀଵ

 

Notice that here we have  |ܿ| < 1 , in general.  

If  |ܿ| = 1 , we need to check the formula for the individual c 
For instance , with c =1 we get  

න
cos	(ܽݔ)
݁௫ + 1

ஶ



ݔ݀ = 
(−ܿ)ିଵ	݊
݊ଶ + 1

																																																															ܿݐ݁					,			
ஶ

ୀଵ

 

Also for  a =0 and b  such that ܴ݁(ܾ) > 0 , we find  

න
1

݁௫ + 1
	

ஶ



		ݔ݀ ݔ = ln(ݑ)
					=												න

1
ݑ)ݑ + 1)

ஶ

ଵ

ݑ݀	 =
1
ܾ
	

(−1)ିଵ	
݊

=
ln(2)
ܾ

				
ஶ

ୀଵ

 

Which can also be verified by the substitution  
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ݒ = ܿ  . But  ifݑ = −1 , 


݊

݊ଶ + ൫൯
ଶ

ஶ

ୀଵ

 

 In this case , besides the infinite interval of integration, the 
integral becomes also improper at  ݔ = 0 .If we take the 
derivative of equation (4.10) with respect to  a , we find : If a , b 
and c  are complex constants, such that  ܴ݁(ܾ) > 0 , 

|(ܽ)݉ܫ|  < ܴ݁(ܾ)  and |ܿ| < 1 , then 

න
(ݔܽ)	sinݔ
݁௫ + ܿ

ஶ



ݔ݀	 =
2ܽ
ܾଷ
	

(−ܿ)ିଵ			݊	

ቂ݊ଶ + ൫൯
ଶቃ
ଶ 		 .

ஶ

ୀଵ

 

 If now we divide this equation by a and take the limit as ܽ → 0, 
We find : Under the conditions ܴ݁(ܾ) > 0 ,and |ܿ| < 1,we have 

න
ଶݔ

݁௫ + ܿ

ஶ



ݔ݀	 =
2
ܾଷ
	

(−ܿ)ିଵ				
݊ଷ

		 ,
ஶ

ୀଵ

 

And so 

න
ଶݔ

݁௫ + 1

ஶ



ݔ݀	 =
2
ܾଷ
	

(−1)ିଵ				
݊ଷ

		 ,
ஶ

ୀଵ

 

And 

න
ଶݔ

݁௫ − 1

ஶ



ݔ݀	 =
2
ܾଷ
	

		1				
݊ଷ

		.
ஶ

ୀଵ
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 Putting  ݔ = lnݑ  in the last two equalities, with  ܾ > 0 real, 
We get 

න
݈݊ଶ(ݑ)

ݑ)ݑ + 1)

ஶ

ଵ

ݑ݀	 =
2
ܾଷ
	

		(−1)ିଵ				
݊ଷ

		.
ஶ

ୀଵ

 

And 

න
݈݊ଶ(ݑ)

ݑ)ݑ − 1)

ஶ

ଵ

ݑ݀	 =
2
ܾଷ
	

		1				
݊ଷ

		 .
ஶ

ୀଵ

 

 If now we let  ݑ = ଵ
௫

   in the above two integrals , with  

ܾ > 0 real ,we obtain 

න
(ݔ)݈݊ଶ		ିଵݔ
1 + ݔ

ଵ



ݔ݀	 =
2
ܾଷ 	

		(−1)ିଵ				
݊ଷ 		 .

ஶ

ୀଵ

 

And 

න
(ݔ)݈݊ଶ		ିଵݔ
1 − ݔ

ଵ



ݑ݀	 =
2
ܾଷ
	

		1				
݊ଷ

		 .
ஶ

ୀଵ

 

 If in equaƟon (4.11) we replace  a  with ݅ܽ  and use the identity  
cos(݅ݖ) = cosh(ݖ) , we find : If  a , b and c  are complex 
constants , such that ܴ݁(ܾ) > 0 , |ܴ݁(ܽ)| < ܴ݁(ܾ)  and 

 |ܿ| < 1, then 

න
cosh	(ܽݔ)
݁௫ + 1

ஶ



ݔ݀	 =
1
ܾ


(−1)ିଵ		݊

݊ଶ − ൫൯
ଶ 	.

ஶ

ୀଵ

 



43 
 

References 
 

1. Whittaker-Watson, a course of modern analysis, § 7.2. 
2.Ahlfors, Lars (1979), Complex Analysis, McGraw Hill, ISBN 0-
07-085008-9                                                                       
3.Mitronivić, Dragoslav; Kečkić, Jovan (1984), The Cauchy 
method of residues: Theory and applications, D. Reidel 
Publishing Company, ISBN 90-277-1623-4                                 
4.Lindelöf, Ernst (1905), Le calcul des résidus et ses applications 
à la théorie des fonctions, Editions Jacques Gabay (published 
1989), ISBN 2-87647-060-8                                               
5.Bertrand, Jacqueline, Pierre Bertrand, and Jean-Philippe 
Ovarlez, The Mellin Transform, in Transforms and Applications 
Handbook, ed. Alexander Poularikas, CRC Press, Boca Raton, 
Florida, 1996.                                                                           
6.Davies, G., Integral Transforms and Their ApplicaƟons, 2nd 
ed., Springer-Verlag, New York, NY, 1984.                            
7.Erdelyi, A., W. Magnus, F. Oberheƫnger, and F. G. Tricomi, 
Tables of Integral Transfer, McGraw-Hill Book Co., New York, 
NY, 1954.                                                                        
8.Oberheƫnger, F., Tables of Mellin Transform, 2nd ed., 
Springer-Verlag, New York, NY, 1974. Sneddon, Ian N., The Use 
of Integral Transform, McGraw-Hill Book Co., New York, NY, 
1972.                                                                                                       
9. H. AMANN. Fixed point equaƟons and nonlinear eigenvalue 
problems in ordered Banach spaces, SIAM Rev. 18 (1976). 620-
709.                                                                                                                              
10. H. AMANN, SupersoluƟons, monotone iteraƟons, and 



44 
 

stability, J. Dl@j%rential Equations 21 (1976), 363-377.                          
11. A. BRAMBERGER“,E tude de deux equaƟons non lineaires 
avec une masse de Dirac au second membre,” Rapport No. 13 
Rcole Polytechnique, October 1976.                                                
12. C. BANDLE, Existence theorems, qualitative results and a 
priori bounds for a class of nonlinear Dirichlet problems, Arch. 
RaƟonal Mech. Anal. 58 (1975), 219-238.                                      
13. PH. BENILAN AND H. BREZIS, to appear.                                 
14. H. BREZIS AND P. L. LIONS, A note on isolated singulariƟes 
for linear elliptic equations. Advances in Math.. in press.         
15. H. BREZIS AND P. L. LIONS, to appear.                                     
16. H. BREZIS AND L. VERON, Rrmovable singularities of some 
nonlinear elliptic equations.to appear.                                          
17. M. G. CRANDALL AND P. H. RABINOWITZ, Some 
continuation and variational methods for positive solutions of 
nonlinear elliptic eigenvalue problems, Arch. Rational Mech. 
Anal. 58 (1975), 207-218.                                                                 
18. B. GIDAS AND SPRUCKt,o appear. 
II. H. B. KELLER AND D. S. COHEN, Some positive problems 
suggested by nonlinear heat generation, J. Math. Mech. 16 
(1976), 1361-1376. 
19. C. LOEWNERA ND L. NIRENBERGP, arƟal differenƟal 
equations invariant under conformal 
or projective transformations, in “Contributions to Analysis.” 
pp. 245-272. Academic 
Press, New York/London, 1974. 
 

 


