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Abstract

Mellin Transform is method for the exact calculation of one-
dimensional definite integrals, and illustrates the application.
The different types of singularity of a complex function {(z) are
discussed and the definition of a residue at a pole is given. The
residue theorem is used to evaluate contour integrals where the
only singularities of f(z) inside the contour are poles.

Every singularity of a holomorphic function is isolated, but
isolation of singularities is not alone sufficient to guarantee a
function 1s holomorphic. Many important tools of complex
analysis and the residue theorem require that all relevant
singularities of the function be isolated.
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Introduction

In this research we have a singular point z, is called
an isolated and isolated singular point of an analytic
function f(z).

Isolated singular points include poles, removable
singularities , essential singularities and branch points.
Mellin was developer of the integral transform:

MUFCOYS): = 6(s) = | 27 f(0)dx
0
Known as the Mellin transform.

We will study some examples, then we proceed to look
at the correspondence between the asymptotic
expansion of a function and singularities of the
transformed function.

We use the Mellin transform in asymptotic analysis for
estimating asymptotically harmonic sums.

And also the Mellin Transform is an integral transform,
which is closely connected .

And also is extremely useful for certain applications
including solving Laplace's equation in poler coordinates,
as well as for estimating integrals.

\



Chapter (1)

Residue Theorem and Examples

Section(1.1) : Theorem(Residue Theorem)

Let IR € ¢ be an open region and w = f(z) be a complex
holomorphic function in R — {z4, 75, ...,zn, ...,z.} Where 1<n<L
and each point of the finite exceptional set {zi, z,,...,z.} is an
isolated of f(z) . Then ,for any C simple, closed and piecewise
continuously differentiable contour such that no singularity of
f(z) ison C and C encloses the isolated singularities z;, z5,...,2,

but no other singularity , then the following integral equality
holds :

f(z)dz = 2mi Rzeif gi) (1.1)

+
¢ k=1

Definition 1

Let w=1f(z) be acomplex function of z€ ¢ holomorphicin
¢ — D(0,R)={zeC | |z|>R} we call residue at infinity of w = f(z)
the quantity

Resf(z) = —Res|%f ()]
Z =00 Z=0

Theorem 1
Let f(z) be holomorphic function ¢ —{ay,a,,...,an} where n20
integer , with singularities a4, ay,...,a, .

1



Then,

Res f(z) Res f(z),  Res f(z) Res f(z) _,
Z=a; Z=a, 2=dn 27 Ao

Proof:

We consider any R>0 for which |a;|<R ,forall i=1,2,...,n and
|a;|< for all a;0.

We have
Res f(z) _ —Res f(z) _ _L i l
z=0  z=0  2mi sz(z)dz (1.2)

C*(0.p)
. 1 :
We use the change of variable w= ~ and we find

Res_f(z) + Res_f(z) 4ot Res_f(z) ,
Z = ad; Z = a, Z = dy

1
Res f(z) = o j fw)dw = —

c*(0,1)

And the result follows.

Examples -
Example 1

Find the integral

5z -3 p
jgz(z—Z) z

ct

If

a) C=C(0,1)



b) C=C(0,3)
c) C=C(4,1)

5z-3
z(z—-2)

First, we compute the residues of function f(z) = at

isolated singularities zo=0and zy = 2.

At all other point of ¢, this function is defined and
holomorphic.

oy tE@l| S

7 =2
z=0 z=0

Res f(z) _ 5z-3
7 = 2 VA

N

z=2
So, by the residue theorem, we have:

(a) Since z =0 is only singularity in side C=C(0,1), then

52_3d-2'3—3'
jgz(z—Z) z =2mi. = 3mi
ct

(b) Now both singularities are in side C = C(0,3), and so

5z -3 3 7
jg dz = 2ni(§+ — = 10mi

( )Z(Z —2) 2

c*(0,3

(c) Finally, in side C=C(4,1) there are no singularities of
f(z).

There



jg 5z—3 dz =0
z(z —2) 2=

Cc*(4,1)
Example 2

Evaluate the integral

dz
jez_ - if C = C(03m).
ct

Then ,by using the parameterization of C=C(0,3m) given by
Z = 3met? with 0<0<2r .

Z

In side C = C(0,3m),the function f(z) = ej—l has three
singularities , namely -2m ,0 and 2mi
We find that each of the three residues :
Res f(z) @ =z _ 1 1 _q
7 =10 T e?-1 T ez 1
z=0 z=0
Res f(z) _ z-2mi 1 1y
7 = 27Tl T eZ-1 - e’ 1
z=2111 z=21T1
Res f(z) _ z+2mi _1 _1 4
7 =—2mi e’-1 e?




dz , ,
j 1= 2ri(1+1+1) = 6mi.
c+e

Section(1.2) Contour Integration and Improper
Real Integrals

We are going to use integrations of complex functions along
appropriately chosen contours to evaluate improper real
integrals .This method is very powerful ,for it computes very
difficult integrals and at same time proves their existence .
Choosing the correct contour(s) and then applying the residue
theorem .we are going to analyze the most important cases of
such integral techniques which are sufficient for the needs of
an undergraduate student .

Example 1 The integral

[00]

X T
j 112 arctan(oo) — arctan(—o) = -5 =1

— 00

Has been computed elementarily .For easy practice ,we will use
contour integration to establish this result.

We consider the complex function :

The denominator has two simple roots ,the +i and —i which
are isolated singularities ,poles of order one..

So,



Z=1 (z—i)(z+0)

Res f(z) _ [(z—i)f(z)]‘ =[ - ]

=1 /=1

We consider any R>1 and the contour C=[—R,R]+SA
consisting of two parts:

1-the straight segment of the x —axis[—R, R] from —R to R
and,

2-the positively oriented upper half of C(O,R), denoted by
SA . see figure (1.1)

A
v

v

Figure (1.1)

These parts are respectively parameterized by:

(1) {z=x+iy|—R <x <R}and
(2) {z=Re?|0<6<m}.

we have chosen the contour Cin this way, so that at least one
of the singularities ,namely the Z=+1i, is enclosed init. Then
we apply the residue theorem, to find



is an even functionin R we

Remark : Since f(x) = - .

+x2

also get:

j1+x2 j
= 0
Or

[¢%) 0 [¢%)
jdx_zjdx_zjdx

14 x2 14 x2 1+ x2
—00 —00 0

Similarly we find

[¢%) 0 [¢%)
szd—zszd—zszd—n
1+x4x_ 1+x4x_ 1+x4x_\/§
— 00 — 00 0
[¢%) 0 [¢%)
j dx _ZJ dx B Zj dx _Zn
14+ x6 14+ x6 1+x6 3
— 00 — 00 0

0

j dx T
T+ ((] +L1)n) ‘
Where j=0,1,2,... and L >j+1 integer

Result:

For all integers L and j such that L > j+1 and j=0,1,2,... we
have:



jo < i (1.4)
T X = ; .
J 1+x Lm(@)

Examples 2
(1) (a) where L=0,1,2,...integer, 0 < a + 1 < L then

j x* [
- =
) 1+x Lsin((a-l—Ll)n)

(b) For 2n>2m+1 and m=0,1,2,... then

[00]

j xmo 2m B i
o0 1+ 2% 2n sin (—(Zmz-; l)n) nsin (—(Zmz-; l)n)
(2) For example a = Z , Find

2

N[ =

j x
0

Solution:
1
a=-,L=2

2

- Xz s s s

j > dx = 1 = - = 1
1+x ' <(i + 1)n> 2 sin(135) 2.—

0 2 sin 5 2

j"x% e V2
1+x2 = 2T
0

(3) in this example ,we have obtained the following :

8



NI»—t

r _ VA
oj ~ sin[(a + D]
Notice that the only root of the denominator z=-1.

We take as the branch cut the closed half line of none -negative
real

semi-axis{z =x +i,|x = 0}.
We have chosen the positive continuous argument

0<arg(z)< 21 ,we write z=-1=¢'" then:

= (—1)“ = (i;[)a =

Res f(z) [(z+1)z
lam

Z= —1 (z+1)

z=—1
From 0<r <1 < R < oo and as appropriate contour
C=[r,R]+ A} +[R, 7] + Az ,where A}(6)=Re®?,
0< 6 <2mand A, (0)=re'? ,0< 0 <2r.

By the residue theorem,

we obtain
z% z% z% z% z%
_[1+de= _[1+Zdz+_[1+zdz+ _[1+Zdz+_[1+zdz
¢+ [7R] A% [Rr] A

Za
j dz = 2mie'*™ ,



A

arg(z)=2TT

v

Figure(1.2)

And we must take limits as R—= coandas r—» 0%

We get :
. z% .
(1) Lim fAEl_-I-Z dz =0
R — oo
. z% .
(2) Lim fAFl_-I-Z dz =0
r— 0t

Next we must compute the two partial integrals along the
branch cut, that is over intervals [r,R] and [R,r] .

In the case of the (positive) segment [r,R] , as we travel along
the contour the arc A, indicates ,that we approach the branch
cut from above ,and so the limit of the arg(z) is O . Hence along
[r,R] we compute the real integral

10



R .
(xBOL)a

1+ x

T

dx .

Taking limits ,we get

) R x“% o x%
(3) Lim fr de —fO de
r—0
R —» o

But,in the case of (negative) segment [R,r] , we approach the
branch cut from below , as arc A} indicates and so the limit of
the arg(z) is 2m .Hence along [R,r] we must compute the
integral

r(xezm)a
j 1+x dx
R
i r (xe2mhHa _ omi® (o x%
(4) Lim [ ——dx=—e Jy —
r—=0
R —» o
By the four computed pieces (1),(2),(3) and (4) , we find
x® _2mi% [ x® _ __2mi¢% [ x® _ . iam
Oijdx e Ojl+xdx—(1 e )Oijdx_Zme (1.5)

Remark (1)

For a >0 ora<-1

Ooxa
dx = .

j1+xx

0

11



Example 3
(a) To find

Ooxa

dx ,
jb+xx
0

We perform the u —substitution x = bu = dx = bdu,

oo xa Oobaua ba+1 @ ua T
— — — a
j1+xdx_jb+bubdu_ b j1+udu_b sin[(a + Dn] "
0 0 0
(b) To find
Vx du,
J 1+ xV2

We perform the u — substitution

\/— L 1 14
u=x"?ex=u2 and dx=ﬁu\/5 du so,

o w 34
s

dx =
1+ xV2 \/fo

3
du = o ,Since ——-—1>0.

1+u 242

0

Remark(2):

The integral evaluated in this example may be considered as
integral of rational function of sin(8) and cos(8) which in a
calculus course is treated with change of variables

u= tan(g) & 0 = 2arctan(u), called tangent of half —angle

L 2 . 2
substitution.df = - du, sin[2arc tan (w)] = uz
1+u " 1+u

1-u

1+u?

,cos[2arc tan (u)] =

12



These results change an (indefinite) integral of a rational
function of sin(8) and cos(8) into an (indefinite) integral of a
rational function of u , from this indefinite integral , we
compute the definite .

For example, we find that

j i - +C 1.6
—1+sin(0)  tan(%) (1.6)

So,
2
z
o 2 | 2 2 2 2
) =1 +5sin(6) - tan(%) — 1 ~tan(®) -1 tan(-%) -1 0 -2
~z
2
z
j d6 +1 1.7
—_ =0 = 00, .
| =1+ sin(0) (1.7

N

13



Chapter (2)

Mellin Transform

Section(2.1) Basic concepts & Definitions

Definition 1

The Mellin Transform of a real function y = f(x) with
0<x<oor0<x< o [weconsider f(x) =0 for x < 0]
is defined by :

[00]

M{FGONS): = $(s) = j X () dx @.1)

0

For all those s, s for which this integral exists .

This transform has a lot of applications in mathematics,
engineering and computer science . The inverse transform is

c+ico

1
M) = 5 j x5 (s)ds 2.2)

c—ioo
For an appropriate constant C . we state that the Mellin
transform exists if x*f(x) is absolutely integrable on (0, o)

for some k > 0 .Then ,the inverse transform also exists for
c > k .For example, the I'(p) is the Mellin transform of

f(x) =e™*,with x € (0,) . Also,we have proved for all
L=1,2,3,...integer and aeR suchthat L>a+1>0

14



(orL—1 > a > —1) we have

j X% q T
) 1+x Lsin ((0( +L1)T[)

Then ,under those condition, this integral can be viewed as

M{l-l-le

Replacing (a + 1) with S, We obtain the Mellin trans

g

}( at 1) - Lsin(w)

M) S) = T

Lemma: (Jordan's Lemma)

f 0<0;<6,<mand u>0,

0,

. TT
j e ksin(dt < o (2.3)
H
Proof:

Since e #sin(®) >

We obtain

02 T 3 s

j e—usin(t)dt < je—usin(t)dtz je—usin(t)dt+je—usin(t)dt_
0, 0 0 z

Using u=m —t, we find

15



T 2
je usm(t)dt_ je—usin(t)dt_
7

So,

0,

01

e IOt .

o‘\l\ﬂ:l

But , for 0<t<Z> , we have that %S sin(t) . This
inequality is seen graphically , since sin(t) is a concave
function in the interval [Og] , There fore , y = sin(t) is
greater than or equal to the straight segment function

y=%t in [O, g] .

. —-2ut
So, e~Msin(t) < o= forall t € [O, g] .

Hence,
0, 2 T -
. —-2ut — =2ut1 &~ -
j e—usm(t) dt < 2_] eTu dt<?2 (Z—I) [e ﬂu ] % = —(e_Fl — 1)
u
0, 0

T T
=Z(1-eM<Z,
u( € )<u

Remark

Jordan's Lemma also implies the following inequalities:

(1) fm<06;<0,<2mandA>0,

16



Then

02
j e/lsin(t)dt < ;

(2) If =2 <6; <8, <~ and o> 0,then

[ v <™
o
0,

(3) If gsel <0, S%ﬂ and 7 > 0 ,then
0
j ercos(t) dt < ; _
04

Section(2.2) Examples
Example (1)

New we can compute the Fresnel integrals by using contour
integration techniques .

oo oo

jco s(x?)dx = jsin(xz) dx =

0 0

v2n 2.0

We consider f(z) = e 2" which holomorphicin C.
This function has no singularities in C.

Then, forany R > 0, we consider the contour

17



C=[0,R]+ A% + [Re%, 0], where A} is positive oriented are
parameterized by z = Re'? with 0 <0 < E

Then,
ff)e‘zzdzz je‘zzdz + je‘zzdz + j e ?’dz =0
ct [0,R] A% [Re%i’o]
New,
R
je_zzdzzje_xzdx ,and ,
[0,R] 0
R R
e
lim [ e dx = j e dx = — (2.5)
R—- 00 2
0 0

i

in it
Next, since ez =i andalong [Re%,0] we have z = xRe+
with R > x > 0, we get

0 .
%13

. R . R
2 2% i i 2% i 27
j e ?dz = je‘xe esdx = —j(eT).e‘xe dx =—eTje‘xe dx
0 0

im R
[Re 4,0]
R

—im 2
= ez | e ¥ldx.
0

Lastly ,on A% we get

18



_p2a2ix .
e R7e™" aixdy |

O — N3

j e ?°dz = iR
Af

We observe that

e—RZeZix — e—RZ[cos(Zx)+isin(2x)] — e—chos(Zx) e—istin(Zx)

—R2e2x eix| = e—chos(Zx)

Therefore, |e

So, we have
T
7

n
4

je_zde < j|e—zz||dzl SJG_RZCOS(2¢) Rd(l) — Rje_RZSin(Zu) du
0

A A} 0

T

H R

—RZsin (v) - T _®m —
e dv <—. = ,(v=2u
j TR )
0

N I

(byJordan's Lemma)

yis
Since lim — = 0, we get lim je‘zzdz =0

R—o0 R—o0
+
AR

So,as R — oo, we finally get

N
——eTj e"i*’dx = 0
2

0
Then,

19



Vioom m[V2 V2| Vem o
7.8 ]ZT[I—l].

i =—|——]—

j[cos(xz) — isin(x*)]dx = 2 |2 2
0

Now , we separate the real and imaginary parts of this equality
and obtain the final result

oo oo

j cos(x?) dx = \/%_n = j sin(x?) dx (2.6)
0 0

Example (2)

In this example, we show that

oo

j e cos(4x) dx = e ™1 . (2.7)

— 00

Forany R > 0, we consider the rectangle contour in figure 2.1
ct* =[-R,R]+[R,R+2i]+[R+2i,—R + 2i] + [-R + 2i,—R]

ry

2i

A
v

-R 0 R X

Figure (2.1) for example 2

A gain, as the previous example , we have

20



C+
And so
R 2 R 0
je_xzdx+je_(R+iy)2idy+j e_(x+2i)2dx+je_(R”y)zidy =0
“R 0 R 2

Then, we have

2 2
je—(R+iy)2idy < j|e_R2e_2Riyey2|dy
0 0

2

= j e R*e¥’dy < 2 R'et 5 0, asR - o
0

Similarly,
2

j e~ R+i)*idy| < 2e R*e* - 0,R - .

0

Hence, taking limit as R— oo, we get

je‘xzdxz je‘(x“i)zdx.
Thus,
Re je_(x”i)zdx = Re je_xzdx] = je_xzdx = .

Developing this , we get

21



j e’ cos(4x) dx = e 1 .

Remark 1

Since f(x)= e~**cos(4x) is even , we get

0
je_xzcos(4x) dx = j e’ cos(4x) dx =
—o 0

e~
2

Remark 2

The equality of the imaginary parts gives

j e‘xzsin(4x) dx=0

o0 —

A fact already known, since the function f(x)= e‘xzsin(4x) is
odd and the integral exists .

Remark 3

Forany R > 0, if we integrate e~2” over the contour
C =[0,R] +[R,R + 2i] + [R + 2i, 2i] + [2i, 0] (=rectangle) .

22



Chapter (3)

Infinite Isolated Singularities and Integrals
Section (3.1)

Suppose we need to evaluate,

jof(x) dx

By means of residues, where f(z) is holomorphic in the
upper closed halt plane Im(z) = 0, or in the lower closed halt
plane Im(z) <0 except at a set of (countably) infinite

isolated singularities A = {Zn | ne N} :

Let us assume that we work in the upper closed half plane
[ Im(z) = 0]

Then ,by the residue theorem, we get

jg f(z)dz = 2mi Z Resf(z), (3.1)
cit Z=2Zy
And so
Ry, kr
j f(x)dx = 2mi Z RZesf Z) j f(z)dz
—Rp k=1 pL

Taking limits as L = oo, we get

23



[00]

j f(x)dx = 2mi Z Resf(2) (3.2)

L=z,
n=1

More generally ,we have computed the principal value of the
integral, if this principal value exist, since the limit is taken over
the symmetrical intervals [R,R] - (—,) as L — . l.e,

[00]

P.V. j F0)dx = zmzResf (2) (3.3)

L=z,
n=1

Example 1

We easily observe that the integral

josech (%)

1 2 dx exist.

r dx B
_j (14 x?)cosh (x)

We will try to evaluate it as a convergent infinite series.

. . 1
The corresponding complex function f(z) = (L1 7%)cosh (2 has

singularities at the solutions of (1 + z%)cosh (2) =0. These
k+1

i withz € Z.

) 2
are z = +i and z =

No singularity lies on the x — axis and there are infinitely
many isolated singularities in either of half planes.

We choose to work in the upper closed half plane in which
the singularities are :

.1 .3 .5 .
L, oML, omi, o ..

24



We have observed that the singularities are simple poles . Now,
we must calculate their residues.

Res f(z) _ z—i
7 = 1 " (z—i)(z+i)cosh (2)

_ 1 _ 1
B 2icosh(i) B 2icos(1)

z=1
Forany n = 1 integer we have

Res f(z) P Gl P,

- 2
2ini  (z2+1)cosh (2)

1
" (22+1)sinh(2)

7 =

_en-1) _@n-y

1 1

1= () w2 sinn( @)~ [1-(22) 2 isin(2250n)
_ 1 _ -n"

) [1—(2” ) ]( D1 [(%)anq]i

So ,finally

dx (-1
_L (1 + x2)cosh (x) = {21005(1) Z [(n _ 1) 2 ]

(-n"
~ cos (1) Z [(n _ 1) T2 — 1]
And we see that this series converges absolutely.

since f(x) =

is an even function, we also get
(1+x2)cosh( x) ! &

25



x —_
_j (1+ x2)cosh(x)

dx (= 1)n
j (1 + x?)cosh (x) 2cos (1) Z [(n 1) T2 — 1]

(3.4)

Section (3.2) Isolated Singularities on Coordinate
Axis and Cauchy Principal Value

We begin by proving again result

dx (= 1)n
j (1 + x?)cosh (x) 2cos (1) Z [(n 1) T2 — 1]

(3.5)

We have already seen the closed upper half plane the function

1
f(Z) " (1+z2)cosh (2)

Has simple poles at i ,%ni,%ni ,gni -

With corresponding residues:

Resf(z) _ 1

z=i 2icos (1)

And forany k = 1 integer

Res f(z) B (-1)k
S (= )

And we obtain the result

dx (= 1)n
j (1 + x?)cosh (x) 2cos (1) Z [(n _ 1) T2 — 1]

26



Remarks:

1. Here, we first prove that

dx _ s (=1)"
J (14 x?)cosh (x)  2cos (1) * ”Z (n - %)an _1

n=1

Then:

X T ( l)n
__L (1 + x?)cosh (x) ~ cos (1) Z [(n _ 1) 2 ] (3.6)

2. If there were isolated singularities w’s of f(z) in the
interior of the contour C;’S , then we should add the

Res f(z)
Z=w

2l

w

in the second side of the equality .

3.Since by construction of contour C;’S we avoid a
symmetrical interval (P — §;, P + ;) around each pole P
of f(z)located in upper closed half plane , by letting
d — 0 we obtain:

[00]

P.V jof(iy)d(iy) _ P.Vj
0

0

d(iy)
1+ (iy)?] cosh(iy)

- Of A= yDcos0)

And so
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dy B
J (1 =y?)cos) -

P.V

4. The integrand function has infinitely many isolated simple
poles on the negative imaginary half axis . Then in the same
way , we get

PV f a- Z)cos(y) (3.7)

Section (3.3) Cauchy Principle Value

If a function f(x) has fintely many isolated singularities
(x;) with i = 1,2, ...,nEN, on the x-axis , we Pic small ¢ >0
and big R > 0 and then

P.V. jof(x)dx =

hm

j f(x)dx+z xfg F0)dx + j f(x)dx‘ (3.8)

-R =1 x;— Xpt+e

R—>oo

Now , we state:
Theorem 1

Suppose a complex function f(z) with allowed to have finitely
many simple (isolated) poles on the x axis .

Then we have :
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P.V. jof(x) dx

= 271i Z[residues of f(2) in the upperhafe plane |

+ mi Z[residues of f(z) onthereal axis |
Example (1)

Find

[00]

1
P.V. jx4_1dx.

— 00

1

z4-1

The complex function f(z) =

1 1
f(Z) T (22-1)(z2+41)  (z—=1)(z+1)(z—i)(z+0)

Has two simple poles on the x — axis , the number z =1 and
z=—1, one simple pole , z=1i in the upper half plane and
satisfies the condition of theorem 1 . The corresponding
residues are :

Res f(z) _ z—1 = L = 1
z=1 (z—1)(z+1)(z%+1) 2(1+41) 4~
z=1
Res f(z) _ z+1 - 1 !

z=—1 = (z-1)(z+1)(z2+1) "2+ a4’

z=1
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Res f(z) _ z—l
z=i (z%2-1)(z—1)(z+1)

1 1
—2.(20)) 4’

Z=1

Therefore, by theorem 1 we find

[00]

P.V LIy R e z
"_[x4—1x_ m( 4i) m(4 4) 2

— 00

Example (2)

We continue with Example . There we have

oo oo

Py dx _py csc (x)dx 0
' '_[(1+x2)sinh(x)_ ' j 1+x2 7
. L 1
The singularities of f(z) = are roots of the

(1+z?)sinh (2)
denominator g(z) = (1 + z?)sinh (z) namely : z = +i and
z = kmi with k € z . These roots of g(z) are simple, and so
they are simple poles of f(z) .

For k = 0, we get the pole z = 0, which is on the x — axis and

Res f(z) _ z

z=0 ~ (1+z2)sinh (2) =1
z=20
Res f(z) — zZ—1 — 1 = L
z=i (z—i)(z+i)sinh (2) (z+i)sin(iz) 2i(sin(-1))
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1 1
- 2sin(1) - E CSCh(l)

At z = kmi, with kK € N, we find

1 _(—pkt

Res f(z) _ z—kmi _ -
(1-k?m)(-DF * nz[rz—(2)°]

z=kmi = (1+z2)sinh (2)

7z = ki
Therefore by Theorem 1, and since the above principal value is

zero, it must be

(—1)k1
n2[k2-(2)°]

i . 1421 . [— % cscC (1)]+2m’ ket

_1\k—-1
= TTi {1 —csc(1) + %Z,‘f:l ﬁ} =0,

And the obvious fact that

[00]

r dx csch(x)
P.V. j - = P.V. x = 0.
(a? + x?)sinh (x) (a? + x?)

Example (3)

(0¢]

Find p.v. j

—Q0

dx

xt -1

1

z2—-1"'

The complex function f(z) =

z2—1=0= z=+1
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We have two simple poles on real axis .

The corresponding residues :

Res f(z) _
z=1

Res f(z) _

z=-1 ~ (z-1)(z+1)

zZ—1

T (z-1)(z+1)

zZ+1

z=—1

Therefore , by Residue Theorem , we find

[00]

PV] dx = 2
) 14+ x2

— 00
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Chapter (4)

Infinite Isolated Singularities and Series

We consider a holomrophic function f(z) inC — A, where A
c ( is a countable set of isolated singularities of f(z).

Suppose we can find simple closed contours (circles , squares
parallelograms , etc.) C; with interior D; ,such that:

@c¢=| |D,,and

(b) lim j@ f(z2)dz =0. (4.1)
CL
Then
©) z Riszf(l? ~0. (4.2)
WEA

This allows us to evaluate certain infinite series , as we do in
the following :

Example 1

Forany a € € ,suchthat a # ni withn € z (i.e, a; is not
an integer) ,prove

[00]

1 1
Z T2 g coth(ra),

n=—oo
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From which we immediately obtain the result :

& 1 1 1
Z T 2 74 coth(na) 57 = 74 7 coth(ma) —2

We consider the function

f(2)= Zziaz cot(mz)

Which has simple poles at z = +ai and z =n ,forall n € z.
In this case, are the(positively oriented) squares with vertices
t(n+2) £ (m+)i,for n=1,2,3,.. (see figure 4.1)

The residues are :

Res f(z) _ -1
z=ai = 2g1 cot(nal) coth(na)
Res f(z) _ -1
z=—ail = g cot( mai) = coth(na)
A Y
(n+3)i
-n+3) O (n+d X
—(n+ i)i v
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Figure 4.1 Contour for Example 1

And Vn € z, we have

Res f(z) _ (z—n)cos (mz) _ =t 1 __ 1
Z=n  (z2%+a?)sin(nz) n?+a? ‘ncos (7z) (n?+a?)
Z=n Z="n
Now ,
]ll_)r{.lo ff)f(z)dz =0
C+
Obviously,
$ @z = L) + o) + 150 + 1, () (4.3)
C+
With
(n+3) .
I,(n) = t — (n+Dil|lax,
o —(nj+1> [x—(n+%)i]2+a2 0 {n [x o Z)l]} i
(n+3) .
I,(n) = t +2) +yi|tdy,
2(n) j [t D1y +a cot{m |(n+3) +i]} dy

—(n+%)
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—(n+3)

I;(n) = j [x o +11)i]2 — cot {n [x + (n+ %)i]} dx ,1,(n)
2

(n+3)
—(n+3)
1 1
= j cotim|—(n+2) +yil|idy,
) Tarponpratrorae)
2

We will show that for j=1,2,3,4

lim [;(n) = 0 (4.4)

n—oo

We will do this forj=1and 2, similarly withj=3 and 4 ,for n
large.

|cotn [n(x — (n + %) i)” <2.

Hence ,for n large

(n+3)
nois | ’ d
n)| < x =
! x% 4+ (n+3)% — a?
—(n+%)
1(n+d)
2 X
arctan
\/(n+1)2—a2 \/(n+1)2—a2
——(n+%)

1
2

2 n+s
— L arctan | ——=——| — arctan | - —=——
/(n+%)2—a2 /(n+%)2—a2 /(n+%)2—a2
T —1T

- é[arctan(l) — arctan (—1)]=§ (Z — T)= —=0,as n— .
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Similarly, for n large, we have

(n+3)

Lmlis |

—(n+%)

1
y2+(n+3)?—a?

dy - 0,asn - o

And

Is(n) > o,as n—>oand I,(n) >0,as n > x

Therefore,
lim ¢ f(z)dz=0
n c
Then,
Res f(z) B
D e T
WEA
And so
2. 1 h 0
g -coth(ma) Z m -

Hence, we obtain the following :

Result :

4 ¢ —1 = — coth
€ = .
a , E 71 gz -3 ° (ma)

n=—oo

Corollary 1

Notice that this final sum can be rewritten as
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i _ macosh(ma) — sinh (7a)
— 2t a2 2a?sinh (ma)

Corollary 2
By letting a be real in the above corollary, we find Euler’s
sum
- 1 n?
R
n=1
Example 2

By means of series summation ,we will evaluate the integral

josin (ax)

ebx + ¢

)

0

Where a, b and c are appropriate complex constants.

In the process, we will discover the conditions thata, b andc
must satisfy.

First , we rewrite the sin(ax) by its exponential form, and then
sin (ax)

we expand the integrand as an infinite series by

ebX+c
means of the geometric series, as follows:

sin (ax) _ i (eiax _ e—iax)e—bx ; (45)

ebXyc  2i 1+ce~bx’
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To apply the geometric series expansion to the last fraction ,we
need mini mum condition|ce‘b"| < Ifor all x € (0, )
Therefore, we must stipulate the conditions :

1) Re(b) > 0
2)|c] <1

Then, we have

sin(ax) 1 i —i b -b
T _z_i(etax_e Lax)e X Z%ozo(_ce x)n

_ ziizgozo(_c)n (e[ia—b(n+1)]x _ e—[ia+b(n+1)]x). (4.6)

3) [Im(a)| < (0+ 1)Re(b) = Re(b).

sin (ax)
ebx—1

We observe that the function f(x) = is continuous for

a
x > 0 and approaches the value ;a5 X 0 . so, we can use

as dominating function the following function
B, if 0<sx<1

g(x) =1 elm@ix (4.7)

SRe)x_] fl<x<oo

For
B = maxg<.<1|f (x)| is finite .

Now , we integrate the above series, in (4.5) , term by term
and use the fact for any real numbers u,v,aand f the
formula
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e @+iB)x gy = (4.8)

v ev(@+ip) _ pula+ip)
_[ a+if
u

If a,bandc are complex constants, such that Re(b) >0,
|Im(a)| < Re(b) and |c| <1, then

¢ sin (ax) . 1 (=)t
jebx+ dx ‘“Z( 2 a? + b?(n + 1)? bzn 42 + (E)

(4.9)
0

Example 3

If a, bandc are complex constants, such that Re(b) > 0,
|Im(a)| < Re(b) and |c| < 1, then

oo

cos (ax) (—c)" 1n
[, 15 cos

Notice that here we have |c| < 1, in general.

If |[c] =1, we need to check the formula for the individual ¢
For instance , with c =1 we get

jcos (ax) Z( )" In ot
ebx+1 nz+1 '’ ¢

0

Also for a=0and b suchthat Re(b) > 0, we find

[ ¥ = Inw IO )
0jeb"+1 ju(ub+1) _b; n b

Which can also be verified by the substitution

40



v=ub.Butifc=-1,

2y

In this case , besides the infinite interval of integration, the
integral becomes also improper at x =0 .If we take the
derivative of equation (4.10) with respectto a,wefind:Ifa, b
and ¢ are complex constants, such that Re(b) > 0,

|Im(a)| < Re(b) and |c| < 1, then

[00]

xsin (ax) (=) 1
E)[ ebx + ¢ Z n? + (b) ]

If now we divide this equation by a and take the limitas a — 0,
We find : Under the conditions Re(b) > 0 ,and |c| < 1,we have

r (-
j ebx + ¢ dx = b3z
0

)Tll

And so

[00]

[ o Y o

And
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Putting x = Inu in the last two equalities, with b > 0 real,
We get

[ ) Z (- 1)“ :
j u(ub + 1) T b3
1
And
r W 2 w1
ju(ub—l) du_ﬁ Z? '
1 n=1
1. : :
If now we let u = ~ in the above two integrals , with

b > 0 real ,we obtain
And

If in equation (4.11) we replace a with ia and use the identity
cos(iz) = cosh(z) , we find : If a, b and ¢ are complex
constants , such that Re(b) > 0, |Re(a)| < Re(b) and

|c| < 1, then

jocosh (ax) y ( Dt

. =
, eb* +1 n1n2 (b)
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