Chapter 1
Locally Compact Groupoids

We show a first step toward extending the theory of Fourier-Stieltjes
algebras from groups to groupoids. If G is locally compact (second
countable) groupoid, we show that B(G), the linear span of the Borel
positive definite functions on G, is a Banach algebra when represented as an
algebra of completely bounded maps on a C*-algebra associated with G.
This necessarily involves identifying equivalent elements of B(G). An
example shows that the linear span of the continuous positive definite
functions need not be complete.

Section (1.1): Background of Groupoids

As suggested by the title, this section connects two lines of earlier
work, and we begin with an abbreviated history of each of these lines, in
order of appearance. After the history, we will state our main results and
outline the body of the section. We mention here that some basic definitions
can be found and that we assume locally compact spaces are second
countable. More background on groupoi-ds is available.The necessary
background on Fourier- Stieltjes algebras can be obtained.
Introduced the notion of virtual group as a tool and context for several kinds
of problems in analysis and geometry.Virtual groups are (equivalence
classes of) groupoids having suitable measure theoretic structure and the
property of ergodicity. Ergodicity makes agroupoid more group-like, but
many results on groupoids do not require ergodicity. Among the structures
which fit naturally into the study of groupoids are groups, group actions,
equivalence relations (including foliations), ordinary spaces, and examples
made from these by restricting to a part of the underlying space.

The original motivation for studying groupoids was provided by
Mackey's theory of unitary representations of group extensions.The idea
has been applied to that subject. In his original section, Mackey also

showed the relevance of the idea for ergodic group actions in general , and a
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number of applications have been made there.

Most uses of groupoids have been in the study of operator algebras,
another approach to understanding and exploiting symmetry. Several
pioneering section should be mentioned. Hahn proved the existence of
Haar measures for measured groupoids, whether ergodic or not, and used
this to make convolution algebras and study von Neumann algebras (is to
define them as weakly closed *-algebras of bounded operators (on aHilbert
space) containing the identity. In this definition the weak (operator)
topology can be replaced by many other common topologies including the
strong, ultrastrong or ultraweak operator topologies. The *-algebras of
bounded operators that are closed in the norm topology are C*-algebras, so
in particular any von Neumann algebra is a C*-algebra) [4] associated with
measured groupoids. Feldman and Moore made a thorough analysis of
ergodic equivalence relations that have countable equivalence classes,
showing that the von Neumann algebras attached to them are exactly the
factors that have Cartan subalgebras Connes introduced a variation on the
approach of Mackey, particular by working without a chosen invariant
measure class. This approach has some advantages for applications to
foliations and to C*-algebras. Renault studied C*-algebras generated by
convolution algebras on locally compact groupoids endowed with Haar
systems, not using invariant measure classes. That measured groupoids may
be assumed to have locally compact topologies. Thus the study of operator
algebras associated with groupoid symmetry can always be confined to
locally compact groupoids, whether one is interested in C*-algebras or von
Neumann algebras.

Basically one can say that locally compact groupoids occur in situations
Where there is symmetry that is made evident by the presence of an
equivalence relation. Many of these are associated either with group actions

or foliations. It can be surprising how group-like both group actions and



foliations can be. In particular, some of the section mentioned above have
included information about the unitary representations of groupoids.
However, there is no treatment of duality theory for groupoids. and we
intend to make a beginning here.

Introduced Fourier and Fourier-Stieltjes algebras for non-commutative
locally compact groups. Roughly, the Fourier—Stieltjes algebra of a locally
compact group, G, denoted B(G), is the unitary representation theory of G
equipped with some additional algebraic and geometric structure. More
precisely, B(G) is the set of finite linear combinations of continuous
positive definite functions on G equipped with a norm, which makes B(G) a
commutative Banach algebra. The elements of B(G) are exactly the matrix
entries of unitary representations of G. A primary source of intuition is the
fact that when G is abelian, B(G) is the isometric, inverse Fourier
—Stieltjes transform of M(G),the convolution, Banach algebra of finite,
regular Borel measures on G,the dual group(of characters) of G. Thus B(G),
as a Banach algebra, “is” M(G).The fact that B(G) exists (as acommutative
Banach algebra) when G is not abelian leads one to hope that a useful
duality theory exists for non-abelian groups which is in spirit similar to the
application rich Pontriagin—Van Kampen duality for abelian locally
compact groups. That such a duality theory exists has been established by
walter by proving
that
(i) B(G) is a complete invariant of G, i.e., B(G1) and B(G:) are isometrically
isomorphic as Banach algebras, if and only if G1 and G2 are topologically
isomorphic as locally compact groups, and
(i) There is an explicit process for recovering G given its “dual object”,
B(G). Exactly how useful this theory will remains to be seen since all
but a few of the hoped important applications await rigorous proof.

For various reasons it turns out that it may be more fruitful to look at
B(G) from a broader perspective than that afforded by the category of
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locally compact groups. Namely, it is seen that there is a natural duality
theory for a “large” collection of Banach algebras that extends in a

precise way the Pontriagin duality for abelian groups as well as the above-
mentioned duality for non-abelian groups. The theory of C*-algebras plays
a large role both technically and intuitively in this duality theory.

In an effort to understand this new duality theory better, as well as to
generate meaningful applications and examples of a concrete nature, in this
section we have answered affirmatively the question: Does a locally
compact groupoid G have a Fourier—Stieltjes algebra? For groupoids, than
one candidate for the Fourier—Stieltjes algebra, and the details are more
technical than for groups, but there is an affirmative answer.

The existence of a Fourier—Stieltjes algebra augurs well for future
applications. In particular, one example suggests an interesting possibility:
the algebra of continuous functions on X vanishing at infinity, Co(X), is the
Fourier algebra of a locally compact space X. This opens up an entire "dual”
approach to the currently exploding subject of non-commutative geometry,
which at the moment is regarded more or less exclusively in terms of the
associated C*-algebras (not the Fourier—Stieltjes algebras).

As for groups, the Fourier-Stieltjes algebra of a groupoid is the linear
span of the positive definite functions and the algebra structure is given by
pointwise operations. To provide the Banach space structure, we use C*-
algebras attached to G, but we use them in a different way from Eymard,
and also use C*-algebras associated with the equivalence relation that G
induces on X.

To describe the various algebras, let us begin with the space M¢(G) of
compactly supported bounded Borel functions on G, and its subspace
C:(G). Both are algebras under convolution, which is defined by using the
Haar system, and have involutions. If R is the equivalence relation on X
induced by G, defining 8(y) = (r(y),s(y)) gives a continuous homomorp-

hism of G onto R using the relative product topology on R. The quotient
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topology on R has some advantages: for example, if 6 is one-to-one then 6
is a homeomorphism. (G is said to be principal). Under the quotient
topology R is c-compact and we can provide it with a Borel measurable
Haar system, which allows us to make a convolution*- algebra of the space
Moc(R) of bounded Borel functions on R that are supported by the image of
some compact set in G. we show how to make an algebra on G that contains
a copy of the space M(X) of bounded Borel functions on X as well as
Mc(G), and this algebra is denoted by MG, X).The analog for R is
denoted by Mo(R, X). Let X denote the one-point compactification of
X.Then C(X) € M(X) so +Mc(G,X) contains both C¢(G) and C(X).The span
of these two subalgebras is denoted C¢(G, X) .

If @ is the universal representation of G, then o carries each convolution
algebra on G to an algebra of operators and thereby provides the contion
algebra with a norm.The closures of the algebras of operators or the
completions under the norms are useful in various ways, so we have
notation for them: C*(G) is the completion of C¢(G),C*(G,X) is the
complication of C¢(G,X) , M"(G) is the completion of Mc(G), and M*(G, X)
is the completion of M¢(G, X). Likewise for R we get M*(R) and M*(R, X)
from Moc(R) and Moc(R, X). The algebra B(G) is isomorphic to a Banach
algebra of completely bounded operators on M*(G), but the functions also
correspond to completely bounded bimodule mappings from C*(G,X) to
M*(R, X) as bimodules over C(X).
we define a bounded Borel function p on a locally compact groupoid G with

Haar System A to be positive definite if
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for every f € C¢(G). The set of these is denote P(G) and by definition the set
B(G) is the linear span of P(G). In both sets two elements that agree except

on a negligible set need to be identified, though we find it convenient to



indulge in the usual carelessness about maintaining the distinction. The
primary result is
(i) B(G) is a Banach algebra. Results needed to prove this are:
(if) Each p € P(G) can be represented in terms of a unitary representation of
G and a cyclic “vector” for the representation.
(iii) Multiplication by a b € B(G) defines a completely bounded operator on
M*(G) whose norm is at least the supremum norm of b.
(IV) The set of operators arising from elements of P(G) is closed in the
space of completely bounded operators on M*(G).

In fact, B(G) is a Banach algebra of completely bounded operators on
M*(G), and the elements of P(G) occur as completely positive operators.
In order to prove the completeness of B(G), we introduce an auxiliary
groupoid. Let T,denote the transitive equivalence relation on the two point
set {1, 2}, so that functions on T,are 2 x 2 matrices. Thus functions on
G x T, can be regarded as 2 x 2 matrices of functions on G. Then each
b € B(G) appears as a corner entry of a positive definite function on G x T,
whose completely bounded norm is the same as that of b. Furthermore, such
a corner entry is always in B(G). Combining these facts with the
completeness of P(G x T,) is what allows us to finish the proof of
completeness of B(G).

The material can be outlined as follows which is devoted to Background
material on three topics: locally compact groupoids,
convolution algebras attached to them, and representations of groupoids and
the algebras.
We give the definition of “positive definite function” and establish the
connection between such functions and cyclic unitary representations of G.

We show that multiplication by a positive definite function is a
completely positive operator on M*(G),using the main result. Also includes
the proof that a positive definite function gives rise to a completely positive
operator from C*(G,X) to M*(R,X).



All of these operators are bimodule maps over C(X), the algebra of
continuous functions on the one-point compactification of the space of units
of G. contains results about completely bounded bimodule maps.
Finally we are able to complete the proof that the linear combinations of
positive definite functions constitute a Banach algebra, contains some
counter examples.

The purpose is to give a source of some essential information about
analysis on groupoids needed.

Much of our motivation comes from the fact that group actions give rise
to groupoids, and that case was important in the development of the subject.
However, we want to present a definition that has a different motivation,
hoping to make the idea easier to grasp. Effros suggested this approach.

Start with two sets, X and G, and suppose that X is the set of vertices
and G the set of edges of a directed graph. If the structure we are about to
describe is present, we say that G is a groupoid on X. Suppose that we have
a mapping taking values in G and defined on the set of pairs of edges for
which the first edge starts from the vertex where the second edge
terminates. For a groupoid of mappings, we want the operation to be
composition and we want the right hand factor to be applied first. We want
the operation to be associative and to have units and inverses.

To describe this in more detail, we use two functions r and s from G
onto X, such that each y € G is an edge from s(y) to r(y). Then for y and y'
in G, the element yy' of G is defined iff s(y) = r(y'). We write G® = {(y,
¥) e G x G :s(y) =r(y)}. We also assume there is given a mapping x—i,
of X into G and an involution y— ¥~ on G. Then we require the following
properties:

(i) (associativity) If s(y;) = r(y2), then s(y; v2) =s (v2), and r(y; v2) =
r(y1)- If, also, s(y2) = r(ys), then (v1 v2) ¥3=v1(v2 v3)-
(ii) (units) If x € X, thenr(i,) =s(iy) =x. Ify e G, thenyis =i, YV =7.

(iii) (inverses) r(y ™1 =s(y), sy D =r¥), vy =iy, and y "ty = is ).
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Examples (1.1.1) [1]: (i) Suppose a group H acts on a set X (on the left).
Set g= H x X, identify X with {e} x X, and define r(h, x) = hx, s(h,x) = x .
Then we can define (hq, x1) (hy , x3) = (hihy, xy) if x1= hy x5, i, = (€,X)
and (h,x)71= (h™1, hx), to make a groupoid. (Right actions work better for
left Haar measures as we see below, and then we have s(x, h) = xh,r(x,h) =
X).

(ii) To make a groupoid from an equivalence relation R on a set X, identify
X with the diagonal in X x X, define r(x, y) = x, s(x, y) =V, (x, y)(V, 2) =
(x, z) and (x,y) 1= (y,x).

(iii) Let X be the set of open sets in R", and let G be the set of
diffeomorphisms between elements of X. For y € G, let s(y) be the domain
of the mapping and let r(y) be its range. Let the product be function
composition and let the inverse be the inverse of functions.

Every groupoid determines a natural equivalence relation on its set of
units, namel x ~ y iff there is a y: x—Yy. The equivalence class of x is
denoted [x] and is called its orbit. As a subset of X x X, this equivalence
relation is R={(r(y), s(y)) : y € G}. The function 6 = (r, s) mapping G to R is
a groupoid homomorphism and G is called principal iff 0 is one-one, i.e G
is isomorphic to an equivalence relation. If G arises from a group action G
is principal iff the action is free (the only element of the group that has any
fixed points is the identiy).

If G is a groupoid on X, and YEX is non-empty, we call r~1(Y) N
s~ 1(y) the restriction of G to Y, and write G | Y for it. In terms of graphs,
G|Y is the set of all edges in G that connect points of Y. G|Y is a
subgroupoid of G, and a groupoid on Y. For eachx € X, G |{x} IS a group
called the stabilizer of x or the isotropy of x.

If A and B are subsets of a groupoid G, we define the product AB of the
twosetstobe {yy' :y €A, y eB,r(y') =s(y)}. If Ahas a single element



Yo, we write yoB for AB. Thus YGY=G | Y and xGx = G | {x} if YEX and
x € X. We also use the sets 7 ~1(x) = xG and s~1(x) = Gx when x € X.

A groupoid G is a Borel groupoid if G has a Borel structure, X is a Borel
set when regarded as a subset of G, and r, s, ()~tand multiplication are
Borel functions. We will consider only Borel groupoids which are at least
analytic, and then X={ y: r(y) = y} is Borel if r is Borel. A groupoid G is
topological if it has a topology such that X is closed, and r, s,()~ and
multiplications are continuous, while r and s are open. Again these proper-
ties are not independent. It is necessary for r to be open in order to prove
that AB is open whenever A and B are open.

We write M(G) for the space of bounded Borel measurable functions on
G, whenever G is a Borel groupoid. If G has a topology in which it is
compact (a countable union of compact sets), we write M¢(G) for the
subspace of M(G) of functions having compact support .

If G is an analytic Borel groupoid, we say a measure p on G is
quasisymmetric if it has the same null sets as its image (u)~*under ()71,
Thus p and (u)~tare in the same measure class, and the measure class [p]
(set of measures with the same null sets as p) is invariant under()~1. For
measures on G, this global symmetry is just the same as if G were a group.
We give the definitions for groupoids that extend the notions of invariance
and quasi-invariance of measures under translation on a group or under
other actions of the group.

Because translation on the left by a groupoid element y makes sense only on
s(y)G, and similarly for right translation, the notions of invariance and
quasi-invariance are more complicated for groupoids than for groups .

Following Connes we say that the kernel is a function v assigning a
o-finite (positive) measure v*on G to each x € X, so that these two
statements are true:

() v*(G\ xG) is always 0. One may say that v* concentrated on xG.
(@i)) If f e M(G), and f >0, the function v(f) : X— [x, o] defined by
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v(f)(x) =v*(f) = [ f dv*is Borel.

Given an element y € G, the mapping y'— y y' is a Borel isomorphism of
s(y)G onto r(y)G and thus maps v*")to a measure yv*" on r(y)G, for
every kernel v. A kernel v is called left invariant provided v™")= yv50) for
all y € G.1t is called (left) quasiinvariant if v and yv°®are equivalent
forall y € G.

A left invariant kernel, A, on a Borel groupoid G is called a Borel Haar
system. Then defining A,to be the image of A*under inversion produces a
right Borel Haar system. A Borel Haar system X on a locally compact
groupoid is called a Haar system if supp( A*) is always xG and A(f) € Cc(X)
for each f € Cc¢(G). In particular, each A* is a Radon measure. For discussi -
ons of Haar systems .

When A is a Haar system, it can be convenient to have a left quasi kernel
A, consisting of probability measures equivalent to the measures A*. It is
not difficult to show that there is a continuous, strictly positive, function f
on G such that for every x € X, [ fdA* =1. We choose one such f and
write A7 for the measure fA*. We also write uf for the probability measure
s(A7) on X; these measures also depend on x in a Borel way.

If X is a Borel Haar system on a Borel groupoid G and p is probability
measure on X, we can form a measure

v= 2 du(x): [ fdv = [ [ f(y)dA* (y)du(x) (2)

We often write A* for this measure v. Suppose that G = X x H, where X is
a right H-space, and give G the groupoid structure that comes from the
group action. Let X be a left Haar measure on H. For each x € X, let £* be
the point mass at x, and define A*= &* x A, to get a Borel left Haar system.
If uis a o-finite measure on X for this gropoid , then v=A* =p x X and the
class [v] is symmetric iff u is quasi-invariant under the group action,i.e., for
every Borel set E [ X and every group element h,u(E) = 0 iff u(Eh) = 0.

The fact that if p is quasi-invariant under almost all elements of the group ,

10



then it is quasi-invariant. Hence, on a general Borel groupoid with Borel
Haar system A, a o-finite measure p on X is called quasi-invariant iff A* is
quasisymmetric. In that case, a result of Peter Hahn, combined with shows
that there is a Borel homomorphism 4, of G to the multiplicative positive

real numbers such that

_daH
W= aan ®)

This homomorphism is called the modular function by analogy with locally
compact groups. If u is quasi-invariant, and Y is a p-conull Borel set in X,
the restriction G | Y is called in essential.

We often refer to the set of all quasi-invariant o-finite measures on X,
and will denote that set by Q. We say a Borel set N 1 X is Q-null provided
w(N)= 0 for every u € Q. It follows from the existence, and uniqueness upto
equivalence, of a quasi-invariant o-finite measure on each orbit.That N is
Q-null iff 2*(GN) is always 0.The measures uf introduced above are in this
class, and any measure in Q equivalent to such a measure is called transitive
because it is concentrated on a single orbit. For a Borel set N[JG, we say N
is A2-null iff A*(N) = 0 whenever p € Q. A function f on X is Q-essentially
bounded iff the restriction of f to the complement of some Q-null set is
bounded, and then||f || is defined to be the smallest element of
{B: | f |§ B p-almost everywhere for every p € Q}.The space of Q -
essentially bounded functions on X will be denoted by L*( Q). A similar
definition is used for the space L*(A2) of A%-essentially bounded functions
on G, except that the measures p*are used.

Examples (1.1.2) [1]: (i) If G = X x H, where X and H are locally
compact and H is a group, let £*denote the unit point mass at x for x ¢ X
and let A be a left Haar measure on H. Then A*= &* x A defines a Haar

system for G.
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(i) If E is an analytic equivalence relation on X and each equivalence class
is countable, we can let A* be counting measure on {x} x [x] to get a left
invariant system of measures.

(iii) Here is an example of a locally compact groupoid that has a Borel
Haar system but no Haar system. Let G = [0, 1/2] x {0} v [1/2, 1] x Z/2.
This is a field of groups. To get a Borel Haar system, we can make each
A*a multiple of the Haar measure on {0} or Z/2.Then

AY2({1/2,0}) =2AY2({1/2,1}) > 0 and if we let f be the characteristic
function of [1/2,1] x {1} then the function A(f) has a jump at 1/2. We could
easily change to another locally compact topology on this G and get a Haar
system. In general, it may be necessary to change the topology on G and
pass to an in essential restriction in order to get a Haar system.

We use several convolution algebras, and will introduce
them here. There are two basic convolutions, a convolution of functions that
can be defined in the presence of a Borel Haar system, and a convolution of
kernels that does not depend on any such system. If the groupoid is locally
compact and the Haar system is continuous, then C¢(G) is an algebra under
the convolution of functions. We will see that convolution of functions can
be subsumed under convolution of kernels by replacing each function by
the kernel obtained by multiplying the Haar system by the Function.

First, let G be a Borel groupoid with a Borel Haar system A. If f, g are
non-negative Borel functions on G, then [f(y;) g(y2) dA™" (y,) is a
Borel function of y; , so by taking linear combinations and monotone limits
we see that whenever F is a non-negative Borel function on G x G the
integral [F(yy, v2) dA"(y,) depends on y, in a Borel manner. Then for
non negative f, g € M(G), we can let F(y; , v2) = f(r1) 9(v1~t ;) when

r(y2) = r(y1) and F(yy, v,) = 0 otherwise, and see thatf f(y1) 9(y1 ™" v2)
dA"¥2(y,) is a Borel function of y,. Denote this function by f * g,
provided that it is always finite valued. Then f * g € M(G). The function
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f * g is called the convolution of f and g. Convolution can be extended to
more general function using linearity .

Define the space I(G,\) to be { f e M(G) : & (| f |) is bounded}, and
give it a norm by letting | f||ir be the sup norm of the Borel function
A (| f | )-We can define an involution on M(G) by letting £2(y) = f(y ) for
f e M(G), y € G. If we set I[(G,)) = I(G,A)N( L-(G,1))°, then we can define
| £ ||+ to be the maximum of || ||.rand || £2]| 1 for f € (G, ), obtaining a
normed algebra on which the involution is an isometry.

If G is locally compact and A is a Haar system, then C¢(G) is a *-sub-
algebra of I(G, ). In the inductive limit topology, Cc(G) is a topological
algebra.

The second kind of convolution can be introduced after the objects are
defined: A complex kernel is a function v assigning a complex measure v*
on G so that
(i) v*is always concentrated on xG .

(ii) if f € M(G), the function v( f) taking x € X to v*(f) is Borel.

We define K(G) to be the space of bounded complex kernels on G, i.e
those for which the total variation of v*is a bounded function of x.

If y € G and v € K(G) we can map v to a measure on r(y)G, via left
translation by yv¥(). If vi,v2 € K(G) we can define the convolution v = vi*v2
by v*= [ yv5® dv¥(y), as we do in defining Haar systems. Denote this
measure by yv¥®.If vi,v2 € K(G) we can define the convolution v = v1 * v2
by v* = yv2*() dvi(y). We can also define an action of K(G) on I(G,}) as
follows If v e K(G), f € I.(G, X) and y' € G set

L@@ =[G y)dv () (4)
It is not difficult to verify that L(v) is a bounded operator whose norm is at
most the essential supremum of the total variation norms of the signed

measures v* If vi and vz are in K(G) and f € I,.(G, 1), then we can calculate
(LEDL@IN)G) = [L@)f Griy)dv, P (1)
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- f f FOrzt v P () dv V()
= f f Fz Vav;? Gty dv] Y ¢rr) (5)

- f F3 1) * 1) D ()

showing that L takes convolution to composition of operators. Since L is
faithful, K(G) is an algebra under convolution. If f, g € I.(G,)) it is not
difficult to verify that fA e K(G) and L(fA)g=f *g:

LA () = f IO G)AT D (1, ©)

Since L is faithful and convolution is associative, it follows that

fA* gh= (f*Q)A. Thus I.(G, A) A = { fA: f I.(G, L)} is a subalgebra of K(G)
isomorphic to I.(G, A). If G is locally compact and has a Haar system A, the
calculations just made also show that C¢(G) A is a subalgebra of K(G)
isomorphic to C¢(G).

Next we want to enlarge C¢(G) A to a subalgebra of K(G) that contains a
copy of C¢(X). We denote the one-point compactification of X by X .The
mapping f—f |X takes C(X) one-one onto the algebra of continuous
function on X that have a limit at infinity. We identify C(X) with that sub-
algebra of C(X) but continue to write C(X). Notice that there is also a sub-
algebra of K(G) isomorphic to C(X), obtained as follows. First define ¢ to
be the kernel that assigns the point mass at x to each x ¢ X, which we
denote by &* as above. Next notice that K(G) is closed under multiplication
by any bounded Borel function on G, so if h € M(X) and v € K(G), we can
define hv to be (h o r)v, and vh = (h o s)v. (These agree with the
naturally defined left and right multiplication of M(X) on I.(G, 1) when the
latter is regarded as a space of kernels). Then M(X)e is a subalgebra of
K(G) isomorphic to M(X), and that algebra includes C(X)e,which is
isomorphic to C(X).
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If we write Cc(G,X) for the sum of C(X)e and C¢(G) A as subspaces of
K(G), it can be seen that Cc(G, X) is a subalgebra. Also the involution on
Cc(G) extends in a natural way to C¢(G, X). We need the algebra C¢(G,X)
because it generates a C*-algebra that contains C(X) as a subalgebra
enabling us to apply a result on completely bounded bimodule mappings.

On the other hand, the algebra C¢(G) has an approximate. In order to
state the existence theorem, we need to introduce some of their
terminology. They call a set L in G r-relatively compact if KL is relatively
compact for every compact set KEX. There exists a decreasing sequence
Uy, U, , ...of open r-relatively compact sets whose intersection is X. There
also exists an increasing sequence of compact sets in X, K; , K, , . . . whose
interiors exhaust X. These come from the second countability of G, and
they allow us to make a sequence that is an approximate unit (instead of a
more general net). We call a function f in Cc(G) symmetric if f2=f.
Theorem (1.1.3) [1]: There is a sequence e;, e, ... of symmetric
function in CF(G) such that for
each n we have
(i) supp(e,) € U,,, and
(i) fe(y)dA*(y)>1—n"tforx €K, ,and<1forall x e X.

Such a sequence is a two-sided approximate unit for C¢(G) in its inductive
limit topology, i.e., for uniform convergence on compact sets.

A (unitary) representation of a locally compact groupoid G is given by a
Hilbert G-bundle K over X, the unit space of G; this means we have two
functions that have some properties:
(i) a Hilbert space K(x) for each x. We form I, ={(x, v): x € X, v € K(x)},
called the graph of K, and require that Iy have astandard Borel structure
such that the projection onto X is Borel and there is a countable set of Borel
sections of Iy such that for each x the set of their values at x is dense in
K(x).

(ii) a Borel homomorphism = of G into the unitary groupoid of the bundle
15



K, i.e., for each y, n (y) :K(s(y))—=K(r(y)) is unitary, and = is a Borel
function.

This can also be said as follows: (K, =) is a Borel function on G taking
values in the category of Hilbert spaces.

Given a representation = of G, and a measure p € @, we can obtain from
them a = -representation of M¢(G). Before describing the representation, we
need another item of above and define vo=A4~2v, obtaining a symmetric
measure. Next we make a Hilbert space, L?(u;K), of square integrable
sections of K. For f € Mc(G) we define #(f) on L?(u;K) by setting

@ (NEM) = [ IM(n(E°sty)|n ° r(y))dv, () (7
For & 1 € L?(w;K). Then m# s a * -representation of Mc(G) with 7# || (f) || <
| f | so its restriction to Co(G) has the same property.We denote the
restriction by the same symbol, depending on context to distinguish the
two. Later we will also use another method of integrating a unitary
representation of G, one that is due to Hahn and does not use the
symmetrized measure.

It can be convenient to choose p to be finite, say a probability measure
so we need to know that p' ~ p implies ##' is unitarily equivalent to m#.To
prove this implication, take p to be a positive Borel function whose square
is the Radon- Nikodym derivative of p' with respect to p.Then

s _da¥

peer=—0 (8)
and
_a@eyt
p2 o S§= d(/l“)‘l (9)
So
(%o 1A, = (p*e s) Ay (10)

Hence we can define V: L% (1',K)— L(u, K) by VE = p& to get the necessary
unitary equivalence. To see that it is indeed an intertwining operator,

compute to see that the inner products are equal:
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(@ () VE | Vi) = (' () €| m).

It is natural to ask whether every continuous representation of C. (G)
can be obtained by integrating a unitary representation of G, as is true for
groups. An affirmative answer to this question was provided by an
ingenious argument due to Renault, and it follows that every representation
of Mc(G) bounded by || |1 can be obtained by integrating a unitary
representation of G. Another discussion of this result Renault's theorem is:
Theorem (1.1.4) [1]: Let G be a locally compact groupoid that has a
Haar system, and let Ho be a dense subspace of a (separable) Hilbert space
H. suppose that L is representation of C(G) by operators on H, such that
(i) L is non-degenerate;

(i) L is continuous in the sense that for every pair of vectors &, n € Hy , the
linear functional L; ,, defined by L¢, (f) =(L(f) & | 1) is continuous relative
to the inductive limit topology on Cc(G);

(iii) L preserves the involution, i.e.,(§ | L(fP)n) = (L(f)E | n) for&,n e
Hyand f € Cc(G).

Then the operators L(f) are bounded. The representation of C(G) on H
obtained from L is equivalent to one obtained by integrating a unitary
representation of G using a probability measure u € Q. In particular, L is
continuous relative to || ||

Renault defined a norm on Cc(G) by || || =sup {||L( f)||: L is a bounded
representation of C¢(G)}. Theorem (1.1.5) shows that we could get the
same norm Dby using the representations m*in place of the L's. The
completion of Cc(G) with respect to the norm just defined is a C*-algebra
denoted C*(G). Every positive linear functional of norm one on a C*-
algebra gives rise to a representation of the algebra and a cyclic vector in
the Hilbert space of the representation. The direct sum of all these cyclic
representations is called the universal representation of the C*-algebra. We
will denote this representation by . For C*(G), we know that every one of

the cyclic representations is of the form #, so o can also be regarded as a
17



representation of Mc(G). We will write M*(G) for the operator norm
closure of w(M¢(G)). Since o is an isomorphism on C*(G), we can regard
C*(G) as a subalgebra of M*(G). We will also refer to » as the universal
representation of G itself.

In proving that L can be obtained by integration, Renault shows that
there is a representation of C¢(X), say ¢ associated with L such that for
f € C¢(G) and h € Cc(X) we have

L((hor)f) = $p(R)L(f) (11)
and
L(f(hes)) = L(f)$(h) (12)
Then ¢ extends in the obvious way to a unital representation of C(X) and
can be used to extend L to a representation of C¢(G, X):
L(fA+ ge) = L(f) + ¢(g) (13)
We can verify, easily, that this defines a unital representation of
C¢ (G, X). We extend o to C(G, X) in this way, and also to Mc(G, X).
Then we define C*(G, X) to be the operator norm closure of o(C¢(G, X))
and
M*(G, X) to be the closure of ®(Mc(G,X)).
For some computations we need another norm. Let p € 9, let f € M¢ (G)

and define

171, =sup{[ 17029 2 1R e s [ 8, 00720200 (14

the supremum being taken over unit vectors g, h € L?(p). Then define
| £l to be sup {||f]lmu: 1€ Q} Three facts about this norm should be
mentioned. The first is that if 7z is a unitary representation of G, then ||7r“
O < Il -Thus [JoH)|< | £In, because || o(f) || = sup {]|=#(f)||: =
is a unitary representation.and p € Q}. Next, if = is the one dimensional
trivial representation and f >0 then ||#(f)||=]| f || wx - It follows that if
0 <f € Mc(G) then
loN=1lln (15)
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A third fact is this : if b e L(12) and f € Mc(G) then for any p € Qwe have

1o s < (o[£ 1] 1 (16)
So

o llw=lelle I £l (17)
Lemma (1.1.5) [1]: if 0 < f € Mc(G) and b € L*(AR ), then||a(bf)]| <
ol llo(n .
Proof:

Using the three properties of || || i,, mentioned just above, we have
lo®A | < sup{llbfll,, ;nea}

< sup{ bl I£1l,,,0 1€ 0] (18)
=[5l [
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Section (1.2): Measure and Positive Definite Functions

A basic lemma is needed for our construction of positive definite func-
tions from completely positive maps. After proving that lemma, we also
need to prepare some detailed information about Haar systems on locally
compact groupoids and how they relate to Borel Haar systems on the
associated equivalence relations. Most of that information .

As preparation for the proof of the lemma in question, we recall a basic
fact about measures and function spaces. Suppose that (X, B) is a set with
algebra and that A is asubalgebra of B that generates B as algebra. Let p be
any finite measure defined on B. The measure of the symmetric difference
between two sets is the same as the distance between their characteristic
functions in L' (), and hence provides a (pseudo) metric on B. The closure
of A in B is o- algebra that contains A and hence is B. For us, it is
important that the fact of density is independent of u. This implies similar
properties for the set S(A), our notation for the set of linear combinations of

characteristic functions of sets in A using coefficients from Q[i], which is Q

with v —1 adjoined. By looking first at simple functions, it is easy to show

that S(A) is always dense in L(n). In the same way, we see that for any
fe LMW,

I71l, = sup{ | [ fodul:o €S@and [o] <1} (19
which is a supremum indexed by a family independent of p. When A can be
taken to be countable, as is the case when X is a standard Borel space, these
facts are particularly useful.

A similar situation arises if X is locally compact. In that case, there is a
countable dense subset S(X) of C¢(X) that is an algebra over Q[i], and any
such S(X) is dense in L1 () for every finite measure p on X .

The next lemma is a generalization of the fact that for two measure
spaces, functions on the product and functions from one measure space to

the functions on the other can be identified. In our setting, the measure on
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the image space must be allowed to vary.
Lemma (1.2.1) [1]: Let X and Y be standard Borel spaces and let x
v* be aBorel function from X to finite Borel measures on Y. Suppose that f
is a function on X selecting an element f(x) of L'(v*) for each x € X so
that the function x—f(x) v*& x is Borel, taking values in the space of
complex valued Borel measures. Then there is a Borel function F on X x Y
such that for every x € X the function F(x , .) is integrable relative to v*and
in the class f(x). The function F can be chosen so that if f(x) € L™ (v¥).
then F(x, .) is bounded by || f (x) |- - It is possible to choose F meeting those
conditions and so that if v* = v* and f(x) = f(x') then F(x , .) = F(x', .)
(every where on y).
Proof:
For the proof we must have a way, that does not depend on x directly, to
choose representatives of classes approximating f(x). For this we choose
first a countable algebra, A, of Borel sets in Y that generates the c- algebra
of Borel sets, so we can use the facts mentioned before the statement of the
lemma. List S(A) as a sequence, s1, S2, ... . For convenience, let us write
x ~ x' to mean that v* = v* and f(x) = f(x"), and say that such points are
equivalent .

Now we are ready to describe the basic step which will be used
repeatedly in the proof. If ¢ > 0 and x € X define j(x, €) to be the least

element of {i : || f(x)—si], < ¢}. It is clear that j(. , €) takes the same

@)
valueat equivalent points of X, and we will show that j(.,¢) is Borel
function. This will follow if we can show that for each bounded Borel

function h on Y, {x:|| f(x)—h]|| i1y < €} is a Borel set. We can get that

from the fact that norms can be computed as, suprema, because for each
¢ € S(A), [f(x)—h)e dv*is a Borel function of x and hence so is its absolute

value.
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If we define g(x) = Sjx ¢ (as an element of L*(v*)) and G(x, y) = Sjx, ¢
(y), then g(x) = g(x") and G(x,.) = G(x',.) (everywhere on Y) when ever
x ~ x'. Also, both these functions are Borel.

Apply this process first to f with ¢ =271 to obtain G1 and g;. Then
apply it to f—g, with € = 27%to obtain G,and g,, etc. For each n the value
of the function f—(g,+...+g,) at a point x is an element of L!(v*) having
norm < 27™ Thus for n > 2, || g,(x) |1 < 3(2™™). It follows that for each x
the sum X,,51 | Gn(x, y) | is finite for almost all y. Inductively, we see that
Go(x,) = Go(x',) if x ~ x".The set N={(x,y) € X x Y: Y. | Golx,
) | =0} is a Borel set in X x Y and the slices of N over x and x' are the
same set if x ~ x'. Now change each G,to be 0 on N. Then the sum is
always finite and we still have G, (x,.) = G, (x', .) if x ~ x.

Define F(x,y) Xns1 Gn(x,y) .Then F is Borel and satisfies the first and
last conclusions of the theorem. Thus the slice of the Borel set {(x, y) :
| F(x, y) | > ]| f () || -} over every point of X is of measure 0 and the slices
of this set are the same over equivalent points of X. Change F to be on that
set, and all the desired conditions are satisfied .

Now we are going to present some results on the fine structure of the
Haar system, as developed by Renault. Renault decomposes the Haar
system A over a Borel Haar system a on R, by studying the action of G on a
special group bundle, and we summarize the results here. Recall that the
isotropy group bundle of G, denoted by G/, is defined to be {y € G : r(y) =
s(y)} = U {xGx: x ¢ X}. This closed in G and hence locally compact, so the
space of closed subsets of G’ is a compact space in the Fell topology. Let
>0 be the space of closed subgroups of the fibers in G, which is a closed
subset of the space of closed subsets. Then the set Y={(H, y) ¢ Y@ x G’ | y
e H} is called the canonical group bundle of >©. G acts on Y and on Y@ by
conjugation: if (H1, y1) € >, y € G, and s(y1) = r(y), then

(Huya)y =y *Hyy "ty ) (20)
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while if H e Y©, say H € xGx, and r(y) = x, then H. y =y ~1Hy. We want
to make a Borel choice of Haar measures on the groups xGx. One way to
do this is to choose a continuous function Fo on G that is non-negative, 1 at
each x € X and has compact support on each xG. Then for each x ¢ X
choose a left Haar measure p* on xGx so the integral of Fo with respect to
p*isl. Likewise, choose a function F on Y that is non-negative, 1 at each
point (H, e), and has support that intersects every {H} % H in a compact set,
and make a similar choice of Haar system on Y, .

Form the groupoid >© x G = {(H, vy) : s(H) = r(y)} arising from the
action of G on Y©. Then the essential uniqueness of Haar measures
guarantees the existence of a 1-cocycle, 3, on >© x G so that for every
(H,y) O x G we have

y By = 6(H,y) T gr Y (21)
Renault proves that & is continuous. The cohomology class of & is

determined by G, and Renault calls it the isotropy modulus function of G.
To shorten some formulas , we write G(x) for xGx. Renault defines &(y)
= 3(G(r(y)), y) to get a 1-cocycle, also called 6, on G such that for every x €
X, 8 | xGx is the modular function for B . The preimage in Y© = G of a
compact set in G is compact, so & and §~1= 1/5 are bounded on compact
sets in G. Renault defines By = ypY if y € xGy. If ' is another element of
xGy, then y~1y’e yGy, and since pY is a left Haar measure on yGy, it
follows that g5 is independent of the choice of y. With this apparatus in
place, it is possible to describe a decomposition of the Haar system A for G
over the equivalence relation R={(r(y),s(y) y € G}.This R is the image of G
under the homomorphism 6 (=(r,s)),so it is ac- compact groupoid.
Furthermore, there is unique Borel Haar system a for R with the property

that for every x € X we have
¥ = [ B da*(z,y). (22)
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Now suppose that i € Q so that we can form a* and A#, getting quasisym
metric measures. If A=da*/d(a*)~1) then A o 0 will serve as
dA#/d(2M)tie., we can always take Ay=5A, o 0. We shall see that
sometimes Ay =1 s0 Al =3.

For each x, the measure a* is concentrated on {x} x {x} so there is a
measure ¥ on [x] such that a® = * x u*, where £X is the unit point mass at
x € X € G. Since o is a Haar system, we have u*, = W if x ~ y, and the
function x—u*, is Borel. If we take u' to be the measure p? for some z € X,

then W' is quasi-invariant. We give a different proof.

First of all,
ot = [aXdu' (x) = p? x u?, (23)
so a*’ is symmetric. Hence A=1. Next we consider A* =
I J B du?(x)du?(y). Since

Gz is locally compact, there is a Borel function c: [z] —Gz such that for
every x ¢ [z] we have c(x) € xGz. The value of c(z) can be taken to be z.
We can use c to define a Borel isomorphism y: G | [z]—[z] < G(z) % [z]
by

v (1) =rMe(r®)) ve(s@)).s()) (24)
By the uniqueness of Haar measure, as above, we see that y always carries
By to a positive multiple of £* x g% x &%, and that multiple is a Borel
function of the pair (x, y). Hence carry A*'to a measure equivalent to p? x
Bz x 2 It follows A*'is quasisymmetric, as needed .

Since A is a Haar system, we know that if K is a compact set in G then
the function x—A*(K) is bounded. We will use the formula for A¥in terms
of aX to prove that x—aX(0(K)) is also bounded, and also that u* is finite on
compact sets for the quotient topology on [x]. Let F be the function used
above to make a choice of Haar measures g#. If S is the support of F, then
BY (s) > 1 for every y € X. To prove the boundedness statement above, let K

be a compact subset of G and set Ki=K(s(K) S). Because both factors are
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compact, so is Ki, so x—A*(K1) is bounded. For (x, y) € 6(K), choose y € K
such that 6(y) = (x, y). ThenyS € Ky, so (K1) > 1.
Hence

A*(ky) = [ By (ky)da™(x, y)

> | B k)de () (25)
s(xK)

> a*(0(K)
For the second assertion, suppose that C is a compact set in [x] for the
quotient topology. Since xG is locally compact and s is continuous and
open from xG to [x], there is a compact set K contained in xG whose image
contains C.Then 6(K) € xR, so the boundedness result just prove that
u*(s(K)) = a*(6(K)) is finite. Hence u* is a o-finite.

It is also true that finiteness of u*on compact sets forces A*to be finite
on compact sets, by an argument.

Define Moc(R) to be the space of bounded Borel functions on R that
vanish off sets of the form 6(K), where K is a compact subset of G. Now we
know that Moc(R) € I(R, A), and it is not difficult to show that Moc(R) is
a *-subalgebra of I(G, X). The definition of this algebra is admittedly
somewhat unusual, but the algebra will serve a useful purpose in proving
the main step along one way to prove the completeness of the Fourier-
Stieltjes algebra of G. The point is that R is a kind of shadow of G, and we
need a convoliotion algebra on it that is a shadow of the same kind.

We will characterize the functions on a locally compact groupoid that
are diagonal matrix entries of unitary representations as the functions that
are what we call positive definite. For this to be meaningful, we need a
good definition of “positive definite.” This is more complicated than for
locally compact groups because unitary representations of locally compact
groupoids can be Borel functions without being continuous. Thus we make

our definition using integrals, and must even identify two functions that
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agree AR-almost everywhere, as defined. we will need to construct a
positive definite function from a parametrized family of functions, each of
which is positive definite on a transitive subroupoid. Thus we prove the
representation theorem in that broader context. For a locally compact
groupoid that has a Haar system, the notion of positive definite function can
be defined in the least restrictive way as follows:

Definition (1.2.2) [1]: Let G be a locally compact groupoid and let A be
a left Haar system on G. Then a bounded Borel function p on G is called
positive definite if for each x € X and each f in C¢(G) we have

fff(Vl)f_(Vz)P(Vz_lh)dﬂx(V1)dﬂx(yz) =0 (26)

The set of all such p's will be denoted by p(G). We say that two elements of

P(G) are equivalent iff they agree AQ-almost every where.

Lemma (1.2.3) [1]: Let = be a unitary representation of G on a Hilbert
bund and let & be a bounded Borel section of H. Define p(y) = (n(y) & ©
s(y) | € o r(y)) for y € G. Then p € P(G).

Proof:
Fix x e Xand f € C.(G). Then for n e H(x)
| [ EmEos@) [na @) | < £, 1€l Il (27)

so there is an element {(x) € H(x) such that for all n € H(x) we have

f f@)@y)é o s)n)dr* () = (((x)In). (28)

Indeed, this defines a Borel section, {, of H.The Borel character of { follows
from the fact that (m(y) &1 o s(y) | n1 o r(y)) is a Borel whenever & and n1
are Borel sections of H. For this section { the integral involved in the
condition (P) is equal to ({(x) | {(x)), which is certainly non-negative.
Lemma (1.2.4) [1]: If p € P(G), the formula

(F19)x = [ 1 FGDT GIp Gz 'y (r1)dA* (r2) (29)

defines a semi-inner product on L*(1¥). Let H(x) denote the Hilbert space

completion of the resulting inner product space. Then H is a Hilbert bundle
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over X. For y1 € G, define m(y1) from L*(A(D) to LL(AT™D) by (n(y1) f)(y) =
f(rity). Then & determines a unitary representation, also denoted by =, on
the bundle H.
Proof:
The form (f | ), is clearly linear in f and conjugate linear in g. Since the
vector space is complex the Hermitian symmetry follows from positive
definiteness.

Let N(x) = { f e LY(2*) : (f | f)x =0} and set F(x) = L}(A¥)/ N(x), the
corresponding inner-product space. Write H(x) for the completion of F(x).

Let | |xbe the norm (or semi-norm) arising from ( | ), . For f, g € L*(1%),

[CF 1oyl <lplllfl lollssolflx< IpI 2]l it follow that the
image of C¢(xG), which is the image of C¢(G), is dense in H(x).

Now we want to make a Borel structure on the graph of H, denoted by
I'=I'n ={(x, &) : x € X, & e H(x)}. The process used is fairly standard.
First, if f € Cc(G) and x € X, define o(f)(x) to be the element of H(x)
represented by f |xG. This defines a section o(f) of the graph of H. We
want all o(f)'s to be Borel sections, and that tells us how to define the Borel
structure. For f € C¢(G) define yf on " by vy (x, &) = (o(f)(x) | &) -
Then give T" the smallest Borel structure relative to which the projection to
X is Borel along with all the functions vy (f € Cc(G)). It follows from the
fact that p is Borel and bounded that each section o(g) for g € Cc(G) is
indeed a Borel section. Since G is second countable, there is a countable set
dense in Cc(G). For any countable dense set of f's, the y¢'s would determine
the same Borel structure as {vyy : f € Cc(G)}, so the latter is standard: Apply
the Gram-Schmidt process in a pointwise manner to a dense sequence of
sections of the form o(f) to get a sequence g1, g2, . . . of Borel functions
such that
(i) gn | xG is always in L*(A%)
(ii) if f € C(G) and n > 1, then x—(o(f) | o(gx) )« is aBorel function.
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(iii) for each x the non-zero elements of {c(g,)(x):n >1}) Form an
orthonormal basis of H(x).

Then it is easy to show that I" is isomorphic to the disjoint union of a
sequence of product bundles X,, x K,, , where{Xx» ,X1, Xz, ...} is a Borel
partition of X and each K,is a Hilbert space of dimension n. Thus T is
standard because each X,, % K, is standard.

If f € L'(2%) and y1 : x—y is in G, define n(y1) f by (x(v1)(F))(¥) = f(y1'y)
for y € yG. Since A is left invariant, n(y1)f € L*(1”). Notice that

n(y?l) is the inverse of n(y1). If g is another element of L(1¥), then

GOf | m(ng)y = [ [ Y2 g Ya)p (5 y2)d 2 (r2)d A (vs)
= [ [ 103 w0 v r)az ) (30)
=(f | 9)x

Hence n(y1) extends to a unitary operator from H(x) to H(y), for which we
use the same notation.

To work with the bundle and with the representation we need to restrict
to subsets spaces where the various operation are defined. There are two
fibered products, I' X' T'={(x,&§, x,£") : x € X, &, &' e H(x)},asubset of I' x T,
and G x'T" € G x T, defined to be {(y, x, &) : s(y) = x, {E e H(x)}. Let us
show that (y,x,&)~(r(y), n(y)&) is Borel from G x'I" to I". The composition
of this map with the projection to X is clearly Borel.

Let f € Cc(G) and compose the map with . The value of the composition
at (v, x, &) is wr (n(y), n(y) &) = (=)~ ( (o()(r()))[E)x. This is the value of
another composition.

G x'I'»TI x'I'-C,
where the first function takes (v, x, &) to (s(y),n(y "1)(c()(r(y))) ; (x, &)
and the second is the inner product function. The first function is Borel if
each component is, so let us see that the first component is a Borel function
of y.

composition of it with projection is s and hence Borel. If g € C(G),
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Yy (s@), n(y D (a(Hr())) =
I Fv)aG)pGsty)das® (v,)das® (y,)

fGXGXG fd(sy . AS(Y) x AS(Y))! (31)

Where F is the first function that is 0 at (yo, y1, y2) unless s(yo) = r(y1) =
r(y2) and then its value is f(yoy1) d(y2) p(yz*y1). A fairly standard
argument then shows that y—yis(s(y)),n(y ~H)(o(f)(r(y))) is Borel, as
desired.

To show that the inner product is Borel on I' x I", we use the functions
gn Used to show that the bundle is standard. Indeed,

(@ | )= thgn( E)gn (x.1) (32)

nz1
which is a Borel function. It follows that (y, x, &)~ws (r(y), n(y)E) is Borel,
as needed .

This completes the construction of a unitary representation from a
positive definite function. From now on, subscripts will be used on inner
products and norms associated with such bundles only when necessary to
make clear which space is involved. Our next task is to find a (cyclic)
section &p such that p(y) = (m(y) &p(s(y)) |§p(r(y))) for AC-almost every
v €G.

The argument can be outlined as follows. Given a p € @ we let H(p)
denote the Hilbert space of square integrable sections of H, which is some
times written L?(p, H). There is no loss of generality in assuming that p is a
probability measure, since changing to an equivalent measure produces an
equivalent representation. The representation = of G can be integrated to
give a representation of Cc(G) on H(u), denoted by m,,, using the formulati-
on of Hahn, rather than that of Renault. The definition is given below. If uz
, U2, ... Is a symmetric approximate unit for C¢(G), the sequence of sections
o(u1), o(u2), . . . has a subsequence that converges weakly to a section &,
such that for f € C¢(G) we have n.(f) & = o(f), and the matrix entry made
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from = and &, agrees with p a.e. relative to get a section p not depending on
1, We observe that if we had such a & , then for f € Cc(G) we would get
[ fpd 2*= (o(f)| &)x. Thus we consider the set D(p) of those x € X for
which [ fpd A*, as a linear function of f in C¢(G) “extends" to a bounded
linear functional on H(x). We need to know that
D(p) is conull for every u € @, and this follows from the existence of &, .we
let Ep(x) be the vector representing that linear functionl, and verify that is
the section we wanted.

Before giving details, we introduce the space L*2(A, p), consisting of

those Borel functions f for which

2
1715, =1 1 r0) [d2* 3) 2 du(x) > o (33)
Now, begin by taking H(u) as defined above, and observe that for

f € 1120, ), the section o(f) is in Hw), and [|o( A)[I< 2117211 |2

so that fn— f in LY2(X, p) implies o(f;,) — o(f) in H(w). To make the proof
work, we must integrate the representation = to get m, having the property
that for f, g € Cc(G), mu(f)(c(g)) = o(f * g). This can be done if we use the
method, which applies to I(G, A),which is a subspace of L}2?(x, u), because
w is a probability measure.

For f € I(G, 1) we define mu(f) by saying that for sections &, n in H(p) we

have

m(HElY) = [1@) (e n(r @) ) da @) (34)

The integral defines a bounded sesquilinear form, so the formula defines a
bounded operator mu(f). It is proved that =, is a bounded representation of
I(G, A). If f € I(G, L) and & € H(p), then =, (f) & is represented by a section
whose value at almost every x is [ f(y) n(y) &(s(y)) dA*(y), where the
integral is defined weakly. If g € I(G, 1), we have

mHo@ 1 = [ 103 () (o(@)(53)) [r ) ) a* 1)

30



= [ [ 10 (=t (o0)(s0) ) a2 in) (39

= [0t ) InGr)ar o,
because n(y)(c(9)(s(y))) is represented by a function on r(y) G whose value
at a point y1 is g(y "y;).
Lemma (1.2.5) [1]: Let G be a locally compact groupoid with a Haar
system A. Suppose that p € Q is a probability measure. If p is a positive

definite function on G and (H, =) is constructed from p as in the proof of

Lemma (1.2.4), then there is a section &, € H(y) such that

(i) | &u(x) |2 <[|p || for x € X

(i) 7u(f)&n = o(f) for f € Co(G)

(iii)p(y) = (n(y) Eu(s(¥)) | E(r(v))) a.e dA*(y)
Proof:

Letus, Uz, ... beasymmetric approximate unit for G. Then

| o)(x) | < [|p]| 2’ for each x and i, so [|o()|| < [[p]| - *for each i. Thus
o(u1),0(u2), . . . has subsequence converging weakly to avector &, € H(p).
We may suppose that subsequence is o(uy), o(u2), ... . If, for every Borel set
E in X, P(E) is the projection of H(u) onto the subspace determined by
sections that vanish off E, then P(E)c(un) converges weakly to P(E) which
has norm at most (|| p[|-k(E)¥2 It it follows that | &, (x) | 2for a.e. x, and
we can change &, to make it true for all x. For f € Cc(G), f *ui— f
uniformly and all these functions vanish off a fixed compact set. Thus
f *ui— fin LY, and o(f * uj) —o(f) in H(n). Hence mu(f) o(ui) converges
to o(f). we also know that mu(f) is bounded operator, so mu(f)o(ui)
converges weakly to mu(f) &u . Hence mu(f) & = o(f), as elements of H(p).

It follows from this that if f, g € Cc(G), then (o(f) | 5(9)) = (mu(f) &) |

mu(g) &) and this can be written as

f f @ G)E(s D) | 102)Eu(54r)) F ) G(a)dA* (r1)da* () du(x) (36)
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which is equal to

f f O )ETD) | E(sGD) F G FI2) A ) dA* () dule)  (37)

If h € Cc(X) we can replace f in this calculation by hf = (h o r) f. From this

it follows that if f, g € C¢(G) then for p-almost every x we have

(o(f) | o(@))x
= f f 3 )€ (sD)) | €. (s D)) F(rD) G(v2)dA* (y1)dA* (v,) (38)

By the definition of ( | ) this shows that for p-almost every x,

p(rz 1) = (D& () |6 (5(r2))) (39)
is true for * x A*-almost all pairs (y1 , y2). For each such x, for 1*-almost

every v»,the formula(39)is true for A*-almost ever y1 ,i.e., p(y)=

()¢, (s(y)|Eﬂ(r(y)))for A@D-almost all y. Indeed, the set {s(y2):(39)
holds for A*-almost every y1} is conull in [x].

Theorem (1.2.6) [1]: Let G be a locally compact groupoid and let A be a
Haar system on G. If p is a positive definite function on G and (H, =) is the
associated unitary G-bundle over X, then there is a bounded section &, of H
such that if p € Q, then

() p(y) = (n(y) Ep(s(y)) | Ep(r(v))) a.e. dA*(y)

(ii) if f € Ce(G), then mu(f) &= o(f) in H(w).

If p is continuous, then &p can be chosen to be continuous and p(y) = (n(y) &p
() | &(r(y))) forall v .

Proof:

Define D = D(p) ={x € X : f=[ fp dA*= A*(fp) extends from C(G) to give

. . 1/2
a bounded linear functional on H(x) of norm at most| p|| "} For each

f € Cc(G), Mfp) and x~ (f | f), are Borel functions, and boundedness can
be tested on a countable dense set, so D is a Borel set.For x € D, there is a
unique vector &p(x) € H(x) such that (o(f)(x) | Ep(x) )=A*(fp) forf € Cc(G),
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and if we let &(x) = 0 for x & D, & is a Borel section of H, bounded by

1272 We need to show that D is Q-conull, i.e., conull for each 1 € .
Let u € Q. Then there is a & e H(n) satisfying (i), (i), (iii) of
Lemma(1.2.5) and thus for each f € Cc(G) we have

@ (@) | €42 = (@ (HEL) [ £.0))x = 2 (D) (40)
for p-a.e. x. Since bounded linear functionals are determined by their values
on a countable dense set, and since boundedness of a linear functional
canbe tested on a countable dense set, there is a p-conull set D, such that
for x e Dyand f € C(G),

(@ (N [ £.(D)x = 2*(fp) (41)
Thus D, € D, from which it follows that D is p-conull and &y(x) = &.(x) a.e.
This fact and Lemma (1.2.4) combine to establish the truth of statement (i)

and (ii) in the theorem. By the definitions of D and &, it follows that p is

1/2

bounded by ||p|..".
To complete the proof, we show first that if p is continuous, then D =X.
Again take a p € Q and the section &, . We have 1*(fp) = (o(f)(x) | Eu(x))y

for p-a.e. x, and for such x's,

| 2(fp) | < |o(H@) |+ e

1/2

|s(H) |« llpll. (42)

Since p is continuous, both A(fp) and x~(o(f), o(f)), are continuous, so

AN

this estimate holds on the support of p. The supports of the p's in Q fill X,
So

1/2

|2%(fp) | < [o(H@) | [Ip]l., (43)
forall f in C¢(G) and all x. Thus D = X. Now p(y) = (=(y) &p(s(y)) | Ep(r(y)))
a.e. dA¥(y) for every p, so it will end the proof if we can show that the
second function is continuous. By a partition of unity argument, this wil
follow if we can show that (z(y) &(s(y)) | (r(y))) is a continuous function of

y for every continuous section & of compact support. We can reduce to
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considering & = o(f) for f € C¢(G), by using partitions of unity and uniform

limits. Then we have
(rE(sM)|E(r@))) =

IO y)f )G y)ddm P (y)dar P (y,) (44)
Continuity of this function of y can be deduced by applying the following

easy lemma and a variant of it using the second coordinate projection,
because the integrands can be extended to functions satisfying the
hypotheses of the lemma.

Lemma (1.2.7) [1]: Suppose G is a locally compact groupoid with a
Haar system A and let F be a continuous complex valued function on G x
G. Let p1 : G x G—G be the first coordinate projection. Suppose that for
every compact set C € G the set p; 1(C) n sup(F) is compact. Then, [F(y,y2)
dA™™)(y,) is a continuous function of y.

We have an existence theorem, but we should show that the results are
essentially the same for any two equivalent elements of P(G).

Theorem (1.2.8) [1]: Suppose that p, q € P(G) and that p=q A2-a.e. Then
the associated representations (Hp , mp) and (Hq , mg) are the same, and the
sections &p and &q agree Q-a.e.

Proof:

Let z € X and consider the inner products on L'(1%) defined using p and g.
Denote them by (| )p and (| )q respectively. To prove they are the same, it
will suffice to show that p(y5 *y1) = q(yz *y1) for 2% x A%-almost every pair
(y1, v2), because the inner products are defined by double integrals using
these functions and measures.

Let uZ be a quasiin variant probability measure equivalent to the measure
u? that was associated with the orbit [z]. Let E be the set of x € X for which
p = q a.e. relative to A*. Then p#(E) =1, so {y: s(y) € E} = GE is A*-conull.
If v € zGE,{y1 € zG : p(y 'y1) = q(y "*y1)} is conull relative to A% by
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translation invariance of the Haar system. By the Fubini Theorem, we get
the desired agreement a.e.
This shows that the Hilbert bundles H,, and H,, are identical, and since
the formula for the representation is just left translation in each case, the
representations are the same.
To show that the sections &, and &g agree Q -a.e., we resort to the
definitions, namely, &p(x) and Eq(x) are determined by the fact that for
f € Ce(G).
(o (F) 1 &p(x)) = 2*(fp)
and
(o (f) | &alx)) = A*(f0)
Let F be the set of x € X for which &p(x) = &q(x). Since the two sections are
Borel, F is a Borel set. We need to show that if u € Q, then u(X\F) = 0. We
know that for each f € C¢(G) the two functions A(fp) and A(fq) agree almost
every where relative to p. Let C be a countable dense set in C¢(G), and let N
be a p-null set such that x & N and f € C imply A*(fp) = A*(fq). Since p
and q are bounded, this equality is preserved under limits in C¢(G),s0 it
holds for x € N and all f € Cc(G). Thus F contains the complement of N, as
desired.
Theorem (1.2.9) [1]: Sums and products of positive definite functions
are positive definite.
Proof:
This is immediate from the existence of direct sums and tensor products (let
us first consider aspecial case: let us say V,W are free vector spaces for the
sets S,T respectively. That is, V= F(S), W=F(T). In this special case, the
tensor product is defined as F(S) ® F(T) = F(SxT). In most typical cases,
any vector spase can be immediately understood as the free vector spase for
some set, so this definition suffices. However, there is also an explicit wa of

constructing the tensor product directly from V,W , without appeal to S, T.
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In general, given two vector spaces V and W over a field K, the tensor
product U of V and W,denoted as U =V®W is defined as the vector space
whose elements and operations are constructed) [5] of representations,
because of Theorem (1.2.6).

We consider the enlarging the space from which we construct that fibers
of the Hilbert bundle H, using the positive definite function p. It will be
convenient to replace the algebra C¢(G) by the larger algebra C¢(G,X),an
algebra of kernels introduced, and we will need to know that using the latter

in our construction does not change the fibers in that bundle.

Definition (1.2.10) [1]: Let G be a locally compact groupoid and let A
be a left Haar system on G. Then a bounded Borel function p on G is called

strictly positive definite if for each x € X and each v in C¢ (G, X) we have

[ rozrmaveya=ea 20 (45)

The set of all such p's will be denoted by P'(G). Two functions p, q € P'(G)
will be called equivalent iff they agree AQ-almost everywhere on G and
their restrictions to X agree Q-almost everywhere.

We have P'(G) < P(G), and would like to know that the sets are equal.
This is not true because a function p can satisfy condition (P) and be
negative everywhere on X unless there is a p € @ such that A#(X) > 0.
Actions by non-discrete groups give rise to groupoids for which @ contains
no such p . However, we have proved that every equivalence class in P(G)
contains a diagonal matrix entry. Thus a kind of reverse of the containment
would follow from the analog of Lemma (1.2.3) namely Lemma (1.2.12)
below showing that diagonal matrix entries are in p'(G). This meaning of
the reverse containment would be that every class in P(G) contains an
element of P'(G), or that diagonal matrix entries are in P'(G).

If two diagonal matrix entries are equivalent in P(G), are they equivalent

in P'(G)xn? The affirmative answer is given in Lemma (1.2.14).
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Lemma (1.2.11) [1]: Let = be a unitary representation of G on the
Hilbert bundle K, and let & be a bounded Borel section of K. Define p(y) =

()€ o s(y) | Eo r(y)) for y € G.

Then p e P'(G).

Proof:

As in the proof of Lemma (1.2.3), for f € Cc(G), there is a section of the

bundle such that for each x € X and every n € K(x) we have

[ @ = strmaer o)

=@ |y (46)
If g e C(X), x e X, and n e K(x) , then

[ 9@ = strIImaer 1) = g0 n 47)

If v=Af + ge, these show that the integral involved in the condition (p) is
equal to({(x) + g(x)&(x) | € (x) + g(x)&(x)), which is certainly non-negative.
Corollary (1.2.12) [1]: Every equivalence class in P(G) contains an
element of p'(G).

Lemma (1.2.13) [1]: Let (H, =) be a representation of G, let uz, uz, ... be
a symmetric approximate ,as described in Theorem (1.1.4), and let & be a

bounded Borel section of H. Suppose that p € Q, and let w, be the integrated
form of n as defined just before the statement of Lemma (1.2.4).Then
mw(uy,) — & asn—oo .

Proof:

By construction of the functions wu,, [|u,|[i <1 for each n, so every mu(uy,)
has norm at most 1. Hence it suffices to find a dense set of vectors
satisfying the conclusion. Each vector of the form wu(g) n satisfies the
conclusion, and hence vectors in the linear span of the set of such vectors
do also. That linear span is dense.

Lemma (1.2.14) [1]: Suppose that = and m; are representations of G on

bundles K and K1 , and that & and &: are bounded Borel sections of K and
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Ki . If ()& e s@) [€or()) = (1 ()& o s() [ &1 o () for almost
every v relative to A2, then (&(x)[E(x)) = (E1(x)[Ex(x)) for almost every x € X

relative to Q.
Proof:

Since & and & are Borel sections the set E of x € X for which (&(x)[§ (x))
=E1(x)(E1(x) is a Borel set. We need to prove that for p € Q, W(E)=1. The
hypothesis implies that for f € Mc(G ),we have mtu(f) & | &) = (miu(f) &1 ] E1),
these being inner products associated with the integrated forms using
Hahn's method (c f. Lemma (1.2.5), and the paragraph before it). Let ¢ and
@1 be the representations of C(X) by multiplication on the sections of K and
K1 .Then it follows from the discussion following the statement of Theorem
(1.1.4) that for h e C(X) and f € C¢(G).

(@M, (HE| € = (p(h)ry (HE & (48)

Now for the f € C¢(G) take the terms of a symmetric approximate unit, to
see that for all h € C(X),

(p(R)€ | € = (p)(R)EL | €1) (49)
This means that for all h € C(X)
f R (EGO[E()) dutx) = f RGO E () | & (du). (50)

Thus E is indeed p-conull.
After this, we will always take elements of p(G) or p'(G) to be diagonal
matrix entries, and understand that they are determined a.e.on X as well as

on G.
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Chapter 2

Groupoids and Theoretical Measure

This chapter is a continuation of chapter 1. For groups, B(G) is isometric
to the Banach space dual of C*(G). For groupoids, the best analog of that
fact is to be found in a representation of B(G) as a Banach space of
completely bounded maps from a C*- algebra associated with G to a C*-
algebra associated with the equivalence relation induced by G.
Section (2.1): Complete Positivity
We introduce second and third ways to view elements of P(G), namely in
terms of completely positive mappings.Theorem(2.1.1) is a first step toward
getting Banach algebras of completely bounded maps on M*(G) and on
C*(G) we obtained C*(G) by completing C¢(G), and defined » to be the
direct sum of the (cyclic) representations C*(G) that arise from normalized
positive linear functionals on C*(G). Let Ho be the Hilbert space of . By a
theorem of Renault, stated, each representation of C¢(G) can be gotten by
integrating a unitary representation of G. Thus ® | Cc(G) is also a direct sum
of certain repress of certain representations #. The process of integration
allows us to regard each m#, and hence , as a representation of either
Mc(G) or Cc(G). We call o the universal representation of G. We also
defined M*(G) to be the operator norm closure of (M¢(G)), and notice that
C*(G) is isomorphic to the norm closure of w(Cc(G)). If G is a group, of
course M*(G) = C*(G), but these two algebras can be different for
groupoids.
Theorem (2.1.1) [1]: Let p be a positive definite function on G. Let o
be the universal representation of G, and define Tp(w(f)) = o(pf) for f €
Mc(G). ThenT, extends to a completely positive map of M*(G) to M*(G)
with completely

bounded norm equal to the Q-essential supremum of { p(x) : x € X}
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Proof: (We modify a proof for groupoids). We remind the reader that this
Q-essential supremum is the infimum of {B: if p € Q, then p < p-a.e.}.
Also, in working with @ we will use its construction as a direct sum.

We will need to find a formula for Tp, in order to prove that the mapping
is completely positive. For this we begin with two vectors & ,n in one
summand of H, given by an integrated representation #. This means that
we begin with a measure p € Q and a Hilbert bundle K over X. The
subspace of H, in question is L?(u;K), and the restriction of o to this

subspace is the integrated form of a representation, =, of G. We are using

Renault's form here, as described: take v = [ A*du(x) and vy = 4;"%v.

Then for f € Mc(G).
Tow(f) &) = (w(pfEn)
=[P@) f @) W) (X)) dvo(y)
= (@*(P) I n) 1)
By Theorem (1.2.5) there are a Hilbert bundle K, on X, a (unitary) Borel
representation mp of G on K and a bounded Borel section &y of K, such that

P(Y) = (mp(y) &p o S(y) | &p o r(y)) for A#-a.e. y € G. By Theorem (1.2.8), mp is
unique, and the section &p is determined Q-a.e. Thus we can continue the

calculation from above as follows:

= [ 0 (08 = 56 = 7)) (=& = 5Dl = (1)) v ()

= ff(y)((ﬂp ® n(¥))(§,®8) o s(r) | (£,8) o (1) dve(r) (2)

= ((rp®m)(F)(6®8)|5r®n)
= ((mp®w)(f) (§,88) | £,8m)
Here & ® & and & ® n are in L2(u; Kp®K). In summary we have

(T,0(NE) = (@) Wp ik | Vo yusen, (3)
where Vp, ., k: L (1;K) = L2 (1;Kp®K) is defined by Vp, . k& = £® & . This

is a bounded operator because the section & is bounded and the usual
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techniques for multiplication operators apply. If we let 1, be the direct sum
of the operators Vp, ., k over all pairs we have Tpo(f) =V, (1p ® 0)(f) V.
A theorem of Stinespring shows that Tp is completely positive with
completely bounded norm equal to ||V}, || 2 But Vis given by a tensor
multiplication which behaves like a scalar multiplication operator, so

| V5 |2 = ess sup{ || &p(x) || 2 : x € X} = ess sup{p(x) : x € X (4)
The proof of Theorem(2.1.1) also proves this :
Theorem (2.1.2) [1]: Let p be a positive definite function on G, let p e Q
and let = be a representation of G. Define T',(n#(f) = n*(pf) for f ¢
Mc(G). ThenT’, extends to a completely positive map of the norm (to
closure of m#(Mc(G)) to itself, this being the quotient of the T, defined in
Theorem (2.1.1)The completely bounded norm of T, as an operator on
cl(m* (Mc(G))) is the p-essential supremum of {p(x) : x € X}.

Although the norm on the Fourier—Stieltjes algebra of a groupoid comes
from its representation by completely bounded maps rather than as the
Banach space dual of the C*-algebra as it does for groups, the latter fact has
a remnant. Here we prove just one lemma regarding that remnant.

Lemma (2.1.3) [1]: Let p be a positive definite function on G, and let n
be aprobability measure in Q. Define Ypu (of (v)) = Jf(y)p(y)dv(y) for f €
Cc(G), where v=[ A*du(x) Then yp, , extends to a positive linear functional
on C*(G) whose norm is at most the Q-essential supremum of p.

Proof: From the definition of m,, it follows that the integral in question is
equal to (m,(f) & | &), where = is the unitary representation of G derived
from p and & is the associated section of the Hilbert bundle.Thus this linear

functional is clearly positive, and its norm is at most ||&||2, the square of

the norm of & in H(y), but this is at most ||&||”. which is the Q-essential
supremum of p.
Next we present a third way to think about P(G). It depends the

decomposition described of the Haar system of G over the equivalence
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relation R associated to G. This decomposition is relative to the mapping
6 = (r,s) of G onto R. Since G is o-compact it follows that R is o-
compact in the quotient topology. The decomposition of the Haar system
involves two families of measures. First of all there is a measure
By concentrated on xGy for every pair (x, y) in R, such that each ﬁyy IS
aHaar measure on yGy and ;s a translate of ﬁyy. Then there is a Borel
Haar system for R so that for every x € X we have
¥ = [ BE da¥(z,y) (5)

There is a Borel homomorphism 6 from G to the positive reals such that for
every p e Q the modular homomorphisms A, for G and Ap for R satisfy

Ay=8 Ay o 0 . For each x € X let u*be the measure on X so that a*= &* x

X

u.
Then x ~y implies u*=p?. Thus a* = pu* x p*, 50 A x =1.

Let Moc (R) be the space of bounded Borel functions on R supported on
images under 6 of compact subsets of G. Then Moc (R) is a *-algebra under
convolution, using the Borel Haar system a .We also extend this algebra to
include M(X), as done for M¢(G) and M(X), obtaining Mo (R, X) in this
case.

If uis a quasi-invariant measure on X, i.e.,u € Q, earlier we introduced
the notation A*for du(x) and we define a*similarly. Now we want to
shorten the notation, so we write v = A*, ¥ = ak*, A = 4, and A :Zu.

To integrate a unitary representation of G relative to p to make a*-
representation of Mc(G,X), we use the measure v, = 4~2p and to
integrate a representation of R we use the measure 7= AV2¥ For example,
in the first case we have

(@ (el = [ F@)@G)E o r()|n o s(¥))dve(y) (6)
Whenever f € Mc (G) and &n are L? sections of the bundle on which =

represents G. This is the formulation. From what we have abov it follows
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that vy = [ 62 B¥d,(x,y), so there is a convenient relationship
between the two measures.

For each unitary representation = of R, and each p € Q(R), we can ask
whether the representation #is cyclic, and we can define @ to be a direct
sum formed using for summands one representative from each equivalence
class of a cyclict#. Then we can write M*(R) for the norm closure of
Moc(R)). These m#’s extend to Mo(R, X), so @ does also, and we let
M*(R, X) be the norm closure of @ (Moc(R, X)). As stated before, the
algebra M*(R, X) is present only for its utility in proving results about G,
and the slightly strange definition is just suited to that purpose.

If p € P(G), we define a pairing of p with an element f € M¢(G) to give a

function on R by

(f.p)xy) = [ fps~"2 dp5 ()

Since p and §~*/2are Borel functions and bounded on compact sets we
always have ( f, p) € Moc(R). We must show that this mapping determined
by the equivalence class of p. If p = p' a.e. relative to A2, then for a*-almost
every pair (x, y) the functions p and p' agree a.e with respect to g so for
every f € Mc(G) we have (f, p)=( f, p') a.e with respect to a*.Furthermore,
we represent p and p' as matrix entries, and these have restrictions to X that
agree a.e. with respect to Q. We will show that the mapping of f to (f, p)
gives rise to a completely positive map Sp from M*(G) to M*(R).

There is another property of Sp we use, and its statement requires a little
background. That C¢(G) and Mc(G) are bimodules over C(X),where
h € C (X) acts via multiplication by h o rand h o s. Recall also that every
representation n of the *-algebra C¢(G) has an associated representation ¢
of C¢(X) such that n(hf) = ¢(h) n(f) and n(fh) = =(f) o(h) for all f and h,
I.e., so that = is a bimodule map. Hence every representation of M¢(G) also

has such an associated representation of C¢(X). We can extend ¢ to M(X),
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getting a representation that preserves monotone limits and hence
maintaining the bimodule property.

We notice that M(X) also has natural actions defined the same way on
Moc(R) and by pointwise multiplication on each L?(u;K), rendering & a
bimodule map from Mo(R) to M*(R). The main properties of Sp are
established in the next theorem.

Theorem (2.1.4) [1]: If p € P(G), there is a completely positive operator
Sp 1 M*(G) -»M*(R) that extends the operator defined by Sp(w(f)) = d({f,
p))) for f € Mc(G). This mapping is an M(X)-bimodule map. If we define
Sp(w(ge)) = ®d(pge) for g € M(X) and use linearity, we get an extension of
the original Sp to a completely positive M(X)-bimodule map of M*(G,X) to
M*(R,X) that takes w(¢) to an element of ®(M(X)). The completely
bounded norm of Sy is equal to || p ||«

Proof:

We need another formula for Sy, first on Mc(G , X ).To find one, we first
work with a subrepresentation of & acting on a space of the form L?(p ; K)

The positive definite function p determines a unitary representation mp of
G on a Hilbert bundle K, over X, as well as a bounded section &, of K, for
which we have p(y) = (mp(y) &p © s(y) | & ° r(y)) for almost all y relative to
A2. Then we may replace p by the matrix entry. Indeed, we must make that
replacement in order to make sense of the values of p on X. Suppose that

& and n are in L?(p, K), and compute
(Sp (@()E |7
= (@(f.p)¢|n ®)

= [{f,0) e, )@ (x, ¥)EW) | n () dT, (x,v)
= [[ FNpGSG) 2 (& 2 ()W) |n(x))dBE (V) dTo(x, y)

= [ F)(, )& 0 sW) | & 0T (& 0 O()E o s)|n o 7(¥))dvo(¥)
— (((np®a> 0 9)(f)) §p®g|§p®n).
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We also have
(®(pge)éln) = (pgéln) 9)
= [&, ()& x)g(x)(E(x) n(x))du(x)

= ((1,®® © 6)(ge)é,®¢ | §,®n

Now define Vp, u, ki L2 (;K) — L% (1;Kp ®K) by Vpuké= & & & and let
V be the direct sum of all the operators Vp, ., k. The calculations just done
show that for all f € M¢(G) and g € M(X) we have

Sy (oo(fl + ge)) =V* ((ﬂp®(b ° 9)(fA + ge)) V. (10)

Since m ® @& o O is a * -representation, Stinespring's Theorem shows that
Sp is completely positive. This representation also gives a formula for the
extension of Sp to M*(G, X) and shows that it is an extension by continuity.
It is not difficult to show that the norm of Sp is the essential supremum
norm of &y, and that is the same as ||p||-.

From the definition of V we see that it intertwines the natural of M(X)
on L3(uw;K) and L?(u;Kp®K).The restrictions of these natural actions to
Cc(X) are the representations of C¢(X) associated with the given
representations of C¢(G) in the proof of Renault's Theorem. This makes it
clear that Sp is also a bimodule map.

Now we want to prepare the way for the proof of the converse of the last
theorem. We need less hypothesis than we had conclusion, namely we only
need to deal with the transitive quasiinvariant measures on x.

We use the measures p*on X such that a*= ¢* x u*, as described. For
each x we have a*'= p* x y*, which is symmetric, so is trivial. That
means that 4,x= 3. Since these modular functions are all the same, we will
denote them by the single letter.

Let p,be the representation of I(R, o) gotten by integrating the trivial
representation of R on the one-dimensional bundle, relative to the measure
x. Since M,.(R) € I(R, a), the representation p,.can be restricted to M,.(R),
and we denote the restriction the same way. Define p,,on M(X) to by the
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representation by multiplication on L?(u*). We combine these two

definitions to get a representation p,.of M,.(R, X) On H,.. Let @ denote the
direct sum of all these “transitive” representations p,,, so the representation
space of &t is Hx, the direct sum of all the Hilbert spaces H,..Write M; (R,
X) for the norm closure of the image of M,.(R, X) under .Then M; (R, X) is
a quotient of M*(R,X) as a C(X) bimodule, as well as a compression of
M*(R, X). We also write M;(R) for the closure of the image of M,.(R).

It is not true that every completely bounded map is a linear combination
of completely positive maps, unless the range algebra is injective. The
domain and range are closely related and very special. We can circumvent
the problems caused by lack of injectivity, but to do so and even to deal
with completely positive maps themselves, we need to think of M/ (R, X)
as acting on a space of Borel sections. We now begin to arrange that.

Observe that the Hilbert spaces H, are the fibers in a Hilbert bundle over
X, i.e., the graph of H, I'n, has a natural Borel structure with all the
necessary properties. In fact, for each x the space H, is easily identifiable
with L?(a*), and we simply transport the usual Borel structure for the latter
bundle to H.

If g € Moc(R), define a section of I'n by letting Eg(x) be the class of g (x, .)
in L?(u*). Countably many of these sections can be chosen so that their
values at a point x always form a dense set in H,.. Thus we can also choose
a countably generated subalgebra of M(X) so that the module of sections
over it generated by the countably many &g's determines the Borel structure
on I'n. Note also that x~y implies that u*= u¥so H,=H,,.

Theorem (2.1.5) [1]: Let ¢ be a completely positive C(X)-bimodule
map from C*(G,X) to M*(R, X), and suppose that ({(w(e)) | H, € d:(M(X)).
Then there is a p € p(G) such that ¢ =Sp , and || p || < || W]l co-

Proof:

There is no loss of generality in taking {r to have completely bounded norm
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at most 1. Next we restrict § o o to C¢(G,X), getting a completely positive
map ', of C¢(G, X) into M*(R, X). For each x € X, f € C¢(G), and g € C(X)
define W', (fA + ge) = U'(fA + ge) | Hy. For each x, W', is a completely
positive bimodule map into L(H,) of bounded norm at most I', and x~y
implies ', = y',,.

The proof consists mainly of accumulating sufficient information about
the mappings ', .and objects constructed from them to assemble the desired
positive definite function p. Using the Stinespring Theorem for completely
positive maps and analyzing the equipment it provides enables us to show
that each vy’,.is of the form Spx . Then it is necessary to merge the separate
p,'S into one p, using the fact that x~x' implies ¥',= ¥', from which we
prove that p,= p,, a.e. Several more improvements in the behavior of the
functions p,finally allow us to produce a matrix entry that serves as the
desired function p.

Step 1. The Borel Behavior of x+— ', ,If f, h e Moc (R) we want to see that
x> (F)(En(x))

is a Borel section of I'n. To do this it is sufficient to show that if
f, h, k€ Mo (R) then the function x—p..(f) &n(x) | £x(x)) is Borel. Such an
inner product is given by an integral, according to the definition of p,,
namely

Il f . 2)h(x. 2)K (x,y)dp*(z)dp*(y) (11)
This integral defines a Borel function of x since the measure p* x
pu* depend on x in a Borel manner. By the definition of M;(R), every p, is
defined on M/(R) and for a € M;(R) the function x~p,(a) is a uniform limit
of functions of the form x—p..(f) for f € Mo(R). Hence for a ¢ M{(R) and
h € Moc(R) the section x+—p,.(a)(&,(x)) is Borel.

If we define {s to be the direct sum of all the 'k 's, then 1 is also the
compression of ' to H,.. Thus { maps C¢(G, X) into M; (R, X) and p,o { =
U'x. From this it follows that if f € Cc(G) and h € Moc(R) then the section
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x-P'x (F)(En (x)) of T is Borel. If g € C(X) there is a function g1 € M(X)
such that {s(ge) = @i(g1) because Yi(e) € d(M(X)) and { is a C(X)-
bimodule map. Hence for a € Cc (G,X) and h € Mq(R) the section x—{r'x
(a)(&n(x)) is Borel .

The fact that (y maps into M; (R, X), and the Borel property derive above
are essential for completing the proof.
Step 2. The Stinespring Construction

For each x we represent y'x by Stinespring's Theorem: We get
representation m, of C¢(G,X) on a Hilbert space K,and an operator V, from
H,to K,. , such that for a € C¢(G, X) we have

P'x(a) = Vemx(@)Vy (12)
We will use the details of the construction, so we repeat it here. For
Stinespring's proof, it suffices to have the domain of the completely positive
map to be a*-algebra with identity, so C¢(G, X) can be used. The space
K, is taken to be the Hilbert space constructed from the algebraic tensor
product C¢(G,X) ® H,.using the semi-inner product whose value on two
elementary tensors is given by (a®& | b® n) = (W'x(b*a) & | n). Let g,be the
quotient map from C¢(G, X)®H,, to its quotient modulo vectors of norm O.
The image of q,is identified with a dense subspace of K. (Since C. (G , X)
and H,are separable, so is K,.). The representation m,.is determined by
having ,.(a)(q(b® &)) = q,(ab®&) fora, b € C(G, X) and H,.. The
operat- or V, is determined by setting V. (§) = q,.(1Q&) for € € H,.
Acalculation of inner products shows that || V; [|2= || wx(2) ||.

Since y,, m,, K., and V, are Borel in x and constant on equivalence
classes, we get a Hilbert bundle over X that is constant on equivalence
classes. The pair (m,,V,) is minimal in the sense that 7, (Cc(G, X) is dense
inK,.

Step 3. Getting p,, from the Stinespring Representation. Now we study this

structure for a fixed x € X. By Theorem (1.1.4) we know that m, can be
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obtained by integrating a representation, «'x, of G on a bundle K* relative to
a quasiinvariant measure u,, i.e., K,= L*(u, ; K*). Let ¢, be the
representation of C(X) on K, associated with m, as a nutural
representation of C¢(G, X). In terms of the representation of K, , ¢, is the
representation by multiplication on sections of K*. We also have ¢, =
Ty | C(X) where C(X) is regarded as a subalgebra of C¢(G, X).

We denote the natural representation of C(X) on H,, by 6,; again this is a
representation by multiplication.

We need to show that p,can be taken to be u*. The first step is to
show that V, intertwines 6,; and ¢, . Take h € C(X) b € C¢(G, X) and
&, m € Hy. Then the definition of the inner product and the fact that yr'x is
C(X) - bimodule map gives

(I®hé|b®n) = (', (b")rE|n) (13)
= (W' (b"n)¢[n)
= (h®¢1b®S).
Hence q,(h ® &) = q, (1 ® h&). Using the bimodule property of y'x , the
definition of 7x , and the inner product on Ky , we compute that
(Ve (&) | g (b®M)) = (qx (W ® &) | g, (b ® m)).
= (mx(he) q; (18) [ 4 (b @ W)). (14)
Hence, V; (h&)=¢x(h) V% (&).

From the theory of representations of C.(X) or of projection valued
measures based on X, there is a bounded section of K*, which we denote by
{x, such that for & € H,, the pointwise product &Ex is a section of K*
representation the element 1, () in K,. Such a section can be gotten as
follows: let g be any strictly positive Borel function on X that represents an
element of H, , let ! be a section that represents V, (g), and set {,,= (1/g)¢ .
Then ¢, need not be a square integrable section, but will be if u* is finite so

that the function 1 is an element of H,.
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We can write V, (§) = &Ex, using the usual identification of functions with
their equivalence classes. Then for & € Hx we have
Jlel?2]&]? due< [ E]2du” (15)
Because ||V || < 1. It follows that p, is not singular relative to u*, so that
U, Qives positive measure to [x]. It also follows that | &y | is zero a.e. off
[x], so that {* = g&, is in the subspace of K,= L?(u, ; K*) consisting of
functions that vanish off [x]. By the way we integrate representations of G
to get representations of C¢(G), we see that this latter subspace is invariant
for C¢(G) and hence for Cc(G, X).From the fact that g is cyclic in H,, it
follows that gé,=V,(g) is cyclic for Cc(G, X) in K, so the subspace under
discussion is in fact all of K,.. That implies that u, is in fact equivalent to x,
so we may as well take u,to be equal to u*. That may require multiplying
the original &,by some positive function, but now we assume that to have

been done. We write v* for 1#*, getting a measure concentrated on G | [x].

In this situation, the inequality (15) implies that | & | is bounded by 1.
Wedefine Px(y) =

(7' e (@) |2 (r @) (16)

getting a positive definite function on G | [x]. Now the sup-norm of &, is the
same as the operator norm of V., and that is the same as the square root of
the completely bounded norm of ¢', , so the sup-norm of p,is at most the
completely bounded norm of ¢’,..
Step 4. p,Gives Rise to ¢’

We know that x~y implies y',= ', so m,= myand V,.=V,. Hence r’, (v)
=n'y (y) for v*-almost every y, and {,(z) = ¢, (z) for p*-almost every z, so
that p,= p,, a.e. relative to v*, and their restrictions to X agree a.e relative
to u”*.

To see that Y is the compression of Spx to H,,, we begin by setting v* =
Mxand v =g, as above, so that X =1 and A = 3. Then we calculate for

f € CC(G)a and E» ne Hx
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(W' (DEl) = (% [ Vo) (17)
= [ @ OEI W) | @2 0))a™20)av ()

= [[ 7030 8721182 eI, 2)
This shows that Y'x( f ) = Spx( f ) | H,. Next we find a formula for Yr'x(e) by
computing
W' (&)E|n) = (mu(e)Vik | Vim) (18)
= (§0x 1)

- f pr MENTO AL ()

from which it follows that 'x(e) = p,(px | X). Since Y'x is a C(X) bimodule
map, we see that y'x(ge) = p,(9p,) for g € C(X).This completes the proof
that 'x is the compression of S,,to H,. Step 5. Applying Lemma (1.2.1) to
the Functions p,.

Take functions h, k € Moc(R) from which we make sections &,and & of H.
Let & = &,(x) and n = éx(x) in the calculations above to see that is
g € C¢(G), then

(¥ (@& )| )
= [ 9 O SR ()8 20 aw* () (19)

If & is the identity in C(X) we also get,

(¥ @60]6@) = [ PG NK i 9)d () (20)

Here it is important that the functions of x on the left hand sides of these
two formulas are Borel functions.

To apply Lemma (1.2 .1) as it is formulated, we must have a Borel family
of finite measures. We begin by considering a compact set K contained in
G. The function y—~AY(K) is bounded on X, and for every x € X we have

pu* (s(xK)) < oo Hence, for x € X the measure given by the integral
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f G ) (v)
s(x,K)

is finite.

Notice that a pair (x, y) € X x X is in 0(K) iff x € r(Ky) iff y € s(xK).
If h is the characteristic function of 6(K), it follows that h(x, r(y)) =1 iff
r(y) € s(xK), and h(x, s(y)) =1 iff s(y) € s(xK). Thus the set L, defined to be
{(x, v) e Xx G 1y eKandh(x, s(y)) h(x, r(y)) =1} is a Borel setin X x G,
and the same as {(x, y) e X x G : y € K, s(y) € s(xK) and r(y) € s(xK)}.
From the preceding paragraph, it follows that every x-section L,of L has
finite measure for v*.

Choose compact sets KicKzc ...whose union is G, and for each n
define hn=yokn) and then Lo={(x,y) € X x G : vy €K, s(y) € s(x K;,) and
r(y) € s(x K,)}. Define D1 = L1 and for n-let Dn=L,\L,,_;. Foreach neN
and x € X, let v} =(yonx)v*. This gives a Borel family of finite measures on
G. Notice that the sets Dn partition {(x, y) e XX G : vy € G | [x]}.

Now define f,on G for x € X by f,.(y) = px (v) 8 " “?(y) for y € G| [x] and
0 for other y's. If g € C¢(G) and x € X, then

[ 9wt vz
= (¥ (D)) (21)

which is a Borel function of x. Hence there is a Borel function Foon X x G
such that for each x, F,(x, .) = f, a.e. relative to v Set

F= YonFn (22)

n=1

Then F is Borel and for each x € X, F(x, . ) = f,a.e. relative to v*.
A similar analysis using u* shows that we can also choose F so that
F(x, y) = f (y) for p*-almost every vy.
Hence there is a Borel function P on X x G such that for every x we have

P(x,.) = pya.e. Also, x ~y implies that P(x,.) = P(y, .) a.e. relative to either
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v* or vY (these are the same measure) and also relative to either u*or
uYwhen restricted to X. Furthermore, | P(x,.) | is bounded by the completely
bounded norm of Yy, so | P | is bounded by 1.
Step 6. Improving the Behavior of P

Recall the probability measures uf = s(17) on X obtained from the Borel
family of normalized Haar measures on G. We have uf ~ uly ifx ~vy.
Define a new function P1 on X x G by

p1(x,y) = [p(,V)dut (). (23)

Make a function of three variables from P and use the Borel character of P
and the measures 7 to show that Py is also Borel. We need to know that P,
also essentially replicates every function p,,, and is even more invariant
than P under changing x to an equivalent point of X.

To begin with we limit ourselves to one orbit, and denote it by S. We
write pS for a choice of one of the measures uf°for xo € S . We know that
for x and y in S the functions P(x,.) and P(y,.) agree a.e. relative to A*’so
they agree a.e. relative to A*for pS-almost every z. Since A% and A% have the
same null sets, P(x,.) and P(y, .) agree a.e. relative to A% iff the complex
measures P(x,.) A* and P(y,.) A% are the same. We have two Borel mappings
from S2 to the standard Borel space of complex Borel measures on X, so the
set Es on which they agree is Borel, allowing us to use Fubini arguments.

Hence, for every x ¢ S, th arguments e set {(y, z) € $? : P(y,.) = P(x,.)
a.e. dA%} is a Borel set whose complement has measure 0 for pS x pS.
Therefore, there is a conull Borel set Zx of points z in S such that for pS-
almost every y we have P(y, .) = P(x,.) a.e. relative to A% Thus, for z € Zx it
is true that for almost every y we have P(y, y) = P(x, y) for uS-almost every
y. It follows that if z € Z, then P1(x,y) = P(x,y) for A%-almost every y. Hence,
for every x € S we have P1(x, . ) =P(x, .) a.e. In particular, P1 also replicates

every p,, since S is a general orbit.
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In the last paragraph, we enountered points y € G for which P(y, y) is
essentially constant in y because it is almost always equal to a particular
P(x, v). We need to know more about the set H ={y ¢ G : y—=P(y, y) is
essentially constant}. If A is a countable algebra that generates the Borel
sets in C, it is not difficult to show that

H=[)re 6 x o7 (@) e {011 (24)

AeA
Thus H is a Borel set. Hence the set C = {x ¢ X : 17 (H) =1} is also a Borel

set . From the preceding paragraph, it follows that C is conull in every orbit.
For z € C, the function P1(., v) is constant for A%-almost every y € zG. In
particular for z € C it is true that x, y € [z] implies that P1(x,.) A= P(y,.) 4.

The last conclusion is the additional invariance needed, and now we
change notation and simply write P for Py, since it does everything we
need.
Step 7. Making a Borel Family of Representations from P

Again, take a particular orbit, S, in X. For every pair (x, y) € S?, we have
P(x,.) =P(y,.) ae. relative to A*for pS-almost every z. Take an arbitrary
z € S. Then for A%-almost every vy» it is true that P(x, .) = P(y , .) ae.
relative to y; 1. 2% = 2502 Hense p(x, y5 y1) = p(y, y; y1) for A7 x A%-
almost every pair (y1 , v2). (The mapping taking the pair to y;y: carries
Af x Af to a measure equivalent to A#%).

Now return to studying general points of X. For f, g € C¢(G) and
(x,y) € R defined

(Fl9) ey = f fFD)Gr2dp(x, vz v)dA (y1)dA” (v,) (25)

The formula defines an inner product on C¢(G), and we write K(x, y) for the
resulting Hilbert space. For each f, g € C¢(G) the function (x, y)~(f | 9)x.y)
is a Borel function on R that is constant on sets of the form [y] < {y}, so K
defines a Hilbert bundle on R that is constant on the same sets.

For f € Cc(G), let o (f) denote the section of K (or I'k) that it determines.
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For each x, the bundle K(x, . ) supports a unitary representation: here we
denote it by m,rather than mp(x, . ) We know that x~x" implies that 7, = m,,,
which means that for y e G | [x] we have m,.(y) = mx(y) (they are on the same
space). We want to show that (x, y)~ m,(y) is Borel on X x' G ={(x, vy) :
yeG | [x]}. It will help to look at R <" G ={(x, VY, y) .y € G | [x]}. The

function

(x,y,7) & f f fF vag(r2dp vz ty)d X (v1)d A (v,) (26)

is Borel on R x' G, so (x,y)~(m,(y) o( f )(x,S(y)) | o(9)(x, r(y))) is Borel on
X x'G.
Step 8. Finding a Borel Section That Represents P

Let D be the set of pairs (x, y) € R for which the linear functional
fH2%(fP(x,.)) is bounded relative to the seminorm [|o(f)(x,y)| on C«(G).
The boundedness can be tested using a countable dense subset of C¢(G), so
D is Borel, and hence so is the set DC. For eachx € X, we have xD =
{x}* D,so that xD is conull with respect to a*. Notice that w ~ x implies
that C N D, = C N D,,, and this set is conull in the orbit. Hence xDC and
wDC have the same conull image in [x] under s.

Now, for (x, y) € D define & (x, y) to be the vector in K(x, y) such that
(©(f)x, y) | &x, ¥)) =2 (fP(x, .)) for every f € Cc(G), and for (x, y) & D.
let {(x, y) = 0. The formula makes it clear that & is Borel.

If y e C and w~ x ~y, then (w, y) € D iff (x, y) e D, so y € C implies that
Dy = [y] x {y}. Also, w, x € [y] implies that P(w, . ) and P(x, . ) agree a.e.
with respect to A¥and that K(w, y) = K(x, y). To gether, these imply that
¢w, y) = {(x, y). Then for every y € G | [y],

(TS sON ¢ (x (1))

= (W, s | {(w, 7 (). (27)
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Thus both of these functions agree a.e. on G | [x] with P(x,.). Thus we can

define p(y) =

(s MEET, s (s, 7 1)) (28)
for y ¢ #71(DC) and 1 for other y's to get a Borel function on G that agrees
a.e. with P(x, .) on G | [x].

From Step 4 it follows that {s and the compression of Sp to H, are the
same.
Step 9. The Compression Map from L(He) to L(H,.)

To complete the proof, need to show that the compression map C from
L(Ho) to L(H,) is one-one when restricted to &(M,.(R,X)). Then it will
follow that and Sp agree on Cc(G, X) forcing them to be the same.

Suppose that fo+ge € My.(R,X) and ®(fa+ge) = 0. Then there is a
representation = of R and a probability measure p ¢ Q such that
mH(fo+ge) # 0.

We need to use this to find a z € X such that p,(fa+ge) # 0, which will
imply &(fa+ge) # 0. There is no loss of generality in assuming that there is
a probability measure y' on X such that

= [ufdu'(x).Set A={(x,y) e R: x #vy, and f(x, y) #0}, and consider
two cases: a¥(A) = 0 and a#(A)#0. In the first case, =#(f) = 0 unless
a*(X) > 0, in which case we have fa = fe¢ relative to a*.Thus there is an
h € M(X) such that 0 # n#(fatge) = m#(he). Then p({h # 0}) > 0 so there
isa z € X such that p?({h # 0}) > 0, and it is easy to show that p,(he) # 0,
i.e., pAfa+ge) # 0. In the second case, there is a z € X such that a**(A)
> 0, and we will show that pA(fatge) # 0. Recall that a*? = u? x u?.

Set Ro = R\{(x, x) : x € X}.Then sets of the form (E x F) N Ro , where
E and F are disjoint Borel sets in X, generate the Borel sets in Ro , so there

must be such a pair for which

0< f Fd(u? x p?) < oo 29)
EXF
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If we set hy = yr and h2 = ye we get elements of M(X) which we think of as
elements of H,, and then the displayed integral is (p,)(f) h1| h2). On the
other hand, (p,(ge) h: | h2) = 0 because gh: ho= 0. Thus p,(fo+ge) = 0, as

needed.
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Section (2.2): Completely Bounded Bimodule Maps and

Banach Algebra

Recall that B(G) is defined to be the linear span of P(G). Because we
know that P(G) consists of diagonal matrix entries of unitary
representations we can form direct sums of representations to show that
elements of B(G) are also matrix entries that need not be diagonal. We will
provide B(G) a normed algebra structure. One way to compute the norm of
an element b of B(G) is in terms of the positive definite functions on a
larger groupoid for which b can appear as an “off diagonal part.” This is the
groupoid version of the well known 2 x 2 matrix method, and has been
exploited by Renault for the same purpose. This permits using the
completeness of P(G) for a general locally compact groupoid to prove the
completeness of B(G).

We can also formulate B(G) as an algebra of completely bounded C(X)-
bimodule maps on M*(G), and as a space of completely bounded C(X)-
bimodule maps from C*(G, X) to M*(R, X). Since the Completely positive
elements in the latter set are all given by positive definite functions, and the
completely positive bimodule maps form a complete set, we get one way to
prove that B(G) is complete.

Recall that o is the direct sum of all cyclic representations of C*(G). We
can construct each cyclic representation as an integrated representation of
G, and, as such, it can be taken as a representation of Mc(G), and we use
the same notation. For each a ¢ C*(G), ||w(a)|=|allis the same as
sup{||=(a) ||: = is a cyclic representation of C*(G)}. Also recall, the norms
| [|nwand || |1 and their properties.

Theorem (2.2.1) [1]: If b € B(G), the operator Ty , taking o( f ) to @
(bf) for f € Mc(G), extends to a completely bounded map of M*(G) to
itself and || T, || ,,> [|b]|e.

Proof:
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By Theorem (2.1.1), if p € P(G) then T, is completely positive, so for
b € B(G) the operator T, is completely bounded. Set M = ||b]| ¢ and suppose
0 < a < 1. Since a is arbitrary, the proof will be complete if we find an
f € Mc(G) such that o(f) # 0 and || T, o(f )||= Ma?||o(f)]|. To find such
an f first notice that there is a 4 € Q such that the L*(A#)- norm of b is
greater than Ma, so there exist a bo € C and a n > 0 such that the set
A={y:| b(y)—bo | < n} has positive measure for 2#and |bo|—n > Ma Then
there is a compact set C € Ad such that A#(C) > 0. We take f = yc.

By the definition of || [, there is a p' € Q such that || f || > o ]
By the properties of || ||, if = is the one-dimensional trivial representation
of G, we have ||z (f)|| > o o(f)]|. Now let ¢ = n*& =*'. We have
lsHll zll=* () I> allon |-

We can find g1 and g2 in C¢(X) >0, and > 0 on r(C) U s(C). These can be
regarded as sections of the bundle for m, and it is clear that
(m™(f) o | g2) > 0 from the integral formula for the inner product. Thus
" (f)#0,s00( f)#0and o( f)+#0.

Since o(bof) =boo(f), it will suffice to show that | o((b—bo)f||<
nllo(h)]|, because then we get (|bo|-n)]s(H)||< ||ob(H)].s0
(| bo | —ma[|o(H || <[|lsb(H]|< | obf)|| =] Too(f) ||, giving the desired
inequality. Now f is a characteristic function , So (b—bo) f = ((b—bo) f)f.
Also, || (b—bo) f ||oo <mn, so the inequality we wanted on ¢ can be obtained
by applying the second inequality before Lemma (1.1.5) to both p and p'.
Thus the proof is complete.

Again we use the algebra C(G , X) to study B(G), and need the one-one
correspondence between its representations and those of C¢(G) and hence
those of G. We still use o for the direct sum of all cyclic representations of
C(G, X) each of them given as an integrated representation of G. We use
for the direct sum of all the cyclic representations of Mc(R, X) that can be
obtained by integrating a representation of R. Recall that C*(G, X) is the

operator-norm closure of o(C(G, X)) and M*(R, X) is the operator norm
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closure of @ (Mc(R, X)). If x € X, use H,for L?(u*) as before, and H, for
the direct sum of all the H,'s. Let & be the subrepresentation of obtained by
restricting to H,.
Theorem (2.2.2) [1]: Let b € B(G).There is a completely bounded C(X)
bimodule map S,: C*(G, X) —M*(R, X) such that S,(w(f)) = d({f,b)) for
f € Ce(G) and S, (w(ge)) = @ (bge) for g € C(X).For this operator we have
|6 l|eo= [ b2
and
Sp(@(e)) | Hy € (M(X)).
Proof:
The operator S, is a linear combination of four operators S, for p € P(G), and
these are completely positive bimodule maps by Theorem (2.1.4) .

For the norm inequality, we proceed as in the proof of Theorem (2.2.1) .
Let M=||b|lo and 0 < o < 1. It will suffice to find f € Mc(G) such that
o(f) # 0 and [|Syo(f)| = Ma?||o(f)||. Choose u, bo, n, A and C as in
Theorem (2.2.1), and take f = yc.

We take = to be the trivial one-dimensional representation, and choose p'
and o as before. The proof that w(f) # 0 used before works here also.

Let 77 denote the one-dimensional trivial representation of R, and form
its integral with respect to p,7#. Likewise form 7#', and let 6 =7t* @ *". It
will suffice to prove that || & ((f,.1))|| > o [|o(f)]|.

For this purpose, we need to see that|<f, 1), , = (D], ,- This

follows from the fact that f > 0 together with the relationship between v,
and vo.
Then we see that

[1<f.b=bo) || <[| (o—=b0) f lg [[ nse<m [[£ |10 (30)
using the fact thatf is a characteristic function.

Both the equality and the inequalities also hold for p',and since = and are
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the one-dimensional trivial representations, they transfer to the
corresponding equality and inequalities for ¢ and ¢’
Hence
ot onll = [l &« f.o0ll
>[5 (f o) = |6 (F  b=bo))
> [bo| & (f. | =nlld«f
>Ma| G (f, )
>Ma? [|o(f)|| (31)

In order to provide the norm on B(G) in a way that will be convenient for
proving completeness, we introduce a way to enlarge the groupoid G as it
was done. Write T» for the transitive equivalence relation on the two
element set {1, 2}, so that T. has four elements. It will be convenient to
have a shorter notation for matrix coefficients: If = is a unitary
representation of G and & and n are bounded Borel sections of the bundle H
on which 7 acts, we can write [x, &, n] for the matrix coefficient, namely

[7,&71(r) = (n(¥)E o s(V)|n o 7(¥)). (32)
Theorem (2.2.3) [1]: A bounded Borel function b on G is in B(G) if and
only if there is a function p' € P(G % T) such that for y € G we have b(y) =
b'(y, 1,2)). The function b can be expressed as a matrix coefficient using
sections of sup- norm at most 1 if and only if there is an associated p' that
can be expressed as a diagonal matrix coefficient using a section of sup
norm at most 1.

Proof:
The proof of the first assertion will be given in terms of matrix coefficients
and will include the proofs of the facts about sup norms. Let

X'=X x {1, 2} be the unit space of G' =G X To.

Suppose that 7 is a unitary representation of G on a bundle H and that
and n are Borel sections of H of supnorm at most 1 such that b=[x, &n].
Define a Hilbert bundle H over X' by setting H'(x,i) = H(x) for i=1, 2. For
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Y = (v, (i, J)) in G' notice that s(y") = (s(y), J) and r(y") = (r(y), i). That means
that we can define a representation ' of G' on H$ by «'( y") = n( y). Define a
section "$ of H by setting &'(x, i) = n(x) when i =1 and &'(x, 1) = (x) when

| = 2. Then the sup norm of &'is at most 1.and for every y € G we have
b(y) =[x, &, &7 (v, (1, 2)) as required.

For the converse, suppose we begin with H', ©', and &'. Then forx ¢ X
define H(x) =H(x, 1)@H'(x, 2) and set n(x)=(&'(x, 1), 0) and & (x) =(0,&'(x,
2)). For y € G define n( y) to take (& , &) to (n'(y,(1,1))&+n'(y,(1,2))&2 ,
7'(v7,(2,1))&+7'(7,(2,2))E2), thus acting as a matrix by left multiplication on
column vectors. The sections & and n have sup norm at most 1, and we have
b=[=m, &n].

Because of the results, we can now complete the task we set ourselves at
the beginning of the, as indicated by the section heading. Recall that for
b € B(G), Ty is the operator on M*(G) determined by multiplication by b on
Mc(G), and that we sometimes work with B(G) as an algebra of functions,
even though the elements are actually equivalence classes.

Theorem (2.2.4)[1]: B(G) is a Banach algebra with pointwise operations
for the algebraic structure and with the norm defined by

Io]| =] To| oo for b e B(G).

Proof:

Theorem(1.2.9) shows that B(G) is an algebra under pointwise operations,
and equals P(G)—P(G)+iP(G)—iP(G). Any function that is 0 for A2-almost
every point of G represents the 0 element of M*(G), so for b € B(G) the
operator T,depends only on the equivalence class of b.Thus b — T}, is well
defined from the space of equivalence classes of functions in B(G) to the
space of completely bounded operators on M*(G). Since|| T, [|co =[|0 ||,
we see that b~ T}, is also one-one.Thus the norm makes B(G) a
commutative normed algebra.

To prove that B(G) is complete, let b, b2, ... be a sequence in B(G)
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such that the norms || Tynl|eo are summable. Then Theorem (2.2.3) says
that we can construct positive definite functions p’; , p’, , . . . on the
groupoid G'=G x T such that for every y € G and every n we have b, (y) =
p'n(y,(1, 2)), and for every n we have||p', ||=|px || Two forms of the
completeness of P(G) can be used to complete the proof. We let
cp=bit+...+b,.

In the first proof, we notice that the sequence S, , Sy, ,
positive C(x')- bimodule maps from C*(G', X') to M*(R'X") is summable.

... of completely

The sum is also a completely positive C(X')- bimodule map, so by Theorem
(2.1.5) it is of the form Sy for a p' € P(G'). Then the function b defined on G
by b =p'(., (1, 2)) is in B(G) by Theorem (2.2.3). We also get || S, _p/[|
> || Senzs | = || cn — b || by Theorem (2.2.3) and Theorem (2.2.2), so
| — b]|— 0. We need to prove that || c,, —b || -0 as n—oo.

To do this begin with f > 0 in Mc(G).Then Lemma (1.1.5) say that

lo(cn =0)N)[|< [ en =b]l [0 (33)
Hence T.,(o(f))—Ty(o(f)) in M*(G). The f's span a dense set in
M*(G),and the T,,'s are uniformly bounded, so it follows that T, —T,
pointwise on M*(G). Now the fact that the completely bounded operators
on M*(G) are complete implies that the sequence T,,, has a limit, T" in the
completely bounded sense, which is automatically also a pointwise limit on
M*(G).

Hence T'=T,, so that || Ten_p || o—0 and by Theorem (2.2.1) that is
equivalent to saying | ¢, — b||—0 as n—c.

For the other proof of completeness, we notice that p'y, p'2,. . . is
summable in the Q-essential supremum norm as functions on G'. Hence
there is a Borel function p' that is the sum in that norm. By the Dominated
Convergence Theorem, p' € P(G'). Again we take b =p'( ., (1, 2)). Theorems
(2.2.3) and (2.2.2) once again show that | c, — b||~-—0 and we complete
the proof as before.

Since B(G) is a Banach algebra, any closed subalgebra of it is a Banach
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algebra. Convergence in the completely bounded norm implies convergence
in L*(A)9, so certain subalgebras are easily seen to be closed. Among these
are B(G), defined to be{b € B(G) : b is continuous}, and B(G, X), defined to
be the set of elements b € B(G) such that b | X is continuous and vanishes at
. The subalgebra B(G, X) is defined to be B(G) N B(G,X).

Theorem (2.2.5) [1]: B(G), B(G,X), and B(G,X) are closed subalgebras
of B(G) and hence Banach algebras.

The first example is a groupoid on which the linear span of the
continuous positive definite functions is not complete and there exist
continuous elements of B(G) that cannot be expressed as a difference of
continuous positive definite functions.

Let X= {(x, Y) : (x, y) has polar coordinates (r, ) with 0 <r <1,

0 € {0,1,1/2,1/3,...}} and set G = X x Z. This is a bundle of groups, and
(2, n)+(x', n) is defined iff x =«', and then it equals (x, n+n'). Write P(G)
for the set of Borel positive definite functions on G and P(G) for the set of
continuous elements of P(G). Let B(G) be the linear span of P(G), let
B1(G) be the linear span of P(G) and let B(G) be the set of continuous
elements of B(G). A bounded function p is in P(G) iff it is a Borel function
and p(r, 6, .) is positive definite on Z for each point of X. Since positive
definite functions on Z are in one-one correspondence with positive
measures on T via the Fourier transform, we can also think of P(G) as
consisting of Borel functions from X to the positive measures on T.

Define

_ ei9(1+r)n lf r>0
p(r.f.n) = { 0 if r=0
and
_ ei@(l—r) if >0
a0 6.m) = { 0 ifr=0

We can also think of these as taking values that are point masses at

e!90+7) and ¢90-7) or the 0 measure at the origin. We have p—q € B(G).
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Suppose that u € P(G) and —u < p —q < u where the inequalities indicate
the pointwise order in the space of measure-valued functions. This is the
same as the natural order in B(G) in which elements of P(G) are positive.
Since p(r, 0), .) is the point mass at e?°*™) u(r, 6, .) dominates the point
mass at that point. By continuity, u(0, 0, . ) dominates the point mass at e'e,
This means that u(0, 0, . ) has infinite norm, so there is no such u. Thus we
have a continuous element of B(G) that is not a difference of continuous
positive definite functions.

With more effort, a worse example can be made. Choose n angles, and
begin with p and q restricted to the radii with those angles. The limit at the
origin of both of them exists, the limits are the same, and it is a sum of n
point masses. To make elements of P(G) we take that value at the origin
and at all other points of X. Let b be the difference of these elements of
P(G). Any element of P(G) that dominates b must have a value at the origin
that dominates that sum of n point masses. Observe that b is 0 except on the
original chosen radii, and that the total variation norm of each value of b is
at most 2.

Now partition the angles in X into sets with 2% elements, for k=1, 2,...,
and use the construction just described to make elements bgin B1(G). Then
let b =Y 27K b,. This converges in the completely bounded norm
sinceeach by has completely bounded norm 2. Hence it also converges
inuniform norm, so that b € B(G). Also b is in the closure of B1(G). How
ever, the domination arguments used above show that b is not in B1(G).

The next example shows that locally compact groupoids can have unitary
representations that are Borel but not continuous.

Consider an action of the integers on the circle by an irrational rotation
and form the transformation group groupoid, G =T x Z. If u is a unitary
valued Borel function on T, there is a unitary representation U such that

forall t € T, u(tr) = U(t, 1). If u is not continuous, neither is U.
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Chapter 3

Measured Groupoid and Multipliers of Fourier Algebra

Dualities are established between B(G) and A(G) and the convolution
algebras €, (G) and VN(G) in the framework of operator modules. They are
used to generalize results of Varopoulos and Pisier about Littelwood
functions and completely bounded multipliers.

Section (3.1): Fourier Algebras of Measured Groupoid and
Duality

G. Pisier has recently given a new proof of a theorem of N.Varopoulos
about Schur multipliers and Littlewood tensors. In fact, he has a more
general result which he specializes both to the group case and to the case
studied by Varopoulos.

We shall adapt Pisier's proof to the case of an arbitrary measured r-
discrete groupoid. We introduce the Fourier— Stieltjes algebra B(G) and the
Fourier algebra A(G) of a measured groupoid, i.e. a locally compact
groupoid G equipped with a continuous Haar system A and a quasi-invariant
measure p. The elements of B(G) are defined as bounded coefficients of
unitary representations, or more precisely, functions of the form y = (§ o
1(y), L(y)n ° s(y)), where & , n are essentially bounded measurable sections
of a measurable G-Hilbert bundle H. The elements of A(G) are the bounded
coefficients of the regular representation H = L3(G, X), with a possible
multiplicity. In the case of the trivial groupoid G = X x X, the algebra B(G)
already appears in Krein and in Grothendieck, A. Ramsay and M. Walter
have defined in the Fourier—Stieltjes of a topological groupoid rather than
of a measured groupoid; while some parts of the theory overlap, the
measure theoretical setting adopted here is simpler and better suited to our
goal; to explain the difference, one can say that they study in the case of a
space X the bounded Borel functions on X while we study the essentially

bounded measurable functions on X.
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Just as for groups, the Fourier—Stieltjes and the Fourier algebras play
acrucial role in the duality theory of the convolution algebras C;(G) and
VN(G). To express this duality, one has to take into account the presence of
the unit space X = G©. The main result identifies B(G) as the dual of
L*(X)*® nx C;(G)®nx L>(X) and VN(G) as the dual of
L2(X)*®pnA(G)®px L2 (X). Here, we use the framework of operator spaces
and ®nx means the Haagerup tensor product over L*(X) .The crux of the
proof is anow standard application of the Hahn Banach theorem. This result
also provides an interpretation of B(G) as a space of completely bounded
linear maps. For example, in the case G = X x X, B(G) can be viewed as
the space of Schur multipliers. In the general case, the elements of B(G) are
exactly the functions which define by pointwise multiplication a bounded
or, equivalently, a completely bounded linear map of C;(G) into it self.

The studies the multiplier algebras MA(G) and Mo A(G). Just as in the
case of groups, the elements of MA(G) (resp. MoA(G)) are the functions
which define by pointwise multiplication abounded (resp. completely
bounded) linear map of VN(G) into itself. These multiplier algebras of
VN(G), contrarily to those of C*(G), may differ. The algebras B(G),
MA(G) and MoA(G) all coincide when G is amenable and it is likely that
B(G) and MoA(G) coincide only in that case (this has been proved by M.
Bozejko in the case of a discrete group). An important observation, due to
Bozejko and Fendler in the group case, is that the canonical map from
Mo A(G) into B(G * G) is an isometry. When they are viewed as the G-
invariant elements of B(G * G),the elements of Mo A(G) are the Herz-Schur
multipliers. The main results concern an arbitrary r-discrete measured
groupoid and are on one hand, which characterizes the elements ¢ of
L (G) with the property e € B(G) for every € € L*(G), which characterizes
the elements ¢ of L*(G) with the property ¢ € Mo A(G) for
every € € L”(G). The first ones are the Littlewood functions, i.e. the

functions which admit a decomposition ¢ = @r + s such that
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sup Z | o, (1) |2 < oo
r(y)=x

and 1)

sup Z lps(r) |2 <o
s(y)=x

while the second ones are the Varopoulos functions, i.e. the measurable
functions for which there exists a finite M such that
[0y 2 < Mmax(|a* | < [B*]) (2
(v.y')EA*xB¥
for all measurable subsets A, B of G and almost every x. The maining
redient of the proof is the version of the non-commutative Grothendieckin
equality presented which we apply to the von Neumann algebra VN(G) and
translate into a statement about the Fourier algebra A(G) via duality theory.
The data will consist here of a second countable locally compact
groupoid G, endowed with a faithful transverse measure 4.We assume that
G possesses a Haar system A. The disintegration of 4 with respect to A
provides a quasiinvariant measure p with modular function d (by definition,
the measures p o A and p o A~ tare equivalent and & is the RadonNikodym
derivative of p o A with respect to (u o A71). We shall also use the
symmetric measure v = 6 ¥2( u o A) on G. The triple (G, A, p) will be
called a measured groupoid. For 1 < p < o we shall write LP(G) and
LP(GO) instead of LP (G, v) and LP (GO p).
The extension of the classical theories of positive type functions on
groups and of positive type kernels to more general groupoids is

straightforward.
Proposition (3.1.1) [2]: Let (G, A, pn) be a measured groupoid and let ¢

be an element of L*(G). Then the following conditions are equivalent:

(i) For every positive integer n and every (1, ..., {n € C, the inequality
Z o(ri v =0
iLj
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holds for p-almost every x € G© and A*-almost every y1, ..., yn € G*.

(i1) For every & € C¢(G), the inequality

| o0 TEs AR Gda ) = 0

holds for almost every x € G©.

(iii) For every f € C¢(G), we have the inequality

[ om0« Dav 0

(iv) There exists a measurable G-Hilbert bundle H and & in L*(G©,H) such
that
o) =W L G or(), L(V)§ o s(y)

Definition (3.1.2) [2]: An element ¢ of L*(G) satisfying the above
conditions will be said to be of positive type. The set of (classes of
essentially bounded) functions of positive type on G will be denoted by
P(G).
Proposition (3.1.3) [2]: (i) Let G and H be measured groupoids. If ¢ is
in P(G) and y is in P(H), then @ @ Y is in P(G x H).
(i) Let G and H be measured groupoids and n:G—H be a measurable
homomorphism. If ¢ isin P(H) then ¢ o 7 is in P(G).
(iii) The sum of two functions of positive type on G is a function of
positive type.
(iv) The (pointwise) product of two functions of positive type on G is a
function of positive type.

In the next proposition and in the sequel, I> denotes the trivial groupoid
on the set {1, 2}.
Proposition (3.1.4) [2]: Let ¢ be an element of L*(G). Then the
following conditions are equivalen:
(i) @ is a linear combination of elements of P(G) .

(if)There exists a measurable G-Hilbert bundle H and sections &n €
(GO,H) such that @ = (€, 1), where(&, n)(y) £ (& o 1(v), L(y)n © s(1))
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(iii) There exists p and 7 in P(G) such that (Z* "T’) is an element of P(G x

L,).

Proof:

()=(ii). One can write ME, &) + u(n, n) as (AEDBUN, EBn) by using the

direct sum of the G-Hilbert bundles.

(i)=(i). The polarization identity expresses (&, 1) as a linear combination

of four functions of positive type.

(i)=(iii).Suppose @ = (& m). Define p = (& , &), T = (n, 1) and

F:(f;* "i),Then F= (¢, {) where { = EQertn®e: is a section of the G x I,-

Hilbert bundle H®C? where (H®C?)«x i) = H,®C? and L(y, (i, j)) =

L(y)®eij. More explicitly, if we write & =&, & =n and (x, 1) = & (x)Qei ,

then we have (C, (v, (i,j)) = @i, &) (v).

(iify=(ii). We may write F= (qf’* . ) as (G, ) where ( is a section the

G x Ix-Hilbert bundle H. We define the following G-Hilbert module H' as

follows: H',= H,1)® Hy2) and
L(y,(11) L(y, 1,2)))

L(y,(2D) L (22

We define the following sections of H" &(x) = ({(x, 1), 0) and n(x) =

(0.&(x, 2). Then o(y) = (€, O)(v. (1, 2)) = (122)(En)(¥).

Definition (3.1.5) [2]: An element ¢ of L*(G) satisfying the above

L'(n)=(1/2) ( (3

conditions will be called a (unitary and essentially bounded) coefficient.
The set of (unitary and essentially bounded) coefficients on G will be
denoted by B(G).

The set B(G) of coefficients of L*(G) is clearly a linear subspace
Moreover, it is closed under pointwise multiplication; this reflects the
operation of tensoring representations: (&1 , M1)(E2,n2) =(£1@&2,118n2). It is
also closed under the involution ¢@*(y) = @(y ~1); this reflects the unitarity

of representations: if @ = (§, n), then @* = (n, §). This makes B(G) into an
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involutive commutative algebra. It remains to define a norm to turn it into
an involutive Banach algebra. The following lemma completes the
proposition.

Lemma (3.1.6) [2]: Let ¢ belong to B(G). Then the following conditions
are equivalent:

(i) There exists a measurable G-Hilbert bundle H and measurable sections
& essentially bounded by 1 in norm such that = ().

(if) There exists elements of P(G) p and t essentially bounded byl such
that

(p "’) belongs to P(G x ).

o* T
Corollary (3.1.7) [2]: For ¢ € B(G), the following numbers are equal:

() [|e|lew = inf |&[<[[n ||~ where the infimum is taken over all the
representations ¢ = (&,n).

(i) inf ||F|| e, where the infimum is taken over all the functions F in

L®(G)
P(G x I2) such that @(y) = F(y, (1, 2)).

Proposition (3.1.8) [2]: The function || ||s) as defined above is a norm
on B(G) which makes it into an involutive Banach algebra.

Proof:

If @ = &), then [ @) | < [[& = )| [[n e s, hence [l o 5)= @]l
In particular || @ || = 0= ¢ =0.

If ||(p||< a, there exists F € P(G x I> ) such that F(1, 2) = ¢ and
||F||L°°(G)< a. Similarly, if ||(p|| < o', there exists F'e P(G x I2) such that

F(1,2) = @' and || F'|| ., < o' Then F+F' € P(G X o), | F + F'|| ;0 < o+a

L (G) L*(G)
and F(1,2) + F'(1,2) = @ + ¢, hence|| @ + ¢'[|< o+a".

The representation (EQE', n®n'") of @ @', where ¢ =(&,n) and @'=(§',n")
gives | ¢ @'l < [ o] [l @']]-

The representation @*=(n, &) of @ = (& n) gives ||o*|=]«]-
Suppose that the sequence (¢,,) in B(G) satisfies || @y, || < a,with Ya, < .

71



Then there exists a sequence (F,) in P(G x I2) such that ¢,, = F,(1,2) and
15 | o)< @ ThenF =3 F, existin L®(G x 1) is of positive type by,
for example, characterization (iii) of Proposition (3.1.1). We know that

@ = Yo, exists in L2(G) because [| @, || ey < [|@n ]l < an.

Since ¢ =F(1, 2), ¢ belongs to B(G). Moreover the series Y ¢,, converges

to ¢ in B(G) because || —XT @i || < ||F—Z7Fi | tends to zero.

L®(G)
Definition (3.1.9) [2]: The involutive Banach algebra B(G) is called the
Fourier—Stieltjes algebra of the measured groupoid G.

Example (3.1.10) [2]: When G = X is a groupoid reduced to its unit
space, then B(X) = L*(X).

Example (3.1.11) [2]: When G is a locally compact group, B(G) is the
usual Fourier—Stieltjes algebra of the group, as defined by P.

Example (3.1.12) [2]: When G = X x X is the trivial groupoid with unit
space X , where (X, W) is a measure space, the elements of B(G) are the
Hilbertian functions, as defined by A. Indeed ¢ € L™ (X x X, u % W) belongs
to B(G) if and only if there exists a Hilbert space H in fact , L2(X, ) will do
and bounded measurable functions &n: X—H such that the equality ¢(x, V)
= (&(x), n( y)) holds for almost every (x, ¥) € X x X. The algebra B(X x
X), with a different but equivalent norm.

The regular representation Reg of the measured groupoid (G, A, p) is
given by the regular G-Hilbert bundle L3(G, ), its fiber at x is L*(G,A%) ;
the action of G is given by left translation: (Y&)(y") = &y~ 1y'") and Cc(G)
provides a fundamental family of sections. We shall also consider
theregular representation with multiplicity L?(G, A, H), where H is a
Hilbert space.

Definition (3.1.13) [2]: The Fourier algebra A(G) of the measured
groupoid( G, A, p) is defined as

the closed linear span in B(G) of the coefficients of the regular
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representation.

Lemma (3.1.14) [2]: Every element of A(G) can be written as a
coefficient of the regular representation with infinite multiplicity L?(G, A,
%)

Proposition (3.1.15) [2]: The Fourier algebra A(G) is a norm-closed
involutive ideal of B(G).

Proof:

Let (y,n) be a coefficient of L?(G,A) and (), i) a coefficient of an arbitrary
G-Hilbert bundle H. Then (y,n)(x, ') is a coefficient of the G-Hilbert
bundle L?(G, M)®H = L?(G, A, H) which is isomorphic to asubbundle of
L?(G,\, I?), the regular G-Hilbert bundle whose fiber at x is L3(G, 1%, I?).
Indeed, let s*H be the induced Hilbert bundle over G via the source map s.
Then the fundamental isomorphism U from L?(G, A, H) onto L*(G, A, s*H)
defined by &(y) = y~1&(y) trivializes the action of G on H: the action on
L>(G, A, H) is given by L(y) &) = v&(r~'y) and the action on
L%(G, A, s*H) is just the regular action L(y) E(y) =y E(r ).

Finally, s*H can be embedded into the trivial Hilbert bundle G x I2. This
shows that (y, n)(x', ') is in A(G). Hence A(G) is an ideal of B(G).
Lemma (3.1.16) [2]: Given any compact set K in G, one can find f, g €
Cc(G) such that f* * g(y) =1 fory e K.

Proof:

We first pick g € Co(G) such that [ g(y 1) dA*(y) =1 for x € s(K). Then we
pick f € C¢(G) such that f(y) =1 fory e K supp g~ 1.

Proposition (3.1.17) [2]: The elements ¢ of B(G) which have an r-
compact sport (that is, for every compact subset K of G©, supp(¢p) has a
compact intersection with r~1(K)) form a dense involutive subalgebra of
the Fourier algebra A(G).

Proof: Let ¢ be an element of B(G) with r-compact support . Since A(G)

is a left L°(G©)-module, we can use a partition of the unity in in L*(G®©)
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to reduce the problem to the case when ¢ has compact support.The lemma
gives f,g € C¢(G) such that the coefficient (f, g) of the regular
representation satisfies (f, g)(y) =1 for y in the support of ¢. Hence ¢ =
¢@(f, g) is in A(G). On the other hand, &n € GO, L2(G, X)) can be
approximated in L* (GO, L%(G, L)) by elements & , nn With r-compact
support. Then the coefficient (§n , Mn) approximate (§,n) and has an r-
compact support.

In the case of a locally compact group G, it is well known that the
Banach space B(G) is the dual of the full C*-algebra C*(G) and that the von
Neumann algebra VN(G) has A(G) as its predual. To obtain a duality
between Fourier algebras and convolution algebras of more general
groupoids, one has to take into account the unit space.we consider a
measured groupoid (G, A ,u ).

Let us recall that every (continuous and involutive) representation of the
convolution algebra C¢(G, ) in a separable Hilbert space is obtained by
integrating a representation of G: given a quasi-invariant measure | and
a measurable G-Hilbert bundle H, the integrated representation L is given
by the Hilbert space L?(G©,H) and the coefficients

E LM =[(Eor). LG o s())f()dv(y) (4)
where &n are in L2(G@,H) and f is in C¢(G). The quasi-invariant measure p
is fixed throughout this work and we shall only consider those
re presentations which are absolutely continuous with respect to g . Any
such representation L extends to the involutive Banach algebra L!((G) &

L* (GO, LYG, 1)) N L®(GO, LY(G,A171)) defined as the space of functions
{ f: G—>Cwhich are measurable and such that the maps x ~ [ | f | dA*are

essentially bounded. It is normed by

||f||I:max{supf|f|dlx,supf|f|dlx} (5)
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We shall denote by C;;(G) the completion of L*(G) for the C*-norm
| £ [|=sup || L(f)||where L ranges over all representations which are
absolutely continuous with respect to p.

The regular representation Reg is given by the regular G- L*(G, A). The
reduced C*-algebra C;,4(G) is obtained by completing Cc(G) for the norm
| f [|rea = ||Reg(f)||, where Reg is the regular representation and the von
Neumann algebra VN(G) is the bicommutant Reg(C.(G))" of the regular
representation on the Hilbert space L2(G©, L?(G, L)) = L?(G, (o L).

It is convenient to use the framework of operator spaces. We recall that a
Hilbert space H has an operator space struture given by H cB(C, H) and
that its dual H* has the operator space structure given by H*cB(H, C). The
scalar product provides a conjugate linear isometry E—~E* from H onto H*.
Given two Hilbert spaces H and K, an operator T € B(H, K) and a vector
n € K, we shall use the notation n*T & (T*n)* (t = T(n*)) which defines the
transpose of T. Given an operator space E and x4, ..., x,, € E, we shall
denote by [xii] € Mn1(E) (resp. [x1i] € M1n(E)) the column (resp. row) vector
it defines.

As before, we are given a measured groupoid (G, A, n). Besides their
operator space structures, the spaces C;(G), L*(G®) and L*(GO)* are
modules over the algebra A = L*(G©). For the sake of readibility, we shall
write X = GO, The actions are defined by

hfk(y) =h(t(v)) f(v) k(s(v)) ~ forh, keL”(X)and f e LY(G)
ha(x) = h(x)a(x) for he L*(X) and a € L*(X)
a*h = (ha)* for h e L2(X) and a € L?(X)

These operations make C;(G), L*(X) and L*(X)* into completely
contractive operator L (X)-modules in the sense of [2].

Given an operator algebra A, a right A-operator module E and a left A-
operator module F, one can define the module Haagerup tensor product of

E and F over A, denoted by E ®@na F. It is the quotient of the Haagerup
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tensor product EQn F by the closed subspace spanned by the tensors
ea®f—e®af. It is also the completion of the algebraic tensor product
E ®a F with respect to the semi-norm [[u|| = inf ||e || || f || where e ranges
over My (E), f ranges over Mis(F) and u=e Oa f = Yei ®a fi .In our case,
the algebra A is L (X) and we write @nx instead of @ ,,; «o(x).

Definition (3.1.18) [2]: Given a measured groupoid (G, A, ), we define
the space X(G) =L*(X)*®nx C,;(G)®nxL*(X). Its positive part X(G)* is
defined as the image of the closed convex cone generated by the elements
a*®T®a with a € L2(X) and T is a positive element of C,(G). It has
aconjugate linear involution defined by (a*®f®b)* = b*®f *®a and self-
adjoint real linear subspace defined by X(G)s.a={u € X(G): u = u*}.

The image of a*@T®b in X will be written a*Th.

Proposition (3.1.19) [2]: Let u be an arbitrary element of X(G).

(i) It admits a representation u = a*Th with a* € L2(X)*, b € L?(X) and
Te C,(G).

(ii) Its norm is given by ||u|| = inf || a*||2|| T|| [|b||2 where the infimum is
taken over all the possible representations u = a*Th

(iii) 1t belongs to X(G)s.. if and only if it admits a representation u = a*Ta

where a is in L2(X) and T is a self-adjoint element of C.(G).

Proof:
(i) and (ii). The element u admits the representation U = Yjj ai*Tijb; with
[ai1], [bja] € L*(X)® I? and [Tij] e BH®I?), where C;(G) has been realized
as a subalgebra of B(H). One sets a = (3| ai|3)¥2 b = (3| bj|?)Y2Then
one can write ai = hia, bj = kjb with T=Yi;jhiT;jK;. Moreover,one has
la*[|2=[a*ul || b2 = | (bsu] ]| and

"T" = " [hai] [ Tii] [Ki1] "S " [hai] [Ti][Ki1] "S " [Tii] " (6)
(iii) Suppose that u = a*Sb is self-adjoint. We define c = (| a |2+ ]| b | )12
Then we have a = hc, b = kc with h, k € L*(X) we may write u = ¢*hSKc.

Then T= (hSK+ KS*h)/2 is selfadjoint and u=c*Tc.
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Remark (3.1.20) [2]: One defines similarly the space L2(X)*®nx B®nx
L?(X), where B is any C*-algebra on which L®(X) acts by multipliers, for
example, one can take B = L*(X), or M C;(G) (the multiplier algebra of
C,(G)), or the C*-subalgebra CE(E) generated by L*(X) and C,;(G).
The space obtained for this last choice of A is particularly useful and will
be denoted by X(G). Note that it contains the space L'(X) = L?(X)" ®nx
L*(X)®p,, L*(X). We shall use implicitly the fact that a representation L of
C,,(G) extends uniquely to CE(E) and to M C,(G).In particular, a coefficient
@ = (&, m) € B(G) of arepresentation L defines a linear functional on any of
these spaces L2(X)*®,, A®;, L*(X) according to the formula
@(a*Th) = (a&, L(T) bn) ()

We show that B(G) is the dual of the space X(G). The duality between
the spaces B(G) and X(G) is given by the formula (7).
Lemma (3.1.21) [2]: With above notation

(i) For every @ € B(G), there exists a unique bounded linear functional ®
on X(G) such that

® (a*fb) = [ ((a° 1)) @f (b os) dv
for a, b e L2(X),f € LY(G).

(i1) The functional @ is positive if and only if ¢ is of positive type

(iii) The map @~ respects the involution: ®(u*) = ®*(u).
Proof:
(i) For any ¢ € L*(G), the integral on the right handside is well defined and

satisfies

[a57oi0 90 < lal, Mol I I21,  @®

If moreover @ =(&, n), where {n € L®(X,H) belongs to B(G), this
integral can be written(a&, L(f) bn) where L is the integrated representation
and a& e L>(X,H) is defined by a&(x) = a(x) &(x). Let us first define @ on
the Haagerup tensor product L2(X)*®n C,(G)®n L%(X). Suppose that the
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element U € L?(X)*®n C;(G)®n L*(X) is written as U = a*® f ® b,with
a € L>(X,CP), f € Mpq(C;(G)), b € L*(X,CY (this means that
U=Ylij ai*®fij®bj then we define

o (U) = (aé, (LA (f)bn) )
where a& € L2(X,HP), b& € L2(X,H%) and (L) (f)i.j = L( fi ;). This yield
|o) [ < flall2llell=[ 1 oll2[n]l- (10)

hence |® ) | < "é"oo"n"oo"U " and " () "S "(p" BG) . Finally, since @
vanishes on the elements a*h® f ®kb—a*®hfk®Db as above, it factors
through the quotient.
(1) If @ = (&, &) is of positive type, then
O (a*®T®a) = (a&, L(T)as) (11)

is positive when T e C,(G)) is positive. By continuity, it is positive on
X(G)+. Conversely, if @ is positive, then
[ @(f* * f) dv is positive for every f € C¢(G) and, according to Proposition
(3.1.1), ¢ is of positive type.
(iii) One checks the equality on u = a*fb and uses the symmetry of the
measure v.

We want to show that the map @I, = @ is isometric and onto. The
case of a positive linear functional is easily handled.
Lemma (3.1.22) [2]: Let X(G) be as above

(i) Every element u € X(G)+ can be written u = a*T a, where a € L*(X)
and T is a positive element of C;(G)).

(if) Let W be a positive linear functional on X(G) of norm not greater
than one. Then there is a unique ¥ € P(G) such that ¥ = .
Moreover, ||y < 1.
Proof:
For (i), we first observe that the set of elements of X(G) of the form
U =a*Ta, where a ¢ L>(X) and T is a positive element of C;(G)) is closed
under positive scalar multiplication and finite sums. Let us show that it is
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closed for the norm. Suppose that u is the limit of un= an*Tn an with Ty
positive. We write u = a*Ta with a cyclic for L*(X). By continuity, we
obtain that for every ¢ = (, ) € P(G), (a&, L(T) a&) = ®(u) > 0. There fore,
L(T) > 0. for every representation L and T > 0.

For (ii), we choose a function ¢ € L?(X) which is continuous and does
not vanish. The linear functional ®1 on C*(G) defined by W1(T) =
Y(c*®@TQ®c) is positive and can therefore be written W1(T) = (§1,1(T) &)
where L is a representation of C*(G) in a Hilbert space H and & € H.

According to the result already quoted, there exists a quasi-invariant
measure and a measurable G-Hilbert bundle H disintegrating the
representation L. Since the representation of Co(X) provided by Wi is
absolutely continuous with respect to 4, we may use p as the quasiinvariant
measure of this disintegration. Thus we may assume that H = L2(X, H) and

write

¥y (f) = f & o (). LG)E o sOF @)V () (12)

For f € C¢(G). One deduces the equality ¥((h¢)*®f ®(hc)) =(h&1 ,

L(f)h&1) for every h € C¢(X) and every f € C¢(G). Using an approximate
unit in C*(G), the norm estimate on ¥ gives "h&l "2 < "hC"z for every
h € Cc(G). Thus we may write &= c& where & € L™ (X,H) has norm less than

one. This gives

W((he) ®FR(Kc)) = f (&, £V F(Kc)dv (13)

for every h, k € C¢(X). By density, this implies that P((a*@T®b) = (a&,
L(T)bE) for every a, b e L2(X) and T € C,(G). Thus we have written ¥ = P
with ¢ = (& ,) € p(G). The uniqueness is clear : Let y1,2 € B(G) be such
that ¥= .= .then [ Y1 f dv = [ Yof dv for every f € Co(G) and Y1=ys.
The main result is an application of the Hahn-Banach theorem. The

proof given below is modelled after Haagerup.
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Theorem (3.1.23) [2]: The map ¢ — ® defined above is an isometry
from B(G)onto the dual of

L*(X)*®nx C;;(G)® ), 000 L7 (X).

Proof:

Let @ be a bounded linear functional on X(G) of norm not greater than one.
We introduce the groupoid G x I, and the space X(G x I,) corresponding
to the algebra Ej(G)(G x I,) generated by C;(G x I,) and L”(X x {1, 2})
as in Remark (3.1.20). We shall construct a positive linear functional ¥ on
X(G % I,), with @ as the right upper corner. The elements of X(G x I,)
will be written as(2 x 2)-matrices with coefficients in X(G), for example
[a*(i) T(i, j) b(j)]. We fix vectors c(1) and c(2) in L?(X) cyclic for L*(X).
Let E be the linear subspace of EE(G x [,) consisting of the matrices of the
form [T(i, j )], i =1,2, where T(1,2) and T(2, 1) belong to C,;(G) and T(i, i)
= T(i) belongs to L*(X). We define on E the linear functional W1 by the
formula

w1 = Y [ C@OTO@G D)

i=1,2
+ ®(c(2)'T(2,1)c(1)) + @*(c(1)*T(1,2)c(2)). (14)

I claim that W1 positive on positive elements. By continuity, it is enough
to check the positivity on the positive matrices T=[T(i, j )] such that T(1)
and T(2) are bounded from below by a strictly positive number. Then, the
positivity of T is equivalent to the positivity of

( 1 T(1)~*27(1,2)T(2)~1*2
T(2) 12T (112)* T(1)~1/2 1

But the positivity of this latter matrix is equivalent to the norm
condition
[T@W)~2T(1,2)T2)~ 2 || <1 (15)
We write S =T(1)~2T(1,2)T(2)""2.Then
| oe@*T12)e2)) |= | @y T2 sT@)M2 c(2)) |
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[T 2e) ||2[| T2)¥2c(2) |- (16)
Hence

p(0) 2 Y 120 - 2|T@2e |, IT@2c@], = 0 @7)
1,2

By Krein theorem (is operation about convex sets in topological vector
spaces. A particular case of this theorem, which can be easily visualized,
states that given aconvex polygon, one only needs the corners of the
polygon to recover the polygone shape. The statement of the theorem is
false if the polygone is not convex, as then there can be many ways of
drawing apolygonhaving given points as corners.

Formally, let X be alocally convex topological vector space (assumed to be
Hausdorff), and let K be acompact convex subset of X. Then, the theorem

states K is the closed convex hull of its extreme points) [6]. it extends to a
.- . . ~ —_— ~ 2
positive linear functional, Pon C;i(G x I2) of norm #(1) = |c|}=

lc@:+llc@) ;- Since ¢ = (c(2), c(2)) is cyclic for L=(X x {1, 23),
there exists by extension by continuity a positive linear functional ¥ on
X( G x 1) of norm not greater than one such that ¥(c*Tc) =F1(T) for T €
Ej(G x 13). By construction, for a matrix T which has T(1,2) as only
nonzero entry,¥(c*Tc) = ®(c(1)*T(1,2)c(2)). Therefore, ¥(1, 2) = ®, which
is what we wanted.

Now, according to part (ii) of the previous lemma, there exists
Y € P(G % I2) of norm not greater than one such that ¥ = I,.. If we define ¢
as the right upper corner ¢ = (1,2), we have ® = l,. Moreover, we know
that This concludes the proof that ||¢|| < 1. This concludes the proof that
I: B(G)—X(G)* is isometric and onto.
Remark (3.1.24) [2]: There is a norm decreasing inclusion from L!(G)
into X(G). Indeed, every

f € Cc(G) admits a representation f(y) = aor(y)g(y) b o s(y) with
a, b e L?(X) and g € C¢(G). The element a*gb € X(G) depends on f only
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since for every ¢ € B(G), p(a*gb) = [ fo dv. Moreover, this show that
|a*gb]|< || f ||« In the case G = X x X, where X is a measure space, this is
the well known inclusion of L'(X xX) =L'(X)®:L'(X) into
L1(X)®u L1(X) (which is equivalent, according to the Grothendieckin
equality , to L1(X) ®: L(X)). In the case of a locally compact group, this
inclusion can be written f— [ f(y) L(y) dv(y), where L is the universal
representation of G.
We may combine the theorem with the following result:
Proposition (3.1.25) [2]: There is acomplete isometry:
(X(G))* = CBxx(C; (G), B(L*(X)))

where the right-hand side is the operator space of completely bounded
linear maps from C;(G) into B( L?(X)) which commute with the left and
right actions of L*(X).
Proof:
It is known that the standard dual of H*®n E®n H is completely isometric
to the operator space CB(E, B(H)). The isometry ®—¢1 is defined by

(a.®,(T)b) = ©(a*RTRb (18)
wherea,be H=L?*(X)and T € E = C;(G). Itis clear from this formula that
® factors thru X(G) if and only if ®1 is a bimodule map for the left and
right actions of L (X).

There is a fourth interpretation of the Fourier—Stieltjes algebra B(G)
which has been already observed notably, where it is used to define the
norm, and in the case of an r-discrete principal groupoid.

The following proposition is essentially Theorem (2.1.1).

Proposition (3.1.26) [2]: Let ¢ be an element of B(G). Then pointwise
multiplication by ¢ defines a completely bounded linear map from C;(G)
into itself. Moreover, its completely bounded norm is not greater than || o |-

Proof:
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Let us write ¢ = (&,n) with &, n € L°G©,K) and (M, K) a representation of
G. Given an integer n, an arbitrary representation (L, H) of G x I, and
o.p e L2(GO x {1, ..., n},H), we may write, for f € C¢(G x 1)

(@ L(e/)B) = (&L (f)B) (19)
where L is the representation L ® M on the bundle H ® K (with fiber
H,;®K, and & (resp. f3) is the square-integrable section & (x,i) = a(x,i) ®
E(x) (resp. B (x, i) = B(x, )®n(x)). Since ||d||2 < ||(x||2 ||§||oo and
1Bl < I8 llzlIn|l- . we deduce that

| @Lon|<lalzlollfl.,,,

< [lolllIf]

Let us summarize the various characterizations of the elements of the

I18]2 (20)

This shows that ||of (21)

* *
Cu(GxIn) Cu(GxIn)

Fourier—Stieltjes algebra B(G) that we have encountered.
Theorem (3.1.27) [2]: Let ¢ be an element of L(G).Then the following
conditions are equivalent:
(1) ¢ belongs to B(G) and has norm not greater than one.
(ii) For every a, b € L2(X) and every f € C¢(G ),

| faor(y) o) £(r) b o sy) dv(y) |< [lall2[I £ | ][]
(1i1) ¢ defines by pointwise multiplication a completely bounded linear
map from C;(G) into B(L?(X)) of completely bounded norm not greate
than one.
(iv) @ defines by pointwise multiplication a bounded linear map from
C,(G) into B(L?(X)) of norm not greater than one.
(v) ¢ defines by pointwise multiplication a completely bounded linear map
from C; (G) into C;(G) of completely bounded norm not greater than one.
(vi) ¢ defines by pointwise multiplication a bounded linear map from C,;(G)
into C;(G) of norm not greater than one. Moreover the corresponding
notions of positivity all coincide.

Proof:
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The equivalence of (i), (ii) and (iii) has been already established. The
above proposition shows that (i) implies (v). The implications(v)=(vi),
(vi)=(iv) and (iv)=(ii) are all obvious.

The interpretation of B(G) as a space of completely bounded linear
operators , namely CBxx(C;(G), B(L?(X)), provides it with two matrix
norm structures:

B(G,M,) ¥ CBx x(Ci(G), B(L*(X))® Mp) (22)
B(G, M;)% CBy x(Ci(G)® M, , B(L*(X))). (23)
We shall give an alternate definition of these spaces.

In order to define B(G, M,,), we introduce operator-valued functions.
Given an auxiliary measurable G-Hilbert bundle K, an essentially bounded
measurable function @: y € G~o(y) € B(K; (), Kr(,)) Will be said of positive
type if for every positive integer m,p- almost every x € G© and A*-almost
eVery yy,..., ¥m € G* the matrix [y;(y;'y;)y; '] defines positive operator
in B(K;"). The condition (iv) of Proposition (3.1.1) says in this context that
¢ is of positive type if and only if there exists a representation (L, H) of G
and an essentially bounded measurable function & : x € GOE(x) €
B(K,, H,) such that ¢(y) = (§ o r(y))*L(y)§ o s(y). We shall write simply
¢ = &*E. The set of these operator-valued positive type functions will be
denoted by P(G, B(K)) or by P(G, M,) in the case of the trivial bundle
K= GO x (™ The Banach space B(G, B(K)) is the linear span of
P(G, B(K)). More generally, one can define the Banach space B(G, B(H2
,H1)), where Hi, 1 =1,2 are two fixed measurable Hilbert bundles over X. Its
elements are the functions of the form @(y) & &7&(y) = (&1o r(y))*L(y) &2 0
s(y) ,where (L,H) is a representation of G and &; belong to L*(G(©,B(H;,H)).
Its norm is given by || o [|=]| & || || & where the infimum is taken over all
the representations ¢ = £{&2.The duality results which have been established
for B(G) carry over to B(G, B(Hz, H1)). Indeed this space is the dual of

L*(X, H)*®py Ci(G) ®px L*(X,H2),
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where the duality is given, for & € L”(X,B(Hi,H)) ,ai € L>(X, Hi), T € C;(G)
by &é2(ajTaz) = (Eiar , L(T) &2a2), where &iai € L*(X, H) is defined by
Eiai(x) = & (x) ai(x). In this case, it is usually impossible to write an
arbitrary element of the tensor product as a single elementary tensor since
the representation of L™ (X) is no longer cyclic. On the other hand, the dual
of the above tensor product is easily identified as the space CBxx(C,(G),
B(L%(X, Hz), L?(X,H1))). When one specializes Hi=H- to the trivial bundle
X x C™, this says that both definitions of B(G,M,,) agree.

Let us now define B(G,M:) or more generally B(G, L'(H2 ,H1)) where
H1 , H2 are two fixed Hilbert spaces. Given a representation (L, H) of G and
& € L(X, H®nHi ), i=1, 2, one defines ¢ : y € G—(y) € Hi®n H2 by ¢(y)
(&1, &) = Er e 1(y), (L(V®1)E2 © s(y)) where (, ) is the canonical map
H®H: x H®H, —Hih ®H> . We define B(G, Hi®nH>) as the space of
these functions and provide it with the norm || ¢ [|=inf|| &1 || || €z |, where
the infimum is taken over all the representations ¢ = (£1,€2) In the case
Hi=H2 =C™, we write B(G,M,,). A proof similar to the one given above
shows that this space is the dual of

L2 (X)* @y (C(G)®K(H, , Hy))®pyL?(X).
The duality is given, for & € L*(X,H®n Hi), a1, a2 € L*(X), T € C;(G)®
K(Hz, Hi) by
(&1, &) (a1Taz) = (a1&u,(L & 1 )(T) a282) (24)
On the other hand, the dual of this tensor product is easily identified as the
space CBx, x(C;;(G)K(Hz, H1), B(L*(X)). In particular, B(G,M;,) can be
identified with CBx, x(C;;(G)®M,, , B(L*(X)).

We equip B(G) and A(G) with the operator space structure A(G, M,,) c
B(G, M,,).

Proposition (3.1.28) [2]: Let (G, A, p) be a measured groupoid with unit
space G@ = X. Then
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(i) Every element u of L?(X)*®nx B(G)®nx L*(X) can be written u = a*¢ b
with a, b € L2(X) and ¢ € B(G).
(i) For u e L2(X)*®nx B(G)® nx L*(X), || u||= inf| a]2]| @] |02 over all
the possible representations u = a*b.
(iii) The above statements hold with A(G) in place of B(G)
Proof :
Every element U e L*(X)*®n B(G)®n L*(X) admits a representation
U=Yij ai*eijbj with [aii], [bj] € L*(X, I?) and [¢j] € B(G, B(I?)). Let us
assume that"U " < 1. Then, we may impose that" [aii] ||=|| [bj1] " =1
and || [y]|| < 1. By definition of B(G, B(I?)), there exist a representation
(L, H) of G and &n € L*(X), B(I?, H)) such that ¢ij = (Esi , ngj ), where (&i)
is the canonical basis of 12and we may impose that || &]|-<1 and||&||~< 1.
As before, we introduce a = (¥ | ai|9)Y3b= (X | bj |92 and we write a; =
hia, bj=kjb. We have a, b € L?(X), ||al|2 = ||b||==1.hiK;j € L*(X) and
> | hi|? (x) =2 | Kj| 2 (x) =1 for almost every x. We introduce the vectors
&=y hie&;,n' = They satisfy || &']|-< 1 and ||n'[|-< 1 . Moreover, the image
u of U in L2(X)*®;,, B(G) ®,,L2(X) can be written u =Y (hia)*gij(kjb) =
a*oeb, where ¢ = (&', n'). We have realized the representation u = a*@b with
lallzle |l [|b]l2 < . The proof for A(G) is identical.In this case,the
representation (L, H) is a multiple of the regular representation.

We have established above a duality between X(G) =L*(X)* ®,
Ci(G) ®px L*(X) and B(G) given by ¢(a*Tb) = (a&, L(T) bn) for
a, b e L*(X), T € C;(G) and ¢ = (&, 1) a coefficient of the representation L.
If L is a multiple of the regular representation, the above expression is well
defined for T € VN(G) and T—(a&, L(T)bn) is a normal linear functional on
VN(G). As we shall see, this provides another description of the predual of
VN(G).
Lemma (3.1.29) [2]: Let H;, 1 =1, 2 and H be measurable Hilbert

bundles over X.
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(i) Given a € B(C™, L*(X,H1)) and & € L®( X, B(H1 , H2)), we can define
V=ta € B(C™L*(X, Hz) by VA = &@r). Moreover|V|< [l&]l<[a-
Conversely, given V € B(C™, L*(X, H)), there exists a € B(C™, L?(X, C™)
and & € L”( X, B(C™, H)) such that V=a and ||V [|=]&|l- 2|
Proof:
(i) Since & is a diagonal operator and ak belongs to L%(X, Hi), &(a)) belong
to L2(X,H2) and | &@an) |2 < [[€]l < |ar]l, = [l ]l [lall 2=
For (ii), let V be in B(C™, L?(X, H)). Then we can define for every x € X

a bounded operator V(x) € B(C™, H,.) such that the equality (V1)(x) = V(x)A
holds for every A € C™ and every x in the complement of a set of measure 0.
Let V(x) = &(x) a(x) be the polar decomposition of V(x) with a(x) = (V*(x)
V(x))¥2 € B(C™, C™) and &(x) € B(C™, H,) a Partial isometry. This defines
& e L°(X, B(C™H)) and a € B(C", L*(X, C") by the formula a(A)(x) =
a(x)\.
We have V = Ea, ||&[|.= L and [[a]|=]V].
Theorem (3.1.30) [2]: The predual VN(G), is completely isometric to
the module Haagerup tensor product L2(X)* ®;, A(G)®,,, L*(X).
Proof:
Given integers p,q,r,s,ae Mgp(L?(X)) = B(CP, L3(X, C9)), b € M,.((L?(X))

=B(C®, L*(X, C™)) and ¢ = &*n € A(G, M), where as before & € L (X
,B(C™H)) , n € L”(X, B(C",H)) and (L,H) is amultiple of the regular
representation of
G, we define a linear map u: VN(G)—Mps by

L u(T)u = ((Ea)A, L(T)(nb)u) (25)

where A € CP, p € C°and we have used the notation of the lemma.The
elements (£a)A and (mb)p belong to L*(X, H) and satisfy the norm
estimates | ((Ea)A[| 2= [|€]|--[[al| [|2]land [|mb)u]l2 <[In < [|b]| []u] ,-0ne
deduces that u is normal and completely bounded with ||ullco < ||I&] ||a]

[nll [lo]| and therefore that||uf|c < [[a*©@e®b||. Moreover, the map
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a*OQoeObru is L*(X)-linear. We thus obtain a completely contractive
linear map from L?(X)*®,,, A(G)®,, L>(X) into VN(G)~.

Let us show that it is completely isometric and onto. Let n be an integer
and let u be a completely bounded linear map from VN(G) into M,,. It
admits the Stinespring's representation u(T) = V*L(T)W, where (L, H) is a
representation of VN(G) and V, W are bounded operators from C™ into H.
We may also assume that [[ul| , =[|V [ [|[w]|. If moreover u is normal, we
can assume that (L, H) is the regular representation. We are using here the
fact VN(G) is in standard form in H = L*(G, p o A).

We write H = L2(X, H) where H = L2(G, 1) is the regular G-Hilbert bundle
and apply the lemma to V and W. Thus we may write V = £&a and W =nb
with a,b € B(C™, L2(X, C™) and &n € L2(X, B(C™, H)) and || V= ||&]|~
lall.[wWll=]Inll-|lb]l. Therefore u is the image of a*O&*nOb ¢
M, (L*(X)* ®p A(G®;,L*(X)) and this element has norm not greater
than||uf| .

Proposition (3.1.31) [2]: Every element of A(G)" is of the form ¢ = (§
L&) with &€ L2(GO,12(G, 1))
Proof:
We choose a € L?(GO) strictly positive. As VN(G) is in standard form in
H=L?(G, p o A), there exists & € L*(G, p o 1) = L*(G©, L*(G,L)) such that
a*@a = (&1, &1). This implies that & can be written &= a& with & € L*(G©,
L?(G, L)) and that ¢ = (&, &).
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Section (3.2): Fourier Algebras and Their Multipliers

Since A(G) contains a bounded approximate unit for L*(G), the
multiplier algebra MA(G) of the Fourier algebra A(G) is naturally identified
with an involutive subalgebra of L*(G). It is endowed with the norm
@[l mac) = sup{||ow || a) . || ¥ ||a@ < 1}. Since A(G) is an ideal in B(G)
there is a norm decreasing inclusion of B(G) into MA(G).

The multipliers of A(G) have a C*-algebraic interpretation. Let ¢ be in
MA(G). By transposition, pointwise multiplication by ¢ defines a bounded
linear map of VN(G) into itself which has the same norm.

Proposition (3.2.1) [2]: Let (G, A, n) be a measured groupoid. For ¢ €
L™ (G) the following conditions are equivalent:

(1) Pointwise multiplication by ¢ defines a bounded linear map from A(G)
into itself of norm less than one.

(i) Pointwise multiplication by ¢ defines a bounded linear map from
VN(G) into itself of norm less than one.

Proof:

(i)=(ii). Let Mbe the multiplier defined by ¢. Because of the L*(G)-
linearity of M, and of the norm estimate of Proposition (3.1.31), 1QM,®1
defines a bounded linear map of L2(X)*®,, A(G) ®,,L*(X) into itself of
norm less than one. Its transpose is a bounded linear map of VN(G) into
itself of norm less than one, which is given by pointwise multi plication by
¢ on C¢(G) (viewed as a subalgebra of VYN(G)).

(i)=(i). We will first show that for every ¥ € A(G), oy belongs to B(G)
According to Theorem (3.1.24), it suffices to check that it defines a
bounded linear functional on L?(X)* ®,C,;(G) ®n,L*(X). Choose f ¢
Cc(G) and a, b € L2(G©@). Then (e, a*f b ) = (a*yb, ¢f ) and

[ (@b, of) | < llavbll,ye. 19F |y (26)

< [lagb|

VN(G). f " VN(G)
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< lalllellaq 21071,

u(G)

This shows that @y belongs to B(G) and has norm less than one. Since oy
has r-compact support if 1 has, multiplication by ¢ maps A(G) into itself.
Definition (3.2.2) [2]: An element of L®(G) satisfying the above
equivalent properties is called a multiplier of the Fourier algebra A(G); its
multiplier norm is the norm of the bounded linear map from A(G) (or from
VN(G)) into itself it defines. The space of multipliers of A(G) is denoted by
MA(G).

Proposition (3.2.3) [2]: Let ¢ be an element of MA(G). Then the
following conditions are equivalent:

(1) ¢ defines a CB map from A(G) into itself.

(i1) @ defines a CB map from VN(G) into itself.

Moreover the CB-norms coincide.

Proof:

()=(ii). Let us assume that @ defines by multiplication a CB map from
A(G) into itself of CB norm less than one: for every integer p and every
U € Mp(A(G)), we have || ||p < [|w]|» - Hence for every p, g every a, b e
Mpq(L?(X)) and every § € My(A(G)), we have

lo@uo b |, = le* © b Ob,
<lall g llowll, lIoll,
This shows that ¢ defines a CB map from L?(X)* ®px A(G)nx L2(X)

into itself of norm less than one. transpose is a CB map from VN(G) into

itself of norm less than one.
(ii)=(i). We now assume that for every p, q, every ai , b1 € M,,(L?(X))
and every y € Mp(A(G)), we have

|ai ©owObs | <llavfl o Wil oall g (28)
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We fix p and ¢ € M,(A(G)) and we show that [[ey|p < [|w]le-We
compute these norms by identifying M,,(A(G)) as a subspace of CB(C,(G),
B(L2(X)P)). We have to show that for every integer n, every a, b ¢
L2(X)P™and every f € Cc(G)n , We have
(@)D | < [[al lwl Nl N2l (29)
We identify L2(X)?P™as L(X)P®nC™ and write a= a1 O a2, b = b1 © bz with
a1, b1 € My, g(L?(X)P) = Mp, o(L*(X) and a2 , bz € Mg1(C™) = M,1(C9) . Then
we can write
(@,(eP®In)(f)b) = (a1 O oY Oby, a;O f Obz) (30)
where a;OQePOb: is an element of Mq(L2(X)* ®py A(G)®p, L2(X)) =
M4(VN(G)+) and a;O fObz is viewed as an element of C9®; C9, which is
a space which contains the dual of M,(VN+(G)) as an isometric subspace.

ai OoYOb|
a3 OfOb:||. Because of our hypothesis and of the definition of the

Therefore the absolute value of this quantity is less than |

Haagerup normthis is less than [l av[| . [[wlpllbal| a2l [l £ 1], | b2]ln

Taking the infimum over the possible representations of a and b, we obtain
the required inequality.
Definition (3.2.4) [2]: An element of MA(G) satisfying the above
equivalent properties is called a
CB multiplier of the Fourier algebra A(G); its CB multiplier norm is the
norm of the CB linear map from A(G) (or fromVN(G)) into itself it
defines. The space of CB multipliers of A(G) is denoted by MoA(G).
Proposition (3.2.5) [2]: Let (G, A, p) be a measured groupoid. We have
the following norm decreasing inclusions:

B(G) € MoA(G) € MA(G).
Proof:
Consider ¢ € B(G) and ¢,, = ¢ % I,, € B(G % I,). The interpretation of ¢ as
an element of CB(C;;(G), B(L?(X))) shows that ||, || = ||¢||. On the other
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hand, since A(G x I,,) is an ideal in B(G % I,,), we have that for §r ¢ A(G %
I,) .0,V is an element of A(G x I,) and [|@, 0| < [l || W]

This shows that @ belongs to MoA(G) with a norm less than | ¢ ||. The other
norm decreasing inclusion is clear.

We have seen that the elements of L(G) which multiply C;(G) into
itself are automatically completely bounded (and are precisely the elements
of B(G)). This is no longer the case for the multipliers of VN(G). We shall
give a condition ensuring that every multiplier of VN(G) is completel
bounded.

Proposition (3.2.6) [2]: Let (G, A, n) be a measured groupoid. Then, the
follow ing conditions are equivalent:

()The trivial representation is weakly contained in the regular
representation.

(ii) The regular representation is faithful on C;(G)

(iii) A(G) is dense in B(G) in the weak™* topology.

(iv) There exists a net (e) in A(G)* which converges to 1 € B(G) in the
topology 6(B(G), x’(‘c’))

(v) There exists a net (& ) in L G©@ | L2(G, 1))) such that

(i) x ~ || &(x) || tends to 1 in the weak* topology of L*(G©).

(i1) the coefficients (& , & ) converge to 1 in the weak* topology of
L”(G).
Proof:
It is known that (i) and (ii) are equivalent: if the regular representation is
faithful, any state of C;(G) is a weak limit of a net consisting of vector
states of the regular representation. Conversely, if the trivial representation
is weakly contained in the regular representation tensoring by the trivial
representation shows that every representation is weakly contained in a
multiple of the regular representation. Therefore the regular representation
is faithful.
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(iii)=(ii). Let T € C,(G) be such that Reg(T) = 0. Then for every a, b €
L?(X) and ¢ € A(G), (a*Tb, @)= (Reg(T), a*¢b) = 0, where a*Th is viewed
as an element of B(G)« and a*@b as an element of VN(G)=. By density of
A(G), this implies that a*Th = 0. One deduces that for every representation
L living on p, L(T) = 0 and therefore T = 0.

(i)=(iv). Assume that (ii) holds. Then the regular representation is also
faithful on C;(G) If | = a*Ta € X(G)", with a cyclic and T > 0 vanishes on
A(G)*, then Reg(T) = 0, hence T= 0 and | = 0. This shows that A(G)" is
dense in B(G)" in the topology o(B(G), X(G)). In particular, there is a net
(ei) in A(G)* converging to | in this topology.

(iv)=(iii). Let @ be an arbitrary element of B(G). Then ¢ ¢i belongs to
A(G) and weak* converges to ¢. Indeed, for every a*Tb € B(G)~, (pei )
(@*Th) = ei (a*@Tb) converges to I(a*@Tb) = @(a*Tb). We have used the
fact that B(G) multiplies C;(G).

(iv)=(v). We have seen that every element e; € A(G)" is of the form
ei=(&i , & ) where & € L2(G©, L?(G, L)). Moreover, the dualities which we
are using embed L' (G©) and L1(G) into X(G)).

(v)=(i). Let a*la be a vector state of the trivial representation, with
a ¢ L*(GO) and|al[=1.Then a*eia =(a& , a&) is a positive linear
functional associated with the regular representation. Since, by (a), the
norms||a&i||2 tend to 1, we may assume that they are bounded. Therefore,
in order to check the convergence of a*ei a to a*1a, it suffices to check the
convergence on the elements of the dense subalgebra L*(G). This con-
vergence results from (b).

Definition (3.2.7) [2]: The measured groupoid (G, A, ) is called
amenable if it satisfies the above equivalent conditions.

Proposition (3.2.8) [2]: Let (G, A, n) be an amenable measured
groupoid, then MA(G) = B(G).

Proof:
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Let ¢ be a multiplier of A(G) of norm less than M. Then pointwise
multiplication by ¢ defines a bounded linear map from VN(G) into itself,
which has the same norm. Since the norms of VN(G) and of C;(G)
coincide, it also defines a bounded linear map from C,(G) into itself with
the same norm. According to Theorem (3.1.27), ¢ belongs to B(G) and has
anorm less than M.

Let G and H be groupoids and n: H—G be a homomorphism. For afunction
¢ defined on G, the function ¢ o © will also be denoted by n*p. We shall
study this transposed map n* on various algebras of functions on the
groupoid G .

Suppose that G and H are measured groupoids with respective measures
(Vg.ug) and (Vy, ug). If m is measurable and n=V}; is absolutely continuous
with respect to Vg, then ©* is a norm decreasing homomorphism from
L*(G) into L®(H) . If we only assume that n=@ p, is absolutely continuous
with respect to uG, then we can still define n* as a norm decreasing
homomorphism from B(G) into B(H). Indeed the element ¢ of B(G) can be
written as a coefficient (&, 1) where & and n are essentially bounded sections
of a G-Hilbert bundle H. Then & o n(® and n o n® are essentially bounded
sections of the induced H-Hilbert bundle n*H and we define n*@ as the

coefficient (§ o n®, n o n(®). The element of B(H) so obtained does not

depend of the representation of ¢ as a coefficient and satisfies || T*Q || B(H) =

lo |l 5g)- Moreover, if m is r-proper, in the sense that the inverse image of

an r-compact subset of G by & is r-compact, then n* maps A(G) into A(H).
In the case m: G X H—G is the first projection, n*¢ is denoted by ¢ x 1.

As before, I,,denotes the trivial groupoid on a set with n elements.

Lemma (3.2.9) [2]: Let I be a trivial groupoid and n: G % |-G the first

projection, then

n*: B(G)—B(G X |) is a complete isometry.

Proof:
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We show that ©* is an isometry and leave the general case to the reader ¢
Suppose that ¢ € B(G) is written as a coefficient (&, ) where & and n are
essentially bounded sections of the G x I-Hilbert bundle H. Since G and
G x| are Morita equivalent, H is, up to isomorphism, an induced bundle
n*H', where H' is a G-Hilbert bundle. Thus, for a.e (v,(i, j) € G X I, ¢(y) =
(&(r(y), i), L(y) n(s(y), j ). By Fubini's theorem, there exists (iy, j) € | such

that the equality above holds for a.e. y. This shows ||(p ||B(G) < ||§||oo ||n "oo,

hence [ o | B@G) = lo > I"B(le)'
Proposition (3.2.10) [2]: Let ¢ be an element of L*(G). Then the
following conditions are equivalent:
() ¢ belongs to MoA(G) and has norm less than one
(if) For every measured groupoid H, ¢ x 1 belongs to MA(G x H) with
norm less than one.
Proof:
(i)=(ii). Pointwise multiplication myby ¢ defines a c-weakly continuous
CB map from VN(G) into itself with CB-norm less than one. It extends
uniquely to ac-weakly continuous map 77 from VN(G)QVN(H) (the
spatial tensor product) into itself of norm less than one such that
My (a®b) = my(a)®b (31)
for every a ¢ VN(G) and b € VN(H). We can identify VN(G)®VN(H) and
VN(G x H). Thus (ii) results from Proposition (3.2.1). The reverse
implication has been observed (it suffices to consider H =I,, for all n's).

The following result emphasizes the good behaviour of the CB

multiplier algebra with respect to groupoid homomorphism .

Proposition (3.2.11) [2]: Let G and H be measured groupoids and :

H—G be a measurable homomorphism such that ﬂfo),uH< U - Then, m*:
B(G)—B(H) extends to a completely contractive homomorphism
*: MyA(G)— MyA(H).
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Proof:

Let & € MyA(G) be given. Propositions (3.2.10) and (3.2.1) tell us that
pointwise multiplication by 1 x ¢ defines a o-weakly continuous linear map
m from VN(H x G) into itself. On the other hand, the homomorphism
id x n: H>H x G induces an injective homomorphism L: VN(H)—VN(H
x G). One checks that m sends the image of VN(H) into itself. Therefore,
there exists a unique c-weakly continuous linear map n of norm less than

o]l from VN(H) into itself such that m o L = L o n. One checks that
Moa(c)

the transposed map from A(H) into itself is a multiplier , denoted by n*¢.
Replacing G by G x I,shows that n*¢ is completely bounded with norm
less than || ¢ || Moage, TTIS defines the map MoA(G)— MoA(H). In case vk

{ v ,m* is the restriction to MyA(G) of the well defined homomorphism
*: L”(G)— L (H).

Recall that, given a groupoid G, a (left) G-space X comes equipped
witha surjection r = (@ : X—G© and a multiplication G = X—X, where
G * X denotes the set of composable pairs (y, x) where s(y) = r(x). The
associated semi-direct product is the set H = G * X with unit space X,
multiplication law (y', yx) (y,x) = (y'y, x) and inverse (y, x)™* = (y 1, yx).
We assume that X and G are locally compact and that these operations are
continuous. The Haar system of G defines the Haar system of H. We
assume that G and H are equipped with quasi-invariant measures p; and
Uy such that r= pg < pg.
Proposition (3.2.12) [2]: Let X be a right G-space as above, H = G = X
the semidirect product
groupoid and & the projection homomorphism of H onto G.
() Let ¢ be in L*(G) and n*g, be its image in L™ (H). Then, ¢ belongs to
MyA(G) if and only if n*¢, belongs to MyA(H). Moreover they have then
the same norm.
(i1) The induced homomorphism n*:M,A(G)— M,A(H) is an isometry.
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Proof:

We assume that n*¢ is in MA(H) and call m the o-weakly continuous
linear map m from VN(H) into itself it defines. The action of G on H by left
multipliers induces an injective homomorphism L from VN(G) into VN(H).
One checks that m maps the image of VN(G) into itself. Thus there exists a
unique o -weakly continuous linear map n of norm less than

|7 | ey from VN(H) into itself such that m°L = Lon. One checks that

n agrees with pointwise multiplication by ¢. Therefore 7 is in MA(G) and
I0 1l ey < I7*0 1l yyagiy- The reverse assertion has already been shown.
The property (ii) results from (i).

The most fundamental G-space is the space G itself, where G acts by left
translations. The corresponding semi-direct product is the groupoid G,
This groupoid is amenable in any possible sense, since it is the principal
groupoid associated with the quotient map r: G—G©. Its C*-algebra
C*(G®@) = ¢,,(GP) is the continuous trace C*-algebra associated with
the continuous field of Hilbert spaces x—L?(G,A*). We choose the
realization.

GD=G+G={(1,7)€G x G: 1(y) = 1y} (32)
Then, the fundamental homomorphism n: G * G—G is given by
n (v,¥") = ¥~y We assume as usual that G is equipped with a Haar system
and a quasi-invariant measure p .Then G * G is equipped with the Haar
system AY=§,, x A" and the invariant measure p o A.

M. Krein has put forward ,in the case when G is a group, the relation
between B(G) and B(G x G) and proved that «* is isometric when G is
amenable.. The following result which generalizes, clarifies this relation.
Theorem (3.2.13) [2]: Let (G,A,n) be a measured groupoid and let
.G * G — G be the

fundamental homomorphism. Then ©* is an isometry from M,A(G) onto

the G-invariant elements of B(G * G).
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Proof:

We know that n*:MyA(G)— MyA(G * G) is isometric. But we have
MyA(G * G) = B(G * G) because G = G is amenable.

Definition (3.2.14) [2]: The G-invariant elements of B(G * G) are called
the HerzSchur multipliers of G.

F. Lust-Picquart and G. Pisier have established the following version of the

non-commutative Grothendieck theorem. The following statement is taken.
Theorem (3.2.15) [2]: Let A be a C*-algebra, n an integer, T , ..., T, A

and n and o1,...0n € A*. Then the following inequality holds:

n n n 1 n 1
| Z w (T)| < f [ Z zjw; || ,dz IZ T |2+ || Z T;'T; "ﬂ
1 ™ g i i

We recall that || X7 TiT; || 2 is the norm of the row vector [Ty, ]=[ Ty,..., Ty]

and || X7 T*Ti|| Y2 is the norm of the column vector [Ty1] ='[Ty,..., Ty)-

We are going to apply this result in the case where A = C;(G) is the C*-

algebra of the measured groupoid (G,\,u) and deduce the following

theorem.
Theorem (3.2.16) [2]: Let (G, A, p) be a measured groupoid, n an

integer f1, ..., f, € Cc(G) and @1, ..., o, € A(G). Then the following
inequality holds:

» [ o:rmave)|
1

<2 fT N Zziq)i lioydz  Lar(f) +ac(f)]

where a,[resp. a.] denotes the norm of L?(X)* ®;,Min(C;(G)) ®pxL*(X)
[resp. L*(X)*®pnx Mni(C;(G)) ®nyeL?(X)1 and f=(f1, ..., fn) is viewed as an
element of both spaces.

Proof:
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We proceed. By homogeneity, we may assume that a,.(f) +a.(f) =1. Given
& > 0, there exist non-vanishing a, b € L2(G©) , and Ry, ..., R,,€ C¢(G) such
that fi=aRib [[a[2=1 [|bl2=1and[[[Rs. ..., Rl || y1ncsy) = (1+8) @r(F).
Similarly, one can find non-vanishing ¢, d € L?(G©®) and S1, ..., S, € C¢(G)
such that
fi=cSd [[c[|2=]|d[|2=Land ||[Sz, ... S 1| mnacyayS (118) oe(f).
Finally, we define a’ and b' by a'? = a,.(f)a? + a.(f)c? and b2 = a,.(f)b?
+ a.(f)d? Then||a'[|2=]|b'[|2=1 and we may write @ = ha' and b = kb" with
h and k bounded by 1/,/ a,.(f). Writing R'i= hRik, we obtain

fi=ard @, =1 b, =1and| SRR <1+
and similarly
fi=asp e, =1 b, =1and| s <1 ve

Then, we may assume that R''= S’ The desired inequality results from
Theorem (3.2.15) with T;=R;=S; andw; = a’¢;b’. Indeed,

| Z f o ML) | = | ia'goib'(T)i |
1 1

n
<2(1+ e)f I Zzi a'(pl-b’"*dz
1

and

n
|| a' (Z zl-(pl-> b’

1

n n
@D 20l sy 191,01 201l ey
1 1

We assume from now on that G is r-discrete. The following lemma gives
an estimate of the norms a,-( f ) and a.( f ) when the functions f1, ..., f,are
supported on bisections, that is, sets on which the restrictions of the maps
rand s are one-to-one.

Lemma (3.2.17) [2]: Assume that G is r-discrete and that u has module
8. Let f be in C¢(G) and let Sy, ..., S,,be a cover of supp f by open disjoint
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bisections. Let fi be the restriction of f to Si. Then, for every @1, ..., @, €
B(G), we have:

| Z f ¢ fidv| < ol s f ( f Vak adax) du(x)

and

| Z [ octiav] < loll g, [ ([ 17176712 auco

Proof:
We write @i as a coefficient: @i = (&ni ) with &ni € L®(GO,H) We then

have:

> [ oititw =" [€ore). L0 R WA IduE)
1 1

= > [ (€ 0 (5, LS G A58 (Six) )
1

We have taken into account the fact that for a given i and a given x,

there is at most one element y = Six in S; with source x. Therefore,

" octavl <3 [ g oGl Ine e | fitsn |82y
1 1

< Sup,y [E6D1| fz | n:Ge) || £:(Si) 822 (S;x)du(x)
1

< supy [| €0 || f(z I7:) "2>
1

112

x (Z | £i(Six) | 2 5(5ix)> du(x)
1

<su oo, [ (Y ol
1

1/2

112
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1/2

x f (Z | (s | 26<sl-x>> du(x)
1

n 112
<s oo, [ (Y Iol’)
1

1/2

<[{ D 1 lzew) | duw

s(y)=x

This gives the first inequality. The other inequality is proved in the same
function.

Combining this lemma with the previous theorem, one obtains the
following result:
Proposition (3.2.18) [2]: Assume that G is r-discrete and that p has
module 6. Let f be in Cc(G)
with compact support K, and let S, ..., S,,be a cover of K by open disjoint

bisections. Then, for every bounded measurable function ¢ on G, we have:

1/2

[ [oravl <2 [eaol gz f ([ 1717001) " auco
.

+f(f |f|25‘1d/1x)1/2 du(x)]

where zs(y) = zi if y € Sj and zs(y) = 0 otherwise.

Proof:

We apply the theorem to fi = fisi and @i = @si and use the estimate of ar(f)
and oc(f) provided by the lemma.

Corollary (3.2.19) [2]: Let ¢ be a bounded measurable function on G.
Then the following conditions are equivalent:

(i) There exists a partition of G by a countable family of open bisections S;
such that e belongs to B(G) for every bounded function € constant on each
Si.

(ii) @ admits a decomposition ¢ = @®+¢@@ where @M and @
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satisfy, respectively,

SUDs Z oW |2 <o and  sup, Z lp@ @) |2 <o
s(y)=x r(y)=x
(iii) For every bounded measurable function €, g belongs to B(G).
Proof:
()= (iii). By the closed graph theorem, there exists a constant M such

that for every € € I°(N), we have || 2&i @|si || <M "8"00 Then for every

B(G)
finite subfamily Sr = (Si );crand every z € T%, we have [|zsro || , ;) <M.
Hence for every f € C¢(G), it holds that
1/2
| [ ofav] szMxU(flflzadax) du() (39)

[ ([ 712 6-1dax)1/2 du(x)]

This says that ¢ defines a bounded linear functional of norm <2M on the
space LY(GO, 12(G,647 1) N LY(GO, [2(G, §71A)). Notice that in the
duality (¢,f) =f@fdv ,the dual space of LY(G©, L*(G, §171)) is L°(GO),
L?(G, 271)) while the dual space of L}(GO), L2(G, §~1h)) is L*( GO, L2(G,
L)). Therefore ¢ belongs to the dual space L®(G©, L?(G, 171)) + L* (GO,
I2(G, V).

(ii)=(iii). It suffices to consider the cases ¢ = (), i =1, 2. Suppose for
example that ¢ belongs to L*(G©, L?(G, X)). Then so does @ For every
bounded measurable function €. To conclude, observe that every element
@ € L®(GO), L2(G, L)) can be written as the coefficient @ = (@n).
where 1 is the characterist function of G© (and it has a norm not greater
than || @||). The other case is similar.

(iii)= (i) is trivial.

Theorem (3.2.20) [2]: The space of multipliers M(L*(G), B(G)) and the
space of Little wood functions LT(G) = L®(G©, L2(G,A™1)) + L®(GO,
L?(G, L)) Coincide and their norms are equivalent
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W2 el < lelue=@sey < lol.

We study next the functions on G which multiply L*(G) into the space
of completely bounded multipliers MyA(G) (we call them the absolute
Fourier multipliers). Let n: G * G—G be the fundamental homomorphism
n(y,y") =y "1y A function § on G = G is of the form n*¢ = ¢ o 7 iff it is
invariant under the diagonal action of G onto G * G, i.e. iff it satisfies
W(yysyy2) = U(y1,y2). Recall that * is an isometry from M,A(G) onto the
subspace B(G * G)© of B(G * G) consisting of the invariant elements.
Proposition (3.2.21) [2]: The following space coincide and have
equivalent norms:

(i)The space of multipliers M (L*(G), MyA(G))

(ii) The space LT (G * G)C® of Littlewood functions ¢ on (G x G)

invariant under G.

Proof:

Let ¢ be a bounded measurable function on G which multiplies L*(G) into
M,A(G). Choose a countable partition (Si) of G by open bisections.

Then (z~1(Si)) is a countable partition of G = G by open bisections and
Corollary (3.2.19) applies to the function n*@. Therefore n*@ Iis
aLittlewood function on G * G. Conversely, if y is a Littlewood function
on G * G invariant under G, it is of the form n* and it multiplies L* (G*G)
into B(G * G). In particular, it multiplies ©*L*(G) nito B(G * G)© .This
says that ¢ multiplies L (G) into MyA(G).

There is a characterization, introduced by N. Varopoulos, of the absolute
Fourier multipliers which does not use the groupoid G * G.

Definition (3.2.22) [2]: A measurable function ¢: G—C will be called
aVaropoulos function if there exists M > 0 such that for every measurable

subsets E, F ¢ G and for p-almost every x,

103



[ 1o0y 12a2ar ) < MPmax (), GX)

EXF

The space of Varopoulos functions is denoted by Va(G) and the

norm|| ¢/, is the least M satisfying above condition.

Proposition (3.2.23) [2]: Let (G, A, p) be a measured groupoid. Then

every Littlewood function is a Varopoulos function. Moreover we have

loll,, <v2 [lo]r
Proof:

Suppose that @@ satisfies supx [ |o®(y) |2 dA*(y) < MZ. Let E be a
measurable subset of G. Then,

f | e 1yy | 2dA5(r)da* (") < M22*(E) (34)

EXE

One obtains similarly that if @@ satisfies supx | | @@(y) | 2dA,(y) < MZ,then

f | o@D (1Y) | 2dA¥ () da* (') < M2A*(E) (35)

EXE
Hence, if ¢ admits the Littlewood decomposition ¢ = @® + @),
then

f |01y | 2aR ()AAE() < 2(M2 + MEAX(E)  (36)

EXE

In the case of the groupoid G = G, Varopoulos and Littlewood functions
coincide.
Proposition (3.2.24) [2]: Let X,Y,Q be locally compact spaces,
T, [resp. my]be a local homeomorphism from X [resp.Y] onto Q and A be a
measure on Q. Suppose that @: X *Xo Y—C is a measurable function

satisfying for almost every ®

loCe,y) |2 < (14,1, B, 1)

AwXBw
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For every measurable set Ac X, BcY and where A, , Bo, are the w-sections
for every measurable set Then, one can write @ = @@ + @ where @@, @@
: X X oY—C are measurable functions satisfying for almost wevery
oD, y)[2<1  and Z lo@(x,y)[2 <1
Y (y)=w TX(x)=w
Proof:
This is a version of Varopoulos' result with parameter. Let us fix ® and
denote by . the restriction of ¢ to Xe % Y. One can write @o= @O+ @u?
,where
W, @@ : Xu % Yo— C satisfy
[0 (x.y)[2 <1 and Z loP(xy) |2 <1
Y (y)=w nX(x)=w

One deduces that for every f € Cc(X % ay),
| Z o0, Y)f (x,y) |

e 11/2
<> | ranl?
x€X, | VEY,,
11/2
£ el (37)
yey,, | xex,,

We integrate over (2 to obtain
1/2

[ o nrenien] < | lz P 2| i)
y

1/2

+f lzy: | Fen 2] duyB) (38)

where v, uy, py are the lifts of A to X x oV, X, Y. Therefore, ¢ defines
abounded linear functional on the space L'(X, L*(mxY))N L'(Y, L?*(m;X)
and admits the announced representation.
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To conclude the discussion, we make the following observation.
Proposition (3.2.25) [2]: Let ¢ be a bounded measurable function on
G. Then the following assertions are equivalent:

(i) ¢ is a Varopoulos function on G with V aropoulos norm less than M.
(i1) *¢ is a Varopoulos function on G * G with Varopouls norm less than
M.

Proof:

Assume (i) By definition, for every measurable subsets E, F of G and for

almost every x, we have

[ lo0~y [Parmae) < MmaG=®.0=E). (39)
EXF

But this is equivalent to

f | T* (1 v2) | 2dAY (y, v1)dAY (v, y,) < M2(AY(G +E)  (40)

G*EXG*F

for almost every y. Hence the required property is satisfied for the subsets
of G = G of the form G = E, where E is a measurable subset of G. One
deduces that it is satisfied for every measurable subset E' of G *« G. The

above also shows that the converse is true.
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Chapter 4

LP-Fourier For Locally Compact Groups
We investigate how these spaces reflect properties of the underlying
group and study the structural properties of these algebras. As an
application of this theory, we characterize the Fourier-Stieltjes ideals of
SL(2,R).
Section (4.1): LP-representations of C*-Algebra with LP-

Fourier Algebra

The theory of Banach algebras is motivated by examples, and many of
the important examples in the field of Banach algebras arise from locally
compact groups. The most classicly studied Banach algebra associated to a
locally compact group G is the group algebra L*(G) with multiplication
given by convolution. showed that L*(G) complete invariant for locally
compact groups G in the sense that L*(G,) is isometrically isomorphic to
L1(G,) as Banach algebras if and only if G, is homeomorphically
isomorphic to G,. Hence, we can expect that many properties of the group
may be reflected in the group algebra. For example, it is easily checked that
G is abelian if and only if L1(G) is commutative and G is a discrete group if
and only if L1(G) is unital. A much less obvious property shown by Barry
Johnson is that G is amenable if and only if L*(G) is amenable as a Banach
algebra.

Since the group algebra L}(G) of a locally compact group G is an
involutive Banach algebra, it is natural to consider operator algebras
containing a copy of L!(G) as a dense subspace. The most heavily studied
of these are the full and reduced group C*-algebras C*(G) and C;:(G), and
the group von Neumann algebra VN(G) which contain norm and weak*-
dense copies of L1(G), respectively. Unlike the group algebra L'(G), these
operator algebras fail to completely determine the group G but are still able

to encode many useful properties of the underlying group G .
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Related to the group von Neumann algebra and the full group C*-
algebra, we have the Fourier algebra A(G) and the Fourier-Stieltjes algebra
B(G) which naturally identify with the predual of VN(G) and the dual of
C*(G), respectively. The Fourier and Fourier-Stieltjes algebras are can be
viewed as subalgebras of C,(G) and C,(G), respectively, endowed with a
norm dominating the uniform norm. Despite always being commutative
Banach algebras even when G is nonabelian, Martin Walter demonstrated
that these Banach algebras A(G) and B(G) are complete invariants . In
many ways A(G) is analagous to the group algebra L(G), however it is not
the case that A(G) is amenable if and only if G is amenable. In fact Brian
Forrest and Volker Runde showed that A(G) is amenable if and only G is
almost abelian, i.e., if and only if G contains an open abelian subgroup of
finite index Recall that A(G) is the predual of VN(G) and, hence, has a
canonical operator space structure. By taking this observation into account,
Zhong-Jin Ruan demonstrated that G is amenable if and only if A(G) is
operator amenable. The amenability of G has also been characterized by the
existance of a bounded approximate identity in A(G) by Leptinand in terms
of the multipliers of A(G) by Losert.

Nate Brown and Erik Guentner defined the concept of LP-representations
and their associated C*-algebras. Let G be a locally compact group and 1 <
p <oo. A (continuous unitary) representation
n : G — B(H) is said to be an LP-representation roughly speaking, the
matrix coefficient functions s—(n(s)x,x) are in LP(G) for sufficiently many
x € H. As examples, the left regular representation « is an LP-representation
of G for each 1 < p <o and the trivial representation is an L”-representation
if and only if G is compact. When G is the group SL(2,R), it is an
immediate consequence of the work of Ray Kunze and Elias Stein that
each nontrivial irreducible represenation of G is an LP-represenation of G
for some p € [2,00). The C*-algebra C;»(G) is defined to be the completion

of L}(G) with respect to a C*-norm arising from LP-represenations of the
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group G. When p € [1, 2], C;»(G) is simply the reduced group C*-algebra
C;(G), but this need not be the case for p > 2. Indeed, Rui Okayasu showed
that the C*-algebras C,»(Fq) are distinct for every 2 < p < o where Fq
denotes the free group on 2 < d < o generators. We observe that the
analogous result holds for SL (2, R).

In Michael Brannan and Zhong-Jin Ruan defined and developed some
basic theory of LP-Fourier and Fourier-Stieltjes algebras, denoted A;»(G)
and B;»(G). Evidencing their usefulness, the LP-Fourier—Stieltjes algebras
were used to find many intermediate C*-norms on tensor products of group
C*-algebras. The LP-Fourier and Fourier-Stieltjes algebras are ideals of the
Fourier—Stieltjes algebra corresponding to coefficient functions of LP-
representations. Similar to the case of the C*-algebras, the LP-Fourier
algebra coincides with the Fourier algebra A(G) and the L?-Fourier-Stieltjes
algebra with the reduced Fourier—Stieltjes algebra when p € [1, 2]. This is
not the case necessarily for p > 2. In fact we demonstrate rich classes of
groups G so that A;»(G) is distinct for every p € [2, o) and B;»(G) is
distinct for each p € [2,2). As an application of the theory developed, we
characterize the Fourier-Stieltjes ideals of SL(2, R) in terms of LP-Fourier-
Stieltjes algebras .

Similar to the Fourier algebra, we show the LP-Fourier algebra is a
complete invariant for locally compact groups. Unlike the Fourier algebra,
the LP-Fourier algebra can lack many nice properties even when G is a very
nice group. For example, when G is a noncompact abelian group, then
A;»(G) is not even square dense for each p € (2,) and, hence, lacks any
reasonable notion of amenability. So the analogues of Ruan’s and Leptin’s
characterizations of amenability fail for the LP-Fourier algebras. Though the
analogues of these characterizations of amenability fail for the LP-Fourier
algebra,we show that the analogue of Losert’s characterization of
amenability in terms of multipliers holds for A;»(G) and RundeSpronk’s

characterization of amenability in terms of operator Connes amenability
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holds for B;»(G).

We provide an overview of the theory of Fourier and Fourier-Stieltjes
spaces as developed by Pierre Eymard and Gilles Arsac.

Let G be a locally compact group. The Fourier-Stieltjes algebra is
defined to be the set of coefficient functions s = m,,, = (m(s)x,y)as
n : G —B(H,,) ranges over the (continuous unitary) representations of G
and x, y over H,;,. Then B(G) identifies naturally with the dual of the full
group C*-algebra C*(G) via the identification (u,f)fG u(s) f(s)ds for
f € L}(G) and u € B(G). When endowed with the norm attained from this
identification with C*(G)*, the Fourier-Stieltjes algebra becomes a Banach
algebra under pointwise operations. When G is abelian, B(G) is
isometrically isomorphic as a Banach algebra to the measure algebra M(G )
and the isomorphism is given by the Fourier-Stieltjes transform.

Let S be a collection of representations of G. The Fourier space As is
defined to be the closed linear span of coefficient functions m, ,in B(G) as
T ranges over representations in S and x, y over H,. If S consists of a single
representations = , then A is denoted by A,,. These Fourier spaces A, are
translation invariant (under both left and right translation) subspaces of
B(G) and, conversely, every closed translation invariant subspace of B(G)
is realizable as a Fourier space A, for some representation m of G.
A fortiori, for every collection S of representations of G, A is equal to A,
for some representation w of G .

As a distinguished Fourier space, the Fourier algebra A (G) is defined to
be A, where A denotes the left regular representation of G. Although not
obvious, it is a consequence of Fell’s absorption principle that A(G) is a
subalgebra (and in fact an ideal) of B (G). When G is abelian A(G) is
isometrically isomorphic to the group algebra L'(G) via the Fourier

transform.
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Fix some representation © of G. The Fourier space A, is exactly the set
of infinite sums X7 my ynWith { x,}, {yn} © H satisfying the condition
that), -, || X || ||yn || < o0. Moreover the norm of an element u € A, IS

given by

ol =Y Lol = Y a
n=1

n=1
and this infimum is attained.

For each represntation 7 of G, define VN,, to be the von Neuman algebra
(L1 (G))"= n(G)" < B(H,, ). The Fourier space A4, naturally identifies with
the predual of VN, via the pairing (u ,T) = Y5i—1 (Txy,, y), for u € B(G)
and Te VN, , where u =Ygy Tynyn and Yocy [|xn |l |3n]] < . In
particular, this implies that the Fourier algebra A(G) is the predual of the
group von Neumann algebra VN(G) = VN,,. For representations © and o of
G, the Fourier space A is contained in A, if and only if © is quasi-
contained in o, i.e., if and only if & is contained in some amplification c®*
of o for some cardinal o, which occurs if and only if the map o (f) = n(f)
for f € L1(G) extends to a normal *-isomorphism from VN,— VN_. Hence,
there is a one-to-one correspondence between group von Neumann algebras
VN, of G and Fourier spaces A,.

Let S be a collection of representations of G. The Fourier-Stieltjes
space Bs is defined to be the closure of As in the weak*-topology
o(B(G),C*(G)). Since every Fourier space is realizable as a space A. for
some representation © of G, every Fourier-Stieltjes space is also realizable
as B, for some representation G.

Let 7 be a representation of G. Then the Fourier-Stieltjes space B,,. can
be identified with the C=*-algebra C:: = m(L1(G))I'l < B(#,) via the
pairing < u,m(f) > = [ u(s)f(s)ds.

Let S and S' be two collections of representations of G. Then Bs c Bs' . if

and only if supge || n(f) || < supses || o(f) || for every f e LX(G), i.e., if and
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only if S is weakly contained in S'. Hence, there is a one-to-one
correspondence between group C*-algebras C,of G and Fourier-Stieltjes
spaces By.

We study the Fourier and Fourier-Stieltjes spaces associated to the LP-
representations of a locally compact group G.

The theory of LP-representations and their corresponding C*-algebras
for discrete groups was recently developed by Nate Brown and Erik
Guentner. Though Brown and Guentner defined LP-representations of
discrete groups, their definitions and basic results generalize immediately of
locally compact groups. Rather than making explicit notes of this, we will
simply state their results in the context of
locally compact groups.

Let G be a locally compact group and D a linear subspace of C,(G). A
representation 1:G — B(F};) is said to be a D-representation if there exists
a dense subspace Hj, of H; so that m, , € D for every x € H.The following
facts are noted, and are easily checked:

(i) The D-representations are closed under arbitrary direct sums.

(i) If D is a subalgebra of C,(G), then the tensor product of two D-
representations remains a D-representation.

(iii) If D is an ideal of C,(G), then the tensor product of a D-representation
with any representation is a D-representation.

For our purposes, we will be most interested in studying the case when D =
LP(G) N Cp(G) for p € [1,0). In this case, the left regular representation X of
G is an LP-representation since taking the dense subspace of L?(G) to be
C.(G) clearly satisfies the required condition.

To each linear subspace D of C,(G) define a C*-seminorm |- [|o : L*(G)
€ [0,0) by

| £llo =sup{||= ()| : misa D-representation }. )
The C*-algebra C;(G) is defined to be the “completion” of L}(G) with

respect to this C*- seminorm. When D = LP(G) N B(G), we write C},,(G) =
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C5G) and ||| »=|-]lo. This process of building C*-algebras was
originally completed in the case when D was an ideal of £*(I") of a discrete
group I', and was called an ideal completion . We note that in the case when
D = LPfor some p € [1,:0), then ||. || ,,dominates the reduced C*-norm since
» is an LP-representation. A fotiori ||.||,, is a norm on L*(G) and the
identity map on L*(G) extends to a quotient map from C»(G) onto C7(G).

In general, it is desirable that the space D < c¢,(G) used in this
construction is translation invariant (under both left and right translation).
Indeed, this guarantees that if u is a positive definite function on G which
lies in D, then the GNS representation of u is a D-representation and, hence,
u extends to a positive linear functional on C;(G).

The subspaces D of C,(G) which have been most heavily studied in the
context of D-representations are C,(G) and LP(G). Brown and Guentner
recognized both these cases in their section and developed much of the
basic theory for the associated C*-algebras in their original section. In the
case when D = LP, Brown and Guentner demonstrated that C;,,(G) = C;(G)
for every p € [1,2] and that if C;;,(G) = C*(G) for some p € [1,0) then G is
amenable.

Brown and Guentner demonstrated that this construction can produce an
intermediate C*-algebra between the reduced and full by showing that
Cip(Fq) # C7(Fq) for some p € (2,0) where [ is the free group on
2 <d < o generators . Subsequently, Okayasu showed that the C*-algebras
C1p(F ) are distinct for every p € [2,00) (this was also independently shown
by both Higson and Ozawa).

Let G be a locally compact group and H an open subgroup of G and
suppose that H — B(H) is an LP-representation of H. Then ind gmis an LP-
representation of G. We proved this for subgroups of discrete groups, but
the proof holds for any open subgroup of alocally compact group. Since
every LP-representation of G clearly restricts to an LP-representation of H,
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it follows that || ||Lp(G) |L1(H): || || ey Hence, in the case when I is a

discrete group containing a copy of a non commutative free group, it
follows that the C*-algebras Cy,(T") are distinct for every p € [2,00).

Recall that the C,-representations and the L?-representations are the two
most heavily studied types of D-representations. Brannan and Ruan define
the D-Fourier algebra A, (G) and D-Fourier-Stieltjes algebra B, (G) when D
is a subalgebra of C,(G). When D = C,(G), the D-Fourier algebra A,(G) is
already well studied and is known as the Rajchman algebra. In contrast,
very little has been done in regards to the LP-Fourier and LP-Fourier-
Stieltjes algebras. We recall the definitions and prove some basic properties
of these spaces.

Let D be a linear subspace of C,(G). The D-Fourier space is defined to
be

Ap(G) = Ap :={m,,: a D-representation, x, y € H}.

Similarly, the D-Fourier-Stieltjes space B, (G) = By, is defined to be the
closure of A, with respect to the weak*-topology o(B(G),C*(G)). When
the subspace D of C,(G) is a subalgebra (resp., ideal) of C,(G), then
Brannan and Ruan noted that A,(G) and Bj(G) are subalgebras
(resp.,ideals) of B(G). In these cases, we may call A,(G) and B, (G) the D-
Fourier algebra and D-Fourier-Stieltjes algebra, respsectively. Note that
since LPis an ideal in C,(G), A;»(G) and B;»(G) are ideals in B(G).

Let D be a subspace of C, (G). we defined the Fourier space As and the
Fourier-Stieltjes space Bs when S is a collection of representations of G. As
an immediate consequence of the next proposition, we get that A,= As and
Bp = Bswhen S is taken to be the collection of D-representations of G.
Proposition (4.1.1) [3]: Let D be a subspace of C,(G). Then Apis a
closed translation invariant subspace of B(G). Moreover ,

el ggy=infellxll |4l : w =y and nisaD-representation}  (3)

and this infimum is attained for some D-representation & and x, Yy €H,.
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Proof:

For every u € Ap, choose a D-representation m,,: G — B(#,) so that

u = (), yfor some x, y € Hy,. Then n : = D¢y, 7y, being a direct sum of
D-representations, is also representation. Then A, [ A, since every
element u € Ap is a coefficient function of =.

Now let u € A;. Then we can find sequences {x,, }, {y»} in H;; so that
U =Y Tonyn and |lull= Zooq || || |3 || Let®: G — B@#E*) be
the infinite amplification o« . © Then,since 7 is a D-representation and
U = T (4m) (yn), WE arrive at the desired conclusions.

These observations allow us to identify B, with the dual of Cp(G).
Proposition (4.1.2) [3]: Let D be a subspace of C, (G). Then B, is
identified with the dual space of C;(G) via the dual pairing < u, f > = fu(s)
f(s) ds for f € L}(G).

Proof:
Let D be the representation from the proof of the previous proposition and
note that we demonstrated that A, = A,. Hence, it suffices to check that
Cp=Cj.

Since m is a D-representation, ||n(f)||< || || ,for every f € L*(G). Now
let 6 be a D-representation of G. Then A, [1 Ap = A, implies that B, [ B,
and, hence, that |[o(f)|| < |ln(f)|for every f e LY(G). Thus, ||f|, =
| =(£)|| for every f € LY(G).

Let P(G) denote the set of positive definite functions on G. Then A, has
a very nice description in terms of the linear span of positive definite
functions when D is a translation invariant subspace of C,(G).
Proposition (4.1.3) [3]: Suppose that D is a translation invariant
subspace of C,(G). Then A, is the closed linear span of P(G) N D in B(G).
Proof:
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Let u € P(G) N D. Then, since the GNS representation of u is a
D-representation, u is clearly in Ap. As Aj is a closed subspace of B(G),
we conclude that A;, contains the closed linear span of P(G) N D.

Now let u € Ap. Then we can write u = m, ,, for some D-representation n
of G and x, y e H,,. Let Ho be a dense subspace of #;; so that m, e D for
every z . Ho and choose sequences { x, }, {v.} in Ho converging in norm to

x and y, respectively. Then

3
— K
ﬂxn,J’n - Z l T[xn +iKyn,xn +iKYn (4)

K=0
converges to u = m,,, in norm. Hence, Ap is the closed linear span of
P(G) N D.

For the remainder of this section, we will focus specifically on LP-
Fourier and Fourier-Stieltjes algebras. We begin by identifying cases when
these spaces are familiar subspaces of B(G).

Proposition (4.1.4) [3]: Let G be a locally compact group.

(i) Ap (G) = A(G) forevery p e [1, 2].

(ii) If G is compact, then A;»(G) = B(G) for every p € [1,0)

(iii) If G is amenable, then B;»(G) = B(G) for every p € [1,0).

(iv) If B;p(G) = B(G) for some p € [1,%), then G is amenable.

Proof:

(i) Recall that the Fourier algebra A(G) is both the closed linear span of
P(G)NC(G) and of P(G)N L2(G). Since P(G)NCe(G) [T P(G)N LP(G)
P(G)N L?(G) for every p € [1, 2], we arrive at the desired conclusion.

(i) Let m be a representation of G and x eH.Then m, ,is bounded in
uniform norm by ||x||2. Since x € #; was arbitrary, we conclude that
every representation 7 of G is an LP-representation and, hence, that A;» (G)
= B(G).
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(iii) Since G is amenable, C;(G) = C*(G). Hence, the reduced Fourier-
Stieltjes algebra B.= B(G). Since A;»(G) [JA(G), we conclude that B;»(G)
must also be all of B(G).

(iv) If Bp(G) = B(G), then C};,(G) = C*(G) and, hence, G is amenable.
Proposition (4.1.5) [3]: Let G be a locally compact group and p, q, r €

[1,00) be such that % +% = % Then uv € A;r(G) for every u € A;p(G) and v

€ A;q(G). Similarly, uv € B;r(G) forall u € B;»(G) and v € B;4(G).

Proof:

Let u € A;»(G) and v € A;4(G). By Proposition (4.1.3), we can approximate
u and v well in norm by linear combinations aiu: + . . . + a,u,and bivy

+... + by, vy, of positive definite elements in LP(G) and L1(G), respectively.

Z al-bjul-vj

ij

Then the product

is a linear combination of elements in P(G) NL"(G) approximating uv well
in norm. Hence, uv € A;7(G) by Proposition (4.1.3).

Note that since multiplication in B(G) is separately weak*-weak*
continuous, it follows that uv € B;r(G) for all u € B;»(G) and v € B4 (G).
Proposition (4.1.6) [3]: Suppose H is an open subgroup of a locally
compact group G and 1< p< o Then A;»(H) = A;»(G) |1 and B»(H) =
B.»(G) | n.
Proof:
The first part of the statement is deduced by similar reasoning as used in
the previous section. Indeed, the equality A;»(G) | H = A, p(H) follows from
the definition of LP-Fourier spaces since n | H is an LP-representation for
every LP-representation m of G, and ind & o is an LP-representation for
every LP-representation ¢ of H.

We now proceed to prove the second part of the statement. Notice that

since H is an open subgroup of G, L*(H) embeds naturally into L*(G).
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A similar argument as above shows that this extends to a natural embedding
of C;;,(H) into C[,,(G).Let u € Ci,(H)* = B.»(H).Then, by the Hahn-Banach
theorem, there is an elemente i € C;,,(G)* = B»(G) extending u as a linear

functional. Then for f € L*(H) [0 L}(G),

fﬁ(s)f(s)ds:fﬁ(s)f(s)ds =<1, f>=<u,f>

H G

= f u(s)f(s)ds (5)

H

So u = @ |H almost everywhere. Since u and i are each continuous
functions, this impliesthat u = @ | H and, hence, that B;»(H) (1 B;»(G) | H.
A similar but simpler argument shows that B;»(H) [0 B;»(G) | H.

The above proposition can fail, even for A;» , when H is a non-open
closed subgroup of G.

We finish by giving a first class of examples of groups G which show
that A;»(G) and B;»(G) are interesting subspaces of B(G) for
2<p<oo.
Proposition (4.1.7) [3]: Let I' be a discrete group containing a copy of a
non commutative free group. Then B, (I') is distinct for every p € [2,00).
Hence, A (') is also distinct for every p € [2,0).
Proof:
The first statement is immediate from previous comments since C}‘p(l“) is
distinct for each p € [2,00). The second statement follows from the first since
B,p(T) is the weak*-closure of Agp(I').

We show that the algebras A;»(G) are distinct for every p € [2,00) when
G is a non compact locally compact abelian group. We will later see that
this phenomena does not generalize to the setting of general noncompact
locally compact groups which shows that we are required to use tools from

commutative harmonic analysis. Before entering into proofs.
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Let I' be a discrete abelian group. A subset ® of I is said to be dissociate

if every element w € I' can be written in at most one way as a product

n
_ €j
w | |9j
j=1

where 01, . . ., 8,,€ O are distinct elments, €j = +1 if 6; # 1, and ¢j = 1 if
91-2=1. As anexample, if I' = Z then the set {3/: j > 1} is dissociate. As in the
case of the integers, every infinite discrete abelian group admits an infinite
dissociate set.

Let G be a compact abelian group with normalized haar measure and
I" = G be the dual group of G. If ¥ is a group element of T such that y 2 # 1
and a(y) is a constant with | a(y) | < 1/2, then the trigonometric polynomial

gy =1+a@)y +a() 7 6)

is a positive function on G with || g, ||1 = 1. Similarly, if y € I\{1} has the
property that and 0 < a(y) < 1, then qy := 1 + a(y) y is a positive function
which integrates over G to 1. We will consider weak*limits of products of
polynomials of this type.

Let ® [ T be a dissociate set.To each 0 € ® assign a value a(0) € C with
the imposed restrictions from above. For each finite subset ¢ [1 ® define
Pe=Ilgew qo- This being a product of positive functions is a positive

function on G with Fourier transform

O L g
where I range over {—1, 0,1} and
1, €g =0
a()¢o = § a(f), €g =1 (8)
a(0), €g =—1

It follows that as ®70,P; converges weak* to a measure u on G where

(€0),
£(y)= { lgee@at(:)  ¥=[lges 8% €y = 0 for all but finitely many 6
) otnerwise
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The measure p is said to be based on ® and a. This method of constructing
measures is called the Riesz Product construction and the set of all such
constructions is denoted R(G).

Therefore Ameasure p € R(T) based on ® and a is an element of L1(T) if
and only if a € #®). This result was extended to all compact abelian
groups G by Hewitt and Zuckerman. If T" is the dual of a compact group
G and p € R(G) is based on ® and a, then Te A(T') = A¢%T) if and only if
a € £%(®).We will demonstrate that the analogue of this theorem holds when
2 is replaced with p for 2 < p < w.Towards this goal, we begin by proving
an elementary lemma.

Lemma (4.1.8) [3]: Suppose that 0 < o < 1 and {x,} is a bounded
sequence but {x, } & ¢°. Then
there exists a bounded sequence{y, } so that {x,v,} € £* but{x,,y,* } & £".

Proof:
Clearly it suffices to consider the case when p = 1. We first focus our
attention to the case when {x,} € co. Then we can choose mutually disjoint

subsets Iy, I2, . . . of N so that
Yner, | %n | =1 for each k. Define

1
}’n:{ K «a ifn€lg (9)
0 otherwise

Then

Z | Xy | —ZZ | X9 | —ZZ | x, | K~V = ZK‘l’“<oo,

neN K n€lg K n€lg K
Z |xn}’n| —ZZ |xnyff| —ZZ |xn|K‘1— ZK < oo,
neN K ne€lg K ne€lg

Now assume that lim sup |xn| > (. Then we can find 6 > 0 and a

subsequence {x,, } so that | x,, |>3 for every k. Defining
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1
Yo = { K «a ifn € ng (10)
0 otherwise

gives the desired result.

We are now prepared to show the following.
Theorem (4.1.9) [3]: Let G be a compact abelian group with dual group
I' and p € R(G) be based on ® and a. Then fie Ap(T) if and only if a €
£°(©).
Proof:
First we suppose that Yoco | a(0) | P < oo and let

Q (0) ={01...0, |6£L... 05" O distinct, €1, . . ., €, =£1,n >0},
Then
lall’ = Z |7 (w)|? (11)

weN(O)

Hence, i € App (D).

Now suppose that > eco | a(6) | P= oo but [T € Ayp(I').Hewitt and Zuckerman
showed this is not possible for p = 2, so we will assume without loss of

generality that p > 2. Choose a sequence {b(0)} € £*(®) with || b "oo <1so
that {a(0)b(0)} € £°(®) but { a(0)b(6)*} ¢ ¢P(®) for a = pz_;Z .Letv e R(G)

b2 . 2p
be based on ® and ¢ : = { a(e)b(9)™ = } Define q = -

(this is chosen so that 1/p + 1/q = 1/2). Then

D le@]1=>" la@b(®)|? <o (12)

oeo CISC)
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implies that e £9@). So & .7 € Af>I") = A(T') by Proposition (4.1.5).
Observe that p * v is the element in R(G) generated by ® anda - c. Soa - ¢
€ £%(®). But, by our assumption on b,

I
> la@ec®) 2= la@bE) 7 |7 =« (13)

6eo e
a contradiction. Therefore, I A (') iff a € £P(0).

Corollary (4.1.10) [3]: Let I be an infinite discrete Abelian group. The
subspaces Ay»(I') of B(I')are distinct for every p € [2,).

Our next step is show that A,»(G) is distinct for each 2 <p <o for
another class of locally compact abelian group s € G.

Suppose T' is a lattice in a locally compact abelian group G. Further,
suppose that v € A(G) is a normalized positive definite function with the
property that supp v N I' = {e} and (s + supp v) N I is finite for every
s € G. Then the map J = J,,from B(I") into B(G) defined by

Ju(s) = ) w(w(s - §) (14)

ger
is a well defined isometry with the following properties:

(i) Ju e P(G) if and only if u € P (')

(i) Ju e A(G) if and only if u € A (T)

Lemma (4.1.11) [3]: Let G =R™ x K for some compact abelian group K
and n > 1. Choose a

normalized v € A(G) N P(G) so that supp v c [-1/3, 1/3]" x K, and
suppose 1 € R(Z™) is based on ® and a. Then J,f € A (R™) if and only if
a € £°(0).

Proof:

We leave it as an exercise to the reader to check that if supp

vc[—-1/3, 1/3]" x K, then supp v N Z™ = {e} and (s + supp v) N Z" is

finite for every s € G.
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Let u € P(I') N £P(T"). For (x1, . .., x,,, K) e R® x K, write xj = m;+ y;
for some m;e Z
and y; € [-1/2,1/2] (1 <i <n). Then

JoU(Xq, ..., Xy, K)

u(flv vfn)v(ml + Y1 — flv oy Mp + Y1 — fnv K)

(4., N A
:u(mly"'ymn)v(yly'“yynyK) (15)
For eachmy, ..., m,e Z", define M1 = [M1— 1/2,m1 + 1/2] x X

(16)

[l
?4
<

<

- Z f | ulmy, ... m v,y K [PAQys, o, KD

(my,..mp)€Z" [-112,112]" <K

=l [ e R PO ) <
[-112,112]"xK

Hence, Jyu € LP(G). As J is an isometry mapping P(I") into P(G) and A,»(I')
is the closed linear span of P(I') N €P(I'), it follows that J, maps A,» (') into
A (G).

Let u € R(Z™) be based on ® and a, and suppose that a & £°(®). Let ¢ be
chosen as in the proof of Theorem (4.1.9) and v € R(Z") be based on ® and
c. Then v € Apa(T')and, hence Juv € A,qa(G) where q satisfies 1/p +1/q = 1/2.
Formq,..,my €Z, 4q,...,Yn€ [—1/2, 1/2] and k € K,

Jolt (my + gy, My + 4, K, V(My + ¢, My + 4 k)
= p(my, .., mp)0(my, ..., mpU(Yyq, - Y, k)?
= [ 27V (17)
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Since v?is a positive definite function with support contained in

[ —1/3,1/3]" x K, J, u*v € A(G) if and only if g=v e A(G). But p * v is
the element of R(G) based on ® and a - ¢ and, as in the proof of Theorem
(4.1.9) ,a-c & £%(®). So i *v ¢A(I') and, hence, Jufi. D is not in A(G). It
follows that Jup & Apr (G).

Corollary (4.1.12) [3]: A (G) is distinct for every p € [2,00) when G =
R" xK where K is some compact abelian group and n > 1.

Proof:

It suffices to check that there is a nonzero positive definite function
v whose support is contained in [—1/3, 1/3]™ x K. Observe that

1 1
is a positive definite function on R with support contained in [-1/3, 1/3].
Taking v = ® X...X ® %1k clearly does the trick.

We now prove one last lemma before we show that A,»(G) is distinct for
each p € [2,0) when G is any non compact locally compact abelian group.
Lemma (4.1.13) [3]: Suppose K is a compact subgroup of a locally
compact group G. Then
Apw(G: K) :={u € A (G) : u(sk) = u(s) for all s € G, k € K} is isometrically
isomorphic to A,» (G/K).

Proof:

Let mg denote the normalized Haar measure for K and note that my is a
central idempotent measure. Denote the universal representation of G by @
and define px = w(my ).

Observe that if 7 is a representation of G, then pK™ is constant on cosets of
K and, hence defines a representation my: G/K—U(H,) by mg (SK) =
pK™(s) forseG .
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Suppose 7 is an LP-representation of G and H,is a dense subspace of H, so
that i, , € LP(G) for all x € Ho. Let g : G — G/K be the canonical quotient
map. Then

(Tx) piex prex © @ = {pK™()x,x) = my * Ty, € LP(G)
for all x € Ho. Since my * LP(G) = LP(G/K), it follows that mis an
application of G/K.

Conversely, suppose that 7 is an LP -representation of G/K. Then Weyl’s
integral formula implies that 7 o g is an LP-representation of G.
Furthermore, my * (70 ), = ( © Q) for all x,4 € Hz.

Theorem (4.1.14) [3]: Let G be a noncompact locally compact abelian
group. Then A,»(G) is distinct for every p € [2,%).

Proof:

By the structure theorem for locally compact abelian groups, G has an open
subgroup of the form R™x K where n > 0 and K is compact. If n > 0, then
the result follows from Lemma (4.1.11). Otherwise, it follows from Lemma
(4.1.13) that A;»(R™x K) is distinct for every p € [2,0) and, hence, A;»(G)
is distinct for every p € [2,00) by Proposition (4.1.6).

We finish by showing that this same phenomenon which occurs for
abelian groups also occurs in almost connected SIN groups.

Theorem (4.1.15) [3]: Let G be a noncompact almost connected SIN
group. Then A;»(G) is

distinct for every p € [2,0).

Proof:

By the structure theorem for almost connected SIN groups, G contains an
open subgroup of finite index which is of the form R™x K for some n > 0
and compact group K. Then, since G is noncompact, it is necessarily the
case that n > 1. So it suffices check this for groups G of the form R"™ x K
for some n > 1. As this follows from Lemma we conclude that A;»(G) is
distinct for all p € [2,).
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Section (4.2): The Structure of LP-Fourier Algebras and Ideals
of SL(2,IR)

We investigate the structural properties of the LP-Fourier and Fourier-
Stieltjes algebras with an emphasis on the former. Similar to the Fourier
algebra, we find that the LP-Fourier algebra completely determines the
group. However, armed with our knowledge of these spaces in the cases
when G is either an abelian locally compact group or a discrete group
containing a copy of a noncommutative free group, we observe that many
nice properties which hold for Fourier algebras fail for LP-Fourier algebras.
We begin by determining the spectrum of the LP-Fourier algebras.
Proposition (4.2.1) [3]: Let G be a locally compact group. Then the
spectrum of A;»(G) is G where we identify elements of G with their point
evaluations.

Proof:

Clearly we have that G < o(4.r(G)), so it suffices to check that
cA;»(G)) c G. Let x € 6(A;»(G)) and choose an integer n so that p/n < 2.
Then, since u™is in A(G) for every ue A;»(G), there exists s € G so that
<y u >=u(s)" for all u € 4;p(G). As <y, u><y, u™ =<y, u"tl >=
u(s)™*?, it follows that y is evaluation at s. Hence, we conclude that
o(A.r(G)) = G.

Recall that a linear functional D on a Banach algebra A is said to be a
point derivation if there exists some multiplicative linear functional x on A
so that D(ab) = y(a)D(b)+D(a)y(b) for all a, b € A. The existence of nonzero
point derivations is an obstruction to the (operator) weak amenability of A.
Since the Fourier algebra is always operator weakly amenable, the Fourier
algebra does not admit any nonzero point derivations. As acorollary to the
above proposition, we show that the LP-Fourier-Stieltjes algebras admit no
nonzero point derivations either. This corollary was pointed out to us by

Nico Spronk.
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Corollary (4.2.2) [3]: Let G be a locally compact group and p € [1,:0).
Then A;»(G) does not admit any nonzero point derivations.
Proof:
Suppose that A;»(G) admits a nonzero point derivation D and choose
a multiplicative linear functional ¥ on A;»(G) so that D(uv) = D(u)y(v) +
D(v)y(u) for all u, v € A;p(G). By the above proposition, ¥ is the point
evaluation functional at some point s € G. Choose u € A;»(G) and v € A(G)
so that D(u) # 0 and v(s) # 0.Then

D (uv) = D(w)y(v) + x(u)D(v) = v(s)D(u) # 0 (19)
since v € A(G) implies that D(v) = 0. But since A(G) is an ideal in B(G) and
A(G) admits no nonzero point derivations, we must have that D(uv) = 0.
This contradicts the above calculation and, therefore, we conclude that
A;»(G) admits no point derivations.

One of the most coveted properties of the Fourier algebra A(G) is that it
completely determines the underlying locally compact group G. We now
show that the analogue of this theorem holds for A;»(G). The proof is
similar to that given by Martin Walter.

Theorem (4.2.3) [3]: Let G, and G, be locally compact groups and
suppose A;»(G,) is isometrically isomorphic to A,4(G,) as Banach algebras
for some p, g € [2,0). Then G, is homeomor phically isomorphic to G,.
Proof:

Most of this proof is identical to that given by Walter and a careful read of
his section reveals that the only detail that is left to be verified is that the
identification of G with 6(A;»(G)) is a homeomorphic one when o(A4;»(G))
is equipped with the weak*-topology.

Let VN;»(G) be the von Neumann algebra dual to A;»(G). Then the
canonical embedding of G into VN;»(G) is continuous in the weak*-
topologies. Denote this map by p. Then, since A(G) is contained in A;»(G),

the map p(s) —=x(s) from is continuous in the weak*-topologies from
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VN »(G) and VN(G), respectively. Finally, Eymard showed that the map
x(s) » s from X(G) to G is continuous. Hence, we conclude the
identification of G with o(A,»(G)) is a homemorphic one.

The Fourier algebra admits many beautiful properties and it natural to
wonder whether analogues of these continue to hold for the LP-Fourier
algebra. In many cases, such as with Walter’s theorem, analogues do exist,
but we will now see that this is not always the case.

We have found several classes of noncompact groups G so that A;»(G)
is distinct for every p € [2,0). The following example shows in a strong way
that this need not happen in general.

Example (4.2.4) [3]: Let G be the ax + b group. that the Fourier algebra
A(G) coincides with its Rajchman algebra By(G): = B(G) n Cy(G). Since
elements B(G) are uniformly continuous, if u € B(G) is LP-integrable then
u € Cy(G).

As A;»(G) is the closed linear span of P(G) N LP(G) and the norm on B(G)
dominates the uniform norm, it follows that A;»(G) c B,(G) .Therefore
A;p(G) = A(G) forevery 1 <p <.

As previously mentioned, a locally compact group G is amenabile if and

only if A(G) is operator amenable if and only if A(G) admits a bounded
identity. These theorems fail attrociously when A(G) is replaced with
A;p(G) for p > 2. Indeed, our next example shows that A;»(G) need not
even be square dense even when G is abelian.
Example (4.2.5) [3]: Let G be a noncompact abelian group and p > 2.
Then uv € A;p2(G) for all u,v € A;»(G) implies that A;»(G)- A (G) c
A;p2(G). By Theorem (4.1.14) we know that A,»/2(G) is strictly contained
in A;»(G). So A;»(G) is not squaxre dense.

As a consequence of this observation, we find that A;»(G) is never an

amenable Banach algebra when G is noncompact and p > 2.
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Proposition (4.2.6) [3]: Let G be a locally compact group and p > 2. If
A;p(G) = A(G), then A;»(G) is not (operator) weakly amenable.
Proof:
Without loss of generality, we may assume that A;»2(G) # A (G).
Indeed, if not we define

p=inf{qe[2,0):A4.4(C) = A (G)} (20)
and replace p with p + € for some 0 < e <min{l, p — p }. Then the space
App(G) has not changed and A;»(G) # A;»2(G) since p > 1 implies
p/2 < (1+p)/2 <P . So indeed we may assume that A;»(G) # A;»2(G).
Then a similar argument as in the previous example shows that A;»(G) is
not square dense and, there for, is not (operater) weakly amenable.
Corollary (4.2.7) [3]: Let G be a noncompact locally compact group
and p > 2. Then A4;»(G) is a nonamenable Banach algebra.
Proof:
By the above proposition, we may assume without loss of generality that
A;»(G) = A(G). Then G does not contain an open abelian subgroup of finite
index by Proposition(4.1.6) and Theorem (4.1.14) since such a subgroup is
necessarily noncompact. In particular, this implies that G is not almost
abelian. Hence, A;»(G) = A (G) is nonamenable.

Let G;and G,be locally compact groups. The Effros-Ruan tensor
product formula implies that A(G;)®A(G, ) = A(G; XG, ) where & denotes
the operator projective tensor product and u ® v € A(G;)RA(G,) is
identified with u x v € A(G; x G, ). The next example shows that the
analogue of this formula fails for A;». Before this, we observe that the
algebraic tensor product A;»(G;) ® A;»(G,) embeds in A;»(G; X G,) via
the above identification.

Proposition (4.2.8) [3]: Let G, and G, be locally compact groups and p
>2. Thenuxved,

(GyxGy) forallueAp (Gr)and v e 4;p(G,) .
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Proof:
First suppose that u and v are positive definite functions which are LP-

integrable Then u x v is a positive definite function on G1 x G2 and

[ ol =[ [ lu@v@lrdsat=Jul, o], <. @
G1%G, G, Y6,

Similar arguments as used previously in the paper now show that u X v €
Ap(Gyx Gy) forall ue A;p(G,) and v e A;p(G,).

Example (4.2.9) [3]: Let I and I be discrete groups containing copies
of non abelian free groups and p > 2. Then A, (I7) ® Ay () is not norm
dense in A (7 XI5,). Indeed, identify copies of [F2 in both 7 and I, and let
A be the diagonal subgroup of F2xF, € [7 x I, . Then u xv | A € Agpp(A) for
all u € Aw(l7) and v € A () by Proposition (4.1.5) and Proposition
(4.1.6). But Ap(l; x T2)|a = Aw(A). As Apr(l; x Iy) is a proper
subspace of Ax (7 X I ),we conclude that Ay (I7) ® A (I5) IS not norm
dense in A (1) ® Apw(l3).

The observations made in this previous example have applications to

finding intermediate C*-norms between the spatial and maximal tensor
product norms.
Theorem (4.2.10) [3]: Let I'' and I, be discrete groups containing
copies of noncommutative free groups and p > 2. Then Cp,(I'1x I;) gives
rise to a C*-norm on the algebraic tensor product C;,(T'1)®C;,(T2) in the
natural way. This norm is distinct from the minimal and maximal tensor
product norms.

Before proving this theorem, we recall a result which we will make use
of.Let G; and G, be locally compact groups with representations ,and .
We showed that there is a one-to-one correspondence between C*-norms on
the algebraic tensor product C;,(G;) ® C;,(G,) and Fourier-Stieltjes
spaces B,0f G, x G, such that B, | G; =By, , By | G, = By,and By O By xr,.
The C*-norm on C,,(G,) ® C,,(G2) corresponding to B, is the natural
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one, i.e., forfy, ..., f, € L}(Gy) and g4, ..., gne L1(G,), the norm of
Yk=171 (f) ®m,(gK) is given by

n

> 1 (fi) ®m(gk)

K=1

n

ZU(fogK)

K=1

. (22)

Proof: Let 7, and m, be faithful £7-representations for C,,(I7) and Cy,(3),
respectively. It follows from Proposition (4.2.8) that B xn, © Bw (I} X I3)
and, by Proposition B (I  I3) | ;= Bep(I3) =Bp,and Bpo(ly x ) | I3 =
By (I3) = By, . S0 Cpy(I7 % I3) indeed induces a C*-norm on Cp,(17) ® (13)
in the natural way. From the observations in the previous example, we have
that Bep(T'1) # By, xm,and, hence, that the norm coming from C;, (I} x I)
is not the spatial tensor product norm.

Identify copies of [F, in I X I;and let A denote the diagonal subgroup
of F,xF, c I} x I5. In the proof of a Fourier-Stieltjes space B, satisfying
the above conditions is constructed with the property that B, | A contains the
constant function 1. Then B,»(I7 % I;,) does not contain B, since otherwise
By (A) would contain the constant 1 and, hence, Byr(A) would be all of
B(A). This would be a contradiction since A = F, is nonamenable.

In a previous example we observed that characterizations of amenability
in terms of the Fourier algebra can fail when A(G) is replaced with A;»(G).
We finish this section by identifying some characterizations of amenability
which do translate over.

Let A be a Banach algebra. A linear operator T : A— A is said to be a
multiplier of A if T(ab) = aT(b) = T(a)b for all a, b € A. In the context of
Fourier algebras A(G), every multiplier is bounded and is realizable as
multiplication by some function on G. Viktor Losert characterized the
amenability of a locally compact group G in terms of multipliers by
showing that G is amenable if and only if M(A(G)), the set of multipliers of
A(G), is exactly B(G) if and only if the norm on A(G) is equivalent to the
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norm it attains as a multiplier on itself. We show that the analogue of this
theorem holds for LP-Fourier algebras.

Theorem (4.2.11) [3]: The following are equivalent for a locally
compact group G and 1 <p < oo.

(i) G is amenable.

(i) M(4,»(G)) = B(G)

@i | 5(syis equivatent to || ||M(ALp(G))on B(G)
@V)[| - [| 5gyis equivalent to ||-||M(ALp(G)) on A(G)
W)[| - [ 5, 1s equivalent to |- ||M(ALP(G))on A(G)
Proof:

(i) = (ii): It is an application of the closed graph theorem that every
element of M(A4,»(G)) is bounded and given by a multiplication operator.
Suppose that v € C,(G) is amultiplier of A;»(G). Since G is amenable, A(G)
admits a bounded pointwise approximate identity { u,}.Then {u,v} is a
bounded sequence converging pointwise to v and, hence, v € B(G) .
(if) = (iii): Standard application of the open mapping theorem
(iii) = (iv): Clear
(iv) = (v): Suppose that there exists ¢ > 0 so that

sup {|| uv"B(G): ve A r(G), ||v||B(G) <1}> c||u||B(G) (23)

for every u € A(G) and choose n sufficiently large so that p/n < 2. Fix

u € Ap(G) and choose a unit vector v in 4,»(G) so that|uvi| ;. >
cflull 5 s)- Next choose v2 € 4,»(G) so that

Il wvs)v2 "B(G)> ¢ [luvs "B(G)> C?|lu "B(G)' (24)
Repeat this process until we arrive at n unit vectors vy, . .., vn € A;»(G) and
define v=v;- - -v,. Then v € A(G) has norm at most 1 and
lwv |l 56y €™ el g6y Hence, |- | 5 6yis equivalent to || || 4 (yy0n AG).

(v) =(i): As mentioned above, this was shown by Losert.
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We now prove a characterization of amenability in terms of the LP-

Fourier-Stieltjes algebra. Recall that

Volker Runde and Nico Spronk introduced the notion of operator

Connes amenability and showed that a locally compact group G is
amenable if and only if the reduced Fourier-Stieltjes algebra Bx is operator
Connes amenable. Since B;»(G) is the dual space of C;,(G), it also has a
natural operator space structure.We finish by showing that this
characterization holds for LP-Fourier-Stieltjes algebras.

Theorem (4.2.12) [3]: Let G be a locally compact group and p € [1,0).
Then G is amenable if and only if B;»(G) is operator Connes amenable.
Proof:

First suppose that G is amenable. Then B;»(G) = BX(G) = B(G) is operator
Connes amenable.

Next suppose that B;»(G) is operator Connes amenable.Then, B;»(G) has
an identity.So B;»(G) = B(G) and, hence, G is amenable by Proposition
(4.1.4).

We study the LP-Fourier-Stieltjes algebras for SL(2,R) and characterize
the Fourier-Stieltjes ideals of SL(2,R). The representation theory of
SL(2,R) is very well understood, and this knowledge is used intimately.

The irreducible representations of SL(2,R) fall into the following five

categories:
Trivial representation : 1
Discrete series : {Tynez |n| =23,
Mock discrete series : T_41, Ty,

Principal series : {m; e:teR, e ==*1}
Complementary series : {m,: =1 <r <0}.
Ray Kunze and Elias Stein studied the integrability properties of the

coefficients of irreducible representations SL(2,R) and demonstrated the
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remarkable fact that for every nontrivial irreducible representation m of

SL(2,R), there exists a p € [2,:0) so that i, , € LPfor every x € H,. In fact,

for an irreducible representation « of SL(2,R) they showed:

(i) m is an element of the discrete series if and only if every coefficient
function of m is L2-integrable,

(if)m is an element of the mock discrete series or the continuous principal
series if and only if every coefficient function of m is L>*€-integrable for
every e >0, but not every coefficient function is L2-integrable,

(iii) 7 is an element of the complementary series with parameter r € (—1,
0) if and only if every coefficient function of r is L%/ (1*")*€_integrable
for every € > 0, but not every coefficient function is L?/(1+7).
integrable.

A fortiori, every nontrivial irreducible representation of SL(2,R) is an LP-
representation for some p € [2,0). We use this and a result of Repka to

show that the spaces B;»(SL(2,RR)) are distinct for every p € [2,).

Lemma (4.2.13) [3]: Let G be the group SL(2,R). Then

(i) The discrete series, mock discrete series, and principal series are weakly

contained in the LP-representations for every p € [2,).

(if) The complementary series representations r,.is weakly contained in the

LP-representations (for p € [2,00) if and only if r € [2/p —1, 0)

Proof:

Let & be a representation of SL(2,R). Then, immediately implies that if = is

an LP-representation for some p > 2, then the direct integral decomposition

of © does not include the representations m,. for —1 <r < 2/p—1 (apart from

on a null set). Hence, © does not weakly contain 7, for any —1 <r < 2/p—1

since the set { m,- : —1 <r < 2/p—1} is open in the Fell topology.

Note that by the results of Kunze and Stein mentioned above, m, is an

LP-representation for every 2/p —1 < r < 0. Hence, the LP-representations

weakly contain m,.if and only if 2/p —1 <r <0.
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To complete our proof we must note that the mock discrete series and
principal seriesare weakly contained in the left regular representation. But
this is given by the Cowling Haagerup-Howe theorem since they are
each L2*€- representations for every e > 0.

Corollary (4.2.14) [3]: Let G = SL(2,R). Then the Fourier-Stieltjes
spaces B;»(G) are distinct for every p € [2,0). Equivalently, the C*-
algebras C,,(G) are distinct for every p € [2,00).

We now proceed to prove the following result acharacterization of the
Fourier-Stieltjes ideals of SL(2,R).

Theorem (4.2.15) [3]: Let I be a nontrivial Fourier-Stieltjes ideal of
SL(2, R). Then | = B(G) or I= B;»(G) for some p € [2,0).

Proof:

Write | =B, for some representation © of G. Then, since 7 @ X is unitarily
equivalent to an amplification of X by Fell’s absorption principle, it is an
easy exercise to see that B, o Bx = B;2(G).

Consider the case when the trivial representation t is weakly contained
in . Then I contains the unit and, hence, is all of B(G).

Next consider the case when m does not contain the complementary
representation m.for any r € (—1, 0). Then, by Lemma (4.2.13), B. is a
subset of B;2(G). Since we already know the reverse inclusion, we conclude
that I= B,2(G).

Finally, we consider the case when m weakly contains some element of
the complementary series. Let

r=inf {r'e (-1, 0) : m,, is weakly contained in 7t}.
Then r > —1 since m, converges to the trivial representation t in the Fell
topology as r — —1. Also notice that © weakly contains 7,.Since m,,— 1,
in the Fell topology as r'— r. Puk’anszky showed that if r;, r, € (—1, 0)
with 7+ r, < —1, then m, ., ,4is a subrepresentation of m,, ®m,, Since

r+r'<—=1for —1<r'<—r —1 and n weakly contains ,, @ m,.,. for every
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—1< r <0, it follows that © weakly contains m,, for each r < r' < r.
Therefore, by Lemma (4.2.13), we conclude that I = B;»(G) where
p=2/(1+r).

It is natural to wonder which other groups are the Fourier-Stieltjes ideals
characterizable as above. Unfortunately this characterization does not hold
for arbitrary locally compact groups G.

Example (4.2.16) [3]: Consider the free group F,o0n countably many
generators a4, a, , . . . and let IF; denote the subgroup generated by a4, . ..
, agq Tor some 2 < d <. For each p € [1,), define

D, ={fe £=(F-): f | spqee £P(SFd") for all s, t € F.}. (25)
Then D, is an ideal of £°(F,,) which implies that Bppis an ideal of B(G).
Moreover, it was shown that Cp,,(Fe) # Cpq(Fo,) for any 1< q < oo and that
Cpp(Fo) s distinct for each p € [2,00). Hence, Fyhas a continuum of
Fourier-Stieltjes ideals which are not of the form B »(F,) for some
pe[2,).
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