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Abstract 

An asymptotic measure expansiveness is introduced and its relationship 

with dominated splitting is considered. We show recurrence and multiple 

recurrence results for topological dynamical systems indexed by an arbitrary 

directed partial semigroup with respect to acoideal basis suitable for this 

semigroup, but otherwise arbitrary.Extending the work of Cuntz and 

Vershik, we develop ageneral notion of independence for commuting group 

endomorphisms. Based on this concept, we initiate the study of irreversible 

algebraic dynamical systems, which can be thought of as irreversible 

analogues of the dynamical systems considered by Schmidt. We show a 

version of uniqueness theorem for Cuntz-Pimsner algebras of discrete 

product systems over semigroups of Ore type. 
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 الخلاصة
تم إدخال تمدد القیاس التقریبي وإعتباره مع الإنشقاق المھیمن. أوضحنا 

التكرار ونتائج التكرار المضاعف للانظمة الحركیة التبولوجیة المرقمة بواسطة 

بالنسبة إلى أساس مثالي مصاحب مناسب لأجل شبھ زمرة جزئیة مباشرة إختیاریة 

شبھ الزمرة ھذه ولكنھا إختیاریة في مكان آخر. مددنا عمل كینتز وفرشیك وطورنا 

ً على ھذا  الفكرة العامة غیر المستقلة لأجل أندومورفیزمات زمرة التبدیل. بناءا

ن أن یفكر المفھوم بدأنا دراسة الأنظمة الحركیة الجبریة اللا إنعكاسیة والتي یمك

فیھا كمشابھ لا إنعكاسي للأنظمة الحركیة المعتبرة بواسطة شمیدت. أوضحنا 

بیمسنیر لأنظمة الضرب  –إصدارة لمبرھنة الوحدانیة لأجل جبریات كینتز 

  أور. عالمتقطعة فوق شبھ زمر نو
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Chapter 1 

Diffeomorphisms of Asymptotic Measure Expansive 

It is proved that if a diffeomorphism admits a co-dimension one 

dominated splitting then it is asymptotic measure expansive. Also, a 

diffeomorphism with a homoclinic tangency can be perturbed to a non-

asymptotic measure expansive diffeomorphism 

Proposition (1.1)[1]: 

For a diffeomorphism 푓 having a dominated splitting퐸 ⊕  퐹 there exist 

two continuous maps ∅ :푀 → 퐸푚푏(퐷 ,푀) and ∅ ∶  푀 → 퐸푚푏(퐷 ,푀) 

such that for 푊 (푥) = ∅ (푥)(퐷∈) and  푊 (푥) = ∅ (푥)(퐷∈ ) we have.  

• 푇 푊 (푥) = E(푥)and 푇 푊 (푥) = 퐹(푥); 

• 푊 (푥)  ∩  푊 (푦) is exactly one point denoted by {푥, 푦}.  

In the case of a partially hyperbolic splitting 퐸 ⊕ 퐹, the submanifold 

푊 integrating 퐸 inherits the same behavior. Thus, for any 푦, 푧 ∈

푊 (푥)and any positive 푛, 푑(푓  (푦),푓 (푧)) < 휆 .In fact, backward 

iterations of the local stable manifolds makes a foliation of the ambient 

manifold behaving as a contraction on the leaves with respect to the induced 

Riemannian metric . Any partially hyperbolic diffeomorphism is measure 

expansive. The idea of proof is quite simple. Take 푦 ∈ Γ (푥), with 훿 small 

enough. If 푦 ∉ 푊 (푥), then, the backward iterations go away from the 훿 

neighborhood. Hence, 푦 ∈ 푊 (푥), and therefore Γ (푥)  ⊂ 푊 (푥).This 

implies that 퐿푒푏(Γ (푥)) =  0. To prove Theorem (1.3), we need two simple 
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observations. Time first follows from the differentiability of 푓 and the 

second straightforwardly from the fact that the angles between unit vectors 

of the two bundles of a dominated splitting are uniformly bounded away 

from zero. For 푦 ∈ Γ (푥) the projection of 푦 on  푊 (푥) along the cu-leaves 

is denoted by 푦퐸. 푦퐹is similarly defined. In fact 푦퐸 = [푥, 푦] 푎푛푑 푦퐹 =

[푦, 푥]. 

Lemma (1.2)[1]: 

If훿is sufficiently small, then for any y ∈ Γ  (x) , there is M such that  

푑(푓 (푥), 푓 (푦퐸))
푑(푓 (푥), 푓 (푦푓)

≤ 푀휆  

Proof: Let us consider a positive number 훿 such that for any 푦, 푧 ∈  푀with 

푑(푦, 푧)  <  훿we have   |퐷푓 ( ) / 퐷푓 ( ) ≤ 휆  ). In particular, for any 

two points 푦, 푧 with 푑(푓  (푧), 푓  (푦))  <  훿, for every 푛 ∈ ℤ 

 

퐷푓 ( )  / 퐷푓 ( ) < 휆 , 푓표푟 푒푣푒푟푦 푛 ∈ ℤ            (1) 

As푦퐸 = [ 푥. 푦 ] and 푑(푓 (푥),푓  (푦퐸 )) <  훿,푓  (푦퐸 )  =  [푓 (푥 ),푓 (푦)] and the 

same holds for 푦퐹. Let 훾 and η be the curves of minimal length connecting 

푓 (푥) to,푓 (푦퐸 ) and  푓 (푥) to,푓 (푦퐹 )respectively.Choose curves 훾 and 

휂  with 푓 (훾 ) = 훾and 푓 (휂 )= 휂. We should point out that the curves  훾   

and  휂   are simply the perimages under푓 of 훾  and 휂 respectively. Now, we 

have  
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푑(푓 (푥), 푓 (푦퐸))
푑(푓 (푥), 푓 (푦퐹)

≤ 훾°(푡) 푑푡 / 휂°(푡) 푑푡

≤ 퐷푓 훾 (푡) 훾°(푡) 푑푡/ 퐷푓 휂 (푡) 휂° (푡) 푑푡

≤ 퐷푓 훾 (푡) | 훾°(푡) 푑푡

/ 퐷푓 휂 (푡) | 휂° (푡) 푑푡 ≤ 휆
푑(푥, 푦퐸)
푑(푥, 푦퐹)

 

last inequality holds by (1.1) and the fact that E is one dimensional. 

Theorem (1.3)[1]: 

If 푓 ∈ 퐷푖푓푓 (푀) admits a co-dimension one dominated splitting, then f is 

asymptotic measure expansive.  

Since the existence of a dominated splitting is an open property in 

퐷푖푓푓 (푀), the above result implies that every diffeomorphism admitting a 

dominated splitting is contained in the C1 interior of the asymptotic measure 

expansive diffeomorphisms.  

We complete by showing that asymptotic measure expansiveness is far 

from homoclinic tangency.  

Proof:  As a result of the above lemma, one can deduce that fory ∈

Γ ( ), 푑 ( 푓 (푥),푓 (푦퐸))tends to 0 exponentially fast. Now, given > 0 , 

choose 휂 in such a way that the set  
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퐷 = 푤 (푦)
∈ ( ( ))

 

 

 

 

 

Fig. 1.The local set 퐷  

has Lebesgue measure less than 휖. By the above lemma and the continuity of 

center-unstable manifolds, for large 푛,푓 (Γ (푥)) ⊂ 퐷 (see Fig.1). In 

particular, 

퐿푒푏 (푓 (Γ (푥))) ≤  퐿푒푏(퐷 ) 

and the proof follows. 

Theorem (1.4)[1]: 

1f 푓 ∈ 퐷푖푓푓 (푀) has homoclinic tangency, then 푓 can be perturbed in      

C1-topology to a diffeomorphism that is not asymptotic measure expansive.  

Consequently, time C1-interior of the asymptotic measure expansive 

difthomorphisms is formed by diffeomnorphismns far from hornoclinic 

tangencies.  
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Proof: It is worth noting that we are working in the C1-topolor. Bowen, 

proved that C2-diffeomorphisms have no  horseshoes with positive Lebesgue 

measure, however, he constructed a C1-horseshoe with positive Lebesgue 

measure. In the proof of Theorem (1.4) we benefit from this construction 

and the modifications done.  

Suppose that 푓 has a periodic point 푝 whose stable and unstable 

manifolds tangentially intersect each other in a homoclinic point 푥. The 

proof will be done straightforwardly using two classic steps borrowed 

essentially from [1].First, a fiat connection between the stable and unstable 

manifolds of p at a tangential intersection point is produced; 

Lemma (1.5)[1]: 

With the assumptions above, there is a diffeomorphisrn푓 sufficiently         

C1-closed to f such that 푝 is again a periodic point for 푓 and there is a 

smooth submanifold 퐶, with 푑푖푚(퐶) = 푚푖푛{푑푖푚(푊 (푝)),푑푖푚 (푊  (푝))}  such 

that 풙 ∈ 퐶 ⊂ 푊 (푝, 푓 ) ∩푊 (푝, 푓 ). 

In the second step, using Bowen’s construction, a sequence of invariant 

horseshoes of positive Lebesgue measure are produced. Anon-asymnptotic 

expansive diffeornorphism is created. 

Proposition (1.6)[1] : 

There is a C1-diffeomorphism 푓  arbitrarily near 푓 (푓 as in the above 

lemma), producing a sequence of horseshoes 퐻  near C with the following 

properties:  
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(i)  for some fired 푘,푓 (퐻 ) = 퐻 , for arty n;  

(ii) Leb(퐻 ) >0;  

(iii) Diarn(퐻 ) → 0, 푎푠푛 → ∞. 

Now, put 푝 ∈ 퐻푛, 훿 =  퐷푖푎푟푛(퐻 )and 휂 =  퐿푒푏(퐻 ). Since 퐻 ⊂

Γ 푝 , 푓 one deduces that for any m.  

퐿푒푏  (푓 (Γ (푝 )))  ≥  퐿푒푏 (퐻 ) > 휂 .  

This means that 푓 is not asymptotic measure expansive.   
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Chapter 2 

Nets and Topological Dynamical Systems 

These results are then applied to topological dynamical systems indexed 

by semigroups possessing digital representation. The theory includes 

recurrence and multiple recurrence results for topological dynamical 

systems, indexed by natural numbers, or by finite non-empty subsets of 

natural numbers. 

Section (2.1): Coideal Bases with the (D)-Property: 

We  introduce the (D)-property of a coideal basis on an infinite directed 

set (Λ,≺) and we will prove, in Theorem (2.1.7) below, that every net 

(푥 ) ∈   in a compact metric space has a convergent subnet of the form 

(푥 ) ∈ , where A is an element of an arbitrary coideal basis ß on Λ with the 

(D)-property. Moreover, we will locate A to be a subset of a given element 

B of the coideal basis ß. This result will be the starting point in order to 

prove later recurrence results for topological systems of continuous maps 

from a compact metric space into itself indexed by an infinite directed set 

with respect to a coideal basis with the (D)-property.  

A coideal on the set of natural numbers appears in [2] and elsewhere. 

This extended from the set of natural numbers to an arbitrary infinite 

directed set as follows: 
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Definition (2.1.1)[2]: 

Let Λ be a non-empty infinite set and ≺ a relation on Λ satisfying the 

following conditions:  

(i) If   λ , λ ∈ Λ  with λ ≺ λ , then λ ≠ λ .  

(ii) If   λ , λ , λ ∈ Λ  with λ ≺ λ  and  λ ≺ λ  , then λ ≺ λ . 

(iii) For every λ , λ ∈ Λ there exists λ ∈ Λ  such that  λ ≺

λ   and  λ ≺ λ   

Then (Λ,≺)  is a directed set.  

Definition (2.1.2)[2]: 

Let (Λ,≺) be an infinite directed set, A subset ℋ of [Λ]  is a coideal on 

(푋,≺)  if it satisfies the following three properties:  

(i)  For every  A ∈ ℋ  and   λ ∈ Λ there exists  λ ∈ A   such that λ ≺

λ . 

(ii)  If A ∪ B ∈ ℋ,   then either A ∈ ℋ or B ∈ ℋ.  

(iii) If  A ∈ ℋ  and A ⊆ B ⊆ X  then  B ∈ ℋ.  

Let (Λ,≺) be an infinite directed set and let 퐴 ⊆ Λ and λ ∈ A. Then,      

A − λ = { Z ∈ A ∶ λ ≺ 푧}. 
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Definition (2.1.3)[2]: 

Let (Λ,≺) be an infinite directed set. A subset ß of [Λ]  is a coideal 

basis on (Λ,≺) if it satisfies the following two properties:  

(i) For every 퐴 ∈ ß and 휆 ∈ Λ there exists 휆 ∈  푨 such thatλ ≺ λ .  

(ii) If  퐴 ∪  퐵 ∈ ß,  then there exists 퐶 ∈ ßsuch that either 퐶 ⊆  퐴 or    

퐶 ⊆  퐵.  

Obviously, a coideal on (Λ,≺)is a coideal basis on (Λ,≺). The 

connection between coideals and coideal bases is given in the following 

proposition.  

 Proposition (2.1.4)[2]: 

Let (Λ,≺) be an infinite directed set. A family ℋ ⊆ [Λ]   is a coideal on 

(Λ,≺) if and only if there exists a coideal basis ß ⊆  [Λ]  such  

that 

 

ℋ = ℒß = {퐴 ⊆ 푋 ∶   푡ℎ푒푟푒 푒푥푖푠푡푠 퐵 ∈ ß 푤푖푡ℎ 퐵 ⊆ 퐴}. 

Definition (2.1.5)[2]: 

Let (Λ,≺) be an infinite directed set. A coideal basis ß ⊆  [Λ]  on (Λ,≺) 

has the (P)-property if for every sequence (퐴 ) ∈ℕ,  with 퐴 ∈ ßand A  ⊇

A  ⊇. . .,  there exists 퐴 ∈ ß such that 퐴 \ 퐴  is a finite set for every 푛 ∈ ℕ.  

We will introduce now a weaker property than the (P)-property of a 

coideal basis on an infinite directed set, which we call (D)-property. 
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Definition (2.1.6)[2]: 

 Let (Λ,≺) be an infinite directed set. A coideal basis ß ⊆  [Λ]  on (Λ,≺

) has the (D)-property iffor every sequence (퐴 ) ∈ℕ,  with 퐴 ∈ ßand A ⊇

A  ⊇. . .,  there exists 퐴 ∈ ß such that for every 푛 ∈ ℕthere exists 퐾 ∈ ℕ ∪

{0} satisfying 

퐾 = 푚푎푥{ 푘 ∈ ℕ: 푡ℎ푒푟푒 푒푥푖푠푡 휆  , … , 휆  ∈ 퐴/퐴  푤푖푡ℎ 휆  ≺ ⋯ ≺ 휆  }. 

Examples (2.1.7)[2]: 

(i) The set [ℕ]  is a coideal on ℕ with the usual order, according to the 

pigeon-hole principle, and obviously has the (P)-property and 

consequently the (D)-property.  

(ii) Let [ℕ] ∞ be the set of all the finite non-empty subsets of ℕ. For 

퐹 ,퐹 ∈  [ℕ]  we define 퐹 ≺ 퐹 if 푚푎푥 퐹 <  푚푖푛퐹 . Then 

([ℕ] ∞  ,≺) is an infinite directed set.  

For a sequence (F ) ∈ℕ ⊆ [ℕ] ∞ such that 퐹 ≺ 퐹  for every 푛 ∈ ℕ we 

set 퐹푈((퐹 ) ∈ℕ) = {푈 ∈  퐹 :훼 ∈ [ℕ] ∞  }. The family  

ß =  { 퐹푈((퐹 ) ∈ℕ): (퐹 ) ∈ℕ ⊆ [ℕ]  푤푖푡ℎ 퐹 ≺ 퐹 ≺ ⋯ } 

is a coideal basis on ([ℕ] ∞ ,≺) , according to the fundamental theorem of 

Hind- man.  

This coideal basis has not the (P)-property, but it has the (D)-property. 

Indeed, let a sequence (A ) ∈ , with A ∈ ß and  A ⊇ A ⊇  .... If   A =



11  
 

FU F ∈ℕ , where (퐹 ) ∈ℕ ⊆ [ℕ] ∞  ,with 퐹 ≺ 퐹 ≺ ⋯ for every k ∈

ℕ, then we set 퐴 =  퐹푈 퐹 ∈ .Then 푨 ∈ ß and for every k ∈ ℕ. 

푘 − 1 =  푚푎푥{ 푛 ∈ ℕ: 푡ℎ푒푟푒 푒푥푖푠푡  퐹 ≺ ⋯ ≺ 퐹 ∈ 퐴\ 퐴  푤푖푡ℎ 퐹 ≺ ⋯ ≺ 퐹 }. 

(iii) Let ∑ = {α , α  , … }  be an infinite countable alphabet and 푘⃗ =

(푘 ) ∈ℕ ⊆ ℕ an increasing sequence. The set of 휔-located words 

over ∑ dominated by 푘⃗ is  

퐿(∑, 푘⃗) = 푤 = 푤 …푤 : 푙 ∈ ℕ,푛 < ⋯ < 푛 ∈ ℕ,푤

∈ 훼 , … ,훼  푓표푟 푎푙푙 1 ≤ 푖 ≤ 푙  

Let 푣 ∉ Σ be a variable. The set of variable 휔-located wordsover 

Σ dominated by the sequence 푘⃗ is:  

퐿(∑, 푘⃗; 푣) =  푤 = 푤 …푤 : 푙 ∈ ℕ, 푛 < ⋯ < 푛 ∈ ℕ,푤

∈ 푣,훼 , … ,훼  푓표푟 푎푙푙 1 ≤ 푖 ≤ 푙 푎푛푑 푡ℎ푒푟푒 푒푥푖푠푡푠 1 ≤ 푖

≤ 푙  푤푖푡ℎ   푤 = 푣  

Let 퐿(∑∪ {푣}, 푘⃗) =  퐿(∑, 푘⃗) ∪ 퐿(∑, 푘⃗; 푣). 

If w =푤   . . . 푤  ∈ 퐿(∑∪ {푣}, 푘⃗) then the set 푑표푚 푤 = { 푛  , … , 푛 } 

the domain of w For 푤 , 푢  ∈ 푳(∑∪ {푣}, 푘⃗) we define 푤 ≺ 푢 if 

푚푎푥 푑표푚, (푤) < 푚푖푛 푑표푚(푢). Then 퐿 ∑∪ {푣}, 푘⃗) ,≺ , (퐿(∑, 푘⃗),≺) and  

(퐿(∑, 푘⃗; 푣),≺) are infinite directed sets.  
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For 푤 = 푤  , . . . ,푤  ,푢 =  푢  , . . . ,푢  ∈  퐿 ∑∪ {푣}, 푘⃗   푤푖푡ℎ 푤 ≺ 푢 we 

define the concatenating word 푤 ⋆  푢 =  푤  , . . .푤  ,푢  , . . . , 푢  ∈

 퐿 ∑∪ {푣}, 푘⃗ . 

For 푤 =  푤  , . . . ,푤 ∈ 퐿 ∑∪ {푣}, 푘⃗ 퐿(∑, 푘⃗; 푣)  and 푝 ∈ ℕ ∪ {0} we set 

푤(0) = 푤 푎푛푑,푓표푟 푝 ∈ ℕ,  

푤(푝) =  푢  , . . . , 푢   ∈  퐿 Σ, 푘⃗  

where, for 1 ≤ 푖 ≤ 푙,푢 = 푤  푖푓 푤  ∈ ∑,푢  = 훼   푖푓 푤  = 푣 and 푝 ≤

k  and finally 푢  = 훼 푖푓  푤  = 푣 푎푛푑 푝 > 푘  . Let 

퐿 훴, 푘⃗; 푣 = (푤 ) ∈ℕ ⊆ 퐿 훴, 푘⃗; 푣 ∶ 푤 ≺ 푤  푓표푟 푒푣푒푟푦    푛 ∈ ℕ 

We will define now the extracted (variable) 휔-located words of a 

sequence 휔⃗ = (푤 ) ∈ℕ ∈ 퐿 (∑, 푘⃗,푣) . An extracted variable휔-located word 

of runhas the form  

푤  
(푝 ) ⋆ … ⋆ 푤  

(푝 ) ∈ 퐿 Σ, 푘⃗; 푣 , 

Where λ ∈ ℕ, n < ⋯ < nλ ∈ ℕ  and  푝 , … , 푝 ∈ ℕ ∪ {0} with 0 ≤ 푝  ≤

푘    for every  1 ≤ 푖 ≤  휆 and  0 ∈ {푝 , … , 푝 }. The set of all the extracted 

variable 휔-located words of 휔⃗ is denoted by 퐸푉(휔⃗).  

An extracted휔-located word of 휔⃗has the form  

푤  
(푝 ) ⋆ … ⋆ 푤  

(푝 ) ∈ 퐿 Σ, 푘⃗ , 
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Where  λ ∈ ℕ, n < ⋯ < nλ ∈ ℕ  and  푝 , … , 푝 ∈ ℕwith 0 ≤ 푝  ≤ 푘    

for every  1 ≤ 푖 ≤  휆  . The set of all the extracted 휔-located words of 휔⃗ is 

denoted by 퐸(휔⃗). The families  

ß = {퐸(휔⃗): 휔⃗ = {(풘풏)풏∈ℕ ∈ 퐿 Σ, 푘⃗; 푣 }and 

ß = {퐸푉(휔⃗): 휔⃗ = {(풘풏)풏∈ℕ ∈ 퐿 Σ, 푘⃗; 푣 } 

are coideal bases on (퐿 Σ, 푘⃗ ,≺)  and (L Σ, 푘⃗; 푣 ,≺) respectively, according 

to a fundamental partition theorem of Carlson proved in [2] for the particular 

case of a finite alphabet.  

These coideal bases have not the (P)-property, but they have the (D)-

property. Indeed, let a sequeoce  (퐴 ) ∈ℕ, with  퐴 = 퐸(휔⃗ ), where  휔⃗ =

(푤 )풏∈ℕ ∈ 퐿 Σ, 푘⃗; 푣 and  퐴 ⊇ 퐴 ⊇ ⋯ 푙푒푡휔⃗ = (푤 )퐧∈ℕ ∈ L (∑, 푘⃗; 푣) 

We set 퐴 = 퐸(휔⃗) . Then 퐴 ∈ ß. Moreover, for every 푘 ∈ ℕ,  

푘 − 1 = 푚푎푥  {푛 ∈ ℕ: 푡ℎ푒푟푒 푒푥푖푠푡 푤  , … ,푤  ∈ 퐴\푨풌푤푖푡ℎ푤  ≺ ⋯ ≺ 푤  }. 

Hence, ß has the (D)-property. Analogously, it can be proved that ß  has the 

(D)-property.  

We give more examples of coideal bases on directed sets with the (D)-

property.  

After the definition of the coideal bases on directed sets with the 

(D)property. It is well known that every net (푥 ) ∈ in a compact metric 

space has a convergent subnet. We will prove, in the following theorem, that 

this suibnet can have the form (푥 ) ∈ , where A is an element of an 
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arbitrary coideal basis ß on Λ with the (D)-property, and moreover A can be 

a subset of a given element B of ß.  

Let (Λ ,≺) be an infinite directed set and (푥 ) ∈Λ ⊆ 푋 be a net in a 

topological space X. For 푥 ∈ 푋 ,we write  

푙푖푚
∈훬
푥 = 푥 , 

if   (푥 ) ∈Λconverges to 푥 ,i.e. if for any neighborhood V of푥 ,there 

existsλ ≡ λ (V) ∈ Λ such that 푥 ∈ 푉 for everyλ ∈ Λ with  λ ≺ 휆.  

Analogously, we write for an element A of a coideal basis ßon (Λ ,≺) 

and    푥 ∈ 푋  

푙푖푚
∈  

푥 = 푥 , 

If the net (푥 ) ∈A converges to 푥 , i.e. if for any neighborhood Vof  푥 , there 

exists λ ≡ λ (V) ∈ A  such that xλ ∈ V  for every 휆 ∈  퐴 with  λ ≺ 휆.  

Theorem (2.1.8)[2]: 

Let 푋, 푑 be a compact metric space, (Λ ,≺) an infinite directed set and let 

(푥 ) ∈ ⊆ 푋   be a net in X. For every coideal basis ß on (Λ ,≺) with the 

(D)-property and every 퐵 ∈ ß there exists 퐴 ∈ ß with 퐴 ⊆ 퐵 such that the 

subnet (푥 ) ∈  of (푥 ) ∈  to converge to some element of  X.  

Proof: Let ß be a coideal basis on (Λ ,≺) with the (D)-property and 퐵 ∈ ß. 

We set 퐵(푥, 휖) = { 푦 ∈ 푋:푑(푥, 푦) ≤ 휖} for every 푥 ∈  푋 and 휖 > 0. Since 
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(푋. 푑) is a compact metric space, we have that 푋 = ⋃ 퐵 푥 , for some 

a푥 , … ,푥 ∈ 푋. 

Let A = 퐵. Since 퐴 = ⋃ 퐶  where 퐶 =  휆 ∈ 퐴 ∶ 푥 ∈ 퐵 푥 , , 

and ß is a coideal basis, there exist 퐴 ∈ ß ,퐴 ⊆ 퐴 and 1 ≤ 푖 ≤ 푚 such 

that 퐴 ⊆ 퐶  and consequently {푥 ∶ 휆 ∈ 퐴 } ⊆ 퐵 푥 ,  .We continue 

analogously. Since B x ,  is a compact space, there exist 푥 , … 푥 ∈ 푋, 

such that B 푥 , ⊆ ⋃ 퐵 푥 ,  and consequently there exist 퐴 ∈

ß ,퐴 ⊆ 퐴 and 1 ≤ 푖 ≤ 푚 such that {푥 ∶ 휆 ∈ 퐴 } ⊆ 퐵 푥 , ∩

퐵 푥 , . 

Inductively, we construct a sequence(퐴 ) ∈ ℕ, with 퐴 ∈ ß and 퐴 ⊇

퐴 ⊇ ⋯, and also closed balls 퐵 푥 , . for 푛 ∈ ℕ, such that  

푘 = 푚푎푥{푘 ∈ ℕ ∶ 푡ℎ푒푟푒 푒푥푖푠푡 휆  , … , 휆  ∈ 퐶\퐴  푤푖푡ℎ휆  ≺ ⋯ ≺ 휆  }. 

This implies that 퐶 \ 퐴  does not contain an element of ß. So, Since 퐶 ∈ ß 

and 퐶 = (퐶\퐴 ) ∪ (퐶 ∩ 퐴 ),  there exists 퐴 ∈ ß,퐴 ⊆ 퐶 ∩  퐴 . Then 퐴 ⊆

 퐶,퐴 ∈  ß ,퐴 ⊆  퐵 =  퐴  and for every n ∈ ℕ, n > 1  there exists 푞 ∈ ℕ ∪

{0} such that   

푞 = 푚푎푥{푘 ∈ ℕ ∶ 푡ℎ푒푟푒 푒푥푖푠푡 휆  , … , 휆  ∈ 퐴\퐴  푤푖푡ℎ휆  ≺ ⋯ ≺ 휆  }. 

 We will prove that 푙푖푚
∈  

푥 = 푥 . Indeed, for  ϵ >  0 pick 푛 ∈ ℕ. such that 

1\2 < 휖 Then 푑(푥 , 푥 ) ≤  1\2 < 휖  for every 휆 ∈ 퐴  . Let 

휆  , … , 휆 ∈ 퐴\퐴 푤푖푡ℎ휆  ≺ ⋯ ≺ 휆 Since does not exist  λ ∈
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A\A  with λ ≺ 휆   , and 퐴 ∈ ß, there exists λ  ∈ A ∩ A  such 

that 휆 ≺ 휆  . Hence, for every λ ∈ A withλ  ≺ 휆 we have that λ ∈

A  and consequently that 푑(푥 , 푥 ) ≤  1\2 < 휖 . This finishes the 

proof.  

The particular case of Theorem (2.1.8) for the directed set ([N] ∞ ,≺) and 

the coideal basis ß referred in Example (2.1.7) (ii) was proved by 

Furstenberg and Weiss . 

 Also, the particular case of Theorem (2.1.8) for the directed set  

L(∑, 푘⃗; 푣),≺ of 휔-located words and the coideal basis ß referred in 

Example (2.1.7) (iii) was proved by Farmaki and Koutsogiannis.  

Section (2.2): Topological Dynamical Systems Indexed by a 

Directed Partial Semigroup and Applications to Semigroups 

with Digital Representation: 

We will introduce the notion of a directed partial semigroup and 

consequently the suitable coideal bases on a directed partial semigroup and 

the topological dynamical systems indexed by a directed partial semigroup. 

We show recurrence results for topological dynamical systems indexed by a 

directed partial semigroup with respect to a suitable coideal basis for this 

semigroup extending the recurrence theorem of Birkhoff, Purstenberg-

Weiss. 

 We start with the following 

Definition (2.2.1)[2]: 
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 Let (훬,≺) be an infinite directed set and let for every 휆  , 휆  ∈ 훬 with 

λ ≺ λ   is defined a unique element λ ∗ λ  ∈ 훬. If for every 휆  , 휆  , 휆  ∈ 훬 

with λ ≺ λ  ≺ λ   hold λ ≺ λ  ∗ λ  , λ  ∗ λ  ≺ λ  and ( λ  ∗ λ  ) ∗ λ  =

λ ∗ (λ  ∗ λ  ), than (Λ,≺,∗)     is called a directed partial semigroup.  

We will define the suitable coideal bases on a directed partial semigroup.  

Definition (2.2.2)[2]: 

 Let (훬,≺) be a directed partial semigroup. A coideal basis  

ß on  (훬,≺) is suitable for  (훬,≺,∗) if every 퐵 ∈ 퐵 has the property that  

λ  ∗ λ  ∈ B  for every λ  , λ  ∈ B  with λ  ≺ λ  .  

Obviously, if a coideal basis ß is suitable for the directed partial 

semigroup  (훬,≺,∗), then  (퐵,≺,∗) is also a directed partial semigroup for 

ever 퐵 ∈ 퐵. 

We will define a topological dynamical system indexed by a directed 

partial semigroup.  

Definition (2.2.3)[2]: 

 Let (훬,≺,∗) be a directed partial semigroup. A family {Tλ}λ∈  

of continuous functions from a compact metric space X into itself is              

a 훬-topological dynamical system of X if 푇 ∘ 푇 = 푇 ∗ , for every 

λ  , λ  ∈ Λ  with λ ≺ λ   . 

Obviously, if ß is a suitable coideal basis for (훬,≺,∗)and 퐵 ∈ 퐵, then the 

family {T } ∈ is also a topological dynamical system of X.  
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Examples (2.2.4)[2]: 

 Let X be a compact metric space.  

(i) Let 푇 ∶ 푋 → 푋 be a continuous map. Then {푇 } ∈ℕ is a ℕ-topological 

dynamical system of X.  

(ii)  According to Example (2.1.7)(2), ([ℕ] ,≺)is an infinite directed 

set. So, ([ℕ] ,≺,푈)  is a directed partial semigroup and the coideal 

basis ß defined there is a suitable coideal basis for this semigroup. For 

each 푛 ∈ ℕ, let 푇 ∶ 푋 → 푋  be a continuous map from a compact 

metric space X into itself.  

For 퐹 = {푛 < ⋯ < 푛  } ∈ [ℕ]  푤푒 푠푒푡 푇 = 푇  ∘ … ∘ 푇  .Then 

{T }  ∈[ ]  is a [ℕ] -topological dynamical system of X. In 

particular, we can replace푇  , with 푇  for every 푛 ∈ ℕ, Where 푇 ∶

푋 → 푋  is a continuous map.  

(iii)  Let  ∑ = { 훼 ,훼 , … }  ⊆ ℕ be an infinite countable alphabet and  

푘⃗ = (푘 )  ∈ ℕ ⊆ ℕ  an increasing sequence. According to Example 

(2.1.7)(3), (L(∑, 푘⃗) ≺,⋆)  is a directed partial semigroup and the 

coideal basis ß defined there is a sinkable coideal basis for this 

semigroup. Let {푇 } ∈ℕ be a sequence of continuous maps from X 

into itself and let {푙 } ∈ℕ ⊆ ℕ. For 푤 = 푤 …푤 ∈ 퐿(∑, 푘⃗) let  

푇 = 푇 ∘ … ∘ 푇  
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Then {푇 } ∈ (∑, ⃗) is an 퐿(∑, 푘⃗)-topological dynamical system of X.  

We define the recurrent points of a topological dynamical system indexed 

by a directed partial semigroup, with respect to a suitable coideal basis for 

the semigroup. Consequently, using Theorem (2.1.8), we prove the existence 

of such points in case the coideal basis has the (D)-property.  

Definition (2.2.5)[2]: 

 Let (훬,≺,∗) be a directed partial semigroup,{ 푇 }  ∈   a 훬-topological 

dynamical system of a compact metric space (푋, 푑), ß a suitable coideal 

basis on (훬,≺,∗) and let 퐵 ∈ ß. An element 푥  of X is called B- recurrent if  

푙푖푚
 ∈

푇 (푥 ) = 푥 , 푓표푟 푠표푚푒 퐴 ∈ ß 푤푖푡ℎ 퐴 ⊆ 퐵 

Theorem (2.2.6)[2]: 

Let (훬,≺,∗) be a directed partial semigrup, { 푇 }  ∈   a 훬-topological 

dynamical system of a compact metric space (푋, 푑), ß a suitable coideal 

basis for (훬,≺,∗) with the (D)-property and let 퐵 ∈ ß. Then X contains      

B-recurrent points.  

Proof:  Let 푥 ∈ 푋. According to Theorem (2.1.8), there exist 퐴 ∈ ß,퐴 ⊆  퐵 

and .푥 ∈ 푋  such that  

푙푖푚
 ∈

푇 (푥) = 푥 . 

Let ε > 0. Then, there exists λ ∈ A  such that  푑 푇 (푥),푥 < 휀/2  for 

every λ ∈ A  with λ ≺ 휆   We fix λ  ∈ A  with λ ≺ λ . Since 푇  is a 
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continuous function on X, there exists  δ > 0  such that if 푦 ∈ 푋  with 

푑(푦,푥 ) < 훿   then T (y), T (x ) < 휀/2 . Since 푙푖푚
 ∈

푇 (푥) = 푥  , there 

exists λ ∈ A , λ ≺ λ  such that 푑 푇 (푥),푥 < 훿. Then 

푑 푇 푇 (푥) (푦),푇 (푥 ) < 휀/2 and consequently 푑 푇 ∗ (푥),푇 (푥 ) <

휀/2. Since λ ∗λ ∈ A  and λ < λ ∗λ  , we have that d T ∗ (x), (x ) < 휀/2.  

It follows that 푑 푇 ∗ (푥), (푥 ) < 휀  . Hence,푙푖푚
 ∈

푇 (푥 ) = 푥 . 

The particular case of this theorem, where 훬 = ℕ, ß = [ℕ]  and the 

topological dynamical system has the form { T }  ∈ℕ  where T is a 

continuous function from a compact metric space (푋, 푑) to itself, is 

Birkhoff’s recurrence theorem (Let 푇 ∶  푋 → 푋 be a homeomorphism, then 

there exist a point 푥 ∈  푋 such thatlim inf
→

푑(푇 푥, 푥) = 0 [5]).  

Corollary (2.2.7)[2]: 

(Birkhoffs theorem)[5]: Let X be a compact metric space and 푇:푋 → 푋        

a continuous function. There exists 푥 ∈ 푋   and a sequence (푛 ) ∈ℕin ℕ 

such that 푙푖푚
 ∈ℕ

푇 (푥 ) = 푥 . 

We locate recurrent points of a topological dynamical system indexed by 

a directed partial semigroup, with respect to a suitable coideal basis for this 

semigroup, in a given subset of the space. Firstly, we will look for almost 

recurrent points, as their class is wider than the class of recurrent points.  

 

Defection (2.2.8)[2]:  
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Let (훬,≺,∗) be a directed partial semigroup, { 푇 }  ∈   a 훬- topological 

dynamical system of a compact metric space (푋, 푑), ß a suitable coideal 

basis for (훬,≺,∗) and let 퐵 ∈ ß. An element 푥  of X is called B-almost 

recurrent if for every 휀 > 0and 휆 ∈ 훬, there exist 휆 ∈ 퐵 and 휆 ≺ 휆 such 

that  

푑 푇 (푥 ), 푥 < 휀 

A closed subset F of X is called B-almost recurrent setif for every 휀 >

0 ,휆 ∈ 훬 and 푥 ∈ 퐹 there exist, 푦 ∈ 퐹 ,푎푛푑휆 ∈ 퐵휆 ≺ 휆 such that  

푑 푇 (푦),푥 < 휀 

In the following example we will point out a way to locate almost 

recurrent subsets of a compact metric space. 

Example (2.2.9)[2]: 

Let (푋,푑) be a compact metric space, (훬,≺,∗) a directed partial 

semigroup, ß a suitable coideal basis on (훬,≺) with the (D)-property and let 

퐵 ∈ ß. Let 퐹(푋) he the set of all nonempty closed subsets of X endowed 

with the Hausdorff metric 푑, where  

푑(퐾,푀) = 푚푎푥 {푠푢푝  ∈ 푑(푥,푀), 푠푢푝  ∈ 푑(푥,퐾)}. 

Then (퐹(푋), 푑) is a compact metric space. Let  { 푇 }  ∈  be a 훬-topological 

dynamical system of (푋,푑). We define 푇 ∶ 퐹(푋) → 퐹(푋)   with 푇 (퐾) =

 푇 (퐾). Then {푇 }  ∈  is a 훬-topological dynamical system of (퐹(푋),푑). 
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According to Theorem (2.2.6), there exist 퐴 ∈ ß,퐴 ⊆  퐵 and 퐾 ∈  퐹(푋) 

such that  

푙푖푚
 ∈

푇 (퐾) = 퐾. 

Then K is a B-recurrent element of 퐹(푋) and K is a B-almost recurrent 

subset of X. 

We prove now that every almost recurrent subset of X contains almost 

recurrent elements of X.  

Proposition (2.2.10)[2]: 

Let (훬,≺,∗) he a directed partial semigroup, { 푇 }  ∈ a 훬-topological 

dynamical system of a compact metric space (푋. 푑), ß a suitable coideal 

basis on (훬,≺,∗) and let 퐵 ∈ ß. Every B-almost recurrent subset F of X 

contains B-almost reccirrent elements of X.  

Proof: Let F be a B-almost recurrent subset of X. We fix 휀 > 0 and 휆 ∈ 훬. 

Inductively, we will construct a sequence (푥 ) ∈ℕ  ⊆ 퐹a sequence 

(휆 ) ∈ℕ ⊆ 퐵 with 휆 ≺ 휆 and a sequence (휀 ) ∈ℕ with 0 < 휀 < 휀/2, 

which satisfy 푑 푇 (푥 ), 푥 < 휀  and    푑 푇 (푥),푥 < 휀  

whenever 푥 ∈ 푋 and푑(푥, 푥  for every 푛 ∈  ℕ.  

Indeed, since F is B-almost recurrent, for 푥  ∈   퐹and  휀  =  휀/2there exist 

휆  ∈ 퐵 with 휆 ≺ 휆  and 푥 ∈ 퐹 such that 푑 푇 (푥 ), 푥 < 휀 .  

Let there exist 푥 , 푥 , … , 푥 ∈   퐹휆 , … , 휆 ∈ 퐵with 휆 ≺ ⋯ ≺ 휆  and 0 <

휀 , 휀 , … , 휀 <  휀/2 such that 푑 푇 (푥 ),푥 < 휀 . for every 푖 = 1, … , n. 
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Since 푇 is a continuous function, there exists 0 < 휀  ≤ 휀  such that if 

푥 ∈  푋 and 푑(푥,푥 )<휀  , then 푑 푇 (푥),푇 (푥 ) < 휀 −

 푑 푇 (푥 ), (푥 ) . So, whenever 푑(푥, 푥 )<휀  we have that  

푑 푇 (푥), (푥 ) ≤ 푑 푇 (푥),푇 (푥 ) + 푑 푇 (푥), (푥 ) < 휀 . 

Since F is B-almost recurrent there exists 흀풏 ퟏ ∈ 퐵 with 흀풏 ≺ 흀풏 ퟏ  and 

풙풏 ퟏ ∈ 퐹 such that 푑 푇 (푥 ), 푥 < 휀  . This finishes the 

construction.  

We will prove that if 푖, 푗,∈ ℕand 푖 <  푗,  then  

푑 푇 ∗…∗ 푥 푥 < 휀   

Indeed, since 푑 푇 푥 푥 < 휀  we have that 푇 푇 푥 , 푥 <

휀  , and, since 휆 ≺ 휆  we have that 푑 푇 ∗ 푥 , 푥 < 휀  . 

Repeating the same procedure we obtain that 푑 푇 ∗…∗ 푥 ,푥 <

휀  ≤ 휀 =  휀/2 

Since Xis a compact space, there exist 푖, 푗,∈ ℕ with 푖 <  푗, such 

that 푑 푥 , 푥 < 휀/2.Then,  

푑 푇 ∗…∗ 푥 , 푥 ≤ 푑 푇 ∗…∗ 푥 ,푥 + 푑 푥 , 푥 < 휀 

For 풙 = 풙풋and 흀 = 흀풊 ퟏ ∗ … ∗ 흀풋 ∈ 퐵 we have that 휆 ≺ 휆 and 

푑 푇 (푥),푥 < 휀 
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We define the recurrent subsets of a compact metric space with respect to 

a topological dynamical system indexed by a directed partial semigroup, in 

order to locate recurrent elements in them. 

Definition (2.2.11)[2]:  

Let (훬,≺,∗) he a directed partial semigroup, { 푇 }  ∈  a 훬-topological 

dynamical system of a compact metric space (푋, 푑) and ß a suitable cojdeal 

basis on (훬,≺,∗) .A closed subset F of X is called B-recurrent for 퐵 ∈ ß if 

for every 휺 > 0 and  푥 ∈ 퐹, there exist 퐴 ∈ ß with 퐴 ⊆ 퐵 and 푦 ∈ 퐹 such 

that  

풅 푻흀(풚), 풙 < 휺, 푓표푟 푒푣푒푟푦 휆 ∈ 퐴 

A closed subset F of X is called recurrentifitis B-recurrent for every 퐵 ∈

ß. 

Obviously, a B-recurrent subset of X, for 퐵 ∈ ß, is B-almost recurrent 

and, according to Proposition (2.2.10), it contains B-almost recurrent points. 

As we will prove in Proposition (2.2.18) below, we can locate B-recurrent 

points in a homogenous B-recurrent subset of X toward Proposition (2.2.18), 

we will give the appropriate definitions starting from the definition of a 

minimal topological dynamical system. 

Definition (2.2.12)[2]: 

Let X be a compact metric space, (훬,≺,∗) a directed partial semigroup 

and { 푇 }  ∈ a 훬-topological dynamical system of (푋, 푑). This system is 

minimalif no proper closed subset 푌 ⊂ 푋푖푠푇 -invariant for every  휆 ∈ 훬 . 
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Using Zorn’s lemma (Let S be a partially ordered set. If every totally 
rderedsubset of S has an upper bound, then S contains a maximal element. 
[6]), can be proved that there exists a closed non-empty subset Y of X such 
that the system { T }  ∈   restricted to Y to be minimal. There exists the 
following characterization of minimality in case A is a semigroup. 

Proposition (2.2.13)[2]:  

Let X be a compact metric space, G a semigroup and let {푇 } ∈  be        

a G-topological dynamical system of X. The dynamical system { 푇 }  ∈  is 

minimal if for every open subset U of X, there exist finitely many 

elements푔 ,푔 , … ,푔  ∈ 퐺 such that  

(푇 ) (푈) = 푋.  

We give a homogenous subset of X with respect to a set { 푇 }  ∈  of 

transformations acting on X, which introduced by Furstenberg as follows:  

Definition (2.2.14)[2]:  

Let X be a compact metric space and F a closed subset of X. Then F is 

called homogeneous with respect to a set of transformations { 푇 }  ∈ acting 

on X if there exists a group of homeomorphisms G of X each of which 

commutes with each 푇  and such that G leaves F invariant and (퐹,퐺) is 

minimal (no proper closed subset of F is invariant under the action of G).  

We prove that a homogeneous subset of X is recurrent if satisfies a 

weaker condition than that in Definition (2.2.11).  

Proposition (2.2.15)[2]: 
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Let (훬,≺,∗) be a directed partial sernigroup, { 푇 }  ∈  a 훬-topological 

dynamical system of a compact metric space (푋, 푑), ß a suitable coideal 

basis on (훬,≺,∗) and let 퐵 ∈ ß. If a closed subset F of X is homogeneous 

with respect to the system { 푇 }  ∈  and for every 휺>0 there exist .푥, 푦 ∈ 퐹 

and 퐴 ∈ ß,퐴 ⊆ 퐵 such that  

푑 푇 (푦), 푥 < 휀      푓표푟 푒푣푒푟푦 휆 ∈ 퐴 

then, F is B-recurrent.  

Proof: Since F is a homogeneous set with respect to the system { 푇 }  ∈  

there exists a group G of homeomorphisms each of which commutes with 

each 푇 and such that G leaves F invariant and (퐹,퐺) is minimal. 

We claim that for every 휺> 0 there exists a finite subset 퐺  of G such that, 

for every 푥,푦 ∈ 퐹,푚푖푛 ∈ 푑(푔(푥),푦) < 휀/2.  

Indeed, let{푼풊}풊 ퟏ
풌    be a finite covering of F by open sets of diameter <

휀/2. According to Proposition (2.2.13), we can find a finite set  {푔 , … ,푔 } 

for every 1 ≤  푖 ≤ 푘 such that 푈 (푔 ) 푈 = 퐹. Let 퐺 = 푔 : 1 ≤  푖 ≤

푘, 1 ≤  푗 ≤ 푘 ≤ 푚 . Then for every 푥, 푦 ∈ 퐹 we have that 푦 ∈ 푈  

forsome푖 ∈ {1, … , 휅} and 푥 ∈  (푔 ) 푈  for some 푗 ∈ {1, … ,푚 }. Then 

푔 (푥) ∈  푈  and, since 푈  has diameter < 휀/2, we have that 

푚푖푛 ∈ 푑(푔(푥), 푦) ≤ 푑 푔 (푥), 푦 < 휀/2. This proves the claim. 

Let 휺>0 and 푧 ∈ 퐹 There exists 훿> 0 such that if 푥 , 푥  ∈ 푋 and 

푑(푥 ,푥 ) < 훿. then 푑(푔(푥 ),푔(푥 )) < 휀/2 for every 푔 ∈ 퐺 . According to 
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our hypothesis, there exist 푥,푦 ∈ 퐹 and 퐴 ∈ ß ,퐴 ⊆ 퐵 such that 

푑 푇 (푦), 푥 < 훿 for ever 휆 ∈ 퐴. Then 푑(푔 푇 (푦)),푔(푥) < 휀/2 for every 

푔 ∈ 퐺 .and 휆 ∈ 퐴. Since each 푔 ∈ 퐺  commutes with each 푇흀 we have that 

푑 푇 (푔(푦)),푔(푥) =  푑(푔 푇 (푦)),푔(푥) < 휀/2 for every 푔 ∈ 퐺  and 휆 ∈

퐴.  

According to our claim, there exists 푔 ∈ 퐺  such that 푑(푔(푥), 푧) < 휀/2. 

Then 푑 푇 (푔(푦)), 푧 ≤ 푑 푇 (푔(푦)),푔(푥) + 푑(푔(푥), 푧) <  휀 for every 

휆 ∈ 퐴. Hence F is B-recurrent, since 퐴 ∈ ß ,퐴 ⊆ 퐵 and 푔(푦) ∈ 퐹. 

Inthesequel of the previous proposition we have the following:  

Proposition (2.2.16)[2]: 

Let (훬,≺,∗) be a directed partial, semigroup, { 푇 }  ∈ a 훬-topological 

dynamical system of a compact metric space (푋, 푑), ß a suitable coideal 

basis on (훬,≺,∗) and let 퐵 ∈ ß. If a subset F of X is homogeneous with 

respect to the system, { 푇 }  ∈ and B-recurrent, then for every 휺>0 there 

exist an element 푥 ∈ 퐹 and 퐴 ∈ ß,퐴 ⊆ 퐵 such that 

푑 푇 (푥 )푥 < 휀,       푓표푟 푒푣푒푟푦 휆 ∈ 퐴 

Proof:  Since F is a homogeneous set with respect to the system { 푇 }  ∈ , 

there exists a group G of homeomorphisms each of which commutes with 

each 푇  and such that G leaves F invariant and (퐹,퐺) is minimal. Using the 

homogeneity as in the previous proposition, we have that for every 휺> 0 

there exists a finite subset 퐺  of G such that, for every 푥 ,푥 ∈

  퐹,푚푖푛 ∈ 푑(푔(푥 ),푥 ) < 휀/2.  
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Let 휺 > 0. There exists 훿 > 0  such that if 푥 ,푥 ∈ 푋 and 푑(푥 , 푥 ) < 훿, 

then 푑(푔(푥 ),푔(푥 )) < 휀/2 for every 푔 ∈ 퐺 . Let 푥 ∈ 퐹. Since F is          

B-recurrent, there exist 퐴 ∈ ß푤푖푡ℎ퐴 ⊆ 퐵 and 푦 ∈ 퐹 such that  

푑 푇 (푦), 푥 < 훿. for every 휆 ∈ 퐴. 

Then, since each 푔 ∈ 퐺  commutes with each 푇 , we have that  

푑 푇 (푔(푦)),푔(푥) = 푑 푔(푇 (푦)),푔(푥) <  휀/2 

for every 푔 ∈ 퐺  and 흀 ∈ 퐴. 

Let 푔 ∈ 퐺  such that 푑(푔(푥),푔(푦)) <  휀/2. Then for every 휆 ∈ 퐴 we have  

푑 푇 (푔(푦)),푔(푦) ≤ 푑 푇 (푔(푦)),푔(푥) +  푑(푔(푥),푔(푦)) <  휀 

Set 푥 = 푔(푦) ∈ 퐹. 

We will prove, in Proposition (2.2.18) below that, in case the coideal 

basis ß has the (D)-property and the set 푇 : 휆 ∈ 훬   is equicontinuous, the 

set of all the B-recurrent elements of a homogeneous recurrent subset F of X, 

for 퐵 ∈ ß, is a dense subset of F.  

Definition (2.2.17)[2]: 

 We say that a set {푇 }  ∈ of continuous functions from a compact metric 

space (푋, 푑) to itself is equicontinuous, iffor every 휀 > 0 there exists 훿 > 0  

such that if 푥 ,푦 ∈  푋 with 푑(푥 ,푦) < 훿, then 푑 푇 (푥) ,푇 ( 푦) < 휺 for 

every 푖 ∈ 퐼. 

Proposition (2.2.18)[2]: 
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Let (훬,≺,∗) be a directed partial semigroup,{ 푇 }  ∈ a 훬-topological 

dynamical system of a compact metric space (푋, 푑) which is equicontniuous, 

ß a suitable coideal basis on (훬,≺,∗) with the (D)-property and let 퐵 ∈ ß. 

Then every recurrent homogeneous subset F of X contains B-recurrent 

points.  Moreover the set of all the B-recurrent points of F is a dense subset 

of F.  

Proof: Let V he an open subset of X such that 푉 ∩ 퐹 ≠ ∅. There exists an 

open set 푉 such that 푉 ⊆ 푉,푉 ∩ 퐹 ≠ ∅ and 훿> 0 such that if 푥 ∈ 푋 and 

푑(푥,푉 ) <  훿, then 푥 ∈ 푉.  

Since F is homogeneous with respect to the system { 푇 }  ∈ , there exists 

a group G of homeomorphisms commuting with { 푇 }  ∈ such that G leaves 

F invariant and (퐹,퐺) is minimal. According to Proposition (2.2.13), there 

exists a finite subset 퐺  of G such that 퐹 ⊆ 푈 ∈ 푔 (푉 ).  

Let휺 > 0 such that if 푥 ,푥 ∈ 푋with 푑(푥 , 푥 ) < 휺, then 푑(푔(푥 ), g(푥 ) < 훿 

for every 푔 ∈ 퐺 . Since F is a recurrent and homogeneous subset of X, 

according to Proposition (2.2.16), there exist an element 푥 ∈ 퐹  and 퐴 ∈

ß,퐴 ⊆ 퐵 such that  

푑 푇 (푥 ), 푥 < 휀 , 푓표푟 푒푣푒푟푦휆 ∈ 퐴 

Let 푔 ∈ 퐺  such that 푔(푥 ) ∈ 푉 . Then 푑(푇 (푔(푥 ), g (푥 )) < 훿  for every 

휆 ∈ 퐴. Since 푔(푥 ) ∈ 푉 , we have that 푑 푇 (푥 ) ∈ 푉  for every 휆 ∈ 퐴. 

Hence, for each open set V with 푉 ∩  퐹 ≠ ∅ there exist 퐴 ∈ ß,퐴 ⊆ 퐵 and 

푥 = 푔(푥 ) ∈  푉 ∩  퐹 such that 푇 (푥 ) ∈  푉 for every 휆 ∈ 퐴.  
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Consequently, since { 푇 }  ∈  is equicontinuous, for every open set V 

with 푉 ∩  퐹 ≠ ∅ there exist 퐴 ∈ ß,퐴 ⊆ 퐵 and an open set 푉  such that  

푉  ∩  푭 ≠ ∅,푉 ⊆ 푉and 푻흀(푉 ) ⊆ 푉   for every 휆 ∈ 퐴 

Let 푉  be an open subset of X such that 푉  ∩  퐹 ≠ ∅. Inductively we 

construct a sequence ( 푉 )  ∈ℕ of open sets and also a sequence (퐴 )  ∈ℕ ⊆

ß, with 퐵 ⊇ 퐴 ⊇ 퐴 ⊇ ⋯ such that for every 푛 ∈ ℕ 

푉 ⊆ 푉 , 푉  ∩  퐹 ≠ ∅  푎푛푑  푇 (푉 ) ⊆ 푉      푓표푟 푒푣푒푟푦 휆 ∈ 퐴   

We can also suppose that the diameter of 푉  tends to 0. Let ⋂ 푉 ∈ℕ ∩  퐹 =

{푥 } Then 푥 ∈ 푉  and we will prove that 푥  is a B-recurrent element of F.  

Indeed, since the coideal basis ß has the (D)-property, there exists 퐶 ∈ ß, 

such that for every 푛 ∈ ℕ there exists 푘 ∈ ℕ ∪ {0} such that  

푘 = 푚푎푥{푘 ∈ ℕ: 푡ℎ푒푟푒푒푥푖푠푡휆 , … , 휆 ∈ 퐶/퐴    푤푖푡ℎ휆 ≺ ⋯ ≺  휆 }. 

This implies that 퐶/퐴  does not contain an element of ß. So, since 퐶 ∈ ß, 

there exists퐴 ∈ ß, A ⊆  퐶 ∩ 퐴 . Then퐴 ⊆ 퐶,퐴 ∈ ß,퐴 ⊆ 퐴  ⊆ 퐵and for 

every 푛 ∈ ℕ, 푛 > 1 there exists 푞 ∈ ℕ ∪ {0} such that  

푞 = 푚푎푥{푘 ∈ ℕ: 푡ℎ푒푟푒푒푥푖푠푡휆 , … , 휆 ∈ 퐴/퐴    푤푖푡ℎ휆 ≺ ⋯ ≺  휆 }. 

We will prove that 푙푖푚
 ∈

푇 (푥 ) = 푥 . Let 휺 > 0. Since the diameter of 푉  

tends to 0, pick 푛 ∈ ℕ,푛 > 1 such that the diameter of 푉  to be less 

than휺. Let 휆 , … , 휆 ∈ 퐴\퐴 푤푖푡ℎ휆 ≺ ⋯ ≺ 휆 . Then there exists 

휆 ∈ 퐴 ∩ 퐴 such that 휆 ≺ 휆 . For every 휆 ∈ 퐴 with 휆 ≺ 휆 we have 
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that 휆 ∈ 퐴 ∩ 퐴 and consequently that 푇 (푥 ) ∈ 푉  Since 푥 ∈ 푉 , we 

have that 푑(푇흀(푥 ),푥 ) < 휺 for every 휆 ∈ 퐴 with 휆 ≺ 휆. Hence, 푥  is a B-

recurrent element of F and 푥 ∈ 푉  This finishes the proof.  

Finally, using the previous proposition, we will prove, under some 

additional hypotheses, a multiple recurrence theorem analogous of the 

starting Theorem (2.2.6).  

Theorem (2.2.19)[2]: 

Let (훬,≺,∗) be a directed partial semigroup, ß a suitable coideal basis on 

(훬,≺,∗) with the (D)-property, 푚 ∈ ℕ, {푻흀}흀∈  , … , {푻흀 }흀∈ be                 

훬-topological dynamical systems of a compact metric space (푋,푑) all 

contained in o commatative group G of homeomorphisms of X, and let the 

systems {푇 } ∈ , {(푇 ) } ∈ be equicontinuous for each푖 = 1, … ,푚 . Then, 

for every 퐵 ∈ ß there exist 퐴 ∈ ß with 퐴 ⊆  퐵 and 푥 ∈ 푋 such that  

푙푖푚
 ∈
푇 (푥 ) = 푥  푓표푟푒푣푒푟푦 1 ≤ 푖 ≤ 푚 . 

Proof: We can assume without loss of generality that (푋.퐺) is minimal, 

otherwise we can replace X by a G-minimal subset of X. We proceed by 

induction on m. For m = 1 the theorem is valid from Theorem (2.2.6). 

Assume that the theorem holds for some 푚 ∈ ℕ. Let 퐵 ∈ ß and 

{푇 } ∈ , … , {푇 } ∈ 푏푒푚 + 1훬-topological dynamical systems satisfying 

the hypotheses of the theorem. We set  

푆 =  푇 ∘ {푇 }    푓표푟 푎푙푙 1 ≤ 푖 ≤ 푚 . 
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 We note that, since G is a commutative group, 푆 ∗ =  푆 ∘ 푆  for every 

휆 , 휆 ∈ 퐵 with 흀ퟏ ≺ 흀ퟐ and 1 ≤ 푖 ≤ 푚. Hence, {푆 } ∈ , … , {푆 } ∈  are 훬-

topological dynamical systems of (푋, 푑) satisfying the hypotheses of the 

theorem. Applying the induction hypothesis, we have the existence of 푦 ∈

푋  and 퐴 ∈ ß with 퐴 ⊆  퐵 such that: 

푙푖푚
 ∈

푆 (푦 ) = 푦 푓표푟 푒푣푒푟푦 1 ≤ 푖 ≤ 푚 . 

Let 휀 >  0. For each 푖 = 1, . . . ,푚  there exists 휆 ∈ 퐴such that  

푑 푇 푇 (푦 ) ,푦 = 푑 푆 (푦 ), 푦 < 휀/2 푓표푟푒푣푒푟푦휆 ∈ 퐴푤푖푡ℎ휆 ≺ 휆. 

Let 휆 ∈ 퐴 with 휆 , … , 휆 ≺ 휆 . Then for every 휆 ∈ 퐴 with 휆 ≺ 휆 we have 

that  

푑 푇 푇 (푦 ) , 푦 <
휀
2

, 푓표푟 푒푣푒푟푦 푖 = 1 , … ,푚 + 1. 

According to Theorem (2.1.8), there exist 푦 ∈ 푋 and 퐴 ∈ ß,퐴  ⊆ 퐴 such 

that 

푙푖푚
 ∈

푇 (푦 ) = 푦  

Since {푇 } ∈ , 푓표푟 푖 = 1, … ,푚 + 1.  are equicontinuous systems, there 

exists훿 > 0 such that if 푥, 푦 ∈ 푋with 푑(푥, 푦) < 훿 then 

푑 푇 푥),푇 (푦) < 휀/2, for every 휆 ∈ 훬 and 푖 = 1 , … ,푚 + 1.Let 휆 ∈

퐴  with 휆 ≺ 휆  such that 푑 푇 (푦 ),푦 < 훿, for every 휆 ∈
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퐴 with  휆 ≺ 휆. Hence,푑 푇 푇 (푦 ) ,푇 (푦 ) <  휀/2, for every 휆 ∈

퐴 with 휆 ≺ 휆 and every 푖 = 1 , … ,푚 + 1. So, for every 휆 ∈ 퐴 with휆 ≺ 휆 

and every 푖 = 1 , … ,푚 + 1  we have  

푑 푇 (푦 ), 푦 ≤ 푑 푇 (푦 ),푇 푇 (푦 ) + 푑 푇 ( 푇 (푦 ) , 푦 ) < 휀 

Let 퐶 ∈ ß ,퐶 ⊆ 퐴 − 휆  ⊆ 퐵 Then  

푚푎푥 푑 푇 (푦 ), 푦 : 푖 = 1 , … ,푚 + 1 < 휀푓표푟푒푣푒푟푦휆 ∈ 퐶 

Let the compact metric space (푋 , 푑), where  

푑 (푦 , … ,푦 ), (푥 , … ,푥 ) = 푚푎 푥{푑(푦 , 푥 ), 푖 = 1, … ,푚 + 1}, 

and the 훬-topological dynamical system {푇 }  ∈  of 푋  where  푇 =

푇  × … × 푇 which is equicontinuous. Let ∆ = {(푥, … ,푥): 푥 ∈ 푋} ⊆

푋  be the diagonal subset of  푋 . We can assume that G acts on푋  

by replacing each 푔 ∈ 퐺 with  푔 × … × 푔. Then the functions 푇  , for 휆 ∈

훬, commute with the functions of G, G leaves ∆ invariant and (∆ ,퐺) 

is minimal. Hence,∆  is a homogeneous set with respect to  { 푇 }  ∈ .  

According to Proposition (2.2.18), in order to prove the theorem, it will 

suffice to prove that ∆  is B-recurrent. Hence, according to Proposition 

(2.2.15), it is enough for a given휀> 0 to find 푥, 푦 ∈ 푋 and 퐶 ∈ ß,퐶 ⊆  퐵 

such that  
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푑 푇  ((푦, … , 푦)), (푥, … , 푥) = 푚푎푥 {푑 푇 (푦), 푥 ∶ 푖 = 1 , … ,푚 + 1

< 휀푓표푟푒푣푒푟푦휆 ∈ 퐶 

. 

But we have already proved that, for a given 휀 >  0   there exist 푦 , 푦  ∈ 푋  

and 퐶 ∈ ß,퐶 ⊆ 퐵 such that  

푚푎푥 푑 푇 (푦 ),푦 ∶ 푖 = 1 , … ,푚 + 1 < 휀푓표푟푒푣푒푟푦휆 ∈ 퐶.  

Hence, ∆   is a recurrent set. This finishes the proof.  

Corollary (2.2.20)[2]: 

Let (훬,≺,∗) be a directed partial semigroup, ß a suitable coideal basis on 

(훬,≺,∗) with the (D)-property, 푚 ∈ ℕand {푇 } ∈ , … , {푇 } ∈  be              

훬-topological dynamical systems of a, compact metric space (푋, 푑) all 

contained in a commutative group G of homeomorphisms of X and let 

{푻풊흀} ∈ , {(푻풊흀) ퟏ} ∈ be equicontinuous for each 푖 = 1, . . . ,푚. For every 

non-empty open subset U of X and 퐵 ∈ ß, there exists 퐶 ∈ ß with 퐶 ⊆ 퐵 

such that  

(푇 ) (푈) ≠ ∅       푓표푟푒푣푒푟푦휆 ∈ 퐶 

Proof: Since G acts minimally on X, according to Proposition (2.2.13), there 

exists a finite subset 퐺  of G such that 푋 =  푈 ∈ g (U). According to 

Theorem (2.2.19), there exist 푥 ∈ X and 퐴 ∈ ß with 퐴 ⊆  퐵 such that  
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푙푖푚
 ∈

푇 (푥 ) = 푥 푓표푟푒푣푒푟푦 1 ≤ 푖 ≤ 푚.  

Let 푔 ∈ 퐺  such that 푥 ∈ 푔 (푈). Then, there exists 휆 ∈ 퐴 such that 

푇 (푥 ) ∈ 푔 (푈)for every 휆 ∈ 퐴 with 휆 ≺ 휆  and for every 1 ≤ 푖 ≤ 푚, Let 

퐶 ∈ ß,퐶 ⊆ 퐴 − 휆ퟎ ⊆  퐵. Hence, 푔(푥 ) ∈ ⋂ (푇 ) (푈),for every휆 ∈ 퐶 

We will indicate a way to apply the recurrence results for topological 

dynamical systems or nets proved to systems or nets indexed by sernigroups 

with digital representation. So, we will define a relation on a semigroup with 

digital representation in order to make it a directed partial semigroup. In 

order to define a suitable coideal basis satisfying the (D)-property on a 

semigroup with digital representation < 퐷 >  ∈ we will introduce the 

(퐷 ) ∈ -located words. Hence, the recurrent results for topological dynamical 

systems or nets proved can be applied to systems or nets indexed by (퐷 ) ∈ -

located words or semigroups with digital representation.  

The notion of a semigroup with digital representation introduced by 

Ferri, Hindman and Strauss as follows:  

Definition (2.2.21)[2]: 

A semigroup (푋, +) has a digital representation< 퐷 >  ∈ , where I is a 

linearly ordered set and 퐷  is a non-empty finite subset of X for every 푖 ∈ 퐼, 

if each element of X is uniquely representable as a sum ∑ 푥∈ , where H is a 

finite subset of I, 푥 ∈ 퐷  D for every 푖 ∈ 퐻 and sums are taken in increasing 

order of indices. If X has an identity 0 , then we set 0 = ∑ 푥∈∅  . 
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In order to make an infinite semigroup (푋, +) with a digital 

representation < 퐷 >  ∈  a directed partial semigroup, we will endow the set 

|푰| of all the finite subsets of I with an appropriate relation.  

Definition (2.2.22)[2]: 

Let I be an infinite linearly ordered set. A relation <  on the set |퐼| of 

all the finite subsets of I is called a proper relation on|퐼| if satisfies:  

(i) ∅ < 퐻,퐻 < ∅  푓표푟푒푣푒푟푦퐻 ∈ |퐼| . 

(ii) If 퐻  ,퐻  ∈  |퐼|  and 퐻  < 퐻  , then, for each  푖 ∈ 퐻  , either 

푖 > 푚푎푥퐻  표푟푖 < 푚푖푛퐻  .  

(iii) (|퐼| , < , U) is a directed partial semigroup.  

Let a semigroup (푋, +) with a digital representation < 퐷 >  ∈  where I is 

an infinite linearly ordered set, and let <  a proper relation on |퐼| .  

We define for 풔ퟏ = ∑ 풙풊 풊∈푯ퟏ , 풔ퟐ = ∑ 풙풊 풊∈푯ퟐ ∈ 푿 where 퐻  ,퐻  ∈ |퐼| ,  

푠 < 푠 ⇔ 퐻  < 퐻   

Moreover, for 푠 = ∑ 푥∈  , 푠 = ∑ 푥∈  ∈ 푋 with 푠 <푹 푠 we define the 

concatenation  

푠 ∗ 푠 =  푥
∈  ∪  

 .  

The following proposition holds:  

Proposition (2.2.23)[2]: 



37  
 

Let a semigroup (푋, +) with a digital representation < (퐷풊) >풊∈푰 where I is 

an infinite linearly ordered set, and let <푹 a proper relation on |퐼| .  

Then (푋, <푹 ,⋆) is a directed partial semigroup.  

We will give some examples of semigroups with digital representation. 

We denote by ℤ the set of the integer numbers, by ℤ  the set of the negative 

integer numbers and by ℚ the set of the rational numbers.  

Examples (2.2.24)[2]: 

(i) Let  푝 ∈ ℕ, 푝 > 1. The semigroup (ℕ, +) has a digital representation 

< (퐷 ) > ∈ℕ, where 퐷 = {푖푝 : 1 ≤ 푖 ≤ 푝 − 1}. For 퐻  ,퐻  ∈

 |ℕ| , we define 퐻  < 퐻   if and only if max퐻  < min퐻  . Then 

(ℕ, <푹 ,⋆) is a directed partial semigroup.  

(ii) Let a sequence (푘 ) ∈ℕ of natural numbers. Accordingly, the semi- 

group (ℤ, +) has a digital representation< (퐷 ) > ∈ℕwhere, 퐷 =

{1} and for each 푛 ∈ ℕ,푛 ≥ 2,퐷 = {푖(−1) (푘 + 1) … (푘 +

1) ∶ 1 ≤ 푖 ≤ 푘 }.  If < is the relation on |ℕ|  defined in the 

previous example, then (ℤ, <푹 ,⋆) is a directed partial semigroup. 

(iii) More general, if a semigroup (푋, +) has a digital representation 

< (퐷 ) > ∈ , where I is an infinite linearly ordered set and for every 

푖 ∈ 퐼 there exists 푖 ∈ 퐼 with 푖 < 푗, then, defining 퐻  < 퐻  , for 

퐻  ,퐻  ∈  |퐼| , if and only if max 퐻  < min 퐻  , we can make 

(푋, <푹 ,⋆) a directed partial semigroup.  

(iv) The semigroup (ℚ, +), has a digital representation < (퐷 ) > ∈ℤ.  



38  
 

where 퐷 = {푖(−1) (푛 + 1)!: 1 ≤ 푖 ≤ 푛 + 1} for 푛 ∈ ℕ ∪ {0} and, 

for 푛 ∈ ℤ ,퐷 = 푖 ( )
( )!

: 1 ≤ 푖 ≤ −푛 . For 퐻  ,퐻  ∈  |ℤ| , 

we define 퐻  < 퐻   if and only if 퐻  = 퐴  ∪  퐴  with 퐴  ,퐴   ≠ ∅ 

and max 퐴 < min 퐻  , max 퐻  < min  퐴  , Then (ℚ, < ,⋆) is a 

directed partial semigroup.  

In order to define a suitable coideal basis satisfying the (D)-property on a 

semigroup (푋, +) with digital representation < (퐷 ) > ∈  we will introduce 

the (퐷 ) ∈ -located words.  

Definition (2.2.25)[2]: 

Let an arbitrary alphabet Σ , an infinite linearly ordered set (퐼, <)and, for 

each 푖 ∈ 퐼, let 퐷 = 푑 , , … , 푑 , ,  be a non-empty finite subset of  Σ with 

cardinality 푘 ∈ ℕ. We define the set of (constant) (퐷 ) ∈ -located words as 

follows: 

L((퐷 ) ∈ ) = {w = 푤 , … ,푤 : 푙 ∈ ℕ, 푖 < ⋯ < 푖

∈ 퐼 푎푛푑 푤  ,퐷 ∀ 1 ≤ 푗 ≤ 푙} 

Let푚 ∈ ℕ and 푣⃗ = (푣 , … , 푣 ),푤ℎ푒푟푒 푣 , … ,푣  ∉  Σ  be the variables. We 

define the set of variable (퐷 ) ∈ -located words as follows:  
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퐿((퐷 ) ∈ ; (푣 , … ,푣 )

= 푤 = 푤 , … ,푤 : 푙 ∈ ℕ, 푖 < ⋯ < 푖 ∈ 퐼 ,푤  

∈ 퐷 ∪ {푣 , … ,푣 }∀ 1 ≤ 푗 ≤ 푙 푎푛푑 푡ℎ푒푟푒 푒푥푖푠푡  1 ≤ 푗 , … , 푗

≤ 푙 푤푖푡ℎ 푤 =  푣  , … ,푤 =  푣 . 

Let  퐿 = 퐿((퐷 ) ∈ ) ∪  퐿((퐷 ) ∈ ; 푣⃗). 

For 푤 = 푤 , … ,푤 ∈ 퐿, the set 푑표푚(푤) = {푖 < ⋯ < 푖 }  ⊆ 퐼  is the 

domain of 푤.  

We assume that there exists a proper relation < on the set |퐼|  of all 

the finite, subsets of I. Then we define for 푤,푢 ∈  퐿 the relation  

푤 <  푢 ⇔ 푑표푚(푤) <  푑표푚(푢) 

and also for two words 푤 = 푤 …푤 ,푢 = 푢 …푢  ∈ 퐿  푤푖푡ℎ 푤 < 푢 we 

define the concatenating word 

푤 ⋆  푢 =  푧 … 푧 ∈ 퐿, 

Where 

 푞 < ⋯ < 푞 = 푑표푚(푤) ∪  푑표푚(푢), 푧 = 푤 푖푓푖 ∈ 푑표푚(푤)푎푛푑푧 =

푢 푖푓푖 ∈ 푑표푚(푢).  

So, the following proposition holds 
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Proposition (2.2.26)[2]: 

Let an arbitrary alphabet Σ , aninfinite linearly orderedset  (퐼, <),푚 ∈

 ℕ, 푣 , … , 푣 ∉  Σand let 퐷  be a non-empty finite subset of  Σfor each      푖 ∈

퐼. If <  is a proper relation on the set |퐼| , then 

(퐿((퐷 ) ∈ ; 푣 , … , 푣 ), < ,⋆)  and also (퐿((퐷 ) ∈ ), < ,⋆) are directed 

partial semigroups.  

Let 푤 = 푤 …푤 ∈ 퐿((퐷 ) ∈ ;푣 , … , 푣 ),  where 퐷 = 푑 , , … ,푑 , , 

where 푘  ∈ ℕ. For (푝 , … , 푝 ) ∈ ℕ ∪ {(0, … ,0)} we set푤(0, … ,0) = 푤 

and for (푝 , … ,푝 ) ∈ ℕ  

푤(푝 , … , 푝 ) =  푢 …푢 ∈ 퐿((퐷 ) ∈ ), 

 where, for 1 ≤ 푗 ≤ 푙 ,푢 = 푤 ,  if 푤 ∈  퐷 , 푢 =  푑 ,  푖푓푤 = 푣 , for 

1 ≤ 푟 ≤ 푚, and 푝 ≤ 푘  and finally 푢 =  푑 , , if 푤 = 푣 , for 1 ≤ 푟 ≤

푚, and 푝 > 푘 . We set  

퐿 ((퐷 ) ∈ ; 푣 , … , 푣 ) = {푤⃗ = (푤 )  ∈ℕ ∶ 푤  ∈ 퐿((퐷 ) ∈ ; 푣 , … , 푣 ) 

푎푛푑 푤 < 푤 푓표푟푒푣푒푟푦푛 ∈ ℕ} 

We fix an increasing sequence (퐹 )  ∈ℕ of non-empty finite subsets of ℕ풎 

such that  푈  ∈ℕ퐹 = ℕ . Let a sequence 푤⃗ = (푤 )  ∈ℕ ∈ 퐿 ((퐷 ) ∈ ;푣 , … , 푣 ).  

An extracted variable(퐷 ) ∈ - located word of  푤⃗ has the form  

푢 = 푤 (푝⃗ ) ⋆ … ⋆ 푤 흀
(푝⃗흀) ∈ L((퐷 ) ∈ ; 푣 , … , 푣 ), 
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where휆 ∈ ℕ, 푛 < ⋯ < 푛흀 ∈ ℕ, 푝⃗ ∈ 퐹 ∪ {(0, … ,0)} for every 1 ≤ 푖 ≤ 흀 

and (0, … ,0) ∈ {푝⃗ , … , 푝⃗흀}. The set of all the extracted variable (퐷 ) ∈ -

located words of 푤⃗ is denoted by 퐸푉(푤⃗). 

An extracted (퐷풊)풊∈푰-located word of 푤⃗ has the form  

푧 = 푤 (푝⃗ ) ⋆ … ⋆ 푤 흀
(푝⃗흀) ∈ 퐿((퐷 ) ∈ ), 

where흀 ∈ ℕ , 푛 < ⋯ < 푛흀 ∈ ℕ푎푛푑푝⃗ ∈ 퐹   for every1 ≤ 푖 ≤ 흀. The set of 

all the extracted (퐷 )풊∈푰-located words of  푤⃗ is denoted by 퐸 (푤⃗).  

Theorem (2.2.27)[2]: 

Let an arbitrary alphabet ∑,an infinite linearly ordered set (퐼, <), a proper 

relation <푹on the set |퐼|  ,푚 ∈ ℕ,푣 , … , 푣 ∉ ∑,퐷 , a non-empty finite 

subset of  ∑, for each 푖 ∈ 퐼, and let an increasing sequence (퐹 )  ∈ℕ of non-

empty finite subsets of ℕ  such that 푈  ∈ℕ퐹 =  ℕ풎. The families  

ß = {퐸(푤⃗) ∶ 푤⃗ ∈ 퐿 ((퐷 ) ∈ ; 푣 , … ,푣 ) }and   

ß = {퐸푉(푤⃗) ∶ 푤⃗ ∈ 퐿 ((퐷 ) ∈ ; 푣 , … ,푣 ) } 

are suitable coideol bases on L((퐷 ) ∈ ; 푣 , … , 푣 ), < ,⋆)  and 

(L((퐷 ) ∈ ), < ,⋆) respectively, and satisfy the (D)-property.  

Proof: Let 푤⃗ ∈ 퐿 ((퐷 ) ∈ ; 푣 , … ,푣 ) ,  and let 퐸푉(푤⃗) = 퐴  ∪ 퐴  and 

퐸(푤⃗) = 퐵 ∪ 퐵 . Firstly, we will define an order on the set ℕ풎. For 푝⃗ ∈

ℕ we set 푖(푝⃗)to be the least 푛 ∈ ℕ such that (푝⃗) ∈ 퐹 and then we define 

푝⃗ < 푝⃗  for 푝⃗ , 푝⃗ ∈ ℕ풎 if and only if either 푖(푝⃗ ) < 푖(푝⃗ )  or 푖(푝⃗ )  = 푖(푝⃗ )   

and 푝⃗  is less than 푝⃗ in the lexicographical ordering.  
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Let ℕ = {훽 <∗ 훽 <∗ 훽 <∗ … }. For each 푛 ∈ ℕ, let 훽 ∈ ℕ  be the 

greatest element of 퐹  in the lexicographical ordering. Then 푘⃗ = (퐾 )  ∈ℕ ⊆

ℕis an increasing sequence. We set ∑ = {훽 ∶  푛 ∈ ℕ} =  ℕ  and we 

define the function ℎ: 퐿 Σ , 푘⃗ ∪ 퐿 Σ , 푘⃗; 푣 →  퐸(푤⃗) ∪ 퐸푉(푤⃗)푤푖푡ℎ 

ℎ (푡 … 푡 ) = 푤 (푝 , … , 푝 ) ⋆ … ⋆  푤 흀 푝
흀, … , 푝흀 , 

where, for 1 ≤ 푖 ≤ 흀, 푝 , … ,푝 = (0, … ,0) if 푡 = 푣 and   

푝 , … ,푝 = 푡 ∈  훽 , … ,훽 푖푓푡 ∈  Σ . The function h is onto 퐸(푤⃗) ∪

퐸푉(푤⃗) and moreover ℎ 퐿 Σ , 푘⃗ =  퐸(푤⃗) and ℎ(퐿 Σ , 푘⃗; 푣 ) = 퐸푉(푤⃗). 

According to Carlson’s theorem(If 푓(푧) regular and of the form 표 푒 | |  

where 푘 < 휋, for 푅[푧] ≥ 0, and if 푓(푧) = 0 for 푧 = 0,1, …, then 푓(푧) is 

identically zero)[7], there exist a sequence 푠⃗ = (푠 )  ∈ℕ ∈ 퐿 Σ , 푘⃗; 푣  and 

푖 ∈ {1,2}, 푗 ∈ {1,2} such that 퐸푉(푠⃗) ⊆ ℎ (퐴 ) and 퐸(푠⃗) ⊆ ℎ (퐵 ). Set 

푢 = ℎ(푠 ) ∈ 퐸푉(푤⃗) for every 푛 ∈ ℕ and 푢⃗ = (푢 )  ∈ℕ ∈

퐿 ((퐷 ) ∈ ; 푣 , … , 푣 ) . Then 퐸푉(푢⃗) ⊆ ℎ(퐸푉(푠⃗)) ⊆ 퐴  and 퐸(푢⃗) ⊆

ℎ 퐸(푠⃗) ⊆ 퐵 . Hence, ß  and ß are coideal bases on on 

(퐿((퐷 ) ∈ ; 푣 , … , 푣 ), < ,⋆)  and (퐿((퐷 ) ∈ ), < ,⋆) respectively, and 

obviously they are suitable. Analogously to Example (2.1.7) (iii), can be 

proved that ß  and ß satisfy the (D)-property.  

We will go back to semigroups with digital representation. Let a 

semigroup (푋, +) has a digital representation < 퐷풊 >풊∈푰and let <푹be a 

proper relation on the set |퐼| . According to Proposition (2.2.24),(푋, < ,⋆) 

is a directed partial semigroup. Let 푔: 퐿((퐷 ) ∈ → 푋\{0 } in case (푋, +) 

has an identity 0  or 푔: 퐿((퐷 ) ∈ → 푋 otherwise, with  
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푔 푤 …푤 =  푤 + ⋯+ 푤 . 

The function g is one-to-one, onto, preserves the order and for 푤,푢 ∈

 퐿((퐷 ) ∈ ) with 푤 <푹 푢 we have 푔(푤 ⋆ 푢) = 푔(푤) ⋆ 푔(푢). So, using the 

previous theorem, we can define a suitable coideal basis for (푋, < ,⋆) 

satisfying the (D)-property, via the function g.  

Theorem (2.2.28)[2]: 

Let a sew semigroup (푋, +) with a digital representation < 퐷풊 >풊∈푰 

and let a proper relation <푹on the set |퐼| . Fixing an increasing sequence 

(퐹 )  ∈ℕ of non-empty finite subsets of ℕ퐦, for 푚 ∈ ℕ, such that 

푈  ∈ℕ 퐹 = ℕ풎, the family 

ß = {푔(퐸(푤⃗) ∶ 푤⃗ ∈ (퐿 ((퐷 ) ∈ ; 푣 , … ,푣 )} 

is a suitable coideal basis on (푋, <푹,⋆) satisfying the (D)-property.  

Hence, the recurrent results for topological dynamical systems or nets 

proved can be applied to systems or nets indexed by (퐷 ) ∈  -located words 

or semigroups with digital representation. 
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Chapter 3 

Irreversible Algebraic Dynamical Systems on C*-Algebras 

To each irreversible algebraic dynamical system, we associate a universal 

C*-algebra and show that it is a UCT Kirchberg algebra. We discuss the 

structure of the core subalgebra, which turns out to be closely related to 

generalised Bunce-Deddens algebras. We also construct discrete product 

systems of Hilbertbimodules for irreversible algebraic dynamical systems 

which allow usto view the associated C*-algebras as Cuntz-Nica-Pimsner 

algebras. Besides,we show a decomposition theorem for semigroup crossed 

products of unital C*-algebras by semi direct products of discrete, left can 

cellativemonoids. 

Section (3.1): Irreversible Algebraic Dynamical Systems and 

Structure of the Associated C*-Algebras: 

We familiarize with the primary object of interest called irreversible 

algebraic dynamical system in itsmostgemieral form.  

A dynamical system is given by a countably infinite, discrete group G and at 

most countably many commuting injective, non-surjective group 

endomorphisms (휃 ) ∈  of G that are independent in the sense that the 

intersection of their images is as small as possible. Additionally, we will 

introduce a minimality condition stating that the intersection of the images 

of the group endomorphisms from the semigroup generated by (휃 ) ∈ is 

trivial. In other words, the group endomorphisms (휃 ) ∈   separate the points 

in G. At a later stage, this condition is shown to be intimately connected to 
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simplicity of the C*-algebra 풪 [퐺,푃, 휃] associated to such a dynamical 

system. 

The following observation is an extension of the concept of independence 

introduced. We will require neither the group G to be abelian nor the 

cokernels of the injective group endomorphism’s of G to be finite.  

Proposition (3.1.1)[3]: 

Suppose G is a group. Consider the following statements for two commuting 

injective group endomorphism’s 휃  and 휃  of G:  

(i) 휃 (퐺)휃 (퐺) = 퐺 . 

(ii) The map 휃 (퐺)/( 휃 (퐺) ∩ 휃 (퐺)) → 퐺/휃 (G) induced by the 

inclusian 휃 (퐺) ↪  퐺 is a bijection. 

(iii) The map 휃 (퐺)/( 휃 (퐺) ∩ 휃 (퐺))  →  퐺/휃 (퐺) induced by the 

inclusiam , 휃 (퐺) ↪  퐺 is a bijection.  

(iv) 휃 (퐺)  ∩ 휃 (퐺)  = 휃 휃 (퐺).  

Then (i), (ii), and (iii) are equivalent and imply (iv). If either of the 

subgroups 휃 (퐺) or 휃 (퐺) is of finite index in G, then (i) - (iv) are 

equivalent.  

Proof: Note that we always have 휃 (퐺)휃 (퐺) ⊂ 퐺 and  휃 (퐺) ∩ 휃 (퐺) ⊃

휃 휃 (퐺). Moreover, in condition (ii), the inclusion 휃 (퐺) ↪  퐺 induces an 

injective map 휃 (퐺)/(휃 (퐺)  ∩ 휃 (퐺)) → 퐺/휃 (퐺). The corresponding 

statement holds for (iii).  
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If (i) holds true, then 퐺 ∋ 푔 = 휃 (푔 ) 휃 (푔 ) for suitable 푔 ∈ 퐺. Hence, the 

left-coset of 휃 (푔 ) maps to the left-coset of g and (ii) follows.  

Conversely, suppose (ii) is valid and pick 푔 ∈ 퐺. Then there is 푔 ∈ 퐺 

such that 휃 (푔 ) (휃 (퐺)  ∩ 휃 (퐺))  ⟼  푔휃 (퐺) via the map from (ii). But 

since tins map comes from the inclusion 휃 (퐺) ↪ 퐺, we have 푔휃 (퐺)  =

 휃 (푔 ) 휃 (퐺). Thus, there is 푔 ∈ 퐺 suchì that 푔 = 휃 (푔 ) 휃 (푔 ) showing 

(i).The equivalence of (i) and (iii) is obtained from the previous argument by 

swapping 휃  and 휃 . Given (ii), that is, 

푓 ∶ 휃 (퐺)/(휃 (퐺) ∩ 휃 (퐺))  →  퐺/휃 (퐺) 

is a bijection (induced by 휃 (퐺) ↪ 퐺), composing 푓 with the bijection 

푓 ∶ 휃 (퐺)/( 휃 휃 (퐺))  →  퐺/휃 (퐺) 

obtained from injectivity of 휃  yields a bijection  

푓 푓 : 휃 (퐺)/(휃 휃 (퐺))  → 휃 (퐺)/( 휃 (퐺)  ∩ 휃 (퐺)). 

Let us assume 휃 휃 (퐺) ⫋ 휃 (퐺)  ∩ 휃 (퐺). This means, that there is 푔 ∈

휃 (G) such that 푔휃 휃 (퐺)  ≠ 휃 휃 (퐺) but 푔휃 (퐺) ∩ 휃 (퐺)  = 휃 (퐺) ∩

휃 (퐺). Noting that 푓 푓  maps a left-coset 푔 휃 휃 (퐺) 푡표 푔 휃 (퐺)  ∩

휃 (퐺), this contradicts injectivity of 푓 푓 . Hence, we must have 휃 (퐺)  ∩

휃 (퐺) 휃 휃 (퐺). Similarly, (iv) follows from (iii).  

Finally, suppose (iv) holds. By injectivity of 휃 , we have  

휃 (퐺)/(휃 (퐺) ∩ 휃 (퐺))  = 휃 (퐺)/ 휃 휃 (퐺)  ≅  퐺/휃 (퐺). 



47  
 

So if {퐺: 휃 (퐺)} is finite, then the injective map from (ii) is necessarily        

a bijection. If {퐺 ∶ 휃 (퐺)} is finite, we get (iii) in the same manner.  

DefInition (3.1.2)[3]: 

Let G be a group and 휃 ,휃  commuting, injective group endomnorphisins 

of G. Then 휃  and 휃  are said to be independent, if they satisfy condition (iv) 

from Proposition (3.1.1) 휃  and 휃  are said to be strongly independent, if 

they satisfy the condition (i) from Proposition (3.1.1). 

Note that (strong) independence holds if 휃  or 휃  is an autoinorphism. 

Lemma (3.1.3)[3]: 

Let G be a group and suppose 휃 , 휃 , 휃  are commuting, injective group 

endomorphisms of G. 휃  is (strongly) independent of 휃 휃  if and only if 휃  

is (strongly) independent of both 휃  and 휃 .  

Proof: If 휃  and 휃 휃  are strongly independent, then 

휃 (퐺) 휃 (퐺)  ⊃ 휃 (퐺) 휃 (휃 (퐺))  = 퐺 

shows that 휃  and 휃  are strongly independent. As 휃  and 휃  commute, 휃  is 

also strongly independent of 휃 . Conversely, if 휃  is strongly independent of 

both 휃  and 휃  then  

퐺 = 휃 (퐺)휃 (퐺)              = 휃 (퐺)휃 휃 (퐺)휃 (퐺)  

= 휃 (퐺휃 (퐺)) 휃 (휃 (퐺))  ⊂ 휃 (퐺)휃 휃 (퐺)  , 
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so 휃  and 휃 휃  are strongly independent since the reverse inclusion is trivial. 

If 휃  and 휃 휃  are independent, then comninutativity of 휃 , 휃  and 휃  in 

comnbination with injectivity of 휃 yield  

휃 (퐺) ∩ 휃 (퐺)  = 휃 (휃 휃 (퐺) ∩ 휃 휃 (퐺) ⊂ 휃 (휃 (퐺) ∩ 휃 휃 (퐺)             

= 휃 (휃 휃 휃 (퐺))  =  휃 휃 (퐺). 

Since the reverse inclusion is always true, we conclude that 휃  and 휃  are 

independent. Exchanging the role of 휃  and 휃  shows independence of 휃  

and 휃 . Finally, if 휃  is independent of both 휃  and 휃 , we get  

휃 (퐺) ∩ 휃 휃 (퐺) = 휃 (퐺) ∩ 휃 (퐺) ∩ 휃 휃 (퐺) = 휃 휃 (퐺) ∩ 휃 휃 (퐺)  

=  휃 (휃 (퐺)  ∩ 휃 (퐺))  = 휃 휃 휃 (퐺).  

by infectivity of 휃 . Thus 휃  and 휃 휃  are independent. 

If (푃,≤)is a lattice-ordered monoid with unit 1 , we shall denote the least 

common multiple and the greatest common divisor of two elements 푝, 푞 ∈ 푃 

by 푝 ∨ 푞 and 푝 ∧ 푞, respectively. 푝 and 푞 are said to be relatively prime (in 

P) if 푝 ∧ 푞 = 1  or, equivalently, 푝 ∨ 푞 = 푝푞. Simple examples of such 

monoids are countably generated free abelian monoids since such monoids 

are either isomorphic to ℕ for some 푘 ∈ ℕ or ⊕ℕ ℕ.  

Definition (3.1.4)[3]: 

An irreversible algebraic dynamical system (퐺,푃, 휃) is: 

(i) a countably infinite, discrete group G with unit 1 ,  

(ii) a countably generated, free abelian monoid P with unit 1 , and  
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(iii) a P-action 휃 on G by injective group endomorphisms for which 휃  

and 휃  are independent if and only if p and q are relatively prime.  

An irreversible algebraic dynamical system (퐺,푃, 휃) is said to be  

(i) minimal, if fl ⋂ 휃∈  (G) = {1 }, 

(ii) commutative, if G is commutative, 

(iii) of finite type, if [퐺 ∶  휃  (퐺)] is finite for all 푝 ∈ 푃 and  

(iv) of infinite type, if [퐺 ∶  휃  (퐺)] is infinite for all 푝 ≠ 1 . 

Examples (3.1.5)[3]: 

 There are various examples for commutative irreversible algebraic 

dynamical systems and most of them are of finite type. Let us recall that it 

suffices to check independence of the endomorphisms on the generators of P 

according to Lemma (3.1.3).  

(i) Choose a family (푝 ) ∈ ⊂ ℤ×\ℤ∗ = ℤ\{0, ±1}and let 푝 =

|(푝 ) ∈ 〉 act on 퐺 =  ℤ by 휃 (푔) = 푝 푔. Since ℤ is an integral 

domain, each 휃  is an injective group endomorphisin of G with 

[퐺 ∶ 휃 (퐺)]  =  푝  . For 푖 ≠ 푗 ,휃  and 휃  are independent if and 

only if 푝  and 푝  are relatively prime in ℤ. Thus, we get a 

commutative irreversible algebraic dynamical system of finite type 

if and only if (푝 ) ∈  consists of relatively prime integers. Since the 

number of factors in its prime factorization is finite for every 

integer, such irreversible algebraic dynamical systems are 

automatically minimal.  
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(ii) Let 퐼 ⊂ ℕ, choose relatively prime integers {푞} ∪ (푝 ) ∈ ⊂ ℤ×\

ℤ∗and let 퐺 = ℤ[1/푔]. As ℤ[1/푔] = ℤ with connecting maps 

given by multiplication with q, and q is relatively prime to each 푝 , 

the arguments from (i) carry over almost verbatim. Thus we get 

minimal commutative irreversible algebraic dynamical systems of 

finite type (퐺,푃,휃).  

(iii) Let 핂 be a countable field and let 퐺 = 핂[푇] denote the 

polynomial ring in a single variable T over 핂. Choose non-

constant polynomials 푝  ∈ 핂[푇], 푖 ∈ 퐼 . Multiplying by 푝  defines 

an endomorphism 휃 of G with [퐺:휃 (퐺)] = |핂|  ( ), where 

deg(푝 ) denotes the degree of  푝 ∈ 핂[푇]. Thus, if we let 푝 ≔

|(푝 ) ∈ 〉, then the index of 휃  (퐺) in G is finite for all 푝 ∈ 푃 if and 

only if 핂 is finite. It is clear that 휃  and 휃  are independent if and 

only if (푝 )  ∩  (푝 )  =  (푝 푝 ) holds for the principal ideals 

(whenever  푖 ≠ 푗 ). Since every  푔 ∈ 핂[푇] has finite degree, 

(퐺,푃,휃) is automatically minimal. Thus, provided (푝 ) ∈ has been 

chosen accordingly, we obtain a minimal commutative irreversible 

algebraic dynamical system which is of finite type if and only if 핂 

is finite.  

Example (3.1.6)[3]: 

For 퐺 = ℤ  with 푑 ≥ 1, the monoid of injective group endomorphisms 

of G is isomorphic to the monoid of invertible integral matrices 푀 (ℤ)  ∩

 퐺푙 (ℚ). For each such endomorphismn, the index of its image in G is given 

by the absolute value of the determinant of the corresponding matrix. In 
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particular, their images always have finite index in G and an endomorphism 

of G is not surjective precisely if the absolute value of the determinant of the 

matrix exceeds 1. So let (푇 ) ∈ ⊂ 푀 (ℤ)  ∩  퐺푙 (ℚ) be a family of 

commuting matrices satisfying |푑푒푡 푇 | > 1 for all 푖 ∈ 퐼 and set   푃 =

 |(푇 ) ∈ 〉as well as 휃 (푔) =  푇 푔. For 푖 ≠ 푗, it is easier to check strong 

independence of 휃  and 휃  instead of independence. Indeed, since we are 

dealing with a finite type case, the two conditions are equivalent and strong 

independence takes the form 푇 (ℤ ) + 푇 (ℤ ) = ℤ , see Proposition (3.1.1). 

This condition can readily he checked. Moreover, minimality is related to 

generalised eigenvalues and we note that, in the case where P is singly 

generated, the generating integer matrix has to be a dilation matrix.  

Example (3.1.5)(i) Can be generalised to the case of rings of integers. 

Example (3.1.7)[3]: 

Letℛbetheringof integers in a number field and denote by ℛ× = ℛ\{0ℛ} 

the multiplicative subsemnigroup as well as by ℛ∗ ⊂ ℛ×the group of units 

in  ℛ Take 퐺 = ℛ and choose a (countable) family (푃 ) ∈ ⊂ ℛ×  ⊂ ℛ∗. 

Ifwe set 푝 = [(푝 ) ∈ 〉,  then this monoid acts on G by multiplication, i.e. 

휃 (푔) = 푝푔  for 푔 ∈ 퐺,푝 ∈ 푃. For 푖 ≠ 푗, 휃  and 휃  areindependent if and 

only if the principal ideals (푝 ) and (푝 ) in ℛ have no common prime ideal. 

If this is the case, (퐺,푃, 휃) constitutes a commutative irreversible algebraic 

dynamical system of finite type. Since the number of factors in the (unique) 

prime ideal factorization of (푔) in ℛ is finite for every 푔 ∈ 퐺 , minimality is 

once again automatically satisfied. 
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As a matter of fact, the construction from Example (3.1.7) is applicable to 

Dedekind domains ℛ. Next, we would like to mention the following 

example even though, having singly generated P, it has nothing to do with 

independence. The reason is that Joachim Cuntz and Anatoly Vershik, that 

the C*-algebra 풪[퐺,푃, 휃] associated to this irreversible algebraic dynamical 

system is isomorphic to 풪 .  

Ecamp1e (3.1.8)[3]: 

For 푛 ≥ 2 , consider the unilateral shift 휃  acting on 퐺 =⊕ ℤ/

푛ℤ 푏푦 (푔  ,푔 , … ) ⟼ (0,푔  ,푔 , … ). Since 휃  is an injective group 

endomnorphismn with [퐺:휃 (퐺) ] = 푛 , (퐺,푃,휃)with 푝 = |휃 〉 is a minimal 

commutative irreversible algebraic dynamical system of finite type. 

Example (3.1.9)[3]: 

Generalising Example (3.1.8), suppose P is as required in condition (ii) 

of Definition (3.1.4) and let 퐺  he a countable group. Let us assume that 퐺  

has at least two distinct elements. Then Padmits a shift action 휃 on 퐺 ≔

 ⊕ 퐺 given by (휃 ((푔 ) ∈ 푃)) = 풳 푃(푟)푔  푟 for all , 푟 ∈ 푃. It is 

apparent that 휃 휃 = 휃 휃  holds for all 푝, 푞 ∈ 푃and that 휃  is an  

injective group endomnorphismn for all 푝 ∈ 푃. The index 퐺:휃 (퐺)  is 

finite for 푝 ∈ 푃\{1 } if and only if 퐺  is finite and P is singly generated. 

Indeed, if 푝 ≠ 1 , then each element of ⊕ ∈ \ 퐺  yields a distinct left-

coset in 퐺/휃 (퐺). Clearly, this group is finite if and only if 퐺  is finite and 

푃is singly generated. Given relatively prime 푝 and 푞 in 푃\

{1 },휃 (퐺)휃 (퐺) ≠ 퐺 since 푔 1 for all (푔 ) ∈ ∈ 휃 (퐺)휃 (퐺) as 1 ∉
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푝 ∪ 푞  . Thus, unless P is singly generated, 휃 does not satisfy the strong 

independence condition. However, the independence condition is satisfied 

because 푔 = (푔 ) ∈ ∈ 휃 (퐺) ∩ 휃 (퐺) implies that 푔 ≠ 1  only if 푟 ∈

푝 ∩ 푞 = 푝푞  and thus 푔 ∈ 휃 (퐺).  

We have seen in Example (3.1.9) that one cannot expect strong 

independence for irreversible algebraic dynamical systems of infinite type in 

general. On the other hand, there are some examples where the subgroups in 

question have infinite index and the endomorphisms are strongly 

independent: 

Example (3.1.10)[3]: 

Given a family (퐺( ),푃, 휃( )) ∈ℕ of irreversible algebraic dynamical 

systems, we can consider 퐺 ≔⊕ ∈ℕ 퐺( ). If Pacts on G component-wise, i.e. 

휃 (푔 ) ∈ℕ ≔ (휃( )(푔 )) ∈ℕ, then (퐺,퐹, 휃) is an irreversible algebraic 

dynamical system and [퐺:휃 (퐺)]is infinite unless 푝 = 1 . G is commutative 

if and only if each 퐺( )is, and (퐺,퐹, 휃)is minimal if and only if each 

(퐺( ),푃 ,휃( )) is minimal. If each (퐺( ),푃 ,휃( )) satisfies the strong 

independence condition, then 휃 inherits this property as well.  

As a final example, we provide more general forms. These examples are 

neither commutative irreversible algebraic dynamical systems nor of finite 

type.  
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Example (3.1.11)[3]: 

For 2 ≤ 푛 ≤ ∞, let 픽 , be the free group in n generators  

(푎 )     . fix  1 ≤ 푑 ≤ 푛  and choose for each 1 ≤ 푖 ≤ 푑 an n-tuple     

(푚 , )     ⊂ ℕ×  such that  

(i) there exists k such that 풎풊,풌 > 1 for each 1 ≤ 푖 ≤ 푑  , and  

(ii) 푚 , and 푚 ,  are relatively prime for all 푖 ≠ 푗, 1 ≤ 푘 ≤ 푛.  

Then 휃 (푎 ) = 푎 , definesagroupendomorphismof픽풏, for each 1 ≤ 푖 ≤ 푑 . 

Noting that the length of an element of 픽풏, in terms of the generators 

(푎 )     , and their inverses is non-decreasing under 휃풊, we deduce that 휃풊 

is injective. It is clear that 휃풊휃풋 = 휃풋휃풊holds for all i and j. For every 1 ≤ 푖 ≤

푑, the index [픽풏:휃풊(픽풏)] is infinite. Indeed, take 1 ≤ 푘 ≤ 푛 such that 

푚 , > 1  according to 1) and pick 1 ≤ ℓ ≤ 푛 with ℓ ≠ 푘. Then the family 

((푎 푎ℓ) )  yields pairwise distinct left-cosets in 픽 /휃 (픽 )since reduced 

words of the form 푎 푎ℓ푏 . .. with 푏 ≠ 푎ℓ are not contained in 휃풊(픽풏). A 

similar argument shows that 휃풊and 휃풋  are not strongly independent for (푖 ≠

푗: 푏푦 1) , there are 1 ≤ 푘, ℓ ≤  푛 such that 푚 , > 1 and 푚 ,ℓ > 1   . This 

forces 푎 푎ℓ ∉ 휃 (픽 )휃 (픽 ). Nonetheless, 휃풊and 휃풋 are independent due to 

2). Thus, 퐺 = 픽  and 푃 = |(휃 )     〉,   acting on G in the obvious way 

constitutes an irreversible algebraic dynamical system which is neither 

commutative nor of finite type. Minimality of such irreversible algebraic 

dynamical systems can easily be characterized by:  

(iii) For each 1 ≤ 푘 ≤ 푛, there exists 1 ≤ 푖 ≤ 푑 satisfying 푚 , > 1  . 
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In addition to the presented spectrum of examples, we would like to mention 

that there are also examples of minimal, commutative irreversible algebraic 

dynamical systems of finite type arising from cellular automata.  

We have lemmas which are relevant for the C*-algebraic 

considerations. The first lemma reflects a crucial feature of the independence 

assumption  

Lemma (3.1.12)[3]: 

If (퐺,푃, 휃) is an irreversible algebraic dynamical system,  

푔휃 (퐺) ∩ ℎ휃 (퐺) = {푔휃 (ℎ’)휃 ∨ (퐺)          푖푓 푔 ℎ ∈ 휃 (퐺)휃 (퐺)
∅                                                               푒푙푠푒

 

holds for all 푔, ℎ ∈ 퐺, 푝, 푞 ∈ 푃. where ℎ’ is uniquely determined by 

푔휃 (ℎ’) ∈ ℎ휃 (퐺) up to mnultiplicatiorl from the right by elements from 

휃 ( ∨ )(퐺).  

Proof: If there exist 푔 ,푔 ∈ 퐺 such that 푔휃 (푔 ) = ℎ휃 (푔 ), then 휃 ℎ =

휃 (푔 )휃 (푔 ) ∈ 휃 (퐺)휃 (퐺)  .follows because G is group. Now suppose 

that 푔 ,푔 ∈ G satisfy 푔휃 (푔 ) = ℎ휃 (푔 ) as well. Since this implies 

휃 (푔 푔 ) = 휃 (푔 푔 ) we deduce 휃 (푔 푔 ) ∈ 휃 ∨ (퐺).Using 

injectivity of 휃  this is eqiuvalent to 푔 푔 ∈ 휃 ( ∨ )(퐺). Therefore, ℎ’ =

푔  is unique lip to right multiplication by elements from 휃 ( ∨ )(퐺).  

For the proof of Theorem (3.1.46), we will need the following auxiliary 

result, which relies on irreversibility of the dynamical system:  
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Lemma (3.1.13)[3]: 

Suppose (퐺,푃, 휃) is an irreversible algebraic dynamical system and we 

have 푛 ∈ ℕ,푔 ∈ 퐺,푝 ∈ 푃\{1푝} 푓표푟 0 ≤ 푖 ≤ 푛.Then. there exist 푔 ∈

푔 휃 (퐺),푝 ∈ 푝 푃 satisfying  

푔휃 (퐺) ⊂  퐺\ 품풊 휃 (퐺)
∈ℕ

 

Proof: We proceed by induction starting with 푛 = 1. As 푝 ≠ 푒we can find 

푚 ∈ ℕ such that 푝 ∉ 푝 푝. Thus we have 푝 ∨ 푝  ⪶ 푝 . By Lemma 

(3.1.12),  

(푔 휃 (퐺)) ∩ (푔 휃 (퐺))

= 푔 휃 (푔 )휃 ∨ (퐺)             푖푓 푔 푔 ∈ 휃푝 (퐺)휃 (퐺)},
∅                                                                               else,

 

where푔  is uniquely determined up to 휃 ( ∨ )(퐺). While 푔: = 푔  works 

in the second case, we need 푔 ∈ (푔 휃 (퐺)\푔 휃 (푔 )휃 ∨ (퐺) in the first 

case. Note that such a 푔 exists as 푝 ∨ 푝 ⪶  푝  by the choice of 푚 and we 

set 푝: = 푝 ∨ 푝 . 

The induction step from n to 푛 = 1 is just a verbatim repetition of tile 

first step: Assume that the statement holds for fixed 푛. This means that there 

exist ℎ ∈ 푔 휃 (퐺) and 푞 ∈ 푝 푃 such that  

ℎ휃 (퐺) ⊂  퐺\ 푔 휃
∈ℕ

 (퐺)  
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As 푝 ≠ 푒, we can find 푚 ∈ ℕ such that 푞 ∉ 푝 푃. In other words, we 

have 푞 ∨ 푝 ⪶  푞 . Recall that  

(ℎ휃 (퐺) ∩ (푔 휃 (퐺)

= ℎ휃 (푔 )휃 ∨ (퐺)                  푖푓ℎ ∉ 휃 (퐺)휃 (퐺)},
∅                                                              else,

 

where 푔  is uniquely determined up to 휃 ( ∨ )(퐺). In the second 

case, take 푔: = ℎ. For the first case, we choose 푔 ∈ (ℎ휃 (퐺))\

ℎ휃 (푔 )휃 ∨ (퐺). Note that such a 푔 exists as 푞 ∨ 푝 ⪶ 푞 by the 

choice of 푚. Finally, let 푝 ≔ 푞 ∨ 푝 . Then, it is clear from the 

construction that we indeed have  

푔휃 (퐺) ⊂  퐺\ 푔 휃
∈ℕ

(퐺)  

We focus to commutative irreversible algebraic dynamical systems 

(퐺,푃,휃): Injective group endomnorphisins 휃  of a discrete ahelian group G 

correspond to surjective group endornorphisms 휃  of its Pontryagin dual 퐺, 

which is a compact abelian group. Moreover, the cardinality of ker 휃  is 

equal to the index [G: 휃  (G)]. Via duality, we arrive at a definition of 

(strong) independence for commuting surjective group endornorphisms 

휂 and 휂 of an arbitrary group K.  

We then recast the conditions for an irreversible algebraic dynamical 

system(퐺,푃, 휃)with commutative G in terms of its dual model (퐺,푃,휃). This 

provides a new perspective on irreversible algebraic dynamical systems: If G 
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is comnmnutative and (퐺,푃,휃) is of finite type, it can be regarded as an 

irreversible topological dynamical system. It arises from surjective local 

homeomorphisms 휃  of the compact Hausdorff space 퐺.  

Recall that a character 휒 on a locally compact abelian group G is a 

continuous group homomorphism 휒:퐺 → 핋.The set of characters on G forms 

a locally compact abelian group퐺when equipped with the topology of 

uniform convergence on compact subsets of G. Pontryagin duality states that 

퐺 ≅ 퐺. For this result, we interpret 푔 ∈ 퐺 as a character on 퐺 via 푔(휒) ≔

휒(푔). If G is discrete, then 퐺 is compact and vice versa.  

Definition (3.1.14)[3]: 

 Let G he a locally compact abelian group. For a subset 퐻 ⊂ 퐺, the 

annihilator of H is given by 퐻 ∶=  { 푥 ∈  퐺|푥| = 1 }.  

Lemma (3.1.15)[3]: 

Let G be a locally compact abelian group and 휂 =  G → 퐺 a group 

endomorphism. Then 휂̂(푥)(푔) ≔ 푥 ∘ 휂(푔) defines a group endomorphisrn 

휂̂:퐺 → 퐺 which is continuous if and only if 휂is and we have:  

(i) 휂̂ = 휂. 

(ii) 휂(퐺) = ker 휂̂.  

(iii) 휂̂(퐺) ⊂ 퐺 is dense if and only if 휂 is injective.  

(iv) ker 휂̂ ≅ coker 휂 if 휂 (G) is closed.  
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In particular, if G is discrete, then ii) states that 휂̂:퐺 ⟶ 퐺is surjective if and 

only if 휂 =  G → 퐺 is injective. Moreover, 휂(퐺)is always closed. If, in 

addition, coker 휂 is finite, then ker 휂̂ ≅ ker 휂̂ ≅ coker 휂  follows from iv).  

Lemma (3.1.16)[3]: 

If G is a locally compact abelian group and 퐻 ,퐻 ⊂ 퐺  are subgroups, then:  

(i) (퐻 ∙ 퐻 ) =  퐻 ∩퐻 . 

(ii)  (퐻 ∩ 퐻 )  = 퐻 ∙ 퐻  holds if 퐻  and 퐻  are closed.  

Proposition (3.1.17)[3]: 

Let G be a discrete abelian group and 휃 ,휃  he commuting, injective 

endomorphisms of G. Then the following statements hold:  

(i) 휃  and 휃 are strongly independent if and only if ker 휃 and ker 

휃 intersect trivially.  

(ii) 휃  and 휃  are independent if and only if ker 휃 ker 휃 = ker 휃 휃 .  

Proof. For strong independence, we compute  

(휃 (G)휃 (G))  (3.1.16) (i)
= 휃 (G) ∩ 휃 (G)  (3.1.15) (ii)

=  ker휃 ∩  ker휃  

Therefore, 휃 (G)휃 (G) = G  is equivalent to ker휃 ∩  ker휃 = {1 }. 

Similarly, we get  

(휃 (G) ∩ 휃 (G))  (3.1.16)(ii)
= 휃 (G) ∙ 휃 (G)  (3.1.15) (ii)

= ker휃 ∙  ker휃  
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On the other hand, Lemma (3.1.15)(ii) gives 푘푒푟휃 휃 =  휃 휃 (퐺) .  

This motivates the following: 

Definition (3.1.18)[3]: 

Two commuting, surjective group endomorphisms 휂 and 휂 of a group 

K are said to be strongly independent, if ker 휂  and ker 휂 intersect trivially. 

휂 and 휂 are called independent, if 푘푒푟 휂 ∙ 푘푒푟 휂 =  푘푒푟 휂 휂 .  

It is clear that we have an equivalence between the statements:  

(i) 휂  and  휂 are strongly independent.  

(ii) 휂 is an injective group endornorphism of ker 휂 .  

(iii)  휂 is an injective group endornorphismn of ker 휂 .  

If both ker 휂  and ker 휂  are finite, then strong independence and 

independerice coincide. Therefore, this definition is consistent with, where 

the case of endomorphisms (of a compact abelian group K) with finite 

kernels is treated. Note that there is no conflict with (strong) independence 

for injective group endomorphisms, see Definition (3.1.2), as all these 

conditions are trivially satisfied by group automorphemes.  

With the observations from Lemma (3.1.15) and Lemma (3.1.16) at 

hands, we can now translate the setup from Definition (3.1.4) for 

commutative irreversible algebraic dynamical systems:  
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Proposition (3.1.19)[3]: 

For a discrete abeliani group G, a triple (퐺,푃, 휃) is a commutative : 

irreversible algebraic dynamical system if and only if : 

(i) 퐺 is a compact abelian group,  

(ii) P is a countably generated, free, abelian monoid (with unit 1 ),and  

(iii) 휃 is an action of P on 퐺 by surjective group endomorphisms with the 

property that 휃  and 휃  are independent if and only if 푝 and 푞 are 

relatively prime in 푃.  

(퐺,푃,휃) is minimal if and only if ⋃ ker휃 ⊂ 퐺∈  is dense. It is of finite 

(infinite) type if and only if ker휃 , is (infinite) finite for all 푝 ∈ 푃,푝 ≠ 1 . 

Proof:  Conditions (i) and (ii) of this characterization follow directly from 

Lemma (3.1.15). Moreover, for any 푝 ∈ 푃, the equation ker휃 =

푖푚휃 yields an isomorphism between coker 휃  and the Pontryagin dual of 

ker휃 . Combining Lemma (3.1.15) (iii) and Proposition (3.1.17) yields (iii). 

Note that we have 휃 (G) ⊂ 휃 (G) and, correspondingly, ker휃 ⊂ ker휃  

whenever 푞 ∈ 푝푃. Since P is directed, Lemma (3.1.16)(i) and Lemma 

(3.1.15)(ii) yield the equivalence between minimality of (퐺,푃, 휃) and 

⋃ ker휃∈ , being dense in 퐺. For the last claim, we recall that a locally 

compact abelian group is finite if and only if its dual group is finite. Thus 

ker휃  is finite if and only if 푐표ker 휃  is finite.  

We will now revisit some of the examples from this section to present their 

dual models. 
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Examples (3.1.20)[3]: 

The following list corresponds to the one in Example (3.1.5).  

(i) For 퐺 = ℤ, a family of relatively prime numbers (푝 ) ∈ ⊂ ℤ×\ℤ∗ 

generates a monoid 푃 = |(푝 ) ∈ 〉 ⊂ ℤ× which acts by 휃 (푔) = 푝 푔. 

In tins case, 퐺 =  핋 and 휃 (푡) = 푡  forall 푡 ∈ 핋 and 푝 ∈ 푃.  

(ii)  For 퐼 ⊂ ℕ , 0 ∈ 퐼, 푙푒푡 푞 , (푝 ) ∈ ⊂ ℤ×\ℤ∗, be relatively prime 

numbers and set    푃 = |(푝 ) ∈ 〉 as well as 퐺 = 푍[1/푞] = lim
→
ℤ with 

connecting maps given by multiplication with 푞. Then this constitutes 

a minimal commutative irreversible algebraic dynamical system of 

finite type, see Example (3.1.5)(ii). Then 퐺 is the solenoid ℤ =

lim
←
ℤ /푞 ℤ , on which 휃  is given by multiplication with 푝.  

(iii)  For a finite field 핂 , let 푝 ∈ 핂[푇], 푖 ∈ 퐼 (for an index set 퐼) be 

polynomials in 퐺 = 핂[푇] with the property that (푝 )  ∩ (푝 ) =

 (푝 푝 )  holds for all 푖 ≠ 푗. Then the action 휃 표푓 푃 ≔ |(푝 ) ∈ 〉given 

by multiplication with the polynomial itself yields a commnutative 

irreversible algebraic dynamical system of finite type, see Example 

(3.1.5) (iii). Then 퐺 is the ring of formal power series 핂[[푇]] over 핂, 

and 휃  is given by multiplication with 푝 푖푛 핂[[푇]].  

Example (3.1.21)[3]: 

 Recall that, in Example (3.1.6), we considered 퐺 = ℤ  for some 푑 ≥ 퐼,  

a family of pairwise commuting matrices (푇 )풊∈푰 ⊂ 푀 (ℤ) ∩ 퐺푙 (ℚ) 

satisfying det|푑푒푡 푇 | > 1 푓표푟 푎푙푙 푖 ∈ 퐼and set 푃 = |(푇 ) ∈ 〉 with 휃 (푔)  =
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푇 푔 In this case, we have 퐺 = 핋   and the endomorphism 휃  is given by the 

matrix corresponding to 휃  interpreted as an endomnorphismn of ℝ /ℤ ≅

핋 . 

Example (3.1.22)[3]: 

The dual model for the unilateral shift on 퐺 =⊕ ℤ/푛ℤ 푓표푟 푛 ≥ 2  

from Example (3.1.8) is given by the shift (푥 ) ∈ℕ  ⟼ (푥 ) ∈ℕ 표푛 퐺 =

(ℤ/푛ℤ ) . The discussion for Example (3.1.9) with the restriction that 퐺  be 

ahelian is analogous, where ℕ is replaced by P and ℤ/푛ℤ  by 퐺 .  

Example (3.1.23)[3]: 

In the situation of Example (3.1.10), where we will now require 

that(퐺 ,푃, 휃( )) ∈ℕ be a family of commutative irreversible algebraic 

dynamical systems, 퐺 =⊕ ∈ℕ 퐺 turns into 퐺 = ∏ 푮풊풊∈ℕ . For each 푝 ∈  푃, 

the group endornorphism 휃  is given by applying 휃( )to the i-th component 

of 퐺. Ker 휃  is infinite for all 푝 ∈ 푃\{1 }. If each 휃(풊) satisfies the strong 

independence condition from Definition (3.1.2), 휃satisfies the strong 

independence condition from Definition (3.1.18) due to Proposition (3.1.17).  

We associate a universal C*-algehra 풪[퐺,푃, 휃]to every irreversible 

algebraic dynamical system (퐺,푃, 휃).The general approach is inspired by 

the methods for the case of a single group endomorphism with finite 

cokernel of a discrete ahelian group. Note however, that we are going to use 

a different spanning family than the one used.  
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We will examine structural properties of 풪[퐺,푃,휃] as well as of two 

nested subalgebras: the core ℱ and the diagonal 풟. In Lemma (3.1.31), a 

description of the spectrum 퐺  of the diagonal 풟 is provided, which allows 

us to regard 퐺  as a completion of G with respect to 휃 in the case where 

(퐺,푃,휃) is minimal. 

Based on the description of 퐺 , the action 휏̂ of G on 퐺 coming from 

휏 푒 , = 푒 ,  is shown to he always minimal. Moreover, we prove that 

topological freeness of 휏̂ corresponds to minirnality of (퐺,푃,휃), see 

Proposition (3.1.34). As an immediate consequence we deduce that 풟 × 퐺 

is simple if and only if (퐺,푃, 휃) is minimal and 휏̂ is amenable, see Corollary 

(3.1.35). This crossed product is actually isomorphic to ℱ, see Corollary 

(3.1.39).  

The strategy of proof differs because we start by establishing an 

isomorphism between 풪[퐺,푃,휃]and 풟 × (퐺 × 푃), by Theorem (3.2.15), 

we deduce that 풪[퐺,푃, 휃] is isomorphic to the semigroup crossed product 

ℱ × 푃. So we get  

풪[퐺,푃, 휃] ≅ 풟 × (퐺 × 푃) ≅ ℱ × 푃 

One advantage of this strategy is that we are able to establish these 

isomorphisms in greater generality, i.e. without minimality of (퐺,푃, 휃)and 

amenability of 휏̂ which would give simplicity of both ℱ and 풪[퐺,푃,휃].  

Similarly, we conclude that, whenever (퐺,푃, 휃) is minimal and the C-

action 휏̂ on 퐺  is amenable, the C*-algebra 풪[퐺,푃, 휃]is a unital UCT 

Kirchherg algebra, see Theorem (3.1.46) and Corollary (3.1.48). Thus 
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풪[퐺,푃, 휃]is classified by its K-theory in this case due to the important 

classification results of Christopher Phillips and Eberhard Kirschberg.  

(퐺,푃, 휃) will represent an irreversible algebraic dynamical system 

unless specified otherwise. 퐿푒푡 (휉 ) ∈  denote the canonical orthonormal 

basis of ℓ (G). For 푔 ∈ 퐺 and 푝 ∈ 푃, define operators 푈 and 푆  on ℓ (G)by 

푈 휉 : = 휉  푎푛푑 푆 휉 ≔ 휉 ( )for 푔 ∈ 퐺. Then 푈
∈

 is a 

unitary representation of the group G and 푆∗(휉 ) =  휒 ( )(푔 )휉 (푔 ) for 

푔 ∈ 퐺, so (푆 ) ∈  is a representation of the semigroup Pby isometries. 

Furthermore, these operators satisfy  

(퐶푁푃 1)                  푆 푈 휉 =  휉 ( ) = 푈 ( )푆 휉 , 

and 

(퐶푁푃 3) = 퐸 ,
[ ]∈ / ( )

휉 = 휉    푖푓 퐺: 휃 (퐺) < ∞, 

where 퐸 , = 푈 푆 푆∗푈∗. In fact, (CNP 3) holds also in the case of an 

infinite index 퐺: 휃 (퐺) , as (∑ 퐸 , )[ ]∈ ⊂ / ( )
 converges to the identity 

on ℓ (G) as 퐹 ↗  퐺/휃 (퐺) with respect to the strong operator topology. But 

this convergence does not hold in norm because each 퐸 ,  is a non-zero 

projection. In motivation to construct a universal C*-algebra based on this 

model, it is therefore reasonable to restrict this relation to the case where 

퐺: 휃 (퐺)  is finite.  
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As the numbering indicates, we are interested in an additional relation 

(CNP 2) which will increase the accessibility of the universal model: If G 

was trivial, this would simply be the condition that 푆  and 푆 doubly 

commute for all relatively prime p and q in P, i.e.  푆∗푆 = 푆 푆∗. This 

condition has been employed successfully for quasi-lattice ordered groups, 

for more information. But as G is an infinite group, this will not be 

sufficient.  

We want to ensure that, within the universal model to be built, an 

expression corresponding to 푆∗푈 푆  belongs to 퐶∗(퐺). This property has 

been used extensively of semigroup crossed products involving transfer 

operators.  

We aim for a better understanding of the structure of the commutative 

subalgebra 퐶∗({ 퐸 , |푔 ∈ 퐺,푝 ∈ 푃})  inside ℒ ℓ (퐺) . In a much more 

general framework, this has been considered by X in Li, and resulted in a 

new definition of semigroup C*-algebras for discrete left calculative 

semigroups with identity. One particular strength is the close connection 

between amenability of semigroups and nuclearity of their C*-algebras.  

All of these three instances suggest that a closer examination of the 

terms 푆∗푈 푆  is in order. For 푔 =  휃 (푔 )휃 (푔 )with 푔 ,푔  ∈ 퐺 we get  

푆∗푈 푆  =  푈 푆( ∧ ) 푆( ∧ )
∗ 푈 .Onthe other hand, 푔 ∉  휃 (퐺)휃 (퐺) 

is equivalent to 푔휃 (퐺)  ∩ 휃 (퐺)  =  휙, which forces 푆∗푈 푆 = 0 . Thus we 

get  

(퐶푁푃 2) 푆∗푈 푆  =
푈 푆( ∧ ) 푆( ∧ )

∗ 푈        푖푓 푔 =  휃 (푔 )휃 (푔 )
0                                                                          else
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 for all 푔 ∈  퐺,푝, 푞 ∈  푃. These observations motivate the following 

definition. 

Definition (3.1.24)[3]: 

풪[퐺,푃,휃] is the universal C*-algebra generated by a unitary 

representation (푢 ) ∈  of the group G and a representation (푠 ) ∈ of the 

semigroup P by isometries subject to the relations:  

(퐶푁푃 1)푠 푢  =  푢 ( )푠  

(퐶푁푃 2)           푠∗푢 푠

=
푢 푠( ∧ ) 푠( ∧ )

∗ 푢                푖푓 푔 =  휃 (푔 )휃 (푔 ),
0,                                                                             else

 

(퐶푁푃 3)       1 = 푒 ,
[ ]∈ / ( )

                              푖푓 퐺: 휃 (퐺) < ∞, 

Where  푒 , = 푢 푠 푠∗푢∗ .  

We have the following immediate consequence. 

Proposition (3.1.25)[3]: 

풪[퐺,푃,휃] has acanonical non-trivial representation on ℓ (퐺) given by 

푢 ↦ 푈 , 푠 ↦ 푆 . In particular, 풪[퐺,푃, 휃] is non -zero.  

Lemma (3.1.26)[3]: 

The linear span of (푢 푠 푠∗푢 ) , ∈ , , ∈  is dense in 풪[퐺,푃, 휃].  
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Lemma (3.1.27)[3]: 

The projections(푒품, ) ∈ , ∈  commute. More precisely, for 푔,ℎ ∈ 퐺, 

and  푝, 푞 ∈ 푃 we have  

푒 , 푒 , = 푒 휃 (ℎ ), 푝 ∨ 푞          푖푓  푔 ℎ ∈ 휃 (퐺)휃 (퐺),
0                                                     else,

 

where ℎ ∈ 퐺 is determined uniquely up to multiplication from the right by 

elements of 휃 ( ∨ ) (G)  by the condition that 푔휃 (ℎ’) ∈ ℎ휃 (G).  

Proof: For푔,ℎ ∈ 퐺and푝, 푞 ∈ 푃, the product 푒품, 푒풉,  is non-zero only if 

푔 ℎ ∈ 휃 (퐺)휃 (퐺) by (CNP 2). Solet us assume that 푔 ℎ ∈ 휃 (퐺)휃 (퐺) 

holds. Then there are 푔 , ℎ ∈ 퐺 such that 푔 ℎ = 휃 (ℎ )휃 (푔 ). As G is a 

group, this is equivalent toℎ휃 (푔 ) = 푔휃 (ℎ′). Thus weget 

푒 , 푒 , = 푢 (ℎ )푠 푠( ∨ ) 푠∗( ∨ ) 푠∗푢 ( )
∗ = 푒 ( ), ∨  

Clearly, this also proves that the two projections commute. The uniquemless 

assertion follows from (CNP 2).  

Definition (3.1.28)[3]: 

The C*-subalgehra 풟 of 풪[퐺,푃, 휃] generated by the commuting projections 

(푒품, ) ∈ , ∈  is called the diagonal. In addition, let 풟 ≔ 퐶∗ 푒 , [푔] ∈

퐺/휃 (퐺)푝 ∈ 푞푃  denote the C*-subalgebra of 풟 corresponding to 푝 ∈ 푃 

We have the following. 
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Lemma (3.1.29)[3]: 

For all 푝, 푞 ∈ 푃, 푝 ∈ 푞푃  implies 풟 ⊂ 풟 . 풟 is the closure of  

⋃ 풟 .∈  푖푓 [퐺 ∶ 휃 .(퐺)] is finite, then  

풟 =  푠푝푎푛 푒품, [푔] ∈ 퐺/휃 (퐺)  ≅ ℂ[ ∶ .( )] 

Let us make the following non-trivial observation:  

Lemma (3.1.30)[3]: 

Suppose 푔 ∈ 퐺, 푝 ∈ 푃 and a finite subset Fof G×P are chosen in such a 

way that 푒품, ∏ (1 − 푒풉,( , )∈ ) ) is non-zero. Then there exist 푔’ ∈ 퐺and 

푝’ ∈  푃 satisfying 푒품’, ’ ≤  푒품, ∏ (1 − 푒풉,( , )∈ ) ) 

Proof:  If F is empty, then ∏ (1 − 푒풉,( , )∈ ) ) = 1 by convention, so there is 

nothing to show. Now let F be non-empty. For (ℎ, 푞) ∈ 퐹) let us decompose 

q uniquely as 푞 =  푞( )푞( )where [퐺 ∶  휃 ( )(퐺)] is finite and we 

require that, for each 푟 ∈  푃 with 푞 ∈  푟푃, finiteness of [퐺 ∶  휃 (퐺)] implies 

푞( ) ∈  푟푃. In other words, [퐺 ∶ 휃 (퐺)]  is infinite for every 푟 ≠ 1 with 

푞( ) ∈  푟푃 Using (CNP 3) for 푞( ) and Lemma (3.1.27), we compute  

1 − 푒풉, = 1 − 푒풉,풒( )푒풉,풒( ) 푒풌,풑( )

[ ]∈ /휽풒( )(푮)

= 푒풉,풒( ) 1 − 푒풉,풒( ) + 푒풌,풒( )

[ ]∈ /휽풒( ) (푮)

[ ] [ ]

 

Therefore, we can rewrite tine initial product as  
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푒품, 1 − 푒풉풊풒풊
( , )∈

= ℓ ,
( , )∈

1 − 푒풉,
( , )∈ ( , )

, 

where 

(i) 퐹 is a finite subset of 퐺 × 푃,  

(ii) 푒 , ≤  ℓ ,  for all (푔, 푝) ∈ 퐹, ,   

(iii) the projections (푒 , )( , )∈  are mutually orthogonal,  

(iv) for each (푔, 푝) ∈ 퐹, F( , ) is a finite subset of 퐺 × 푃 , and  

(v) each (ℎ, 푞) ∈ F( , ) satisfies 푞 = 푞( ) 푎푛푑 푝 ∉ 푞푃.  

Since the product푒품, ∏ 1 − 푒풉풊,풒풊( , )∈ on the left hand side is non-zero, 

there is(푔 , 푝 ) ∈ 퐹 suchthat푒 , ∏ 1 − 푒풉,( , )∈ ( , ) is non-zero. 

Without loss of generality, we may assume that 푒 , 푒 , is non-zero for all 

(ℎ,푞) ∈ 퐹( , ). Consider  퐹 = {푝 ∨ 푞|(ℎ, 푞) ∈ 퐹( , ) for someℎ ∈ 퐺}. 

Pick 푝 ∈ 퐹 which is minimal in the sense that for any other 푟 ∈ 퐹 , 푝 ∈ 푟푃 

implies 푟 = 푝  Let (ℎ , 푞 ), … ,(ℎ ,푞 ) ∈ 퐹( , ) denotethe elements 

satisfying 푝 ∨ 푞 = 푝 . According to Lemma (3.1.27), we have  

푒 , 푒풉풊,풒풊 =  푒 , for a suitable 푔 ∈ 퐺(푓표푟 푖 =  1, . . , 푛).  

Note that 푝 푝 ≠ 1  and 푞 = 푞 ( ) ∈ 푝 푝 푃 , so [퐺 ∶ 휃 (퐺)] is 

infinite. Hence there exists 푔 ∈ 푔 휃  with  

푒 , ≤ 푒 , 푎푛푑 푒 , 푒풉풊,풒풊 = 0     푓표푟 푖 = 1, … ,푛 
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Setting 

F( , ) ≔ (ℎ, 푞) ∈ 퐹( , ) 푒 , 푒 ,  ≠ 0 퐹( , ),⊂  

we observe that  

푒 , : = 1 − 푒풉, ≠ 0
( , )∈ ( , )

 

follows from the initial statement for (푔 ,푝 )and F ,  since we have 

chosen 푝  in a minimal way. Indeed, if the product was trivial, then there 

would be (ℎ,푞) ∈ 퐹( , )with 푒 , ≥ 푒 , . By Lemma (3.1.27), this would 

force  푝 ∈ 푞푃 and therefore 푝 ∈  (푝 ∨  푞)푃 ⊂  (푝  ∨  푞)푃, which cannot 

be true since 푝  was chosen in a minimal way.  

Thus, we can iterate the process used to obtain (푔 ,푝 ) and 퐹( , ) for 

(푔 , 푝 )and 퐹( , ). After finitely many steps, we arrive at an element 

(푔 , 푝 ) = (푔′, 푝′)with the property that 푒 , ≤ 푒( , ) is orthogonal to 

푒 ,  for all (ℎ, 푞) ∈ 퐹( , ). This establishes the claimn.  

The possibility of passing to smaller subprojections that avoid finitely 

many defect projections provided through Lemma (3.1.30) will be crucial 

for the proof of pure infiniteness and simplicity of 풪[퐺,푃,휃], see Theorem 

(3.1.46) and in particular Lemma (3.1.45). A first application of this 

observation lies in the determination of the spectrum of  풟. 
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Lemma (3.1.31)[3]: 

The spectrum of 풟, denoted by 퐺 , is a totally disconnected, compact 

Hausdorff space. A basis for the topology on 퐺  is given by the cylinder’ 

sets  

푍( , ),( , ) ,…,( , ) =  휒 ∈ 퐺 |휒 푒 , =  1, 휒 푒 , =  0 푓표푟 푎푙푙 푖 , 

Where 푛 ∈ ℕ,푔, ℎ , … , ℎ ∈  퐺 and  푝,푞 , . . . , 푞 ∈  푃. Moreover,  

휄( ) ∈ 푍 , ,( , ) ,…,( , ,) ⇔  푔 ∈ 푔’휃 (퐺) 푎푛푑 푔 ∉ ℎ 휃 (퐺)푓표푟 푎푙푙 푖        

defines a map 휄 ∶ 퐺 →  퐺 with dense image. 휄is injective if and only if 

(퐺,푃,휃) is minimal.  

Proof:퐺  is a totally disconnected, compact Hausdorif space since 풟is a 

unital C*-algebra generated by commuting projections. The statement 

concerning the basis for the topology on 퐺 follows from Lemma (3.1.29). 

To see that 휄has dense image, let 휒 ∈ 퐺 . As the cylinder sets form a basis 

for the topology of 퐺 , every open neighbourhood of 휒 containsacylinder set 

푍( , ),( , ) ,…,( , ,) With  휒 ∈ 푍( , ),( , ) ,…,( , ,). This means that  

푒 , ∏ 1 − 푒풉풊,풒풊  is non-zero. Hence we can apply Lemma (3.1.30) to 

obtain (푔′, 푝′) ∈ G × P satisfying 푒 , ≤ 푒 , ∏ 1 − 푒풉풊,풒풊 . In other 

words, 휄(푔’) ∈ 푍( , ),( , ) ,…,( , ,) so 휄(퐺)is a dense subset of 퐺 . Now 

given 푔, ℎ ∈ 퐺, we observe that 휄(푔) = 휄(ℎ) is equivalent to 

푔  ℎ⋂ 휃∈ (퐺) because the cylinder sets form a basis of the topology on 

the Hausdorif space 퐺 . Therefore 휄is injective precisely if (퐺,푃,휃)is 

minimal.  
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Definition (3.1.32)[3]: 

Let X  be a topological space and G a group. A G-action on  X  is said 

to be topologically free, if the set 푋  =  { 푥 ∈ 푋| 푔.푥 =  푥} has empty 

interior for 푔 ∈ 퐺 \ {1 }.  

Definition (3.1.33)[3]: 

Let X be a topological space and G a group. A G-action on X is said to 

be minimal, if the orbit 풪(푥) =  { 푔.푥  | 푔 ∈  퐺} is dense in X for every 푥 ∈

 푋.  

Equivalently, an action is minimal if the only invariant open (closed) 

subsets of X are 휙 and X.  

Proposition (3.1.34)[3]: 

If (퐺,푃, 휃) is an irreversible algebraic dynamical system, then the 

action G-action 휏̂on 퐺 isminimal. Itistopologicallyfree if and only if 

(퐺,푃,휃) is minimal.  

Proof:  On 휄(퐺) , which is dense in 퐺  by Lemma (3.1.31), 휏̂is simply given 

by translation from the left. Hence 휏̂ is minimal. For the second part, we note 

that 휏품 =  푖푑풟 holds for every 푔 ∈ ⋂ 휃 (퐺) ∈ . Thus, if (퐺,푃,휃) is not 

minimal, there is 푔 ≠ 1  such that 퐺 =  퐺 , so 휏̂ is not topologically free. 

If (퐺,푃, 휃) is minimal, then 휏̂ acts freely on 휄(퐺) because  휄 is injective and 

G is left-calculative. Since 휄(퐺)  is dense in 퐺 , we conclude that 휏̂ is 

topologically free.  
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Corollary (3.1.35)[3]: 

The crossed product 퐷 × 퐺 is simple if and only if (퐺,푃,휃) is 

minimal and 휏̂ is amenable.  

Definition (3.1.36)[3]: 

The coreℱ is the C*-subalgebra of 풪[퐺,푃,휃] generated by 풟 and (푢 ) ∈ .  

Lemma (3.1.37)[3]: 

The linear span of (푢 푠 푠∗푢∗ ) , ∈ , ∈  is dense in ℱ.  

Proposition (3.1.38)[3]: 

Let (풗(품,풑))(품,풑)∈푮⋊휽푷denote the family of isornetries in 풟 ⋊ (퐺 ⋊ 푃)  

implementing the action of the semnigroup 퐺 ⋊ 푃 on 풟 given by 

(푔, 푝). , = 푒 ( ), ,    푡ℎ푎푡 푖푠 ,푣( , )푒 , 푣( , )
∗ =  푒 ( ), ,  . Then the 

map  

풪 [퐺,푃,휃] →풟 ⋊ (퐺 ⋊ 푃)푢 푠    ↦       푣( , ) 

is an isomorphism.  

Proof: Recall from Definition (3.1.24) that 풪[퐺,푃, 휃] is the universal C*-

algehra generated by a unitary representation (푢 ) ∈ of the group G and a 

semi- group of isometries (푠 ) ∈  subject to the relations (CNP1)-(CNP3). 

Hence, in order to show that 휑 defines a surjective *-homomorphism, it 

suffices to show that for every 푔 ∈ 퐺, the isometry 푣( , )is a unitary, and 

that the families (풗( ,ퟏ푷)) ∈ , (풗(ퟏ푮, )) ∈  satisfy (CNP 1)-(CNP 3):  
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푣( , )푣( , ) = 푣( , )( , ) = 푣( , ) = 1  

(퐶푁푃 1)푣( , )푣( , ) = 푣( , )( , ) = 푣 ( ), = 푣 ( ), 푣( , ) 

(퐶푁푃 2)푣( , )
∗ 푣( , )푣( , )   휒 ( ) ( )

! (푔)푣( ,( ˄∧ ) )푣 ,( ˄∧ )
∗  

                                                                푤ℎ푒푟푒 푔 = 휃 (푔 )휃 (푔 )  

⟺                 푣( , )푣( , )
∗ 푣( , )푣( , )

∗ !  휒 ( ) ( )(푔)푣 ,( ), ∨ 푣 , ˄
∗  

⟺                  푒 , 푒 ,   휒 ( ) ( )(푔)푒 , ∨
!  

as 푔 =  휃 (푔 )휃 (푔 ) gives 휃 (푔 ) = 푔휃 (푔 ) This last equation holds 

by Lemma (3.1.27), so (CNP 2) is satisfied as well. (CNP 3) is a relation that 

is encoded inside 풟, so it is satisfied as the range projection of the isometry 

푣( , ) coincides with 푒품,풑. Injectivity of 휑 follows from the fact that the 

isometrics 푢 푠 satisfy the covariance relation for the action of 퐺⋊ 푃 on 풟 

since 푢 푠 푒 , (푢 푠 )∗ = 푒 ( ), = (푔,푝). 푒 , .. Indeed, in this case there 

is a surjective *-homomorphism from 풟 ⋊ (퐺 ⋊ 푃) to 풪 [퐺,푃, 휃]sending 

풗( ,풑)to 푢 푠  and the two                        *- homomorphism are mutually 

inverse, so 휑 is an isornorphisrn.  

This description of 풪[퐺,푃,휃] allows us to deduce several relevaimt 

properties of 풪[퐺,푃, 휃]and its core subalgebra ℱ. 
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Corollary (3.1.39)[3]: 

The isomorphism 휑 from Proposition (3.1.38) restricts to an 

isomorphism between ℱ and 풟 ⋊ 퐺. In particular, we have a canonical 

isomorphism 풪 [퐺,푃,휃] ≅ ℱ ⋊ 푃. 

Proposition (3.1.40)[3]: 

If the G-action 휏̂ on 퐺  is amenable, then both ℱ and 풪[퐺,푃, 휃] are nuclear 
and satisfy the universal coefficient theorem (UCT,) (Let B be a right R-

module. Take a projective resolution of B  

… ⟶  푃 푃 ⟶ ⋯ 푃 → 퐵 ⟶ 0                             (1) 

Then tensor with D to obtain  

… ⟶  푃 ⨂ 퐷 
⨂
⎯⎯ 푃 ⨂ 퐷 ⟶⋯

⨂
⎯⎯ 푃 ⨂ 퐷 

⨂
⎯ 퐵 ⨂퐷 ⟶ 0   (2) 

Since 

 im(푑 ⨂1) < 푘푒푟(푑 ⨂1), (푑 ⨂1) ∘ (푑 ⨂1) = (푑 ⨂1)(푖푚(푑 ⨂1)) = 0)[8]. 

Proof : As ℱ ≅ 풟 ⋊ 퐺 by Corollary (3.1.39) and 휏̂ is amenable, ℱ is 

nuclear by results of Claire Aniatharaman-Delaroche. Similarly, amenability 

of 휏̂ passes to the corresponding transformation groupoid 풢. Thus, we can 

rely on results of Jean-Louis Tu, to deduce that ℱ ≅  풟 ⋊ 퐺 ≅ C∗(풢) 

satisfies the UCT. The class of separable nuclear C*-algebras that satisfy the 

UCT is closed under crossed products by ℕ and inductive limits. Recall that 

either 푃 ≅ ℕ  for some 푘 ∈ ℕ or 푃 ≅⊕ℕ ℕ  according to condition (ii) of 

Definition (3.1.4). Hence the claims concerning 풪[퐺,푃, 휃] follow from 

풪[퐺,푃, 휃] ≅ ℱ ⋊ 푃, see Corollary (3.1.39). 
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Corollary (3.1.41)[3]: 

The map 퐸 푢 푠 푠∗푢∗ : =  훿 푒 , , defines a conditional expectation 

퐸 :ℱ → 풟 which is faithful if and only if 휏̂ is amenable.  

Proof: Due to Corollary (3.1.39), ℱ is canonically isomorphic to 풟 ⋊ 퐺 . 

Since G is discrete, the reduced crossed product 풟 ⋊ , 퐺 has a faithful 

conditional expectation given by evaluation at 1  The map 퐸  is nothing but 

the composition of  

ℱ ≅ 풟 ⋊ 퐺 ↠ 풟 ⋊ , 퐺 ⎯ 풟 

The canonical surjection 풟 ⋊ 퐺 ↠ 풟 ⋊ , 퐺 is an isomorphism if and only 

if 휏̂  is amenable. 

Corollary (3.1.42)[3]: 

The map 퐸 푢 푠 푠∗푢∗ : = 훿 훿 푒 ,  defines a conditional  

expectation E:풪 [G, P, θ] → 풟  which is faithful if and only if 휏̂ is amenable. 

Proof: Clearly, 퐸 = 퐸  ∘ 퐸 , , so the result follows from  

Corollary (3.1.41) . 

Note that if G happens to be amenable, the faithful conditional expectation퐸 

can he obtained directly by showing that the left Ore semigroup 퐺 ⋊ 푃 has 

an amenable enveloping group. Before we can turn to simplicity of 

풪[퐺,푃, 휃], we need the following general observations:  
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Definition (3.1.43)[3]: 

Given a family of commuting projections (퐸 ) ∈  in a unital C*-algebra 

퐵 and finite subsets 퐴 ⊂  퐹 of I, let  

푄 , ∶  퐸
∈

(1 − 퐸 ).
∈ \

 

Products indexed by ∅ are treated as 1 by convention.  

Lemma (3.1.44)[3]: 

Suppose (퐸 ) ∈  is a family of commuting projections in a unital        

C*-algebra 1 퐵,퐴 ⊂  퐹 are finite subsets of I. Then each 푄 , is a projection, 

∑ 푄 ,∈ =1  and, for all , 흀풊 ∈ ℂ, 푖 ∈  퐹, we have  

휆 퐸 =
 ∈ 

휆
 ∈⊂

푄 ,  and 휆 퐸
 ∈ 

= max
⊂
,

휆
 ∈

 

Proof:  Since the projections 퐸  commute, 푄 , is a projection. The second 

assertion is obtained via 1 = ∏ (퐸 + 1 − 퐸 ) = ∑ 푄 , ⊂ ∈ . The two 

equations from the claim follow immediately from this.  

Lemma (3.1.45)[3]: 

For 푑 = ∑ 휆 푒 , ∈ 풟 with 휆 ∈ ℂ and (푔 ,푝 ) ∈ 퐺 × 푃,  there 

exist (푔,푝) ∈ 퐺 × 푃 satisfying 푑푒 , = ‖d‖ , . 
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Proof: d is contained in 퐶∗({푄 , |퐴 ⊂ 퐹 = {(푔 , 푝 )|  1 ≤  푖 ≤  푛}}), which 

is commutative by Lemma (3.1.27). Then Lemma (3.1.44) says that there 

exists 퐴 ⊂ 퐹 such that 푄 , is non-zero and 푑푄 , = ‖푑‖
,

. In particular,  

∏ 푒 ,( , )∈  is non-zero, so Lemma (3.1.27) implies that there exist 푔  ∈

 퐺 and 푝 ∈  푃 such that  ∏ 푒 ,( , )∈ = 푒 , . Thus, we can apply Lemma 

(3.1.30) to  푒 , ∏ 1 − 푒 , =( , )∈ \ 푄 , ≠ 0 and the proof is 

complete.  

Note that the hard part of the proof for Lemma (3.1.45)is hidden in Lemma 

(3.1.30).  

Theorem (3.1.46)[3]: 

If (퐺,퐹,휃) is minimal and the action 휏̂ is amenable, then 풪[퐺,푃, 휃]  is 

purely infinite and simple.  

Proof: The linear span of 푢 푠 푠∗푢∗
, ∈ , , ∈

is dense in 풪[퐺,푃, 휃] 

according to Lemma (3.1.26). Every element z from this linear span is of the 

form  

푧 = 푐 푒 , + 푐 푢 푠 푠∗ 푢∗ + 푐 푢 푠 푠∗ 푢∗  

where 푐 ∈ ℂ,  

(i) 푔 ≠ ℎ 푓표푟 푚 + 1 ≤ 푖 ≤ 푚 ,and  

(ii) 푝 ≠ 푞 푓표푟 푚 + 1 ≤ 푖 ≤ 푚 .  
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By Corollary (3.1.42), we have 퐸(푧) = ∑ 푐 푒 , ∈ 풟 . If we assume 푧 to 

be non-zero and positive, which we will do from now on, then 퐸(푧) >

0 푎푠 퐸 is a faithful conditional expectation. Applying Lemma (3.1.45) to 

퐸(푧) yields (푔,푝) ∈ 퐺 × 푃  such that  

(iii) 퐸(푧)푒 ,   =  ‖퐸(푧)‖푒 ,   

In order to prove simplicity and pure infiniteness of 풪[퐺,푃, 휃], it suffices to 

establish the following claim: There exist (푔,푝)퐺 × 푃  satisfying  

(i) 푒 , ≤ 푒 ,   

(ii) 푒 , 푢 푠 푠∗ 푢∗ 푒 , = 0 푓표푟 푚 + 1 ≤ 푖 ≤ 푚  and  

(iii) 푒 , 푢 푠 푠∗ 푢∗ 푒 , = 0 푓표푟 푚 + 1 ≤ 푖 ≤ 푚 .  

Indeed, if this can be done, then we get  

푒 , 푧 , 푒 ,     
( ),( ) 퐸(푧)푒 , ‖퐸(푧)‖푒 ,     

( ),( )  

Now for 푥 ∈ 풪[퐺,푃,휃] positive and non-zero, let 휺 >  0 and choose a 

positive, non-zero element z, which is a finite linear combination of elements 

푢 푆 푆∗ 푢∗ to approximate x up to 휀. Then ‖퐸(푧)‖ is a non-zero positive 

element of 풟. Thus, choosing 푒 , as above, we see that  

푒 , 푧 , = ‖퐸(푧)‖푒 , is invertible in 푒 ,  풪[퐺,푃,휃]푒 , . If ‖푥 − 푧‖ is 

sufficiently small, this implies that 푒 ,  푥푒 ,  is positive and invertible in 

푒 ,  풪[퐺,푃, 휃]푒 ,  as well because ‖퐸(푧)‖
→
⎯ ‖퐸(푥)‖ > 0. Hence, if we 

denote its inverse by y, then  
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푦  푢 푠
∗
푒 , 푥푒 , 푦  푢 푠 =  1.  

We claim that there is a pair e (푔,푝) ∈ 퐺 × 푃satisfying (i)-(iii). Let 

(푔 , 푝 ) ∈ 푔휃 (퐺) × 푝푃 and 푚 +  1 ≤ 푖 ≤  푚 . Noting that 

푢 푠 푠∗ 푢∗ = 푢 푒 , Lemma (3.1.27) implies  

푒 푢 푒 , 푒 =   푒 푢 푒 ,  

                      = 휒 ( )((푔 ) 푔 ℎ 푔 )푢 푒 , 푒 ,  

According to (i), we have (푔 ) 푔 ℎ 푔 ≠ 1 . Thus, minimality of 

(퐺,푃,휃)provides 푝 ∈ 푝푃 with the property that (푔 ) 푔 ℎ 푔 ∉ 휃 (퐺). 

So if we take 푝( ) ≔ ⋁ 푝 , then (i) and (ii) of the claim hold for all 

(푔 , 푝 ) ∈ 푔휃 (퐺) × 푝( )푃 . Let us assume that 푝 ≥ 푝( ) ∨  ⋁ 푝 ∨

푞 and푔 ∈ 푔휃 (퐺). Then condition (iii) holds for (푔 ,푝 ) if and only if  

0 =  푠∗ 푢( ) 푠 푠∗ 푢 푔 푠  

= 휒 ( )((푔 ) 푔 )휒 ( )(ℎ 푔 ) 푠  
∗ 푢 (( ) ) ( )  

is valid for all 푚 + 1 ≤ 푖 ≤ 푚 . This is precisely the case if at least one of 

the conditions  

(i) (푔 ) 푔 ∈ 휃 (퐺),  

(ii) (푔 ) ℎ ∈ 휃 (퐺), or  

(iii) 휃 ((푔 ) 푔 )휃 (ℎ 푔 ) ∈ 휃( ∨ ) (퐺) 
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fails for each i. Suppose, we have an index i for which the first two 

conditions are satisfied. Using injectivity of 휃 ∨ the third condition is 

equivalent to 휃 ((푔 ) 푔 )휃 (ℎ 푔 ) ∈ 휃 (퐺) where 푟 ≔ (푝 ∧ 푞 ) 푝  

and 푟 ≔ (푝 ∧ 푞 ) 푞 . Condition b) implies 푟 ∧ 푟 = 1 ≠ 푟 푟 . 

Moreover, we have  

휃 ((푔 ) 푔 )휃 (ℎ 푔 ) = 1 ⇔ 휃 (푔 )휃 (푔 ) = 휃 (푔 )휃 (ℎ ). 

Let us examine the range of the map 푓 :퐺 ⟶ 퐺 that is defined by 푔 ↦

휃 (푔)휃 (푔) . Note that 푓  need not be a group homomorphism unless G 

is abelian, in which case the following part can be shortened. If 푘 ,푘 ∈  퐺 

have the same image under 푓 , then 휃 (푘 푘 ) = 휃 (푘 푘 ). By (퐶1) 

from Definition (3.1.4), this gives 푘 푘 ∈ 휃 (퐺) ∩ 휃 (퐺) = 휃 (퐺) But 

if 푘 푘 = 휃 (푘 ) holds for some 푘 ∈  퐺, then 휃 (푘 푘 ) =

휃 (푘 푘 ) implies that 휃 (푘 ) = 휃 (푘 ) holds as well because P is 

commutative and 휃 , ,  is injective. By induction, we get 푘 푘 ∈

 ⋂ 휃( )∈ℕ (퐺).  

Hence 푓 (휃 (ℎ )휃 (푔 )) is either empty, in which case there is 

nothing to do, or it is of tile form 푔 ⋂ 휃( )∈ℕ (퐺) for a suitable 푔 ∈ 퐺 . 

But for the collection of those i for which the preimage in question is non-

empty, we can apply Lemma (3.1.13) to obtain 푔 ∈ 푔휃 (퐺) such that 

푓 (푔) ≠ 휃 (ℎ )휃 (푔 )  for all relevant i.  
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By condition (C2) from Definition (3.1.4), we can choose  푝 ≥ 푝  large 

enough so that these elements are still different modulo 휃( ∨ ) (퐺) for all 

i. In this case, we get  

휃 (푔 푔 )휃 ℎ 푔 ∉ 휃( ∨ ) (퐺)  for all  푚 + 1 ≤ 푖 ≤ 푚 , 

so (푔, 푝)satisfies (iii). In other words, we have proven that the pair (푔, 푝) 

satisfies (i)-(iii). Thus, 풪[퐺,푃, 휃] is purely infinite and simple.  

From this result, we easily get tile following corollaries:  

Corollary (3.1.47)[3]: 

 If (퐺,푃, 휃) is minimal and 휏̂is amenable, then the representation  휆 ∶

 풪[퐺,푃, 휃] → ℒ(ℓ (퐺))from Proposition (3.1.25) is faithful.  

Proof. This follows readily from Proposition (3.1.25) and simplicity of 

풪[퐺,푃, 휃].  

Combining Lemma (3.1.26), Theorem (3.1.46) and Proposition (3.1.40),we 

get:  

Corollary (3.1.48)[3]: 

If (퐺,푃, 휃) is minimal and Тis amenable, then 풪[퐺,푃, 휃] is a unital 

UCT  Kirchherg algebra.  

Thus, minimal irreversible algebraic dynamical systems (퐺,푃, 휃)for which 

the action 휏̂ is amenable yield C*-algebraic 풪[퐺,푃,휃]that are classified by 

their K-theory. Let us come back to some of the examples from this section 
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and briefly describe the structure of the C*-algebraic obtained in the various 

cases:  

Examples (3.1.49)[3]:  

(i) Let 퐺 =  ℤ, (푝 ) ∈ ⊂  ℤ\{0, ±1} be a family of relatively prime 

integers, and set 푃 = |(푝 ) ∈ 〉 ⊂ ℤ×, which acts on G by 휃 (푔) =

 푝 푔. We know from the considerations in Example (3.1.5) (i) that 

(퐺,푃,휃) is minimal, so 풪[퐺,푃, 휃] is a unital UCT Kirchberg algebra. 

If we denote 푝 ∶=  ∏ |푝 |∈ ∈ ℕ ∪ {∞}, then 퐺  can be identified with 

the p-adic completion ℤ =  lim
←

(ℤ/푞ℤ,휃 ) ∈  표푓 ℤ. Moreover, ℱ is the 

Bunce-Deddens algebra of type 푝  for the classification of Bunce-

Deddens algebras by supernatural numbers.  

(ii)  Let 퐼 ⊂ ℕ, choose {푞} ∪ (푝 ) ∈ ⊂ ℤ\ℤ∗relatively prime, 푃 =

|(푝 ) ∈ 〉, set 퐺 = ℤ[1/푞], and let 휃 (푔)  =  푝푔 for 푔 ∈ 퐺, 푝 ∈ 푃. As 

in (i), 풪[퐺,푃,휃] is a UCT Kirchberg algebra by the considerations in 

Example (3.1.5) (ii) and Corollary (3.1.48). If   푝 ∶=  ∏ |푝 |∈ ∈ ℕ ∪

{∞}, then 퐺  can be thought of as a p-adic completion of ℤ[1/푞] and 

we obtain ℱ ≅ 퐺(퐺 )  ⋊  ℤ[1/푞]. 

Eamp1e (3.1.50)[3]: 

We have seen in Example (3.1.8) that for 푛 ≥ 2, the dynamnical  

system given by the unilateral shift on 퐺 = ⊕ℕ ℤ/푛ℤ is a minimal 

commutative irreversible algebraic dynamical system of finite type. It has 

been observed that 풪[퐺,푃, 휃]is isomorphic to풪  in a canonical way: If 푒 =

 (1, 0, 0, . . . , )  ∈  퐺, 푠 ∈  풪[퐺,푃, 휃] denotes the generating isometry for P 
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and 푠 , … , 푠  are the generating isometries of 풪 then this isomorphism is 

given by 푢 푠 ↦ 푠    푓표푟 푘 =  1, . . . ,푛. In particular, ℱ is the UHF algebra 

of type 푛  and 퐺  is homeomorphic to the space of infinite words using the 

alphabet {1, … , 푛}. 

Ecamp1e (3.1.51)[3]: 

Given a family (퐺( ), 푝, 휃( )) ∈ℕ, where each (퐺( ),푝,휃( ) ) 

an irreversible algebraic dynamical system, we can consider 퐺 =

 ⊕ ∈ℕ 퐺( ),    on which Pacts component-wise. Assume that each 

(퐺( ),푝, 휃( ) )  and hence (퐺,푃, 휃) is minimal, compare Example (3.1.10). 

We have 퐺 ≅ ∏ 퐺 ( )
( )

∈ . Thus the G-action 휏̂ on 퐺  is amenable if and only 

if each 퐺 -action 휏̂  on 퐺 ( )
( )  is amenable. As G is commutative (amenable) if 

and only if eac-h 퐺( ) is, there are various cases where amenability of 휏̂is for 

granted. In such situations, 풪[퐺,푃, 휃]  is a unital UCT Kirchberg algebra.  

Example (3.1.52)[3]: 

For the examples arising from free group 픽  푤푖푡ℎ 2 ≤ 푛 ≤ ∞ , see 

Example (3.1.11), we are able to provide criteria (i)-(iii) to ensure  

that we obtain minimal irreversible algebraic dynamical systems. Hence 퐺  

can be interpret as a certain completion of 픽  with respect to 휃.  Now 픽 , is 

far from being amenable, but the action 휏̂could still be amenable: The free 

groups are known to be exact. By a famous result of Narutaka Ozawa, 

exactness of a discrete group is equivalent to amenability of the left 

translation action on its Stone-Cech compactification . Recently, Mehrdad 

Kalantar and Matthew Kennedy have shown that exactness of a discrete 
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group is also determined completely by amenability of the natural action on 

its Furstenberg boundary. The latter space is usually substantially smaller 

than the Stone-Cech compactification and their methods may give some 

insights into the question of amenability of the examples presented here. - 

Section (3.2): A product Systems Perspective and Cross 

Prouducts by Semidirect Products: 

We provide a more detailed presentation of the case where (퐺,푃, 휃)is 

of finite type. We exhibit additional structural properties of the spectrum 퐺  

of the diagonal 풟 in 풪[퐺,푃,휃] . The assumption that 휃 (퐺) ⊂ 퐺 is normal 

for every 푝 ∈ 푃 causes 퐺  to inherit the group structure from G. This turns 

퐺  into a profinite group. If, in addition, (퐺,푃, 휃) is minimal and G is 

amenable, then ℱ falls into the class of generalised Bunce-Deddens algebras 

they belong to a large class of C*-algebras that can be classified by K-

theory.  

We are particularly interested in the case where G is abelian. For such 

dynamical systems, the situation is significantly easier as 휃 (G) ⊂ G  is 

normal for all 푝 ∈  푃 and the action 휏̂ is always amenable. In fact, the 

structure of 풟 and ℱ is quite similar to the one discovered in the singly 

generated case: 퐺  is a compact abelian group and we have a chain of 

isomorphisms ℱ ≅ 퐶(퐺 ) ⋊ 퐺 ≅ 퐶 퐺 ⋊ 퐺 . We will assume that 

(퐺,푃,휃) is an irreversible algebraic dynamical system of finite type.  
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Proposition (3.2.1)[3]: 

Suppose (퐺,푃, 휃) is minimal and G is amenable. Then ℱ is a 

generalised Bunce-Deddens algebra.  

Proof: This follows directly from the construction of the generalised Bunce 

Deddens algebras presented: Choose an arbitrary, increasing, cofinal 

sequence (푝 ) ∈ℕ ⊂ 푃 , where cofinal means that, for every 푞 ∈ 푃 there 

exists an 푛 ∈ ℕ  such that 푝 ∈ 푞푃. Then (휃 (퐺)) ∈ℕ is a family of nested, 

normal subgroups of finite index in G. This family is separating for G by 

minimality of (퐺,푃,휃).  

These assumptions force ℱ to be unital, nuclear, separable, simple, 

quasidiagonal, and to have real rank zero, stable rank one, strict comparison 

for projections as well as a unique tracical state. As the combination of real 

rank zero and strict comparison for projections yields strict comparison, so 

ℱ also has finite decomposition rank. This establishes the remaining step to 

achieve classification of the core ℱ by means of its Elliott invariant 

(퐾 (ℱ),퐾 (ℱ) , [1ℱ] ,퐾 (ℱ) . 

Corollary (3.2.2)[3]: 

Let (퐺 ,푃 , 휃 ) he minimal and 퐺  be amenable for i = 1,2. If ℱ  and ℱ  

denote the respective cores, then ℱ ≅ ℱ  holds if and only if  

(퐾 (ℱ ),퐾 (ℱ ) , [1ℱ ] ,퐾 (ℱ )) ≅ (퐾 (ℱ ),퐾 (ℱ ) , [1ℱ ] ,퐾 (ℱ )). 

We  presenting an intriguing isomorphism of group crossed products on the 

level of  ℱ. 
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Corollary (3.2.3)[3]: 

Let (퐺,푃, 휃) be commutative and minimal. Then there is a 퐺 -action 휏̂ 

on C(퐺) for which ℱ ≅ 퐶(퐺 )⋊ G ≅ 퐶 퐺 ⋊ 퐺 .  

Proof: The first isomorphism has been achieved in Corollary 3.19. For the 

second part, let τ (휒)(푔) ≔  휒 (휄(푔))휒(푔) 푓표푟 휒  ∈ 퐺 , 휒 ∈  퐺and 푔 ∈

 퐺. Since 휄 ∶  퐺 → 퐺  is a group homomorphism, τ (휒) defines a character 

of  G. Clearly τ is compatible with the group structure on 퐺 . The group 

homomorphism 휄 identifies G with a dense subgroup of 퐺 . In this case the 

characters on 퐺  are in one-to-one correspondence with the characters on G. 

Note that this correspondence is precisely given by regarding characters on 

퐺  as characters on G using 휄. Therefore, τdefines an action of 퐺  by 

homneornorphisms of the compact space 퐺. Once we know that τdefines an 

action, we readily see that there is a canonical surjective *-hornomnorphism 

퐶(퐺 ) ⋊ G ↠  C 퐺 ⋊ 퐺 . As 퐶(퐺 ) ⋊ G is simple, this map is an 

isomorphism.  

We provide a product system of Hilbert bimodules for each irreversible 

algebraic dynamical system (퐺,푃, 휃). The features of (퐺,푃, 휃) result in a 

particularly well-behaved product system 휒. Therefore, it is possible to 

obtain a concrete presentation of 풪 . from the data of the dynamical system. 

In the case of irreversible algebraic dynamical systems of finite type, this 

algebra is shown to be isomorphic to 풪[퐺,푃,휃].  

The corresponding result in the general case, that is, allowing for the 

presence of group endomorphisms 휃 of G with infinite index, requires a 
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more involved argument. The reason is that the prerequisites are not met, so 

one has to deal with Nica covariarice of representations. Since this is more 

closely related to the Nica-Toeplitz algebra 풩풯퓍 we will only treat the finite 

type case for the strategy in the general case. More precisely, it shows that, 

for 퓍associated to (퐺,푃, 휃), Nica covariance boils down to its original form. 

A representation 휑 of the product system 휒 is Nica covariant if and only if 

휑 (1 ∗( )) and 휑 (1 ∗( )) are doubly commuting isometrics whenever p 

and q are relatively prime in P.  

We start with a brief recapitulation of the necessary definitions for 

product systems and Cuntz-Nica-Pimnsner covariance.  

Definition (3.2.4)[3]: 

 A product system of Hilbert bimodules over a monoid P with 

coefficients in a C*-algebra A is a monoid 퓍 together with a monoidal 

homomorphism 휌: 퓍 → 푃 such that:  

(i) 퓍 ≔ 휌 (푝) is a Hilbert bimodule over A for each 푝 ∈ 푃,  

(ii) 퓍 ≅  퐴 as Hilbert himnodules and  

(iii)  for all   푝,푞 ∈ 푃  we have 퓍 ⊗ 퓍 ≅ 퓍  푖푓 푝 ≠ 1  , and  

퓍 ⊗ 퓍 ≅ 휙 (퐴)퓍 .  

Definition (3.2.5)[3]: 

Let  ℋ be a Hilbert bimodule over a C*- algebra A and. (휉 ) ∈ ⊂ ℋ  

Consider the following properties:  
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(i) 〈휉 , 휉 〉 = 훿 1 for all 푖, 푗 ∈ 퐼.  

(ii) 휂 = ∑ 휉 〈휉 , 휂〉∈  푓표푟 푎푙푙 휂 ∈  ℋ.  

If (휉 ) ∈ satisfies (i) and (ii), it is called an orthonormal basis for  ℋ .  

Lemma (3.2.6)[3]: 

Let ℋ be a Hilbert bimodule. If (휉 ) ∈ ⊂ ℋ  is an orthonormal  

basis, then (Θ , ) , ∈  is a system of matrix units and ∑ Θ , = 1ℒ(ℋ)∈  if 

ℋ admits a finite orthonormal basis, then 퐾(ℋ) = ℒ(ℋ).  

This lemma is a reformulation implies that product systems whose fibres 

have finite orthonormal bases are compactly aligned. An explicit proof of 

this fact is presented .  

Definition (3.2.7)[3]: 

Let 휒 be a product system over P and suppose B is a C*-algebra. A map 

휑 ∶ 휒 → 퐵, whose fibre maps 휒 → 퐵 are denoted by 휑 , is called a Toeplitz 

representation of 휒, if :  

(i) 휑  is a *-homnomnorphisrn.  

(ii) 휑  is linear for all 푝 ∈  푃.  

(iii) 휑 (휉)∗휑 (휂) = 휑 (〈휉, 휂〉) for all 푝 ∈  푃 and 휉, 휂 ∈ 휒 . 

(iv)휑 (휉)휑 (휂) = 휑 (휉휂) for all 푝, 푞 ∈  푃 and 휉 ∈ 휒  , 휂 ∈ 휒 . 

A Toeplitz representation will be called a representation whenever there is 

no ambiguity. Given a representation 휑 of 휒 in B, it induces                              
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*-homomorphisms 휓 , : Κ 휒 → 퐵 for 푝 ∈  푃 characterised by Θ , →

휑 (휉)휑 (휂)∗. If 휒 is compactly aligned, the representation 휑 is said to be 

Nica covariant, if 휓 , 푘 휓 , 푘 = 휓 , ∨ 휄 ∨ 푘 휄 ∨ 푘 holds for 

all 푝, 푞 ∈  푃 and 푘 ∈ 퐾 휒 , 푘 ∈ 퐾 휒 . Concerning the choice of an 

appropriate notion of Cuntz-Pimnsner covariance for product systems, there 

have been multiple attempts:  

Definition (3.2.8)[3]: 

Let B be a C*-algebra and suppose 휒 is a compactly aligned product 

system of Hubert bimodules over P with coefficients in A.  

(퐶푃 ) A representation 휑:휒 → 퐵  is called Cuntz-Pimsner covariant  

 in the sense of [3], if it satisfies  

휓 , ∅ (푎) = 휑 (푎) for all 푝 ∈  푃 and 푎 ∈ ∅ (퐾 휒 ) ⊂ 퐴.  

(CP) A representation 휑:휒 → 퐵  is called Cuntz-Pimsner covariant, if the 

following holds:  

Suppose 퐹 ⊂ 푃 is finite and we fix 푘 ∈ 퐾 휒  for each 푝 ∈  퐹. If, 

for every 푟 ∈  푃, there is 푠 ≥  푟 such that  

휄 푘 = 0
∈ 

holds for all  푡 ≥  푠, 

then 휓 , 푘 = 0
∈ 

holds true. 
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(CNP) A representation 휑:휒 → 퐵  is said to be Cuntz-Nica-Pimsner’ 

covariant, if it is Nica covariant and (CP)-covariant.  

Fortunately, it was observed that the different notions are closely related 

that (퐶푃 )  implies Nica covariance in the cases of interest to us.  

Proposition (3.2.9)[3]: 

Suppose (퐺,푃, 휃) is an irreversible algebraic dynamical system. Let 

(푢 ) ∈  denote the standard uniaries generating C∗(G) and 훼 be the action 

of  P on C*(G) induced by 휃, 푖. 푒.훼 (푢 )  =  푢 (품)for 푝 ∈  푃 and 푔 ∈ 퐺. 

Then 휒 : = C∗(G) , with left action휙 given by multiplication in C∗(G)and 

inner product 〈푢 푢 〉 = 휒 ( )(푔 ℎ)푢 ( )is an essential Hilbert 

bimodule. The union of all 휒  forms a product system 휒 over P with 

coefficients in C∗(G). 휒 is a product system with orthonormal bases. it is of 

finite type if (퐺,푃,휃) is of finite type.  

Proof: It is straightforward to show that 휒 defines a product system of 

essential Hilbert bimodules and we omit the details. For 푝 ∈  푃, we claim 

that every complete set of representatives (푔 ) ∈ for 퐺/휃 (퐺) gives rise to 

an orthonormal basis of 휒 . Indeed, if we fix such a transversal (푔 ) ∈  and 

pick 푔 ∈ 퐺, then 〈푢 , 푢 〉 = 휒 ( )(푔 푔)푢 ( ) equals 0 for all but 

one 푗 ∈ 퐼, namely the one representing the left-coset [g] in 퐺/휃 (퐺). Thus, 

the family (푢 ) ∈ ⊂ 휒  consists of orthonormnal elemnents with respect to 

〈. , . 〉 , and 푢 훼 〈푢 , 푢 〉 = 훿 푢  so (푢 ) ∈  satisfies (3.2.5) (2).  
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Lemma (3.2.10)[3]: 

Suppose (퐺,푃, 휃) is an irreversible algebraic dynamical system and 휒 

denotes the associated product system from Proposition (3.2.9). Then the 

rank-one projection Θ , ∈ 퐾 휒 depends only on the equivalence class 

of 푔 in 퐺/휃 (퐺). Moreover, if 휑 is a Nica covariant ant representation of 휒, 

then  

휓 , Θ , 휓 , Θ ,

= 휓 , ⋁ Θ , 푖푓 푔 푔 = 휃 (푔 )휃 (푔 )for some 푔 ,푔 ∈ 퐺,
0                                                                                        else.

 

holds for all 푔 ,푔 ∈ 퐺  and 푝, 푞 ∈  푃.  

Proof: If 푔 = 푔0 (푔 )for some 푔 ∈ 퐺, then  

Θ , (푢 ) = 휒 ( ) 휃 (푔 )푔 ℎ 푢 = 휒 ( )(푔 ℎ)푢 = Θ , (푢 ) 

for all ℎ ∈ 퐺 and hence Θ , = Θ , . For the second claim, Nica 

covariance of  휄풪 implies  

휓 , Θ , 휓 , Θ , = 휓 , 휄 ⋁ Θ , 휄 ⋁ Θ , . 

If we denote 푝 ∶=  (푝 ⋀푞) 푝 and 푞 ∶=  (푝 ⋀ 푞) 푞 , then  

휄 ⋁ Θ , = Θ ( ), ( ) ∈ ℒ
[ ]∈ / ( )

휒 ⋁  
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and  

휄 ⋁ Θ , = Θ ( ), ( ) ∈ ℒ
[ ]∈ / ( )

휒 ⋁  

hold. We observe that  

Θ ( ), ( )Θ ( ), ( ) 

is non-zero if and only if [푔 휃 (푔 )] = [푔 휃 (푔 )] ∈ 퐺/휃 ⋁ (퐺). In 

particular, this is always zero if   푔 푔 ∉ 휃 (퐺)휃 (퐺) . Let us assume that 

there are 푔 , … ,푔 ∈ 퐺 such that  

휃 (푔 )푔 푔 휃 (푔 ) = 휃 ⋁ (푔 ) 

and  

휃 (푔 )푔 푔 휃 (푔 ) = 휃 ⋁ (푔 ) 

Rearranging the first equation to insert it into the second, we get  

휃 (푔 푔 )휃 ⋁ (푔 ) 휃 (푔 푔 ) = 휃 ⋁ (푔 ) 

By injectivity of 휃( ∧ ) this is equivalent to  

휃 (푔 푔 )휃( ∧ ) ( ⋁ )(푔 ) 휃 (푔 푔 ) = 휃( ∧ ) ( ⋁ )(푔 ) 

From this equation we can easily deduce 푔 푔 ∈ 휃 (퐺) and 푔 푔 ∈

휃 (퐺) from independence of휃 and 휃  , see Definition (3.1.4)(iii). Thus, if 

there are 푔 ,푔 ∈ 퐺  such that 휃 (푔 )푔 푔 휃 (푔 ) ∈ 휃 ⋁ (퐺), then they 

are unique up to 휃 (퐺) and 휃 (퐺) respectively. This completes the proof.  
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Theorem (3.2.11)[3]: 

Let (퐺,푃, 휃) be an irreversible algebraic dynamical system of finite type 

and 휒 the product system from Proposition (3.2.9). Then 푢 푠 ↦

 휄풪 , (푢 ) defines an isomnorphisms 휑:풪[퐺,푃, 휃] → 풪 .  

Proof:  The idea is to exploit the respective universal property on both sides. 

We begin by showing that (휄풪 , 푢 ) ∈ is a unitary representation of G 

and (휄퓞 ,풑 1 ∗( ) ) ∈  is a representation of the inonoid P by isomnetries 

satisfying (CNP1)-(CNP3), compare Definition (3.1.24). 휄풪 ,  is a *-

homomorphism, so we get a unitary representation of G. In addition,  

휄퓞 ,풑 1 ∗( )
∗
휄퓞 ,풑 1 ∗( ) = 휄풪 , 〈1 ∗( ), 1 ∗( )〉푝 = 휄풪 , 1 ∗( )

= 1풪  

and 

휄퓞 ,풑 1 ∗( ) 휄퓞 ,풒 1 ∗( ) = 휄풪 , 1 ∗( ) 훼 1 ∗( ) = 휄풪 , 1 ∗( )  

show that we have a representation of P by isometries. (CNP 1) follows from 

 

휄퓞 ,풑 1 ∗( ) 휄풪 , 푢 = 휄퓞 ,풑 푢 ( ) = 휄풪 , 푢 ( ) 휄퓞 ,풑 1 ∗( )  

Let 푝,푞 ∈ 푃 and 푔 ∈ 퐺. Then (CNP 2) follows easily from applying Lemma 

(3.2.10) to  
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휄퓞 ,풑 1 ∗( )
∗
휄풪 , 푢 휄퓞 ,풒 1 ∗( )

=  휄퓞 ,풑 1 ∗( )
∗
휓 퓞 ,풒(Θ . )휓 퓞 ,풒 훩 , 휄퓞 ,풒 푢 . 

Finally, we observe that,  

휄풪 , 푢 휄퓞 ,풑 1 ∗( ) 휄퓞 ,풑 1 ∗( )
∗
휄풪 , 푢

∗
= 휓 퓞 ,풑 훩 ,  

and tile computation  

휓 퓞 ,풑 ⊝ , = 휓 퓞 ,풑 1ℒ( )
[ ]∈ / ( )

= 휓 퓞 ,풑 ∅ 1 ∗( )

= 휄풪 , 1 ∗( ) = 1풪  

yield (CNP 3). Thus we conclude that 휑:풪[퐺,푃, 휃] → 풪  defines a 

surjective *-hornomnorphismn. For the reverse direction, we show that  

휑 ∶  휒 →   풪[퐺,푃, 휃] 

휉 , ↦ 푢 푠  

defines a (CNP)-covariarit representation of 휒, where 휉 , denotes the 

represeritative for 푢  in 휒풑. To do so, we have to verify (i)-(iv) from 

Definition (3.2.7) and the (CNP)-covariance condition. (i) and (ii) are 

obvious. Using (CNP 2) to compute  

휑 , 휉 ,
∗
휑 , 휉 , = 푠∗푢 푠  

          = 휒 ( )(푔 푔 )푢  



97  
 

= 휑 , 휉 , , 휉 ,  

we get (iii). (iv) follows from (CNP 1) as  

휑 , 휉 , 휑 , 휉 , = 푢 푠 푢 푠  

                                                         = 푢 휃 (푔 )푠  

= 휑 , (휉 , 훼 휉 , ). 

Thus, we are left with the (CNP)-covariance condition. But since 휒 is a 

product system of finite type, see Proposition (3.2.9), we only have to show 

that 휑  is (퐶푃 )-covariant due to [3]. Noting that  

휑 푘 휒 = 퐶∗(퐺)for all 푝 ∈ 푃, we obtain  

휓 , 휙 푢 = 휓 , Θ ,
[ ]∈ / ( )

 

             = 푢 푒 ,
[ ]∈ / ( )

 

                 = 푢 = 휑 , (휉 , ). 

Thus휑  is a (CNP)-covariant representation of 휒 . By the universal 

property of 풪  there exists a *-homomorphism 휑 :풪 → 풪[퐺,푃, 휃] such 

that 휑 ∘ 휊 풪 =  휑 . It is apparent that 휑  and 휑 are inverse to each 

other, so 휑  is an isomorphism.  
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We establish a result about viewing a crossed product of a C*-algebra by a 

semidirect product of discrete, left cancellative monoids as an iterated 

crossed product, see Theorem (3.2.15). This extends the well-known result 

for semidirect products of locally compact groups in the discrete case and is 

essential for the proof of Corollary (3.1.39). 

We restrict our attention to the case of unital coefficient algebras and 

include the basic definitions for semigroup crossed products based on 

covariant pairs of representations.   

All semigroups will be left cancellative and discrete. In the following, 

let Isom (B) denote the semigroup of isometries in a unital C*-algebra B.  

Definition (3.2.12)[3]: 

Let S be a semigroup and A a unital C*-algebra with an S-action 훼 by 

endomorphisms. A covariant pair (휋  ,휋  ) for (퐴, 푆,훼 ) is given by a unital 

C*-algebra B together with a unital C*-homomorphism 휋 :퐴 → 퐵 and a 

sernigroup homomorphism 휋 : 푆 → Isom (B) subject to the covariance 

condition:  

휋 (푠)휋 (푎) 휋 (푠)∗ = 휋 (훼 (푎)) 푓표푟 푎푙푙 푎 ∈ 퐴, 푠 ∈ 푆 

Definition (3.2.13)[3]: 

Let S be a semnigroup and A a unital C*-algebra with an S-action 훼 

by endomorphisms. The crossed product for (A, S, 훼), denoted by 퐴 ⋊ 푆, is 

the C*-algebra generated by a covariant pair (휄 , 휄 ) which is universal in the 

sense that whenever (휋 ,휋 )  is a covariant pair for (A, S, 훼), it factors 
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through (휄 , 휄 ). That is to say, there is a surjective  

C*-homomorphism 휋: 퐴 ⋊ 푆 → 퐶∗(휋 (퐴),휋 (푆)) satisfying 휋 = 휋 ∘ 휄  

and 휋 =  휋 ∘ 휄 . 퐴 ⋊ 푆 is uniquely determined up to canonical 

isomorphism by this universal property.  

This crossed product may be 0. But it is known that the coefficient 

algebra A embeds into 퐴 ⋊ 푆 provided that S acts by injective 

endoimorphisms and is right-reversible, i.e. 푆푠 ∩  푆푡 ≠ ∅ for all , 푡 ∈  푆. 

Suppose that T is a semigroup which acts on another semnigroup S by 

semigroup homomorphisms 휃 . Then we can form the semidirect product 

푆 ⋊ 푇, which is the semigroup given by 푆 × 푇 with 푎푥 + b-composition 

rule:  

(푠, 푡)(푠 , 푡 ) = (푠휃 (푠 ), 푡푡 ) 

Now suppose further that S and T are monoids and that 훼 is an action of 

푆 ⋊ 푇 on a unital C*-algebra A. Then the semigroup crossed product 퐴 ⋊  

(푆 ⋊ 푇) is given by a unital *-homomorphism  

휄 ,푆 ⋊ 푇:퐴 →  퐴 ⋊ (푆 ⋊ 푇) 

and a semigroup homomorphism  

휄 ⋊ :푆 ⋊ 푇 → 퐼푠표푚(퐴 ⋊ (푆 ⋊ 푇)) 

Of course, we can also consider 퐴× | 푆 given by a unital                             *-

homomorphism 휄 , :퐴 → 퐴⋊ | 푆 and a homomorphism ts 휄 : 푆 → 

Isom(퐴 ⋊ | 푆). A natural question in this situation is whether 훼 and 휃 give 
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rise to a T-action 훼 on 퐴 ⋊ | 푆. The next lemma provides a positive answer 

for the case where 훼 satisfies {1 −  훼( , )(1 )| 푠 ∈  푆}  ⊂ ⋂ ker 훼( , )∈ . 

For the sake of readability, let 푝( , ) ∶= 휄 ,  (훼( , )(1 )) for 푠 ∈  푆, 푡 ∈  푇 

and we will simply write 푝  for 푝( , ). We observe that the aforementioned 

condition is equivalent to 푝( ( ), ) = 푝  for all 푠 ∈ 푆, 푡 ∈ 푇.  

Lemma (3.2.14)[3]: 

Suppose that S and T are monoids with α T-action 휃 on S by semigroup 

homomorphisms. Let α be an action of   푆 ⋊ 푇 on 푎 unital C*-algebra A by 

endomorphisms. For 푡 ∈  푇, let  

훼 (휄 , (푎)휄 (푠)) ∶= 휄 , (α
,

(푎))휄 (휃 (푠)) 푓표푟 푎 ∈  퐴, 푠 ∈  푆 

훼 is an endomorphism from 퐴 ⋊ | 푆 → 푝 퐴 ⋊ | 푆 푝  provided that  

1 −  훼( , )(1 ) ∈  ker 훼( , )  푓표푟 푎푙푙 푠 ∈ 푆  

In particular, if this holds for all 푡 ∈ 푇, i.e.  

1 −  훼( , )(1 ) ∈  ker 훼( , )
∈

푓표푟 푎푙푙 푠 ∈ 푆 . 

therm 훼 defines an action of T on 퐴 ⋊ | 푆. 

Proof:  Note that 훼 휄 (푠) = 훼 (휄 , (1 )휄 (푠) = 푝 휄 휃 (푠)  is valid for all 

푠 ∈ 푆, 푡 ∈ 푇 since 휄 ,  is unital. Suppose 푡 ∈ 푇 satisfies  

1 −  훼( , )(1 ) ∈  ker 훼( , )  푓표푟 푎푙푙 푠 ∈ 푆 
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 This is equivalent to 푝( ( ), ) = 푝 . Hence, 푝 commutes with 휄 휃 (푠)  

since  

휄 휃 (푠) 푝 = 휄 휃 (푠) 푝 휄 휃 (푠) ∗
휄 휃 (푠) = 푝(휃 (푠), 푡)휄 휃 (푠) = 푝 휄 휃 (푠) . 

 To prove that 훼  is an endomorphism of 퐴 ⋊ | 푆 we show that  

(휄 , ∘ 훼( , ),푝 휄 ∘ 휃 (. ) ) 

is a covariant pair for (퐴, 푆,훼|푆 ).Itis then easy to see that the induced map 

coming from the universal property of the crossed product is precisely 훼  

and maps 퐴 ⋊ | 푆 onto the corner 푝 퐴 ⋊ | 푆 푝 . 

휄 , ∘ 훼( , ) is a unital *-homomorphism from A to 푝 퐴 ⋊ | 푆 푝  In 

addition, 푝 휄 ∘ 휃 (. )  maps S to the isomnetries in 푝 퐴 ⋊ | 푆 푝  because  

푝 휄 휃 (푠) ∗푝 휄 휃 (푠) = 휄 휃 (푠) ∗푝 휄 휃 (푠) = 휄 휃 (푠) ∗휄 휃 (푠) 푝 = 푝 . 

 This map turns out to be a semigroup homomorphism as  

푝 휄 휃 (푠 ) 푝 휄 휃 (푠 ) = 푝 휄 휃 (푠 ) 휄 휃 (푠 ) = 푝 휄 휃 (푠 푠 ) . 

 Finally, for 푎 ∈ 퐴   푎푛푑 푠 ∈ 푆  , we compute  

푝 휄 휃 (푠) 휄 , (α( , )(푎))(푝 휄 (휃 (푠)))∗ = 푝 휄 , α( ( ), )(푎) 푝  

                                                                                    = 휄 , (α( , )(α( , )(푎)).  

Thus, (휄 , ∘ 훼( , ),푝 휄 ∘ 휃 (. ) ) forms a covariant pair for (퐴, 푆,훼|푆 ). In 

particular, the induced map 훼  is an endomnorphism of 퐴 ⋊ | 푆.  
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Conversely, assume that 훼  defines an endomorphism of 퐴 ⋊ | 푆. 

Then (훼 ∘ 휄 , ,훼 , ∘ 휄 ) forms a covariant pair for (퐴,푆,훼|푆 ) mapping A 

and S tothe C*-algebra 퐵 ≔ 훼 퐴 ⋊ | 푆 . Note that the unit inside this    

C*-algebra is 푝 . In particular, we have a semi group homomorphism 훼 ∘

휄 : 푆 → 퐼푠표푚(퐵). This forces  

푝 =  훼 (휄 (푠))∗훼 (휄 (푠)) =  휄 휃 (푠) ∗
푝 휄 휃 (푠) = 푝( ( ), ) 

for all 푠 ∈ 푆 , which is equivalent to  

1 −  훼( , )(1 )  푠 ∈ 푆 } ⊂ ker 훼( , ) 

Since 훼|푇 and 휃are semigroup homomorphisms , 훼 defines an action of T on 

퐴 ⋊ | 푆 provided that the imposed condition holds for every 푡 ∈  푇.  

Theorem (3.2.15)[3]: 

Suppose S and T are monoids together with a T-action 휃 on S by semigroup 

homomorphisms, and an action 훼 of 푆 ⋊ 푇 on a urtital C*-aigebra A by 

endomorphisms. If  

1 −  훼( , )(1 )  푠 ∈ 푆 } ⊂ ker 훼( , )
∈

 

holds true, then there is a canonical isomorphism 

퐴 ⋊ (푆 ⋊ 푇) → 퐴 ⋊ | 푆 ⋊ 푇 , 휄 , ⋊ (푎) ⟼  휄 ⋊ ∘  휄 , (푎)  

휄 ⋊ (푠, 푡) ⟼ (휄 ⋊   ∘  휄 )(푠)휄 (푡)  
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where 훼 is given by 훼 (휄 , (푎)휄 (푠)) = 휄 (α( , )(푎))휄 (휃 (푠)) 

Proof : Recall that (휄 , 푆 ⋊ 푇, 휄 ⋊ 푇), (휄 ,푠 , 휄 ,) and (휄 ⋊ , 휄 ) denote the 

uiversal covariant pairs for (퐴, 푆 ⋊ 푇,훼) , (퐴, 푆,훼|푆) and 퐴 ⋊ | 푆,푇,훼 , 

respectively. The strategy is governed by the following claims: 

(i) ( 휄 ⋊  ∘  휄 , ,( 휄 ⋊ °휄 ) × 휄 ) forms acovariant pair for (퐴,푆 ⋊ 푇,훼).  

(ii) (휄 , ⋊  × 휄 ⋊ |푠, 휄 ⋊ | ) forms acovariant pair for 퐴 ⋊ | 푆,푇,훼 .  

If we assume (i) and (ii), then (i) and the universal property of 

퐴 ⋊ (푆 ⋊ 푇) give a *-homomorphism  

퐴 ⋊ (푆 ⋊ 푇)휋↠ 퐴 ⋊ | 푆 × 푇휄 , ⋊ (푎)           ⟼  휄 ⋊ ∘ 휄 , (푎)  

휄 ⋊ (푠, 푡)           ⟼ (휄 ⋊ ∘ 휄 )(푠)휄 (푡) 

Since S and T both have an identity, the induced map equals 휋 . Note that the 

pair from (ii) is the natural candidate to provide an inverse for 휋. Indeed, if 

(ii) is valid, then the two induced *-homomorphisms are mutually inverse on 

the standard generators of the C*-algebras on both sides. Thus it remains to 

establish (i) and (ii).  

 For step (i), note that 휄 ⋊  ∘  휄 , is a unital *-homomorphism and 

휄 ⋊ ∘ 휄  defines a semigroup homomorphism from S to the isometries in 

퐴 ⋊ | 푆 ⋊ 푇. The covariance condition for (T,훼) yields  

휄 (푡)휄 ⋊ ∘ 휄 (푠) =  훼(휄 ⋊  ∘ 휄 (푠)휄 (푡) = 휄 ⋊  ∘ 휄 (휃 (푠))휄 (푡). 
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Therefore, (휄 ⋊  ∘ 휄 ) × 휄  is well-behaved with respect to the semnidirect 

product structure on S × T coming from θ, so we get a semigroup 

homomorphism (휄 ⋊  ∘ 휄 ) × 휄 : 푆⋊ 푇 → 퐼푠표푚 ( 퐴 ⋊ | 푆 ⋊ 푇). Now let 

푎 ∈ 퐴 , 푠 ∈ 푆  푎푛푑 푡 ∈ 푇. Then we compute  

(휄 ⋊  ∘ 휄 ) × 휄 (푠, 푡)휄 ⋊ ∘ 휄 , (푎)((휄 ⋊  ∘ 휄 , ) × 휄 )(푠, 푡)∗ 

 = 휄 ⋊  ∘ 휄 (푠)휄 (푡)휄 ⋊  ∘ 휄 , (푎)휄 (푡)∗휄 ⋊  ∘ 휄 (푠)∗ 

= 휄 ⋊  ∘ 휄 (푠)휄 ⋊  ∘ 휄 , α
,

(푎) 휄 ⋊  ∘ 휄 (푠)∗ 

                        = 휄 ⋊  ∘ 휄 , α( , ) ,
(푎)  

                        = 휄 ⋊  ∘ 휄 , α( , )(푎) , 

which completes (i). For part (ii), we remark that (휄 , ⋊ , 휄 ⋊ |푆) is a 
covariant pair for (퐴, 푆,훼|푆). Since 휄 , ⋊  and 휄 ,  are unital, the induced 
map is unital as well. Moreover, 휄 ⋊ |푇 is a semigroup homomorphism 
mapping T to the isometries in퐴 ⋊ (푆 ⋊ 푇)). Thus, we are left with the 
covariance condition. Note that it suffices to check the covariance condition 
on the standard generators of 퐴 ⋊ | 푆 . For  푎 ∈ 퐴 , 푠 ∈ 푆  푎푛푑 푡 ∈ 푇 , we 
get  
 
휄 ⋊ 1 ,t 휄 , ⋊ (a)휄 ⋊ (s, 1 )휄 ⋊ 1 ,t

∗
 

= 휄 ⋊ 1 ,t 휄 , ⋊ (a)휄 ⋊ 1 ,t
∗
휄 ⋊ 1 ,t 휄 ⋊ (s, 1 )휄 ⋊ 1 ,t

∗
 

= 휄 , ⋊ α
,

(푎) 휄 ⋊ (휃 (푠), 1 )푝  

= 휄 , ⋊ α
,

(푎) 휄 ⋊ (휃 (푠), 1 ) 

= 훼 휄 , ⋊ (a)휄 ⋊ (s, 1 )  

Hence (i) and (ii) are both valid, so the proof is complete.   



105  
 

Chapter 4 

Product Systems over Semigroups of Ore Type 

We introduce Doplicher-Robertspicture of Cuntz-Pimsner algebras, and 

the semigroup dual to a product system of ’regular’ C*-correspondences. 

Under a certain aperiodicity condition on the latter, we obtain the 

uniquenesstheorem and a simplicity criterion for the algebras. These results 

generalize thecorresponding ones for crossed products by discrete groups, 

we give interesting conditionsfor topological higher rank graphs and P-

graphs, and apply to the new Cuntz C*-algebra 풬ℕarising from the "푎푥 +

 푏"-semigroup over ℕ. 

Section (4.1): Regular Product Systems of                                

C*-Correspondences and their C*-Algebras with Dual Objects  

We first introduce and discuss certain product systems of C*-

correspondences satisfying additional regularity conditions, and then 

construct their associated Cimtz-Pimnsner algebras and their reduced 

versions in the spirit of the Doplicher-Roberts algebras. The construction 

involves an object that may be viewed as a right tensor C*-precategory over 

P.  Regular product systems introduced and their C*-algebras will play a 

central role. 

Regular product systems and their right tensor C*-precategories. 
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Definition (4.1.1)[4]: 

Let X be a C*-correspondence with coefficients in A. We say X is 

regular if its left action is injective and via compact operators, that is  

푘푒푟 ∅ =  {0}     푎푛푑     ∅(퐴) ⊆  푘(푋).                            (1) 

We say that a product system 푋 ∶= ∐ 푋  ∈    over a semigroup P is regular 

if each fiber 푋  ,푝 ∈ 푃, is a regular C*-correspondence.  

The notions of regularity and tensor product are compatible in the sense 

that the tensor product of two regular C*-correspondences is automatically 

regular below. We will need the following . 

Lemma (4.1.2)[4]: 

Let Y he a regular C*-corresponderice with coefficients in A and let X, 

Z be right Hilbert A-modules.  

(i) For each 푥 ∈ 푋, the mapping  

푌 ∋ 푦 → 푥⨂푦 ∈ 푋⨂푌 

is compact, that is 푇 ∈ 푘(푦,푋⨂푌). Furthermore, we have‖푇 ‖ =

‖푥‖.  

(ii) For each 푆 ∈ 푘(푋,푍)  we have 푆⨂1 ∈ 푘(푋⨂푌,푍⨂푌) and the 

mapping  

푘(푋,푍) ∋ 푆 ⟼ 푆⨂1 ∈ 푘(푋⨂푌,푍⨂푌)               (2) 
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is isometric. It is surjective whenever ∅ :퐴 → 푘(푌) is. 

Proposition (4.1.3)[4]: 

Tensor product of regular C*-correspondences is a regular                

C*-correspondence.  

Proof:  If X and Y are C*-correspondences over A then the left action of A 

on 푋 ⨂ 푌 is ∅ ⨂ = ∅ ⨂1 . Hence if X and Y are regular, then ∅ ⨂  is 

injective and acts by compacts, by Lemma (4.1.2) part (ii).  

Now, let X be a regular product system over P. The family  

푘 ≔ 퐾 푋 ,푋
, ∈

 

forms in a natural manner a C*-precategory. We will describe a right 

tensoring structure on k  by introducing a family of mappings 

휄 ,
, : 푘 푋 ,푋 → 푘 푋 ,푋 , 푝, 푞, 푟 ∈ 푃 , which extends the standard 

family of diagonal homomorphisms 휄  defined . If 푞 ≠ 푒 we put  

휄 ,
, (푇)(푥푦) ≔ (푇푥)푦, 푤ℎ푒푟푒 푥 ∈ 푋 , 푦 ∈ 푋    푎푛푑   푇 ∈ 푘 푋 ,푋  

Note that under the canonical isomorphisrn 푋 ≅ 푋 ⨂ 푋  operator 

휄 ,
, (푇) corresponds to 푇⨂1 . Hence by part (ii) of Lemma 

(4.1.2),휄 ,
, (푇) ∈ 푘 푋 ,푋  and 휄 ,

,  is isometric. Similarly, in the case 

q = e, the formula  

휄 ,
, (푡 )(푦) ≔ 푥푦 , 푤ℎ푒푟푒 푦 ∈ 푋   푎푛푑  푡 ∈ 푘 푋 ,푋 , 푥 ∈ 푋  
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yields a well defined map. By Lemma (4.1.2)part(i), this is an isometry from 

푘 푋 ,푋  into 푘 푋 ,푋 . Note that  휄 ,
, = 휄  . 

Definition (4.1.4)[4]: 

The C*-precategory 푘 ≔ {퐾 푋 ,푋 } , ∈  equipped with the family  

of maps {휄 ,
, } , ,  ∈  defined above is called a right tensor C*-precategory 

associated to the regular product system X.  

Lemma (4.1.5)[4]: 

Let 휓 be a representation of a regular product system X over a 

semigroup P in a C*-algebra B. For each 푝, 푞 ∈ 푃we have a contractive 

linear map 휓 , :퐾 푋 ,푋 → 퐵 determined by the formula  

휓 , Θ , = 휓 (푥)휓 (풚)∗푓표푟푥 ∈ 푋  ,푦 ∈ 푋                       (3)  

Mappings 휓 , ,  ∈
 satisfy  

ψ , (S)ψ , (T) = ψ , (ST)for S ∈ K X , X , T ∈ K X , X , p, q. r ∈ P      (4) 

and are all isometric if  휓 is injective. If  휓 is Cuntz-Pimsner covariant, then  

휓 , (푆) = 휓 , 휄 ,
, (푆)    푓표푟 푎푙푙 푝, 푞. 푟 ∈ 푃 푎푛푑 푆 ∈ 퐾 푋 ,푋        (5) 

Proof:  It is not completely trivial but quite well known that (3) defines a 

linear contraction which is isometric if 휓  is injective. One readily sees that 

(4) holds for ‘rank one operators 푆 = Θ ,  푇 = Θ , and thus it holds 

ingeneral. Suppose that 휓 is Cuntz-Pimsner covariant representation on 
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Hilbert space H and let 푝,푞, 푟 ∈  푃. To see (5), it suffices to consider the 

case when 푆 = Θ , with 푥 ∈  푋 , and 푦 ∈ 푋 . We may writing 푥 = 푥 a 

where 푥 ∈ 푋  and 푎 ∈  퐴. We get  

휓 , (푆) = 휓 (푥 )휋(푎)휓 (푦)∗ = 휓 (푥 )휓( )(∅ (푎))휓 (푦)∗

∈ 휓 , (퐾 푋 ,푋 ) 

Hence both 휓 , (푆) and 휓 , 휄 ,
, (푆)  act as zero on the orthogonal 

complement of the space 휓 푋 퐻 = 휓( )(퐾 푋 ) 퐻. Since the linear 

span of elements of the form 휓 (푥 푦 )ℎ, 푥 ∈ 푋 , 푦 ∈ 푋 , ℎ ∈ 퐻, is dense 

in 휓 푋 퐻, (5) follows from the following computation:  

휓 , 휄 ,
, Θ , 휓 (푥 푦 ) = 휓 휄 ,

, Θ , 푥 푦

= 휓 (Θ , 푥 푦 ) = 휓 (푥〈푦,푥 〉푦 )

= 휓 (푥)휓 (푦)∗휓 (푥 )휓 (푦 ) = 휓 , Θ , 휓 (푥 푦 ). 

Doplicher-Roherts picture of a Cuntz-Pimsner algebra and its reduced 

version . 

We assume that X is a regular product system over a semigroup of Ore type. 

We need the following lemma.  

Lemma (4.1.6)[4]: 

Suppose 휓 is a Cuntz-Pimsner covariant representation of a regular 

product system X over a semigroup P of Ore type.  



110  
 

(i) For all 푥 ∈ 푋 , 푦 ∈ 푋  and  푠 ≥  푝, 푞  we have  

휓 (푥)∗휓 (푦) ∈ 푠푝푎푛 휓(푓)휓(ℎ)∗: 푓 ∈ 푋 , 푓 ∈ 푋  

(ii)  We have the equality  

푠푝푎푛{휓(푥)휓(푦)∗: 푥,푦 ∈ 푋, [푑(푥),푑(푦)] = [푝, 푞]} =

  푠푝푎푛 휓(푥)휓(푦)∗: 푥 ∈ 푋 , 푦 ∈ 푋  , 푟 ∈ 푃 . 

(iii) 퐶∗ 휓(푋) = 푠푝푎푛{휓(푥)휓(푦)∗: 푥, 푦 ∈ 푋}.  

Furthermore, there is a dense subspace of 퐶∗ 휓(푋)  consisting of elements 

of the form  

휓( ) 푆 + 휓 , (푆 , )
∈

                                        (6) 

where 푞 ∈  푃 and 퐹 ⊆  푃 is a finite set such that 푞 ≁  푝 for all 푝 ∈ 퐹.  

Proof: Ad(i). Write 푥 =  푆푥  with 푆 ∈ 퐾(푋 ) and 푥 ∈ 푋, and similarly 푦 ∈

푇푦  with 푇 ∈ 퐾(푋 ), 푦 ∈  푋 . Then we get  

휓 (풙)∗휓 (푦) = 휓 (푥 )∗휓( )(푆∗)휓( )(푇)휓 (푦 )

= 휓 (푥 )∗휓( )(휄 (푆∗)휄 (푇))휓 (푦 ) 

Since 휄 (푆∗)휄 (푇) ∈ 퐾(푋 )  we may approximate 휓( )(휄 (푆∗)휄 (푇)) with 

finite sums of operators of the form 휓 (푓 푓)휓 (ℎ ℎ)∗ where 푓 ∈ 푋 , 푓 ∈

푋  and ℎ ∈ 푋 , ℎ ∈ 푋 . Hence 휓 (푥)∗휓 (푦) can be approximated by 

finite sums of elements of the form  
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휓 (푥 )∗휓 (푓 푓)휓 (ℎ ℎ)∗휓 (푦 ) = 휓 (〈푥 , 푓 〉 푓)휓 (〈푦 , ℎ 〉ℎ)∗ 

This proves claim (i).  

Ad(ii). Clearly, 푠푝푎푛{휓(푥)휓∗(푦): 푥,푦 ∈ 푋, [푑(푥), 푑(푦)] = [푝, 푞]} 

contains  푠푝푎푛 휓(푥)휓(푦)∗: 푥 ∈ 푋 , 푦 ∈ 푋  , 푟 ∈ 푃 . To see the converse 

inclusion, we use the mappings introduced in Lemma (4.1.5) and assume 

that [푝 ,푞 ] = [푝,푞] that is 푝 푟 = 푝푟 and 푞 푟 = 푞푟 for some 푟, 푟 ∈ 푃. 

Then for 푇 ∈ 퐾 푋 ,푋  we have  

휓 , (푇) =  휓 , (휄 ,
, (푇)) = 휓 , (휄 ,

, (푇))

∈ 푠푝푎푛 휓(푥)휓(푦)∗: 푥 ∈ 푋 , 푦 ∈ 푋  , 

which proves our claim.  

Ad (iii). Part (i) implies that 퐶∗(휓(푋))is the closure of elemnents of the 

form  

휓 (푥  ) 휓 (푦  )∗,                                             (7)  

where 푝 , 푞  ∈  푃,푥 ∈ 푋 , 푦  ∈  푋 , 푖 =  1, . . ,푛. Moreover, taking any 

푞 ∈ 푃 that dominates all 푞 , 푖 = 1, . . . ,푛, and writing 푦 = 푦 푎   with 푦 ∈

푋 ,푎 ∈ 퐴, we get  

휓 (푥  ) 휓 (푦  )∗ =  휓 (푥  )휓  ∅
 
(푎∗) 휓 (푦 )∗, 푖 = 1, … ,푛  
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Approximating 휓  ∅
 
(푎∗)  by finite sums of elemnemits of the 

form 휓
 
(푢 )휓

 
(푣 )∗ we see that 휓 (푥  ) 휓 (푦  )∗ can be 

approximated by finite sums of elements of the form  

휓푝 (푥 )휓
 
푞(푢 )휓

 
(푣 )∗휓 (푦푖)

∗  = 휓
 
(푥 푢 )휓  (푦푖푣 )∗. 

Thus we see that tile element (7) can be presented in the form  

휓 ,  (푆 ,  )
∈

                                                    (8) 

 where 퐹 = {푝 푞 푞  : 푖 = 1 , … , 푛} ⊆ 푃 is a finite set. Let 퐹 = {푝 ∈

퐹 : 푞 ∼ 푝} and for each 푝 ∈ 퐹  choose 푟 ∈P such that 푝푟  = 푞 푟 . Let 

푟 ∈ 푃 be such that 푟 ≥  푟  for all 푝 ∈ 퐹 , and put  

푞: = 푞 푟     푎푛푑    퐹: = {푝푟: 푝 ∈ 퐹 \퐹 }. 

Then 푝푟 = 푞 for all 푝 ∈ 퐹 , and 푝 ≁ 푞 for all 푝 ∈ 퐹. By (4) we have 

휓 ,  푆 ,  ∈ 휓 ,  퐾 푋  ,푋 = 휓 , 퐾 푋 ,푋  and hence 

the element (8) can be presented inthe form (6).  

We are ready to prove the main theorem. It gives a direct 

constructionof the Cuntz-Pimsner algebra 풪  of a regular product system 

Xas the full cross-sectional C*-algebra of a suitable Fell bundle 

corresponding to the limits of directed systems of the compact operators 

arising from X.  
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Theorem (4.1.7)[4]: 

Let X be a regular product system over a semigroup P of Ore type and 

let G(P) be the enveloping group of P. For each [푝,푞] ∈ 퐺(푃)we define  

퐵[ , ]: =  푙푖푚
⟶

푘 (푋 ,푋 )  

to be the Banach space direct limit of the directed system 

푘 푋 ,푋
∈

, {휄 ,
, } , ∈ . The family ß = {퐵 } ∈ ( ) is in a natural 

manner equipped with the structure of a Fell bundle over G(P) and we have 

a canonical isomnorphismn  

풪 ≅ 퐶∗ 퐵
∈ ( )  

from the Cuntz-Pimsner algebra 풪  onto the full cross-sectional C*-algebra 

퐶∗({퐵 } ∈ ( ). In particular,  

(i) the universal representation 푗 :푋 → 풪  is injective,  

(ii) 풪  has a natural grading {(풪 ) } ∈ ( ) over G(P), such that  

(풪 ) = 푠푝푎푛{푗 (푥)푗 (푦)∗: 푥,푦 ∈ 푋, [푑(푥),푑(푦)] = 푔}          (9) 

(iii) for every injective representation 휓of X, the integrated representation 

∏ of 풪  is isometric on each Banach space (풪 ) ,푔 ∈ 퐺(푃), and 

thus it restricts to an isomorphism of the core C*-subalgebra of 풪 , 

namely  
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(풪 )풆 =  푠푝푎푛{푗 (푥)푗 (푦)∗: 푥, 푦 ∈ 푋, 푑(푥) = 푑(푦)}. 

Proof: As the direct limit 푙푖푚
⟶

푘 (푋 ,푋 )  depends only on ‘sufficiently 

large r’, it follows immediately that the limit does not depend on the choice 

of a representative of [푝, 푞] and thus 퐵[ . ] is well defined. Let 휑 , ∶

푘(푋 ,푋 ) → 퐵[ . ] denote the natural embedding Of 푘(푋 ,푋 ) into 퐵[ . ]. It 

is isometric because all the connecting maps {휄 ,
, } 푟 ≤ 푠 are. Using the 

(inductive) properties of the mappings 휑 ,  and (right tensoring) properties 

of the mappings ι ,
, one sees that the formula  

휑 , (푆) ∘ 휑 , (푇) ≔ 휑 (푝 푠), 푞 (푞 푠)(휄 ,
, ,풔(푆)휄 ,

, (푇)),  

where 푠 ≥ 푝 ,푞 ,푆 ∈ 푘 푋 ,푋 ,푇 ∈ 푘(푋 ,푋 ), yields well defined 

bilinear maps  

∘∶ 퐵[ , ] × 퐵[ , ] → 퐵[ , ]∘[ , ] 

These maps establish an associative multiplication ∘ on {퐵 } ∈ ( ), 

satisfying  

‖푎 ∘ 푏‖ ≤ ‖푎‖. ‖푏‖.   

Hence {퐵 } ∈ ( )becomes a Banach algebraic bundle. Simnilarly, formula  

휑 , (푆)∗ ≔ 휑 , (푆∗),         푆 ∈ 푘(푋 ,푋 ),  

defines a ‘*‘ operation that satisfies axioms  and hence we get a Fell bundle 

structure on {퐵 } ∈ ( ) (we omit straightforward but tedious verification of 

the details).  
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Now, we view 퐶∗({퐵 } ∈ ( )) as a maximal C*-completion of the 

direct sum ⨁ ∈ ( )퐵 . Using the maps , we define mappings  

훹:푋 = 푋 →
∈

퐶∗({퐵 } ∈ ( )) 

by  

푋 ∋ 푥 → 휑 , (푡 ),                푝 ∈ 푃                             (10) 

 is an isomorphism of C∗-correspondences, it follows that 훹 restricted to 

each summand 푋 , is an injective representation of a C∗-correspondence. 

Moreover, for 푥 ∈ 푋 ,푌 ∈ 푋  we have 푡 = 푖 ,
, (푡 )푡  and thus  

훹(푥)훹(푦) = 휑푝,푒(푡푥) ∘ 휑푞,푒 푡푦 = 휑푝푞,푒 푖푝,푒
푝푞,푞(푡푥)푡푦 = 휑푝푞,푒 푡푥푦 = 훹(푥푦). 

Hence 훹 is a faithful representation of the product system X in 

퐶∗ {퐵 } ∈ ( ) . We recall that 휄 ,
, (푡 ) = 휄 (푎) = ∅ (푎) and hence  

훹(푎) = 휑푒,푒(푡푎) = 휑푝,푝 휄푒,푒
푝,푝(푡푎) = 휑푝,푝 ∅푝(푎) = 훹 ∅푝(푎) , 푎 ∈ 퐴 ,푝 ∈ 푃, 

that is 훹 is Cuntz-Pimsner covariant. Since 훹 is injective, so is 푗  and claim 

(i) holds. Now, considering the integrated representation ∏ :훹 풪 →

퐶∗({퐵 } ∈ ( )), for 푥 ∈ 푋 ,푦 ∈ 푋     we have  

(푗 (푥)푗 (푦)∗)
훹

= 훹(푥) ∘ 훹(푦)∗ = 휑 , (푡 ) ∘ 휑 , 푡∗ = 휑 , 푡 푡∗

= 휑 , Θ , . (11) 

It follows that ∏훹  maps  
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(풪 )[ , ] ∶=  푠푝푎푛 푗 (푥)푗 (푦)∗: 푥 ∈ 푋 , 푦 ∈ 푋 , 푟 ∈ 푃  

onto 퐵[ , ] Putting 푔 = [푝, 푞] and using Lemma (4.1.6) part (iii), we see that 

(풪 )품 is given by (9). We claim that ∏ ,훹  is injective on (풪 )품. To see this, 

let 푗 ,  denote the mappings from Lemma (4.1.5) associated to the universal 

representation 푗  and note that we have  

푗 , ∘ 휄 ,
, = 푗 ,        푓표푟 푟 ≤ 푠 

by (5). By the universal property of inductive limits, there is a mapping  

퐵[ , ] ∋ ∅ , (푇) ⟼ 푗 , (푇) ∈ (풪 )[ , ],  

winch is inverse to ∏ |[ , ] Accordingly ∏  is an epimorphism 

injective on each (풪 )품. Since the spaces 퐵 ,푔 ∈ 퐺(푃), are linearly 

independent, so are (풪 )품,푔 ∈ 퐺(푃). Consequently, in view of Lemma 

(4.1.6) we have  

풪 = ⊕
∈ ( )

(풪 )품 

and claim (ii) follows. In particular ∏ : ⊕
∈ ( )

(풪 ) → ⊕
∈ ( )

퐵  is an 

isomorphism and as 퐶∗({퐵 } ∈ ( )) is the closure of ⊕
∈ ( )

퐵  in               a 

maximal C*-norm we see that ∏  actually yields the desired 

isomnorphism 풪 ≅ 퐶∗( 퐵
∈ ( )).  

For the proof of part (iii), notice that we have just showed that 

(풪 )[ , ]is the closure of the increasing union ⋃ 푗 , 푘 푋 ,푋∈ , 
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where 푗 , ∶  푘 푋 ,푋 → (풪 )[ , ] are isometric maps. Similarly, if 휓 is 

an injective covariant representation of X, then ∏ (풪 )[ , ]  is the closure 

of the increasing union ⋃ 휓 , 푘 푋 ,푋∈ , and by Lemma (4.1.5) 

mappings 휓 , : 푘 푋 ,푋 → ∏ (풪 )[ , ]  are isometric. Since 

∏ ∘ 푗 , = 휓 , ,푝,푞, 푟 ∈ 푃 it follows that surjection ∏ : (풪 )[ , ] →

휓 (풪 )[ , ]  is an isometry, since it is isometric on a dense subset.  

Let A be a C*-algebra. We denote by ≃ the unitary equivalence relation 

between representations of A, and by [π] the corresponding equivalence 

class of 휋:퐴 → ß(퐻).  Spectrum 퐴 = {[휋] ∶ 휋 ∈ 퐼푟푟(퐴)} consists of the 

equivalence classes of all irreducible representations of A, equipped with the 

Jacobson topology. The relation ≤ of being a sub representation factors 

through≃ to a relation ≼on A. Namely if π: A → ß(Hπ)and 휌:퐴 → ß 퐻  

are representations of A, then 

[휋] ≼ [휌] ⇔ ∃ 푖푠표푚푒푡푟푦 푈:퐻 → 퐻  푠. 푡 (∀푎 ∈ 퐴)휋(푎) = 푈∗휌(푎)푈. 

Let 훼: A → B be a homomorphism between two C*-algebras. It is useful to 

think of the dual map we aim to define as a factorization of a multivalued 

map α ∶  Irr(B) →  Irr(A) given by  

α (π ) = {π ∈ Irr(A): π ≤ π ∘ α}                             (12) 

The set [α (π )] = [π ] ∈ A: π ≤ π ∘ α does not depend on the choice of 

a representative of the class [π ] and thus the following definition make 

sense.  
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Definition (4.1.8)[4]: 

The dual map to a homomorphism 훼: A → B is a multivalued map 

α: B → A   given by the formula  

α([π ]) ≔ [π ] ∈ A : [π ] ≼ [π ∘ α]  

= [π ] ∈ A : π ≤ π ∘ α  

Time range of α behaves exactly as one would expect. But for non-liminal B 

the map α, and inparticular its domain, has to be treated with care. Let us 

explain it with help of the following proposition and an example.  

Proposition (4.1.9)[4]: 

For every homomorphism 훼: A → B between two C*-algebras. its 

image  

α B ≔ [π ] ∈ A: ker π ⊇ ker α  

is a closed subset of A. Its domain D(α) is contained in an open subset 

[π ] ∈ B: ker π ⊉ B α (A)B of B. Moreover, if B is liminal, then  

퐷(훼) ≔ [휋 ] ∈ 퐵 : 푘푒푟 휋 ⊉ 퐵 훼 (퐴)퐵  

and α: B → A is continuous.  

Proof: If [휋 ] ∈ 훼 퐵 , then 휋 ≤ 휋 ∘  훼 for some 휋 ∈ 퐼푟푟(퐵), and hence 

푘푒푟 휋 ⊇ 푘푒푟 훼. Conversely, if [휋 ] ∈ 퐴 is such that 푘푒푟 휋 ⊇ 푘푒푟 훼, then 

휋 factors through to the irreducible representation of 퐴/푘푒푟 훼 ≅ 훼(퐴).Thus 



119  
 

the formula 휋(훼(푎)) ≔ 휋 (푎), 푎 ∈  퐴 , yields a well defined element of 

퐼푟푟(훼(퐴)). Extending 휋 to any 휋 ∈ 퐼푟푟(퐵) onehas π ≤ π ∘ α.  

Now, let 퐽 be an ideal of A. Then  퐽 = {[휋 ] ∈ 퐴: 푘푒푟 휋 ⊉ 퐽}  is open 

and we have  

[휋 ] ∈ 훼 퐽 ⇔ ∃ ∈ ( )휋 ≤ 휋 ∘ 훼,

푘푒푟 휋 ⊉ 퐽 ⟹ 푘푒푟(휋 ∘  훼) ⊉ 퐽 

⇔ 푘푒푟 휋 ⊉ 훼(퐽)                

⇔ 푘푒푟 휋 ⊉ 퐵훼(퐽)퐵.         

That is α J ⊆ {π ∈ B: ker π ⊉ Bα(J)B}   and in particular 퐷(훼) =

훼 퐴 ⊆ 휋 ∈ 퐵: 푘푒푟 휋 ⊉ 퐵훼 (퐴)퐵 . 

If we additionally assume that B is liminal, then for 휋 ∈ 퐼푟푟(퐵) the 

representation 휋 ∘ 훼 decomposes into a direct sum of irreducibles. Namely, 

there is a subset K of 훼 (휋 )such that 휋 ∘ 훼 = ⨁ ∈ 휋 ⨁0 (where 0 

stands for the zero representation and is vacuous if π ∘ αis nondegenerate). 

Hence the implication  

푘푒푟(휋 ∘  훼) ⊉ 퐽 ⟹ ∃ ∈ 퐾 ⊆ 퐼푟푟(퐴) 푠. 푡.휋 ≤ 휋 ∘  훼, 푘푒푟 휋 ⊉ 퐽 

holds true. This combined with the preceding argument yields 훼 퐽 =

{휋 ∈ 퐵: 푘푒푟 휋 ⊉ 퐵훼(퐽)퐵}  and the second part of the assertion follows.  
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Example (4.1.10)[4]: 

Let 퐻 =  퐿 [0, 1] with 휇the Lebesgue measure. Put 퐵: = ß(퐻),퐴 ∶=

 퐿  [0, 1] and let 훼:퐴 → 퐵 bethemonomorphism sending 훼 ∈ 퐴to the 

operator of multiplication by a. Then 휋 = 푖푑  is irreducible and π ∘

αfaithful but α([π ]) = ∅. Accordingly,  

D(α) ≠ [π ] ∈ B: kerπ ⊉ Bα (A)B = B 

Let X be a regular C∗-correspondence with coefficients in A. We may 

treat X as 퐾(푋) − 〈푋,푋〉 -imprimitivity bimodule and therefore the induced 

representation functorX − lnd ∶  Irr(〈X, X〉 ) → Irr (K (X))factors through to 

the homeomorphism [X − lnd]: 〈X, X〉 → (K (X)which in turn may be 

viewed as a multivalued map [X −  lnd] ∶ A → (K (X) with domain D([X-

Ind]) = 〈X, X〉 . 

Definition (4.1.11)[4]: 

Let X be a regular C∗-correspondence over A. We define dual map 

X: A → A to X as the following composition of multivalued maps  

푋 = ∅ ∘ [푋 − 푙푛푑], 

where ∅: 퐾 (푋) → 퐴is dual to the left action ∅:퐴 →  퐾 (푋) of Aon X.  

Alternatively, 푋 is a factorization of the map 푋 :∅ ∘ 푋 − lnd: Irr(퐴) →

Irr(퐴).  
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Proposition (4.1.12)[4]:  

The multivalued map dual to a regular C* -correspondence X is always 

surjective, that is 푋 퐴 = 퐴. The domain of X satisfies the following 

inclusion  

퐷 푋 ⊆ (〈푋,∅(퐴)푋〉 )                                        (13)  

Note here that 〈푋,∅(퐴)푋〉  is an ideal in A. If, in addition, A is liminal, then 

X is a continuous rnultivalued map and we have equality in (13); in 

particular, if X is full and essential, then 푋:퐴 → 퐴 is a continuous 

multivaluedsurjection with full domain, 퐷 푋 = 퐴 .  

Proof: As [X-Ind]: A → K (X) is surjective and ker ∅  =  {0} we get X A =

A  by Proposition (4.1.9). Since [X- Ind]:〈X, X〉  → K(X)is a 

homeomorphism, it follows from Proposition (4.1.9) that  

D X ⊆  [X − Ind] (K(X)∅(A)K(X))                               (14)  

with equality if A is liminal (note that if A is liminal then 퐾(푋) is also 

liminal being Morita—Rieffel equivalent to the liminal C*-algebra 

〈X, X〉  ⊆  A). Hence it suffices to show that the sets in the right hand sides 

of (13) and (14) coincide. However, for any representation 휋 of A and any 

C*-subalgebra 퐵 ⊆ 퐾 (푋) we have  

퐵 ⊆  푘푒푟 푋 − Ind(휋) ⟺  휋(〈퐵푋,퐵푋〉 ) = 0 ⟺ (푋,퐵푋)  ⊆ 푘푒푟휋. 

thus the assertion follows from the equality  
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〈푋,퐾(푋)∅(퐴)퐾(푋)푋〉  =  〈퐾(푋)푋,∅(퐴)퐾(푋)푋〉  =  〈푋,∅(퐴)푋〉 .   

In view of Proposition (4.1.3), if X and Y are regular C*-

correspondences with coefficients in A, then the tensoring on the right by the 

identity 1 in Y yields a homomorphism ⨂1 ∶ K(X) → K(X ⊗ Y). With 

help of its dual map we are able to analyze the relationship between the 

spectra of compact operators on the level of spectrum of A.  

Proposition (4.1.13)[4]: 

Let X and Y be regular C*-correspondences with coefficients in A. Then W 

have  

 [X.−Ind] ∘ Y =⊗ 1 ∘ [(X ⊗ Y) − Ind]                                  (15) 

In other words, the diagram of multivalued  maps 

 

 

 

is commutative, and in particular  

D([X − Ind] ∘ Y)  = D(⊗ 1 ∘ [(X ⊗ Y) − Ind])  = Y  (〈X, X〉 ) 

Proof: Let π : A → ß(H) be an irreducible representation. If 휋 ∈ 푌 (휋 ), 

then 퐻  in is a closed suhspace of 푌 ⊗ 퐻 irreducible under the left 

multiplication by elements of A, or more precisely, irreducible for (푌 −

 Ind(휋 ))( ∅  (A)). Since the tensor product of C*-correspondences is both 
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associative and distributive with respect to direct sums, we may naturally 

identify 푋 ⊗ 퐻  with a closed subspace of  푋 ⊗ 푌 ⊗ 퐻. Since for 푎 ∈

퐾(푋) we have  

(푋 ⊗ 푌) − Ind(휋 ) (푎 ⊗ 1 ) 푥 ⊗ 푦⊗ ℎ = 푎푥 ⊗ 푦 ⊗ ℎ, 

we see that, the action of (푋 ⊗ 푌) − Ind(휋 ) (푎 ⊗ 1 ) 

On푋 ⊗ 퐻 coincides with the action of (X-Ind(π))(a). In particular, the 

subspace 푋 ⊗ 퐻  is either {0}, when it 휋 ∉ 〈푋,푋〉  or is irreducible for 

(X ⊗ Y) − Ind(π ) (K(X) ⊗ 1 ). Consequently,  

(X − Ind) ∘ Y (π ) ⊆⊗ 1 ∘ (X ⊗ Y) − Ind (π ). 

To show the reverse inclusion, let ρ ∈ ⊗ 1 ∘ (X ⊗ Y) − Ind (π ). Then 

휌is an irreducible subrepresentation of the representation π ( ): K(X) →

ß X ⊗ Y ⊗ H where π ( )(a) = (X ⊗ Y) − Ind(π ) (a ⊗ 1 ). We may 

consider the dual C*-correspondence X (not to he confused with the dual 푋 

to the C*-correspondence X) as an〈X, X〉 − K(X) −imprimitivity bimnodule. 

Then using the natural isomnorpinsmn  

푋 ⊗ ( )⊗푋 ⊗ 푌⊗ 퐻 ≅ 푌 ⊗ 퐻, 

we see that X- Ind(π ( )) is equivalent to Y − Ind(π ) ∘ ∅ ∶ A →

ß Y ⊗ X . Since induction respects direct sums, X- Ind (ρ) is equivalent 

to an irreducible subrepresentation π of Y − Ind(π ) ∘ ∅ . Then πbelongs to 

both 〈X, X〉  and Y (π ), and we have  

휌 ≅  푋 − Ind(푋 − Ind(휌)) ≅  푋 − Ind(휋).  
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Consequently, ⊗ 1 ∘ (X ⊗ Y) − Ind (π ) ⊆ X − Ind ∘ Y (π ).  

Corollary (4.1.14)[4]: 

The composition of duals to C*-correspondences coincides with the 

dual of their tensor product:  

X ∘ Y = X ⊗ Y. 

Proof: We showed in the proof of Proposition (4.1.13) that X − Ind ∘ Y =

⊗ 1 ∘ (X ⊗ Y) − Ind    and all subspaces of 푋 ⊗ 푌 ⊗ 퐻 irreducible for 

(푋 ⊗ 푌) − Ind(휋 ) (퐾(푋) ⊗ 1 )are of the form 푋 ⊗ 퐻 , where π ∈

Y (π )⋂〈X, X〉 . Since ∅ ⊗ (A) ⊆ K(X) ⊗ 1 , the action of (푋 ⊗ 푌) −

Ind(휋 ) ∅ ⊗ (푎) 푎 ∈  퐴, coincides on 푋 ⊗ 퐻  with X-Ind(π) (∅ (a). 

Thus we have  

X ∘ Y = ∅ ∘  X − Ind ∘ Y = ∅ ⊗ ∘ (X ⊗ Y) − Ind = X ⊗ Y .  

Let X be a product system over P. By Corollary (4.1.14), the family 

{푋 } ∈ ofdual maps to C*-correspondences 푋 ,푝 ∈ 푃, forms a sernigroup 

of multivalued maps on A, that is  

푋 = 푖푑,    푎푛푑   푋  ∘  푋 = 푋 ,      푝,푞 ∈ 푃. 

If A is liminal then these mnutivalued maps are continuous by Proposition 

(4.1.12).  
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Definition (4.1.15)[4]: 

We call the semigroup 푋 ≔  {푋 } ∈  dual to the product system X.  

We prove certain technical facts concerning the interaction among 

Cuntz-Pimsner representations, dual maps and the process of induction. 

Lemma (4.1.16)[4]: 

Let X be a product system over a left calculative semi group P. If  

푝, 푞, 푠 ∈ 푃 are such that 푠 ≥   푝, 푞, then  

푋 푋  = [푋 − Ind]  ∘  횤 ∘ 횤 ∘ [푋 − Ind]. 

Proof:  Applying Proposition (4.1.13) to 푌 = 푋 ,푋 =  푋 푎푛푑 푌 =

 푋 ,푋 = 푋  , respectively, we get  

푋 − 퐼푛푑 푋 = 횤 [푋 − 퐼푛푑]    푎푛푑 푋 − 퐼푛푑 푋 = 횤 [푋 − 퐼푛푑]. 

As 푋 − Ind  and 푋 − Ind arehomeomorphisms, this is equivalent to  

푋 = 푋 − Ind 횤 [푋 − Ind]    푎푛푑  푋

= 푋 − Ind 횤 [푋 − Ind], 

 and the assertion follows.  
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Lemma (4.1.17)[4]: 

 Suppose Y is an imprimitivity Hilbert A-B-bimodule and (휋 ,휋 ,휋 ) 

is its representation on a Hilbert space H. Thus  휋 :퐴 → ß(퐻),휋 :퐵 →

ß(퐻), are representations and with the map 휋 :푌 → ß(퐻) they satisfy  

휋 (푎)휋 (푦)휋 (푏) = 휋 (푎푦푏), 휋 (푥)휋 (푦)∗ = 휋 (퐴〈푥, 푦〉), 

휋 (푥)∗휋 (푦) =  휋 (〈푥, 푦〉퐵), 

푎 ∈ 퐴, 푏 ∈  퐵 ,푥, 푦 ∈  푌. If 휋is an irreducible subreprsentation of 휋 then 

the restriction 휌(푎) ≔ 휋 (푎)| ( ) , yields an irreducible sub representation 

of 휋  such that [휌] = [푌 − lnd(휋)]. 

Proof: Let it 휋 ≤ 휋  be a representation of B on a Hilbert space 퐻 ⊂

퐻.The Hilbert space 휋 (푌)퐻 ⊂ 퐻 is invariant for elements of 휋 (퐴)and 

therefore 휌(푎) ≔ 휋 (푎)| ( )  ,푎 ∈ 퐴 defines a representation of A. Since  

휋 (푦 )ℎ = 〈휋 (푦 )ℎ ,휋 푦 ℎ 〉
,

= 〈ℎ ,휋 〈푦 , 푦 〉 ℎ 〉
,

=  푦 ⊗ ℎ , 

the mapping 휋 (푦)ℎ ↦ 푦 ⊗ ℎ , 푦 ∈ 푌, ℎ ∈ 퐻 , extends by linearity and 

continuity to a unitary operator V: 휋 (푦)퐻 → 푌 ⊗ 퐻 , which intertwines 

휌 and Y-Ind(π) because  

푉휌(푎) 휋 (푦)ℎ =  푉 휋 (푎푦)ℎ =  (푎푦 ⊗ ℎ) =  푌 − Ind(휋)(푎)푉 휋 (푦)ℎ.  
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Accordingly, if 휋 it is irreducible then 휌, being unitary equivalent to the 

irreducible representation Y-Ind(π), is also irreducible.  

Lemma (4.1.18)[4]: 

Suppose 휓 is a Cuntz- Pimsner covariant representation of a regular’ 

product system X Over 휌 on a Hilbert space H. Let 푝, 푞 ∈ 푃 and let 휋 he an 

irreducible summnand of ,휓( ) acting on a subspace K of H. Then the 

restriction  

 휋 (푇) ≔ 휓( )(푎) ∗ , 푇 ∈ 퐾 푋 ,                  (16) 

yields a representation  휋 :퐾 푋 → ß(휓 푋 휓 푋
∗
퐾 ) which is either 

zero or irreducible. and such that  

 휋 =  [(푋 − 퐼푛푑)((푋 − 퐼푛푑) (휋))].  

Proof: The dual C*-correspondence 푋  to 푋  is an imprirnitivity 〈푋 ,푋 〉 −

퐾 푋 -bimodule and (휓 ,휓 ,휓( )), where 휓 ƅ(푥) = 휓 (푋)∗, is its 

representation. Thus, by Lemma (4.1.17), the restriction  휋 (푎) ≔

휓 (푎)| ∗  ,푎 ∈ 퐴 yields an irreducible subrepresentation 휋 :퐴 →

ß(휓 푋
∗
퐾 ) of 휓  such that [ 휋 ] =  푋 − Ind(휋) = 푋 − Ind (휋) , 

if 휋 〈푋 ,푋 〉 = 0, then (16) is a zero representation. Otherwise we may 

apply Lemma (4.1.17) to  휋  and the representation (휓( ),휓 ,휓 ) of the 

imprimitivity 퐾 푋 − 〈푋 ,푋 〉 -bimnodule 푋 . Then we see that (16) 

yields an irreducible representation such that  휋 =  [푋 − Ind(휋 )] =

[푋 − Ind (푋 − Ind) (휋))]. 
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Section (4.2): A Uniqueness Theorem and Simplicity Criteria 

for Cuntz-Pimsner Algebras with Applications 

We consider a directed, left cancellative semigroup P and a regular 

product system X over P with coefficients in an arbitrary C*-algebra A. We 

recall from Theorem (4.1.7) that the Cuntz-Pimsner algebra 풪 is graded 

over the enveloping group G(P)with fibers  

(풪 ) =  푠푝푎푛{푗 (푥)푗 (푦)∗ ∶ 푥,푦 ∈  푋, [푑(푥),푑(푦)]  =  푔}, 푔 ∈ 퐺(푃).  

Moreover, 풪  may be viewed as a full cross-sectional algebra 

퐶∗({(풪 ) } ∈ ( )) of the Fell bundle{(풪 ) } ∈ ( ), and the reduced 

Cuntz—Pimsner algebra  

풪 ∶= 퐶∗({(풪 ) } ∈ ( )) 

is cletined as the reduced cross-sectional algebra of {(풪 ) } ∈ ( ). There 

exists a canonical epimorphsmn  

휆:풪 → 풪 .                                             (17)  

This epimorphism may not be injective. However, 휆 is always injective 

whenever the group G(P)is amenable or more generally when the Fell 

bundle {(풪 ) } ∈ ( )has the approximation property be defined.  

By now, several conditions implying amenability of the Fell bundle 

{(풪 ) } ∈ ( )are known. That is, conditions which guarantee the identity 

풪 = 풪 . These conditions seem to be independent of aperiodicity we want 

to investigate, and thus we decided not to assume any of them. Accordingly, 
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we seek an intrinsic condition on the product system X (or on the dual 

sernigroup 푋) which would guarantee that every Cuntz-Pimsner 

representation of X injective on the coefficient algebra A generates a C*-

algebra lying in between 풪  and 풪 . Before proceeding further, we 

summarize a few known facts useful in the aforementioned context.  

Proposition (4.2.1)[4]: 

Suppose that 휓 is an injective Cuntz-Pimsner representation of a 

regular product system X. Consider the following conditions:  

(i) The canonical epimorphism ∏ :흍 풪 →  퐶∗(휓(푋)), where 푖 (푥)  =

 휓(푥), 푥 ∈  푋, is an isomnorphism.  

(ii) There is a coaction 훽 표푓 퐺 =  퐺(푃)on 퐶∗(휓(푋)) such that 

훽 휓(푥) = 휓(푥)⨂푖 푑(푥) , 푥 ∈ 푋 

(iii) There is a conditional expectation 퐸흍 from 퐶∗(휓(푋))onto  

ℱ = 푠푝푎푛{휓(푥)휓(푦)∗ ∶ 푥,푦 ∈  푋, 푑(푥)~푑(푦)} 

vanishing on elements 휓(푥)휓(푦)∗with 푑(푥) ≁ 푑(푦).  

We have the implications (푖) ⟹ (푖푖) ⟹ (푖푖푖), and (iii,) is equivalent to 

existence of a unique epimorphism 휋흍:퐶∗(휓(푋)) → 풪 such that the 

following diagram  

 

 

(18) 
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is commutative. In particular, if the epimorphism 휆 from (17) is an 

isornorphisrn, then the conditions (i), (ii) ,(iii) areequivalent.  

Proof: Implication (i)  ⇒ (ii) is obvious because we know that 풪  is 

equipped with the coaction in the prescribed form. Suppose (ii) holds. Using 

the contractive projections onto the spectral subspaces for the coaction 훽, 

and the fact that elements of the form 휓(푥)휓(푦)∗ span a dense suhspace of 

퐶∗(휓(퐸)),  Lemma (4.1.6), we get  

퐶∗ 휓(푋) = {푐 ∈ 퐶∗ 휓(푋) : 훽(푐) = 푐⨂푖 (푔)}  = 푠푝푎푛{휓(푥)휓(푦)∗

∶  [푑(푥), 푑(푦)] = 푔}. 

In particular, the projection onto 퐶∗ 휓(푋) = ℱ , is the conditional 

expectation described in (iii). If we assume (iii), then {∏흍 (풪 ) } ∈  is 

a Fell bundle which yields a topological grading of 퐶∗ 휓(푋) . Hence by [4] 

there exists a desired epimorphism 휋흍:퐶∗(휓(푋)) → 풪 . Conversely, if such 

an epimorphism  휋흍:퐶∗(휓(푋))  → 풪  exists, then composing it with the 

canonical conditional expectation on 풪  one gets the conditional expectation 

described in (ii).  

Definition (4.2.2)[4]: 

 We say that a representation 휓: 푋 →  퐵 of a product system X is 

topologically graded if it has the property described in part (iii) of 

Proposition (4.2.1).  
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Thus, to conclude our discussion, by uniqueness theorem for 풪  we 

understand a result which guarantees that for every injective Cuntz-Pimsner 

covariant representation 휓 of X there is a map 휋 , making the diagram (18) 

commutative. By Proposition (4.2.1), this is equivalent to 휓 being 

topologically graded. We now introduce a dynamical condition which entails 

such a result.  

Definition (4.2.3)[4]: 

We say that a regular product system X, or the dual semnigroup 

 {푋 } ∈ , is topologically a periodic if for each nonempty open set 푈 ⊆ 퐴 

each finite set 퐹 ⊆ 푃 and element 푞 ∈ 푃 such that 푞 ≁푹  푝 for 푝 ∈ 퐹, there 

exists a [휋] ∈ 푈 such that for some enumeration of elements of 퐹 =

 {푝 , . . . , 푝 }and some elements 푠 , . . . , 푠 ∈ 푃 with 푞 ≤  푠 ≤. . .≤  푠  and 

푝  ≤  푠  We have  

[휋] ∉  푋  푋
 
([휋])        푓표푟 푎푙푙 푖 =  1, . . . ,푛.           (19)  

Proposition (4.2.4)[4]: 

If condition (19) holds for some sequence 푞 ≤  푠 ≤ . . .≤ 푠 ,then it 

also holds for any sequence 푞 ≤  푠 ≤ . . .≤ 푠 such that  

푝  ≤ 푠 ≤ 푠      푓표푟  푎푙푙  푖 =  1 , . . . , 푛. 

Moreover , we have the following.  

(i) If (G(P), P) is a quasi-lattice ordered group then in Definition 

(4.2.3) one can always take  
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푠 = 푝 ∨  푞        푎푛푑 푠  = 푝 ∨ 푠        푓표푟 푎푙푙 푖 =  2, . . . , 푛.  

(ii) Topological aperiodicity of X implies that for any open nonempty 

set 푈 ⊆ 퐴 and any finite set 퐹 ⊆ 푃 such that 푝 ≁푹 푒 for 푝 ∈ 퐹, 

there is a [휋] ∈  푈 satisfying  

[휋] ∉ X ([휋])       푓표푟 푎푙푙 푝 ∈ 퐹.                              (20)  

If (푃,≤) is linearly ordered then the converse implication also holds.  

(iii) In the case of a product system  {X⨂ } ∈ℕ arising from a single 

regular C*-correspondence X, the topological aperiodicity is 

equivalent to that for each 푛 > 0 the set  

퐹 = {[휋] ∈ 퐴:휋 ∈ 푋 ([휋])} 

has empty interior. (In this case we will say that the                            

C*-correspondence X is topologically a periodic.)  

Proof: Let us notice that if 푞,푝 ≤ 푠 ≤ 푠  ,   then using the semnigroup 

property of 푋 (Corollary (4.1.14)), surjectivity of mappings 푋 ,푝 ∈ 푃 

(Proposition (4.1.12)) we get 

푋  ∘  푋
 

= 푋  ∘  푋
 
∘ 푋 ∘ 푋

 
  

= 푋 ∘  푋  ∘ 푋
 
∘  푋

 
⊇ 푋 ∘  푋

 
 

Hence [휋] ∉ 푋  (푋  
([휋])) implies [휋] ∉ 푋 (푋

 
([휋])). This 

proves the initial part of the assertion.  
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Ad (i). It follows immediately from what we have just shown.  

Ad (ii). If  퐹 =  {푝 , . . . , 푝 } ⊆ 푃and 푝 ≁푹 푒 for all 푝 ∈ 퐹, then putting 푞 =

푒 we see that topological aperiodicity of X implies that for any nonempty 

open set 푈 ⊆ 퐴 there are elements 푠 , . . . , 푠 ∈ 푃,푝 ≤ 푠 , 푖 =  1, . . . , 푛 and a 

point [π] ∈ U such that  

[휋] ∉ X  푋
 
([휋]) = X  푋

 
([휋])     for all 푖 =  1, . . . ,푛. 

By the inclusion noticed above we have X  ∘ 푋  
= X  ∘ X  ∘

 푋
 
⊇ X   and thus condition (20) follows.  

Conversely, suppose (푃,≤) is linearly ordered and the condition 

described in (ii) is satisfied. Let 푈 ⊆ 퐴 be open and nonempty, 퐹 ⊆ 푃 finite 

and 푞 ∈ 푃 such that 푞 ≁푹 푝 for 푝 ∈ 퐹. Enumerating elements of 퐹 =

 {푝 , . . . , 푝 } ⊆ 푃 in a lion-increasing order we have  

푝 ≤ 푝 ≤ ⋯ ≤ 푝 ≤ 푞 ≤ 푝 ≤ ⋯ ≤ 푝  

for certain 푘 ∈ {0, 1, . . . , 푛}. Defining  

푠   ≔
푞, 푖 ≤ 푘
푝       푖 ≥ 푘 + 1 

we see that, 푞 ≤  푠 ≤. . .≤ 푠   and  

푋  ∘  푋
 
≔

푋 , 푖 ≤ 푘

푋            푖 ≥ 푘 + 1
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Put 퐹 : {푝 푞 ∶ 푖 = 1 , . . 푘 } ∪ {푞 푝  ∶ 푖 = 푘 + 1, . . . 푛}and note that 

푝 ≁푹 푒 for all 푝 ∈ 퐹 . Thus we may apply condition described in (ii) to 퐹  

and then we obtain a [휋] ∈ 푈 satisfying (19).  

Ad (iii). By part (ii) above, topological aperiodicity implies the condition 

described in (iii). To see the converse, again by part (ii), it suffices to show 

(20) for a finite set 퐹 ⊆ ℕ\ {0}. The latter follows from condition described 

in (iii) applied to 푛 = 푚! where 푚 = max {푘: 푘 ∈ 퐹}.  

Theorem (4.2.5)[4]: 

(Uniqueness theorem).Suppose that a regular product system X is 

topologically aperiodic. Then every injective Cuntz-Pimsner representation 

of X is topologically graded. if the canonical epimorphism ⋋ : 풪 → 풪  is 

injective then there is a natural isomorphisrn  

풪 ≅ 퐶∗(휓(푋)) 

for every injective Cuntz-Pimsner representation 휓of X.  

Proof: Suppose that 휓 is an injective Cuntz-Pimsner representation of X in a 

C*-algebra B. Then 휓( ) ∶  푘 푋 →  퐵 is injective for all 푝 ∈ 푃. Let us 

consider an element of the form 

휓( ) 푆 + 휓 , 푆 ,
∈

 

where 푞 ∈  푃,퐹 ⊆  푃 is a finite set such that 푝 ≁푹 푒 for all 푝 ∈ 퐹, and 푆 ∈

푘 푋 , 푆 , ∈ 푘 푋 ,푋 . By Lemma (4.1.6) part (iii), such elements form a 
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dense subspace of 퐶∗(휓(푋)). Thus existence of the appropriate conditional 

expectation will follow from the inequality  

푆 = 휓( ) 푆 ≤ 휓( ) 푆 + 휓 , 푆 ,
∈

          (21) 

To prove this inequality, we fix 휀 > 0 and recall that for any 푎 ∈ 퐴 the 

mapping 퐴 ∋ [휋] ⟼ ‖휋(푎)‖ is lower semicontinuous and attains its 

maximum equal to ‖푎‖, [4]. Thus, since 푋 − Ind:퐴 → 푘(푋)is a 

homeomorphism, we deduce that there is an open nonemnpty set 푈 ⊆ 퐴 

such that  

푋 − Ind(휋) 푆 > 푆 − 휀          푓표푟 푒푣푒푟푦 [휋] ∈ 푈 

Let 퐹 =  {푝 , . . . , 푝 }. By topological aperiodicity of X, there are elements 

푠 , . . . , 푠 ∈ 푃  such that 푞 ≤ 푠  ≤. . .≤ 푠  and 푝 ≤ 푠 , 푖 =  1, . . . ,푛, and 

there exists a (휋) ∈ 푈satisfying (19). Let us fix these objects.  

We recall that if 푝 < 푠, then 푖 푘 푋 ⊆ 푘(푋 ) and thus 

휓( ) 푘 푋 ⊆ 휓( ) 푘(푋 ) , c cf. Lemma (4.1.5). In particular, we have 

the increasing sequence of algebras  

휓( ) 푘 푋 ⊆ 휓( ) 푘 푋 ⊆ ⋯ ⊆ 휓( ) 푘 푋 ⊆ 퐶∗ 휓(푋) . 

We construct a relevant sequence of representations of these algebras as 

follows. We put  
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푣 :휓( ) 푘 푋 → ß 퐻       defined as    푣 휓( )(푠) = 푋 − Ind(휋)(푆) 

Then 푣  is an irreducible representation because so is 휋. We let 

푣 :휓( ) 푘 푋 → ß 퐻  to be any irreducible extension of 푣 , 

andfor푖 =  2,3, . . . ,푛we take 푣 :휓( ) 푘 푋 → ß 퐻   to be any 

irreducible extension of 푣 . Finally, we let 푣: 퐶∗ 휓(푋) → ß(퐻) to be any 

extension of 푣 . In particular, we have  

퐻 ⊆ 퐻 ⊆ ⋯ ⊆ 퐻 ⊆ 퐻. 

Let 푃 ∈ ß(퐻) be the projection onto the suhspace 퐻 . Clearly  

푃 푣 휓( ) 푆 푃 = 푣 휓( ) 푆 = 푋 − Ind(휋) 푆 ≥ 푆 − 휀 

and as 휀is arbitrary we can reduce the proof to showing that  

푃 푣 휓 , 푆 , 푃 = 0        푓표푟 푝 ∈ 퐹.                                   (22) 

To this end, we fix a 푝 ∈  퐹.  Let 푃  be the projection onto 퐻  and consider 

the space 

퐻 ≔ 푣 휓 푋 휓 푋
∗
퐻  

We claim that 푃 퐻 = {0}. Since 퐻 ⊆ 퐻 , this implies (22) and finishes 

the proof. Suppose to the contrary that 푃 퐻 ≠ {0} By Lemma (4.1.18) and 

the definitions of 푣 and 퐻  the mapping 
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푘 푋 ∋ 푆 → 푣 휓( )(푆)  

is an irreducible representation equivalent to 푋 - Ind(π). In particular, 퐻  is 

irreducible for 푣 휓( ) 푘 푋 . Since  

푣 휓( ) 푘 푋 ⊆ 푣 휓( ) 푘 푋 and 푝 ∈ 푣 휓( ) 푘 푋 , 

we see that 푃 퐻  is an irreducible subspace for 푣 휓( ) 푘 푋 . Thus, 

since 퐻  and 푃 퐻  are both irreducible subspaces for 푣 휓( ) 푘 푋 , 

either 퐻 = 푃 퐻  or 퐻 ⊥ 푃 퐻 . However, (as 푃 퐻 ≠ {0}) the latter is 

clearly impossible. Thus 퐻 ⊆ 퐻  and denoting by 휋풔풊  the representation  

푘 푋 ∋ 푆 푣 휓( )(푆)  

we get [휋 ] ∈ 휄 ([푋 − Ind(휋)]) . Denoting by 휋  the representation  

푘 푋 ∋ 푆 → 푣 휓( )(푆)  

we have [휋풒] ∈ 휄 ([휋풔풊]) and 휋 = 푋 − Ind(휋). Hence we get  

[휋] = 푋 − Ind (휋 ) ∈ 푋 − Ind (휄 ([휋 ]))

⊆ 푋 − Ind (휄 (휄 ([푋 − Ind(휋)]))) 

Thereby in view of Lemma (4.1.16) we arrive at  
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[휋] ∈ 푋   (푋   
)([휋]) 

which contradicts the choice of 휋.  

As an application of Theorem (4.2.5), we obtain simplicity criteria for the 

reduced Cuntz- Pimsner algebra 풪  To this end, we first introduce the 

indispensable terminology.  

Definition (4.2.6)[4]: 

Let X be a regular product system over a semigroup P with coefficients 

in a C*-a1gebra A. We say that an ideal J in A is X-invariant if and only if 

for each 푝 ∈  푃 the set  

푋 (퐽): =  {푎 ∈ 퐴: 〈푋 , 푎푋 〉 ⊆  퐽} 

is equal to J. We say Xis minimal if there are no nontrivial X-invariant ideals 

in A, that is if for any ideal J in A we have  

(∀푝 ∈ 푃)푋 (퐽) = 퐽 ⟹ 퐽 = {푂}    표푟  퐽 = 퐴. 

Theorem (4.2.7)[4]: 

(Simplicity of 풪 ) If a regular product system X is topologically a periodic 

and minimal, then 풪 is simple.  

Proof:  SupposeI is an ideal in 풪  and put 퐽 = (푗 ) (퐼) ∩ 퐴 = {푎 ∈

 퐴: 푗 (푎) ∈ 퐼}. Then J is an ideal in A. We claim that J is X-invariant. 

Indeed, for 푝 ∈ 푃 we have  
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푗 〈푋 , 퐽푋 〉 = 푗 푋
∗
푗 퐽푋 = 푗 푋

∗
푗 (퐽)푗 푋 ⊆ 퐼 

That is 〈푋 , 퐽푋 〉 ⊆ 퐽 and hence 퐽 ⊆ 푋 (퐽). Onthe other hand, if 푎 ∈

푋 (퐽). then we have  

∅ (푎) = Θ , ,     푤ℎ푒푟푒   푥 ,푦 ∈  푋    푎푛푑    푗 ∈ 퐽.  

Since 푗 ∶  푋 → 풪  is Cuntz-Pimsner covariant, we get  

푗 (푎) = 푗 ( ) ∅ (푎) = 푗 ( )(Θ , , ) = 푗 (푥 )푗 (푦 , 푗 )∗

= 푗 (푥 )푗 (푗∗)푗 (푦 )∗ ∈ 퐼. 

Thus  푋 (퐽) ⊆ 퐽  and this proves our claim. In view of minimality of X, 

either 퐽 = 퐴or 퐽 = {0}. In the former case, 풪 = 퐶∗(푗 (푋)) =  푰because 

푗 (푋 )= 푗 (퐴푋 )=  푗 (퐴)푗 (푋 ) ⊆ 퐼 for each 푝 ∈  푃. In the latter case, the 

composition of 푗 ∶ 푋 →  풪 with the quotient map 휃:풪 → 풪 /퐼  yields a 

Cuntz Pimsner representation푘 : = 휃 ∘  푗    표푓  푋 푖푛 풪 /퐼 which is injective 

on A. Thus by Theorem (4.2.5) we have an epimorphism 

휋 :풪 /퐼 → 풪  

such that 휋  (푞 푗 (푥) = 푗 (푥),푥 ∈  푋.Hence 푗 (푥) ∩ 퐼 = {0}and 

therefore 퐼 = {0}.  

Schweizer found a necessary and sufficient condition for simplicity of 

Cuntz-Pimsner algebras associated with single C*-correspondences, 
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improving similar results. Namely, if X is a left essential and full C*-

correspondence with coefficients in a unital C*-algebra A, then 풪  is simple 

if and only if X is minimal and nonperiodic, meaning that 푋⨂ ≈ 퐴  

implies 푛 = 0, where ≈ denotes the unitary equivalence of C*-

correspondences. This result suggests that topological aperiodicity of a 

product system X should imply nonperiodicity of X, and this is indeed the 

case.  

Proposition (4.2.8)[4]: 

Suppose that X is a topologically a periodic regular product system over a 

semigroup P of Ore type. Then 푋 ≈ 푋  implies 푝 ∼푹  푒 , and if in addition 

(퐺(푃),푃) is a quasi-lattice ordered group, then 푋 ( ) ≈  푋 ( ) 

implies 푝 = 푞.  

Proof: In view of Proposition (4.2.4) parts (i) and (ii), it suffices to note that 

푋 ≈ 푋 implies that [휋] ∈ 푋 (푋 (휋)) for all [휋] ∈ 퐴 . To this end, let 

푉: 푋 → 푋 bea bimodule unitary implementing the equivalence 푋 ≈ 푋 . 

Let [휋]  ∈ 퐴  be arbitrary and take any [휌] ∈ 푋 ([휋]) (such 휌 exists 

because 푋 is surjective). In other words, [휋] ≼ [푋 − Ind(휌) ∘ ∅ ]. Then V 

gives rise to a unitary map  

푉 ∶ 푋 ⨂ 퐻  → 푋 ⨂ 퐻  , 푠푢푐ℎ 푡ℎ푎푡    푉(푥 ⨂ ℎ)  =  (푉푥) ⨂ ℎ. 

Indeed, this follows from the following simple computation:  
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푥 ⨂ℎ = 〈푥 ⨂ ℎ ,푥 ⨂ ℎ 〉
,

= 〈ℎ , 휌(〈푥 ,푥 〉 )ℎ 〉
,

 

= 〈ℎ ,휌 〈푉푥 ,푉푥 〉 ℎ 〉
,

=  〈(푉푥 )⨂ ℎ , (푉푥 )⨂ ℎ 〉
,

=  (푉푥 )⨂ ℎ  

where 푥 ∈ 푋 , ℎ ∈ 퐻 , i =  1, . . . , n. Since V is a left A-module morphism, 

we see that 푉 establishes a unitary equivalence between 푋 − Ind(휌) ∘

 ∅ and 푋 − Ind(휌) ∘  ∅ . Hence we have both [휋] ≼ [푋 − Ind(휌) ∘  ∅ ] 

and [휋] ≼ [푋 − Ind(휌)  ∘  ∅ ]. 

We give several examples and applications of the theory developed 

above. We discuss algebras associated with saturated Fell bundles, twisted C 

*-dynamical systems, product systems of topological graphs and the Cuntz 

algebra 풬ℕ.  

We consider a regular product system X over a semigroup Pof Ore 

type, with the additional property that each C*-correspondence 푋 ,푝 ∈ 푃, is 

a Hilbert bimodule equipped with left A-valued inner product 푝〈∙,∙〉:푋 ×

푋 → 퐴. We call such an X regular product system of Hilbert bimnodules. 

With help of for instance, one can show that a regular product system is a 

product system of Hilbert bimodules if and only if each left action 

homomorphism ∅ :퐴 → 퐾 푋  is surjective. In this case,∅ :퐴 → 퐾 푋   is 

an isomorphism and  
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푝〈푥, 푦〉 = ∅ Θ , , 푥, 푦 ∈ 푋  

The following Proposition (4.2.9) gives another characterization of regular 

product systems of Hilbert bimodules in terms of the Fell bundle structure in 

풪  identified in Theorem (4.1.7) above.  

Proposition (4.2.9)[4]: 

A regular product system X over a semigroup P of Ore type is a product 

system of Hilbert bimodules if and only if the algebra of coefficients 

Aembeds into 풪  as the core subalgebra (풪 )[ , ], that is  

푗 (퐴)  =  (풪 )[ , ] 

In this case, each space 푋 . embeds into 풪  as the fiber (풪 )[ , ] In 

particular, 푗 (푋 )  =  (풪 )[ , ], for all 푝 ∈ 푃. and  

(풪 )[ , ] = 푠푝푎푛 {푗 (푥)푗 (푦)∗: 푥 ∈ 푋 , 푦 ∈ 푋 }, 푝,푞 ∈ 푃.           (23)  

Proof: If all the maps ∅ :퐴 → 퐾 푋 are isomorphisms, it follows from 

Lemma (4.1.2) part (ii) that all the maps 휄 ,
. : 퐾 푋 ,푋 → 퐾 푋 ,푋  

are (Banach space) isomorphisms. Hence  

lim
⟶

퐾 푋 ,푋 = 휑 , 퐾 푋 ,푋  

where 휑 ,  denotes the natural embedding of  퐾 푋 ,푋  into the inductive 

limit lim
⟶

퐾 푋 ,푋 . As the isomnorphismn from Theorem (4.1.7) sends 
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푗 (푥)푗 (푦)∗ to 휑 , Θ , , 푥 ∈ 푋 ,푦 ∈ 푋 ,  we get [4]. In particular, we 

have푗 (퐴) = (풪 )[ , ]. 

Conversely, if we assume that ∅ :퐴 → 퐾 푋 is not onto for certain 

푝 ∈ 푃. Then  

휑 , 퐾(퐴) = 휑 , ∅ (퐴) ⊆ 휑 , 퐾 푋 lim
⟶

퐾(푋 ,푋 ), 

and hence 푗 (퐴) ⊆ (풪 )[ , ].  

Definition (4.2.10)[4]: 

A partial action of a group G on a topological space Ω consists of a pair 

({퐷 } ∈ , {휃 } ∈ ), where 퐷 ’s are open subets of Ω and 휃 :퐷 → 퐷  are 

homeomorphisms such that  

(푃퐴1)퐷 = Ω  푎푛푑 휃 = 푖푑, 

(푃퐴2)휃 (퐷 ∩ 퐷 ) = 퐷  ∩ 퐷 , 

(푃퐴3) 휃 (휃 (푥))  =  휃 (푥),푓표푟 푥 ∈ 퐷 ∩ 퐷 .  

the partial action ({퐷 } ∈ , {휃 } ∈ ) is topologicaily free if for every 

open nonempty 푈 ⊆  훺 and finite 퐹 ⊆ 퐺 \ {푒} there exists . 푥 ∈  푈 such that 

푥 ∈ 퐷 implies 휃 (푥) ≠ 푥 for all 푡 ∈  퐹.  

Proposition (4.2.11)[4]: 

Suppose X is a regular product system of Hilbert bimodules and the 

underlying semigroup P is of Ore type. The formulas  
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퐷[ , ] ≔  푋 〈푋 ,푋 〉 ,  

푋[ , ]([휋]) ≔ 푋 푋
 
([휋]), [휋] ∈ 퐷[ , ],푝, 푞 ∈ P, 

yield a well defined family of open sets 퐷
∈ ( )and homeomorphisms 

푋 :퐷 → 퐷  such that ( 퐷
∈ ( ), 푋 

∈ ( )) is a partial action of 

G(P)on 퐴. Moreover,  

(i) 푋 
∈ ( ) is a semigroup dual to {(풪 ) } ∈ ( ), where we treat 

{(풪 ) } ∈ ( )asa pruduct system, and 푋 are viewed as 

multivalued maps on 퐴 with 푋  (퐴\퐷 ) = {∅} 

(ii) We have the following implication: 

퐷
∈ ( ), 푋  

∈ ( ) 푖푠 푡표푝표푙표푔푖푐푎푙푙푦 푓푟푒푒 

⇒  푋푖푠 푡표푝표푙표푔푖푐푎푙푙푦 푎푝푒푟푖표푑푖푐,                         (24) 

and if P is both left and right Ore. (so for instance it is a group or a 

cancellative abelian semi group) then the above implication is 

actually an equivalence.  

Proof: Tobegin with, let us note that for an ideal IinA and 푝 ∈ 푃we have 

푋 퐼 = 〈푋 퐼,푋 〉 ,푋 퐼 = 〈푋 , 퐼푋 〉                   (25) 

Now, let [휋] ∈ 퐴  and 푟 ∈  푃be arbitrary. Natural representatives of the 

classes 푋 푋
 
([휋]) and 푋 푋

 
([휋]) act by multiplication from the left on 

the spaces  
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푋 ⨂푋 ⨂ 퐻 , 푋 ⨂푋 ⨂ 퐻 ,  

respectively. The obvious C*-correspondence isomorphisms  

푋 ⨂푋 ≅  푋 ⨂ 푋 ⨂푋 ⨂푋 ≅  푋 ⨂퐴⨂푋  ≅ 푋 ⨂푋  

yield a unitary equivalence between the aforementioned representations. 

Hence 푋 푋
 
([휋]) = 푋 푋

 
([휋]) and thus 푋 푋

 
does mint depend on 

the choice of represen tative of [푝, 푞]. It follows from (25) that the natural 

domain of 푋 푋
 
 is 푋 〈푋 ,푋 〉 which coincides with the spectrum 

of 〈푋 〈푋 ,푋 〉 ,푋 〉. This shows that the formulas above indeed define 

homeomorphisms 푋 :퐷 → 퐷 ,푔 ∈ 퐺(푃).  

Condition (PAl) is obvious. To show (PA2), let 푡 =  [푡 , 푡 ], 푠 =

 [푠 , 푠 ] and 푟 ≥ 푡 , 푠 . Putting 푞 = 푡 (푡 푟), 푝 = 푠 (푠 푟), we have 푡 =

 [푡 (푡 푟), 푡 (푡 푟)] =  [푞, 푟] and 푠 =  [푠 (푠 푟), 푠 (푠 푟)] =  [푟, 푝]. 

Hence  

푋 (퐷 ) = 푋[ , ] 퐷[풓,풑] = 푋 푋  푋 퐷[풆,풑] = 푋 퐷[풆,풑] ∩ 퐷[풆,풓] . 

On the other hand, since 푠푡 =  [푡 , 푡 ] ∘ [푠 , 푠 ] =  [푡 (푡 푟), 푠 (푠 푟)] =

[푞,푝], we have  

퐷 ∩ 퐷 =  퐷[ , ]  ∩   퐷[ , ]  = 푋 퐷[ , ] ∩ 푋 (퐷[풆,풓])  =  푋 퐷[ , ] ∩ 퐷[풆,풓] .  

This proves condition (PA2). 
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To show (PA3), let t =  [t , t ], s = [s , s ], r ≥ t ,s  and [π] ∈ D ∩

D . Then a natural representative of X ([π])  =  X[ , ]∘[ , ]([π])  =

X  X  ([π]) acts by left multiplication on the space  

푋 ⨂ 푋 ⨂ 퐻 = 푋  ⨂푋 ⨂푋 ⨂푋   ⨂ 퐻  

Similarly, a representative of X  
 X  

 ([휋]) = X  ∘ X ∘ X ∘ X ([π]) acts 

by left multiplication on the space  

푋 ⊗  푋 ⊗  푋 ⊗  푋 ⊗ 퐻 . 

The latter can be considered an invariant subspace of the former with help of 
the following natural isomorphisms of C*-correspondences: 

X  ⨂X  ⨂X  ⨂X ≅ X  ⨂X  ⨂ X ⨂X  ⨂X  ⨂X  

≅ X  〈X  , X  〉  ⨂X ⨂X  ⨂〈X  , X  〉  X  . 

By the choice of [휋] and property (PA2), we see that 푋  푋  ([휋]) is nonzero 

and thus equals 푋  ([π]), as irreducible representations have no non-trivial 

subrepresentations.  

Ad (i). This follows from our description of 푋[ , ]
 and the form of 

풪[ , ]
 given in (23).  

Ad (ii). Implication (24) is straightforward. For the converse, let us 

additionally assume that Pis right cancellative and right reversible (then Pis 

both left arid right Ore). Take any 푔 , . ,푔  ∈  퐺(푃)\ {[e, e]}. Using left 

reversibility of Pwe may represent these elements in the form 푔 =

[푡, 푟 ], . . . ,푔 =  [푡, 푟 ],푤ℎ푒푟푒 푡, 푟 , . . . , 푟 ∈  푃푎푛푑 푡 ≠ 푟  푓표푟 푖 = 1, . . . ,푛. 
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By right reversibility of P, one can inductively find elements 

푞 , . . . , 푞 , 푝 , . . . ,푝 ∈  푃such that  

푞 푡 = 푝 푟 . 

푞 푞 푡 = 푝 푝 푟 ,  

. . . 푞 … 푞 푞 푡 = 푝 … 푝 푝 푟 . 

Then defining  

푞: = 푞 . . . 푞 , 푠: = 푞푡     푎푛푑    푝 ≔ 푞 . . . 푞 푝 … 푝     푓표푟  푖 = 1, . . . ,푛,  

we get 푆 =  푝 푟  and 푝 ≠ 푞 for 푖 =  1, . . . , 푛. Hence 푞 푠 =  푡 and 푝 푠 =

 푟   for every 푖 =  1, . . . ,푛. Thus  

푋 = 푋[ , ] = 푋 푋 = 푋 푋  

Since 푋 푋 = 푋 ,  does not depend on the choice of 푠 ≥

 푞 , 푝 , we see that the aperiodicity condition applied to q and 

 푝 , . . . , 푝 yields the topological freeness condition for 푞 , . . . , 푞 . 

We do not know if the converse to implication (24) holds in general. 

Nevertheless, applying Proposition (4.2.1) and Theorems (4.2.5) and (4.2.7), 

we obtain the following. 

Corollary (4.2.12)[4]: 

Suppose 퐵 
∈

is a saturated Fell bundle. Treating its fibers as 

imprimitivity Hilbert bimodules over 퐵 , the dual semigroup 퐵 
∈

 is a 

group of genime homeomorphisms of 퐵 .  
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(i) The action 퐵 
∈  

is topologically free if and only if the product 

system 푋 = ∐ 퐵 
∈  

 is topologically aperiodic. If this is the case, 

then every C*-norm on ⨁∐ 퐵 
∈  

 is topologically graded.  

(ii) If the action 퐵 
∈

is topologically free and has no invariant non-

trivial open subsets then the reduced cross-sectional C*-algebra 

퐶∗( 퐵 
∈  

) is simple.  

Suppose 훼 is an action of a semigroup P by endomorphisms of A such 

that each, 훼 , 푠 ∈  푃, extends to a strictly continuous endomorphism 훼  of 

the multiplier algebra M(A). Let 휔 be a circle-valued multiplier on P. That 

is 휔: 푃 ×  푃 →  핋 is such that  

휔(푝, 푞)휔(푝푞, 푟) =  휔(푝, 푞푟)휔(푞, 푟),         푝,푞, 푟 ∈  푃.  

Then (퐴,훼,푃,휔) is called a twisted semigroup C*-dynamical system. A 

twisted crossed product 퐴 × ,  푃, is the universal C*-algebra generated by 

{ 푖 (푎)푖 (푠) ∶ 푎 ∈ 퐴, 푠 ∈ 푃},where (푖 , 푖 ) is a universal covariant 

representation of (퐴,푃,훼,휔). That is, 푖 ∶  퐴 →  퐴 × , 푃is a 

homomorphism and {푖 (푝) ∶ 푝 ∈ 푃}are isometrics in M(퐴 × , 푃) such that  

푖 (푝)푖 (푞) =  휔(푝, 푞)푖 (푝푞)     푎푛푑    푖 (푝)푖 (푎)푖 (푝)∗  = 푖 훼 (푎) , 

for 푝, 푞 ∈ 푃 and 푎 ∈  퐴. A necessary condition for 푖  to be injective is that 

all endomorphisms 훼 , 푝 ∈ 푃, are injective. We apply Theorem (4.1.7) to 

show that when P is of Oretypethis condition is also sufficient. Additionally, 

we reveal a natural Fell bundle structure in 퐴 × , 푃.  
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We associate to (퐴,훼,푃,휔) a product system 푋 =  ∐ 푋∈ ∘ over the 

opposite semigroup 푃∘  We equip the linear space 푋 ≔ α (퐴)퐴 with the 

following C*-correspondence operations  

푎 ∙ 푥 = α (푎)푥, 푥 ∙  푎 =  푥푎, 〈푥, 푦〉  =  푥∗푦, 

푎 ∈  퐴, 푥, 푦 ∈ 푋 . The multiplication inX is defined by  

푥 ∙ 푦 =  휔(푝, 푞)α (푥)푦, 푓표푟 푥 ∈  푋 = 훼 (퐴)퐴 푎푛푑 푦 ∈ 푋 =  α (퐴)퐴.  

X is a product system and the left action of A on each of its fibers is by 

compacts. Accordingly, X is a regular product system if and only if all the 

endomorphisms 훼 , 푝 ∈  푃, are injective. Moreover, there is an 

isomnorpinsm 

퐴 ⋊ ,  푃 ≅ 풪  

given by the mapping that sends an element 푖 (푝)∗푖 (푎) ∈  퐴 ⋊ ,  푃 to the 

image of the element a ∈ 푋 = 훼 (퐴)퐴 in 풪 . Using this isomnorphisrn 

and Theorem (4.1.7) one immediately gets the following. 

Proposition (4.2.13)[4]: 

Suppose that (퐴,훼,푃,휔) is atwisted semigroup C*-dynamical system, 

where P is of Ore type and all the endomorphisms 훼 , 푝 ∈  푃, are injective. 

Then the following hold.  

(i) The algebra A embeds via 푖  into the crossed product 퐴 ⋊ , 푃.  
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(ii) The crossed product 퐴 ⋊ , 푃 is naturally graded over the group of 

fractions G(P) by the subspaces of the form  

퐵 ∶=  푠푝푎푛 푖 (푝)∗푖 (푎)푖 (푞): 푎 ∈ 훼 (퐴)퐴훼 (퐴), [푝, 푞] = 푔 , 푔 ∈ 퐺(푃).  

Morvover 퐴 ⋊ , 푃 can he identified with the cross-sectional 

C*algebra 퐶∗ {퐵 } ∈ ( ) .  

We keep the assumptions of Proposition (4.2.13). It is natural to define 

a reduced twisted crossed product 퐴 × , 푃 to be the reduced crosse 

sectional algebra of the Fell bundle {퐵 } ∈ ( ). Let 휆 ∶  퐴 × , 푃 →

퐴 × , 푃 be the canonical epimorphism, and  

퐼 ≔  푘푒푟휆. 

We wish to generalize the main results to the case of twisted semnigroup 

actions. Let X be a product system associated to (퐴,훼,푃,휔)as above. One 

can see, cf., for instance, that a fiber 푋 ,푝 ∈ 푃, is a Hilbert bimodule if and 

onlyif the range of 훼  is a hereditary sub algebra of A. If this is the case, 

then 훼 (퐴) is a corner in A:  

훼 (퐴) = 훼 (퐴)퐴훼 (퐴) = 훼 (1)퐴훼 (1), 

and the left inner product in 푋 is defined by  

〈푥, 푦〉 =  훼 (푥푦∗),        푥, 푦 ∈ 푋 =  훼 (퐴)퐴. 

The spectrum of 훼 (퐴) can be identified with an open subset of 퐴. Then the 

homeomorphism 훼 :훼 (퐴)  →  퐴 dual to the isomorphism 훼 :퐴 →
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훼 (퐴)can be naturally treated as a partial homeomorphism of 퐴. The 

following Lemma (4.2.14) is based dealing with interactions on unital 

algebras. 

 Lemma (4.2.14)[4]: 

If the monomorphism 훼 , has a hereditary range, then the 

homeomorphisms 훼 :훼 (퐴)  →  퐴  and 푋 : 〈푋 ,푋 〉 → 퐴 coincide.  

Proof: With our identifications, we have  

훼 (퐴) = [휋] ∈ 퐴:휋 훼 (퐴) ≠ 0 = 〈푋 ,푋 〉  

Let 휋 ∶ 퐴 → ß(퐻) be an irreducible representation such that 휋 훼 (퐴) ≠ 0. 

Then 훼 ([휋])is the equivalence class of the representation 휋 ∘ 훼 :퐴 →

ß 휋 훼 (퐴) 퐻 .  Since  휋 훼 (퐴) 퐻 = 휋 훼 (퐴)퐴 퐻 and  

푎 ⨂ ℎ
 

= 〈ℎ ,π(a∗푎 )ℎ 〉
 

,

= π(푎 )ℎ
 

, 

푎 ∈ 푋 = α (A)A, ℎ ∈ 퐻, 푖 = 1, … , 푛,  we see that 푎⨂  ℎ ↦ π( 푎)ℎ yields 

a unitary operator 푈 ∶  푋 ⨂  퐻 → π α (A) H. Furthermore, for 푎 ∈

 퐴, 푏 ∈  훼 (퐴) 푎푛푑 ℎ ∈  퐻 we have  

푋 − 퐼푛푑(휋)(푎)푈∗ 휋(푏)ℎ = 푋 − 퐼푛푑(휋)(푎)푏 ⨂ ℎ =  훼 (푎)푏 ⨂  ℎ 

=  푈∗ 휋 ∘ 훼 (푎) 휋(푏)ℎ. 
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Hence U intertwines 푋 − Ind and 휋 ∘ 훼 . This proves that 푋 =  훼 . 

Before stating our criterion of simplicity for semigroup crossed 

products, we need to define minimality for semigroup actions.  

Definition (4.2.15)[4]: 

 Let α be an action of a semigroup P on a C*-algebra A. We say that 훼 

is minimal if for every ideal J in A such that α  (퐽)  =  퐽for all 푝 ∈ 푃 we 

have 퐽 = 퐴 표푟 퐽 = {0}.  

Let us note that if X is the product system associated to a twisted 

semigroup C*-dynamical system (퐴,훼,푃,휔)then minimality of 훼 in the 

sense of Definition (4.2.15) is equivalent to minimality of X in the sense of 

Definition (4.2.6).  

Proposition (4.3.16)[4]: 

Suppose (퐴,훼,푃,휔)is a twisted semi group C*-dynamical system with 

P of Ore type. We assume that each endomorphism 훼 , 푝 ∈ 푃, is injective 

and has hereditary range. As above, we regard 훼 , 푝 ∈ 푃, as partial 

homeomorphisms of 퐴. The formulas  

퐷[ , ] ≔ α α (퐴) , α[ , ]([휋]): = α α ([휋]) , [휋] ∈ 퐷[ , ],푝, 푞 ∈ 푃 

yield a well defined partial action 퐷
∈ ( ) 

, 훼
∈ ( ) 

 which 

coincides with the partial action induced by the Fell bundle 

퐵
∈ ( ) 

described in Proposition (4.2.13) part (ii). Moreover,  
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퐷
∈ ( ) 

, 훼
∈ ( ) 

푖푠 푡표푝표푙표푔푖푐푎푙푙푦 푓푟푒푒 

⟹  훼
∈

 푖푠 푡표푝표푙표푔푖푐푎푙푙푦 푎푝푒푟푖표푑푖푐, 

and 

(i) if the semigroup 훼
∈

is topologically aperiodic, then for any 

ideal I in 퐴 × , 푃 such that 퐼 ∩ 퐴 =  {0} we have 퐼 ⊆ 퐼 . 

(ii) if the sernigroup 훼
∈

is topologically aperiodic and α is minimal, 

then the reduced twisted crossed product 퐴 ⋊ , 푃 is simple.  

Proof: With the identification of 퐴 ⋊ , 푃 with 풪 , for each 푔 ∈ 퐺(푃) we 

have the correspondence between (풪 )  and 퐵 . Thus Lemma (4.2.14) and 

Proposition (4.2.11) imply the initial part of the assertion. The remaining 

claims (i) and (ii) follow from Lemma (4.2.14) and Theorems (4.2.5) and 

(4.2.7). 

Let 퐸 =  (퐸 ,퐸 , 푠 , 푟) be a topological graph as introduced. This 

means we assume that vertex set 퐸  and edge set 퐸  are locally compact 

Hausdoff spaces, source map 푠 ∶ 퐸  → 퐸 is a local homeomorphism, and 

range map 푟 ∶ 퐸  → 퐸  is a continuous map.  

A C*-correspondence 푋  of the topological graph E is defined in the 

following manner. The space 푋  consists of functions 푥 ∈ 퐶 (퐸 ) for which  

퐸  ∋ 푣 ⟼ |푥(푒)|
{ ∈ : ( ) }
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belongs to 퐴 ∶= 퐶 (퐸 ). Then 푋  is a C*-correspondence over A with the 

following structure.  

(푥 ∙ 푎)(푒): = 푥(푒)푎(푠(푒))    푓표푟 푒 ∈ 퐸 , 

〈푥, 푦〉 (푣): = 푥(푒)푦(푒) 
{ ∈ : ( ) }

푓표푟 푣 ∈  퐸 , 푎푛푑  

(푎 ∙ 푥)(푒) ∶=  푎 푟(푒) 푥(푒)    푓표푟 푒 ∈ 퐸 . 

C*-correspondence 푋  generates a product system over ℕ. It follows that 

this product system (or simply, this C*-correspondence 푋 ).is regular if and 

only if  

푟(퐸 )  

=  퐸  푎푛푑 푒푣푒푟푦 푣  퐸  has a neighborhood 푉 such that 푟 (푉)is compact.   (26) 

In particular, (26) holds whenever 푟:퐸 →  퐸  is a proper surjection. If both 

퐸  and 퐸  are discrete then E is just a usual directed graph and then (26) 

says that every vertex in 퐸  receives at least one and at most finitely mnany 

edges (in other words, graph 퐸 is row-finite and without sources). 

Accordingly , the C*-algebra of E is  

퐶∗(퐸): =  풪푿푬 . 

Let 푒 =  (푒 , . . . , 푒 ), 푟(푒 ) = 푠(푒 ), 푖 = 1, . . , 푛 − 1, beapath in E. Then e 

is a cycle if 푟(푒 ) = 푠(푒 ), and vertex 푠(푒 ) is called tile base point of e. A 

cycle e is said to be without entries if 푟 (푟(푒 )) =  푒  푓표푟 푎푙푙 푘 =

 1, . . , 푛. Graph E is topologically free, if base points of all cycles without 

entries in Ehave empty interiors. It is known, that topological freeness of 퐸 

is equivalent to the uniqueness property for C*(E). 
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In general, topological aperiodicity of 푋  is stronger than topological 

freeness of E. However, when 퐸 = (퐸 ,퐸 , 푠, 푖푑) is a graph that comes from 

a mapping 푠 ∶ 퐸 → 퐸  , these two notions coincide.  

Proposition (4.2.17)[4]: 

Suppose 푋 is a C*-correspondence of a topological graph E satisfying 

(26). The dual C* -correspondence acts on 퐸  (identified with the spectrum 

of 퐴 =  퐶 (퐸 )) via the formula  

푋 (푣) =  푟 푠 (푣) .                                            (27)  

In particular, 

(i) 푋  is topologically aperiodic if and only if the set of base points for 

periodic paths in E has empty interior;  

(ii) If 푟 is injective, topological aperiodicity of 푋  is equivalent to 

topological freeness of E;  

(iii) If 퐸 is discrete, then 푋  is topologically aperiodic if and only if 퐸 has 

no cycles, and this in turn is equivalent to C*(E) being an AF-

algebra.  

Proof: We identify 퐴 with 퐸 by putting 푣(푎): =  푎(푣) 푓표푟 푣 ∈ 퐸 , 푎 ∈

 퐴 = 퐶 (퐸 ). We fix 푣 ∈ 퐸 and an orthonormnal basis {푥 } ∈ ( ) in the 

Hilbert space ℂ ( ) . Let us consider the representation 휋 = 퐴 →

ß(ℂ ( ) ) given by  
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휋 (푎) =  푎 푟(푒) 풙풆,
풆∈풔 ퟏ(풗)

        푎 ∈ 퐴 = 퐶 (퐸 ).  

One readily checks that the mapping  

푋 ⨂풗ℂ ∋ 푥 ⨂풗 휆 ⟼ 휆푥(푒)풙풆 ∈
풆∈풔 ퟏ(풗)

ℂ ( )  

gives rise to a unitary which establishes equivalence 푋 −  Ind(푣) ≅ 휋 . 

Furthermore, we have  

{ 휔 ∈ 퐸 :휔 ≤  휋 } = {휔 ∈ 퐸 :휔 = 푟(푒)푓표푟 푠표푚푒 푒 ∈  푠 (푣)} = 푟(푠 (푣)).  

This yields (27). Claim (i) follows from (27), part (iii) of Proposition (4.2.4) 

and the Baire category theorem. Claims (ii) and (iii) are now 

straightforward.  

Corollary (4.2.18)[4]: 

Keeping theassumptions of Proposition (4.2.17), let 푉 ⊆ 퐸  be closed. 

Then ideal 퐽 = 퐶 (퐸 \ 푉) is 푋 -invarant if and only if 푋 (푉) = 푉.  

Proof: It is known, that ideal 퐽 =  퐶 (퐸 \ 푉) is 푋 -invariant if and only if 

V satisfies the following two conditions  

(i) (∀푒 ∈ 퐸 )푠(푒) ∈ 푉 ⟹  푟(푒) ∈  푉,    푎푛푑   

(ii)  푣 ∈ 푉 ⟹ (∃  ∈ 푟 (푣) 푠(푒) ∈ 푉. 

in view of (27), conditions (i) and (ii) are respectively equivalent to the 

inclusions 푋 (푉) ⊆ 푉 푎푛푑 푉 ⊆ 푋 (푉).  
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Example (4.2.19)[4]: 

(Excel's crossed product for a proper local homeomorphism).  

Let 퐴 = 퐶 (푀) for a locally compact Hausdoff space M and let 훼: 퐴 → 퐴be 

the operator of composition with a proper surjective local homeomorphism  

휎 ∶  푀 → 푀. Then 훼 is an extendible monomorphism  possessing a natural 

left inverse transfer operator 퐿: 퐴 → 퐴, defined by  

퐿(푎)(푡)  =
1

|휎 (푡)| 푎(푠),
∈ ( )

 

Let 푋 be the C*-correspondence with coefficients in A, constructed as 

follows. 푋  is the completion of A with respect to the norm given by the 

inner-product below, and with the following structure:  

푥 ∙ 푎 = 푥훼(푎),    〈푥, 푦〉 =  퐿(푥∗푦),     푎 ∙ 푥 =  푎푥,  

where 푎 ∈  퐴, 푥, 푦 ∈ 푋 . Clearly, the left action of A on 푋  is injective. One 

can also show that it is by compacts. Hence 푋  is a regular C*-

correspondence. It is known that is naturally isomorplic to a C*-

correspondence associated to the topological graph 퐸 =  (푀,푀,휎, 푖푑). Thus, 

by Proposition (4.2.17), the dual C*-correspondence to 푋  acts on M, 

identified with the spectrum of 퐴 =  퐶 (푀), via the formula  

푋 (푡) = 휎 (푡).                                                          (28) 

It is observed that  

퐶 (푀) ⋊ , ℕ ≔ 풪  
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is a natural candidate for Exel’s crossed product when 퐴 = 퐶 (푀) is non-

unital. When M is compact, 퐶(푀) × , ℕ coincides with the crossed product 

introduced and can be effectively described in terms of generators and 

relations.  

Now, combining Proposition (4.2.17), we see that the following 

conditions are equivalent.  

(i) 푋  is topologically aperiodic;  

(ii) the set of periodic points of 휎 has empty interior;  

(iii) 휎 is topàlogically free in the sense of Exel and Vershik .  

(iv) every non-trivial ideal in 퐶 (푀) ⋊ , ℕ intersects 퐶 (푀) non-

trivially.  

Consequently, in view of Corollary (4.2.18), the crossed product 

퐶 (푀) × , ℕ is simple if and only if in addition to the above equivalent 

conditions there is no nontrivial closed subset Y of M such that 휎 (Y) = Y.  

We introduce topological P-graphs which generalize both topological 

k-graphs and (discrete) P-graphs. Within the framework of a general 

approach to product systems proposed, the reasoning shows that a 

topological P-graph defined below is simply a product system over P with 

values in a groupoid of topological graphs. In the sequel P is a semigroup of 

Ore type. We treat elements of P as morphisms in a category with single 

object e.  
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Definition (4.2.20)[4]: 

By a topological P-graph we mean a pair (Λ, 푑) consisting of:  

(i) a small category Λ endowed with a second countable locally compact 

Hnusdorff topology under which the composition map is continuous 

andopen, the range map r is continuous and the source map s is a 

local homeomorphism;  

(ii) a continuous functor 푑: Λ →  푃, called degree map, satisfying the 

factorization property: if 푑(휆) =  푝푞 then there exist unique 휇,푣 with 

푑(휇) = 푝, 푑(푣)  =  푞 푎푛푑 휆 = 휇푣.  

Elements (morphisms) of Λ are called paths. Λ : =  푑  (푝) stands for 

the set of paths of degree 푝 ∈ 푃. Paths of degree 푒 are called vertices.  

We associate to a topological P-graph (Λ, 푑) a product system inthe 

same manner as it is done for topological k-rank graphs. That is, for each 

푝 ∈ 푃 we let 푋 = 푋  be the standard C*-correspondence associated to the 

topological graph  

퐸 = Λ ,Λ , 푠 Λ , 푟  

so that 퐴 ∶=  퐶 (Λ ) and 푋 , is the completion of the pre-Hilbert A-module 

퐶 (Λ )  with the structure  

〈푓,푔〉 (푣) = 푓(휂)
∈ ( )

 푔(휂)  푎푛푑  (푎 ∙ 푓 ∙ 푏)(휆)  

=  푎(푟(휆))푓(휆)푏(푠(휆)).  
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The proof works in our more general setting and shows that the formula  

(푓푔)(휆): =  푓(휆(푒, 푝))푔(휆(푝, 푝푞))  

defines a product 푋 × 푋 ∋ (푓,푔) →  푓푔 ∈  푋  that makes 푋 = ∐ 푋∈ , 

into a product system. In view of (26), we see that the product system X is 

regular if and only if for every 푝 ∈ 푃 we have  

푟(Λ ) = Λ and  

every 푣 ∈ 퐸  has a neighborhood 푉 such that 푟 (푉) ∩ Λ  is compact in Λ .  

If the above condition holds, we say that the topological P-graph (Λ, 푑) is 

regular. It follows that if (Λ, 푑) is a regular topological k-rank graph (that is, 

if 푃 =  ℕ ), then the Cuntz-Krieger algebra of (Λ, 푑) defined coincides with 

풪  Hence it is natural to coin the following definitions.  

Definition (4.2.21)[4].  

Suppose (Λ, 푑) is a regular topological P-graph, where P is a semi 

group of Ore type. We define a C*-algebra 퐶∗(Λ, 푑) and a reduced 

C*algebra 퐶∗(Λ,푑) 표푓 (Λ, 푑) to be respectively the Cuntz- Pimsner algebra 

풪  and the reduced Cuntz-Pimsner algebra 풪  where X is the regular 

product system defined above.  

Proposition (4.2.22)[4]: 

Suppose (Λ, 푑) is a regular topological P-graph. The C*-algebras 

퐶∗(Λ, 푑)  and 퐶∗(Λ, 푑) are non-degenerate in the sense that they are 
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generated by the images of injective Guntz-Pimsner representations of 푋 =

 ∐ 푋∈ ,. Moreover,  

(i) X is topologically a periodic if and only if for every nonempty 

open set 푈 ⊆ Λ , each finite set 퐹 ⊆ 푃 and an element 푞 ∈ 푃 with 

푞 ≁  푝 for all 푝 ∈ 퐹, there is an enumeration {푝 , . . , 푝 }of 

elements of F and there are elements 푠 , . . , 푠 ∈ 푃such that 푞 ≤

푠 ≤ ⋯ ≤ 푠 , 푝 ≤  푠 , 푓표푟 푖 =  1, . . . , 푛, and the union  

{푣 ∈ Λ :휇 ∈ Λ , 푣 ∈ Λ  푠(휇) = 푠(푣) 푎푛푑 푟(휇) = 푟(푣) = 푣}       (29) 

     does not contain U.  

(ii) Xis minimal if and only if there is no nontrivial closed set 푉 ⊆ Λ  

such that  

푟 Λ ∩  푠 (푉) =  푉     푓표푟 푎푙푙  푝 ∈  푃.                    (30)  

In particular, if the equivalent conditions in (i) hold, then any non-

zero ideal in 퐶∗(Λ, 푑) has non-zero intersection with 퐶 (Λ ). If the 

conditions described in (i,) and (ii) hold, then 퐶∗(Λ, 푑)  is simple.  

Proof: The initial claim of tins proposition follows from Theorem (4.1.7) 

above. To see that the equivalence in part (i) holds, it suffices to apply 

formula (27) to the C*-correspondences 푋 =  푋 ,푝 ∈  푃. Similarly, using 

(27) and Corollary (4.2.18), we see that X-invariant ideals in퐶 (Λ ) are in 

one-to-one correspondence with closed sets V satisfying (30). This proves 
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part (ii). The final claim of the proposition now follows from Theorems 

(4.2.5) and (4.2.7) above.  

Cuntz- introduced 풬ℕ, the universal C*-algebra generated by a unitary 

u and isometrics 푠 , 푛 ∈ ℕ×, subject to the relations  

(푄1)푠 푠 =  푠 ,  

(푄2)푠 푢 =  푢 푠 ,  and  

(푄3)  푢 푠 푠∗  푢 = 1 ,  

for all 푚, 푛 ∈ ℕ× Cuntz proved that 풬ℕ is simple and purely infinite. Now 

we deduce the simplicity of 풬ℕ from our genergl result - Theorem (4.2.7) 

above.  

It was shown that 풬ℕ may be viewed as the Cuntz-Pimnsner algebra of 

a certain product system. We recall an explicit description of that product 

system given. 

The product system X is over the seimgroup ℕ×and its coefficient 

algebra is 퐴 = 퐶(푆 ). We denote by Z the standard unitary generator of A. 

Each fiber 푋 ,푚 ∈ ℕ×, is a C*-correspondence over A associated to the 

classical covering map 푆 ∋ 푧 → 푧 ∈ 푆  as constructed in Example 

(4.2.19). Each 푋  as left A-module is free with rank 1, and we  

denote the basis element by 1  Hence, each element of 푋  may be uniquely 

written as휉1  with 휉 ∈ 퐴. We have  

(휉1 ) ∙ 푎 =  휉훼 (푎)1 , 

〈휉1 휂1 〉 = 퐿 (휉∗휂), 
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푎 ∙ 휉1 =  (푎휉)1 ,  

For 휉, 푎 ∈  퐴 then  

푋 ≔  푋
 ∈ ℕ×

 

becomes a product system with multiplication 푋 × 푋 → 푋  given by  

(휉1 )(휂1 ) ≔ (휉훼 (휂))1  

for 푚, 푟 ∈  ℕ×. We have  

풪 ≅ 풬ℕ 

Now, let 퐸 , 푖, 푗 = 0,1, . . . ,푚 −  1, be a system of matrix units in 푀 (ℂ). 

There is an isomorphism 

퐶(푆 ) ⨂ 푀 (ℂ) ≅  퐾(푋 ) 

such that  

푓 ⨂퐸 , ⟷ Θ ( ) , . 

Thus 퐾(푋 ) may be identified with the circle 푆 . With these identifications, 

we have  

∅ (푍) =  푍⨂ 퐸 , + 1⨂퐸 , , 

and hence the multivalued map ∅ : 푆 → 푆  is such that  
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∅ (풛) =  {휔 ∈  푆 |휔 =  푧}.  

Furthermore, [푋 − Ind ] is identified with the identity map on 푆 , and 

consequently the multivalued map 푋 = ∅  ∘ [푋 − Ind]: 푆 → 푆 is  

푋 (풛) =  {휔 ∈  푆 |휔 =  푧}. 

For in푚 ≠ 푛the set {푧 ∈  푆 | 푧 ∈  푋 (푋 (푧))} is finite, while every 

nonempty open subset of 푆  is infinite. It follows that the product system X 

is topologically aperiodic.  

Now, we see that A does not contain any non-trivial invariant ideals. Indeed, 

suppose J is an X-invariant ideal in A. Then 퐿 (퐽)  ⊆  퐽 for all 푚 ∈  ℕ×. 

There exists an open subset U of 푆  and a function  푓 ∈ 퐽 such that 푓 ≥ 0 

and 푓(푡) ≠  0 for all 푡 ∈ 푈. If m is sufficiently large then for each 푧 ∈

푆 there is a 푤 ∈ 푈 such that 푤 =  푧. Then 퐿 (푓) is strictly positive on푆  

and hence invertible. Since 퐿 (푓) ∈ 퐽, we conclude that 퐽 = 퐴. 
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List of Symbols 

Symbol Page No 
⊕ Orthogonal Sum 1 
loc local 1 
Leb lebesgue 1 
Dif. diffeomorphism 3 
dim dimension 5 
min minimum 5 
max maximum 10 
dom domain 12 
deg degree 50 
ker kernel 58 
im imaginary 61 
ℓ  Hilbert space for the sequences 65 
UCT Universal coefficient theorem 76 
⨂ Tensor product 76 
⊝ Direct difference 96 
isom isomorphism 98 
Irr irreducible 117 
퐿  Hilbert space 120 

 

  



166  
 

References 

[1]: Abbas Fakhari, C.A. Marales, Khosro Tajbkhsh: Asymptotic measure 

expansive diffeomorphisms, J. Math. Anal. Appl. 15 March (2016). vol  

435(2)(2016): 1682 – 1687. 

[2]: Vassiliki Farmakia, Dimitris Karageorgosa,…, AndreasMitropoulosa: 

Topological Dynamics on Nets,topology and its Applications 15 March 

2016, vol.201:414-431. 

[3]: Nicolai Stammeier: On C*-algebras of irreversible algebraicdynamical 

systems, Journal of Funtional Analysis, 15 August 2015, 

vol.269(4):1136-1179. 

[4]: Bartosz Kosma Kwaśniewski and Wojciech Szymański: Topological 

Aperiodicity for Product Systems overSemigroups of Ore Type, Journal 

of Funtional Analysis, 1May 2016, vol.270(9):3453-3504. 

[5]: B. L. Van der Waerden, How the proof of Baudet's conjecture was 

found, Studies in Pure Mathematics Presented to Richard Rado (L. 

Mirsky, ed) Aacademic press, London, 1971, pp. 251 – 260. 

[6]: B. Banaschewski, Anew proof that " Krull implies Zorn", Math. Logic 

Quart.40(1994), 478 - 480. 

[7]: D. S. Dummit and R. M. Foote, Abstract Algebra, John Wiley and Sons, 

Inc., New Jersey,  2004. 

[8]: Bailey, W. N. "Carlson's Theorem" §5.3 in Generalised 

Hypergeometric Series. Cambridge, England: Cambridge University 

press, pp. 36 – 40, 1935. 

 


